TW202125847A - Light-emitting diode - Google Patents

Light-emitting diode Download PDF

Info

Publication number
TW202125847A
TW202125847A TW108146620A TW108146620A TW202125847A TW 202125847 A TW202125847 A TW 202125847A TW 108146620 A TW108146620 A TW 108146620A TW 108146620 A TW108146620 A TW 108146620A TW 202125847 A TW202125847 A TW 202125847A
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
item
reflective layer
layer
Prior art date
Application number
TW108146620A
Other languages
Chinese (zh)
Other versions
TWI756602B (en
Inventor
盧佳吟
郭彥良
黃明堃
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW108146620A priority Critical patent/TWI756602B/en
Publication of TW202125847A publication Critical patent/TW202125847A/en
Application granted granted Critical
Publication of TWI756602B publication Critical patent/TWI756602B/en

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

A light-emitting diode is provided, including an epitaxial stack and a reflective layer. The epitaxial stack has a first upper surface. The reflective layer has an upper surface, a lower surface, and a side surface connecting the upper surface and the lower surface. From a cross-sectional view of the light-emitting diode, the reflective layer includes a thicker area and a thinner area. The side surface of the reflective layer is inclined outward from the upper surface to the lower surface to form the thinner area. The reflective layer has a first thickness between the upper surface and the lower surface and a second thickness between the side surface and the lower surface. The second thickness is smaller than the first thickness.

Description

發光二極體Light-emitting diode

本發明是關於發光二極體,特別是關於具有高反射率及/或高熱穩定性之發光二極體。The present invention relates to light-emitting diodes, in particular to light-emitting diodes with high reflectivity and/or high thermal stability.

在現有發光二極體的結構中,用於反射光線的金屬反射層一般為利用鍍膜方式形成,然而,發光二極體結構中的金屬反射層的厚度會因鍍膜方式,在同一金屬反射層中有厚薄的差異。由於金屬反射層的反射率跟其厚度相關,因此,設計一適合反射發光二極體光線的金屬反射層為為本技術領域人員所研究開發的目標之一。In the existing light-emitting diode structure, the metal reflective layer used to reflect light is generally formed by coating. However, the thickness of the metal reflective layer in the light-emitting diode structure will vary in the same metal reflective layer due to the coating method. There are differences in thickness. Since the reflectivity of the metal reflective layer is related to its thickness, designing a metal reflective layer suitable for reflecting light from the light-emitting diode is one of the goals of research and development by those skilled in the art.

鑑於前述,本發明提出一種發光二極體,提高發光二極體的出光效率。In view of the foregoing, the present invention proposes a light emitting diode to improve the light extraction efficiency of the light emitting diode.

本發明之一實施例提供一種發光二極體,其包含:磊晶疊層,具有第一上表面;以及反射層,設置於磊晶疊層上,且包含一厚區及一薄區。反射層具有一上表面、一下表面及連接上表面及下表面的一側面,且上表面為較下表面遠離磊晶疊層的面。該薄區具有一寬度。由俯視觀之,磊晶疊層的第一上表面具有第一面積,反射層的厚區的上表面具有第二面積及下表面具有第三面積。其中,第一面積 >第三面積 >第二面積,並且滿足一範圍:0.9  <(第三面積 / 第一面積)<0.999且0.001<((第三面積-第二面積)/ 第三面積)<0.006。An embodiment of the present invention provides a light emitting diode, which includes: an epitaxial stack having a first upper surface; and a reflective layer disposed on the epitaxial stack and including a thick region and a thin region. The reflective layer has an upper surface, a lower surface, and a side surface connecting the upper surface and the lower surface, and the upper surface is a surface farther from the epitaxial stack than the lower surface. The thin area has a width. From a plan view, the first upper surface of the epitaxial stack has a first area, the upper surface of the thick region of the reflective layer has a second area, and the lower surface has a third area. Among them, the first area>the third area>the second area, and satisfies a range: 0.9 <(third area/first area)<0.999 and 0.001<((third area-second area)/third area) <0.006.

本發明之另一實施例提供一種發光二極體,其包含:磊晶疊層,設置於基板上,具有第一上表面;以及反射層,設置於磊晶疊層上,且包含一厚區及一薄區。反射層具有一上表面、一下表面及連接上表面及下表面的一側面,且上表面為較下表面遠離第一上表面。其中,上表面與下表面間具有第一厚度,形成厚區,側面與下表面間具有第二厚度,形成薄區,且第二厚度小於第一厚度。薄區具有一寬度。其中,薄區更具有一臨界間距,臨界間距之間所對應的第二厚度具有等於或大於90%的一臨界反射率,並滿足一範圍:0<(臨界間距 /寬度)<0.5。Another embodiment of the present invention provides a light emitting diode, which includes: an epitaxial stack, which is disposed on a substrate and has a first upper surface; and a reflective layer, which is disposed on the epitaxial stack and includes a thick region And a thin area. The reflective layer has an upper surface, a lower surface, and a side surface connecting the upper surface and the lower surface, and the upper surface is farther from the first upper surface than the lower surface. Wherein, the upper surface and the lower surface have a first thickness to form a thick zone, and the side surface and the lower surface have a second thickness to form a thin zone, and the second thickness is smaller than the first thickness. The thin area has a width. Wherein, the thin area further has a critical interval, and the second thickness between the critical intervals has a critical reflectivity equal to or greater than 90%, and satisfies a range: 0<(critical interval/width)<0.5.

下文係參照圖式,以示例實施例說明本發明之概念。圖式係為利於理解而繪製,圖式中各層之厚度與形狀並非元件之實際尺寸或成比例關係。需特別注意的是,圖式中未繪示、或說明書中未描述之元件,可為發明所屬技術領域具有通常知識者所知之形式。Hereinafter, referring to the drawings, the concept of the present invention is explained with exemplary embodiments. The drawings are drawn for ease of understanding, and the thickness and shape of each layer in the drawings are not the actual size or proportional relationship of the components. It should be noted that elements not shown in the drawings or described in the specification can be in the form known to those with ordinary knowledge in the technical field to which the invention belongs.

請參見第1圖,為根據本發明一實施例之發光二極體1的剖面示意圖;第2圖為發光二極體1的俯視示意圖;第3圖為第1圖所示發光二極體1之局部區域100的放大圖。如第1圖所示,本發明之發光二極體1依序包含基板106、磊晶疊層10及反射層20。其中,磊晶疊層10包含第一半導體層102、發光層103和第二半導體層104,並且包含第一上表面11。較佳地,在基板106和第二半導體層104之間更具有緩衝層105。反射層20位於磊晶疊層10之上,包含遠離磊晶疊層10的上表面21、鄰近磊晶疊層10的下表面22、以及連接上表面21及下表面22的側面23。反射層20的下表面22與磊晶疊層10的第一上表面11相接。於另一實施例中,第一保護層30係位於反射層20上,且包覆反射層20的周圍。Please refer to Fig. 1, which is a schematic cross-sectional view of a light-emitting diode 1 according to an embodiment of the present invention; Fig. 2 is a schematic top view of a light-emitting diode 1; Fig. 3 is a light-emitting diode 1 shown in Fig. 1 An enlarged view of the local area 100. As shown in FIG. 1, the light emitting diode 1 of the present invention includes a substrate 106, an epitaxial stack 10, and a reflective layer 20 in this order. Among them, the epitaxial stack 10 includes a first semiconductor layer 102, a light emitting layer 103, and a second semiconductor layer 104, and includes a first upper surface 11. Preferably, there is a buffer layer 105 between the substrate 106 and the second semiconductor layer 104. The reflective layer 20 is located on the epitaxial stack 10 and includes an upper surface 21 away from the epitaxial stack 10, a lower surface 22 adjacent to the epitaxial stack 10, and a side surface 23 connecting the upper surface 21 and the lower surface 22. The lower surface 22 of the reflective layer 20 is in contact with the first upper surface 11 of the epitaxial stack 10. In another embodiment, the first protective layer 30 is located on the reflective layer 20 and covers the periphery of the reflective layer 20.

基板106包含上表面106a。在一實施例中,基板106可以為成長基板,包括用以磊晶成長磷化鋁鎵銦(AlGaInP)之砷化鎵(GaAs)晶圓,或用以成長氮化鎵(GaN)、氮化銦鎵(InGaN)或氮化鋁鎵(AlGaN)之藍寶石(Al2 O3 )晶圓、氮化鎵(GaN)晶圓碳化矽(SiC)晶圓、或氮化鋁(AlN)晶圓。於另一實施例中,基板106可以為支撐基板(如第11和13圖的支撐基板62A和54A),原先用以磊晶成長磊晶疊層10的成長基板可以依據應用的需要而選擇性地移除,再將磊晶疊層10移轉至前述之支撐基板。在一實施例中,成長基板係作為永久基板(如第12圖的基板106)。The substrate 106 includes an upper surface 106a. In one embodiment, the substrate 106 may be a growth substrate, including a gallium arsenide (GaAs) wafer used to epitaxially grow aluminum gallium indium phosphide (AlGaInP), or used to grow gallium nitride (GaN), nitride Indium gallium (InGaN) or aluminum gallium nitride (AlGaN) sapphire (Al 2 O 3 ) wafers, gallium nitride (GaN) wafers, silicon carbide (SiC) wafers, or aluminum nitride (AlN) wafers. In another embodiment, the substrate 106 may be a support substrate (such as the support substrates 62A and 54A in FIGS. 11 and 13), and the growth substrate originally used for epitaxial growth of the epitaxial stack 10 can be selected according to the needs of the application. The ground is removed, and then the epitaxial stack 10 is transferred to the aforementioned supporting substrate. In one embodiment, the growth substrate is used as a permanent substrate (such as the substrate 106 in FIG. 12).

