TW202122347A - Method for processing porous silica , porous silica made, and application of the porous silica - Google Patents

Method for processing porous silica , porous silica made, and application of the porous silica Download PDF

Info

Publication number
TW202122347A
TW202122347A TW108145568A TW108145568A TW202122347A TW 202122347 A TW202122347 A TW 202122347A TW 108145568 A TW108145568 A TW 108145568A TW 108145568 A TW108145568 A TW 108145568A TW 202122347 A TW202122347 A TW 202122347A
Authority
TW
Taiwan
Prior art keywords
silane compound
group
porous silica
mol
silica
Prior art date
Application number
TW108145568A
Other languages
Chinese (zh)
Other versions
TWI721707B (en
Inventor
蘇賜祥
李冠緯
向首睿
葉瑞銘
陳冠潁
Original Assignee
臻鼎科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臻鼎科技股份有限公司 filed Critical 臻鼎科技股份有限公司
Priority to TW108145568A priority Critical patent/TWI721707B/en
Application granted granted Critical
Publication of TWI721707B publication Critical patent/TWI721707B/en
Publication of TW202122347A publication Critical patent/TW202122347A/en

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

A method for progressing porous silica includes steps: providing water-soluble template agent and solvent, dissolve the water-soluble template agent in the solvent to obtain mixed solution. Adding first silane compound, second silane compound, and third silane compound to the mixed solution. The concentration of the first silane compound is 0.02 mol/L-0.08 mol/L, and the concentration of the second silane compound is 0.02 mol/L-0.08 mol/L, the concentration of the third silane compound is 0.002mol/L-0.006mol/L; sol-gel reaction with water-soluble template as template to obtain intermediate product. The second silane compound includes a hydrophobic group and the third silane compound includes an amine group. And washing and drying the intermediate product to obtain porous silica. The disclosure also provides the porous silica and the application of the porous silica.

Description

多孔二氧化矽、其製備方法及其應用Porous silica, its preparation method and its application

本發明涉及高分子材料領域,尤其涉及一種多孔二氧化矽、其製備方法及其應用。The invention relates to the field of polymer materials, in particular to a porous silicon dioxide, its preparation method and its application.

一般無孔洞的二氧化矽由四乙氧基矽烷(tetraethyl orthosilicate,TEOS)為原料藉由溶膠-凝膠法(Sol-gel process)製成,而此二氧化矽粉體本身介電常數為3.9,導入絕緣樹脂材料中(例如聚醯亞胺)形成複合材料時,無法降低所述絕緣樹脂材料介電常數。Generally, non-porous silicon dioxide is made from tetraethyl orthosilicate (TEOS) by the sol-gel process (Sol-gel process), and the dielectric constant of the silicon dioxide powder itself is 3.9 When it is introduced into an insulating resin material (for example, polyimide) to form a composite material, the dielectric constant of the insulating resin material cannot be reduced.

具有孔洞的二氧化矽一般利用具有親水和親油兩性的有機化合物,也就是所謂的介面活性劑(surfactants)作為有機模板(organic template)。在酸性、鹼性或者有機溶液的環境中,利用有機介面活性劑本身在溶劑的環境中自組裝現象(self-assemble)堆疊成不同形狀的模板,而水解後的有機矽化合物則聚合(即為溶膠-凝膠法)於模板的外側,最後再利用高溫燒結將模板去除,即可得到具有孔洞的二氧化矽材料。利用孔洞中導入的空氣(空氣介電常數為1),使得該二氧化矽導入絕緣樹脂材料中形成複合材料可降低介電常數。然而,高溫燒結會使得二氧化矽粉體表面的-Si-OH基團轉變成-Si-O-Si-,剩餘未轉變的-Si-OH基團將不足以與矽烷類耦合劑進行表面改性。Silica with pores generally uses organic compounds with hydrophilic and lipophilic amphoteric properties, that is, so-called surfactants as organic templates. In an acidic, alkaline or organic solution environment, the organic interface active agent itself is used to self-assemble in the solvent environment to stack into templates of different shapes, and the hydrolyzed organosilicon compound polymerizes (that is, Sol-gel method) on the outside of the template, and finally remove the template by high-temperature sintering to obtain a silicon dioxide material with holes. Using the air introduced in the hole (air dielectric constant is 1), the silicon dioxide can be introduced into the insulating resin material to form a composite material to reduce the dielectric constant. However, high-temperature sintering will cause the -Si-OH groups on the surface of the silica powder to transform into -Si-O-Si-, and the remaining unconverted -Si-OH groups will not be sufficient for surface modification with the silane coupling agent. Sex.

因此,有必要提供一種多孔二氧化矽的製備方法,所述製備方法製備的多孔二氧化矽同時具有親水基團、疏水基團以及-Si-OH基團,以解決上述問題。Therefore, it is necessary to provide a method for preparing porous silica. The porous silica prepared by the method has a hydrophilic group, a hydrophobic group and a -Si-OH group to solve the above-mentioned problems.

另,還有必要提供一種多孔二氧化矽。In addition, it is necessary to provide a porous silica.

另,還有必要提供一種所述多孔二氧化矽的應用。In addition, it is also necessary to provide an application of the porous silica.

一種多孔二氧化矽的製備方法,包括以下步驟:A preparation method of porous silica includes the following steps:

提供一水溶性模板劑及溶劑,將所述水溶性模板劑溶於所述溶劑中得到混合溶液;Provide a water-soluble template and a solvent, and dissolve the water-soluble template in the solvent to obtain a mixed solution;

加入第一矽烷化合物、第二矽烷化合物以及第三矽烷化合物至所述混合溶液中,所述第一矽烷化合物在所述混合溶液中的摩爾濃度為0.02mol/L-0.08mol/L,所述第二矽烷化合物在所述混合溶液中的摩爾濃度為0.02mol/L-0.08mol/L,所述第三矽烷化合物在所述混合溶液中的摩爾濃度為0.002mol/L-0.006mol/L,所述第一矽烷化合物、所述第二矽烷化合物和所述第三矽烷化合物均水解生成二氧化矽,並以水溶性模板劑為模板進行溶膠凝膠反應,得到中間產物;其中,所述第二矽烷化合物包括疏水基團,所述第三矽烷化合物包括胺基基團;The first silane compound, the second silane compound, and the third silane compound are added to the mixed solution, and the molar concentration of the first silane compound in the mixed solution is 0.02 mol/L-0.08 mol/L. The molar concentration of the second silane compound in the mixed solution is 0.02 mol/L-0.08 mol/L, and the molar concentration of the third silane compound in the mixed solution is 0.002 mol/L-0.006 mol/L, The first silane compound, the second silane compound, and the third silane compound are all hydrolyzed to generate silicon dioxide, and the water-soluble template is used as a template to perform a sol-gel reaction to obtain an intermediate product; wherein, the first The disilane compound includes a hydrophobic group, and the third silane compound includes an amine group;

清洗並乾燥所述中間產物,使得所述水溶性模板溶解並去除,得到所述多孔二氧化矽。The intermediate product is washed and dried, so that the water-soluble template is dissolved and removed to obtain the porous silica.

進一步地,所述第一矽烷化合物的化學式為Si-(OR)4 ,其中,R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2。Further, the chemical formula of the first silane compound is Si-(OR) 4 , wherein R is a saturated alkane group, and the number of carbon atoms of the saturated alkane group is n, where n is an integer, and 1≤n≤2 .

進一步地,所述第二矽烷化合物的化學式為R1 -Si-(OR)3 ,其中R1 為疏水基團,所述R1 包括直鏈烷烴基、環烷基、乙烯基以及苯基中的至少一種,R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2。Further, the chemical formula of the second silane compound is R 1 -Si-(OR) 3 , wherein R 1 is a hydrophobic group, and the R 1 includes linear alkane groups, cycloalkyl groups, vinyl groups, and phenyl groups. R is a saturated alkane group, and the number of carbon atoms of the saturated alkane group is n, where n is an integer, and 1≤n≤2.

