TW202123054A - Building device and building method of prediction model and monitoring system for product quality - Google Patents

Building device and building method of prediction model and monitoring system for product quality Download PDF

Info

Publication number
TW202123054A
TW202123054A TW108144495A TW108144495A TW202123054A TW 202123054 A TW202123054 A TW 202123054A TW 108144495 A TW108144495 A TW 108144495A TW 108144495 A TW108144495 A TW 108144495A TW 202123054 A TW202123054 A TW 202123054A
Authority
TW
Taiwan
Prior art keywords
classifier
candidate
product
strong classifier
strong
Prior art date
Application number
TW108144495A
Other languages
Chinese (zh)
Other versions
TWI709054B (en
Inventor
謝得威
王孝裕
陳承輝
Original Assignee
財團法人資訊工業策進會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人資訊工業策進會 filed Critical 財團法人資訊工業策進會
Priority to TW108144495A priority Critical patent/TWI709054B/en
Priority to CN202010058246.XA priority patent/CN112926760B/en
Application granted granted Critical
Publication of TWI709054B publication Critical patent/TWI709054B/en
Publication of TW202123054A publication Critical patent/TW202123054A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Primary Health Care (AREA)
  • General Factory Administration (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Computation (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)

Abstract

A building devie, a building method of prediction model, and a product quality monitoring system are provided. The buidingling parses a quality detection data set generated by detecting a plurality of products and a manufacturing data set related to production of the product. The building device includes a generating module of strong classifier. The generating module of strong classifier includes plural generators and a pre-seletion module. The generators generate respectively a plurality of candidate strong classifier groups according to different classifier strategies, the manufacturing data set and the quality detection data set. The pre-selection module determins whether the candidate strong classifier groups satisfiy with a pre-selection condition according to the quality detection data set.

Description

預測模型的建立裝置、建立方法與產品品質監控系統Predictive model establishment device, establishment method and product quality monitoring system

本發明是有關於一種預測模型的建立裝置、建立方法與產品品質監控系統,且特別是有關於一種無須實際進行品質檢測,即可預測產品品質之預測模型的建立裝置、建立方法與產品品質監控系統。The present invention relates to a predictive model establishment device, establishment method, and product quality monitoring system, and in particular to a predictive model establishment device, establishment method, and product quality monitoring that can predict product quality without actually performing quality inspections system.

製造業是工業化社會中不可或缺的一環。儘管不同類型的製造業生產的產品不同,但其本質均是對生產材料進行加工後,生產產品。固然,製造商希望所生產的產品品質均合格。然而,生產流程中存在諸多變因,使產品的品質呈現不穩定的情況。只要有任何產品的品質可能具有瑕疵時,製造商便須考慮以下問題。例如,如何判斷產品具有瑕疵、是否須對全部的產品進行品質檢測,以及,究竟生產環節何處出現問題,導致產品品質出現瑕疵等。為能確保產品的品質符合規定,品質檢測對製造業相當必要。Manufacturing is an indispensable part of an industrialized society. Although different types of manufacturing produce different products, their essence is to produce products after processing production materials. Of course, the manufacturer hopes that the quality of the products produced are qualified. However, there are many variables in the production process, which make the quality of the product unstable. As long as the quality of any product may be flawed, the manufacturer must consider the following issues. For example, how to determine whether a product is defective, whether it is necessary to carry out quality inspections on all products, and where there are problems in the production process that lead to product quality defects, etc. In order to ensure that the quality of products meets regulations, quality testing is quite necessary for the manufacturing industry.

請參見第1圖,其係習用技術透過品質檢測裝置對產品進行檢測之示意圖。生產材料11經過生產設備13的加工後,產生產品19。產品19經由品質檢測裝置17進行品質檢測後,產生品質檢測資料15。品質檢測資料15顯示產品19的品質為合格或是具有瑕疵。Please refer to Figure 1, which is a schematic diagram of conventional technology testing products through quality testing devices. After the production material 11 is processed by the production equipment 13, a product 19 is produced. After the product 19 undergoes quality inspection by the quality inspection device 17, a quality inspection data 15 is generated. The quality inspection data 15 shows that the quality of the product 19 is qualified or defective.

但是,利用品質檢測裝置17檢測產品品質的做法,不但需耗費相當多時間金錢,亦無法協助製造商釐清是生產流程中的哪裡出現異常,才導致產品19的品質出現問題。換言之,產品生產流程涉及相當多的環節,何者才是真正使產品19產生瑕疵的實際原因,對製造商而言,並不是一個容易判斷的問題。However, the method of using the quality inspection device 17 to detect the quality of the product not only takes a considerable amount of time and money, but also cannot help the manufacturer to identify an abnormality in the production process that causes the quality of the product 19 to be defective. In other words, the product production process involves a lot of links, and which is the actual cause of the defects in the product 19 is not an easy problem for manufacturers to judge.

本發明係有關於一種預測模型的建立裝置、建立方法與產品品質監控系統。本發明的預測模型的建立裝置、建立方法與產品品質監控系統建立預測模型,讓產品的製造商僅依據由預測模型產出的品質預測結果與瑕疵源追蹤資訊等。預測模型的使用,可讓製造商快速地掌握產品的品質,不但可節省進行品質檢測所需花費的大量時間與成本,亦可對生產流程的異常提供相關的分析資訊。The invention relates to a predictive model establishment device, establishment method and product quality monitoring system. The predictive model establishment device, the establishment method and the product quality monitoring system of the present invention establish the predictive model, so that the product manufacturer only depends on the quality prediction results and defect source tracking information produced by the predictive model. The use of predictive models allows manufacturers to quickly grasp the quality of products, which not only saves a lot of time and cost for quality inspection, but also provides relevant analysis information for abnormalities in the production process.

根據本發明之第一方面,提出一種預測模型的建立裝置。預測模型的建立裝置根據檢測複數個產品所產生之品質檢測資料集,以及與該等產品的生產相關的加工特徵資料集進行解析。建立裝置包含:強分類器產生模組。強分類器產生模組包含:第一產生器、第二產生器、第三產生器,以及初選模組。第一產生器根據第一分類器策略、該加工特徵資料集與品質檢測資料集而產生包含K個第一候選強分類器之第一候選強分類器群組,其中K為正整數。第二產生器根據第二分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第二候選強分類器之第二候選強分類器群組。第三產生器根據第三分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第三候選強分類器之第三候選強分類器群組。初選模組電連接於第一產生器、第二產生器與第三產生器。初選模組根據品質檢測資料集判斷第一候選強分類器群組、第二候選強分類器群組與第三候選強分類器群組是否滿足初選條件。According to the first aspect of the present invention, a device for establishing a predictive model is provided. The predictive model establishment device analyzes the quality inspection data set generated by inspecting a plurality of products and the processing feature data set related to the production of these products. The establishment device includes: a strong classifier generation module. The strong classifier generation module includes: a first generator, a second generator, a third generator, and a primary selection module. The first generator generates a first candidate strong classifier group including K first candidate strong classifiers according to the first classifier strategy, the processing feature data set and the quality inspection data set, where K is a positive integer. The second generator generates a second candidate strong classifier group including K second candidate strong classifiers according to the second classifier strategy, the processing feature data set, and the quality inspection data set. The third generator generates a third candidate strong classifier group including K third candidate strong classifiers according to the third classifier strategy, the processing feature data set, and the quality inspection data set. The primary selection module is electrically connected to the first generator, the second generator and the third generator. The preliminary selection module determines whether the first candidate strong classifier group, the second candidate strong classifier group, and the third candidate strong classifier group meet the preliminary selection conditions according to the quality detection data set.

根據本發明之第二方面,提出一種預測模型的建立方法。預測模型的建立方法根據對複數個產品進行檢測所產生之品質檢測資料集,以及與該等產品的生產相關的加工特徵資料集進行解析。建立方法包含以下步驟。首先,根據第一分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第一候選強分類器之第一候選強分類器群組,其中K為正整數。其次,根據第二分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第二候選強分類器之第二候選強分類器群組。接著,根據第三分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第三候選強分類器之第三候選強分類器群組。此外,根據該品質檢測資料集判斷第一候選強分類器群組、第二候選強分類器群組與第三候選強分類器群組是否滿足初選條件。According to the second aspect of the present invention, a method for establishing a prediction model is proposed. The method of establishing the predictive model is analyzed based on the quality inspection data set generated by the inspection of multiple products and the processing feature data set related to the production of these products. The establishment method includes the following steps. First, according to the first classifier strategy, the processing feature data set, and the quality detection data set, a first candidate strong classifier group including K first candidate strong classifiers is generated, where K is a positive integer. Secondly, according to the second classifier strategy, the processing feature data set and the quality detection data set, a second candidate strong classifier group including K second candidate strong classifiers is generated. Then, according to the third classifier strategy, the processing feature data set, and the quality detection data set, a third candidate strong classifier group including K third candidate strong classifiers is generated. In addition, it is determined whether the first candidate strong classifier group, the second candidate strong classifier group, and the third candidate strong classifier group satisfy the primary selection condition according to the quality detection data set.

根據本發明之第三方面,提出一種產品品質監控系統。產品品質監控系統包含:品質檢測裝置、資料前處理裝置以及模型建立裝置。品質檢測裝置檢測複數個產品並產生品質檢測資料集。資料前處理裝置接收與該等產品之生產相關的複數個生產參數,並據以產生加工特徵資料集。模型建立裝置包含:強分類器產生模組。強分類器產生模組包含:第一產生器、第二產生器、第三產生器,以及初選模組。第一產生器根據第一分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第一候選強分類器之第一候選強分類器群組,其中K為正整數。第二產生器根據第二分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第二候選強分類器之第二候選強分類器群組。第三產生器根據第三分類器策略、加工特徵資料集與品質檢測資料集而產生包含K個第三候選強分類器之第三候選強分類器群組。一初選模組電連接於第一產生器、第二產生器與第三產生器。初選模組根據品質檢測資料集判斷第一候選強分類器群組、第二候選強分類器群組與第三候選強分類器群組是否滿足初選條件。According to the third aspect of the present invention, a product quality monitoring system is provided. The product quality monitoring system includes: a quality inspection device, a data pre-processing device, and a model building device. The quality inspection device inspects a plurality of products and generates a quality inspection data set. The data pre-processing device receives multiple production parameters related to the production of these products, and generates processing feature data sets based on them. The model building device includes: a strong classifier generation module. The strong classifier generation module includes: a first generator, a second generator, a third generator, and a primary selection module. The first generator generates a first candidate strong classifier group including K first candidate strong classifiers according to the first classifier strategy, the processing feature data set, and the quality detection data set, where K is a positive integer. The second generator generates a second candidate strong classifier group including K second candidate strong classifiers according to the second classifier strategy, the processing feature data set, and the quality inspection data set. The third generator generates a third candidate strong classifier group including K third candidate strong classifiers according to the third classifier strategy, the processing feature data set, and the quality inspection data set. A primary selection module is electrically connected to the first generator, the second generator and the third generator. The preliminary selection module determines whether the first candidate strong classifier group, the second candidate strong classifier group, and the third candidate strong classifier group meet the preliminary selection conditions according to the quality detection data set.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above and other aspects of the present invention, the following specific examples are given in conjunction with the accompanying drawings to describe in detail as follows:

如前所述,產品的製造商須能掌握產品的品質,但使用品質檢測裝置進行品質檢測的做法成本過高,亦無法有效的針對生產流程中的瑕疵源進行有效的分析。為此,本案提出一種搭配生產設備的產品品質監控系統。為便於說明此種產品品質監控系統的用法,本文將搭配自行車肩胛的生產流程為例,說明如何應用本案的產品品質監控系統。As mentioned earlier, the product manufacturer must be able to grasp the quality of the product, but the cost of using quality inspection devices for quality inspection is too high, and it is impossible to effectively analyze the source of defects in the production process. For this reason, this case proposes a product quality monitoring system with production equipment. In order to explain the use of this product quality monitoring system, this article will use the production process of bicycle shoulder blades as an example to illustrate how to apply the product quality monitoring system of this case.

請參見第2圖,其係於自行車肩胛的生產流程中,搭配根據本案構想之產品品質監控系統的實施例之示意圖。在第2圖中,假設產品品質監控系統24與生產自行車肩胛的生產設備23均設置於廠房20內。實際應用時,產品品質監控系統24亦可設置在廠房20外,再經由網路等方式與感測器231、232和生產設備23連線。Please refer to Figure 2, which is a schematic diagram of an embodiment of the product quality monitoring system conceived in this case in the production process of the bicycle shoulder blade. In Figure 2, it is assumed that the product quality monitoring system 24 and the production equipment 23 for producing bicycle shoulder blades are both installed in the factory 20. In actual application, the product quality monitoring system 24 can also be installed outside the factory building 20, and then connected to the sensors 231, 232 and the production equipment 23 via the network or the like.

簡言之,自行車肩胛的生產流程大致分為三個步驟。首先,胚料加熱爐331對生產材料(鋁塊)31進行加熱產生半成品(鋁塊)31a。其次,溫鍛沖壓機台333對半成品(鋁塊)31a加壓與加熱,使其被塑形後,產生肩胛形狀的半成品(鋁塊)31b。接著,將半成品(鋁塊)31b放置在靜置冷卻區335一段時間後,完成產品29的生產。自行車肩胛的品質瑕疵,可能指產品35的尺寸發生變形、碰傷、產生裂痕等現象。In short, the production process of bicycle shoulder blades is roughly divided into three steps. First, the billet heating furnace 331 heats the production material (aluminum block) 31 to produce a semi-finished product (aluminum block) 31a. Next, the warm forging press table 333 pressurizes and heats the semi-finished product (aluminum block) 31a to be shaped to produce a shoulder blade-shaped semi-finished product (aluminum block) 31b. Next, after placing the semi-finished product (aluminum block) 31b in the standing cooling zone 335 for a period of time, the production of the product 29 is completed. The quality defects of the bicycle shoulder blades may refer to the phenomenon that the size of the product 35 is deformed, bruised, or cracked.

在生產設備23對生產材料21進行加工製造,使生產材料31轉變成為產品29的生產過程中,生產設備23本身可能有些機台設定參數需要加以設定。或者,生產設備23內部或周邊可安裝多個感測器232。這些感測器232可能用來感測生產設備23的機台狀態(例如,機台的溫度、壓力),或者用於感測工件(生產材料31或半成品31a、31b)的溫度等特性。此外,在廠房20內,也可能設置溫度計或溼度計等感測器231。為便於說明,此處將不同來源的感測參數或設定參數統一稱為生產參數PP。In the production process where the production equipment 23 processes and manufactures the production material 21 to transform the production material 31 into a product 29, the production equipment 23 itself may have some machine setting parameters that need to be set. Alternatively, multiple sensors 232 may be installed inside or around the production equipment 23. These sensors 232 may be used to sense the machine status of the production equipment 23 (for example, the temperature and pressure of the machine), or to sense the temperature and other characteristics of the workpiece (the production material 31 or the semi-finished products 31a, 31b). In addition, sensors 231 such as thermometers or hygrometers may also be installed in the factory building 20. For ease of description, the sensing parameters or setting parameters from different sources are collectively referred to as production parameters PP.

在第2圖中,假設胚料加熱爐331分四個階段對生產材料31加熱,包含:以470∘C進行第一段加熱;以480∘C進行第二段加熱;以490∘C進行第三段加熱;以及,以500∘C進行第四段加熱。當半成品31a自胚料加熱爐331取出後,可先利用紅外線感測器對半成品31a感測其入料溫度(例如,介於440∘C ~460∘C之間)。再者,在溫鍛沖壓機台333中,可設置溫度感測器與壓力感測器。通常,溫鍛沖壓機台333的上模具溫度介於120∘C ~150∘C之間;下模具溫度介於150∘C ~190∘C之間;而鍛壓壓力的壓力最大值為6噸。據此,生產參數PP可搭配與生產設備23相關之感測器232的感測結果。In Figure 2, assume that the billet heating furnace 331 heats the production material 31 in four stages, including: heating at 470∘C for the first stage; heating at 480∘C for the second stage; heating at 490∘C for the second stage Three-stage heating; and, the fourth-stage heating at 500∘C. After the semi-finished product 31a is taken out from the billet heating furnace 331, an infrared sensor can be used to sense the feed temperature of the semi-finished product 31a (for example, between 440∘C ~460∘C). Furthermore, in the warm forging press table 333, a temperature sensor and a pressure sensor can be provided. Generally, the temperature of the upper die of the warm forging press 333 is between 120∘C ~150∘C; the temperature of the lower die is between 150∘C ~190∘C; and the maximum forging pressure is 6 tons. Accordingly, the production parameter PP can be matched with the sensing result of the sensor 232 related to the production equipment 23.

產品品質監控系統24包含資料前處理裝置243、模型建立裝置245、模型使用裝置247、模型評估裝置249,以及品質檢測裝置248。其中,資料前處理裝置243電連接於感測器231、232、生產設備23、模型建立裝置245與模型使用裝置247;模型使用裝置247電連接於模型建立裝置245與模型評估裝置249;且品質檢測裝置248電連接於模型建立裝置245與模型評估裝置249。The product quality monitoring system 24 includes a data preprocessing device 243, a model building device 245, a model using device 247, a model evaluation device 249, and a quality inspection device 248. Among them, the data pre-processing device 243 is electrically connected to the sensors 231, 232, the production equipment 23, the model building device 245 and the model using device 247; the model using device 247 is electrically connected to the model building device 245 and the model evaluating device 249; and the quality The detection device 248 is electrically connected to the model establishment device 245 and the model evaluation device 249.

產品品質監控系統24的核心為一針對產品品質與製造商所需分析之目的而建立的預測模型。隨著預測模型的建立、使用與維護等目的的不同,產品品質監控系統24可能輪流處於模型建立模式bM、模型使用模式uM或模型評估模式eM。The core of the product quality monitoring system 24 is a predictive model established for the purpose of product quality and the analysis required by the manufacturer. With different purposes such as the establishment, use, and maintenance of the predictive model, the product quality monitoring system 24 may alternately be in the model establishment mode bM, the model usage mode uM, or the model evaluation mode eM.

為便於說明,本文將產品品質監控系統24處於模型建立模式bM時,生產設備23所生產的產品以符號bMP表示;將產品品質監控系統24處於模型使用模式uM時,生產設備23所生產的產品以uMP表示;以及,將產品品質監控系統24處於模型評估模式eM時,生產設備23所生產的產品以eMP表示。For the convenience of description, this article puts the product produced by the production equipment 23 in the model establishment mode bM when the product quality monitoring system 24 is in the model establishment mode bM; when the product quality monitoring system 24 is in the model use mode uM, the products produced by the production equipment 23 It is expressed in uMP; and, when the product quality monitoring system 24 is in the model evaluation mode eM, the products produced by the production equipment 23 are expressed in eMP.

實際應用時,產品品質監控系統24在各個模式下,由生產設備23所生產的產品bMP、uMP、eMP的個數並不需要被限定,而可由製造商視其生產流程或產品特性等考量而選擇。或者,可搭配抽樣方式選擇產品bMP、uMP、eMP。關於實際應用時,產品bMP、uMP、eMP如何選用與其數量,以及產品品質監控系統24何時切換操作模式等細節,可視製造商的需求而調整,此處不予詳述。In actual application, in each mode of the product quality monitoring system 24, the number of products bMP, uMP, and eMP produced by the production equipment 23 does not need to be limited, but can be determined by the manufacturer based on its production process or product characteristics. select. Or, you can choose the product bMP, uMP, eMP with the sampling method. Regarding the actual application, the selection and quantity of the products bMP, uMP, eMP, and when the product quality monitoring system 24 switches the operation mode, etc., can be adjusted according to the manufacturer's needs, and will not be detailed here.

由於產品品質監控系統24在各個模式下,均須使用資料前處理裝置243。此處先以第3、4、5圖說明資料前處理裝置243如何處理生產參數PP。接著,後續將以第6A、6B、6C圖說明如何在模型建立模式(bM)、模型使用模式(uM),或模型評估模式(eM)下建立或使用預測模型;以第7、8A、8B圖說明預測模型的基本架構;以第9~15圖說明模型建立模式(bM);以第16、17圖說明模型使用模式(uM);以第18、19圖說明模型評估模式(eM)。Since the product quality monitoring system 24 must use the data pre-processing device 243 in each mode. Here, the third, fourth, and fifth figures are used to illustrate how the data pre-processing device 243 processes the production parameter PP. Next, we will use Figures 6A, 6B, and 6C to explain how to build or use a predictive model in model building mode (bM), model use mode (uM), or model evaluation mode (eM); Figures illustrate the basic structure of the prediction model; Figures 9-15 illustrate the model building mode (bM); Figures 16 and 17 illustrate the model usage mode (uM); Figures 18 and 19 illustrate the model evaluation mode (eM).

請參見第3圖,其係資料前處理裝置的方塊圖。資料前處理裝置243包含接收模組2430、預處理模組2431、關鍵資料選取模組2435、資料庫2433、特徵轉換模組2437,以及生產條件選取模組2439。其中,預處理模組2431電連接於接收模組2430與資料庫2433;關鍵資料選取模組2435電連接於資料庫2433與特徵轉換模組2437;且生產條件選取模組2439電連接於特徵轉換模組2437。此外,接收模組2430可透過電連接或信號連接等方式,自感測器231、232接收生產參數PP;以及,生產條件選取模組2439可透過電連接或信號連接等方式,將產品bMP、uMP、eMP的加工特徵資料集傳送至模型使用裝置247。Please refer to Figure 3, which is a block diagram of the data pre-processing device. The data preprocessing device 243 includes a receiving module 2430, a preprocessing module 2431, a key data selection module 2435, a database 2433, a feature conversion module 2437, and a production condition selection module 2439. Among them, the preprocessing module 2431 is electrically connected to the receiving module 2430 and the database 2433; the key data selection module 2435 is electrically connected to the database 2433 and the feature conversion module 2437; and the production condition selection module 2439 is electrically connected to the feature conversion Module 2437. In addition, the receiving module 2430 can receive the production parameters PP from the sensors 231 and 232 through electrical connection or signal connection; and the production condition selection module 2439 can connect the product bMP, The processing feature data sets of uMP and eMP are sent to the model using device 247.

首先,基於減少資料量的考量,由感測器231、232感測的生產參數PP需先進行取樣。例如,每小時僅取一筆生產參數作為取樣生產參數smpPP。此外,由於生產流程中所使用感測器231、232的個數可能相當多。因此,製造商可根據對產線的掌握度與理解而選擇性提供選取策略。關鍵資料選取模組2435依據選取策略選出哪些感測器231、232感測到的生產參數PP相對重要,並將其定義為關鍵生產參數corePP。或者,也可省略關鍵資料選取模組2435,直接將全部的取樣生產參數smpPP直接視為關鍵生產參數corePP。在第4圖中,假設關鍵資料選取模組2435共選取10個關鍵生產參數corePP1~corePP10。First, based on the consideration of reducing the amount of data, the production parameters PP sensed by the sensors 231 and 232 need to be sampled first. For example, only one production parameter per hour is taken as the sampling production parameter smpPP. In addition, the number of sensors 231 and 232 used in the production process may be quite large. Therefore, manufacturers can selectively provide selection strategies based on their mastery and understanding of the production line. The key data selection module 2435 selects which production parameters PP sensed by the sensors 231 and 232 are relatively important according to the selection strategy, and defines it as the key production parameter corePP. Alternatively, the key data selection module 2435 can also be omitted, and all the sampling production parameters smpPP are directly regarded as the key production parameters corePP. In Figure 4, assume that the key data selection module 2435 selects a total of 10 key production parameters corePP1 to corePP10.

由於部分的關鍵生產參數corePP1~corePP10彼此間可能互有關連。例如,可能是在同一個機台內部的不同位置所感測到的溫度。因此,可由製造商根據對生產流程的理解與掌握度而提供特徵轉換公式,透過性質歸納等方式,將這些彼此相關的關鍵生產參數corePP共同整合為一個關鍵生產因子PF。例如,假設特徵轉換模組2437將關鍵生產參數corePP3、corePP4、corePP5整合為關鍵生產因子corePF1;將關鍵生產參數corePP6、corePP7整合為關鍵生產因子corePF2;以及,將關鍵生產參數corePP9、corePP10整合為關鍵生產因子corePF3。關於特徵轉換模組2437產生關鍵生產因子corePF的這個步驟,亦可於實際應用時省略。Because some of the key production parameters corePP1~corePP10 may be related to each other. For example, it may be the temperature sensed at different locations inside the same machine. Therefore, the manufacturer can provide a feature conversion formula based on the understanding and mastery of the production process, and integrate these related key production parameters corePP into a key production factor PF through methods such as property induction. For example, assume that the feature conversion module 2437 integrates the key production parameters corePP3, corePP4, and corePP5 as the key production factors corePF1; integrates the key production parameters corePP6 and corePP7 as the key production factors corePF2; and integrates the key production parameters corePP9 and corePP10 as the key Production factor corePF3. The step of generating the key production factor corePF by the feature conversion module 2437 can also be omitted in practical applications.

其後,生產條件選取模組2439可根據預測模型的用途不同而自關鍵生產參數corePP及/或關鍵生產因子corePF中,選取較符合預測模型之用途者,作為加工特徵使用。第4圖假設生產條件選取模組2439共選取關鍵生產參數corePP1、corePP5、corePP8,以及關鍵生產因子corePF1、corePF3作為加工特徵PMF1~PMF5。Thereafter, the production condition selection module 2439 can select the key production parameter corePP and/or the key production factor corePF according to the different uses of the prediction model, and select those that are more suitable for the use of the prediction model as processing features. Figure 4 assumes that the production condition selection module 2439 selects key production parameters corePP1, corePP5, corePP8, and key production factors corePF1, corePF3 as processing features PMF1~PMF5.