支撐基板可包括導電材料,例如矽(Si)、鋁(Al)、銅(Cu)、鎢(W)、鉬(Mo)、金(Au)、銀(Ag)、碳化矽(SiC)或上述材料之合金,或導熱材料,例如金剛石(diamond)、石墨(graphite)、或氮化鋁。並且,雖然圖未繪示,但是基板106與磊晶疊層10相接的一面可以具有粗糙化的表面,粗糙化的表面可以為具有不規則形態的表面或具有規則形態的表面,例如於上表面106a,具有多個凸出或凹陷於上表面106a之半球形狀的面、具有多個凸出或凹陷於上表面106a之圓錐形狀的面、或者具有多個凸出或凹陷於上表面106a之多邊錐形狀的面。The support substrate may include conductive materials, such as silicon (Si), aluminum (Al), copper (Cu), tungsten (W), molybdenum (Mo), gold (Au), silver (Ag), silicon carbide (SiC) or the above Alloys of materials, or thermally conductive materials, such as diamond, graphite, or aluminum nitride. Also, although not shown in the figure, the surface of the substrate 106 that is connected to the epitaxial stack 10 may have a roughened surface, and the roughened surface may be a surface with an irregular shape or a surface with a regular shape, such as the above The surface 106a has a plurality of hemispherical surfaces protruding or recessed on the upper surface 106a, a conical surface having a plurality of protrusions or recesses on the upper surface 106a, or a surface having a plurality of protrusions or recesses on the upper surface 106a Polygonal cone-shaped surface.

於本發明之一實施例中,藉由有機金屬化學氣相沉積法(MOCVD)、分子束磊晶(MBE)、氫化物氣相沉積法(HVPE)、物理氣相沉積法(PVD)或離子電鍍方法,以於基板106上形成具有光電特性之磊晶疊層10,例如發光(light-emitting)疊層,其中物理氣相沉積法可包含濺鍍 (Sputtering)或蒸鍍(Evaporation)法。In one embodiment of the present invention, metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor deposition (HVPE), physical vapor deposition (PVD) or ion An electroplating method is used to form an epitaxial laminate 10 with optoelectronic properties, such as a light-emitting laminate, on the substrate 106. The physical vapor deposition method may include sputtering or evaporation.

於本發明之一實施例中,緩衝層105係用以釋放基板106和磊晶疊層10之間因材料晶格不匹配而產生的應力,以減少差排及晶格缺陷,進而提升磊晶品質。緩衝層105可為單層或包含複數層的結構。於一實施例中,可選用PVD氮化鋁(AlN)做為緩衝層105,形成於磊晶疊層10及基板106之間,用以改善磊晶疊層10的磊晶品質。在一實施例中,用以形成PVD氮化鋁(AlN)的靶材係由氮化鋁所組成。在另一實施例中,係使用由鋁組成的靶材,於氮源的環境下與鋁靶材反應性地形成氮化鋁。In one embodiment of the present invention, the buffer layer 105 is used to relieve the stress caused by the material lattice mismatch between the substrate 106 and the epitaxial stack 10, so as to reduce the misalignment and lattice defects, thereby improving the epitaxy quality. The buffer layer 105 may be a single layer or a structure including multiple layers. In one embodiment, PVD aluminum nitride (AlN) may be used as the buffer layer 105 to be formed between the epitaxial stack 10 and the substrate 106 to improve the epitaxial quality of the epitaxial stack 10. In one embodiment, the target material used to form PVD aluminum nitride (AlN) is composed of aluminum nitride. In another embodiment, a target made of aluminum is used, and aluminum nitride is formed reactively with the aluminum target in an environment of a nitrogen source.

藉由改變磊晶疊層10中一層或多層的物理及化學組成以調整發光二極體1發出光線的波長。磊晶疊層10之材料包含Ⅲ-Ⅴ族半導體材料,例如Alx Iny Ga(1-x-y) N或Alx Iny Ga(1-x-y) P,其中0≦x≦1、0≦y≦1且(x+y)≦1。當磊晶疊層10之材料為AlInGaP系列材料時,可發出波長介於610 nm及650 nm之間的紅光,或波長介於530 nm和570 nm之間的綠光。當磊晶疊層10之材料為InGaN系列材料時,可發出波長介於400 nm和490 nm之間的藍光。當磊晶疊層10之材料為AlGaN系列或AlInGaN系列材料時,可發出波長介於250 nm和400 nm之間的紫外光。By changing the physical and chemical composition of one or more layers in the epitaxial stack 10, the wavelength of the light emitted by the light-emitting diode 1 is adjusted. The material of the epitaxial stack 10 includes III-V group semiconductor materials, such as Al x In y Ga (1-xy) N or Al x In y Ga (1-xy) P, where 0≦x≦1, 0≦y ≦1 and (x+y)≦1. When the material of the epitaxial stack 10 is an AlInGaP series material, it can emit red light with a wavelength between 610 nm and 650 nm, or a green light with a wavelength between 530 nm and 570 nm. When the material of the epitaxial stack 10 is an InGaN series material, it can emit blue light with a wavelength between 400 nm and 490 nm. When the material of the epitaxial stack 10 is AlGaN series or AlInGaN series material, it can emit ultraviolet light with a wavelength between 250 nm and 400 nm.

第一半導體層102和第二半導體層104可為包覆層(cladding layer),兩者具有不同的導電型態、電性、極性,或依摻雜的元素以提供電子或電洞,例如第一半導體層102為n型電性的半導體,第二半導體層104為p型電性的半導體。發光層103形成在第一半導體層102和第二半導體層104之間,電子與電洞於電流驅動下在發光層103複合,將電能轉換成光能,以發出光線。發光層103的結構包含單異質結構(Single Heterostructure,SH )、雙異質結構(Double Heterostructure,DH)、雙側雙異質結構( Double-side Double Heterostructure,DDH)、或是多層量子井結構(Multi-Quantum Well,MQW)。發光層103的材料可為中性、p型或n型電性的半導體。第一半導體層102、第二半導體層104、或發光層103可為單層或包含複數層的結構。The first semiconductor layer 102 and the second semiconductor layer 104 may be cladding layers, which have different conductivity types, electrical properties, polarities, or provide electrons or holes depending on doped elements, such as the first semiconductor layer 102 and the second semiconductor layer 104. One semiconductor layer 102 is an n-type electrical semiconductor, and the second semiconductor layer 104 is a p-type electrical semiconductor. The light-emitting layer 103 is formed between the first semiconductor layer 102 and the second semiconductor layer 104, and electrons and holes are recombined in the light-emitting layer 103 under the current drive to convert electrical energy into light energy to emit light. The structure of the light-emitting layer 103 includes a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-layer quantum well structure (Multi- Quantum Well, MQW). The material of the light-emitting layer 103 can be a neutral, p-type or n-type semiconductor. The first semiconductor layer 102, the second semiconductor layer 104, or the light emitting layer 103 may be a single layer or a structure including multiple layers.

請參見第2圖及第3圖,反射層20包含厚區H及薄區T。其中,厚區H的上表面即為反射層20的上表面21,厚區H和薄區T同側之下表面則構成反射層20的下表面22,因此反射層20中下表面22所構成的外圍係大於上表面21的外圍。薄區T之另一表面係由厚區H的上表面外圍向反射層20的下表面22外圍延伸,亦即薄區T的前述之另一表面連接反射層20的上表面21及下表面22,也就是說反射層20的側面23係由薄區T的前述之另一表面構成。由俯視觀之,發光二極體1的磊晶疊層10之第一上表面11具有第一面積A,反射層20的上表面21(即,厚區H)具有第二面積B,以及反射層20的下表面22具有第三面積C,其中 0.9<C/A<0.999且0.001<(C-B)/C<0.006。Referring to FIGS. 2 and 3, the reflective layer 20 includes a thick region H and a thin region T. The upper surface of the thick area H is the upper surface 21 of the reflective layer 20, and the lower surface of the thick area H and the thin area T on the same side constitutes the lower surface 22 of the reflective layer 20, so the lower surface 22 of the reflective layer 20 is formed The outer periphery of the upper surface 21 is larger than the outer periphery of the upper surface 21. The other surface of the thin region T extends from the outer periphery of the upper surface of the thick region H to the outer periphery of the lower surface 22 of the reflective layer 20, that is, the aforementioned other surface of the thin region T connects the upper surface 21 and the lower surface 22 of the reflective layer 20 That is to say, the side surface 23 of the reflective layer 20 is formed by the aforementioned other surface of the thin area T. From the top view, the first upper surface 11 of the epitaxial stack 10 of the light emitting diode 1 has a first area A, and the upper surface 21 (ie, the thick region H) of the reflective layer 20 has a second area B, and the reflection The lower surface 22 of the layer 20 has a third area C, where 0.9<C/A<0.999 and 0.001<(CB)/C<0.006.