進一步地,所述第三矽烷化合物的化學式為R2 -Si-(OR)3 ,其中R2 包括-NH2 ,R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2。Further, the chemical formula of the third silane compound is R 2 -Si-(OR) 3 , wherein R 2 includes -NH 2 , R is a saturated alkane group, and the number of carbon atoms of the saturated alkane group is n, where n Is an integer, and 1≤n≤2.

進一步地,所述水溶性模板劑為糖類,所述水溶性模板劑在所述混合溶液中的摩爾濃度為0.05mol/L-0.20mol/L。Further, the water-soluble template is a saccharide, and the molar concentration of the water-soluble template in the mixed solution is 0.05 mol/L-0.20 mol/L.

進一步地,在加入所述第一矽烷化合物、所述第二矽烷化合物以及所述第三矽烷化合物之前,所述製備方法還包括向所述混合溶液中加入催化劑,所述催化劑包括酸或堿,所述催化劑在所述混合溶液中的摩爾濃度為0.1mol/L-0.5mol/L。Further, before adding the first silane compound, the second silane compound, and the third silane compound, the preparation method further includes adding a catalyst to the mixed solution, and the catalyst includes an acid or a salt, The molar concentration of the catalyst in the mixed solution is 0.1 mol/L-0.5 mol/L.

所述溶劑為無機溶劑以及有機溶劑的混合物,所述無機溶劑與所述有機溶劑的體積比為1-3:1-5。The solvent is a mixture of an inorganic solvent and an organic solvent, and the volume ratio of the inorganic solvent to the organic solvent is 1-3:1-5.

進一步地,所述溶膠凝膠反應的反應溫度為25℃-100℃。Further, the reaction temperature of the sol-gel reaction is 25°C-100°C.

一種多孔二氧化矽,所述多孔二氧化矽包括二氧化矽主體結構以及連接於所述二氧化矽主體結構上的疏水基團和胺基基團;所述二氧化矽主體結構包括多個孔洞,所述孔洞的孔徑為2nm-50nm;所述疏水基團和胺基基團的摩爾比為3.33-4.0。A porous silica, the porous silica includes a silica main structure and a hydrophobic group and an amine group connected to the silica main structure; the silica main structure includes a plurality of pores The pore diameter of the hole is 2nm-50nm; the molar ratio of the hydrophobic group to the amine group is 3.33-4.0.

進一步地,所述疏水基團包括直鏈烷烴基、環烷基、乙烯基以及苯基中的至少一種。Further, the hydrophobic group includes at least one of a linear alkane group, a cycloalkyl group, a vinyl group, and a phenyl group.

一種所述多孔二氧化矽在絕緣樹脂中的應用。An application of the porous silica in insulating resin.

本發明提供的多孔二氧化矽的製備方法,藉由清洗水溶性模板劑便可在二氧化矽主體結構中產生孔洞,代替傳統方法的高溫煆燒步驟,防止二氧化矽表面的-Si-OH因高溫煆燒而導致不可控,並簡化制程,節約成本;其次,所述製備方法藉由採用分別具有疏水基團和胺基基團的第二矽烷化合物以及第三矽烷化合物,從而直接在二氧化矽主體結構上形成疏水基團和親水基團,省略傳統的在高溫煆燒後所需的表面改性的步驟,而且,藉由控制第二矽烷化合物和第三矽烷化合物的加入比例,即可得到具有疏水基團與親水基團平衡的多孔二氧化矽;所述製備方法製備的多孔二氧化矽具有孔洞(孔洞中空氣的介電常數約為1),當所述多孔二氧化矽應用於製備複合材料時,有利於降低複合材料的介電常數。由於本發明提供的多孔二氧化矽同時具有疏水基團與親水基團,所述多孔二氧化矽用於製備絕緣樹脂時,既能保證所述多孔二氧化矽的分散性,又能保證相容性,還能降低絕緣樹脂的介電常數。The method for preparing porous silica provided by the present invention can generate holes in the main structure of silica by cleaning the water-soluble template, instead of the high-temperature sintering step of the traditional method, and prevent -Si-OH on the surface of the silica It is uncontrollable due to high-temperature sintering, and simplifies the process and saves costs; secondly, the preparation method uses a second silane compound and a third silane compound with a hydrophobic group and an amine group, respectively, so as to directly use the second silane compound. Hydrophobic groups and hydrophilic groups are formed on the main structure of silicon oxide. The traditional surface modification steps required after high-temperature sintering are omitted. Moreover, by controlling the addition ratio of the second silane compound and the third silane compound, that is, Porous silica with a balance of hydrophobic groups and hydrophilic groups can be obtained; the porous silica prepared by the preparation method has pores (the dielectric constant of the air in the pores is about 1), when the porous silica is used When preparing composite materials, it is beneficial to reduce the dielectric constant of composite materials. Since the porous silica provided by the present invention has both a hydrophobic group and a hydrophilic group, when the porous silica is used to prepare an insulating resin, it can not only ensure the dispersibility of the porous silica, but also ensure compatibility. It can also reduce the dielectric constant of the insulating resin.

請參閱圖1,本發明實施例提供一種多孔二氧化矽的製備方法,包括以下步驟:Referring to Fig. 1, an embodiment of the present invention provides a method for preparing porous silica, which includes the following steps:

步驟S11:提供溶劑,向所述溶劑中加入水溶性模板劑以及催化劑,得到混合溶液。Step S11: Provide a solvent, and add a water-soluble template and a catalyst to the solvent to obtain a mixed solution.

所述溶劑為無機溶劑與有機溶劑的混合物。所述無機溶劑與所述有機溶劑的體積比為1-3:1-5。在一具體實施例中,所述無機溶劑為去離子水,所述有機溶劑為乙醇。The solvent is a mixture of an inorganic solvent and an organic solvent. The volume ratio of the inorganic solvent to the organic solvent is 1-3:1-5. In a specific embodiment, the inorganic solvent is deionized water, and the organic solvent is ethanol.

所述水溶性模板劑為糖類,例如葡萄糖、麥芽糖、果糖以及蔗糖等。優選地,所述水溶性模板劑為D-葡萄糖、D-麥芽糖、D-果糖以及蔗糖中的至少一種。所述水溶性模板劑為非介面活性模板劑,所述水溶性模板劑可藉由水溶液溶解去除,以便於後續製備的二氧化矽具有孔洞,以形成多孔結構的二氧化矽;藉由清洗水溶性模板劑便可在二氧化矽主體結構中產生孔洞,代替傳統方法的高溫煆燒步驟,防止二氧化矽表面的-Si-OH因高溫煆燒而導致不可控,並簡化制程,節約成本。The water-soluble template is sugars, such as glucose, maltose, fructose, and sucrose. Preferably, the water-soluble template is at least one of D-glucose, D-maltose, D-fructose and sucrose. The water-soluble templating agent is a non-interfacially active templating agent, and the water-soluble templating agent can be dissolved and removed by an aqueous solution, so that the subsequently prepared silica has pores to form a porous structure of silica; The templating agent can create holes in the main structure of the silicon dioxide, instead of the high-temperature sintering step of the traditional method, prevent the -Si-OH on the surface of the silicon dioxide from being uncontrollable due to the high-temperature sintering, simplify the manufacturing process, and save costs.

所述催化劑為酸或者堿。在一具體實施例中,所述堿為氨水。所述酸或堿在所述混合溶液中的摩爾濃度為0.1mol/L-0.5mol/L。The catalyst is an acid or a salt. In a specific embodiment, the salt is ammonia water. The molar concentration of the acid or the acid in the mixed solution is 0.1 mol/L-0.5 mol/L.

具體地,提供去離子水與乙醇的混合物,向所述混合物中加入所述水溶性模板劑,所述水溶性模板劑溶於所述溶劑中;然後加入酸或堿,並用pH試紙檢測所述混合溶液的pH值。Specifically, a mixture of deionized water and ethanol is provided, the water-soluble templating agent is added to the mixture, and the water-soluble templating agent is dissolved in the solvent; then an acid or a salt is added, and the pH test paper is used to detect the The pH value of the mixed solution.