須留意的是,隨著預測模型的建立目的不同(例如,分析良率、或是分析影響瑕疵的根本原因),生產條件選取模組2439選擇加工特徵的考量也可能不同。因此,儘管關鍵生產參數corePP2~corePP4、corePP6、corePP7、corePP9、corePP10與關鍵生產因子corePF2在第4圖並未被選為加工特徵,但仍可能在建立其他用途的預測模型時被選用。在第4圖所說明之,資料前處理裝置243對生產參數PP的轉換,僅以單一個產品為例。實際應用時,關於該些參數的轉換還需應用於產線所生產的其他產品。為便於說明,第5圖將說明產品與其對應之加工特徵的對應關係。It should be noted that as the purpose of establishing the predictive model is different (for example, to analyze the yield rate, or analyze the root cause of the defect), the production condition selection module 2439 may have different considerations for selecting processing features. Therefore, although the key production parameters corePP2~corePP4, corePP6, corePP7, corePP9, corePP10, and the key production factor corePF2 are not selected as processing features in Figure 4, they may still be used when building predictive models for other purposes. As illustrated in Figure 4, the conversion of the production parameter PP by the data pre-processing device 243 only takes a single product as an example. In actual application, the conversion of these parameters also needs to be applied to other products produced on the production line. For ease of description, Figure 5 will illustrate the correspondence between products and their corresponding processing features.

請參見第5圖,其係說明與產品對應的加工特徵資料集之示意圖。在第5圖中,假設以1~100代表產品的編號,其中每個產品P1~P100均對應於五個加工特徵PMF1~PMF5。例如,產品P1對應於加工特徵P1MF1~P1MF5;產品P100對應於加工特徵P100MF1~P100MF5。Please refer to Figure 5, which is a schematic diagram illustrating the processing feature data set corresponding to the product. In Figure 5, it is assumed that the product number is represented by 1~100, and each product P1~P100 corresponds to the five processing features PMF1~PMF5. For example, product P1 corresponds to processing features P1MF1 to P1MF5; product P100 corresponds to processing features P100MF1 to P100MF5.

為區隔不同產品P1~P100所對應的加工特徵,此處針對不同的產品P1~P100定義與其對應的加工特徵。例如,將與產品P1對應的加工特徵P1MF1~P1MF5共同定義為,與產品P1對應的加工特徵資料P1MFG。又如,將與產品P100對應的加工特徵P100MF1~P100MF5共同定義為,與產品P100對應的加工特徵資料P100MFG。另,將多個產品P1~P100的加工特徵所形成的集合可定義為加工特徵資料集PMFGall。In order to distinguish the processing characteristics corresponding to different products P1~P100, the processing characteristics corresponding to different products P1~P100 are defined here. For example, the processing features P1MF1 to P1MF5 corresponding to the product P1 are collectively defined as the processing feature data P1MFG corresponding to the product P1. For another example, the processing features P100MF1 to P100MF5 corresponding to the product P100 are collectively defined as the processing feature data P100MFG corresponding to the product P100. In addition, the collection formed by the processing features of multiple products P1~P100 can be defined as the processing feature data set PMFGall.

於第4、5圖中,關於產品數量、產品編號、參數的個數等,均僅作為舉例使用。第6A、6B、6C圖將說明資料前處理裝置243如何在模型建立模式bM、於模型使用模式uM與模型評估模式eM下,產生與產品bMP、uMP、eMP分別對應的加工特徵資料集,進而將其提供予模型建立裝置245、模型使用裝置247與模型評估裝置249使用。In Figures 4 and 5, the number of products, product numbers, number of parameters, etc., are used as examples only. Figures 6A, 6B, and 6C illustrate how the data pre-processing device 243 generates processing feature data sets corresponding to the products bMP, uMP, and eMP in the model building mode bM, the model use mode uM, and the model evaluation mode eM, and then It is provided to the model building device 245, the model using device 247, and the model evaluating device 249 for use.

請參見第6A圖,其係產品品質監控系統處於模型建立模式bM時,資料前處理裝置提供產品bMP的加工特徵資料集作為模型建立用途之示意圖。於模型建立模式bM下,模型建立裝置245依據產品bMP的加工特徵資料集與產品bMP的品質檢測資料集而建立預測模型。關於此處所繪式之預測模型的內容(複選強分類器reSClf1、reSClf2、規則項集與權重等),將於後續說明。Please refer to Figure 6A, which is a schematic diagram of the product quality monitoring system in the model building mode bM, and the data pre-processing device provides the processing feature data set of the product bMP as the model building purpose. In the model establishment mode bM, the model establishment device 245 establishes a prediction model based on the processing feature data set of the product bMP and the quality inspection data set of the product bMP. The content of the prediction model drawn here (check the strong classifiers reSClf1, reSClf2, rule item sets and weights, etc.) will be explained later.

請參見第6B圖,其係產品品質監控系統處於模型使用模式uM時,資料前處理裝置提供產品uMP的加工特徵資料集作為模型使用用途之示意圖。於模型使用模式uM下,模型使用裝置247使用根據產品bMP而建立的預測模型,以產品uMP的加工特徵資料集為輸入,對產品uMP進行分類,並以分類的結果作為產品uMP的品質預測結果。此外,模型使用裝置247還可根據產品uMP的品質預測結果,針對被歸類為瑕疵的產品uMP產生相關的瑕疵源分析資訊。Please refer to Figure 6B, which is a schematic diagram of the uMP processing feature data set provided by the data pre-processing device when the product quality monitoring system is in the model use mode uM. In the model usage mode uM, the model usage device 247 uses the prediction model established based on the product bMP, takes the processing feature data set of the product uMP as input, classifies the product uMP, and uses the classification result as the quality prediction result of the product uMP . In addition, the model using device 247 can also generate relevant defect source analysis information for the product uMP classified as the defect according to the quality prediction result of the product uMP.

請參見第6C圖,其係產品品質監控系統處於模型評估模式eM時,資料前處理裝置提供產品eMP的加工特徵資料集作為模型評估用途之示意圖。於模型評估模式eM下,模型使用裝置247使用根據產品bMP而建立的預測模型,對產品eMP的加工特徵資料集進行分類後,以分類結果做為產品eMP的品質預測結果。另一方面,品質檢測裝置248將針對產品eMP進行品質檢測並產生產品eMP的品質檢測資料集。其後,模型評估裝置249再比較產品eMP的品質預測結果與品質檢測資料集,進而判斷可否續用先前建立的預測模型。Please refer to Figure 6C, which is a schematic diagram of the eMP processing feature data set provided by the data pre-processing device when the product quality monitoring system is in the model evaluation mode eM. In the model evaluation mode eM, the model using device 247 uses the prediction model established according to the product bMP to classify the processing feature data set of the product eMP, and uses the classification result as the quality prediction result of the product eMP. On the other hand, the quality inspection device 248 will perform quality inspection on the product eMP and generate a quality inspection data set of the product eMP. After that, the model evaluation device 249 compares the quality prediction result of the product eMP with the quality inspection data set, and then determines whether the previously established prediction model can be used.

在第6A、6B、6C圖中,根據產品bMP而建立的預測模型包含複選強分類器reSClf1、reSClf2,以及規則項集與規則權重的關係列表。其中,假設複選強分類器reSClf1包含T1個弱分類器;以及假設複選強分類器reSClf2包含T2個弱分類器。實際應用時,預測模型所包含之複選強分類器的數量不須限定。另,基於簡化的考量,可假設T1=T2。In Figures 6A, 6B, and 6C, the prediction model established based on the product bMP includes multiple strong classifiers reSClf1 and reSClf2, and a list of the relationship between the rule item set and the rule weight. Among them, suppose that the re-selected strong classifier reSClf1 contains T1 weak classifiers; and suppose that the re-selected strong classifier reSClf2 contains T2 weak classifiers. In practical applications, the number of strong multiple classifiers included in the prediction model does not need to be limited. In addition, based on simplified considerations, it can be assumed that T1=T2.

接著說明本案的預測模型的基本架構。簡言之,本發明的實施例可透過機器學習的方式,建立將多個採用二元樹(binary tree)架構的弱分類器(weak classifier)集結後產生的複選強分類器reSClf1、reSClf2。關於如何產生預測模型中的複選強分類器reSClf1、reSClf2,將於第11~15圖說明,此處先說明弱分類器的組成。Next, the basic structure of the prediction model of this case will be explained. In short, the embodiment of the present invention can build multiple strong classifiers reSClf1 and reSClf2 that are generated after aggregating multiple weak classifiers using a binary tree architecture by means of machine learning. How to generate the reSClf1 and reSClf2 strong classifiers in the prediction model will be explained in Figures 11-15. Here, the composition of the weak classifier will be explained first.

請參見第7圖,其係預測模型使用二元樹架構,對產品的加工特徵與品質檢測資料進行分類之示意圖。在預設情況下,假設強分類器由100個弱分類器(T=100)組成,且每個弱分類器的深度為三層(D=3)。Please refer to Figure 7, which is a schematic diagram of the prediction model using a binary tree structure to classify the processing characteristics and quality inspection data of the product. In the default situation, it is assumed that the strong classifier is composed of 100 weak classifiers (T=100), and the depth of each weak classifier is three layers (D=3).

根據本發明的構想,無論產品品質監控系統所處的操作模式為何者,複選強分類器reSClf中的弱分類器均採用二元樹架構對產品bMP、uMP、eMP的加工特徵資料集進行分類。在模型建立模式bM下,複選強分類器reSClf的輸入為產品bMP的加工特徵資料集;在模型使用模式uM下,複選強分類器reSClf的輸入為產品uMP的加工特徵資料集;以及,在模型評估模式eM下,複選強分類器reSClf的輸入為產品eMP的加工特徵資料集。其中,弱分類器的每個節點相當於,對加工特徵進行分類用的分類條件clfCOND(classification condition of prediction model)。According to the concept of the present invention, regardless of the operating mode of the product quality monitoring system, the weak classifiers in the reSClf check strong classifier all use a binary tree structure to classify the processing feature data sets of the products bMP, uMP, and eMP . In the model building mode bM, the input of the strong classifier reSClf is the processing feature data set of the product bMP; in the model usage mode uM, the input of the strong classifier reSClf is the processing feature data set of the product uMP; and, In the model evaluation mode eM, the input of the strong classifier reSClf is the processing feature data set of the product eMP. Among them, each node of the weak classifier is equivalent to clfCOND (classification condition of prediction model) for classifying processing features.

於模型建立模式bM下,弱分類器的節點是根據所選的分類器策略而產生。弱分類器的節點所代表的分類條件,在模型建立模式bM下,會被反覆的修改,直到產生複選強分類器reSClf為止。另一方面,一旦複選強分類器reSClf產生後,其所包含之弱分類器的節點,將作為在模型使用模式uM與模型評估模式eM下,針對產品uMP、eMP的分類使用。也因此,在模型建立模式bM時所選定之複選強分類器reSClf中的弱分類器的設定(數量T、深度D、節點所代表的分類條件等),並不會在模型使用模式uM與模型評估模式eM下修改。In the model building mode bM, the nodes of the weak classifier are generated according to the selected classifier strategy. The classification conditions represented by the nodes of the weak classifier will be repeatedly modified in the model building mode bM until the reSClf is generated. On the other hand, once the strong classifier reSClf is generated, the nodes of the weak classifier contained in it will be used as the classification of products uMP and eMP under the model use mode uM and the model evaluation mode eM. Therefore, the weak classifier settings (number T, depth D, classification conditions represented by the nodes, etc.) in the check strong classifier reSClf selected when the model was built in the model bM will not be used in the model using the modes uM and Modified under eM model evaluation mode.

以第7圖為例,節點1為第一層節點;節點2-1、2-2為第二層節點;節點3-1、3-2、3-3、3-4為第三層節點(終端節點)。此外,在節點3-1、3-2、3-3、3-4下方再延伸的圓圈用於表示符合該些節點路徑的產品的數量;在第7圖最下方的方框則表示符合該些節點路徑的產品的數量中,經品質檢測後確認為合格(以白色網底表示)與瑕疵(以點狀網底表示)的個數。Taking Figure 7 as an example, node 1 is the first-level node; nodes 2-1 and 2-2 are the second-level nodes; nodes 3-1, 3-2, 3-3, and 3-4 are the third-level nodes (Terminal node). In addition, the circles extending below nodes 3-1, 3-2, 3-3, and 3-4 are used to indicate the number of products that conform to the path of these nodes; the box at the bottom of Figure 7 indicates that the Among the number of products of these node paths, the number of products confirmed to be qualified (indicated by the white mesh bottom) and defective (indicated by the dotted mesh bottom) after quality inspection.

為便於說明,以下以一個例子說明弱分類器的架構與如何搭配產品bMP的加工特徵資料集進行判斷。此處假設在模型建立模式bM下,共有80個產品bMP需要進行分類。此外,此處所假設之各個節點所對應的分類條件整理如表1。 表1 節點 深度 分類條件 1 第一層 半成品31a的入料溫度>450∘C 2-1 第二層 胚料加熱爐331的第一段加熱溫度>470∘C 2-2 溫鍛沖壓機台333的壓力最大值>6噸 3-1 第三層 溫鍛沖壓機台333的下模具溫度>150∘C 3-2 3-3 胚料加熱爐331的第四段加熱溫度>500∘C 3-4 溫鍛沖壓機台333的上模具溫度>140∘C For ease of explanation, the following uses an example to illustrate the structure of the weak classifier and how to match the processing feature data set of the product bMP to judge. It is assumed here that under the model building mode bM, there are a total of 80 product bMPs that need to be classified. In addition, the classification conditions corresponding to each node assumed here are summarized in Table 1. Table 1 node depth Classification conditions 1 level one The feeding temperature of the semi-finished product 31a>450∘C 2-1 Second floor The heating temperature of the first stage of the blank heating furnace 331>470∘C 2-2 The maximum pressure of the warm forging press 333>6 tons 3-1 the third floor The temperature of the lower die of the warm forging stamping machine 333>150∘C 3-2 no 3-3 The fourth stage heating temperature of the blank heating furnace 331>500∘C 3-4 The temperature of the upper die of the warm forging stamping machine 333>140∘C

此處另假設產品bMP的加工特徵包含:半成品31a的入料溫度、胚料加熱爐331的第一段~第四段加熱溫度、溫鍛沖壓機台333的壓力最大值,以及溫鍛沖壓機台333的上模具與下模具溫度。在弱分類器中,根據這些產品bMP的加工特徵與表1所列的分類條件,對產品bMP進行分類。為簡化說明,此處僅以節點路徑C1為例,說明如何利用弱分類器對產品bMP進行分類。It is also assumed here that the processing characteristics of the product bMP include: the feeding temperature of the semi-finished product 31a, the heating temperature of the first to fourth stages of the blank heating furnace 331, the maximum pressure of the warm forging press 333, and the warm forging press The temperature of the upper mold and the lower mold of the table 333. In the weak classifier, the product bMP is classified according to the processing characteristics of the product bMP and the classification conditions listed in Table 1. To simplify the description, here only the node path C1 is taken as an example to illustrate how to use the weak classifier to classify the product bMP.

首先,讀取這80個產品bMP的入料溫度是否大於450∘C(節點1)。其中,假設入料溫度大於450∘C的產品bMP為 35個、入料溫度小於或等於450∘C的產品bMP為45個。接著,入料溫度大於450∘C的35個產品bMP中,那些產品bMP的第一段加熱溫度高於470∘C。此處假設入料溫度大於450∘C的35個產品bMP中,共有25個產品bMP的第一段加熱溫度高於470∘C,其餘的10個bMP的第一段加熱溫度小於或等於470∘C。其後,在節點3-1判斷入料溫度大於450∘C且第一段加熱溫度高於470∘C的25個產品,其所對應的下模具溫度是否高於150∘C。此處假設入料溫度大於450∘C且第一段加熱溫度高於470∘C的25個產品bMP中,共有23個產品bMP的下模具溫度高於150∘C,其餘的兩個產品bMP的下模具溫度小於或等於150∘C。再者,在入料溫度大於450∘C、第一段加熱溫度高於470∘C且下模具溫度高於150∘C的23個產品bMP中,共有15個被品質檢測裝置248判斷為合格,以及有8個被品質檢測裝置248判斷為瑕疵。First, read whether the feed temperature of these 80 bMP products is greater than 450∘C (node 1). Among them, suppose that the bMP of the product whose feed temperature is greater than 450∘C is 35, and the bMP of the product whose feed temperature is less than or equal to 450∘C is 45. Next, among the 35 bMP products with a feed temperature greater than 450∘C, the first stage heating temperature of those products bMP is higher than 470∘C. It is assumed here that among 35 bMP products with a feed temperature greater than 450∘C, there are 25 products bMP whose first-stage heating temperature is higher than 470∘C, and the remaining 10 bMP's first-stage heating temperature is less than or equal to 470∘ C. After that, at node 3-1, it is judged whether the 25 products whose feed temperature is greater than 450∘C and the first stage heating temperature is higher than 470∘C, their corresponding lower mold temperature is higher than 150∘C. It is assumed here that among the 25 bMP products with the feed temperature greater than 450∘C and the first stage heating temperature higher than 470∘C, a total of 23 products have bMP lower mold temperatures higher than 150∘C, and the remaining two products have bMP The temperature of the lower mold is less than or equal to 150∘C. Furthermore, among the 23 bMP products with the feed temperature greater than 450∘C, the first stage heating temperature higher than 470∘C, and the lower mold temperature higher than 150∘C, a total of 15 products were judged as qualified by the quality inspection device 248. And 8 of them are judged as defects by the quality inspection device 248.

附帶一提的是,符合節點1但不符合節點2-1(即,入料溫度高於450∘C,且第一段加熱溫度小於或等於470∘C)的產品bMP假設有10個。若這10個產品bMP的品檢結果均為合格時,則不須在節點3-2再以其他的分類條件進行判斷。Incidentally, it is assumed that there are 10 bMP products that meet node 1 but do not meet node 2-1 (that is, the input temperature is higher than 450∘C, and the first stage heating temperature is less than or equal to 470∘C). If the quality inspection results of the 10 bMP products are all qualified, there is no need to judge by other classification conditions at node 3-2.

接著,以第8A、8B圖為例,說明如何產生第7圖所示之弱分類器。在第7、8A、8B圖中,均以垂直網底代表第一層節點;以水平網底代表第二層節點;以右上-左下方向的網底代表第三層節點。此外,當節點為終端節點時,以較粗的框線標示。Next, take Figures 8A and 8B as an example to illustrate how to generate the weak classifier shown in Figure 7. In Figures 7, 8A, and 8B, the vertical grid bottom represents the first-tier nodes; the horizontal grid bottom represents the second-tier nodes; and the top-right-bottom-left grid bottom represents the third-tier nodes. In addition, when the node is a terminal node, it is marked with a thicker frame.

為便於說明,本文假設模型建立裝置245提供五個分類器策略(candidate strategies)作為建立強分類器使用。實際應用時,分類器策略的數量與種類並不以本文的舉例為限。第8A、8B圖為其中兩種可作為分類器策略的舉例。For ease of description, this article assumes that the model building device 245 provides five classifier strategies (candidate strategies) as a strong classifier. In practical applications, the number and types of classifier strategies are not limited to the examples in this article. Figures 8A and 8B are examples of two of these strategies that can be used as classifiers.

請參見第8A圖,其係使用隨機森林(random forest)作為分類器策略之示意圖。此圖式僅以弱分類器415a、415b、415c為例。採用隨機森林策略時,弱分類器415a、415b、415c分別自產品bMP的加工特徵中,選取一部分的產品bMP,並使用與該些被選取的產品bMP的加工特徵。此外,弱分類器415a、415b、415c是從相同的N個生產條件中,獨立選取產生。Please refer to Figure 8A, which is a schematic diagram of using random forest as a classifier strategy. This diagram only takes the weak classifiers 415a, 415b, and 415c as an example. When the random forest strategy is adopted, the weak classifiers 415a, 415b, and 415c respectively select a part of the product bMP from the processing characteristics of the product bMP, and use the processing characteristics of the selected product bMP. In addition, the weak classifiers 415a, 415b, and 415c are independently selected from the same N production conditions.

例如,假設共有M個產品bMP,且隨機森林策略共提供N個分類條件。則,弱分類器415a的輸入為,從M個產品bMP中,隨機選取M1個產品bMP的加工特徵411a,且其節點係為,自N個分類條件隨機選取的N1個分類條件413a。接著,弱分類器415a再根據所選取的N1個分類條件413a,對輸入的M1個產品bMP的加工特徵411a進行如第7圖所示的分類。再者,弱分類器415b的輸入為,從M個產品bMP,隨機選取M2個產品bMP的加工特徵411b,且其節點係為,自N個分類條件隨機選取的N2個分類條件413b。接著,弱分類器415b再根據所選取的N2個分類條件413b,對輸入的M2個產品bMP的加工特徵411b進行如第7圖所示的分類。同樣的,弱分類器415c的輸入為,從M個產品bMP中,隨機選取M3個產品bMP的加工特徵411c,且其節點係為,自N個分類條件隨機選取的N3個分類條件413c。接著,弱分類器415c再根據所選取的N3個分類條件413c,對輸入的M3個產品bMP的加工特徵411c進行如第7圖所示的分類。For example, suppose there are a total of M product bMPs, and the random forest strategy provides a total of N classification conditions. Then, the input of the weak classifier 415a is to randomly select the processing feature 411a of M1 product bMP from the M product bMP, and its node system is N1 classification conditions 413a randomly selected from N classification conditions. Then, the weak classifier 415a classifies the input processing features 411a of the M1 products bMP according to the selected N1 classification conditions 413a as shown in FIG. 7. Furthermore, the input of the weak classifier 415b is to randomly select the processing features 411b of the M2 product bMPs from the M product bMP, and the node system is N2 classification conditions 413b randomly selected from the N classification conditions. Next, the weak classifier 415b then classifies the input processing features 411b of the M2 products bMP as shown in FIG. 7 according to the selected N2 classification conditions 413b. Similarly, the input of the weak classifier 415c is to randomly select the processing features 411c of M3 product bMPs from M product bMPs, and the node system is N3 classification conditions 413c randomly selected from N classification conditions. Then, the weak classifier 415c classifies the input processing features 411c of the M3 product bMP as shown in FIG. 7 according to the selected N3 classification conditions 413c.

請參見第8B圖,其係使用自適應增強(Adaptive Boosting)作為分類器策略之示意圖。此圖式僅繪示其中的三個弱分類器433a、433b、433c。採用自適應增強策略時,弱分類器433a、433b、433c的輸入不完全相同。Please refer to Figure 8B, which is a schematic diagram of using Adaptive Boosting as a classifier strategy. This figure only shows three weak classifiers 433a, 433b, and 433c. When the adaptive enhancement strategy is adopted, the inputs of the weak classifiers 433a, 433b, and 433c are not exactly the same.

同樣假設有M個產品bMP,且自適應增強策略共提供N個分類條件。則,弱分類器433a雖是自M個產品bMP中,分別且隨機選取所使用的M1個產品bMP的加工特徵431a作為輸入,但弱分類器433b會根據弱分類器433a的分類結果而產生產品bMP的調整權重435a,以及,依據調整權重435a與產品bMP的加工特徵431a,共同產生經第一次權重調整之產品bMP的加工特徵431b。經第一次權重調整之產品bMP的加工特徵431b被視為弱分類器433b的輸入。此處對弱分類器433b的輸入預先進行權重調整的原因是,避免弱分類器433b將弱分類器433a分類錯誤的樣本再次將產品bMP分類錯誤。此處所述之分類錯誤指的是,將產品bMP的加工特徵加以分類後所產生的分類結果,與實際對產品bMP進行檢測後所產生之品質檢測結果進行比較後,確認兩者不符合者。It is also assumed that there are M product bMPs, and the adaptive enhancement strategy provides a total of N classification conditions. Then, although the weak classifier 433a is from the M products bMP, and randomly selects the used M1 product bMP processing features 431a as input, but the weak classifier 433b generates products based on the classification results of the weak classifier 433a The adjustment weight 435a of the bMP, and, based on the adjustment weight 435a and the processing feature 431a of the product bMP, jointly generate the processing feature 431b of the product bMP adjusted for the first time. The processed feature 431b of the product bMP after the first weight adjustment is regarded as the input of the weak classifier 433b. The reason for pre-weighting the input of the weak classifier 433b here is to prevent the weak classifier 433b from classifying the samples incorrectly by the weak classifier 433a and again classifying the product bMP incorrectly. The classification error mentioned here refers to the classification results generated after the processing characteristics of the product bMP are classified, and the quality inspection results generated after the actual product bMP inspection is compared, and the two are confirmed to be inconsistent. .