如第3圖所示,反射層20的厚區H具有第一厚度h1,薄區T具有第二厚度h2,且h1大於h2。薄區T具有寬度d,其中寬度d介於0.01 μm ~ 2 μm之間,較佳為0.05 μm ~ 1 μm之間,更佳為0.1 μm ~ 1 μm之間。As shown in FIG. 3, the thick region H of the reflective layer 20 has a first thickness h1, and the thin region T has a second thickness h2, and h1 is greater than h2. The thin area T has a width d, wherein the width d is between 0.01 μm and 2 μm, preferably between 0.05 μm and 1 μm, and more preferably between 0.1 μm and 1 μm.

於一實施例中,反射層20係為金屬層,例如銀層,用於將產生自磊晶疊層10中之主動層的光反射朝向出光面。反射層20的反射率與其厚度有關。如第3圖所示,反射層20之厚區H的第一厚度h1和薄區T的第二厚度h2,因厚度不同而具有不同的反射率。當薄區T之第二厚度h2大於一臨界厚度h2”時,才可得到一反射率值大於一臨界反射率。其中,臨界反射率可依使用者之需求取決其臨界反射率之值,例如90%~96%。若薄區T有過大範圍的厚度小於臨界厚度h2”,亦即其光反射率低於臨界反射率,將明顯降低整體發光效率,導致發光二極體無法達到預期的亮度。於一實施例中,反射層20的材料為銀,如第6圖顯示反射層20厚度與反射率的趨勢對應關係。當反射層20厚度大於600Å,則反射率可達到96%以上,此時的厚度定為臨界厚度,反射率為臨界反射率。厚度大於2500 Å以上,則可有接近99%或以上的反射率。在一實施例中,臨界厚度h2”為介於400Å~700 Å之間。如第3圖所示,第二厚度h2係隨著遠離厚區H而逐漸變小,因此如前所述,薄區T的第二厚度h2將隨著厚度遞減而造成反射率跟著遞減。根據本實施例,反射層20的第一厚度h1係選擇為500~5000Å,較佳為600~4000Å,更佳地為1000~3000Å。其中,反射層20之薄區T在從厚區H的邊界起算之一臨界間距d1(即,厚區H的邊界與臨界厚度h2”之間的垂直距離)以內,其厚度均具有臨界厚度h2”以上,亦即反射率均可大於或等於臨界反射率,其滿足一範圍:0 <d1/d<0.5,較佳為0.1<d1/d<0.4。於一實施例中,反射層20的材料可為銀以外之具反射性材料,如具反射性的鋁材料。In one embodiment, the reflective layer 20 is a metal layer, such as a silver layer, for reflecting the light generated from the active layer in the epitaxial stack 10 toward the light-emitting surface. The reflectivity of the reflective layer 20 is related to its thickness. As shown in FIG. 3, the first thickness h1 of the thick region H and the second thickness h2 of the thin region T of the reflective layer 20 have different reflectivities due to different thicknesses. When the second thickness h2 of the thin area T is greater than a critical thickness h2", a reflectivity value greater than a critical reflectivity can be obtained. Among them, the critical reflectivity can be determined according to the needs of the user, such as 90%~96%. If the thickness of the thin area T is too large and less than the critical thickness h2", that is, its light reflectivity is lower than the critical reflectivity, it will significantly reduce the overall luminous efficiency, resulting in the LED can not achieve the expected brightness . In one embodiment, the material of the reflective layer 20 is silver, as shown in FIG. 6 shows the corresponding relationship between the thickness of the reflective layer 20 and the trend of reflectivity. When the thickness of the reflective layer 20 is greater than 600 Å, the reflectivity can reach over 96%, the thickness at this time is set as the critical thickness, and the reflectivity is the critical reflectivity. If the thickness is greater than 2500 Å, it can have a reflectivity close to 99% or above. In one embodiment, the critical thickness h2" is between 400 Å and 700 Å. As shown in Figure 3, the second thickness h2 gradually becomes smaller as it moves away from the thick region H. Therefore, as mentioned above, the thickness becomes thinner. The second thickness h2 of the area T will cause the reflectivity to decrease as the thickness decreases. According to this embodiment, the first thickness h1 of the reflective layer 20 is selected to be 500-5000 Å, preferably 600-4000 Å, and more preferably 1000~3000Å. Among them, the thickness of the thin area T of the reflective layer 20 is within a critical distance d1 from the boundary of the thick area H (that is, the vertical distance between the boundary of the thick area H and the critical thickness h2"). It has a critical thickness h2" or more, that is, the reflectance can be greater than or equal to the critical reflectance, which satisfies a range: 0 <d1/d<0.5, preferably 0.1<d1/d<0.4. In one embodiment, The material of the reflective layer 20 may be a reflective material other than silver, such as a reflective aluminum material.

在本發明中,薄區T的側面23包含平面或曲面的型態,薄區T的側面23係由厚區H的上表面21外圍朝下表面22外圍延伸連接,且第二厚度呈線性、非線性、連續、不連續方式遞減。曲面型態亦可為凹凸面,或不規則曲面。於一實施例中,上述之第二厚度h2在臨界間距d1內的厚度變化皆不小於臨界厚度h2”。於另一實施例中,上述之第二厚度h2在臨界間距d1內的厚度變化有一半以上的厚度不小於臨界厚度h2”。In the present invention, the side surface 23 of the thin area T includes a plane or curved surface, and the side surface 23 of the thin area T is connected from the outer periphery of the upper surface 21 of the thick area H to the outer periphery of the lower surface 22, and the second thickness is linear, Non-linear, continuous, and discontinuous ways of decreasing. The curved surface can also be a concave-convex surface, or an irregular curved surface. In one embodiment, the thickness change of the second thickness h2 in the critical interval d1 is not less than the critical thickness h2". In another embodiment, the thickness change of the second thickness h2 in the critical interval d1 is as follows: More than half of the thickness is not less than the critical thickness h2".

於一實施例中,如第3圖、第4圖所示,薄區T中之第二厚度h2大致上隨著遠離厚區H而逐漸變小,亦即向發光二極體1之外側逐漸變薄。反射層20的側面23與下表面22之間具有一角度θ,例如如第4圖的SEM圖所示,在此實施例中的角度θ為44.6度。第5圖顯示另一實施例之SEM圖,其中反射層20具有的角度θ則接近90度。當反射層20的側面23與下表面22的夾角角度θ越大,則表示薄區T具有大於臨界反射率的範圍越多,意指反射層20的有效反射面積將增大,此時將可提高發光二極體的發光效率。In one embodiment, as shown in FIGS. 3 and 4, the second thickness h2 in the thin region T generally becomes smaller gradually away from the thick region H, that is, gradually toward the outside of the light-emitting diode 1 Thinning. There is an angle θ between the side surface 23 of the reflective layer 20 and the lower surface 22, for example, as shown in the SEM image of FIG. 4, the angle θ in this embodiment is 44.6 degrees. FIG. 5 shows an SEM image of another embodiment, in which the angle θ of the reflective layer 20 is close to 90 degrees. When the angle θ between the side surface 23 of the reflective layer 20 and the lower surface 22 is larger, it means that the thin area T has a greater range of greater than the critical reflectivity, which means that the effective reflective area of the reflective layer 20 will increase. Improve the luminous efficiency of light-emitting diodes.

在本發明中,由於反射層20的側面23的傾斜角度與後續覆蓋第一保護層30的包覆性相關,當反射層20的側面23與下表面22之間的角度θ太大,則第一保護層30會有覆蓋性不好的缺點,因此影響包覆性及有效反射面積的反射層20的角度θ需要同時考慮。於一實施例中,角度θ係可為35度~90度,較佳為40度~70度,更佳為40度~50度。於此角度範圍中的第一保護層30可良好的覆蓋於反射層20上方,且反射層20可得到最佳的有效反射面積。In the present invention, since the inclination angle of the side surface 23 of the reflective layer 20 is related to the subsequent coverage of the first protective layer 30, when the angle θ between the side surface 23 of the reflective layer 20 and the lower surface 22 is too large, the first A protective layer 30 has the disadvantage of poor coverage. Therefore, the angle θ of the reflective layer 20 that affects the coverage and the effective reflection area needs to be considered at the same time. In one embodiment, the angle θ may be 35 degrees to 90 degrees, preferably 40 degrees to 70 degrees, and more preferably 40 degrees to 50 degrees. The first protective layer 30 in this angle range can cover the reflective layer 20 well, and the reflective layer 20 can obtain the best effective reflection area.