步驟S12:向所述混合溶液中加入第一矽烷化合物、第二矽烷化合物以及第三矽烷化合物進行溶膠凝膠反應,得到中間產物。Step S12: adding the first silane compound, the second silane compound, and the third silane compound to the mixed solution to perform a sol-gel reaction to obtain an intermediate product.

所述第一矽烷化合物、所述第二矽烷化合物以及所述第三矽烷化合物均能夠水解且生成二氧化矽。The first silane compound, the second silane compound, and the third silane compound can all be hydrolyzed to generate silicon dioxide.

所述第一矽烷化合物的化學式為Si-(OR)4 ,其中,R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2,即所述R為-CH3 或者-CH2 CH3 。即,所述第一矽烷化合物可以為四甲氧基矽烷或四乙氧基矽烷。所述第一矽烷化合物在所述混合溶液中水解聚合,並以所述水溶性模板劑為模板,包覆於所述水溶性模板劑上,形成所述多孔二氧化矽的主體,並沉澱下來。其中,所述第一矽烷化合物在所述混合溶液中的摩爾濃度為0.02mol/L-0.08mol/L。The chemical formula of the first silane compound is Si-(OR) 4 , wherein R is a saturated alkane group, and the number of carbon atoms of the saturated alkane group is n, where n is an integer and 1≤n≤2, that is, Said R is -CH 3 or -CH 2 CH 3 . That is, the first silane compound may be tetramethoxysilane or tetraethoxysilane. The first silane compound is hydrolyzed and polymerized in the mixed solution, and the water-soluble template is used as a template to coat the water-soluble template to form the main body of the porous silica, which is then precipitated . Wherein, the molar concentration of the first silane compound in the mixed solution is 0.02 mol/L-0.08 mol/L.

所述第二矽烷化合物的化學式為R1 -Si-(OR)3 ,其中R1 為直鏈烷烴基、環烷基、乙烯基以及苯基中的至少一種,例如-CH3 ;R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2。所述第二矽烷化合物包括但不限於甲基三甲氧基矽烷(MTMS)、矽烷交聯聚乙烯(VTMS)以及苯基三甲氧基矽烷(PTMS)中的至少一種。所述第二矽烷化合物有利於製備的多孔二氧化矽的表面具有疏水基團,降低所述多孔二氧化矽的吸濕性,從而降低水分對多孔二氧化矽的介電性能的影響。其中,所述第二矽烷化合物在所述混合溶液中的摩爾濃度為0.02mol/L-0.08mol/L。The chemical formula of the second silane compound is R 1 -Si-(OR) 3 , wherein R 1 is at least one of a linear alkane group, a cycloalkyl group, a vinyl group, and a phenyl group, such as -CH 3 ; R is saturated The alkane group, the number of carbon atoms of the saturated alkane group is n, where n is an integer, and 1≤n≤2. The second silane compound includes, but is not limited to, at least one of methyltrimethoxysilane (MTMS), silane cross-linked polyethylene (VTMS), and phenyltrimethoxysilane (PTMS). The second silane compound facilitates the preparation of porous silica having hydrophobic groups on the surface, reducing the hygroscopicity of the porous silica, thereby reducing the influence of moisture on the dielectric properties of the porous silica. Wherein, the molar concentration of the second silane compound in the mixed solution is 0.02 mol/L-0.08 mol/L.

所述第三矽烷化合物的化學式為R2 -Si-(OR)3 ,其中R2 包括胺基基團,例如-CH2 CH2 CH2 NH2 ;R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2。所述第三矽烷化合物包括但不限於3-氨丙基三乙氧基矽烷(APTES)。所述第三矽烷化合物中的胺基有助於後續所述多孔二氧化矽與聚醯亞胺或者環氧樹脂相結合時,避免多孔二氧化矽的沉澱。其中,所述第三矽烷化合物在所述混合溶液中的摩爾濃度為0.002mol/L-0.006mol/L。The chemical formula of the third silane compound is R 2 -Si-(OR) 3 , wherein R 2 includes an amine group, such as -CH 2 CH 2 CH 2 NH 2 ; R is a saturated alkane group, the saturated alkane group The number of carbon atoms in is n, where n is an integer and 1≤n≤2. The third silane compound includes, but is not limited to, 3-aminopropyltriethoxysilane (APTES). The amine group in the third silane compound helps to avoid the precipitation of porous silica when the porous silica is subsequently combined with polyimide or epoxy resin. Wherein, the molar concentration of the third silane compound in the mixed solution is 0.002 mol/L-0.006 mol/L.

進一步地,在同一組實驗中,所述第一矽烷化合物、第二矽烷化合物以及第三矽烷化合物中的R相同,即同時均為-CH3 或者同時均為-CH2 CH3Further, in the same set of experiments, the R in the first silane compound, the second silane compound, and the third silane compound are the same, that is, all of them are -CH 3 or all of them are -CH 2 CH 3 at the same time.

其中,所述第二矽烷化合物提供疏水基團,所述第三矽烷化合物提供胺基,為親水基團,藉由調控所述第二矽烷化合物與所述第三矽烷化合物的比例,調節最後製備的多孔二氧化矽上疏水基團與親水基團的比例,從而可平衡多孔二氧化矽的吸水率與分散性。Wherein, the second silane compound provides a hydrophobic group, and the third silane compound provides an amine group, which is a hydrophilic group. By adjusting the ratio of the second silane compound to the third silane compound, the final preparation is adjusted The ratio of hydrophobic groups to hydrophilic groups on the porous silica can balance the water absorption and dispersibility of the porous silica.

其中,所述水溶性模板劑在所述混合溶液中的摩爾濃度為0.05mol/L-0.20mol/L。Wherein, the molar concentration of the water-soluble template in the mixed solution is 0.05 mol/L-0.20 mol/L.

進一步地,控制溶膠凝膠反應的反應溫度為25℃-100℃。Further, the reaction temperature of the sol-gel reaction is controlled to be 25°C to 100°C.

其中,所述第一矽烷化合物在溶劑中的反應過程如圖2A所示,所述第一矽烷化合物在水中水解成二氧化矽主體結構;請參閱圖2B,所述第一矽烷化合物、第二矽烷化合物以及第三矽烷化合物在所述溶劑中共同水解形成具有疏水基團以及胺基基團的二氧化矽,其中,圖2B中以R’表示第二矽烷化合物中的R1 以及第三矽烷化合物中的R2Wherein, the reaction process of the first silane compound in the solvent is shown in FIG. 2A. The first silane compound is hydrolyzed in water to form the main structure of silicon dioxide; please refer to FIG. 2B, the first silane compound and the second silane compound The silane compound and the third silane compound are jointly hydrolyzed in the solvent to form silicon dioxide with a hydrophobic group and an amine group. In FIG. 2B, R'represents R 1 and the third silane in the second silane compound. R 2 in the compound.

步驟S13:清洗所述中間產物並乾燥,得到所述多孔二氧化矽。Step S13: washing the intermediate product and drying to obtain the porous silica.

具體地,將所述中間產物進行離心分離。在其他實施方式中,還可利用其他方式(例如過濾)使得多孔二氧化矽分離出來。然後將分離後的產物先採用乙醇清洗,以去除產物表面的有機物;再採用去離子水進行清洗,多孔二氧化矽中的水溶性模板劑溶於去離子水中,形成具有孔洞的多孔二氧化矽。Specifically, the intermediate product is centrifuged. In other embodiments, other methods (such as filtration) may be used to separate the porous silica. Then the separated product is first cleaned with ethanol to remove the organic matter on the surface of the product; then cleaned with deionized water, the water-soluble template in the porous silica is dissolved in deionized water to form porous silica with pores .

所述製備方法製備的多孔二氧化矽的表面具有-Si-OH外,還具有孔洞結構,同時還具有疏水基團以及胺基基團。The surface of the porous silica prepared by the preparation method has -Si-OH, a pore structure, a hydrophobic group and an amine group at the same time.