同理,弱分類器433c根據弱分類器433b的分類結果而再次調整產品bMP的調整權重435b,以及,依據調整權重435b與經第一次權重調整之產品bMP的加工特徵431b,共同產生經第二次權重調整之產品bMP的加工特徵431c。經第二次權重調整之產品bMP的加工特徵431c將作為弱分類器433c的輸入。同樣的,對弱分類器433c的輸入再次進行權重調整的原因是,避免弱分類器433c將弱分類器433b分類錯誤的樣本再次將產品bMP分類錯誤。即,依據自適應增強策略產生的弱分類器,具有修正前一級弱分類器之誤判結果的能力,故可達到疊代修正的效果。In the same way, the weak classifier 433c adjusts the adjustment weight 435b of the product bMP again according to the classification result of the weak classifier 433b, and, according to the adjustment weight 435b, and the processing feature 431b of the product bMP adjusted for the first time, the first weight adjustment is generated. The processing feature 431c of the product bMP with secondary weight adjustment. The processed feature 431c of the product bMP after the second weight adjustment will be used as the input of the weak classifier 433c. Similarly, the reason for re-weighting the input of the weak classifier 433c is to prevent the weak classifier 433c from classifying the samples incorrectly by the weak classifier 433b and again classifying the product bMP incorrectly. That is, the weak classifier generated according to the adaptive enhancement strategy has the ability to correct the misjudgment result of the previous weak classifier, so it can achieve the effect of iterative correction.

根據第8A、8B圖的說明可以得知,採用不同的分類器策略時,可以針對相同的加工特徵與分類條件,產生不同的分類結果。根據本發明的構想,弱分類器的節點所代表的分類條件係於模型建立模式bM決定。在模型使用模式uM與模型評估模式eM下,弱分類器的節點所代表的分類條件,將直接用於對產品uMP、eMP的加工特徵進行分類。其後,將進一步比較使用這些分類器策略所建立的弱分類器,針對加工特徵進行分類的效果,何者較為符合實際狀況。According to the description of Figures 8A and 8B, it can be known that when different classifier strategies are used, different classification results can be generated for the same processing features and classification conditions. According to the concept of the present invention, the classification condition represented by the node of the weak classifier is determined by the model establishment mode bM. In the model use mode uM and the model evaluation mode eM, the classification conditions represented by the nodes of the weak classifier will be directly used to classify the processing features of the products uMP and eMP. After that, we will further compare the weak classifiers established by using these classifier strategies to classify the processing features, and which one is more in line with the actual situation.

接著,本文將以第9圖至第15圖說明產品品質監控系統24的模型建立模式bM;以第16、17圖說明產品品質監控系統24的模型使用模式uM;以及,以第18、19圖說明產品品質監控系統24的模型評估模式eM。Next, this article will use Figures 9 to 15 to illustrate the model building mode bM of the product quality monitoring system 24; use Figures 16 and 17 to illustrate the model usage mode uM of the product quality monitoring system 24; and, use Figures 18 and 19 The model evaluation mode eM of the product quality monitoring system 24 is explained.

請參見第9圖,其係產品品質監控系統處於模型建立模式(bM)時,依據產品bMP的原始生產參數bMP_origPP建立預測模型的過程之示意圖。請同時參見第6A圖。在模型建立模式bM下,生產設備23對生產材料21進行加工產生產品(bMP)29a。在生產產品bMP的同時,感測器241(可為第2圖的感測器231、232)產生原始參數bMP_origPP至資料前處理裝置243。接著,資料前處理裝置243將轉換得出的產品bMP的加工特徵資料集傳送至模型建立裝置245。另一方面,品質檢測裝置248會對產品bMP進行品質檢測。品質檢測裝置248對產品bMP進行品質檢測後產生的品質檢測資料,將進一步傳送至模型建立裝置245,提供給模型建立裝置245作為參考。因此,模型建立裝置245將從資料前處理裝置243接收產品bMP的加工特徵資料集,以及從品質檢測裝置248接收產品bMP的品質檢測資料集。Please refer to Figure 9, which is a schematic diagram of the process of establishing a predictive model based on the original production parameter bMP_origPP of the product bMP when the product quality monitoring system is in the model establishment mode (bM). Please also refer to Figure 6A. In the model building mode bM, the production equipment 23 processes the production material 21 to produce a product (bMP) 29a. While producing the product bMP, the sensor 241 (which may be the sensors 231 and 232 in FIG. 2) generates the original parameter bMP_origPP to the data pre-processing device 243. Then, the data pre-processing device 243 transmits the converted processing feature data set of the product bMP to the model building device 245. On the other hand, the quality inspection device 248 performs quality inspection on the product bMP. The quality inspection data generated after the quality inspection device 248 performs quality inspection on the product bMP will be further sent to the model establishment device 245 and provided to the model establishment device 245 as a reference. Therefore, the model building device 245 receives the processing feature data set of the product bMP from the data preprocessing device 243 and the quality inspection data set of the product bMP from the quality inspection device 248.

請參見第10圖,其係模型建立裝置的方塊圖。模型建立裝置245包含強分類器產生模組245a與強分類器解析模組245b。此處僅簡要介紹這些模組的內部架構與彼此的連接關係,關於這些模組的操作細節將於後續說明。Please refer to Figure 10, which is a block diagram of the model building device. The model building device 245 includes a strong classifier generation module 245a and a strong classifier analysis module 245b. Here is only a brief introduction to the internal structure of these modules and the connection relationship with each other. The operation details of these modules will be described later.

強分類器產生模組245a包含:強分類器產生器2451a~2451e、初選模組2453,以及複選模組2455。其中,初選模組2453包含:準確率計算模組2453a,以及策略選擇模組2453b。其中,準確率計算模組2453a電連接於強分類器產生器2451a~2451e、策略選擇模組2453b,以及複選模組2455。複選模組2455則進一步包含:驗證序列計算模組2455a、相關性計算模組2455c,以及強分類器選擇模組2455e。相關性計算模組2455c電連接於驗證序列計算模組2455a與選擇模組2455e,而複選模組2455電連接於強分類器解析模組245b。複選模組2455電連接於強分類器產生器2451a~2451e與強分類器解析模組245b。The strong classifier generation module 245a includes: strong classifier generators 2451a to 2451e, a primary selection module 2453, and a multiple selection module 2455. Among them, the primary selection module 2453 includes: an accuracy rate calculation module 2453a, and a strategy selection module 2453b. Among them, the accuracy calculation module 2453a is electrically connected to the strong classifier generators 2451a to 2451e, the strategy selection module 2453b, and the check module 2455. The check module 2455 further includes: a verification sequence calculation module 2455a, a correlation calculation module 2455c, and a strong classifier selection module 2455e. The correlation calculation module 2455c is electrically connected to the verification sequence calculation module 2455a and the selection module 2455e, and the check module 2455 is electrically connected to the strong classifier analysis module 245b. The check module 2455 is electrically connected to the strong classifier generators 2451a~2451e and the strong classifier parsing module 245b.

強分類器解析模組245b包含:規則比較模組2457與節點分析模組2458。其中,規則比較模組2457包含:支持度計算模組2457a、覆蓋率計算模組2457c,以及權重計算模組2457b。其中,支持度計算模組2457a與覆蓋率計算模組2457c均同時電連接於節點分析模組2458與權重計算模組2457b。The strong classifier analysis module 245b includes a rule comparison module 2457 and a node analysis module 2458. The rule comparison module 2457 includes: a support calculation module 2457a, a coverage calculation module 2457c, and a weight calculation module 2457b. The support calculation module 2457a and the coverage calculation module 2457c are both electrically connected to the node analysis module 2458 and the weight calculation module 2457b at the same time.

為便於說明,此處將模型建立裝置245建立預測模型的過程分為三個階段(初選階段STG1、複選階段STG2,以及解析階段STG3)。其中,強分類器產生模組245a與初選階段STG1、複選階段STG2相關;強分類器解析模組245b與解析階段STG3相關。For ease of description, the process of establishing a prediction model by the model establishing device 245 is divided into three stages (primary selection stage STG1, multiple selection stage STG2, and analysis stage STG3). Among them, the strong classifier generation module 245a is related to the primary selection stage STG1 and the multiple selection stage STG2; the strong classifier analysis module 245b is related to the analysis stage STG3.

在初選階段STG1中,強分類器產生器2451a~2451e根據分類器策略A~E分別建立候選強分類器群組canSClfGp_A~canSClfGp_E,且初選模組2453根據候選強分類器群組canSClfGp_A~canSClfGp_E選擇初選策略。在複選階段STG2中,強分類器產生器2451a~2451e依據初選策略建立初選強分類器preSClf1~preSClf3,且複選模組2455自初選強分類器preSClf1~preSClf3中選擇複選強分類器reSClf1、 reSClf2。在解析階段STG3中,強分類器解析模組245b讀取複選強分類器reSClf1、reSClf2所包含之,各個弱分類器的節點所代表的生產條件,並進一步在比較複選強分類器reSClf1、reSClf2所包含之弱分類器的規則項集後,計算與規則項集對應的規則權重。In the preliminary selection stage STG1, the strong classifier generators 2451a~2451e respectively establish candidate strong classifier groups canSClfGp_A~canSClfGp_E according to the classifier strategies A~E, and the preliminary selection module 2453 according to the candidate strong classifier groups canSClfGp_A~canSClfGp_E Choose a primary selection strategy. In the multiple selection stage STG2, the strong classifier generators 2451a~2451e establish the primary strong classifiers preSClf1~preSClf3 according to the primary selection strategy, and the check module 2455 selects the multiple strong classifiers from the primary strong classifiers preSClf1~preSClf3器reSClf1, reSClf2. In the parsing stage STG3, the strong classifier parsing module 245b reads the production conditions contained in the check strong classifiers reSClf1 and reSClf2, and the production conditions represented by the nodes of each weak classifier, and further compares the check strong classifiers reSClf1 After the rule item set of the weak classifier included in reSClf2, the rule weight corresponding to the rule item set is calculated.

接著說明初選階段STG1的操作。在本發明的實施例中,假設提供五種不同的分類器策略A~ E。首先,使用不同的強分類器產生器2451a~2451e產生五個各自包含K個強分類器的候選強分類器群組canSClfGp_A~canSClfGp_E。根據本發明的構想,強分類器產生器2451a~2451e所產生的候選強分類器群組canSClfGp_A~canSClfGp_E各自均包含K個候選強分類器(如表2所示)。 表2 強分類器產生器 分類器策略 候選強分類器群組 候選強分類器 2451a A(例如,隨機森林(Random Forest)) canSClfGp_A canSClf_A1~ canSClf_A10 2451b B(例如,自適應增強(Adaptive Boosting)) canSClfGp_B canSClf_B1~ canSClf_B10 2451c C(例如,梯度提升決策樹(Gradient Boosting Decision Tree)) canSClfGp_C canSClf_C1~ canSClf_C10 2451d D(例如,極度隨機樹Extremely randomized trees) canSClfGp_D canSClf_D1~ canSClf_D10 2451e E(例如,極限梯度提升(eXtreme Gradient Boosting)) canSClfGp_E canSClf_E1~ canSClf_E10 Next, the operation of STG1 in the preliminary selection stage will be described. In the embodiment of the present invention, it is assumed that five different classifier strategies A to E are provided. First, different strong classifier generators 2451a~2451e are used to generate five candidate strong classifier groups canSClfGp_A~canSClfGp_E each containing K strong classifiers. According to the concept of the present invention, the candidate strong classifier groups canSClfGp_A to canSClfGp_E generated by the strong classifier generators 2451a to 2451e each include K candidate strong classifiers (as shown in Table 2). Table 2 Strong classifier generator Classifier strategy Candidate strong classifier group Candidate strong classifier 2451a A (for example, Random Forest) canSClfGp_A canSClf_A1~ canSClf_A10 2451b B (for example, Adaptive Boosting) canSClfGp_B canSClf_B1~ canSClf_B10 2451c C (for example, Gradient Boosting Decision Tree) canSClfGp_C canSClf_C1~ canSClf_C10 2451d D (for example, Extremely randomized trees) canSClfGp_D canSClf_D1~ canSClf_D10 2451e E (for example, eXtreme Gradient Boosting) canSClfGp_E canSClf_E1~ canSClf_E10

為便於說明,假設共有100個產品bMP,並將其分為K個部分(此處假設K=10)。基於此種假設,每個部份包含10個產品bMP。其中,每個產品bMP均有其對應的加工特徵與品質檢測資料。此外,將全部產品bMP所對應之加工特徵所形成的組合,定義為產品bMP的加工特徵資料集bMPMFGall。接著,將加工特徵資料集bMPMFGall分為K個等分。且,將該些等分定義為與K個候選強分類器分別對應的K個加工特徵子資料集DATdiv(1)~DATdiv(K)。則,根據k的數值不同,而自加工特徵子資料集DATdiv(1)~DATdiv(K)中選擇其中的(K-1)個作為初選訓練資料preTrnDAT_k;以及,自加工特徵子資料集DATdiv(1)~DATdiv(K)中選擇其中的一個作為初選測試資料preTstDAT_k。For ease of illustration, suppose there are 100 product bMPs in total, and divide them into K parts (assuming K=10 here). Based on this assumption, each part contains 10 product bMPs. Among them, each product bMP has its corresponding processing characteristics and quality inspection data. In addition, the combination of processing features corresponding to all product bMP is defined as the processing feature data set bMPMFGall of product bMP. Then, the processing feature data set bMPMFGall is divided into K equal parts. Moreover, these equal divisions are defined as the K processing feature sub-data sets DATdiv(1)~DATdiv(K) corresponding to the K candidate strong classifiers respectively. Then, according to the different value of k, select (K-1) of the self-processing feature subset data sets DATdiv(1)~DATdiv(K) as the primary training data preTrnDAT_k; and, the self-processing feature subset data set DATdiv (1) Choose one of ~DATdiv(K) as the preliminary test data preTstDAT_k.

表3以候選強分類器群組canSClfGp_A的K個(假設K=10)候選強分類器canSClf_A1~canSClf_A10為例,說明第k個候選強分類器(k=1~K)所對應之初選訓練資料preTrnDAT_k與初選測試資料preTstDAT_k。基於共有100個產品bMP與K=10的假設可以得知,每個初選訓練資料preTrnDAT_k包含的加工特徵子資料集,共對應於其中90個產品bMP所對應的加工特徵;且,每個初選測試資料preTstDAT_k所包含的加工特徵子資料集,共包含其中10個產品bMP所對應的加工特徵。 表3 候選強分類器群組 k 候選強分類器 初選訓練資料preTrnDAT_k包含的加工特徵子資料集 初選測試資料preTstDAT_k包含的加工特徵子資料集 canSClfGp_A 1 canSClf_A1 DATdiv(1)~DATdiv(9) DATdiv(10) 2 canSClf_A2 DATdiv(1)~DATdiv(8)、DATdiv(10) DATdiv(9) 3 canSClf_A3 DATdiv(1)~DATdiv(7)、DATdiv(9)、DATdiv(10) DATdiv(8) 4 canSClf_A4 DATdiv(1)~DATdiv(6)、DATdiv(8)~ DATdiv(10) DATdiv(7) 5 canSClf_A5 DATdiv(1)~DATdiv(5)、DATdiv(7)~ DATdiv(10) DATdiv(6) 6 canSClf_A6 DATdiv(1)~ DATdiv(4)、DATdiv(6)~ DATdiv(10) DATdiv(5) 7 canSClf_A7 DATdiv(1)~DATdiv(3)、DATdiv(5)~ DATdiv(10) DATdiv(4) 8 canSClf_A8 DATdiv(1)、DATdiv(2)、DATdiv(4)~DATdiv(10) DATdiv(3) 9 canSClf_A9 DATdiv(1)、DATdiv(3)~DATdiv(10) DATdiv(2) 10 canSClf_A10 DATdiv(2)~DATdiv(10) DATdiv(1) Table 3 takes K (assuming K=10) candidate strong classifiers canSClf_A1~canSClf_A10 of the candidate strong classifier group canSClfGp_A as an example to illustrate the initial training corresponding to the kth strong candidate classifier (k=1~K) Data preTrnDAT_k and preliminary test data preTstDAT_k. Based on the assumption that there are a total of 100 product bMPs and K=10, it can be known that the processing feature sub-data set contained in each preliminary training data preTrnDAT_k corresponds to the processing features corresponding to 90 product bMPs; and, each initial training data Select the processing feature sub-data set contained in the test data preTstDAT_k, which contains a total of 10 product bMP corresponding processing features. table 3 Candidate strong classifier group k Candidate strong classifier The processing feature sub-data set contained in the preliminary training data preTrnDAT_k The processing feature sub-data set contained in the preliminary test data preTstDAT_k canSClfGp_A 1 canSClf_A1 DATdiv(1)~DATdiv(9) DATdiv(10) 2 canSClf_A2 DATdiv(1)~DATdiv(8), DATdiv(10) DATdiv(9) 3 canSClf_A3 DATdiv(1)~DATdiv(7), DATdiv(9), DATdiv(10) DATdiv(8) 4 canSClf_A4 DATdiv(1)~DATdiv(6), DATdiv(8)~ DATdiv(10) DATdiv(7) 5 canSClf_A5 DATdiv(1)~DATdiv(5), DATdiv(7)~ DATdiv(10) DATdiv(6) 6 canSClf_A6 DATdiv(1)~ DATdiv(4), DATdiv(6)~ DATdiv(10) DATdiv(5) 7 canSClf_A7 DATdiv(1)~DATdiv(3), DATdiv(5)~ DATdiv(10) DATdiv(4) 8 canSClf_A8 DATdiv(1), DATdiv(2), DATdiv(4)~DATdiv(10) DATdiv(3) 9 canSClf_A9 DATdiv(1), DATdiv(3)~DATdiv(10) DATdiv(2) 10 canSClf_A10 DATdiv(2)~DATdiv(10) DATdiv(1)

接著,強分類器產生器2451b~2451e將以類似表4的關係,搭配不同的分類器策略B~E與初選訓練資料preTrnDAT_B~preTrnDAT_E而分別產生的候選強分類器群組canSClfGp_B~canSClfGp_E。根據前述說明可以得知,與k=1對應之初選訓練資料preTrnDAT_1與分類器策略A~E分別搭配後,將分別產生候選強分類器canSClf_A1、canSClf_B1、canSClf_C1、canSClf_D1、canSClf_E1。同理,其餘的初選訓練資料preTrnDAT_2~preTrnDAT_10與分類器策略A~E分別搭配後,亦對應其對應的候選強分類器。Then, the strong classifier generators 2451b~2451e will use different classifier strategies B~E and the preliminary training data preTrnDAT_B~preTrnDAT_E to generate candidate strong classifier groups canSClfGp_B~canSClfGp_E in a relationship similar to Table 4. According to the foregoing description, it can be known that after the preliminary training data preTrnDAT_1 corresponding to k=1 and the classifier strategies A~E are respectively matched, candidate strong classifiers canSClf_A1, canSClf_B1, canSClf_C1, canSClf_D1, and canSClf_E1 will be generated respectively. In the same way, the remaining preliminary training data preTrnDAT_2~preTrnDAT_10 are matched with the classifier strategies A~E respectively, and they also correspond to their corresponding candidate strong classifiers.

請參見第11圖,其係強分類器產生器產生候選強分類器群組的流程圖。各個強分類器產生器2451a~2451e會分別執行此流程。首先,初始化強分類器計數器(k =1)(步驟S41)。其次,形成候選強分類器群組中的第k個候選強分類器(步驟S43)。接著,判斷是否已經形成候選強分類器群組中全部(K個)的候選強分類器(步驟S45)。若K個候選強分類器均已形成,則流程結束。若步驟S45的判斷結果為否定,則將強分類器計數器累加(k++)(步驟S47)後,重新執行步驟S43。Please refer to Figure 11, which is a flowchart of the strong classifier generator generating the candidate strong classifier group. Each strong classifier generator 2451a~2451e will execute this process respectively. First, initialize the strong classifier counter (k = 1) (step S41). Secondly, the k-th candidate strong classifier in the candidate strong classifier group is formed (step S43). Next, it is determined whether all (K) candidate strong classifiers in the candidate strong classifier group have been formed (step S45). If all K candidate strong classifiers have been formed, the process ends. If the judgment result of step S45 is negative, the strong classifier counter is accumulated (k++) (step S47), and step S43 is executed again.

步驟S43進一步包含以下步驟:首先,初始化弱分類器計數器(t=1)(步驟S43a)。其次,使用初選訓練資料preTrnDAT以及與強分類器產生器對應的分類器策略,形成與分類器策略的第k個候選強分類器中的第t個弱分類器(步驟S43c)。其後,判斷是否已經形成第k個候選強分類器中全部的弱分類器(假設每個強分類器包含T個弱分類器)(步驟S43g)。Step S43 further includes the following steps: First, initialize the weak classifier counter (t=1) (step S43a). Secondly, use the preliminary training data preTrnDAT and the classifier strategy corresponding to the strong classifier generator to form the t-th weak classifier among the k-th candidate strong classifiers of the classifier strategy (step S43c). Thereafter, it is judged whether all the weak classifiers in the k-th candidate strong classifier have been formed (assuming that each strong classifier includes T weak classifiers) (step S43g).

若步驟S43g的判斷結果為否定,則在累加弱分類器計數器(t)(步驟S43e)後,重新執行步驟S43c。若步驟S43g的判斷結果為肯定,便可在將候選強分類器群組中的第k個候選強分類器所包含的T個弱分類器,共同集結為候選強分類器群組中的第k個候選強分類器(步驟S43h)後,結束步驟S43。If the judgment result of step S43g is negative, after the weak classifier counter (t) is accumulated (step S43e), step S43c is executed again. If the judgment result of step S43g is affirmative, the T weak classifiers included in the k-th strong candidate classifier in the strong candidate group can be collectively aggregated into the k-th strong classifier candidate in the strong candidate group. After a candidate strong classifier (step S43h), step S43 is ended.

請參見第12圖,其係以候選強分類器群組canSClfGp_A所產生的分類結果為例,說明初選模組如何判斷將分類器策略選為初選策略之示意圖。如前所述,候選強分類器群組canSClfGp_A包含候選強分類器canSClf_A1~ canSClf_AK。針對候選強分類器群組canSClfGp_A中的每個候選強分類器canSClf_A1~canSClf_AK,分別以初選測試資料preTstDAT_1~preTstDAT_K進行測試,得出與候選強分類器canSClf_A1~canSClf_AK對應的個別準確率pdtA1~pdtAK。Please refer to Figure 12, which takes the classification result generated by the candidate strong classifier group canSClfGp_A as an example to illustrate how the primary selection module determines that the classifier strategy is selected as the primary selection strategy. As mentioned above, the candidate strong classifier group canSClfGp_A includes candidate strong classifiers canSClf_A1~canSClf_AK. For each candidate strong classifier canSClf_A1~canSClf_AK in the candidate strong classifier group canSClfGp_A, test it with the preliminary test data preTstDAT_1~preTstDAT_K, and obtain the individual accuracy pdtA1~pdtAK corresponding to the candidate strong classifier canSClf_A1~canSClf_AK .

以候選強分類器canSClf_A1為例,與其對應之個別準確率pdtA1的計算方式如下。延續前面的假設與表3的舉例,假設共有100個產品bMP1~bMP100作為建立預測模型使用。則,其中以產品bMP1~bMP90的加工特徵,作為訓練候選強分類器canSClf_A1使用的初選訓練資料preTrnDAT_1;以及,以產品bMP91~bMP100的加工特徵,作為測試候選強分類器canSClf_A1之個別準確率pdtA1的初選測試資料preTstDAT_1。Taking the candidate strong classifier canSClf_A1 as an example, the corresponding individual accuracy rate pdtA1 is calculated as follows. Continuing the previous hypothesis and the example in Table 3, suppose there are 100 products bMP1~bMP100 used as prediction models. Then, the processing features of the products bMP1~bMP90 are used as the preliminary training data preTrnDAT_1 used in the training candidate strong classifier canSClf_A1; and the processing features of the products bMP91~bMP100 are used as the individual accuracy pdtA1 of the test candidate strong classifier canSClf_A1 The preliminary test data preTstDAT_1.

將產品bMP91~bMP100的加工特徵輸入候選強分類器canSClf_A1後,可依據候選強分類器canSClf_A1的節點路徑而產生多個分類結果。這些分類結果相當於對產品bMP91~bMP100的品質預測結果。之後,再將產品bMP91~bMP100的分類結果,用來和產品bMP91~bMP100的品質檢測結果進行比對。進行比對後,可以得知,由候選強分類器canSClf_A1所產生之,與產品bMP91~bMP100對應的分類結果中,正確預測產品bMP品質的個數(例如:5個)。接著,再將可正確預測品質之產品bMP的個數除以產品bMP91~bMP100個數(10個),進而得出與候選強分類器canSClf_A1對應的個別準確率(例如:5/10*100%=50%)。同理,與候選強分類器canSClf_A2~AK對應的個別準確率pdtA2~pdtAK可用類似方式計算。After inputting the processing features of the products bMP91~bMP100 into the candidate strong classifier canSClf_A1, multiple classification results can be generated according to the node path of the candidate strong classifier canSClf_A1. These classification results are equivalent to the quality prediction results of the products bMP91~bMP100. After that, the classification results of the products bMP91~bMP100 are used to compare with the quality inspection results of the products bMP91~bMP100. After the comparison, it can be known that the number (for example: 5) of the classification results corresponding to the products bMP91~bMP100 generated by the candidate strong classifier canSClf_A1 correctly predicts the quality of the product bMP. Then, divide the number of bMP products that can predict the quality correctly by the number of products bMP91~bMP100 (10) to obtain the individual accuracy corresponding to the candidate strong classifier canSClf_A1 (for example: 5/10*100%) =50%). Similarly, the individual accuracy pdtA2~pdtAK corresponding to the candidate strong classifier canSClf_A2~AK can be calculated in a similar way.