在本發明中,發光二極體1可進一步包含位於反射層20上之金屬阻障層(Barrier layer)(圖中未繪示),其由單層或複數層所構成。在本發明中,金屬阻障層之材料可包含,但不限於:鈦、鋁、鉻、鉑、鎳鈦合金、鈦鎢合金或其任意組合。在本發明中,可更進一步包含位於金屬阻障層上的第二保護層(圖中未繪示),此第二保護層由上往下,且沿著下方各層的側邊依序包覆。In the present invention, the light emitting diode 1 may further include a metal barrier layer (not shown in the figure) on the reflective layer 20, which is composed of a single layer or a plurality of layers. In the present invention, the material of the metal barrier layer may include, but is not limited to: titanium, aluminum, chromium, platinum, nickel-titanium alloy, titanium-tungsten alloy or any combination thereof. In the present invention, it may further include a second protective layer (not shown in the figure) on the metal barrier layer, the second protective layer is from top to bottom, and is sequentially covered along the sides of the layers below .

在本發明中,第一保護層、第二保護層的材料可包含二氧化矽(SiO2 )、氮化矽(SiN)或氧化鋁(Al2 O3 )。In the present invention, the materials of the first protective layer and the second protective layer may include silicon dioxide (SiO 2 ), silicon nitride (SiN), or aluminum oxide (Al 2 O 3 ).

在本發明中,如第7圖所示,其係為根據本發明另一實施例之發光二極體2的剖面示意圖。在此實施例中,發光二極體2之構成係與上述第1圖所示類似,惟兩者差異在於本實施例之發光二極體3進一步包含透明導電層40。透明導電層40位於反射層20與第一保護層30之間,並且覆蓋反射層20的側面部分,而第一保護層30覆蓋及保護反射層20與透明導電層40的側面部分。可替代地,在本發明中,透明導電層40亦可位於反射層20與磊晶疊層10之間(圖中未繪示)。在本發明的另一實施例中,透明導電層40不完全包覆反射層20,僅形成於反射層20的部分上表面上,亦即透明導電層40的寬度小於反射層20的寬度,第一保護層30覆蓋及保護反射層20與透明導電層40的側面部分。In the present invention, as shown in FIG. 7, which is a schematic cross-sectional view of a light emitting diode 2 according to another embodiment of the present invention. In this embodiment, the structure of the light-emitting diode 2 is similar to that shown in FIG. 1 above, but the difference between the two is that the light-emitting diode 3 of this embodiment further includes a transparent conductive layer 40. The transparent conductive layer 40 is located between the reflective layer 20 and the first protective layer 30 and covers the side portions of the reflective layer 20, and the first protective layer 30 covers and protects the side portions of the reflective layer 20 and the transparent conductive layer 40. Alternatively, in the present invention, the transparent conductive layer 40 may also be located between the reflective layer 20 and the epitaxial stack 10 (not shown in the figure). In another embodiment of the present invention, the transparent conductive layer 40 does not completely cover the reflective layer 20, and is only formed on a part of the upper surface of the reflective layer 20, that is, the width of the transparent conductive layer 40 is smaller than the width of the reflective layer 20. A protective layer 30 covers and protects the side surfaces of the reflective layer 20 and the transparent conductive layer 40.

在本發明中,透明導電層40的材料例如,但不限於:氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁鋅(AZO)、氧化鋅(ZnO)等。透明導電層40厚度可為100~3000Å。In the present invention, the material of the transparent conductive layer 40 is, for example, but not limited to: indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO), zinc oxide (ZnO), and the like. The thickness of the transparent conductive layer 40 may be 100-3000 Å.

於本文中,所描述的發光二極體可為晶圓(wafer)或晶片(chip),且第1圖和第7圖只繪示說明出發光二極體實際結構的一部分,其他結構可為發明所屬技術領域具有通常知識者所知之任何形式。In this article, the light-emitting diode described can be a wafer or a chip, and Figures 1 and 7 only show a part of the actual structure of the light-emitting diode, and other structures can be inventions. The technical field has any form known to the ordinary knowledgeable person.

請參閱第8圖,其係一流程圖,說明本發明一實施例之發光二極體2之製程。如圖所示,在本實施例之發光二極體的製程中,係於磊晶疊層10上形成反射層20(步驟S21),形成透明導電層40於反射層20上(步驟S22),蝕刻透明導電層40(步驟S23),蝕刻反射層20(步驟S24),接著再設置第一保護層30覆蓋於反射層20與透明導電層40上(步驟S26)。在一實施例中,在步驟S24之後可包含一熱處理製程(步驟S25),此處所指的熱處理製程,例如但不限於:退火、回火、焠火或淬火等各種熱處理製程技術,或可採用各種可升降溫的機器設備,來控制升降溫,以形成前述不同態樣的反射層20的側面23。在本發明的一實施例中,係採用退火製程(步驟S25),從而使反射層20形成如發光二極體1之具有厚區H及薄區T的反射層,其中薄區T具有前述寬度d及第二厚度h2。在本發明的另一實施例中,透明導電層40不完全包覆反射層20,僅形成於反射層20的部分上表面上,亦即透明導電層40的寬度小於反射層20的寬度。根據以上製程,在本發明的另一實施例中,當透明導電層40位於反射層20和磊晶疊層10之間時,則製程步驟為設置透明導電層40於磊晶疊層10上,蝕刻透明導電層40,再設置反射層20於磊晶疊層10上,蝕刻反射層20,設置第一保護層30於反射層20上,進行熱處理製程。Please refer to FIG. 8, which is a flowchart illustrating the manufacturing process of the light-emitting diode 2 according to an embodiment of the present invention. As shown in the figure, in the manufacturing process of the light-emitting diode of this embodiment, a reflective layer 20 is formed on the epitaxial laminate 10 (step S21), and a transparent conductive layer 40 is formed on the reflective layer 20 (step S22). The transparent conductive layer 40 is etched (step S23), the reflective layer 20 is etched (step S24), and then a first protective layer 30 is provided to cover the reflective layer 20 and the transparent conductive layer 40 (step S26). In one embodiment, after step S24, a heat treatment process (step S25) may be included. The heat treatment process referred to herein is, for example, but not limited to: annealing, tempering, quenching, or quenching, etc., or various heat treatment process techniques may be used. The temperature can be raised and lowered by machinery and equipment to control the temperature rise and fall to form the side surface 23 of the reflective layer 20 in the aforementioned different forms. In an embodiment of the present invention, an annealing process (step S25) is used, so that the reflective layer 20 is formed into a reflective layer having a thick region H and a thin region T such as the light emitting diode 1, wherein the thin region T has the aforementioned width d and the second thickness h2. In another embodiment of the present invention, the transparent conductive layer 40 does not completely cover the reflective layer 20 and is only formed on part of the upper surface of the reflective layer 20, that is, the width of the transparent conductive layer 40 is smaller than the width of the reflective layer 20. According to the above process, in another embodiment of the present invention, when the transparent conductive layer 40 is located between the reflective layer 20 and the epitaxial stack 10, the process step is to arrange the transparent conductive layer 40 on the epitaxial stack 10. The transparent conductive layer 40 is etched, the reflective layer 20 is then placed on the epitaxial stack 10, the reflective layer 20 is etched, and the first protective layer 30 is placed on the reflective layer 20, and a heat treatment process is performed.

在本發明中,如第8圖所示,於步驟S26後,於第一保護層30的上方可再進一步形成金屬阻障層。其中第一保護層30具有一圖案,暴露出部分透明導電層40,金屬阻障層形成於圖案化的第一保護層30上並與暴露出的部分透明導電層40接觸。於形成金屬阻障層的製程中,因為需高溫將金屬阻障層進行合金化,所以第一保護層30包覆反射層20與透明導電層40的側面或周圍可保護反射層20於形成金屬阻障層的黃光製程階段,避免在去光阻製程中發生反射層的金屬離子析出,例如銀離子,產生元件良率問題。In the present invention, as shown in FIG. 8, after step S26, a metal barrier layer may be further formed on the first protective layer 30. The first protective layer 30 has a pattern, exposing a part of the transparent conductive layer 40, and the metal barrier layer is formed on the patterned first protective layer 30 and is in contact with the exposed part of the transparent conductive layer 40. In the process of forming the metal barrier layer, because the metal barrier layer needs to be alloyed at a high temperature, the first protective layer 30 covers the sides or surroundings of the reflective layer 20 and the transparent conductive layer 40 to protect the reflective layer 20 from forming the metal. The yellow light process stage of the barrier layer avoids the precipitation of metal ions in the reflective layer during the photoresist removal process, such as silver ions, which may cause element yield problems.