本發明還提供一種多孔二氧化矽,所述多孔二氧化矽包括二氧化矽主體結構以及連接於所述二氧化矽主體結構上的基團。所述二氧化矽主體結構包括多個孔洞。所述基團至少包括親水基團以及疏水基團。所述疏水基團包括直鏈烷烴基、環烷基、乙烯基以及苯基中的至少一種,所述疏水基團用於增加所述多孔二氧化矽的疏水性能,降低所述多孔二氧化矽的吸濕性,從而降低水分對多孔二氧化矽的介電性能的影響;所述親水基團包括胺基基團,所述胺基基團用於後續所述多孔二氧化矽作為前驅體與聚醯亞胺或者環氧樹脂相結合時,避免多孔二氧化矽的沉澱。The present invention also provides a porous silica. The porous silica includes a silica main structure and a group connected to the silica main structure. The main structure of silicon dioxide includes a plurality of holes. The group includes at least a hydrophilic group and a hydrophobic group. The hydrophobic group includes at least one of a linear alkane group, a cycloalkyl group, a vinyl group, and a phenyl group. The hydrophobic group is used to increase the hydrophobic performance of the porous silica and reduce the porous silica Hygroscopicity, thereby reducing the influence of moisture on the dielectric properties of porous silica; the hydrophilic group includes an amine group, and the amine group is used for the subsequent porous silica as a precursor and When combined with polyimide or epoxy resin, avoid the precipitation of porous silica.

進一步地,所述疏水基團與所述胺基基團的摩爾比為3.33-4.0。Further, the molar ratio of the hydrophobic group to the amino group is 3.33-4.0.

進一步地,所述孔洞的孔徑為2nm-50nm。Further, the pore diameter of the hole is 2nm-50nm.

本發明還提供包括所述多孔二氧化矽在絕緣樹脂中的應用,所述絕緣樹脂包括但不限於聚醯亞胺複合材料以及環氧樹脂複合材料等。The present invention also provides applications including the porous silicon dioxide in insulating resins, and the insulating resins include but are not limited to polyimide composite materials, epoxy resin composite materials, and the like.

本發明實施例還提供一種包括所述多孔二氧化矽的聚醯亞胺複合材料的製備方法,包括以下步驟:The embodiment of the present invention also provides a method for preparing a polyimide composite material including the porous silica, which includes the following steps:

步驟S21:溶解二胺單體於極性非質子溶劑中,並將所述多孔二氧化矽分散於所述極性非質子溶劑中。Step S21: dissolving the diamine monomer in a polar aprotic solvent, and dispersing the porous silica in the polar aprotic solvent.

其中,所述二胺單體包括4,4-二氨基二苯醚(ODA)、對苯二胺、4,4-二氨基二苯基甲烷、2,2-雙[4-(4-氨基苯氧基)苯基]丙烷中的至少一種。所述極性非質子溶劑包括但不限於N,N-二甲基甲醯胺、N,N-二甲基乙醯胺以及N-甲基吡咯烷酮等。Wherein, the diamine monomer includes 4,4-diaminodiphenyl ether (ODA), p-phenylenediamine, 4,4-diaminodiphenylmethane, 2,2-bis[4-(4-amino At least one of phenoxy)phenyl]propane. The polar aprotic solvent includes but is not limited to N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone and the like.

步驟S22:溶解二酐單體於所述極性非質子溶劑中,得到聚醯胺酸溶液(PAA)。Step S22: Dissolve the dianhydride monomer in the polar aprotic solvent to obtain a polyamide acid solution (PAA).

其中所述二酐單體包括均苯四甲酸二酐(PMDA)、3,3',4,4'-聯苯四羧酸二酐(BPDA)、3,3',4,4'-二苯酮四酸二酐(BTDA)、4,4'-聯苯醚二酐(ODPA)以及4,4'-(六氟異丙烯)二酞酸酐(6FPA)中的至少一種。The dianhydride monomers include pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 3,3',4,4'-two At least one of phenketotetracarboxylic dianhydride (BTDA), 4,4'-diphenyl ether dianhydride (ODPA), and 4,4'-(hexafluoroisopropylene) diphthalic anhydride (6FPA).

步驟S23:將所述聚醯胺酸溶液進行成膜處理。Step S23: subject the polyamide acid solution to a film forming process.

在一具體實施例中,將所述聚醯胺酸溶液塗布於一銅箔上進行預烘烤,然後利用高溫進行熱醯亞胺化反應。具體地,將塗布於銅箔上的聚醯胺酸溶液在140℃下預烘烤10min,然後在高溫氮氣烘箱中依次在150℃下烘烤5min,200℃下烘烤5min,250℃下烘烤5min,300℃下烘烤30min,350℃下烘烤30min。最後採用刻蝕液將所述銅箔去除,得到聚醯亞胺複合材料。In a specific embodiment, the polyamide acid solution is coated on a copper foil for pre-baking, and then the thermal imidization reaction is performed at a high temperature. Specifically, the polyamide acid solution coated on the copper foil was pre-baked at 140°C for 10 minutes, and then baked in a high-temperature nitrogen oven at 150°C for 5 minutes, 200°C for 5 minutes, and 250°C. Bake for 5 minutes, 300°C for 30 minutes, and 350°C for 30 minutes. Finally, an etching solution is used to remove the copper foil to obtain a polyimide composite material.

所述二氧化矽中具有疏水基團,提升所述二氧化矽的疏水性能;所述二氧化矽中具有胺基基團,所述胺基用於與合成聚醯亞胺複合材料的單體分子(即二胺單體和二酐單體)進行鍵合,提升所述二氧化矽在聚醯胺酸溶液中的分散性。由於胺基為吸水基團,因此需要可以藉由控制疏水基團與胺基基團的比例,從而平衡二氧化矽的吸水率與分散性。The silica has a hydrophobic group to improve the hydrophobic performance of the silica; the silica has an amine group, and the amine group is used to synthesize the monomer of the polyimide composite material The molecules (ie, diamine monomer and dianhydride monomer) are bonded to improve the dispersibility of the silica in the polyamide acid solution. Since the amine group is a water-absorbing group, it is necessary to balance the water absorption and dispersibility of silica by controlling the ratio of the hydrophobic group to the amine group.

摻雜於所述聚醯亞胺複合材料中,可以降低所述聚醯亞胺複合材料的介電常數。Doping in the polyimide composite material can reduce the dielectric constant of the polyimide composite material.

本發明還提供一種聚醯亞胺複合材料,所述聚醯亞胺複合材料包括所述多孔二氧化矽。The present invention also provides a polyimide composite material. The polyimide composite material includes the porous silica.

本發明實施例還提供一種包括所述多孔二氧化矽的環氧樹脂複合材料的製備方法,包括以下步驟:The embodiment of the present invention also provides a method for preparing an epoxy resin composite material including the porous silica, which includes the following steps:

步驟S31:提供雙酚A環氧樹脂、雙環戊二烯苯酚型環氧樹脂以及填料,將所述雙酚A環氧樹脂、所述雙環戊二烯苯酚型環氧樹脂溶解於有機溶劑中,所述填料分散於所述有機溶劑中。Step S31: providing bisphenol A epoxy resin, dicyclopentadiene phenol epoxy resin and fillers, dissolving the bisphenol A epoxy resin and the dicyclopentadiene phenol epoxy resin in an organic solvent, The filler is dispersed in the organic solvent.

所述有機溶劑包括丙酮、丁酮(MEK)、環己酮、乙二醇甲醚、丙二醇甲醚、丙二醇甲醚醋酸酯以及乙酸乙酯中的至少一種。The organic solvent includes at least one of acetone, methyl ethyl ketone (MEK), cyclohexanone, ethylene glycol methyl ether, propylene glycol methyl ether, propylene glycol methyl ether acetate, and ethyl acetate.

所述填料包括氫氧化鋁、所述多孔二氧化矽、氫氧化鎂、沸石、矽灰石、氧化鎂、矽酸鈣、碳酸鈣、粘土、滑石及雲母中的至少一種。The filler includes at least one of aluminum hydroxide, the porous silica, magnesium hydroxide, zeolite, wollastonite, magnesium oxide, calcium silicate, calcium carbonate, clay, talc and mica.