將候選強分類器canSClf_A1~canSClf_AK對應的個別準確率pdtA1~pdtAK加總後的結果,除以在候選強分類器群組canSClfGp_A中的候選強分類器canSClf的個數(K),即可得出與候選強分類器群組canSClfGp_A對應的群組平均準確率pdtGA。同樣的,針對候選強分類器群組canSClfGp_B~canSClfGp_E,亦可以類似的方式計算得出群組平均準確率pdtGB~pdtGE。其後,各個群組平均準確率pdtGA~pdtGE將分別與平均準確率門檻比較。The result of adding up the individual accuracy pdtA1~pdtAK corresponding to the candidate strong classifiers canSClf_A1~canSClf_AK is divided by the number of candidate strong classifiers canSClf in the candidate strong classifier group canSClfGp_A (K), you can get The group average accuracy rate pdtGA corresponding to the candidate strong classifier group canSClfGp_A. Similarly, for the candidate strong classifier group canSClfGp_B~canSClfGp_E, the group average accuracy pdtGB~pdtGE can also be calculated in a similar manner. After that, the average accuracy of each group, pdtGA~pdtGE, will be compared with the average accuracy threshold.

請參見第13圖,其係初選模組根據候選強分類器群組所產生的品質預測結果,判斷分類器策略是否可作為初選策略的流程圖。初始化強分類器計數器(k =1)(步驟S501)。針對第k個候選強分類器計算與其對應的個別準確率pdtk(S503)。Please refer to Figure 13, which is a flow chart for the primary selection module to determine whether the classifier strategy can be used as the primary selection strategy based on the quality prediction results generated by the candidate strong classifier group. The strong classifier counter (k =1) is initialized (step S501). For the k-th candidate strong classifier, the corresponding individual accuracy rate pdtk is calculated (S503).

接著,判斷是否已經產生候選強分類器群組canSClfGp內全部的強分類器(強分類器計數器k==K?)(步驟S505)。若否,則在累加強分類器計數器k(步驟S506)後,重新執行步驟S503。Next, it is determined whether all strong classifiers in the candidate strong classifier group canSClfGp (strong classifier counter k==K?) have been generated (step S505). If not, after accumulating the classifier counter k (step S506), step S503 is executed again.

若步驟S505的判斷結果為肯定,策略選擇模組2453b將候選強分類器群組canSClfGp內的K個強分類器的個別準確率pdt1~pdtK加總並平均後,得出與候選強分類器群組canSClfGp對應的群組平均準確率pdtG (步驟S507)。在本文中,依據的群組平均準確率pdtG與平均準確率門檻的比較,判斷候選強分類器群組canSClfGp是否滿足初選條件。If the judgment result of step S505 is affirmative, the strategy selection module 2453b sums and averages the individual accuracy rates pdt1~pdtK of the K strong classifiers in the candidate strong classifier group canSClfGp, and then obtains the same as the candidate strong classifier group The group average accuracy rate pdtG corresponding to the group canSClfGp (step S507). In this article, based on the comparison between the group average accuracy pdtG and the average accuracy threshold, it is judged whether the candidate strong classifier group canSClfGp meets the primary selection conditions.

即,初選條件相當於,判斷候選強分類器群組canSClfGp的群組平均準確率pdtG是否高於平均準確率門檻 (步驟S509)。若候選強分類器群組canSClfGp的群組平均準確率pdtG確實高於或等於平均準確率門檻,則策略選擇模組2453b確認該分類器策略可列入初選策略(步驟S511)。此時,確認候選強分類器群組canSClfGp滿足初選條件。That is, the primary selection condition is equivalent to judging whether the group average accuracy pdtG of the candidate strong classifier group canSClfGp is higher than the average accuracy threshold (step S509). If the group average accuracy pdtG of the candidate strong classifier group canSClfGp is indeed higher than or equal to the average accuracy threshold, the strategy selection module 2453b confirms that the classifier strategy can be included in the primary selection strategy (step S511). At this time, it is confirmed that the candidate strong classifier group canSClfGp satisfies the primary selection conditions.

反之,若候選強分類器群組canSClfGp的群組平均準確率pdtG低於平均準確率門檻,則策略選擇模組2453b確認該分類器策略不應列入初選策略(步驟S513)。此時,確認候選強分類器群組canSClfGp不滿足初選條件。Conversely, if the group average accuracy pdtG of the candidate strong classifier group canSClfGp is lower than the average accuracy threshold, the strategy selection module 2453b confirms that the classifier strategy should not be included in the primary selection strategy (step S513). At this time, it is confirmed that the candidate strong classifier group canSClfGp does not meet the primary selection conditions.

請參見表4,其係延續前述舉例之候選強分類器群組所對應的群組平均準確率pdtG與平均準確率門檻之比較的列表。在表4中,假設平均準確率門檻為80%,並以Y代表被選為初選策略的分類器策略;以及以N代表未被選為初選策略的分類器策略。 表4 分類器策略 候選強分類器群組 群組平均準確率 平均準確率門檻 可否被選為初選策略 A canSClfG_A pdtGA=80% 80% Y B canSClfG_B pdtGB=90% Y C canSClfG_C pdtGC=70% N D canSClfG_D pdtGD=80% Y E canSClfG_E pdtGE=60% N Please refer to Table 4, which is a continuation of the comparison of the group average accuracy pdtG and the average accuracy threshold corresponding to the candidate strong classifier group in the foregoing example. In Table 4, assume that the average accuracy threshold is 80%, and Y represents the classifier strategy selected as the primary strategy; and N represents the classifier strategy that is not selected as the primary strategy. Table 4 Classifier strategy Candidate strong classifier group Group average accuracy Average accuracy threshold Can be selected as a primary selection strategy A canSClfG_A pdtGA=80% 80% Y B canSClfG_B pdtGB=90% Y C canSClfG_C pdtGC=70% N D canSClfG_D pdtGD=80% Y E canSClfG_E pdtGE=60% N

候選強分類器群組canSClfGp_A的群組平均準確率pdtGA為80%,等於平均準確率門檻。因此,分類器策略A可被視為初選策略。候選強分類器群組canSClfGp_B的群組平均準確率pdtGB為90%,高於平均準確率門檻。因此,分類器策略B可被視為初選策略。候選強分類器群組canSClfGp_C的群組平均準確率pdtGC為70%,低於平均準確率門檻。因此,分類器策略C未被選為初選策略。候選強分類器群組canSClfGp_D的群組平均準確率pdtGD為80%,等於平均準確率門檻。因此,分類器策略D可被視為初選策略。候選強分類器群組canSClfGp_E的群組平均準確率pdtGE為60%,低於平均準確率門檻。因此,分類器策略E不應被視為初選策略。The group average accuracy pdtGA of the candidate strong classifier group canSClfGp_A is 80%, which is equal to the average accuracy threshold. Therefore, the classifier strategy A can be regarded as the primary selection strategy. The group average accuracy pdtGB of the candidate strong classifier group canSClfGp_B is 90%, which is higher than the average accuracy threshold. Therefore, the classifier strategy B can be regarded as the primary selection strategy. The group average accuracy pdtGC of the candidate strong classifier group canSClfGp_C is 70%, which is lower than the average accuracy threshold. Therefore, the classifier strategy C is not selected as the primary strategy. The group average accuracy pdtGD of the candidate strong classifier group canSClfGp_D is 80%, which is equal to the average accuracy threshold. Therefore, the classifier strategy D can be regarded as a primary selection strategy. The group average accuracy pdtGE of the candidate strong classifier group canSClfGp_E is 60%, which is lower than the average accuracy threshold. Therefore, the classifier strategy E should not be regarded as a primary selection strategy.

承上,分類器策略A、B、D將被視為初選策略,而分類器策略C、E不被視為初選策略。根據本案的構想,被選為初選策略者,將再度以與其對應的強分類器產生器產生初選強分類器。例如,在此例子中,針對被視為初選策略的分類器策略A、B、D,以強分類器產生器2451a、2451b、2451d產生與其對應的初選強分類器preSClf_A、preSClf_B、preSClf_D。In summary, classifier strategies A, B, and D will be regarded as primary selection strategies, while classifier strategies C and E will not be regarded as primary selection strategies. According to the concept of this case, those who are selected as the primary selection strategy will once again use the corresponding strong classifier generator to generate the primary strong classifier. For example, in this example, the strong classifier generators 2451a, 2451b, and 2451d are used to generate the corresponding primary strong classifiers preSClf_A, preSClf_B, and preSClf_D for the classifier strategies A, B, and D that are regarded as primary selection strategies.

根據本發明的構想,在初選階段STG1與複選階段STG2中,均採用相同的產品bMP的加工特徵資料集bMPMFGall。惟,在初選階段STG1與複選階段STG2中,根據加工特徵資料集bMPMFGall而定義的訓練資料和測試資料的方式並不相同。According to the concept of the present invention, in the primary selection stage STG1 and the multiple selection stage STG2, the same product bMP processing feature data set bMPMFGall is used. However, in the primary selection stage STG1 and the multiple selection stage STG2, the training data and test data defined according to the processing feature data set bMPMFGall are not the same way.

在初選階段STG1中,強分類器產生器2451a~2451e利用初選訓練資料preTrnDAT與初選測試資料preTstDAT產生候選強分類器群組canSClfGp。在初選階段STG1段中,用於產生候選強分類器canSClf的初選訓練資料preTrnDAT與初選測試資料preTstDAT,會隨著在候選強分類器群組canSClfGp中,代表個別之候選強分類器canSClf之強分類器計數器(k)而改變。In the preliminary selection stage STG1, the strong classifier generators 2451a~2451e use the preliminary training data preTrnDAT and the preliminary test data preTstDAT to generate the candidate strong classifier group canSClfGp. In the STG1 segment of the preliminary selection stage, the preliminary training data preTrnDAT and the preliminary test data preTstDAT used to generate the candidate strong classifier canSClf will be included in the candidate strong classifier group canSClfGp to represent individual candidate strong classifiers canSClf The strong classifier counter (k) changes.

另一方面,在複選階段STG2中。強分類器產生器2451a~2451e根據初選策略,以隨機選取的複選訓練資料reTrnDAT作為輸入,產生初選強分類器preSClf。之後,再由複選模組2455使用複選測試資料reTstDAT與複選驗證產品的品質檢測資料reTst_QC進行測試。因此,在複選階段STG2中,用於產生初選強分類器preSClf的複選訓練資料reTrnDAT,以及用於評估初選強分類器preSClf的複選測試資料reTstDAT均維持不變。On the other hand, in the check stage STG2. The strong classifier generators 2451a~2451e use the randomly selected multiple training data reTrnDAT as input according to the primary selection strategy to generate the primary strong classifier preSClf. After that, the check module 2455 uses the check test data reTstDAT and the check verification product quality test data reTst_QC for testing. Therefore, in the multiple selection stage STG2, the multiple training data reTrnDAT used to generate the primary strong classifier preSClf and the multiple testing data reTstDAT used to evaluate the primary strong classifier preSClf remain unchanged.

請參見第14圖,其係強分類器產生器建立初選強分類器preSClf後,驗證序列計算模組搭配初選強分類器preSClf產生驗證序列,進而由相關性計算模組計算驗證序列相關係數之示意圖。強分類器產生器2451a依據分類器策略A與複選訓練資料reTrnDAT產生初選強分類器preSClf_A。強分類器產生器2451b依據分類器策略B與複選訓練資料reTrnDAT產生初選強分類器preSClf_B。強分類器產生器2451d依據分類器策略D與複選訓練資料reTrnDAT產生初選強分類器preSClf_D。Please refer to Figure 14. After the strong classifier generator establishes the preliminary strong classifier preSClf, the verification sequence calculation module works with the preliminary strong classifier preSClf to generate the verification sequence, and the correlation calculation module calculates the correlation coefficient of the verification sequence The schematic diagram. The strong classifier generator 2451a generates the primary strong classifier preSClf_A according to the classifier strategy A and the re-selection training data reTrnDAT. The strong classifier generator 2451b generates the primary strong classifier preSClf_B according to the classifier strategy B and the re-selected training data reTrnDAT. The strong classifier generator 2451d generates the primary strong classifier preSClf_D according to the classifier strategy D and the re-selected training data reTrnDAT.

在複選階段STG2中,以複選測試資料reTstDAT,以及與複選測試資料reTstDAT所對應的多個(例如:從100個產品bMP中抽樣選出其中的10個)複選驗證產品的品質檢測資料reTst_QC作為輸入。初選強分類器preSClf_A、preSClf_B、preSClf_D分別依據複選測試資料reTstDAT對複選驗證產品的品質進行預測後,產生與初選強分類器preSClf_A對應的多筆複選驗證產品的品質預測結果QpdtA、與初選強分類器preSClf_B對應的多筆複選驗證產品的品質預測結果QpdtB、與初選強分類器preSClf_D對應的多筆複選驗證產品的品質預測結果QpdtD。接著,驗證序列計算模組2455a將複選驗證產品的品質預測結果QpdtA、QpdtB、QpdtD,搭配複選驗證產品的品質檢測資料reTst_QC分別進行比較後,產生多筆與複選驗證產品對應的驗證結果。並且,將該些驗證結果逐一列出後,形成如表5所示的驗證序列seqA、seqB、seqD。In the check stage STG2, check the quality test data of the verification product with the check test data reTstDAT and the multiple corresponding to the check test data reTstDAT (for example: 10 out of 100 products bMP) reTst_QC is used as input. After the primary strong classifiers preSClf_A, preSClf_B, and preSClf_D predict the quality of the multiple-selected verification product based on the multiple-selected test data reTstDAT, the quality prediction results of multiple multiple-selected verification products corresponding to the primary strong classifier preSClf_A are generated QpdtA, The quality prediction result QpdtB of multiple check verification products corresponding to the preliminary strong classifier preSClf_B, and the quality prediction result QpdtD of multiple check verification products corresponding to the preliminary strong classifier preSClf_D. Then, the verification sequence calculation module 2455a compares the quality prediction results QpdtA, QpdtB, and QpdtD of the multiple-selected verification product with the quality inspection data reTst_QC of the multiple-selected verification product, and then generates multiple verification results corresponding to the multiple-selected verification product. . And, after the verification results are listed one by one, the verification sequences seqA, seqB, and seqD shown in Table 5 are formed.

在表5中,以”1”和”0”分別代表驗證 序列計算模組2455a確認複選驗證產品的品質檢測資料reTst_QC與初選強分類器preSClf產生的複選驗證產品的品質預測結果QpdtA、QpdtB、QpdtD是否符合的驗證結果。以”1”代表驗證結果為符合,以”0”代表驗證結果為不符合。進一步的,將驗證結果集結為與各個初選強分類器preSClf對應的驗證序列seq。在表5中,與初選強分類器preSClf_A對應的驗證序列seqA為{1, 0, 1, 1, 1, 0, 1, 1, 1, 1};與初選強分類器preSClf_B對應的驗證序列seqB為{1, 0, 1, 1, 1, 1, 1, 1, 1, 1};與初選強分類器preSClf_D對應的驗證序列seqD為{1, 1, 0, 1, 1, 1, 0, 1, 1, 1}。 表5 初選強分類器 驗證序列 preSClf_A seqA={1, 0, 1, 1, 1, 0, 1, 1, 1, 1}   preSClf_B seqB={1, 0, 1, 1, 1, 1, 1, 1, 1, 1}   preSClf_D seqD={1, 1, 0, 1, 1, 1, 0, 1, 1, 1}   In Table 5, "1" and "0" respectively represent the verification sequence calculation module 2455a confirms the quality inspection data reTst_QC of the double-selected and verified products and the quality prediction results of the double-selected and verified products produced by the strong classifier preSClf, QpdtA, The verification result of QpdtB and QpdtD compliance. "1" means that the verification result is in conformity, and "0" means that the verification result is non-conformity. Further, the verification results are aggregated into verification sequence seq corresponding to each preliminary strong classifier preSClf. In Table 5, the verification sequence seqA corresponding to the primary strong classifier preSClf_A is {1, 0, 1, 1, 1, 0, 1, 1, 1, 1}; the verification corresponding to the primary strong classifier preSClf_B The sequence seqB is {1, 0, 1, 1, 1, 1, 1, 1, 1, 1}; the verification sequence seqD corresponding to the primary strong classifier preSClf_D is {1, 1, 0, 1, 1, 1 , 0, 1, 1, 1}. table 5 Primary strong classifier Verification sequence preSClf_A seqA={1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1} preSClf_B seqB={1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1} preSClf_D seqD={1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1}

當驗證結果為符合(“1”)時,代表初選強分類器preSClf根據複選測試資料reTstDAT所預測之複選驗證產品的品質預測結果(例如,QpdtA、QpdtB、QpdtD),與複選驗證產品的品質檢測資料reTst_QC一致。即,初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為合格,且複選驗證產品的品質檢測資料reTst_QC也顯示該複選驗證產品為合格;或者,初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為瑕疵,且複選驗證產品的品質檢測資料reTst_QC也顯示該複選驗證產品為瑕疵。When the verification result is in line ("1"), it represents the quality prediction result of the double-selected verification product (for example, QpdtA, QpdtB, QpdtD) predicted by the preSClf strong classifier based on the double-selected test data reTstDAT, and the double-selected verification The product quality inspection data reTst_QC is consistent. That is, the preliminary strong classifiers preSClf_A, preSClf_B, and preSClf_D predict that the check-validated product is qualified, and the quality inspection data reTst_QC of the check-checked product also shows that the check-checked product is qualified; or, the preliminary strong classifier preSClf_A, preSClf_B and preSClf_D predict that the check-checked product is defective, and the quality inspection data reTst_QC of the check-checked product also shows that the check-checked product is defective.

當驗證結果為不符合(“0”)時,代表初選強分類器preSClf根據複選測試資料reTstDAT所預測之複選驗證產品的品質預測結果(例如,QpdtA、QpdtB、QpdtD),與複選驗證產品的品質檢測資料reTst_QC不一致。即,初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為瑕疵,但複選驗證產品的品質檢測資料reTst_QC顯示該複選驗證產品為瑕疵;或者,經初選強分類器preSClf_A、preSClf_B、preSClf_D預測該複選驗證產品為瑕疵,但複選驗證產品的品質檢測資料reTst_QC顯示該複選驗證產品的品質良好。When the verification result is non-conformance ("0"), it represents the quality prediction result of the double-selected verification product (for example, QpdtA, QpdtB, QpdtD) predicted by the preSClf strong classifier preSClf based on the double-selected test data reTstDAT, and the double-selected Verify that the product quality inspection data reTst_QC is inconsistent. That is, the preliminary strong classifiers preSClf_A, preSClf_B, and preSClf_D predict that the check-checked product is defective, but the quality inspection data reTst_QC of the check-checked product shows that the check-checked product is defective; or, after the preliminary strong classifier preSClf_A, preSClf_B and preSClf_D predict that the check-checked product is defective, but the quality inspection data reTst_QC of the check-checked product shows that the check-checked product is of good quality.

驗證序列計算模組2455a產生與初選強分類器preSClf_A、preSClf_B、preSClf_D分別對應的驗證序列seqA、seqB、seqD後,相關性計算模組2455c藉由關聯性計算公式而計算驗證序列seqA、seqB、seqD彼此之間的驗證序列相關係數(驗證序列相關係數A-B/B-A、驗證序列相關係數A-D/D-A,以及驗證序列相關係數B-D/D-B)。表6為驗證序列相關係數與驗證序列的列表。 表6   驗證序列 seqA seqB seqD 驗證序列 seqA 1 驗證序列相關係數A-B = 0.666667 驗證序列相關係數A-D = 2.5 seq B 驗證序列相關係數B-A =驗證序列相關係數A-B 1 驗證序列相關係數B-D = 0.16667 seq D 驗證序列相關係數D-A =驗證序列相關係數A-D 驗證序列相關係數D-B =驗證序列相關係數B-D 1 After the verification sequence calculation module 2455a generates the verification sequences seqA, seqB, and seqD corresponding to the primary strong classifiers preSClf_A, preSClf_B, and preSClf_D, respectively, the correlation calculation module 2455c calculates the verification sequences seqA, seqB, and seqB by the correlation calculation formula. Verification sequence correlation coefficients between seqDs (verification sequence correlation coefficient AB/BA, verification sequence correlation coefficient AD/DA, and verification sequence correlation coefficient BD/DB). Table 6 is a list of the correlation coefficient of the verification sequence and the verification sequence. Table 6 Verification sequence seqA seqB seqD Verification sequence seqA 1 Validation series correlation coefficient AB = 0.666667 Validation series correlation coefficient AD = 2.5 seq B Correlation coefficient of verification sequence BA = Correlation coefficient of verification sequence AB 1 Validation series correlation coefficient BD = 0.16667 seq D Correlation coefficient of verification sequence DA = Correlation coefficient of verification sequence AD Verification sequence correlation coefficient DB = verification sequence correlation coefficient BD 1

請同時參見第14圖與表6。驗證序列相關係數A-B/B-A代表驗證序列seqA、seqB彼此間的關聯性。驗證序列相關係數A-D/D-A代表驗證序列seqA、seqD彼此間的關聯性。驗證序列相關係數B-D/D-B代表驗證序列seqB、seqD彼此間的關聯性。根據表5所示的驗證序列seqA、seqB、seqD,可搭配相關性計算公式計算得出驗證序列相關係數A-B/B-A為0.666667;驗證序列相關係數A-D/D-A為2.5;以及,驗證序列相關係數B-D/D-B為0.16667。Please refer to Figure 14 and Table 6 at the same time. The correlation coefficient A-B/B-A of the verification sequence represents the correlation between the verification sequences seqA and seqB. The correlation coefficient A-D/D-A of the verification sequence represents the correlation between the verification sequences seqA and seqD. The verification sequence correlation coefficient B-D/D-B represents the correlation between the verification sequences seqB and seqD. According to the verification sequences seqA, seqB, and seqD shown in Table 5, the correlation coefficient AB/BA of the verification sequence can be calculated with the correlation calculation formula to be 0.666667; the correlation coefficient AD/DA of the verification sequence is 2.5; and the correlation coefficient BD of the verification sequence /DB is 0.16667.

強分類器選擇模組2455e將進一步比較驗證序列相關係數A-B/B-A、A-D/D-A、B-D/D-B後,可以確認根據初選策略preStg1(分類器策略A)、初選策略preStg3(分類器策略D)所產生的初選強分類器preSClf彼此的相關性最低(驗證序列相關係數A-D/D-A的數值與1相差最大)。因此,強分類器選擇模組2455e將從初選強分類器preSClf_A、preSClf_B、preSClf_D中,選擇以候選強分類器canSClf_A、canSClf_D作為複選強分類器reSClf1、reSClf2。接著,將前述如何根據多個分類器策略選擇初選策略preSelStg,進而產生初選強分類器preSClf的過程整理於第15圖。The strong classifier selection module 2455e will further compare the correlation coefficients of the verification sequence AB/BA, AD/DA, BD/DB, and confirm that according to the primary selection strategy preStg1 (classifier strategy A), the primary selection strategy preStg3 (classifier strategy D ) The generated primary strong classifier preSClf has the lowest correlation with each other (the difference between the value of the correlation coefficient AD/DA of the verification sequence and 1 is the largest). Therefore, the strong classifier selection module 2455e will select candidate strong classifiers canSClf_A and canSClf_D from the preliminary strong classifiers preSClf_A, preSClf_B, and preSClf_D as the reSClf1 and reSClf2. Next, the process of how to select the primary selection strategy preSelStg according to multiple classifier strategies, and then generate the primary strong classifier preSClf, is summarized in Figure 15.

請參見第15圖,其係強分類器產生模組的流程圖。初選強分類器的產生,主要包含四個步驟。首先,強分類器產生器2451a~2451e依據分類器策略而產生多個候選強分類器群組(例如,候選強分類器群組canSClfGpA~canSClfGpE)(步驟S31)。其次,初選模組2453根據候選強分類器群組而決定初選策略(步驟S33)。接著,強分類器產生器2451a~2451e依據初選策略而建立初選強分類器(例如,初選強分類preSClf_A、preSClf_B、preSClf_ D)(步驟S35);以及,複選模組2455自初選強分類器中,選擇兩個做為複選強分類器reSClf1、reSClf2。Please refer to Figure 15, which is a flowchart of the strong classifier generation module. The generation of the primary strong classifier mainly includes four steps. First, the strong classifier generators 2451a to 2451e generate multiple candidate strong classifier groups (for example, candidate strong classifier groups canSClfGpA to canSClfGpE) according to the classifier strategy (step S31). Next, the primary selection module 2453 determines the primary selection strategy according to the candidate strong classifier group (step S33). Then, the strong classifier generators 2451a~2451e establish the preliminary strong classifiers (for example, the preliminary strong classification preSClf_A, preSClf_B, preSClf_D) according to the preliminary selection strategy (step S35); Among the strong classifiers, select two as reSClf1 and reSClf2 as the multi-select strong classifiers.

步驟S33進一步包含以下步驟。首先,準確率計算模組2453a分別針對每個候選強分類器群組canSClfGp計算群組平均準確率pdtG,並根據群組平均準確率pdtG判斷分類器策略是否應被選為初選策略(步驟S331)。接著,判斷初選策略的個數是否足夠(例如,是否大於或等於3個)(步驟S333)。Step S33 further includes the following steps. First, the accuracy calculation module 2453a calculates the group average accuracy pdtG for each candidate strong classifier group canSClfGp, and determines whether the classifier strategy should be selected as the primary selection strategy according to the group average accuracy pdtG (step S331 ). Next, it is determined whether the number of primary selection strategies is sufficient (for example, whether it is greater than or equal to 3) (step S333).