併參第9圖和第10圖,其係為本發明一實施例之發光二極體之掃瞄式電子顯微鏡(Scanning Electron Microscope,SEM)照片,其中第9圖、第10圖分別顯示未實施前揭熱處理製程以及實施前揭熱處理製程後所形成之反射結構。由圖式可知,本發明的反射層(即,Ag層)若僅經蝕刻步驟,但未進一步進行熱處理製程,所得的反射層的輪廓曲線會過於陡峭,甚至有底切(undercut)(第9圖之箭號處)的發生,造成後續製程的薄膜堆疊覆蓋性不佳,進而導致電性問題。比較第10圖可知,經熱處理製程所得的發光二極體,其反射層邊界輪廓為圓弧梯形,且所產生的薄區之延伸範圍(即,前述薄區T的寬度d)比反射層的厚區的上表面至下表面的厚度(即,前述第一厚度h1)小。Also refer to Figures 9 and 10, which are scanning electron microscope (Scanning Electron Microscope, SEM) photos of a light-emitting diode according to an embodiment of the present invention. Figures 9 and 10 respectively show the unimplemented The front exposure heat treatment process and the reflective structure formed after the front exposure heat treatment process is implemented. It can be seen from the figure that if the reflective layer (ie, Ag layer) of the present invention is only etched without further heat treatment process, the profile curve of the resulting reflective layer will be too steep and even have undercuts (No. 9) The occurrence of (the arrow in the figure) causes poor coverage of the film stack in the subsequent process, which in turn leads to electrical problems. Comparing Fig. 10, it can be seen that the boundary profile of the reflective layer of the light-emitting diode obtained by the heat treatment process is arc trapezoid, and the extension of the thin area (that is, the width d of the aforementioned thin area T) is greater than that of the reflective layer. The thickness from the upper surface to the lower surface of the thick region (that is, the aforementioned first thickness h1) is small.

在本發明中,透明導電層40若設置於磊晶疊層10和反射層20或設置於反射層20和第一保護層30之間,將有利於提高發光二極體的熱穩定性及電流均勻分散性。舉例來說,在一實例中,將(a)結構為反射層20直接設置於磊晶疊層10上,但無透明導電層40設置於反射層20與第一保護層30之間的發光二極體1;(b)結構為透明導電層40設置於磊晶疊層10和反射層20之間的發光二極體(圖未繪示);以及(c)結構為透明導電層40設置於反射層20與第一保護層30之間的發光二極體2在不同溫度及時間下測量其正向電壓(Vf)變化之實驗中,其結果顯示:(a)發光二極體1在環境溫度為280~300℃下燒測5分鐘的正向電壓(Vf)有5.6%~10.5%的增加,且發光二極體1產生局部亮度下降的情況,亮度衰減5.1%~15.4%;(b)透明導電層40設置於磊晶疊層10和反射層20之間的發光二極體在燒測後,其正向電壓(Vf)有0.95%~1.08%的增加,亮度均勻沒有局部變暗的情況;而(c)透明導電層40設置於反射層20和第一保護層30之間發光二極體2在燒測後,其正向電壓(Vf)僅有0.48%~0.68%的增加,且亮度均勻沒有局部變暗的情況產生。可得知發光二極體2藉由於反射層20和第一保護層30之間進一步形成透明導電層40,可提高發光二極體的熱穩定性及電流均勻分散性,進而提升發光二極體的亮度及壽命。In the present invention, if the transparent conductive layer 40 is arranged between the epitaxial stack 10 and the reflective layer 20 or between the reflective layer 20 and the first protective layer 30, it will help to improve the thermal stability and current of the light-emitting diode. Uniform dispersion. For example, in one example, the structure (a) is that the reflective layer 20 is directly disposed on the epitaxial stack 10, but there is no transparent conductive layer 40 disposed between the reflective layer 20 and the first protective layer 30. Polar body 1; (b) the structure is a light-emitting diode (not shown) in which the transparent conductive layer 40 is disposed between the epitaxial stack 10 and the reflective layer 20; and (c) the structure is that the transparent conductive layer 40 is disposed in In an experiment in which the forward voltage (Vf) of the light-emitting diode 2 between the reflective layer 20 and the first protective layer 30 was measured at different temperatures and times, the results showed: (a) The light-emitting diode 1 is in the environment The forward voltage (Vf) of the burning test at a temperature of 280~300℃ for 5 minutes has an increase of 5.6%~10.5%, and the light-emitting diode 1 has a local brightness decrease, and the brightness is attenuated by 5.1%~15.4%; (b) ) After the light-emitting diode with the transparent conductive layer 40 arranged between the epitaxial layer 10 and the reflective layer 20 is burned, its forward voltage (Vf) has an increase of 0.95%~1.08%, and the brightness is uniform without local darkening The situation; and (c) the transparent conductive layer 40 is arranged between the reflective layer 20 and the first protective layer 30. The forward voltage (Vf) of the light-emitting diode 2 is only 0.48%~0.68% increase after burning test , And the brightness is uniform without local darkening. It can be seen that the light-emitting diode 2 further forms a transparent conductive layer 40 between the reflective layer 20 and the first protective layer 30, which can improve the thermal stability and current uniformity of the light-emitting diode, thereby improving the light-emitting diode The brightness and life span.

以下,請參閱第11至13圖,其係為前述第1圖、第7圖及/或第14圖之實施例應用的實例。Hereinafter, please refer to FIGS. 11 to 13, which are examples of the application of the embodiments of the foregoing FIGS. 1, 7 and/or 14.

如第11圖所示,其為本發明之發光二極體LED1的一實施態樣。發光二極體LED1包含有前述之磊晶疊層10結構,即第一半導體層102、發光層103和第二半導體層104,並且磊晶疊層10藉由接合層80接合設置於支撐基板62A上方。在磊晶疊層10結構中,第一半導體層102的一表面上形成有反射結構101,反射結構101係由前述任一實施例之反射層20(圖中未繪示)和視需求增加之第一保護層30及/或透明導電層40(圖中未繪示)所構成。在第13圖所示的發光二極體LED2中,由上往下,第二電極52,例如n電極,係與第二半導體層104電性連接,第二半導體層104下方依序相接發光層103、第一半導體層102、反射結構101和支撐基板62A。其中支撐基板62A可包含第一電極,例如p電極(圖中未繪示),且第一電極與第一半導體層102透過反射結構101電性連接。第二電極52和第一電極係分別位於發光二極體LED1之相對側,於發光二極體LED1中形成垂直的電流路徑。As shown in FIG. 11, it is an embodiment of the light emitting diode LED1 of the present invention. The light emitting diode LED1 includes the aforementioned epitaxial laminate 10 structure, namely, a first semiconductor layer 102, a light emitting layer 103, and a second semiconductor layer 104, and the epitaxial laminate 10 is bonded and disposed on the supporting substrate 62A by a bonding layer 80 Above. In the epitaxial stack 10 structure, a reflective structure 101 is formed on one surface of the first semiconductor layer 102. The reflective structure 101 is composed of the reflective layer 20 (not shown in the figure) of any of the foregoing embodiments and may be added as required. The first protective layer 30 and/or the transparent conductive layer 40 (not shown in the figure) are formed. In the light-emitting diode LED2 shown in FIG. 13, from top to bottom, the second electrode 52, such as the n-electrode, is electrically connected to the second semiconductor layer 104, and the bottom of the second semiconductor layer 104 is sequentially connected to emit light. The layer 103, the first semiconductor layer 102, the reflective structure 101 and the supporting substrate 62A. The supporting substrate 62A may include a first electrode, such as a p-electrode (not shown in the figure), and the first electrode and the first semiconductor layer 102 are electrically connected through the reflective structure 101. The second electrode 52 and the first electrode are respectively located on opposite sides of the light emitting diode LED1, and form a vertical current path in the light emitting diode LED1.

如第12圖和第13圖所示,本發明之構想還可應用於發光二極體LED2和發光二極體LED3之實施態樣。As shown in FIGS. 12 and 13, the concept of the present invention can also be applied to the implementation of the light-emitting diode LED2 and the light-emitting diode LED3.