在一具體實施例中,所述填料為氫氧化鋁以及本發明提供的多孔二氧化矽。所述二氧化矽中具有疏水基團,提升所述二氧化矽的疏水性能;所述二氧化矽中具有胺基基團,所述胺基用於與合成環氧樹脂複合材料的前驅體(即雙酚A環氧樹脂和雙環戊二烯苯酚型環氧樹脂)進行鍵合,提升所述二氧化矽在環氧樹脂前驅體中的分散性。由於胺基為吸水基團,因此需要可以藉由控制疏水基團與胺基基團的比例,從而平衡二氧化矽的吸水率與分散性。In a specific embodiment, the filler is aluminum hydroxide and the porous silica provided by the present invention. The silicon dioxide has a hydrophobic group to improve the hydrophobic performance of the silicon dioxide; the silicon dioxide has an amine group, and the amine group is used to synthesize the precursor of the epoxy resin composite material ( That is, the bisphenol A epoxy resin and the dicyclopentadiene phenol type epoxy resin are bonded to improve the dispersibility of the silicon dioxide in the epoxy resin precursor. Since the amine group is a water-absorbing group, it is necessary to balance the water absorption and dispersibility of silica by controlling the ratio of the hydrophobic group to the amine group.

步驟S32:加入固化劑以及橡膠溶液,得到環氧樹脂前驅體。Step S32: adding a curing agent and a rubber solution to obtain an epoxy resin precursor.

所述固化劑包括4,4′-二氨基二苯碸(DDS)、3,3′-二氨基二苯碸(DAS)以及二苯甲烷二胺(DDM)中的至少一種。The curing agent includes at least one of 4,4'-diaminodiphenyl sulfide (DDS), 3,3'-diaminodiphenyl sulfide (DAS), and diphenylmethane diamine (DDM).

步驟S33:將所述環氧樹脂前驅體進行成膜處理。Step S33: subjecting the epoxy resin precursor to a film forming process.

在一具體實施例中,將所述環氧樹脂前驅體塗布於一銅箔上進行預烘烤,然後在烘箱中進行熱固化反應。具體地,將塗布於銅箔上的環氧樹脂前驅體在140℃下預烘烤2min,然後在烘箱中以160℃烘烤2h以使所述環氧樹脂前驅體進行熱固化反應。最後採用刻蝕液將所述銅箔去除,得到環氧樹脂複合材料。In a specific embodiment, the epoxy resin precursor is coated on a copper foil for pre-baking, and then the thermal curing reaction is performed in an oven. Specifically, the epoxy resin precursor coated on the copper foil was pre-baked at 140° C. for 2 min, and then baked in an oven at 160° C. for 2 h to cause the epoxy resin precursor to undergo a thermal curing reaction. Finally, an etching solution is used to remove the copper foil to obtain an epoxy resin composite material.

本發明還提供一種環氧樹脂複合材料,所述環氧樹脂複合材料包括所述多孔二氧化矽。The present invention also provides an epoxy resin composite material. The epoxy resin composite material includes the porous silica.

下面藉由具體實施例來對本發明進行說明。The present invention will be described below with specific embodiments.

實施例1Example 1

取500mL的雙層燒杯,利用冷卻水控制燒杯內的溫度為35℃。向所述雙層燒杯中加入200mL乙醇以及100mL去離子水後,加入D-果糖7.0g作為水溶性模板劑得到混合溶液,所述D-果糖在所述混合溶液中的摩爾濃度為0.130mol/L,利用磁力攪拌均勻後向所述混合溶液中加入9.0mL氨水,所述氨水在所述混合溶液中的摩爾濃度為0.231mol/L。Take a 500mL double-layer beaker and use cooling water to control the temperature in the beaker to 35°C. After adding 200 mL of ethanol and 100 mL of deionized water to the double-layer beaker, 7.0 g of D-fructose was added as a water-soluble template to obtain a mixed solution, and the molar concentration of D-fructose in the mixed solution was 0.130 mol/ L. After uniformly stirring by magnetic force, 9.0 mL of ammonia water is added to the mixed solution, and the molar concentration of the ammonia water in the mixed solution is 0.231 mol/L.

然後依次加入TEOS(第一矽烷化合物)1.87g、MTMS(第二矽烷化合物)2.45g以及APTES(第三矽烷化合物)0.1g,在35℃的反應溫度下反應48h,其中所述TEOS、所述MTMS以及所述APTES在所述混合溶液中的摩爾濃度分別為0.030 mol/L、0.060 mol/L以及0.002 mol/L。Then, 1.87 g of TEOS (first silane compound), 2.45 g of MTMS (second silane compound) and 0.1 g of APTES (third silane compound) were added in sequence, and reacted at a reaction temperature of 35°C for 48 hours, where the TEOS, the The molar concentrations of MTMS and the APTES in the mixed solution are 0.030 mol/L, 0.060 mol/L, and 0.002 mol/L, respectively.

將反應後的產物離心,取出膏狀物放入500mL燒杯中,加入400mL乙醇超聲清洗30min後離心,如此重複3次。將乙醇清洗離心後的產物與400mL去離子水超聲清洗30min後離心,如此重複10次。將去離子水清洗離心後的產物進行冷凍乾燥,得到具有孔洞且具有甲基基團的二氧化矽。Centrifuge the reaction product, take out the paste and put it in a 500 mL beaker, add 400 mL of ethanol to ultrasonically clean for 30 minutes and centrifuge, and repeat the procedure 3 times. The product after ethanol washing and centrifugation was ultrasonically cleaned with 400 mL of deionized water for 30 minutes and then centrifuged, and this was repeated 10 times. The product after washing and centrifuging with deionized water is freeze-dried to obtain silicon dioxide with pores and methyl groups.

實施例2Example 2

與實施例1不同的是:D-果糖的摩爾濃度為0.096mol/L,D-果糖的品質為5.2g; TEOS的摩爾濃度為0.060mol/L,TEOS的品質為3.74g;第二矽烷化合物為VTMS,VTMS的摩爾濃度為0.023 mol/L,VTMS的品質為1.34g;得到具有孔洞且具有乙烯基基團的二氧化矽。The difference from Example 1 is: the molar concentration of D-fructose is 0.096mol/L, the quality of D-fructose is 5.2g; the molar concentration of TEOS is 0.060mol/L, the quality of TEOS is 3.74g; the second silane compound It is VTMS, the molar concentration of VTMS is 0.023 mol/L, and the quality of VTMS is 1.34g; the silicon dioxide with pores and vinyl groups is obtained.

其他與實施例1相同,這裡不再贅述。Others are the same as in Embodiment 1, and will not be repeated here.

實施例3Example 3

與實施例1不同的是:D-果糖的摩爾濃度為0.096mol/L,D-果糖的品質為5.2g;TEOS的摩爾濃度為0.060mol/L,TEOS的品質為3.74g;第二矽烷化合物為PTMS,PTMS的摩爾濃度為0.039mol/L,PTMS的品質為2.30g,得到具有孔洞且具有苯基基團的二氧化矽。The difference from Example 1 is: the molar concentration of D-fructose is 0.096mol/L, the quality of D-fructose is 5.2g; the molar concentration of TEOS is 0.060mol/L, the quality of TEOS is 3.74g; the second silane compound It is PTMS, the molar concentration of PTMS is 0.039mol/L, the quality of PTMS is 2.30g, and the silica with pores and phenyl groups is obtained.

其他與實施例1相同,這裡不再贅述。Others are the same as in Embodiment 1, and will not be repeated here.

對比例1Comparative example 1

與實施例1不同的是:D-果糖的摩爾濃度為0.096mol/L,D-果糖的品質為5.2g;TEOS的摩爾濃度為0.090mol/L,TEOS的品質為5.62g,VTMS的品質為0g(即不添加第二矽烷化合物),得到具有孔洞但未含疏水基基團的二氧化矽。The difference from Example 1 is: the molar concentration of D-fructose is 0.096mol/L, the quality of D-fructose is 5.2g; the molar concentration of TEOS is 0.090mol/L, the quality of TEOS is 5.62g, and the quality of VTMS is 0g (that is, without adding the second silane compound), a silica with pores but no hydrophobic group is obtained.