若步驟S333的判斷結果為肯定,則執行步驟S35。反之,策略選擇模組2453b需針對未被獲選為初選策略的分類器策略,控制與其對應的強分類器產生器2451a~2451e修改模型結構參數,並由該些強分類器產生器2451a~2451e再度產生候選強分類器群組canSClfGp (步驟S335)。此處的模型結構參數例如,強分類器所包含之弱分類器的個數(T),弱分類器所包含之節點的深度(D)等。步驟S335的細節與步驟S331,差別在於強分類器產生器2451a~2451e用於產生強分類器的模型結構參數被改變。If the judgment result of step S333 is affirmative, step S35 is executed. On the contrary, the strategy selection module 2453b needs to control the corresponding strong classifier generators 2451a~2451e to modify the model structure parameters for the classifier strategies that have not been selected as the primary selection strategy, and the strong classifier generators 2451a~ 2451e generates the candidate strong classifier group canSClfGp again (step S335). The model structure parameters here are, for example, the number of weak classifiers included in the strong classifier (T), the depth of nodes included in the weak classifier (D), and so on. The details of step S335 are different from step S331 in that the model structure parameters used by the strong classifier generators 2451a~2451e to generate the strong classifiers are changed.

接著,當模型結構參數經過修改並重新產生候選強分類器群組canSClfGp後,準確率計算模組2453a針對重新產生的候選強分類器群組canSClfGp再度計算群組平均準確率pdtG後,判斷原本未被選取的分類器策略是否可被選為初選策略(步驟S337)。Then, after the model structure parameters are modified and the candidate strong classifier group canSClfGp is regenerated, the accuracy calculation module 2453a recalculates the group average accuracy pdtG for the regenerated candidate strong classifier group canSClfGp, and then judges that it is not Whether the selected classifier strategy can be selected as the primary selection strategy (step S337).

在強分類器選擇模組2455e選出複選強分類器reSClf後,節點分析模組2458將進一步讀取各複選強分類器reSClf所包含的多個弱分類器中,由根節點(root node)至終端節點(end node)的節點路徑。若延續前述舉例,規則讀取模組2458b相當於需讀取在候選強分類器canSClf_A、canSClf_D中,各自包含的T個(例如,T=100)弱分類器的根節點至多個終端節點間的多種節點路徑。After the strong classifier selection module 2455e selects the check strong classifier reSClf, the node analysis module 2458 will further read the multiple weak classifiers contained in each check strong classifier reSClf. The root node The node path to the end node. If the previous example is continued, the rule reading module 2458b is equivalent to reading the data between the root nodes of the T (for example, T=100) weak classifiers and multiple terminal nodes in the candidate strong classifiers canSClf_A and canSClf_D. Multiple node paths.

弱分類器的根節點至各個終端節點的節點路徑由多個節點所組成。如第7圖所述,每個節點代表一個分類條件。因此,弱分類器的根節點至各個終端節點的節點路徑代表須滿足節點路徑上的各個節點所代表的分類條件。為便於說明,此處將弱分類器的根節點至各個終端節點的節點路徑定義為分類規則。The node path from the root node of the weak classifier to each terminal node is composed of multiple nodes. As described in Figure 7, each node represents a classification condition. Therefore, the node path from the root node to each terminal node of the weak classifier must satisfy the classification condition represented by each node on the node path. For ease of description, the node path from the root node of the weak classifier to each terminal node is defined as a classification rule.

如第10圖所示,強分類器解析模組245b包含節點分析模組2458與規則比較模組2457。其中,節點分析模組2458進一步包含規則讀取模組2458b與規則項集轉換模組2458a;規則比較模組2457進一步包含支持度計算模組2457a、覆蓋率計算模組2457c,以及權重計算模組2457b。As shown in FIG. 10, the strong classifier analysis module 245b includes a node analysis module 2458 and a rule comparison module 2457. Among them, the node analysis module 2458 further includes a rule reading module 2458b and a rule item set conversion module 2458a; the rule comparison module 2457 further includes a support calculation module 2457a, a coverage calculation module 2457c, and a weight calculation module 2457b.

規則讀取模組2458b讀取複選強分類器reSClf1、reSClf2的各個弱分類器,自根節點至終端節點的各個節點路徑所代表的分類規則。由於每個弱分類器的節點均為分類條件,且各節點路徑係包括個數不等的節點,因此,節點路徑上的多個節點所代表的分類條件可共同組合而成一組分類規則。此外,規則項集轉換模組2458a將分類規則中的各個生產條件,以頻繁項集(A-priori)的方式加以轉換。因而得出如表7的關係。The rule reading module 2458b reads the classification rules represented by each weak classifier of the check strong classifiers reSClf1 and reSClf2, and each node path from the root node to the terminal node. Since the nodes of each weak classifier are classified conditions, and each node path includes an unequal number of nodes, the classification conditions represented by multiple nodes on the node path can be combined together to form a set of classification rules. In addition, the rule item set conversion module 2458a converts each production condition in the classification rule in a frequent item set (A-priori) manner. Therefore, the relationship shown in Table 7 is obtained.

由於候選強分類器canSClf_A、canSClf_D所包含之弱分類器的數量甚多(例如,100個),且對每個弱分類器的節點路徑進行解析後還可得出多個規則項集,此處不予詳列。於表7中,列出幾個舉例用的弱分類器1~3所包含之規則項集,以及規則項集所包含之生產條件的例子。 表7   弱分類器 規則項集 節點分類條件 經以頻繁項集方式,對節點分類條件的範圍進行轉換 (項集分類範圍) 複選強分類器 reSClf 1 1-1 入料溫度≦430∘C 入料溫度-(pdtTmpTh_a) 2 2-1 入料溫度≦440 入料溫度-(pdtTmpTh_a, b),壓力最大值-(Pth_a)   壓力最大值≦6.5噸 2-2 入料溫度≦430∘C 入料溫度-(pdtTmpTh_a),且上模具溫度-(mlduTmpTh_a) 上模具溫度≦155∘C 3   3-1 入料溫度≦155∘C 入料溫度-(pdtTmpTh_a) 入料溫度-(pdtTmpTh_a, b),下模具溫度-(mldlTmpTh_a) 下模具溫度≦165 3-2 壓力最大值>6.5噸 入料溫度-(pdtTmpTh_a),壓力最大值-(Pth_a) Since the candidate strong classifiers canSClf_A and canSClf_D contain a large number of weak classifiers (for example, 100), and the node path of each weak classifier can be parsed, multiple rule item sets can be obtained, here Not to be listed in detail. In Table 7, a few examples of the rule item sets included in the weak classifiers 1~3 and the production conditions included in the rule item sets are listed. Table 7 Weak classifier Rule set Node classification conditions The range of node classification conditions is converted in the way of frequent itemsets (items set classification range) Check strong classifier reSClf 1 1-1 Feeding temperature≦430∘C Feeding temperature-(pdtTmpTh_a) 2 2-1 Feeding temperature≦440 Feeding temperature-(pdtTmpTh_a, b), maximum pressure-(Pth_a) Maximum pressure≦6.5 tons 2-2 Feeding temperature≦430∘C Feeding temperature-(pdtTmpTh_a), and upper mold temperature-(mlduTmpTh_a) Upper mold temperature≦155∘C 3 3-1 Feeding temperature≦155∘C Feeding temperature-(pdtTmpTh_a) Feeding temperature-(pdtTmpTh_a, b), lower mold temperature-(mldlTmpTh_a) Lower mold temperature≦165 3-2 Maximum pressure>6.5 tons Feeding temperature-(pdtTmpTh_a), maximum pressure-(Pth_a)

請參見表8,其係支持度計算模組2457a根據規則項集而計算支持度的舉例。 表8 規則項集 經以頻繁項集方式,對節點分類條件的範圍進行轉換 (項集分類範圍) 支持度 1-1 入料溫度-(pdtTmpTh_a) 3/5 2-1 入料溫度-(pdtTmpTh_a, b),壓力最大值-(Pth_a) 1/5 2-2 入料溫度-(pdtTmpTh_a),上模具溫度-(mlduTmpTh_a) 1/5 3-1 入料溫度-(pdtTmpTh_a),且下模具溫度-(mldlTmpTh_a) 1/5 3-2 壓力最大值-(Pth_a, Pth_b) 1/5 Please refer to Table 8, which is an example of the support calculation module 2457a calculating the support based on the rule item set. Table 8 Rule set The range of node classification conditions is converted in the way of frequent itemsets (items set classification range) Support 1-1 Feeding temperature-(pdtTmpTh_a) 3/5 2-1 Feeding temperature-(pdtTmpTh_a, b), maximum pressure-(Pth_a) 1/5 2-2 Feeding temperature-(pdtTmpTh_a), upper mold temperature-(mlduTmpTh_a) 1/5 3-1 Feeding temperature-(pdtTmpTh_a), and lower mold temperature-(mldlTmpTh_a) 1/5 3-2 Maximum pressure-(Pth_a, Pth_b) 1/5

此處假設共有五個規則項集。與規則項集1-1對應之項集分類範圍為,入料溫度小於臨界溫度pdtTmpTh_a。與規則項集2-1對應之項集分類範圍為,入料溫度介於臨界溫度pdtTmpTh_a、pdtTmpTh_b之間,且壓力最大值小於臨界壓力Pth_a。與規則項集2-2對應之項集分類範圍為,入料溫度小於臨界溫度pdtTmpTh_a,且上模具溫度小於臨界溫度mlduTmpTh_a。與規則項集3-1對應之項集分類範圍為,入料溫度小於臨界溫度pdtTmpTh_a,且下模具溫度小於臨界溫度mldlTmpTh_a。與規則項集3-2對應之項集分類範圍為壓力最大值介於臨界壓力Pth_a、Pth_b之間。It is assumed here that there are five rule item sets. The classification range of the item set corresponding to the rule item set 1-1 is that the feed temperature is less than the critical temperature pdtTmpTh_a. The classification range of the item set corresponding to the rule item set 2-1 is that the feed temperature is between the critical temperatures pdtTmpTh_a and pdtTmpTh_b, and the maximum pressure is less than the critical pressure Pth_a. The item set classification range corresponding to the rule item set 2-2 is that the feed temperature is less than the critical temperature pdtTmpTh_a, and the upper mold temperature is less than the critical temperature mlduTmpTh_a. The classification range of the item set corresponding to the rule item set 3-1 is that the feed temperature is less than the critical temperature pdtTmpTh_a, and the lower mold temperature is less than the critical temperature mldlTmpTh_a. The classification range of the item set corresponding to the rule item set 3-2 is that the maximum pressure is between the critical pressures Pth_a and Pth_b.

表8中的支持度相當於,與規則項集對應之項集分類範圍,占全部的規則項集所對應之項集分類範圍中的比例。例如,在表8中,與規則項集1-1對應之項集分類範圍(即,入料溫度小於臨界溫度pdtTmpTh_a),亦重複出現在規則項集2-2與規則項集3-1裡。因此,與規則項集1-1對應之項集分類範圍(即,入料溫度小於臨界溫度pdtTmpTh_a),在全部的規則項集的總數量(5個)中共出現三次。因此,與規則項集1-1對應之項集分類範圍(即,入料溫度小於臨界溫度pdtTmpTh_a)的支持度為3/5。The support in Table 8 is equivalent to the proportion of the item set classification range corresponding to the rule item set in the item set classification range corresponding to all the rule item sets. For example, in Table 8, the classification range of the item set corresponding to the rule item set 1-1 (that is, the feed temperature is less than the critical temperature pdtTmpTh_a) is also repeated in the rule item set 2-2 and the rule item set 3-1 . Therefore, the item set classification range corresponding to the rule item set 1-1 (ie, the feed temperature is less than the critical temperature pdtTmpTh_a) appears three times in the total number of all rule item sets (5). Therefore, the support degree of the item set classification range corresponding to the rule item set 1-1 (that is, the feed temperature is less than the critical temperature pdtTmpTh_a) is 3/5.

另一方面,與規則項集2-1、2-2、3-1、3-2對應之項集分類範圍,均未與其他的規則項集的項集分類範圍重複。也就是說,與規則項集2-1對應之項集分類範圍(即,入料溫度-(pdtTmpTh_a, b),壓力最大值-(Pth_a))僅出現在規則項集2-1,未見於其他四個規則項集的項集分類範圍中;與規則項集2-2對應之項集分類範圍(即,入料溫度-(pdtTmpTh_a),上模具溫度-(mlduTmpTh_a))僅出現在規則項集2-2,未見於其他四個規則項集的項集分類範圍中;與規則項集3-1對應之項集分類範圍(即,入料溫度-(pdtTmpTh_a),且下模具溫度-(mldlTmpTh_a)),壓力最大值-(Pth_a))僅出現在規則項集3-1,未見於其他四個規則項集的項集分類範圍中;以及,與規則項集3-2對應之項集分類範圍(即,壓力最大值-(Pth_a, Pth_b))僅出現在規則項集3-2,未見於其他四個規則項集的項集分類範圍中。也因此,規則項集2-1、2-2、3-1、3-2的支持度均為1/5。On the other hand, the item set classification ranges corresponding to the rule item sets 2-1, 2-2, 3-1, 3-2 do not overlap with the item set classification ranges of other rule item sets. In other words, the item set classification range corresponding to the rule item set 2-1 (ie, the feed temperature-(pdtTmpTh_a, b), the maximum pressure-(Pth_a)) only appears in the rule item set 2-1, not in the In the item set classification range of the other four rule item sets; the item set classification range corresponding to the rule item set 2-2 (ie, the feed temperature-(pdtTmpTh_a), the upper mold temperature-(mlduTmpTh_a)) only appears in the rule item Set 2-2, not found in the item set classification range of the other four rule item sets; the item set classification range corresponding to the rule item set 3-1 (ie, the feed temperature-(pdtTmpTh_a), and the lower mold temperature-( mldlTmpTh_a)), the maximum pressure-(Pth_a)) only appears in the rule item set 3-1, not found in the item set classification range of the other four rule item sets; and, the item set corresponding to the rule item set 3-2 The classification range (ie, the maximum pressure-(Pth_a, Pth_b)) only appears in the rule item set 3-2, and is not found in the item set classification range of the other four rule item sets. Therefore, the support of rule item sets 2-1, 2-2, 3-1, and 3-2 are all 1/5.

請參見表9,其係覆蓋率計算模組2457c根據規則項集而計算覆蓋率的舉例。覆蓋率的含意為,在被判斷為瑕疵的產品bMP中,符合規則項集所對應之項集分類範圍者,佔瑕疵的產品bMP的總數量中的比率。 表9 規則項集 品質檢測資料確認為瑕疵的產品bMP中,其加工特徵符合規則項集的個數 品質檢測資料確認為瑕疵的產品bMP的總個數 覆蓋率 1-1 5 50 0.1 2-1 16 0.32 2-2 49 0.98 3-1 18 0.36 3-2 4 0.08 Please refer to Table 9, which is an example of the coverage rate calculation module 2457c calculating the coverage rate according to the rule item set. The coverage rate means that among the bMP products judged to be defective, the ratio of those that meet the classification range of the item set corresponding to the rule item set to the total number of defective products bMP. Table 9 Rule set The number of bMP products whose quality inspection data is confirmed to be defective and whose processing characteristics conform to the rule item set The total number of bMP products confirmed to be defective by quality inspection data Coverage 1-1 5 50 0.1 2-1 16 0.32 2-2 49 0.98 3-1 18 0.36 3-2 4 0.08

覆蓋率計算模組2457c自規則項集轉換模組2458a接收規則項集,以及,自品質檢測模組接收關於產品bMP的品質檢測資料(例如,共有多少產品bMP被判斷為瑕疵,以及與被判斷為瑕疵的產品bMP所對應的加工特徵等)。覆蓋率計算模組2457c將產品bMP的品質檢測資料和與規則項集對應的項集分類範圍進行比較,判斷在品質檢測資料被判斷為瑕疵的產品bMP,其加工特徵是否符合各個規則項集(例如,規則項集1-1、2-1、2-2、3-1、3-2)的項集分類範圍;以及,在品質檢測資料被判斷為瑕疵的產品bMP中,符合規則項集的項集分類範圍的數量。The coverage calculation module 2457c receives the rule item set from the rule item set conversion module 2458a, and receives the quality inspection data about the product bMP from the quality inspection module (for example, how many product bMPs are judged to be defective, and how many products are judged to be defective). The processing characteristics corresponding to the defective product bMP, etc.). The coverage calculation module 2457c compares the quality inspection data of the product bMP with the classification range of the item set corresponding to the rule item set, and judges whether the product bMP whose quality inspection data is judged to be defective and whether its processing characteristics conform to each rule item set ( For example, the classification range of the item set of the rule item set 1-1, 2-1, 2-2, 3-1, 3-2); and, in the product bMP whose quality inspection data is judged to be defective, the rule item set The number of itemset classification ranges.

依據規則項集1-1、2-1、2-2、3-1、3-2的不同,覆蓋率計算模組2457c將分別以品質檢測資料被判斷為瑕疵的產品bMP中符合規則項集的個數,除以品質檢測資料被判斷為瑕疵的產品bMP的總個數後,得出與規則項集1-1、2-1、2-2、3-1、3-2分別對應的覆蓋率。如表9所示,與規則項集1-1對應的覆蓋率為0.1;與規則項集2-1對應的覆蓋率為0.32;與規則項集2-2對應的覆蓋率為0.98;與規則項集3-1對應的覆蓋率為0.36;以及,與規則項集3-2對應的覆蓋率為0.08。According to the difference of the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2, the coverage calculation module 2457c will use the quality inspection data to judge the products that meet the rule item sets in the bMP. After dividing by the total number of bMP products judged to be defective by the quality inspection data, the corresponding rule item sets 1-1, 2-1, 2-2, 3-1, 3-2 are obtained Coverage. As shown in Table 9, the coverage rate corresponding to rule item set 1-1 is 0.1; the coverage rate corresponding to rule item set 2-1 is 0.32; the coverage rate corresponding to rule item set 2-2 is 0.98; The coverage rate corresponding to item set 3-1 is 0.36; and the coverage rate corresponding to rule item set 3-2 is 0.08.

權重計算模組2457b自支持度計算模組2457a接收與規則項集1-1、2-1、2-2、3-1、3-2對應的支持度,以及自覆蓋率計算模組2457c接收與規則項集1-1、2-1、2-2、3-1、3-2對應的覆蓋率後,將分別計算與規則項集1-1、2-1、2-2、3-1、3-2對應的規則權重。The weight calculation module 2457b, the self-support calculation module 2457a receives the support corresponding to the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2, and the self-coverage calculation module 2457c After the coverage rates corresponding to the rule item sets 1-1, 2-1, 2-2, 3-1, and 3-2, the coverage ratios corresponding to the rule item sets 1-1, 2-1, 2-2, and 3- 1. The weight of the rule corresponding to 3-2.

請參見表10,其係權重計算模組2457b根據支持度與覆蓋率,而因應規則項集的不同而計算與規則項集對應之規則權重的舉例。 表10 規則項集 支持度 覆蓋率 原始規則權重 原始規則權重總和 與規則項集對應的原始規則權重的權重占比 1-1 0.6 0.1 0.6*0.1 =0.06 0.06+0.064+0.196+0.072+0.016 =0.408 0.06/0.408 =0.147 2-1 0.2 0.32 0.2*0.32 =0.064 0.064/0.408 =0.157 2-2 0.2 0.98 0.2*0.98 =0.196 0.196/0.408 =0.48 3-1 0.2 0.36 0.2*0.36 =0.072 0.072/0.408 =0.176 3-2 0.2 0.08 0.2*0.08 =0.016 0.016/0.408 =0.039 Please refer to Table 10, which is an example of calculating the rule weight corresponding to the rule item set by the weight calculation module 2457b according to the support degree and coverage rate according to the difference of the rule item set. Table 10 Rule set Support Coverage Original rule weight The sum of the weights of the original rules The weight percentage of the original rule weight corresponding to the rule item set 1-1 0.6 0.1 0.6*0.1 =0.06 0.06+0.064+0.196+0.072+0.016 =0.408 0.06/0.408 =0.147 2-1 0.2 0.32 0.2*0.32 =0.064 0.064/0.408 =0.157 2-2 0.2 0.98 0.2*0.98 =0.196 0.196/0.408 =0.48 3-1 0.2 0.36 0.2*0.36 =0.072 0.072/0.408 =0.176 3-2 0.2 0.08 0.2*0.08 =0.016 0.016/0.408 =0.039

權重計算模組2457b將與規則項集1-1對應的支持度(0.6)與覆蓋率(0.1)直接相乘後,得出原始規則權重(0.6*0.1=0.06);將與規則項集2-1對應的支持度(0.2)與覆蓋率(0.32)直接相乘後,得出原始規則權重(0.2*0.32=0.064);將與規則項集2-2對應的支持度(0.2)與覆蓋率(0.98)直接相乘後,得出原始規則權重(0.2*0.98=0.196);將與規則項集3-1對應的支持度(0.2)與覆蓋率(0.36)直接相乘後,得出原始規則權重(0.2*0.36=0.072);以及,將與規則項集3-2對應的支持度(0.2)與覆蓋率(0.08)直接相乘後,得出原始規則權重(0.2*0.08=0.016)。之後,權重計算模組2457b將與規則項集1-1、2-1、2-2、3-1、3-2對應的原始規則權重加總後,得出原始規則權重總和;以及,以各個原始規則權重,分別除以原始規則權重總和,得出與規則項集1-1、2-1、2-2、3-1、3-2對應的原始規則權重的權重占比。The weight calculation module 2457b directly multiplies the support (0.6) corresponding to the rule item set 1-1 with the coverage rate (0.1) to obtain the original rule weight (0.6*0.1=0.06); it will be compared with the rule item set 2. After the support (0.2) corresponding to -1 is directly multiplied by the coverage (0.32), the weight of the original rule (0.2*0.32=0.064) is obtained; the support (0.2) corresponding to the rule set 2-2 is compared with the coverage After directly multiplying the ratio (0.98), the original rule weight (0.2*0.98=0.196) is obtained; the support (0.2) corresponding to the rule item set 3-1 is directly multiplied by the coverage ratio (0.36) to obtain The original rule weight (0.2*0.36=0.072); and, the support (0.2) corresponding to the rule item set 3-2 is directly multiplied by the coverage (0.08) to obtain the original rule weight (0.2*0.08=0.016) ). After that, the weight calculation module 2457b sums up the original rule weights corresponding to the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2 to obtain the sum of the original rule weights; and, The weight of each original rule is divided by the sum of the weight of the original rule to obtain the weight proportion of the original rule weight corresponding to the rule item set 1-1, 2-1, 2-2, 3-1, 3-2.

在表10中,支持度的範圍介於0~1之間,且覆蓋率的範圍亦介於0~1之間。據此,根據兩者的乘積得出的原始規則權重的範圍亦介於0~1之間。為避免當支持度或覆蓋率的其中一者的數值偏大,但另一者的數值剛好為0,導致原始規則權重的計算結果為0的情況,此處亦可搭配使用支持度平移量(例如:0.5),以及覆蓋率平移量(例如:0.5)。即,將支持度與支持度平移量加總後得出平移後的支持度,以及將覆蓋率與覆蓋率平移量加總後得出平移後的覆蓋率。接著,再將平移後的支持度與平移後的覆蓋率互乘,得出平移後規則權重。其後,可用類似表10的說明,計算平移後規則權重總和,以及與規則項集對應的平移後規則權重占比。In Table 10, the range of support is between 0 and 1, and the range of coverage is between 0 and 1. Accordingly, the weight of the original rule derived from the product of the two ranges from 0 to 1. In order to avoid the situation where the value of one of the support or coverage is too large, but the value of the other is just 0, resulting in the calculation result of the original rule weight being 0, here can also be used together with the support shift ( For example: 0.5), and the amount of coverage shift (for example: 0.5). That is, the support degree and the translation amount of the support degree are added to obtain the support degree after the translation, and the coverage rate and the coverage ratio translation amount are added to the coverage rate after the translation. Then, multiply the support degree after translation and the coverage ratio after translation to obtain the weight of the rule after translation. Thereafter, similar to the description in Table 10, the sum of rule weights after translation and the proportion of rule weights after translation corresponding to the rule item set can be calculated.

經過平移處理後,平移後的支持度的範圍介於0.5~1.5之間,且平移後的覆蓋率的範圍亦介於0.5~1.5之間。據此,將兩者相乘後的乘積所表示的平移後規則權重的範圍,將介於0.5*0.5=0.25與1.5*1.5=2.25的範圍內,故能避免原始規則權重為0的情況。After translation processing, the range of support after translation is between 0.5 and 1.5, and the range of coverage after translation is also between 0.5 and 1.5. Accordingly, the range of the rule weight after translation represented by the product of the multiplication of the two will be within the range of 0.5*0.5=0.25 and 1.5*1.5=2.25, so the situation where the original rule weight is 0 can be avoided.