如第12圖所示,發光二極體LED2係為覆晶式(Flip Chip Type)LED,基本上包括如前述之磊晶疊層10結構,包含第一半導體層102、發光層103和第二半導體層104;在第一半導體層102遠離基板106的表面上形成有包含前述任一實施例之反射層20構成之反射結構101,其中反射結構101係由反射層20(圖中未繪示)和視需求增加之第一保護層30及/或透明導電層40(圖中未繪示)所構成;較佳地,反射結構101更包含金屬阻障層(圖中未繪示)所構成。發光二極體LED2另具有分別電連接於第二導電層104和第一半導體層102的第二電極52和第一電極62,以及相應的第二電極墊50和第一電極墊60,其中第二電極52和第二電極墊50,以及第一電極62和第一電極墊60係位於發光二極體LED2之同一側。較佳地,一保護層70位於第一電極墊60/第一電極62c和第二電極墊50/第二電極52之間。藉由保護層70介於第一電極62和第二電極52之間,以達電性絕緣之效。電流透過第一電極墊60和第一電極62往第一半導體層102方向流入,通過發光層103和第二半導體層104,再經由第二電極52和第二電極墊50流出,以形成一電流路徑,其中,第二電極52位於磊晶疊層10中導通孔(via holes)90內的柱狀部分透過保護層70(30C)包覆而與第一半導體層102和發光層103絕緣。反射結構101間接形成第一電極62和第一半導體層102之電流路徑。As shown in Figure 12, the light-emitting diode LED2 is a flip chip type (Flip Chip Type) LED, which basically includes the aforementioned epitaxial stack 10 structure, including a first semiconductor layer 102, a light emitting layer 103, and a second semiconductor layer 102. Semiconductor layer 104; on the surface of the first semiconductor layer 102 away from the substrate 106 is formed a reflective structure 101 comprising the reflective layer 20 of any of the foregoing embodiments, wherein the reflective structure 101 is composed of the reflective layer 20 (not shown in the figure) It is composed of a first protective layer 30 and/or a transparent conductive layer 40 (not shown in the figure) which may be increased as required; preferably, the reflective structure 101 further includes a metal barrier layer (not shown in the figure). The light emitting diode LED2 further has a second electrode 52 and a first electrode 62 electrically connected to the second conductive layer 104 and the first semiconductor layer 102, respectively, and corresponding second electrode pads 50 and first electrode pads 60, wherein The two electrodes 52 and the second electrode pad 50, as well as the first electrode 62 and the first electrode pad 60 are located on the same side of the light emitting diode LED2. Preferably, a protective layer 70 is located between the first electrode pad 60/first electrode 62c and the second electrode pad 50/second electrode 52. The protective layer 70 is interposed between the first electrode 62 and the second electrode 52 to achieve electrical insulation. The current flows in the direction of the first semiconductor layer 102 through the first electrode pad 60 and the first electrode 62, passes through the light-emitting layer 103 and the second semiconductor layer 104, and then flows out through the second electrode 52 and the second electrode pad 50 to form a current The path, wherein the columnar portion of the second electrode 52 located in the via holes 90 of the epitaxial stack 10 is covered by the protective layer 70 (30C) to be insulated from the first semiconductor layer 102 and the light-emitting layer 103. The reflective structure 101 indirectly forms a current path between the first electrode 62 and the first semiconductor layer 102.

在第13圖所示的正面出光的發光二極體LED3中,同樣包含有前述之磊晶疊層10結構,即第一半導體層102、發光層103和第二半導體層104,並且磊晶疊層10藉由接合層80接合設置於支撐基板54A上。其中,第二電極52位於支撐基板54A上並且介於磊晶疊層10和支撐基板54A之間,反射結構101介於磊晶疊層10和第二電極52之間。較佳地,一保護層70位於反射結構101下方,藉由保護層70介於第一電極62和第二電極52之間,以達電性絕緣之效。第一電極62位於磊晶疊層10外側的反射結構101上方,第一電極62透過反射結構101與第一半導體層102電性連接,且第二電極52與第二半導體層104電性連接,其中第二電極52位於磊晶疊層10中導通孔90內的柱狀部分透過保護層70(30C)包覆而與第一半導體層102和發光層103絕緣。電流由第一電極62流經反射結構101往發光層103和第二半導體層104後,再往第二電極52流通,以形成電流路徑。The light emitting diode LED3 that emits light from the front as shown in FIG. 13 also includes the aforementioned epitaxial stack 10 structure, that is, the first semiconductor layer 102, the light emitting layer 103, and the second semiconductor layer 104, and the epitaxial stack The layer 10 is bonded and disposed on the supporting substrate 54A by the bonding layer 80. The second electrode 52 is located on the supporting substrate 54A and between the epitaxial stack 10 and the supporting substrate 54A, and the reflective structure 101 is between the epitaxial stack 10 and the second electrode 52. Preferably, a protective layer 70 is located under the reflective structure 101, and the protective layer 70 is interposed between the first electrode 62 and the second electrode 52 to achieve electrical insulation. The first electrode 62 is located above the reflective structure 101 outside the epitaxial stack 10, the first electrode 62 is electrically connected to the first semiconductor layer 102 through the reflective structure 101, and the second electrode 52 is electrically connected to the second semiconductor layer 104. The columnar portion of the second electrode 52 located in the via hole 90 in the epitaxial stack 10 is covered by the protective layer 70 (30C) to be insulated from the first semiconductor layer 102 and the light-emitting layer 103. The current flows from the first electrode 62 through the reflective structure 101 to the light-emitting layer 103 and the second semiconductor layer 104, and then flows to the second electrode 52 to form a current path.

如第12圖至第13圖所示,此兩種態樣之發光二極體LED2、LED3與第11圖所示之發光二極體LED1基本上皆包括如前述之磊晶疊層10結構,差異在於發光二極體LED2、LED3之第二電極52藉由導通孔90的設計,讓第二電極穿越反射結構101、第一半導體層102及發光層103後與第二半導體層104電性連接,其中,導通孔90中的第二電極52外圍被保護層70(30C)與第一半導體層102及發光層103隔離絕緣。As shown in Figures 12 to 13, the two types of light-emitting diodes LED2, LED3 and the light-emitting diode LED1 shown in Figure 11 basically include the aforementioned epitaxial laminate 10 structure. The difference is that the second electrode 52 of the light-emitting diodes LED2 and LED3 is electrically connected to the second semiconductor layer 104 after passing through the reflective structure 101, the first semiconductor layer 102 and the light-emitting layer 103 through the design of the through hole 90 Wherein, the periphery of the second electrode 52 in the via 90 is isolated from the first semiconductor layer 102 and the light-emitting layer 103 by the protective layer 70 (30C).

在本發明之一實施例中,利用第一保護層30保護反射層20的邊界,可避免反射層20於後續製程中受到例如去光阻液等有機溶液或酸鹼溶劑等蝕刻的影響。在本發明一實施例中,第一保護層30有利於電流的均勻擴散。在上述實施例中,第一保護層30僅包覆反射層20的周圍,即如第1圖所示者。可替代地,在另一實施例中,如第14圖所示,發光二極體3的第一保護層30包含島狀部30A及邊框30B,其係形成為至少覆蓋於反射層20與磊晶疊層10之周圍區域及反射層20的部分上表面。In an embodiment of the present invention, the first protective layer 30 is used to protect the boundary of the reflective layer 20, which can prevent the reflective layer 20 from being etched by organic solutions such as photoresist liquids or acid-base solvents during subsequent manufacturing processes. In an embodiment of the present invention, the first protective layer 30 facilitates the uniform diffusion of current. In the above embodiment, the first protective layer 30 only covers the periphery of the reflective layer 20, that is, as shown in FIG. Alternatively, in another embodiment, as shown in FIG. 14, the first protective layer 30 of the light-emitting diode 3 includes an island 30A and a frame 30B, which are formed to cover at least the reflective layer 20 and the epitaxy The surrounding area of the crystal laminate 10 and part of the upper surface of the reflective layer 20.

在本發明中,第一保護層30的材料可包含,但不限於:二氧化矽(SiO2 )、氮化矽(SiN)或氧化鋁(Al2 O3 )。In the present invention, the material of the first protection layer 30 may include, but is not limited to: silicon dioxide (SiO 2 ), silicon nitride (SiN), or aluminum oxide (Al 2 O 3 ).

在本發明一實施例中,第15圖係第11、13圖的發光二極體LED1、LED3搭配具有如第14圖所示之保護層30具有島狀部30A設計之俯視示意圖。由俯視觀之,第15圖的實施例皆是具有4個導通孔的態樣。由於電流分佈主要會集中在4個導通孔外圍和發光二極體的周圍,可藉由於發光二極體的周圍和導通孔外圍增加第一保護層30的邊框部30B及導通孔部30C以增加第一保護層30的面積,並搭配結合第一保護層30的不同島狀部30A配置設計,而可使電流擴散效果更好,進而可提高發光二極體的發光效率。第一保護層30可以依需求而加以圖形化且可達到電流均勻分散的作用。如第15圖所示,改變第一保護層30的邊框部30B及/或導通孔部30C的寬度;或是再加以搭配以及變化第一保護層30的島狀部30A的分佈形態與配置方式皆有優化電流擴散之效果。由於只要形成島狀部30A、邊框部30B及/或導通孔部30C於反射層20上方則可具有前述電流擴散效果,因此在本發明中所揭露的態樣僅揭露較佳實施態樣,但圖形化設計不限於本實施例所揭露之態樣。In an embodiment of the present invention, FIG. 15 is a schematic top view of the light emitting diodes LED1 and LED3 of FIG. 11 and FIG. 13 with the design of the protective layer 30 having the island portion 30A as shown in FIG. 14. From the top view, the embodiment in FIG. 15 is a state with 4 via holes. Since the current distribution is mainly concentrated on the periphery of the four via holes and the periphery of the light emitting diode, the frame portion 30B and the via hole portion 30C of the first protective layer 30 can be increased by adding the periphery of the light emitting diode and the periphery of the via hole. The area of the first protective layer 30, combined with the design of the different island-shaped portions 30A of the first protective layer 30, can make the current spreading effect better, thereby improving the luminous efficiency of the light-emitting diode. The first protection layer 30 can be patterned according to requirements and can achieve the effect of uniform current dispersion. As shown in FIG. 15, the width of the frame portion 30B and/or the via portion 30C of the first protective layer 30 is changed; or the distribution and arrangement of the island-shaped portion 30A of the first protective layer 30 are changed and matched Both have the effect of optimizing current diffusion. As long as the island portion 30A, the frame portion 30B, and/or the via hole portion 30C are formed above the reflective layer 20, the aforementioned current spreading effect can be achieved. Therefore, the aspects disclosed in the present invention only disclose preferred implementation aspects, but The graphical design is not limited to the aspect disclosed in this embodiment.