其他與實施例1相同,這裡不再贅述。Others are the same as in Embodiment 1, and will not be repeated here.

對比例2Comparative example 2

與實施例1不同的是:APTES的品質為0g(即不添加第三矽烷化合物),得到具有孔洞以及甲基但不含胺基基團的二氧化矽。The difference from Example 1 is that the quality of APTES is 0 g (that is, the third silane compound is not added), and silicon dioxide with pores and methyl groups but no amine groups is obtained.

其他與實施例1相同,這裡不再贅述。Others are the same as in Embodiment 1, and will not be repeated here.

對比例3Comparative example 3

與實施例1不同的是:D-果糖的品質為0g(即不添加水溶性模板劑),得到不含孔洞但具有甲基基團以及胺基基團的二氧化矽。The difference from Example 1 is that the quality of D-fructose is 0 g (that is, no water-soluble templating agent is added), and silica without pores but with methyl groups and amine groups is obtained.

其他與實施例1相同,這裡不再贅述。Others are the same as in Embodiment 1, and will not be repeated here.

實施例1-3以及對比例1-3部分具體處理條件如表1,實施例1-3以及對比例1-3中採用的成分的摩爾濃度如表2。 表1   D-果糖的品質(g) TEOS的品質(g) 第二矽烷化合物種類 第二矽烷化合物種類的品質(g) APTES的品質(g) 實施例1 7.0 1.87 MTMS 2.45 0.1 實施例2 5.2 3.74 VTMS 1.34 0.1 實施例3 5.2 3.74 PTMS 2.30 0.1 對比例1 5.2 5.62 0.1 對比例2 7.0 1.87 MTMS 2.45 對比例3 1.87 MTMS 2.45 0.1 表2   D-果糖的摩爾濃度(mol/L) TEOS的摩爾濃度(mol/L) 第二矽烷化合物的摩爾濃度(mol/L) APTES的摩爾濃度(mol/L) 實施例1 0.130 0.030 0.060 0.002 實施例2 0.096 0.060 0.023 0.002 實施例3 0.096 0.060 0.039 0.002 對比例1 0.096 0.090 0 0.002 對比例2 0.130 0.030 0.060 0 對比例3 0 0.030 0.060 0.002 The specific treatment conditions of Examples 1-3 and Comparative Examples 1-3 are shown in Table 1, and the molar concentrations of the components used in Examples 1-3 and Comparative Examples 1-3 are shown in Table 2. Table 1 The quality of D-fructose (g) TEOS quality (g) The second type of silane compound The quality of the second type of silane compound (g) Quality of APTES (g) Example 1 7.0 1.87 MTMS 2.45 0.1 Example 2 5.2 3.74 VTMS 1.34 0.1 Example 3 5.2 3.74 PTMS 2.30 0.1 Comparative example 1 5.2 5.62 0.1 Comparative example 2 7.0 1.87 MTMS 2.45 Comparative example 3 1.87 MTMS 2.45 0.1 Table 2 Molar concentration of D-fructose (mol/L) Molar concentration of TEOS (mol/L) The molar concentration of the second silane compound (mol/L) Molar concentration of APTES (mol/L) Example 1 0.130 0.030 0.060 0.002 Example 2 0.096 0.060 0.023 0.002 Example 3 0.096 0.060 0.039 0.002 Comparative example 1 0.096 0.090 0 0.002 Comparative example 2 0.130 0.030 0.060 0 Comparative example 3 0 0.030 0.060 0.002

藉由實施例1-3以及對比例1-3的製備方法可以推測實施例1-3以及對比例1-3的部分結構,其結果如表3所示。 表3   是否有孔洞 是否有疏水基團 疏水基團種類 是否有胺基基團 實施例1 甲基 實施例2 乙烯基 實施例3 苯基 對比例1 對比例2 甲基 對比例3 甲基 According to the preparation methods of Examples 1-3 and Comparative Examples 1-3, partial structures of Examples 1-3 and Comparative Examples 1-3 can be inferred, and the results are shown in Table 3. table 3 Whether there are holes Is there a hydrophobic group Types of hydrophobic groups Is there an amine group Example 1 Yes Yes methyl Yes Example 2 Yes Yes Vinyl Yes Example 3 Yes Yes Phenyl Yes Comparative example 1 Yes no Yes Comparative example 2 Yes Yes methyl no Comparative example 3 no Yes methyl Yes

分別對實施例1-3以及對比例1所製備的二氧化矽進行紅外測試,請參閱圖3以及圖4,其吸收峰的位置與對應的基團如表4及表5所示。 表4 基團 吸收峰的位置(cm-1 ) -OH 3500 非對稱C=C 1594 對稱C=C 1417 Si-O-Si 1030以及1130 Si-CH3 1287 N-H 3000 The infrared test was performed on the silica prepared in Examples 1-3 and Comparative Example 1, please refer to FIG. 3 and FIG. 4, and the positions of the absorption peaks and the corresponding groups are shown in Tables 4 and 5. Table 4 Group The position of the absorption peak (cm -1 ) -OH 3500 Asymmetric C=C 1594 Symmetrical C=C 1417 Si-O-Si 1030 and 1130 Si-CH 3 1287 NH 3000

由於實施例1製備的多孔二氧化矽相比於其他的二氧化矽具有甲基,位於1287 cm-1 (屬於Si-CH3 )的特徵峰明顯;實施例2製備的多孔二氧化矽相比於其他的二氧化矽具有乙烯基,位於1594cm-1 (屬於非對稱C=C)以及1417cm-1 (屬於對稱C=C)的特徵峰明顯;對比例1製備的二氧化矽具有胺基而沒有疏水基,因此位於3000 cm-1 (屬於N-H)的特徵峰明顯。 表5 基團 吸收峰的位置(cm-1 ) 烷烴C-H 747 Si-O-Si 1049以及1134 芳香族C=C 1508以及1603 C-N 1325 芳香族C-H 3020以及3047 N-H 3412 Since the porous silica prepared in Example 1 has a methyl group compared to other silicas, the characteristic peak at 1287 cm -1 (belonging to Si-CH 3 ) is obvious; compared with the porous silica prepared in Example 2 Other silicon dioxides have vinyl groups, and the characteristic peaks at 1594 cm -1 (belonging to asymmetric C=C) and 1417 cm -1 (belonging to symmetric C=C) are obvious; the silicon dioxide prepared in Comparative Example 1 has an amine group and There is no hydrophobic group, so the characteristic peak at 3000 cm -1 (belonging to NH) is obvious. table 5 Group The position of the absorption peak (cm -1 ) Alkane CH 747 Si-O-Si 1049 and 1134 Aromatic C=C 1508 and 1603 CN 1325 Aromatic CH 3020 and 3047 NH 3412

實施例1製備的多孔二氧化矽相比於其他的二氧化矽具有苯基,位於1508cm-1 以及1603cm-1 屬於芳香族C=C的特徵峰明顯,位於3020cm-1 以及3047cm-1 屬於芳香族C-H的特徵峰明顯。Porous silicon dioxide prepared in Example 1 compared to other silicon dioxide having a phenyl group, and a characteristic peak located 1508cm -1 1603cm -1 C = C aromatic belonging obvious located 3020cm -1 and 3047cm -1 belonging to an aromatic The characteristic peak of group CH is obvious.

分別對實施例1-2以及對比例1所製備的二氧化矽進行核磁共振測試,測試結果如圖5A和圖5C所示。其中圖5A為矽譜測試,圖5C為碳譜測試。The silicon dioxide prepared in Example 1-2 and Comparative Example 1 were subjected to nuclear magnetic resonance tests respectively, and the test results are shown in FIG. 5A and FIG. 5C. Figure 5A is a silicon spectrum test, and Figure 5C is a carbon spectrum test.