根據本發明的構想,與規則項集1-1、2-1、2-2、3-1、3-2對應的原始規則權重的權重占比越高時,代表與規則項集1-1、2-1、2-2、3-1、3-2對應的項集分類範圍與瑕疵的相關性越高。例如,在表11中,與規則項集2-2對應的原始規則權重的權重占比(0.48)為最高。因此,搭配表8可以得知,若某一產品uMP的加工特徵符合入料溫度≦430∘C,且上模具溫度≦155∘C時,該產品uMP為瑕疵的機會也較高。According to the concept of the present invention, the higher the weight ratio of the original rule weights corresponding to the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2, the higher the weight ratio of the original rule items set 1-1 , 2-1, 2-2, 3-1, 3-2 corresponding to the item set classification range and the higher the correlation with the defect. For example, in Table 11, the weight ratio (0.48) of the original rule weight corresponding to the rule item set 2-2 is the highest. Therefore, it can be seen from Table 8 that if the processing characteristics of a product uMP meet the requirements of the feed temperature≦430∘C and the upper mold temperature≦155∘C, the chance of the product uMP being defective is also higher.

以上說明預測模型如何建立。接著繼續說明建立好的預測模型,如何被用於預測產品uMP是否需要進行品質檢測;以及,若產品uMP被確認為需要品質檢測時,預測模型還可用於分析在生產設備23中, 提供瑕疵源分析的功能,協助製造商判斷哪個加工的環節較可能導致這個產品uMP的品質發生瑕疵。The above explains how to build the predictive model. Then continue to explain how the established prediction model can be used to predict whether the product uMP needs quality inspection; and, if the product uMP is confirmed to require quality inspection, the prediction model can also be used for analysis in the production equipment 23 to provide the source of defects The analysis function assists the manufacturer to determine which processing link is more likely to cause defects in the quality of the product uMP.

請參見第16圖,其係產品品質監控系統處於模型使用模式(uM)時,依據預測模型與產品加工特徵而預測產品的品質之示意圖。請同時參見第6B圖與第16圖。Please refer to Figure 16, which is a schematic diagram of predicting product quality based on the prediction model and product processing characteristics when the product quality monitoring system is in model use mode (uM). Please refer to Fig. 6B and Fig. 16 at the same time.

生產材料21經過生產設備23的加工成為產品uMP。在製造產品uMP的生產流程中,感測器241將感測到的原始生產參數uMP_origPP提供給資料前處理裝置243。由資料前處理裝置243轉換產生產品uMP的加工特徵資料集。在模型使用模式uM下,模型使用裝置247將使用根據產品bMP所建立的預測模型,對產品uMP的加工特徵資料集進行分析與比對。之後,模型使用裝置247將產生產品uMP的品質預測結果,以及產生產品uMP的瑕疵源分析資訊。The production material 21 is processed by the production equipment 23 into a product uMP. In the production process of manufacturing the product uMP, the sensor 241 provides the sensed original production parameter uMP_origPP to the data pre-processing device 243. The processing feature data set of the product uMP is converted by the data pre-processing device 243. In the model usage mode uM, the model usage device 247 will use the prediction model established according to the product bMP to analyze and compare the processing feature data set of the product uMP. After that, the model using device 247 will generate the quality prediction result of the product uMP and the defect source analysis information of the product uMP.

當產品uMP的品質預測結果顯示產品uMP不需進行品質檢測的抽樣時,產品uMP可直接出廠。當產品uMP的品質預測結果顯示產品uMP需品質檢測的抽樣時,品質檢測裝置248對產品uMP進行品質檢測。此外,瑕疵源分析資訊可作為使用者檢測生產設備23時的參考。When the quality prediction result of the product uMP shows that the product uMP does not need to be sampled for quality testing, the product uMP can be shipped directly. When the quality prediction result of the product uMP shows that the product uMP needs to be sampled for quality inspection, the quality inspection device 248 performs quality inspection on the product uMP. In addition, the defect source analysis information can be used as a reference for the user to inspect the production equipment 23.

請參見第17圖,其係模型使用裝置的方塊圖。模型使用裝置247包含產品特徵接收模組2471、分類規則接收模組2473、產品特徵與分類規則比較模組2475、相似度計算模組2477、品質預測模組2479與瑕疵源追蹤模組2470。其中,產品特徵與分類規則比較模組2475電連接於相似度計算模組2477、產品特徵接收模組2471與分類規則接收模組2473。品質預測模組2479電連接於相似度計算模組2477與瑕疵源追蹤模組2470。Please refer to Figure 17, which is a block diagram of the device used in the model. The model using device 247 includes a product feature receiving module 2471, a classification rule receiving module 2473, a product feature and classification rule comparison module 2475, a similarity calculation module 2477, a quality prediction module 2479, and a defect source tracking module 2470. The product feature and classification rule comparison module 2475 is electrically connected to the similarity calculation module 2477, the product feature receiving module 2471, and the classification rule receiving module 2473. The quality prediction module 2479 is electrically connected to the similarity calculation module 2477 and the defect source tracking module 2470.

產品特徵接收模組2471電連接於資料前處理裝置243,並從資料前處理裝置243接收產品uMP的加工特徵資料集。另一方面,分類規則接收模組2473電連接於模型建立裝置245,並從模型建立裝置245接收與規則項集對應的項集分類範圍,以及與規則項集對應的原始規則權重的權重占比。產品特徵接收模組2471所接收的產品uMP的加工特徵如表11所示。The product feature receiving module 2471 is electrically connected to the data preprocessing device 243, and receives the processing feature data set of the product uMP from the data preprocessing device 243. On the other hand, the classification rule receiving module 2473 is electrically connected to the model establishment device 245, and receives from the model establishment device 245 the item set classification range corresponding to the rule item set and the weight ratio of the original rule weight corresponding to the rule item set . The processing characteristics of the product uMP received by the product feature receiving module 2471 are shown in Table 11.

實際應用時,模型使用裝置247所需分析之產品uMP的數量相當多,此處為便於舉例,僅以產品uMP1~uMP6為例,並假設加工特徵包含入料溫度、壓力最大值、上模具溫度與下模具溫度。 表11 產品 加工特徵 入料溫度 壓力最大值 上模具溫度 下模具溫度 uMP1 434∘C 6.43噸 151∘C 163∘C uMP2 439∘C 6.71噸 167∘C 181∘C uMP3 423∘C 6.37噸 149∘C 179∘C uMP4 442∘C 6.69噸 153∘C 159∘C uMP5 423∘C 6.82噸 172∘C 184∘C uMP6 418∘C 6.32噸 184∘C 185∘C In actual application, there are quite a lot of product uMPs to be analyzed by the model using device 247. For the sake of example, only products uMP1~uMP6 are taken as examples, and it is assumed that the processing characteristics include feed temperature, maximum pressure, and upper mold temperature And the lower mold temperature. Table 11 product Processing characteristics Feeding temperature Maximum pressure Upper mold temperature Lower mold temperature uMP1 434∘C 6.43 tons 151∘C 163∘C uMP2 439∘C 6.71 tons 167∘C 181∘C uMP3 423∘C 6.37 tons 149∘C 179∘C uMP4 442∘C 6.69 tons 153∘C 159∘C uMP5 423∘C 6.82 tons 172∘C 184∘C uMP6 418∘C 6.32 tons 184∘C 185∘C

產品特徵接收模組2471接收到如表11所列出之各個產品uMP1~uMP6的加工特徵(例如,入料溫度、壓力最大值、上模具溫度與下模具溫度)後,首先以頻繁項集的方式轉換產品uMP1~uMP6的加工特徵。接著,再以表7所列出的規則項集1-1、2-1、2-2、3-1、3-2的項集分類範圍與產品uMP1~uMP6的加工特徵進行比對。即,確認產品uMP1~uMP6的入料溫度、壓力最大值、上模具溫度與下模具溫度是否符合表8所列出之規則項集1-1、2-1、2-2、3-1、3-2的項集分類範圍。After the product feature receiving module 2471 receives the processing features of each product uMP1~uMP6 listed in Table 11 (for example, the feed temperature, the maximum pressure, the upper mold temperature and the lower mold temperature), it first sets the frequent items The processing characteristics of the products uMP1~uMP6 are converted in a way. Then, compare the classification ranges of the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2 listed in Table 7 with the processing characteristics of the products uMP1~uMP6. That is, confirm whether the input temperature, maximum pressure, upper mold temperature and lower mold temperature of the products uMP1~uMP6 comply with the rule set 1-1, 2-1, 2-2, 3-1, and 3-1 listed in Table 8. 3-2 item set classification range.

表12為確認產品是否符合規則項集1-1、2-1、2-2、3-1、3-2的加工規則的確認表。其中,Y代表產品uMP的加工特徵符合規則項集的項集分類範圍。產品特徵與分類規則比較模組2475用於執行表12所示的比較。 表12 產品 規則項集 1-1 2-1 2-2 3-1 3-2 uMP1 - Y - Y - uMP2 - - - - Y uMP3 Y Y Y - - uMP4 - - - Y Y uMP5 Y - - - Y uMP6 Y Y - - - Table 12 is a confirmation table for confirming whether the product complies with the processing rules of rule item sets 1-1, 2-1, 2-2, 3-1, and 3-2. Among them, Y represents the processing feature of the product uMP conforms to the item set classification range of the rule item set. The product feature and classification rule comparison module 2475 is used to perform the comparison shown in Table 12. Table 12 product Rule set 1-1 2-1 2-2 3-1 3-2 uMP1 - Y - Y - uMP2 - - - - Y uMP3 Y Y Y - - uMP4 - - - Y Y uMP5 Y - - - Y uMP6 Y Y - - -

在表12中,產品uMp1的加工特徵符合規則項集2-1、3-1的項集分類範圍;產品uMp2的加工特徵符合規則項集3-2的項集分類範圍;產品uMp3的加工特徵符合規則項集1-1、2-1、2-2的項集分類範圍;產品uMp4的加工特徵符合規則項集3-1、3-2的項集分類範圍;產品uMp5的加工特徵符合規則項集1-1、3-2的項集分類範圍;以及,產品uMp6的加工特徵符合規則項集1-1、2-1的項集分類範圍。In Table 12, the processing feature of product uMp1 meets the item set classification range of rule item set 2-1 and 3-1; the processing feature of product uMp2 meets the item set classification range of rule item set 3-2; the processing feature of product uMp3 Comply with the item set classification range of rule item sets 1-1, 2-1, 2-2; the processing characteristics of product uMp4 conform to the item set classification scope of rule item sets 3-1, 3-2; the processing characteristics of product uMp5 conform to the rules The item set classification range of item sets 1-1 and 3-2; and, the processing characteristics of the product uMp6 conform to the item set classification range of rule item sets 1-1 and 2-1.

產品特徵與分類規則比較模組2475產生如表12所示的比較結果後,將比較結果傳送至相似度計算模組2477。接著,相似度計算模組2477從權重計算模組2457b接收如表10最右側欄位所示之,與規則項集對應的原始規則權重的權重占比,以及從產品特徵與分類規則比較模組2475接收比較結果後,將用於計算產品uMP以及與規則項集對應的原始規則權重的權重占比之間的關係。After the product feature and classification rule comparison module 2475 generates the comparison result shown in Table 12, it transmits the comparison result to the similarity calculation module 2477. Next, the similarity calculation module 2477 receives from the weight calculation module 2457b, as shown in the rightmost column of Table 10, the weight ratio of the original rule weight corresponding to the rule item set, and the comparison module from the product features and classification rules. After 2475 receives the comparison result, it will be used to calculate the relationship between the product uMP and the weight ratio of the original rule weight corresponding to the rule item set.

請參見表13,其係相似度計算模組根據產品uMP以及與規則項集對應的原始規則權重的權重占比,計算瑕疵相似度之列表。表13是根據表10與表12而產生,其產生方式為,針對表12中被列為Y的欄位,填入在表10所計算之與規則項集對應的原始規則權重的權重占比。接著,按照各個產品uMP1~uMP6的不同,分別計算與其對應的瑕疵相似度後,便可得出表13。瑕疵相似度可視為,生產設備23生產產品uMP的過程中,與產品uMP對應的加工特徵資料集中,符合規則項集所對應之項集分類範圍的多寡。 表13 產品 規則項集 瑕疵相似度 1-1 2-1 2-2 3-1 3-2 uMP1 - 0.16 - 0.18 - (0.16+0.18)*100% =34% uMP2 - - - - 0.04 0.04*100% =4% uMP3 0.15 0.16 0.48 - - (0.15+0.16+0.48)*100%=79% uMP4 - - - 0.18 0.04 (0.18+0.04)*100%=22% uMP5 0.15 - - - 0.04 (0.15+0.04)*100% =19% uMP6 0.15 0.16 - - - (0.15+0.16)*100% =31% Please refer to Table 13. The similarity calculation module calculates the list of defect similarity based on the product uMP and the weight proportion of the original rule weight corresponding to the rule item set. Table 13 is generated based on Table 10 and Table 12. The method of generation is to fill in the weight percentage of the original rule weight corresponding to the rule item set calculated in Table 10 for the column listed as Y in Table 12 . Then, according to the difference of each product uMP1~uMP6, after calculating the corresponding defect similarity, Table 13 can be obtained. The defect similarity can be regarded as the amount of the processing feature data set corresponding to the product uMP in the process of the production equipment 23 producing the product uMP, and the amount of the item set classification range corresponding to the rule item set. Table 13 product Rule set Defect similarity 1-1 2-1 2-2 3-1 3-2 uMP1 - 0.16 - 0.18 - (0.16+0.18)*100% =34% uMP2 - - - - 0.04 0.04*100% =4% uMP3 0.15 0.16 0.48 - - (0.15+0.16+0.48)*100%=79% uMP4 - - - 0.18 0.04 (0.18+0.04)*100%=22% uMP5 0.15 - - - 0.04 (0.15+0.04)*100% =19% uMP6 0.15 0.16 - - - (0.15+0.16)*100% =31%

當瑕疵相似度越高時,代表在產品uMp的生產過程中所產生的加工特徵中,較容易使產品uMp產生瑕疵之加工特徵越多,可因此預測產品uMp可能為瑕疵的機會越高。反之,當瑕疵相似度越高低,代表在生產產品uMp的過程中,伴隨產生的加工特徵中,並沒有太多容易使產品uMp產生瑕疵之加工特徵,可因此預測產品uMp可能為瑕疵的機會越低。When the defect similarity is higher, it means that among the processing features generated in the production process of the product uMp, the more processing features that are easier to cause the product uMp to produce defects, the higher the chance that the product uMp may be a defect can be predicted. Conversely, when the defect similarity is higher and lower, it means that in the process of producing product uMp, there are not too many processing features that are likely to cause defects in the product uMp in the accompanying processing features. Therefore, it can be predicted that the product uMp may be more likely to be a defect. low.

如表12所示,產品uMP1的加工特徵符合規則項集2-1、3-1的項集分類範圍。因此,在表13中,與產品uMP1對應的瑕疵相似度,是根據表11中,與與規則項集2-1對應的原始規則權重的權重占比(0.16),以及與規則項集3-1對應的原始規則權重的權重占比(0.18)的總和而得出((0.16+0.18)*100%=34%)。As shown in Table 12, the processing characteristics of product uMP1 conform to the item set classification range of rule item sets 2-1 and 3-1. Therefore, in Table 13, the defect similarity corresponding to the product uMP1 is based on the weight ratio (0.16) of the original rule weight corresponding to the rule item set 2-1 and the rule item set 3- 1 corresponds to the sum of the weight ratio (0.18) of the original rule weight ((0.16+0.18)*100%=34%).

如表12所示,產品uMP2的加工特徵符合規則項集3-2的項集分類範圍。因此,在表13中,與產品uMP2對應的瑕疵相似度,是根據表11中,與規則項集2-1對應的原始規則權重的權重占比而得出(0.04*100%=4%)。As shown in Table 12, the processing characteristics of the product uMP2 conform to the item set classification range of the rule item set 3-2. Therefore, in Table 13, the defect similarity corresponding to the product uMP2 is obtained according to the weight ratio of the original rule weight corresponding to the rule item set 2-1 in Table 11 (0.04*100%=4%) .

如表12所示,產品uMP3的加工特徵符合規則項集1-1、2-1、2-2的項集分類範圍。因此,在表13中,與產品uMP3對應的瑕疵相似度,是表11中,與規則項集1-1對應的原始規則權重的權重占比(0.15)、與規則項集2-1對應的原始規則權重的權重占比(0.16),以及與規則項集2-2對應的原始規則權重的權重占比(0.48)加總後得出((0.15+0.16+0.48)*100%=79%)。As shown in Table 12, the processing characteristics of product uMP3 conform to the item set classification range of rule item sets 1-1, 2-1, and 2-2. Therefore, in Table 13, the defect similarity corresponding to the product uMP3 is the weight ratio (0.15) of the original rule weight corresponding to the rule item set 1-1 in Table 11, which corresponds to the rule item set 2-1 The weight ratio of the original rule weight (0.16) and the weight ratio of the original rule weight corresponding to the rule item set 2-2 (0.48) are added together to obtain ((0.15+0.16+0.48)*100%=79% ).

如表12所示,產品uMP4的加工特徵符合規則項集3-1、3-2的項集分類範圍。因此,在表13中,與產品uMP4對應的瑕疵相似度,是根據與規則項集3-1對應的原始規則權重的權重占比(0.18),以及與規則項集3-2對應的原始規則權重的權重占比(0.04)的總和而得出((0.18+0.04)*100%=22%)。As shown in Table 12, the processing characteristics of product uMP4 conform to the item set classification range of rule item sets 3-1 and 3-2. Therefore, in Table 13, the defect similarity corresponding to the product uMP4 is based on the weight ratio of the original rule weight corresponding to the rule item set 3-1 (0.18), and the original rule corresponding to the rule item set 3-2 The weight ratio (0.04) is the sum of the weight ratio ((0.18+0.04)*100%=22%).

如表12所示,產品uMP5的加工特徵符合規則項集1-1、3-2的項集分類範圍。因此,在表13中,與產品uMP5對應的瑕疵相似度,是根據與規則項集1-1對應的原始規則權重的權重占比(0.15),以及與規則項集3-2對應的原始規則權重的權重占比(0.04)的總和而得出((0.15+0.04)*100%=19%)。As shown in Table 12, the processing characteristics of product uMP5 conform to the item set classification range of rule item sets 1-1 and 3-2. Therefore, in Table 13, the defect similarity corresponding to the product uMP5 is based on the weight ratio (0.15) of the original rule weight corresponding to the rule item set 1-1, and the original rule corresponding to the rule item set 3-2 The weight of the weight ratio (0.04) is the sum of ((0.15+0.04)*100%=19%).

如表12所示,產品uMP6的加工特徵符合規則項集1-1、2-1的項集分類範圍。因此,在表13中,與產品uMP6對應的瑕疵相似度,是根據與規則項集1-1對應的原始規則權重的權重占比(0.15),以及與規則項集2-1對應的原始規則權重的權重占比(0.16)的總和而得出((0.15+0.16)*100%=31%)。As shown in Table 12, the processing characteristics of product uMP6 conform to the item set classification range of rule item sets 1-1 and 2-1. Therefore, in Table 13, the defect similarity corresponding to the product uMP6 is based on the weight ratio (0.15) of the original rule weight corresponding to the rule item set 1-1, and the original rule corresponding to the rule item set 2-1 The weight of the weight ratio (0.16) is the sum of ((0.15+0.16)*100%=31%).

待相似度計算模組2477分別針對產品uMP1~uMP6計算與其對應的瑕疵相似度後,品質預測模組2479再用於將該些瑕疵相似度與瑕疵相似度門檻進行比較,並根據比較結果判斷產品是否需要進行品質檢測。After the similarity calculation module 2477 respectively calculates the similarity of the corresponding defects for the products uMP1~uMP6, the quality prediction module 2479 is used to compare the similarity of these defects with the threshold of the similarity of the defects, and judge the product according to the comparison result Whether it is necessary to carry out quality inspection.

請參見表14,其係品質預測模組2479執行表13所示之瑕疵相似度與瑕疵相似度門檻比較後,判斷是否須對產品進行品質檢測的列表。品質預測模組2479將產品uMP1~uMP6的瑕疵相似度分別與瑕疵相似度門檻(例如,30%)進行比較。實際應用時,瑕疵相似度門檻的數值可視產品類型、良率等考量而改變。 表14 產品 瑕疵相似度 瑕疵相似度門檻 是否需進行品質檢測 uMP1 34% 30% Y uMP2 4% N uMP3 79% Y uMP4 22% N uMP5 19% N uMP6 31% N Please refer to Table 14, which is a list of whether the quality prediction module 2479 performs the comparison between the defect similarity and the defect similarity threshold shown in Table 13 to determine whether a product quality inspection is required. The quality prediction module 2479 compares the defect similarity of the products uMP1 to uMP6 with the defect similarity threshold (for example, 30%). In actual application, the value of the defect similarity threshold varies depending on the product type, yield, and other considerations. Table 14 product Defect similarity Defect similarity threshold Whether to carry out quality inspection uMP1 34% 30% Y uMP2 4% N uMP3 79% Y uMP4 twenty two% N uMP5 19% N uMP6 31% N

如表14所示,產品uMP1的瑕疵相似度為34%、產品uMP3的瑕疵相似度為79%,且產品uMP6的瑕疵相似度為31%,均高於瑕疵相似度門檻(30%)。因此,品質預測模組2479判斷產品uMP1、uMP3、uMP6應進行品質檢測。另一方面,產品uMP2的瑕疵相似度為4%、產品uMP4的瑕疵相似度為22%、產品uMP5的瑕疵相似度為19%,均低於瑕疵相似度門檻(30%)。因此,品質預測模組2479判斷產品uMP2、uMP4、uMP5均不需要進行品質檢測。As shown in Table 14, the defect similarity of product uMP1 is 34%, the defect similarity of product uMP3 is 79%, and the defect similarity of product uMP6 is 31%, which is higher than the defect similarity threshold (30%). Therefore, the quality prediction module 2479 determines that the products uMP1, uMP3, and uMP6 should undergo quality inspection. On the other hand, the defect similarity of product uMP2 is 4%, the defect similarity of product uMP4 is 22%, and the defect similarity of product uMP5 is 19%, which are all below the defect similarity threshold (30%). Therefore, the quality prediction module 2479 determines that the products uMP2, uMP4, and uMP5 do not require quality inspection.

除了針對產品本身是否需進行品質檢測而產生品質預測結果外,模型使用裝置247還可利用預測模型提供瑕疵源追蹤的功能。根據本發明的實施例,製造商可提供一根因對照表予瑕疵源追蹤模組2470。根因對照表代表規則項集1-1、2-1、2-2、3-1、3-2與影響該些生規則的相關生產設備之間的關係。實際應用時,根因對照表可由製造商根據經驗或統計數值所提供。表15為根因對照表的舉例。 表15   規則項集 1-1 2-1 2-2 3-1 3-2 根因 胚料加熱爐=1 胚料加熱爐:溫鍛沖壓機台壓力=7:3 胚料加熱爐:溫鍛沖壓機台加熱=1:1 溫鍛沖壓機台加熱=1 溫鍛沖壓機台壓力=1 In addition to generating quality prediction results based on whether the product itself needs to be quality tested, the model using device 247 can also use the prediction model to provide a defect source tracking function. According to the embodiment of the present invention, the manufacturer can provide a cause comparison table to the defect source tracking module 2470. The root cause comparison table represents the relationship between the rule item sets 1-1, 2-1, 2-2, 3-1, 3-2 and the related production equipment that affects the production rules. In actual application, the root cause comparison table can be provided by the manufacturer based on experience or statistical values. Table 15 is an example of a root cause comparison table. Table 15 Rule set 1-1 2-1 2-2 3-1 3-2 Root cause Blank heating furnace=1 Blank material heating furnace: warm forging press machine pressure=7:3 Blank material heating furnace: warm forging press machine heating=1:1 Warm forging stamping machine heating=1 Warm forging press machine pressure=1

在表15中,規則項集1-1的根因僅與胚料加熱爐331相關。因此,當某個產品uMP因加工特徵符合規則項集1-1的特徵範圍而使預測模型預測其品質為瑕疵時,代表因胚料加熱爐331引起此產品uMP的瑕疵風險為100%。In Table 15, the root cause of the rule item set 1-1 is only related to the billet heating furnace 331. Therefore, when the quality of a product uMP is predicted by the prediction model to be defective because the processing characteristics meet the feature range of the rule item set 1-1, it means that the risk of the product uMP caused by the billet heating furnace 331 is 100%.

在表15中,規則項集2-1的根因為胚料加熱爐331與溫鍛沖壓機台333壓力。其中,由胚料加熱爐331引起的機會為70%,由溫鍛沖壓機台333壓力引起的機會為30%。因此,當某個產品uMP因加工特徵符合規則項集2-1的特徵範圍而使預測模型預測其品質為瑕疵時,代表因胚料加熱爐331引起此產品uMP的瑕疵風險為70%,因溫鍛沖壓機台333壓力引起此產品uMP的瑕疵風險為30%。In Table 15, the root of the rule set 2-1 is due to the pressure of the billet heating furnace 331 and the warm forging press 333. Among them, the chance caused by the billet heating furnace 331 is 70%, and the chance caused by the pressure of the warm forging press 333 is 30%. Therefore, when the quality of a product uMP is predicted by the predictive model to be defective due to its processing characteristics conforming to the feature range of the rule item set 2-1, it means that the risk of defects in the uMP of this product caused by the billet heating furnace 331 is 70%. The risk of defects in the uMP of this product caused by the pressure of the warm forging press 333 is 30%.