在本發明中,發光二極體1的電極材料可包含金屬材料,例如:鋁(Al)、銦(In)、錫(Sn)、鎳(Ni)、鉻(Cr)、鈦(Ti)、鎢(W)、鉑(Pt)等金屬或上述材料之金屬合金或金屬疊層,但不限於此。In the present invention, the electrode material of the light-emitting diode 1 may include metal materials, such as aluminum (Al), indium (In), tin (Sn), nickel (Ni), chromium (Cr), titanium (Ti), Metals such as tungsten (W) and platinum (Pt) or metal alloys or metal laminates of the above materials, but not limited to this.

需注意的是,本發明所提之前述實施例僅用於例示說明本發明,而非用於限制本發明之範圍。該發明所屬技術領域具有通常知識者對本發明所進行之諸般修飾和變化皆不脫離本發明之精神與範疇。不同實施例中相同或相似的構件、或不同實施例中以相同元件符號表示的構件係具有相同的物理或化學特性。此外,在適當的情況下,本發明之上述實施例係可互相組合或替換,而非僅限於上文所描述的特定實施例。在一實施例中所描述的特定構件與其他構件的連接關係亦可應用於其他實施例中,其皆落於本發明如附申請專利範圍之範疇。It should be noted that the foregoing embodiments of the present invention are only used to illustrate the present invention, but not to limit the scope of the present invention. Various modifications and changes made to the invention by those with ordinary knowledge in the technical field to which the invention belongs do not depart from the spirit and scope of the invention. The same or similar components in different embodiments, or components denoted by the same symbol in different embodiments, have the same physical or chemical characteristics. In addition, under appropriate circumstances, the above-mentioned embodiments of the present invention can be combined or replaced with each other, and are not limited to the specific embodiments described above. The connection relationship between the specific component and other components described in one embodiment can also be applied to other embodiments, and they all fall within the scope of the present invention as attached.

1、2、3、LED1、LED2、LED3:發光二極體 10:磊晶疊層 11:第一上表面 100:局部區域 101:反射結構 102:第一半導體層 103:發光層 104:第二半導體層 105:緩衝層 106:基板 20:反射層 21:上表面 22:下表面 23:側面 30:第一保護層 30A:島狀部 30B:邊框部 30C:導通孔部 40:透明導電層 50:第二電極墊 52:第二電極 54A:支撐基板 60:第一電極墊 62:第一電極 62A:支撐基板 70:保護層 80:接合層 90:導通孔 A:第一面積 B:第二面積 C:第三面積 h1:第一厚度 h2:第二厚度 h2”:臨界厚度 d:預定距離 d1:臨界間距 H:厚區 T:薄區 θ:角度 S21~S26:步驟1, 2, 3, LED1, LED2, LED3: light-emitting diode 10: epitaxial stack 11: The first upper surface 100: local area 101: reflective structure 102: The first semiconductor layer 103: luminescent layer 104: second semiconductor layer 105: buffer layer 106: substrate 20: reflective layer 21: upper surface 22: lower surface 23: side 30: The first protective layer 30A: Island 30B: Frame part 30C: Via hole 40: Transparent conductive layer 50: The second electrode pad 52: second electrode 54A: Support substrate 60: The first electrode pad 62: first electrode 62A: Support substrate 70: protective layer 80: Bonding layer 90: Via A: The first area B: second area C: third area h1: first thickness h2: second thickness h2”: critical thickness d: predetermined distance d1: critical distance H: Thick area T: thin area θ: Angle S21~S26: steps

此處所說明的圖式用來提供對本申請的進一步理解,構成本申請的一部分,本申請的示意性實施例及其說明用於解釋本申請,並不構成對本申請的不當限定。圖式中:The drawings described here are used to provide a further understanding of the application and constitute a part of the application. The exemplary embodiments and descriptions of the application are used to explain the application, and do not constitute an improper limitation of the application. In the scheme:

第1圖為根據本發明一實施例之發光二極體之剖面示意圖。Figure 1 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention.

第2圖為第1圖所示發光二極體之俯視圖。Figure 2 is a top view of the light emitting diode shown in Figure 1.

第3圖為第1圖所示發光二極體之局部區域100的放大圖。Fig. 3 is an enlarged view of a partial area 100 of the light emitting diode shown in Fig. 1.

第4圖為本發明一實施例之發光二極體的SEM圖。Figure 4 is an SEM image of a light-emitting diode according to an embodiment of the present invention.

第5圖為本發明一實施例之發光二極體的SEM圖。Figure 5 is an SEM image of a light-emitting diode according to an embodiment of the present invention.

第6圖為根據本發明之發光二極體的反射層(銀)厚度對反射率(%)之變化關係圖。Figure 6 is a graph showing the relationship between the thickness of the reflective layer (silver) of the light-emitting diode according to the present invention and the reflectivity (%).

第7圖為根據本發明一實施例之發光二極體的剖面示意圖。FIG. 7 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention.

第8圖為本發明一實施例之發光二極體之製程流程圖。FIG. 8 is a flow chart of the manufacturing process of a light emitting diode according to an embodiment of the present invention.

第9圖為本發明一實施例之發光二極體未經熱處理製程的反射層結構之SEM圖。FIG. 9 is an SEM image of a reflective layer structure of a light emitting diode without a heat treatment process according to an embodiment of the present invention.

第10圖為本發明一實施例之發光二極體經熱處理製程的反射層結構之SEM圖。FIG. 10 is an SEM image of a reflective layer structure of a light emitting diode subjected to a heat treatment process according to an embodiment of the present invention.

第11圖為本發明一實施例之發光二極體的剖面示意圖。FIG. 11 is a schematic cross-sectional view of a light-emitting diode according to an embodiment of the invention.

第12圖為本發明一實施例之發光二極體的剖面示意圖。FIG. 12 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention.

第13圖為本發明一實施例之發光二極體的剖面示意圖。FIG. 13 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention.

第14圖為本發明一實施例之發光二極體的剖面示意圖。FIG. 14 is a schematic cross-sectional view of a light emitting diode according to an embodiment of the invention.

第15圖為本發明之發光二極體中第一保護層的不同實施態樣示意圖。FIG. 15 is a schematic diagram of different implementations of the first protective layer in the light-emitting diode of the present invention.

1:發光二極體1: Light-emitting diode

10:磊晶疊層10: epitaxial stack

100:局部區域100: local area

102:第一半導體層102: The first semiconductor layer

103:發光層103: luminescent layer

104:第二半導體層104: second semiconductor layer

105:緩衝層105: buffer layer

106:基板106: substrate

20:反射層20: reflective layer

21:上表面21: upper surface

22:下表面22: lower surface

23:側面23: side

30:第一保護層30: The first protective layer

Claims (22)