其中,矽譜測試中,T代表有機矽的位移,Q代表無機矽的位移,T2 、T3 、Q3 以及Q4 代表的矽在化合物中的位置如圖5B所示。實施例1是、實施例2以及對比例1中T2 、T3 、Q3 以及Q4 的位移如表6所示。從對比例1中看出,所述第一矽烷化合物水解聚合完全具有Q3 (-111.70 ppm)與Q4 (-120.87 ppm),所述第三矽烷化合物水解聚合完全具有T3 (-76.69 ppm);實施例1的第一矽烷化合物水解聚合完全具有Q3 (-111.40 ppm)與Q4 (-122.14 ppm),第二矽烷化合物與第三矽烷化合物水解聚合完全具有T3 (-76.46 ppm);實施例2的第一矽烷化合物水解聚合完全具有Q3 (-112.14ppm)與Q4 (-122.89 ppm),第二矽烷化合物與第三矽烷化合物水解聚合完全具有T3 (-92.32 ppm)。從實施例1與實施例2的Q3 信號相對於對比例1大幅減少,說明實施例1與實施例2的第二矽烷化合物與第三矽烷化合物充分與第一矽烷化合物結合。 表6   Q4 (ppm) Q3 (ppm) T3 (ppm) T2 (ppm) 實施例1 -122.14 -111.40 -76.46 -67.96 實施例2 -122.89 -122.14 -92.32 -83.41 對比例1 -120.87 -111.70 -76.69 -70.94 Among them, in the silicon spectrum test, T represents the displacement of organic silicon, Q represents the displacement of inorganic silicon, and the positions of silicon in the compound represented by T 2 , T 3 , Q 3 and Q 4 are shown in Fig. 5B. In Example 1, the displacements of T 2 , T 3 , Q 3 and Q 4 in Example 2 and Comparative Example 1 are shown in Table 6. It can be seen from Comparative Example 1 that the hydrolysis and polymerization of the first silane compound completely has Q 3 (-111.70 ppm) and Q 4 (-120.87 ppm), and the hydrolysis and polymerization of the third silane compound completely has T 3 (-76.69 ppm). ); The hydrolysis polymerization of the first silane compound of Example 1 completely has Q 3 (-111.40 ppm) and Q 4 (-122.14 ppm), and the hydrolysis and polymerization of the second silane compound and the third silane compound completely have T 3 (-76.46 ppm) The hydrolysis and polymerization of the first silane compound of Example 2 completely have Q 3 (-112.14 ppm) and Q 4 (-122.89 ppm), and the hydrolysis and polymerization of the second silane compound and the third silane compound completely have T 3 (-92.32 ppm). From Example 1 and Example 2 Q 3 signal with respect to Comparative Example 1 significantly reduced, described in Example 1 of the second full Silane compound of Example 2 in conjunction with the third Silane Silane compound with a first compound. Table 6 Q 4 (ppm) Q 3 (ppm) T 3 (ppm) T 2 (ppm) Example 1 -122.14 -111.40 -76.46 -67.96 Example 2 -122.89 -122.14 -92.32 -83.41 Comparative example 1 -120.87 -111.70 -76.69 -70.94

從圖5C可以看出,實施例1製備的多孔二氧化矽具有甲基,位於-2.2609ppm(屬於甲基中的碳)的特徵峰明顯;實施例2製備的多孔二氧化矽具有乙烯基,位於131.2644ppm以及136.7204(分別依次屬於乙烯基中的碳)的特徵峰明顯;對比例1製備的二氧化矽僅具有胺基基團,位於10.7371ppm、22.6561 ppm以及43.9768 ppm(分別依次屬於-CH2 CH2 CH2 NH2 中的碳)的特徵峰明顯。It can be seen from Figure 5C that the porous silica prepared in Example 1 has a methyl group, and the characteristic peak at -2.2609ppm (belonging to the carbon in the methyl group) is obvious; the porous silica prepared in Example 2 has a vinyl group, The characteristic peaks at 131.2644ppm and 136.7204 (respectively belong to the carbon in the vinyl group) are obvious; the silica prepared in Comparative Example 1 only has amine groups, located at 10.7371ppm, 22.6561 ppm and 43.9768 ppm (respectively belong to -CH 2 CH 2 CH 2 NH 2 carbon) characteristic peaks are obvious.

分別對實施例1-3以及對比例1所製備的二氧化矽進行比表面積以及孔徑進行測試。其中,圖6A、圖7A、圖8A及圖9A分別為實施例1-3以及對比例1所製備的二氧化矽的比表面積測試圖;圖6B、圖7B、圖8B及圖9B分別為實施例1-3以及對比例1所製備的二氧化矽的孔徑分佈圖。另分別對實施例1-3以及對比例1所製備的二氧化矽在100℃下的進行吸水率測試。比表面積、孔徑以及吸水率測試結果如表7所示。 表7   比表面積(m2 /g) 孔徑(nm) 吸水率(%) 實施例1 754.43 5.80 0.29 實施例2 558.23 6.03 1.82 實施例3 87.92 12.89 0.58 對比例1 423.78 4.90 7.56 The specific surface area and pore diameter of the silica prepared in Examples 1-3 and Comparative Example 1 were tested respectively. Among them, Figure 6A, Figure 7A, Figure 8A and Figure 9A are the specific surface area test diagrams of the silicon dioxide prepared in Examples 1-3 and Comparative Example 1, respectively; Figure 6B, Figure 7B, Figure 8B and Figure 9B are respectively the implementation Pore size distribution diagrams of the silica prepared in Examples 1-3 and Comparative Example 1. In addition, the water absorption rate of the silica prepared in Examples 1-3 and Comparative Example 1 was tested at 100°C. The test results of specific surface area, pore size and water absorption are shown in Table 7. Table 7 Specific surface area (m 2 /g) Aperture (nm) Water absorption rate (%) Example 1 754.43 5.80 0.29 Example 2 558.23 6.03 1.82 Example 3 87.92 12.89 0.58 Comparative example 1 423.78 4.90 7.56

從表7的結果可知,實施例1-3製備的多孔二氧化矽均具有較大的比表面積,且孔洞均為中孔。It can be seen from the results in Table 7 that the porous silica prepared in Examples 1-3 all have a relatively large specific surface area, and the pores are all mesopores.

從表7的結果可知,對比例1相較於實施例1-3的吸水率最高,這是由於對比例1製備過程中沒有添加第二矽烷化合物,即沒有添加具有疏水性能的基團,其吸水率主要是由於胺基的吸水性能導致;而實施例1-3製備的二氧化矽都具有疏水基團,因此吸水率下降。It can be seen from the results in Table 7 that Comparative Example 1 has the highest water absorption rate compared to Examples 1-3. This is because the second silane compound is not added during the preparation of Comparative Example 1, that is, no hydrophobic group is added. The water absorption rate is mainly due to the water absorption performance of the amine group; and the silica prepared in Examples 1-3 all have hydrophobic groups, so the water absorption rate decreases.

以下藉由實施例1-3及對比例1-3所製備的二氧化矽作為原料製備聚醯亞胺複合材料以及環氧樹脂複合材料。The following uses the silica prepared in Examples 1-3 and Comparative Examples 1-3 as raw materials to prepare polyimide composite materials and epoxy resin composite materials.

實施例4Example 4

向500mL的四口圓底反應槽中加入203.88gNMP作為溶劑、20.02g(0.1mol)ODA(二胺單體)以及1.53g實施例1製備的含有甲基基團的二氧化矽,攪拌至所述二胺單體完全溶解。其中,二氧化矽的品質占合成聚醯亞胺複合材料理論品質的3%。Add 203.88g of NMP as solvent, 20.02g (0.1mol) ODA (diamine monomer) and 1.53g of silicon dioxide containing methyl group prepared in Example 1 into a 500mL four-neck round-bottomed reaction tank, and stir to The diamine monomer is completely dissolved. Among them, the quality of silicon dioxide accounts for 3% of the theoretical quality of synthetic polyimide composite materials.

加入29.42g(0.1mol)BPDA(二酐單體),攪拌24h,得到聚醯胺酸溶液。Add 29.42g (0.1mol) BPDA (dianhydride monomer) and stir for 24h to obtain a polyamide acid solution.