在表15中,規則項集2-2的根因為胚料加熱爐331與溫鍛沖壓機台333加熱。其中,由胚料加熱爐331引起的機會為50%,由溫鍛沖壓機台333加熱引起的機會為50%。因此,當某個產品uMP因加工特徵符合規則項集2-2的特徵範圍而使預測模型預測其品質為瑕疵時,代表因胚料加熱爐331引起此產品uMP的瑕疵風險為50%,因溫鍛沖壓機台333加熱引起此產品uMP的瑕疵風險為50%。In Table 15, the root of the rule set 2-2 is heated by the billet heating furnace 331 and the warm forging press 333. Among them, the chance caused by the billet heating furnace 331 is 50%, and the chance caused by the heating of the warm forging press table 333 is 50%. Therefore, when the quality of a product uMP is predicted by the predictive model to be defective due to its processing characteristics conforming to the feature range of the rule item set 2-2, it means that the risk of defects in the uMP of this product caused by the billet heating furnace 331 is 50%. The risk of defects in the uMP of this product caused by the heating of the warm forging stamping machine 333 is 50%.

在表15中,規則項集3-1的根因僅與溫鍛沖壓機台333加熱相關。因此,當某個產品uMP因加工特徵符合規則項集3-1的特徵範圍而使預測模型將其品質被預測為瑕疵時,代表因溫鍛沖壓機台333加熱引起此產品uMP的瑕疵風險為100%。In Table 15, the root cause of the rule set 3-1 is only related to the heating of the warm forging stamping machine 333. Therefore, when the quality of a product uMP is predicted to be a defect due to the processing characteristics of the product conforming to the feature range of the rule item set 3-1, it means that the defect risk of the product uMP caused by the heating of the warm forging stamping machine 333 is 100%.

在表15中,規則項集3-2的根因僅與溫鍛沖壓機台333壓力相關。因此,當某個產品uMP因加工特徵符合規則項集3-2的特徵範圍而使預測模型將其品質被預測為瑕疵時,代表因溫鍛沖壓機台333壓力引起此產品uMP的瑕疵風險為100%。In Table 15, the root cause of the rule set 3-2 is only related to the pressure of the warm forging press 333. Therefore, when the quality of a product uMP is predicted to be a defect due to its processing characteristics conforming to the feature range of the rule item set 3-2, it means that the defect risk of this product uMP caused by the pressure of the warm forging stamping machine 333 is 100%.

由於在表14中,產品uMP3的瑕疵相似度(79%)最高。因此,此處以產品uMP3為例,說明瑕疵源追蹤模組2470如何搭配表15所示的根因對照表,進一步分析使產品uMP3的生產流程中,何者為較可能造成產品uMP3為瑕疵的瑕疵源。As in Table 14, the product uMP3 has the highest defect similarity (79%). Therefore, taking the product uMP3 as an example, how to use the defect source tracking module 2470 with the root cause comparison table shown in Table 15 to further analyze the production process of the product uMP3, which is more likely to cause the product uMP3 as the source of the defect .

如表12所示,產品uMP3與規則項集1-1、2-1、2-2、相關。因此,為便於說明,此處引用表11所示之規則權重以及與規則項集對應的原始規則權重的權重占比,以及表15所示關於規則項集與根因的對照關係整理於表16。 表16 產品uMP3 規則項集1-1 規則項集2-1 規則項集2-2 與規則項集對應的原始規則權重的權重占比 0.15 0.16 0.48 根因 胚料加熱爐=1 胚料加熱爐:溫鍛沖壓機台壓力=7:3 胚料加熱爐:溫鍛沖壓機台加熱=1:1 As shown in Table 12, the product uMP3 is related to rule item sets 1-1, 2-1, 2-2. Therefore, for ease of explanation, the rule weights shown in Table 11 and the weight proportions of the original rule weights corresponding to the rule item sets are quoted here, and the comparison relationship between the rule item sets and root causes shown in Table 15 is summarized in Table 16. . Table 16 Product uMP3 Rule Item Set 1-1 Rule Item Set 2-1 Rule item set 2-2 The weight percentage of the original rule weight corresponding to the rule item set 0.15 0.16 0.48 Root cause Blank heating furnace=1 Blank material heating furnace: warm forging press machine pressure=7:3 Blank material heating furnace: warm forging press machine heating=1:1

根據表16可以計算與規則項集對應的原始規則權重的權重占比的總和為0.15+0.16+0.48=0.79。此外,由表15可以看出,導致產品uMP3被預測為瑕疵的根因包含胚料加熱爐331、溫鍛沖壓機台333壓力與溫鍛沖壓機台333加熱。因此,瑕疵源追蹤模組2470將判斷由胚料加熱爐331、溫鍛沖壓機台333壓力與溫鍛沖壓機台333加熱造成產品uMP3可能被預測為瑕疵的比率。According to Table 16, the total weight proportion of the original rule weight corresponding to the rule item set can be calculated as 0.15+0.16+0.48=0.79. In addition, it can be seen from Table 15 that the root causes of the product uMP3 predicted to be defective include the billet heating furnace 331, the pressure of the warm forging press 333, and the heating of the warm forging press 333. Therefore, the defect source tracking module 2470 will determine the rate at which the product uMP3 may be predicted to be defective due to the pressure of the blank heating furnace 331, the warm forging press table 333 and the heating of the warm forging press table 333.

請參見表17,其係可能引起產品uMP3需要進行品質檢測的根因與其比率列表。此表格針對能使產品uMP3為瑕疵的根因,分別計算其影響產品uMP3可能為瑕疵的機會。 表17 產品 胚料加熱爐 溫鍛沖壓機台壓力 溫鍛沖壓機台加熱 uMP3

Figure 02_image001
Figure 02_image003
Figure 02_image005
Please refer to Table 17, which is a list of the root causes and their ratios that may cause the uMP3 product to undergo quality testing. This table aims at the root causes that can make the product uMP3 defective, and calculates the chances that it will affect the product uMP3 may be defective. Table 17 product Blank heating furnace Warm forging press table pressure Warm forging stamping machine heating uMP3
Figure 02_image001
Figure 02_image003
Figure 02_image005

根據表17,產品uMP3可能因胚料加熱爐331故障,導致基於規則項集1-1而將產品uMP3預測(歸類)為瑕疵的機會為

Figure 02_image007
;基於規則項集2-1而將產品uMP3預測(歸類)為瑕疵的機會為
Figure 02_image009
;以及,基於規則項集2-2而將產品uMP3預測(歸類)為瑕疵的機會為
Figure 02_image011
。將這三者加總的結果,除以與規則項集對應的原始規則權重的權重占比的總和(0.79)後,便可得出產品uMP3因胚料加熱爐331故障而被歸類為瑕疵的機率為0.63。According to Table 17, the product uMP3 may be predicted (classified) as a defect based on the rule item set 1-1 due to the failure of the billet heating furnace 331.
Figure 02_image007
; The chance of predicting (classifying) the product uMP3 as a defect based on the rule set 2-1 is
Figure 02_image009
; And, the chance of predicting (classifying) the product uMP3 as a defect based on the rule set 2-2 is
Figure 02_image011
. After dividing the result of the sum of these three by the sum of the weight proportion of the original rule weight corresponding to the rule item set (0.79), it can be concluded that the product uMP3 is classified as defective due to the failure of the blank heating furnace 331 The probability of is 0.63.

根據表17,產品uMP3可能因溫鍛沖壓機台333壓力異常,導致基於規則項集2-1而對產品uMP3分類時,將產品uMP3歸類為瑕疵的機會為

Figure 02_image013
。將產品uMP3歸類為瑕疵的機會(0.16*0.3),除以與規則項集對應的原始規則權重的權重占比的總和(0.79)後,便可得出產品uMP3因溫鍛沖壓機台333壓力異常而被歸類為瑕疵的機率為0.63。According to Table 17, the product uMP3 may be classified as defective due to the abnormal pressure of the warm forging press 333, resulting in the classification of the product uMP3 based on the rule item set 2-1. The chance of classifying the product uMP3 as a defect is
Figure 02_image013
. The chance of classifying the product uMP3 as a defect (0.16*0.3) is divided by the sum of the weight proportions of the original rule weight corresponding to the rule item set (0.79), and then the product uMP3 can be obtained by warm forging stamping machine 333 The probability of abnormal pressure being classified as a defect is 0.63.

根據表17,產品uMP3可能因溫鍛沖壓機台333加熱異常,導致基於規則項集2-2而對產品uMP3分類時,將產品uMP3歸類為瑕疵的機會為

Figure 02_image011
。也就是說,將產品uMP3歸類為瑕疵的機會(0.48*0.5),除以與規則項集對應的原始規則權重的權重占比的總和(0.79)後,便可得出產品uMP3因溫鍛沖壓機台333加熱異常而被歸類為瑕疵的機率為0.31。According to Table 17, the product uMP3 may be abnormally heated by the warm forging stamping machine 333, resulting in the classification of the product uMP3 based on the rule set 2-2, the chance of classifying the product uMP3 as a defect is
Figure 02_image011
. In other words, the chance of classifying product uMP3 as a defect (0.48*0.5) is divided by the sum of the weight proportions of the original rule weight corresponding to the rule item set (0.79), and then the product uMP3 can be obtained due to warm forging. The probability that the press table 333 is abnormally heated and classified as a defect is 0.31.

為便於比較,此處將表17的計算結果整理於表18。根據本發明的構想,瑕疵源追蹤模組2470可將此結果以圓餅圖等方式,呈現給使用者參考。因此,製造商無須經過複雜的分析,即可掌握應就生產設備23的哪個環節進行檢修。 表18 產品 胚料加熱爐 溫鍛沖壓機台壓力 溫鍛沖壓機台加熱 uMP3 63% 6% 31% For the sake of comparison, the calculation results in Table 17 are summarized in Table 18. According to the concept of the present invention, the defect source tracking module 2470 can present the result to the user for reference in the form of a pie chart or the like. Therefore, the manufacturer can grasp which part of the production equipment 23 should be overhauled without going through a complicated analysis. Table 18 product Blank heating furnace Warm forging press table pressure Warm forging stamping machine heating uMP3 63% 6% 31%

預測模型建立後,還可進一步對其預測的效果進行評估,進而確認其預測結果是否仍符合生產流程的特性。評估預測模型之適用與否的確切時點,可視製造商的需求、產品特性等考量而調整,無須加以限定。例如,每間隔一段固定的期間,或是生產一定數量的產品之後等。After the prediction model is established, its prediction effect can be further evaluated to confirm whether its prediction result still conforms to the characteristics of the production process. The exact timing for evaluating the applicability of the forecasting model can be adjusted based on the manufacturer's needs and product characteristics, and there is no need to limit it. For example, every interval is a fixed period, or after a certain number of products are produced, etc.

請參見第18圖,其係產品品質監控系統處於模型評估模式(eM)時,檢視預測模型是否需更新之示意圖。請同時參見第6C圖與第18圖。生產設備23生產產品eMP的同時,感測器241亦對應產生與產品eMP對應的原始生產參數eMP_origPP。資料前處理裝置243接收原始生產參數eMP_origPP後,將其轉換為產品eMP的產品加工特徵。模型使用裝置247根據產品加工特徵與預測模型,產生與產品eMP對應的品質預測結果。另一方面,品質檢測裝置248針對產品eMP進行品質檢測後產生品質檢測資料集。Please refer to Figure 18, which is a schematic diagram of checking whether the prediction model needs to be updated when the product quality monitoring system is in the model evaluation mode (eM). Please refer to Figure 6C and Figure 18 at the same time. While the production equipment 23 produces the product eMP, the sensor 241 also correspondingly generates the original production parameter eMP_origPP corresponding to the product eMP. After the data pre-processing device 243 receives the original production parameter eMP_origPP, it converts it into the product processing feature of the product eMP. The model using device 247 generates a quality prediction result corresponding to the product eMP according to the product processing characteristics and the prediction model. On the other hand, the quality inspection device 248 generates a quality inspection data set after performing quality inspection on the product eMP.

模型評估裝置249分別從模型使用裝置247接收產品eMP的品質預測結果,以及從品質檢測裝置248接收產品eMP的品質檢測資料集後,將兩者進行比較後,產生模型評估結果。之後,依據模型評估結果決定是否需要通知模型建立裝置245需重新建立預測模型,或通知模型使用裝置247可繼續使用預測模型。The model evaluation device 249 receives the quality prediction result of the product eMP from the model using device 247 and the quality inspection data set of the product eMP from the quality detection device 248, and compares the two to generate a model evaluation result. After that, it is determined according to the model evaluation result whether it is necessary to notify the model building device 245 to rebuild the prediction model, or to notify the model using device 247 to continue using the prediction model.

請參見第19圖,其係產品品質監控系統處於模型評估模式(eM)的流程圖。首先,初始化預測模型的更新計數器(步驟S801)。接著,感測器對產品eMP的生產流程進行感測後,產生原始生產參數eMP_origPP(步驟S802);資料前處理裝置243對原始生產參數eMP_origPP進行資料前處理後,產生產品eMP的加工特徵資料集(步驟S803);且模型使用裝置247以產品eMP的加工特徵資料集作為預測模型的輸入後,搭配預測模型產生與產品eMP對應的品質預測結果(步驟S804)。另一方面,品質檢測裝置248對產品eMP進行檢測,產生與其對應的品質檢測資料(步驟S805)。Please refer to Figure 19, which is the flow chart of the product quality monitoring system in model evaluation mode (eM). First, the update counter of the prediction model is initialized (step S801). Then, after the sensor detects the production process of the product eMP, it generates the original production parameter eMP_origPP (step S802); the data pre-processing device 243 performs data pre-processing on the original production parameter eMP_origPP to generate the processing feature data set of the product eMP (Step S803); and after the model using device 247 takes the processing feature data set of the product eMP as the input of the prediction model, it is combined with the prediction model to generate a quality prediction result corresponding to the product eMP (step S804). On the other hand, the quality inspection device 248 detects the product eMP and generates quality inspection data corresponding to it (step S805).

待品質預測結果與品質檢測資料集分別產生後,模型評估裝置249將比較產品eMP的品質預測結果與品質檢測資料是否分歧(步驟S807)。若步驟S807的比較結果顯示,品質預測結果仍符合品質檢測的結果,則模型評估裝置249通知模型使用裝置247b仍可繼續使用預測模型(步驟S817)。After the quality prediction result and the quality detection data set are generated separately, the model evaluation device 249 compares whether the quality prediction result of the product eMP and the quality detection data are different (step S807). If the comparison result in step S807 shows that the quality prediction result still matches the quality detection result, the model evaluation device 249 informs the model using device 247b that the prediction model can still be used (step S817).

若步驟S807的比較結果卻認為分歧,則先判斷預測模型更新計數器是否已經達到預設的更新次數門檻(例如,兩次)(步驟S811)。若步驟S811的判斷結果為否定,模型評估裝置249將通知模型建立裝置245需重新建立預測模型,並累加預測模型更新計數器(步驟S813)。待模型建立裝置245重新建立預測模型後,重複自步驟S804開始執行。反之,若步驟S811的判斷結果為肯定,則在重新選擇用於評估預測模型用的產品eMP(步驟S815)後,重新執行第19圖的流程。If the comparison result in step S807 is considered to be divergent, it is first determined whether the prediction model update counter has reached the preset update times threshold (for example, twice) (step S811). If the judgment result of step S811 is negative, the model evaluation device 249 notifies the model creation device 245 that the prediction model needs to be rebuilt, and accumulates the prediction model update counter (step S813). After the model establishment device 245 re-establishes the prediction model, the execution from step S804 is repeated. Conversely, if the judgment result of step S811 is affirmative, after reselecting the product eMP for evaluating the prediction model (step S815), the flow of FIG. 19 is re-executed.

承上,本案的產品品質監控系統24首先在模型建立模式(bM)下,取得產品bMP生產過程的加工特徵,以及針對產品的品質檢測資料集。藉由分析產品bMP的品質優劣與其加工特徵之間的關聯性而建立預測模型。其次,在模型使用模式(uM)下,取得生產產品uMP時伴隨產生的加工特徵,並在預測模型預測產品uMP可能有一部分具有瑕疵時,針對瑕疵風險較高的產品uMP進行進一步的品質檢測,以及提供瑕疵源分析資訊讓製造商可以對生產設備23進行維護或檢修。此外,產品品質監控系統24還提供模型評估模式(eM)維持預測模型的預測品質。In conclusion, the product quality monitoring system 24 of this case first obtains the processing characteristics of the product bMP production process and the product quality inspection data set under the model building mode (bM). Establish a predictive model by analyzing the correlation between the quality of the product bMP and its processing characteristics. Secondly, under the model usage mode (uM), the processing characteristics that accompany the production of the product uMP are obtained, and when the prediction model predicts that a part of the product uMP may have defects, further quality inspection is performed for the product uMP with a higher risk of defects And to provide defect source analysis information so that the manufacturer can maintain or overhaul the production equipment 23. In addition, the product quality monitoring system 24 also provides a model evaluation mode (eM) to maintain the predictive quality of the predictive model.

另請留意,以上的說明雖以自行車零件的生產為例,但本案的產品品質監控系統24可應用於各種不同類型的製造業的生產工廠。對產品品質監控系統24而言,不同類型的生產工廠的生產設備23可能取得的生產參數雖然不同,所以由資料前處理裝置243進行之產生加工特徵的步驟需針對生產工廠的特性與產品種類修改。但,經轉換為加工特徵後,後續的模型建立裝置245、模型使用裝置247與模型評估裝置249的操作方式仍類似。因此,本發明的產品品質監控系統24可應用於各種製造業。Please also note that although the above description takes the production of bicycle parts as an example, the product quality monitoring system 24 of this case can be applied to various types of manufacturing factories. For the product quality monitoring system 24, although the production parameters that may be obtained by the production equipment 23 of different types of production plants are different, the steps of generating processing features performed by the data preprocessing device 243 need to be modified according to the characteristics of the production plant and the product category. . However, after being converted into processing features, the subsequent model building device 245, model using device 247, and model evaluating device 249 still operate in a similar manner. Therefore, the product quality monitoring system 24 of the present invention can be applied to various manufacturing industries.

綜上,本發明的產品品質監控系統24所提供的模型建立模式(bM)、模型使用模式(uM),以及模型評估模式(eM),可以使預測模型保持其預測產品品質的準確度。由於預測模型可用於穩定地預測產品的品質,製造商將可大幅節省對產品品質進行品質檢測所需的成本與時間。In summary, the model establishment mode (bM), model usage mode (uM), and model evaluation mode (eM) provided by the product quality monitoring system 24 of the present invention can enable the predictive model to maintain its accuracy in predicting product quality. Since the predictive model can be used to predict the quality of products steadily, manufacturers will be able to significantly save the cost and time required for quality inspection of product quality.

在本領域中的通常知識者均可瞭解:在上述的說明中,作為舉例之各種邏輯方塊、模組、電路及方法步驟皆可利用電子硬體、電腦軟體,或二者之組合來實現,且該些實現方式間的連線方式,無論上述說明所採用的是信號連結、連接、耦接、電連接或其他類型之替代作法等用語,其目的僅為了說明在實現邏輯方塊、模組、電路及方法步驟時,可以透過不同的手段,例如有線電子信號、無線電磁信號以及光信號等,以直接、間接的方式來進行信號交換,進而達到信號、資料、控制資訊的交換與傳遞之目的。因此說明書所採的用語並不會形成本案在實現連線關係時的限制,更不會因其連線方式的不同而脫離本案之範疇。Those of ordinary knowledge in the field can understand that in the above description, the various logic blocks, modules, circuits, and method steps as examples can be implemented by electronic hardware, computer software, or a combination of the two. In addition, the connection between these implementations, regardless of whether the above description adopts terms such as signal connection, connection, coupling, electrical connection, or other types of alternatives, the purpose is only to illustrate the implementation of logic blocks, modules, In the circuit and method steps, different means, such as wired electronic signals, wireless electromagnetic signals, and optical signals, can be used to exchange signals in direct and indirect ways to achieve the purpose of exchange and transmission of signals, data, and control information. . Therefore, the terms adopted in the description will not form the limitation of the case in the realization of the connection relationship, nor will it deviate from the scope of the case due to the difference in the connection method.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to those defined by the attached patent application scope.

11、31、21:生產材料 13、23:生產設備 19、29、P1、P100、bMP、uMP、eMP:產品 17、248:品質檢測裝置 15:品質檢測資料 331:胚料加熱爐 31a、31b:半成品 333:溫鍛沖壓機台 335:靜置冷卻區 231、232、241:感測器 20:廠房 24:產品品質監控系統 243:資料前處理裝置 245:模型建立裝置 247:模型使用裝置 249:模型評估裝置 PP:生產參數 2430:接收模組 2431:預處理模組 2435:關鍵資料選取模組 2433:資料庫 2437:特徵轉換模組 2439:生產條件選取模組 corePP1、corePP2、corePP3、corePP4、corePP5、corePP6、corePP7、corePP8、corePP9、corePP10:關鍵生產參數 corePF1、corePF2、corePF3:關鍵生產因子 PMF1、PMF2、PMF3、PMF4、PMF5、P1MF1、P1MF2、P1MF3、P1MF4、P1MF5、P100MF1、P100MF2、P100MF3、P100MF4、P100MF5:加工特徵 P1MFG、P100MFG:加工特徵資料 PMFGall:加工特徵資料集 reSClf1、reSClf2:複選強分類器 uM:模型使用模式 eM:模型評估模式 C1:節點路徑 1、2-1、2-2、3-1、3-2、3-3、3-4:節點 411a、411b、411c、431a、431b、431c:產品bMP的加工特徵 413a:N1個分類條件 413b:N2個分類條件 413c:N3個分類條件  415a、415b、415c、433a、433b、433c:弱分類器 435a、435b:調整權重 bMP_origPP、uMP_origPP、eMP_origPP:原始生產參數 245a:強分類器產生模組 2451a、2451b、2451c、2451d、2451e:強分類器產生器 2453:初選模組 2453a:準確率計算模組 2453b:策略選擇模組 2455:複選模組 2455a:驗證序列計算模組 2455c:相關性計算模組 2455e:強分類器選擇模組 245b:強分類器解析模組 2457:規則比較模組 2457a:支持度計算模組 2457c:覆蓋率計算模組 2457b:權重計算模組 2458:節點分析模組 2458a:規則項集轉換模組 2458b:規則讀取模組 S41、S43、S45、S43a、S43c、S43e、S43g、S43h、S45、S47、S501、S503、S506、S505、S507、S509、S511、S513、S5031、S5033、S5035、S5037、S31、S33、S35、S37、S331、S333、S335、S337、S801、S802、S803、S804、S805、S807、S811、S813、S815、S817:步驟 preTstDAT_1、preTstDAT_10:初選測試資料 canSClfGp_A:候選強分類器群組 canSClf_A1、canSClf_A10:候選強分類器 pdtA1、pdtA10:個別準確率 reTrnDAT:複選訓練資料 reTstDAT:複選測試資料 reTst_QC:複選驗證產品的品質檢測資料 QpdtA、QpdtB、QpdtD:複選驗證產品的品質預測結果 preSClf_A、preSClf_B、preSClf_D:初選強分類器 seqA、seqB、seqD:驗證序列 2471:產品特徵接收模組 2473:分類規則接收模組 2475:產品特徵與分類規則比較模組 2477:相似度計算模組 2479:品質預測模組 2470:瑕疵源追蹤模組11, 31, 21: production materials 13, 23: production equipment 19, 29, P1, P100, bMP, uMP, eMP: products 17, 248: Quality inspection device 15: Quality inspection data 331: Blank material heating furnace 31a, 31b: semi-finished products 333: Warm forging stamping machine 335: static cooling zone 231, 232, 241: sensors 20: Factory 24: Product quality monitoring system 243: Data pre-processing device 245: Model Building Device 247: Model Use Device 249: Model Evaluation Device PP: production parameters 2430: receiving module 2431: preprocessing module 2435: Key data selection module 2433: database 2437: Feature Conversion Module 2439: Production condition selection module corePP1, corePP2, corePP3, corePP4, corePP5, corePP6, corePP7, corePP8, corePP9, corePP10: key production parameters corePF1, corePF2, corePF3: key production factors PMF1, PMF2, PMF3, PMF4, PMF5, P1MF1, P1MF2, P1MF3, P1MF4, P1MF5, P100MF1, P100MF2, P100MF3, P100MF4, P100MF5: Processing features P1MFG, P100MFG: Processing feature data PMFGall: Processing feature data set reSClf1, reSClf2: check strong classifier uM: model usage mode eM: model evaluation mode C1: Node path 1, 2-1, 2-2, 3-1, 3-2, 3-3, 3-4: Node 411a, 411b, 411c, 431a, 431b, 431c: processing characteristics of product bMP 413a: N1 classification conditions 413b: N2 classification conditions 413c: N3 classification conditions 415a, 415b, 415c, 433a, 433b, 433c: weak classifier 435a, 435b: Adjust the weight bMP_origPP, uMP_origPP, eMP_origPP: original production parameters 245a: strong classifier generation module 2451a, 2451b, 2451c, 2451d, 2451e: strong classifier generator 2453: Primary Selection Module 2453a: Accuracy calculation module 2453b: Strategy Selection Module 2455: Check Module 2455a: Verification sequence calculation module 2455c: Correlation calculation module 2455e: strong classifier selection module 245b: strong classifier parsing module 2457: Rule Comparison Module 2457a: Support calculation module 2457c: Coverage calculation module 2457b: Weight calculation module 2458: Node Analysis Module 2458a: Rule Item Set Conversion Module 2458b: Rule reading module S41, S43, S45, S43a, S43c, S43e, S43g, S43h, S45, S47, S501, S503, S506, S505, S507, S509, S511, S513, S5031, S5033, S5035, S5037, S31, S33, S35, S37, S331, S333, S335, S337, S801, S802, S803, S804, S805, S807, S811, S813, S815, S817: steps preTstDAT_1, preTstDAT_10: preliminary test data canSClfGp_A: Candidate strong classifier group canSClf_A1, canSClf_A10: Candidate strong classifier pdtA1, pdtA10: individual accuracy rate reTrnDAT: Check the training data reTstDAT: Check test data reTst_QC: Check the quality inspection data of the verification product QpdtA, QpdtB, QpdtD: check and verify the product quality prediction results preSClf_A, preSClf_B, preSClf_D: primary selection of strong classifiers seqA, seqB, seqD: verification sequence 2471: Product feature receiving module 2473: Classification rule receiving module 2475: Product features and classification rules comparison module 2477: Similarity calculation module 2479: Quality Prediction Module 2470: Defect Source Tracking Module