一種發光二極體,其包含: 一磊晶疊層,具有一第一上表面;以及 一反射層,設置於該磊晶疊層上,且包含一厚區及一薄區,其中該反射層具有一上表面、一下表面及連接該上表面及該下表面的一側面,且該上表面為較該下表面遠離該磊晶疊層的面; 其中,該薄區具有一寬度; 其中,由俯視觀之,該磊晶疊層的該第一上表面具有一第一面積,該反射層的該上表面具有一第二面積及該下表面具有一第三面積; 其中,該第一面積 > 該第三面積 > 該第二面積,並且滿足一範圍:0.9<(該第三面積 / 該第一面積)<0.999且 0.001<((該第三面積-該第二面積)/ 該第三面積)<0.006。A light-emitting diode, which comprises: An epitaxial stack having a first upper surface; and A reflective layer is disposed on the epitaxial stack and includes a thick region and a thin region, wherein the reflective layer has an upper surface, a lower surface, and a side surface connecting the upper surface and the lower surface, and the upper surface The surface is the surface farther from the epitaxial stack than the lower surface; Wherein, the thin area has a width; Wherein, in a top view, the first upper surface of the epitaxial layer has a first area, the upper surface of the reflective layer has a second area, and the lower surface has a third area; Wherein, the first area>the third area>the second area, and satisfies a range: 0.9<(the third area/the first area)<0.999 and 0.001<((the third area-the second area) Area)/The third area)<0.006. 一種發光二極體,其包含: 一磊晶疊層,設置於該基板上,具有一第一上表面;以及 一反射層,設置於該磊晶疊層上,且包含一厚區及一薄區,其中該反射層具有一上表面、一下表面及連接該上表面及該下表面的一側面,且該上表面為較該下表面遠離該第一上表面; 其中,該上表面與該下表面間具有一第一厚度,形成該厚區;該側面與該下表面間具有一第二厚度,形成該薄區;並且該第二厚度小於該第一厚度; 其中,該薄區具有一寬度; 其中,該薄區更具有一臨界間距,該臨界間距之間所對應的第二厚度具有等於或大於90%的一臨界反射率,並滿足一範圍:0  <(該臨界間距 / 該寬度)< 0.5。A light-emitting diode, which comprises: An epitaxial stack is disposed on the substrate and has a first upper surface; and A reflective layer is disposed on the epitaxial stack and includes a thick region and a thin region, wherein the reflective layer has an upper surface, a lower surface, and a side surface connecting the upper surface and the lower surface, and the upper surface The surface is farther from the first upper surface than the lower surface; Wherein, a first thickness is formed between the upper surface and the lower surface to form the thick region; a second thickness is formed between the side surface and the lower surface to form the thin region; and the second thickness is smaller than the first thickness; Wherein, the thin area has a width; Wherein, the thin area further has a critical interval, and the second thickness between the critical intervals has a critical reflectivity equal to or greater than 90%, and satisfies a range: 0 <(the critical interval/the width)< 0.5. 如申請專利範圍第2項所述之發光二極體,其中該臨界間距之間所對應的第二厚度為400~700Å 。In the light-emitting diode described in item 2 of the scope of patent application, the second thickness corresponding to the critical distance is 400-700 Å. 如申請專利範圍第2項所述之發光二極體,其中該反射層的該第一厚度為500~5000Å。The light-emitting diode described in item 2 of the scope of patent application, wherein the first thickness of the reflective layer is 500-5000 Å. 如申請專利範圍第2項所述之發光二極體,其中該第二厚度隨著遠離該反射層之該上表面的邊緣而逐漸變小。In the light-emitting diode described in item 2 of the scope of patent application, the second thickness gradually becomes smaller as it gets away from the edge of the upper surface of the reflective layer. 如申請專利範圍第1項或第2項所述之發光二極體,其中該寬度為0.01~2 μm。Such as the light-emitting diode described in item 1 or item 2 of the scope of patent application, wherein the width is 0.01~2 μm. 如申請專利範圍第1項或第2項所述之發光二極體,其中該寬度為0.01~1 μm。Such as the light-emitting diode described in item 1 or item 2 of the scope of patent application, wherein the width is 0.01~1 μm. 如申請專利範圍第1項或第2項所述之發光二極體,其中該反射層的該側面為實質上平面或曲面。For the light-emitting diode described in item 1 or item 2 of the scope of patent application, the side surface of the reflective layer is substantially flat or curved. 如申請專利範圍第1項或第2項所述之發光二極體,其中該反射層的該側面與該下表面之間具有一角度θ,且該角度為35~70度。According to the light-emitting diode described in item 1 or item 2 of the scope of patent application, there is an angle θ between the side surface of the reflective layer and the lower surface, and the angle is 35 to 70 degrees. 如申請專利範圍第9項所述之發光二極體,其中該角度為40~50度。The light-emitting diode described in item 9 of the scope of patent application, wherein the angle is 40-50 degrees. 如申請專利範圍第1項或第2項所述之發光二極體,其中該反射層之材料包含金屬。The light-emitting diode described in item 1 or item 2 of the scope of patent application, wherein the material of the reflective layer includes metal. 如申請專利範圍第1項或第2項所述之發光二極體,其中該反射層直接設置於該磊晶疊層上。The light-emitting diode described in item 1 or item 2 of the scope of patent application, wherein the reflective layer is directly disposed on the epitaxial stack. 如申請專利範圍第1項或第2項所述之發光二極體,其中該反射層上具有一第一保護層。The light-emitting diode described in item 1 or item 2 of the scope of patent application, wherein the reflective layer has a first protective layer on it. 如申請專利範圍第13項所述之發光二極體,其中更包含一透明導電層,設置於該反射層及該第一保護層之間,或設置於該磊晶疊層及該反射層之間。The light-emitting diode described in claim 13 further includes a transparent conductive layer disposed between the reflective layer and the first protective layer, or between the epitaxial stack and the reflective layer between. 如申請專利範圍第14項所述之發光二極體,其中該透明導電層厚度為100~3000Å。The light-emitting diode described in item 14 of the scope of patent application, wherein the thickness of the transparent conductive layer is 100-3000 Å. 如申請專利範圍第14項所述之發光二極體,其中該透明導電層覆蓋該反射層周圍。The light-emitting diode described in item 14 of the scope of patent application, wherein the transparent conductive layer covers the periphery of the reflective layer. 如申請專利範圍第14項所述之發光二極體,其中該透明導電層的材料包含氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁鋅(AZO)或氧化鋅(ZnO)。The light-emitting diode described in item 14 of the scope of patent application, wherein the material of the transparent conductive layer includes indium tin oxide (ITO), indium zinc oxide (IZO), aluminum zinc oxide (AZO) or zinc oxide (ZnO). 如申請專利範圍第14項所述之發光二極體,其中由該發光二極體之剖視圖觀之,該透明導電層的寬度小於該反射層的寬度。According to the light-emitting diode described in item 14 of the scope of patent application, as seen from the cross-sectional view of the light-emitting diode, the width of the transparent conductive layer is smaller than the width of the reflective layer. 如申請專利範圍第14項所述之發光二極體,其中該第一保護層更進一步覆蓋該透明導電層周圍。The light-emitting diode described in item 14 of the scope of patent application, wherein the first protective layer further covers the periphery of the transparent conductive layer. 如申請專利範圍第13項所述之發光二極體,其中該第一保護層至少覆蓋該反射層周圍。The light-emitting diode described in item 13 of the scope of patent application, wherein the first protective layer at least covers the periphery of the reflective layer. 如申請專利範圍第20項所述之發光二極體,其中該第一保護層包含設置分佈於該反射層上的複數個島狀部。According to the light-emitting diode described in item 20 of the scope of patent application, the first protective layer includes a plurality of island-shaped portions arranged and distributed on the reflective layer. 如申請專利範圍第13項所述之發光二極體,其中該第一保護層的材料包含二氧化矽(SiO2 )、氮化矽(SiN)或氧化鋁(Al2 O3 )。According to the light-emitting diode described in item 13 of the scope of patent application, the material of the first protective layer includes silicon dioxide (SiO 2 ), silicon nitride (SiN) or aluminum oxide (Al 2 O 3 ).
TW108146620A 2019-12-19 2019-12-19 Light-emitting diode TWI756602B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108146620A TWI756602B (en) 2019-12-19 2019-12-19 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108146620A TWI756602B (en) 2019-12-19 2019-12-19 Light-emitting diode

Publications (2)

Publication Number Publication Date
TW202125847A true TW202125847A (en) 2021-07-01
TWI756602B TWI756602B (en) 2022-03-01

Family

ID=77908369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146620A TWI756602B (en) 2019-12-19 2019-12-19 Light-emitting diode

Country Status (1)

Country Link
TW (1) TWI756602B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515621B (en) * 2009-02-19 2011-03-30 旭丽电子(广州)有限公司 LED chip, manufacturing method and encapsulating method
US10529696B2 (en) * 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof

Also Published As

Publication number Publication date
TWI756602B (en) 2022-03-01

Similar Documents

Publication Publication Date Title
KR100631840B1 (en) Nitride semiconductor light emitting device for flip chip
US9099610B2 (en) Light emitting device and light emitting device package
US10249797B2 (en) High efficiency light emitting diode and method of fabricating the same
US7282741B2 (en) Vertical type nitride semiconductor light emitting diode
US8361880B2 (en) Semiconductor light-emitting device with metal support substrate
US8415689B2 (en) Semiconductor light emitting device
US20090140279A1 (en) Substrate-free light emitting diode chip
US20090261370A1 (en) Semiconductor light emitting device
TW201841391A (en) Light-emitting device
JP2014112713A (en) Light-emitting device and manufacturing method therefor
JP2006237550A (en) Nitride semiconductor light emitting element for flip chip
TW201338192A (en) Light-emitting diode chip and method for manufacturing the same
US7700966B2 (en) Light emitting device having vertical structure and method for manufacturing the same
US9082929B2 (en) Light emitting device and light emitting device package
TW202029521A (en) Light-emitting device
KR20050122600A (en) Nitride semiconductor light emitting diode and fabrication method thereof
KR101239852B1 (en) GaN compound semiconductor light emitting element
KR101534846B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
TWI792867B (en) Light-emitting diode
TWI756602B (en) Light-emitting diode
JP2010251481A (en) Light-emitting device
KR100631970B1 (en) Nitride semiconductor light emitting device for flip chip
TWI728270B (en) Semiconductor devices and manufacturing methods thereof
KR102051477B1 (en) Method of manufacturing semiconductor light emitting device
KR101681573B1 (en) Method of manufacturing Light emitting device