第1圖,其係習用技術透過品質檢測裝置對產品進行品質檢測之示意圖。 第2圖,其係於自行車肩胛的生產流程中,搭配根據本案構想之產品品質監控系統的實施例之示意圖。 第3圖,其係資料前處理裝置的方塊圖。 第4圖,其係預處理模組產生預測模型輸入之加工特徵之示意圖。 第5圖,其係說明與產品對應的加工特徵資料集PMFGall之示意圖。 第6A圖,其係產品品質監控系統處於模型建立模式bM時,資料前處理裝置提供產品bMP的加工特徵資料集bMPMFGall作為模型建立用途之示意圖。 第6B圖,其係產品品質監控系統處於模型使用模式uM時,資料前處理裝置提供產品uMP的加工特徵資料集作為模型使用用途之示意圖。 第6C圖,其係產品品質監控系統處於模型評估模式eM時,資料前處理裝置提供產品eMP的加工特徵資料集作為模型評估用途之示意圖。 第7圖,其係預測模型使用二元樹架構,對加工特徵與品質檢測資料進行分類之示意圖。 第8A圖,其係使用隨機森林作為分類器策略之示意圖。 第8B圖,其係使用自適應增強作為分類器策略之示意圖。 第9圖,其係產品品質監控系統處於模型建立模式(bM)時,利用加工特徵建立預測模型之示意圖。 第10圖,其係模型建立裝置的方塊圖。 第11圖,其係強分類器產生器產生候選強分類器群組canSClfGp的流程圖。 第12圖,其係以候選強分類器群組canSClfGp_A所產生的分類結果為例,說明初選模組如何判斷將分類器策略選為初選策略之示意圖。 第13圖,其係初選模組根據候選強分類器群組canSClfGp所產生的品質預測結果,判斷分類器策略是否可作為初選策略的流程圖。 第14圖,其係強分類器產生器建立初選強分類器preSClf後,驗證序列計算模組搭配初選強分類器preSClf產生驗證序列,進而由相關性計算模組計算驗證序列相關係數之示意圖。 第15圖,其係強分類器產生模組的流程圖。 第16圖,其係產品品質監控系統處於模型使用模式(uM)時,依據預測模型與產品加工特徵而預測產品uMP的品質之示意圖。 第17圖,其係模型使用裝置的方塊圖。 第18圖,其係產品品質監控系統處於模型評估模式(eM)時,檢視預測模型是否需更新之示意圖。 第19圖,其係產品品質監控系統處於模型評估模式(eM)的流程圖。Figure 1 is a schematic diagram of the quality inspection of products through quality inspection devices using conventional technology. Figure 2 is a schematic diagram of an embodiment of the product quality monitoring system conceived in this case in the production process of bicycle shoulder blades. Figure 3 is a block diagram of the data pre-processing device. Figure 4 is a schematic diagram of the processing features of the predictive model input generated by the preprocessing module. Figure 5 is a schematic diagram illustrating the processing feature data set PMFGall corresponding to the product. Figure 6A is a schematic diagram of the product quality monitoring system in the model building mode bM, and the data pre-processing device provides the product bMP processing feature data set bMPMFGall as a model building purpose. Figure 6B is a schematic diagram of the uMP processing feature data set provided by the data pre-processing device when the product quality monitoring system is in the model use mode uM. Figure 6C is a schematic diagram showing that the data pre-processing device provides the processing feature data set of the product eMP as the model evaluation purpose when the product quality monitoring system is in the model evaluation mode eM. Figure 7 is a schematic diagram of the prediction model using a binary tree structure to classify processing features and quality inspection data. Figure 8A is a schematic diagram of using random forest as a classifier strategy. Figure 8B is a schematic diagram of using adaptive enhancement as a classifier strategy. Figure 9 is a schematic diagram of using processing features to build a predictive model when the product quality monitoring system is in model building mode (bM). Figure 10 is a block diagram of the model building device. Figure 11 is a flowchart of the strong classifier generator generating the candidate strong classifier group canSClfGp. Figure 12 is a schematic diagram illustrating how the primary selection module determines how to select the classifier strategy as the primary selection strategy by taking the classification result generated by the candidate strong classifier group canSClfGp_A as an example. Figure 13 is a flow chart for the primary selection module to determine whether the classifier strategy can be used as the primary selection strategy based on the quality prediction result generated by the candidate strong classifier group canSClfGp. Figure 14 shows that after the strong classifier generator establishes the preliminary strong classifier preSClf, the verification sequence calculation module works with the preliminary strong classifier preSClf to generate the verification sequence, and the correlation calculation module calculates the correlation coefficient of the verification sequence . Figure 15 is a flowchart of the strong classifier generation module. Figure 16, which is a schematic diagram of predicting the quality of the product uMP based on the prediction model and product processing characteristics when the product quality monitoring system is in the model use mode (uM). Figure 17 is a block diagram of the model using device. Figure 18 is a schematic diagram of checking whether the prediction model needs to be updated when the product quality monitoring system is in the model evaluation mode (eM). Figure 19 shows the flow chart of the product quality monitoring system in model evaluation mode (eM).

20:廠房20: Factory

231、232:感測器231, 232: Sensor

23:生產設備23: Production equipment

24:產品品質監控系統24: Product quality monitoring system

29:產品29: Products

245:模型建立裝置245: Model Building Device

243:資料前處理裝置243: Data pre-processing device

249:模型評估裝置249: Model Evaluation Device

247:模型使用裝置247: Model Use Device

31:生產材料31: Production materials

248:品質檢測裝置248: Quality Inspection Device

31a、31b:半成品31a, 31b: semi-finished products

331:胚料加熱爐331: Blank material heating furnace

335:靜置冷卻區335: static cooling zone

333:溫鍛沖壓機台333: Warm forging stamping machine

Claims (15)

一種預測模型的建立裝置,其係根據檢測複數個產品所產生之一品質檢測資料集,以及與該等產品的生產相關的一加工特徵資料集進行解析,其中該建立裝置係包含: 一強分類器產生模組,包含: 一第一產生器,其係根據一第一分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第一候選強分類器之一第一候選強分類器群組,其中K為正整數; 一第二產生器,其係根據一第二分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第二候選強分類器之一第二候選強分類器群組; 一第三產生器,其係根據一第三分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第三候選強分類器之一第三候選強分類器群組;以及, 一初選模組,電連接於該第一產生器、該第二產生器與該第三產生器, 其中該初選模組係根據該品質檢測資料集判斷該第一候選強分類器群組、該第二候選強分類器群組與該第三候選強分類器群組是否滿足一初選條件。A device for establishing a predictive model is analyzed based on a quality inspection data set generated by detecting a plurality of products and a processing feature data set related to the production of these products, wherein the establishing device includes: A strong classifier generation module, including: A first generator that generates a first candidate strong classifier group including one of K first candidate strong classifiers according to a first classifier strategy, the processing feature data set, and the quality detection data set, wherein K is a positive integer; A second generator, which generates a second candidate strong classifier group including one of the K second candidate strong classifiers according to a second classifier strategy, the processing feature data set, and the quality inspection data set; A third generator, which generates a third candidate strong classifier group including one of K third candidate strong classifiers according to a third classifier strategy, the processing feature data set, and the quality inspection data set; and , A primary selection module electrically connected to the first generator, the second generator and the third generator, The preliminary selection module determines whether the first strong classifier candidate group, the second strong classifier candidate group, and the third strong classifier candidate group satisfy a preliminary selection condition based on the quality detection data set. 如申請專利範圍第1項所述之建立裝置,其中, 當該第一候選強分類器群組滿足該初選條件時,該第一產生器係於根據該第一分類器策略與一複選訓練資料而產生一第一初選強分類器; 當該第二候選強分類器群組滿足該初選條件時,該第二產生器係根據該第二分類器策略與該複選訓練資料而產生一第二初選強分類器;以及 當該第三候選強分類器群組滿足該初選條件時,該第三產生器係於根據該第三分類器策略與該複選訓練資料而產生一第三初選強分類器。The establishment device described in item 1 of the scope of patent application, in which, When the first candidate strong classifier group satisfies the primary selection condition, the first generator generates a first primary strong classifier based on the first classifier strategy and a multiple selection training data; When the second candidate strong classifier group satisfies the primary selection condition, the second generator generates a second primary strong classifier according to the second classifier strategy and the multiple selection training data; and When the third candidate strong classifier group satisfies the primary selection condition, the third generator generates a third primary strong classifier according to the third classifier strategy and the multiple selection training data. 如申請專利範圍第2項所述之建立裝置,其中該複選訓練資料係自該加工特徵資料集隨機選取,且該加工特徵資料集係由該複選訓練資料與一複選測試資料組成。For example, in the establishment device described in item 2 of the scope of patent application, the multiple selection training data is randomly selected from the processing feature data set, and the processing feature data set is composed of the multiple selection training data and a multiple selection test data. 如申請專利範圍第3項所述之建立裝置,其中該強分類器產生模組更包含: 一複選模組,電連接於該第一產生器、該第二產生器與該第三產生器,其係根據該複選測試資料與該品質檢測資料集,自該第一初選強分類器、該第二初選強分類器,以及該第三初選強分類器中,選擇其中兩者作為一第一複選強分類器與一第二複選強分類器。As described in item 3 of the scope of patent application, the strong classifier generation module further includes: A multiple selection module, electrically connected to the first generator, the second generator, and the third generator, is based on the multiple selection test data and the quality inspection data set to strongly classify from the first primary selection Select two of them as a first multiple-selection strong classifier and a second multiple-selection strong classifier in the second primary selection strong classifier, and the third primary selection strong classifier. 如申請專利範圍第4項所述之建立裝置,其中該複選模組係包含: 一驗證序列計算模組,電連接於該第一產生器、該第二產生器與該第三產生器,其係產生與該第一強分類器對應之一第一驗證序列、與該第二強分類器對應之一第二驗證序列,以及與該第三強分類器對應之一第三驗證序列。For example, the establishment device described in item 4 of the scope of patent application, wherein the multi-select module includes: A verification sequence calculation module, electrically connected to the first generator, the second generator, and the third generator, which generates a first verification sequence corresponding to the first strong classifier, and the second The strong classifier corresponds to a second verification sequence, and the third strong classifier corresponds to a third verification sequence. 如申請專利範圍第5項所述之建立裝置,其中該複選模組更包含: 一相關性計算模組,電連接於該驗證序列計算模組,其係計算該第一驗證序列與該第二驗證序列之間的一第一驗證序列相關係數、計算該第一驗證序列與該第三驗證序列之間的一第二驗證序列相關係數,以及計算該第二驗證序列與該第三驗證序列之間的一第三驗證序列相關係數;以及 一強分類器選擇模組,電連接於該相關性計算模組,其係根據該第一驗證序列相關係數、該第二驗證序列相關係數與該第三驗證序列相關係數的比較而決定該第一複選強分類器與該第二複選強分類器。For example, the establishment device described in item 5 of the scope of patent application, wherein the multi-select module further includes: A correlation calculation module, electrically connected to the verification sequence calculation module, which calculates a first verification sequence correlation coefficient between the first verification sequence and the second verification sequence, calculates the first verification sequence and the A correlation coefficient of a second verification sequence between the third verification sequence, and calculating a correlation coefficient of a third verification sequence between the second verification sequence and the third verification sequence; and A strong classifier selection module, electrically connected to the correlation calculation module, which determines the first verification sequence based on the correlation coefficient of the first verification sequence, the correlation coefficient of the second verification sequence and the correlation coefficient of the third verification sequence A multiple-selection strong classifier and the second multiple-selection strong classifier. 如申請專利範圍第4項所述之建立裝置,其中該建立裝置更包含: 一強分類器解析模組,電連接於該複選模組,其係於讀取該第一複選強分類器所包含之複數個第一弱分類器的路徑,以及讀取該第二複選強分類器所包含之複數個第二弱分類器的路徑後,得出複數個分類規則,以及與該等分類規則對應之複數個規則權重。The establishment device described in item 4 of the scope of patent application, wherein the establishment device further includes: A strong classifier analysis module, electrically connected to the multi-selection module, which reads the paths of a plurality of first weak classifiers included in the first multi-select strong classifier, and reads the second complex After selecting the paths of the plurality of second weak classifiers included in the strong classifier, a plurality of classification rules and a plurality of rule weights corresponding to the classification rules are obtained. 如申請專利範圍第1項所述之建立裝置,其中該品質檢測資料集係包含K份品質檢測資料,且該加工特徵資料集係包含K份加工特徵資料,其中, 該K個第一候選強分類器中的一第k個第一候選強分類器係根據該K份品質檢測資料中的(K-1)份品質檢測資料、該K份加工特徵資料中的(K-1)份加工特徵資料,以及該第一分類器策略而產生; 該K個第二候選強分類器中的一第k個第二候選強分類器係根據該 (K-1)份品質檢測資料、該(K-1)份加工特徵資料,以及該第二分類器策略而產生;且 該K個第三候選強分類器中的一第k個第三候選強分類器係根據該 (K-1)份品質檢測資料、該(K-1)份加工特徵資料,以及該第三分類器策略而產生。For example, the establishment device described in item 1 of the scope of patent application, wherein the quality inspection data set includes K pieces of quality inspection data, and the processing characteristic data set includes K pieces of processing characteristic data, among which, One of the K first candidate strong classifiers is based on the (K-1) quality inspection data in the K quality inspection data and the (K-1) quality inspection data in the K processing feature data. K-1) pieces of processing feature data and the first classifier strategy are generated; A k-th second candidate strong classifier in the K second candidate strong classifiers is based on the (K-1) pieces of quality inspection data, the (K-1) pieces of processing feature data, and the second classification Device strategy; and A k-th third candidate strong classifier in the K third candidate strong classifiers is based on the (K-1) pieces of quality inspection data, the (K-1) pieces of processing feature data, and the third classification Device strategy. 如申請專利範圍第1項所述之建立裝置,其中, 當該初選模組判斷該第一候選強分類器群組不滿足該初選條件時,該第一產生器係在修改與該第一分類器策略相關的複數個第一模型結構參數中的至少一者後,更新該K個第一候選強分類器; 當該初選模組判斷該第二候選強分類器群組不滿足該初選條件時,該第二產生器係在修改與該第二分類器策略相關的複數個第二模型結構參數中的至少一者後,更新該K個第二候選強分類器; 當該初選模組判斷該第三候選強分類器群組不滿足該初選條件時,該第三產生器係在修改與該第三分類器策略相關的複數個第三模型結構參數中的至少一者後,更新該K個第三候選強分類器。The establishment device described in item 1 of the scope of patent application, in which, When the primary selection module determines that the first candidate strong classifier group does not meet the primary selection conditions, the first generator is modifying the first model structure parameters related to the first classifier strategy. After at least one, update the K first candidate strong classifiers; When the primary selection module determines that the second candidate strong classifier group does not meet the primary selection conditions, the second generator is modifying the second model structure parameters related to the second classifier strategy. After at least one, update the K second candidate strong classifiers; When the primary selection module determines that the third candidate strong classifier group does not meet the primary selection condition, the third generator is modifying the third model structure parameters related to the third classifier strategy. After at least one, the K third candidate strong classifiers are updated. 如申請專利範圍第1項所述之建立裝置,其中該第一分類器策略、該第二分類器策略與該第三分類器策略係採用一二元樹架構,其中各該K個第一候選強分類器均包含T1個第一弱分類器、各該K個第二候選強分類器均包含T2個第一弱分類器,且各該K個第三候選強分類器均包含T3個第三弱分類器。The establishment device described in item 1 of the scope of patent application, wherein the first classifier strategy, the second classifier strategy and the third classifier strategy adopt a binary tree structure, wherein each of the K first candidates Each strong classifier includes T1 first weak classifiers, each of the K second candidate strong classifiers includes T2 first weak classifiers, and each of the K third candidate strong classifiers includes T3 third Weak classifier. 如申請專利範圍第10項所述之建立裝置,其中各該T1個第一弱分類器均具有一第一深度、各該T2個第二弱分類器均具有一第二深度,且各該T3個第三弱分類器均具有一第三深度,其中該等第一模型結構參數係包含T1與該第一深度、該等第二模型結構參數係包含T2與該第二深度,且該等第三模型結構參數係包含T3與該第三深度。As described in item 10 of the scope of patent application, each of the T1 first weak classifiers has a first depth, each of the T2 second weak classifiers has a second depth, and each of the T3 Each of the third weak classifiers has a third depth, wherein the first model structure parameters include T1 and the first depth, the second model structure parameters include T2 and the second depth, and the first model structure parameters include T2 and the second depth. The three model structure parameters include T3 and the third depth. 如申請專利範圍第11項所述之建立裝置,其中T1等於T2。The establishment device described in item 11 of the scope of patent application, wherein T1 is equal to T2. 如申請專利範圍第11項所述之建立裝置,其中該第一深度等於該第二深度。The establishment device described in item 11 of the scope of patent application, wherein the first depth is equal to the second depth. 一種預測模型的建立方法,其係根據對複數個產品進行檢測所產生之一品質檢測資料集,以及與該等產品的生產相關的一加工特徵資料集進行解析,該建立方法係包含以下步驟: 根據一第一分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第一候選強分類器之一第一候選強分類器群組,其中K為正整數; 根據一第二分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第二候選強分類器之一第二候選強分類器群組; 根據一第三分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第三候選強分類器之一第三候選強分類器群組;以及, 根據該品質檢測資料集判斷該第一候選強分類器群組、該第二候選強分類器群組與該第三候選強分類器群組是否滿足一初選條件。A method for establishing a predictive model, which is based on a quality inspection data set generated by testing a plurality of products and a processing feature data set related to the production of these products. The establishment method includes the following steps: Generating a first candidate strong classifier group including one of K first candidate strong classifiers according to a first classifier strategy, the processing feature data set, and the quality inspection data set, where K is a positive integer; Generating a second candidate strong classifier group including one of K second candidate strong classifiers according to a second classifier strategy, the processing feature data set, and the quality inspection data set; According to a third classifier strategy, the processing feature data set, and the quality inspection data set, a third candidate strong classifier group including one of K third candidate strong classifiers is generated; and, According to the quality detection data set, it is determined whether the first strong classifier candidate group, the second strong classifier candidate group, and the third strong classifier candidate group satisfy a preliminary selection condition. 一種產品品質監控系統,包含: 一品質檢測裝置,其係檢測複數個產品並產生一品質檢測資料集 一資料前處理裝置,其係接收與該等產品之生產相關的複數個生產參數,並據以產生一加工特徵資料集;以及, 一模型建立裝置,包含: 一強分類器產生模組,包含: 一第一產生器,其係根據一第一分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第一候選強分類器之一第一候選強分類器群組,其中K為正整數; 一第二產生器,其係根據一第二分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第二候選強分類器之一第二候選強分類器群組; 一第三產生器,其係根據一第三分類器策略、該加工特徵資料集與該品質檢測資料集而產生包含K個第三候選強分類器之一第三候選強分類器群組;以及, 一初選模組,電連接於該第一產生器、該第二產生器與該第三產生器,其中, 該初選模組係根據該品質檢測資料集判斷該第一候選強分類器群組、該第二候選強分類器群組與該第三候選強分類器群組是否滿足一初選條件。A product quality monitoring system, including: A quality inspection device, which detects multiple products and generates a quality inspection data set A data pre-processing device, which receives a plurality of production parameters related to the production of these products, and generates a processing feature data set based on it; and, A model building device, including: A strong classifier generation module, including: A first generator that generates a first candidate strong classifier group including one of K first candidate strong classifiers according to a first classifier strategy, the processing feature data set, and the quality detection data set, wherein K is a positive integer; A second generator, which generates a second candidate strong classifier group including one of the K second candidate strong classifiers according to a second classifier strategy, the processing feature data set, and the quality inspection data set; A third generator, which generates a third candidate strong classifier group including one of K third candidate strong classifiers according to a third classifier strategy, the processing feature data set, and the quality inspection data set; and , A primary selection module electrically connected to the first generator, the second generator and the third generator, wherein: The preliminary selection module determines whether the first candidate strong classifier group, the second candidate strong classifier group, and the third candidate strong classifier group satisfy a preliminary selection condition based on the quality detection data set.
TW108144495A 2019-12-05 2019-12-05 Building device and building method of prediction model and monitoring system for product quality TWI709054B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108144495A TWI709054B (en) 2019-12-05 2019-12-05 Building device and building method of prediction model and monitoring system for product quality
CN202010058246.XA CN112926760B (en) 2019-12-05 2020-01-19 Device and method for establishing prediction model and product quality monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108144495A TWI709054B (en) 2019-12-05 2019-12-05 Building device and building method of prediction model and monitoring system for product quality

Publications (2)

Publication Number Publication Date
TWI709054B TWI709054B (en) 2020-11-01
TW202123054A true TW202123054A (en) 2021-06-16

Family

ID=74202245

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108144495A TWI709054B (en) 2019-12-05 2019-12-05 Building device and building method of prediction model and monitoring system for product quality

Country Status (2)

Country Link
CN (1) CN112926760B (en)
TW (1) TWI709054B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734641B (en) * 2020-11-06 2021-07-21 財團法人金屬工業研究發展中心 Method for predicting forging stage and system for designing forging using thereof
CN113421264B (en) * 2021-08-24 2021-11-30 深圳市信润富联数字科技有限公司 Wheel hub quality detection method, device, medium, and computer program product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2924320A1 (en) * 2013-09-16 2015-03-19 Biodesix, Inc. Classifier generation method using combination of mini-classifiers with regularization and uses thereof
US10430719B2 (en) * 2014-11-25 2019-10-01 Stream Mosaic, Inc. Process control techniques for semiconductor manufacturing processes
CN104615122B (en) * 2014-12-11 2018-04-06 深圳市永达电子信息股份有限公司 A kind of industry control signal detection system and detection method
TWI580145B (en) * 2015-10-27 2017-04-21 財團法人資訊工業策進會 Electricity consumption predicting system and electricity consumption predicting method applied for processing machine
US10726377B2 (en) * 2015-12-29 2020-07-28 Workfusion, Inc. Task similarity clusters for worker assessment
CN109716346A (en) * 2016-07-18 2019-05-03 河谷生物组学有限责任公司 Distributed machines learning system, device and method
EP3594749A1 (en) * 2018-07-10 2020-01-15 ASML Netherlands B.V. Method to label substrates based on process parameters
CN109635830B (en) * 2018-10-24 2020-11-06 吉林大学 Screening method for effective data for estimating automobile quality

Also Published As

Publication number Publication date
CN112926760A (en) 2021-06-08
TWI709054B (en) 2020-11-01
CN112926760B (en) 2022-08-09

Similar Documents

Publication Publication Date Title
US11295993B2 (en) Maintenance scheduling for semiconductor manufacturing equipment
He et al. A fuzzy TOPSIS and rough set based approach for mechanism analysis of product infant failure
JP7102941B2 (en) Information processing methods, information processing devices, and programs
CN111008502A (en) Fault prediction method for complex equipment driven by digital twin
US20170060664A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
TWI709054B (en) Building device and building method of prediction model and monitoring system for product quality
US20230152786A1 (en) Industrial equipment operation, maintenance and optimization method and system based on complex network model
KR102417415B1 (en) Die-casting product defect detection method and system based on deep learning anomaly detection
KR20140113153A (en) Method and System for Statistical Equivalence Test
CN115358281A (en) Machine learning-based cold and hot all-in-one machine monitoring control method and system
WO2020166236A1 (en) Work efficiency evaluating method, work efficiency evaluating device, and program
CN114004331A (en) Fault analysis method based on key indexes and deep learning
KR102494420B1 (en) Machine learning-based clean room management system and method
CN117196405B (en) Quality evaluation method and system for steel industry production data
CN111428329A (en) Model-based machine learning system
KR101105790B1 (en) Failure recognition system
CN116340872A (en) Method for determining abnormality based on combination of reconstruction and prediction
Fallah Nezhad et al. Economic design of acceptance sampling plans based on conforming run lengths using loss functions
CN110516355B (en) Leakage test curve trend prediction method and system based on pre-estimated function model
US20230021965A1 (en) Methods and systems for assessing printed circuit boards
CN114757495A (en) Membership value quantitative evaluation method based on logistic regression
CN115904920A (en) Test case recommendation method and device, terminal and storage medium
WO2021079479A1 (en) Assessment method, assessment program, and information processing device
CN112884348A (en) Method for diagnosing production deviation source of aerospace initiator based on dynamic Bayesian network
BELHADJ et al. Subassembly identification method based on CAD data