將所述聚醯胺酸溶液塗布於一銅箔上,在140℃下預烘烤10min;然後在高溫氮氣烘箱中依次在150℃下烘烤5min,200℃下烘烤5min,250℃下烘烤5min,300℃下烘烤30min,350℃下烘烤30min。最後採用刻蝕液將所述銅箔去除,得到聚醯亞胺複合材料。The polyamide acid solution was coated on a copper foil and pre-baked at 140°C for 10 minutes; then in a high-temperature nitrogen oven, baked at 150°C for 5 minutes, 200°C for 5 minutes, and 250°C. Bake for 5 minutes, 300°C for 30 minutes, and 350°C for 30 minutes. Finally, an etching solution is used to remove the copper foil to obtain a polyimide composite material.

實施例5Example 5

與實施例4不同的是:二氧化矽為實施例1製備的含有甲基基團的二氧化矽,所述二氧化矽的品質占合成聚醯亞胺複合材料理論品質的5%。The difference from Example 4 is that the silicon dioxide is the methyl group-containing silicon dioxide prepared in Example 1, and the quality of the silicon dioxide accounts for 5% of the theoretical quality of the synthetic polyimide composite material.

其他與實施例4相同,這裡不再贅述。Others are the same as in Embodiment 4, and will not be repeated here.

對比例4Comparative example 4

與實施例4不同的是:不添加二氧化矽。The difference from Example 4 is that no silicon dioxide is added.

其他與實施例4相同,這裡不再贅述。Others are the same as in Embodiment 4, and will not be repeated here.

對比例5Comparative example 5

與實施例4不同的是:二氧化矽為對比例1製備的不含疏水基團的二氧化矽,所述二氧化矽的品質占合成聚醯亞胺複合材料理論品質的5%。The difference from Example 4 is that the silica is the silica prepared in Comparative Example 1 without hydrophobic groups, and the quality of the silica accounts for 5% of the theoretical quality of the synthetic polyimide composite material.

其他與實施例4相同,這裡不再贅述。Others are the same as in Embodiment 4, and will not be repeated here.

對比例6Comparative example 6

與實施例4不同的是:二氧化矽為對比例2製備的無孔洞的二氧化矽,所述二氧化矽的品質占合成聚醯亞胺複合材料理論品質的5%。The difference from Example 4 is that the silicon dioxide is the non-porous silicon dioxide prepared in Comparative Example 2, and the quality of the silicon dioxide accounts for 5% of the theoretical quality of the synthetic polyimide composite material.

其他與實施例4相同,這裡不再贅述。Others are the same as in Embodiment 4, and will not be repeated here.

對比例7Comparative example 7

與實施例4不同的是:二氧化矽為對比例2製備的不含胺基基團的二氧化矽,所述二氧化矽的品質占合成聚醯亞胺複合材料理論品質的5%。The difference from Example 4 is that the silicon dioxide is the silicon dioxide without amine groups prepared in Comparative Example 2, and the quality of the silicon dioxide accounts for 5% of the theoretical quality of the synthetic polyimide composite material.

其他與實施例4相同,這裡不再贅述。Others are the same as in Embodiment 4, and will not be repeated here.

實施例4-5以及對比例4-7部分具體處理條件如表8。 表8   二氧化矽來源 二氧化矽特點 二氧化矽含量 實施例4 實施例1 具有孔洞、甲基以及胺基 3% 實施例5 實施例1 具有孔洞、甲基以及胺基 5% 對比例4 對比例5 對比例1 具有孔洞以及胺基,但不含疏水基 5% 對比例6 對比例3 不含孔洞但具有甲基以及胺基 5% 對比例7 對比例2 具有孔洞以及甲基,但不含胺基 5% The specific treatment conditions of Examples 4-5 and Comparative Examples 4-7 are shown in Table 8. Table 8 Source of Silicon Dioxide Features of Silicon Dioxide Silica content Example 4 Example 1 With holes, methyl groups and amino groups 3% Example 5 Example 1 With holes, methyl groups and amino groups 5% Comparative example 4 Comparative example 5 Comparative example 1 Possess pores and amine groups, but does not contain hydrophobic groups 5% Comparative example 6 Comparative example 3 No holes but with methyl and amino groups 5% Comparative example 7 Comparative example 2 Has holes and methyl groups, but does not contain amine groups 5%

分別測試實施例4-5以及對比例4-7製備的聚醯亞胺複合材料的介電常數(Dk)以及介質損耗(Df),其結果如表9所示。 表9   Dk(10GHz) Df(10GHz) 實施例4 2.85±0.01 0.009±0.001 實施例5 2.78±0.01 0.010±0.001 對比例4 3.24±0.01 0.009±0.001 對比例5 3.59±0.01 0.019±0.001 對比例6 3.38±0.01 0.011±0.001 對比例7 二氧化矽分散不佳 The dielectric constant (Dk) and dielectric loss (Df) of the polyimide composite materials prepared in Examples 4-5 and Comparative Examples 4-7 were tested respectively, and the results are shown in Table 9. Table 9 Dk (10GHz) Df (10GHz) Example 4 2.85±0.01 0.009±0.001 Example 5 2.78±0.01 0.010±0.001 Comparative example 4 3.24±0.01 0.009±0.001 Comparative example 5 3.59±0.01 0.019±0.001 Comparative example 6 3.38±0.01 0.011±0.001 Comparative example 7 Poorly dispersed silica

藉由實施例4-5與對比例4的結果可知,實施例4與實施例5提供的二氧化矽具有甲基作為疏水基團,降低水分對介電常數的影響;同時實施例4與實施例5提供的二氧化矽具有孔洞,孔洞中填充的空氣的介電常數為1,隨著二氧化矽添加量的增加進一步減小介電常數,從而降低製備的聚醯亞胺複合材料的介電常數。According to the results of Examples 4-5 and Comparative Example 4, it can be seen that the silicon dioxide provided in Examples 4 and 5 has a methyl group as a hydrophobic group to reduce the influence of moisture on the dielectric constant; at the same time, Example 4 and implementation The silicon dioxide provided in Example 5 has holes, and the dielectric constant of the air filled in the holes is 1. With the increase of the amount of silicon dioxide, the dielectric constant is further reduced, thereby reducing the dielectric constant of the prepared polyimide composite material. Electric constant.

藉由實施例5與對比例5的結果可知,對比例5中的二氧化矽雖然具有孔洞,且具有胺基,從而使所述二氧化矽具有較好的相容性,但由於胺基為親水基團,增加了聚醯亞胺複合材料的吸水性,從而增加了水分對Dk值以及Df值的影響。From the results of Example 5 and Comparative Example 5, it can be seen that although the silica in Comparative Example 5 has pores and an amine group, so that the silica has better compatibility, but because the amine group is The hydrophilic group increases the water absorption of the polyimide composite material, thereby increasing the influence of moisture on the Dk value and Df value.

藉由實施例5與對比例4及對比例6的結果可知,對比例6中的二氧化矽不包含孔洞而無法降低Dk值,對比例6相較於對比例4,反而增加了聚醯亞胺複合材料的Dk值。其中,二氧化矽本身的Dk值為3.9,不添加二氧化矽的聚醯亞胺複合材料(即實施例4)的Dk值為3.24。From the results of Example 5, Comparative Example 4 and Comparative Example 6, it can be seen that the silica in Comparative Example 6 does not contain pores and cannot reduce the Dk value. Compared with Comparative Example 4, Comparative Example 6 has increased polyamide. Dk value of amine composite material. Among them, the Dk value of silicon dioxide itself is 3.9, and the Dk value of the polyimide composite material without adding silicon dioxide (ie, Example 4) is 3.24.

對比例7中,由於二氧化矽未含有胺基基團,二氧化矽團聚,導致二氧化矽分散性不好,與二胺單體及二酐單體的相容性較差。In Comparative Example 7, since silica did not contain amine groups, silica agglomerated, resulting in poor dispersibility of silica and poor compatibility with diamine monomers and dianhydride monomers.

實施例6Example 6

向250mL塑膠廣口瓶中加入1.77g雙酚A環氧樹脂以及1.23g雙環戊二烯苯酚型環氧樹脂,然後加入3.38g氫氧化鋁,最後加入溶劑MEK7.83g,攪拌2h。Add 1.77 g of bisphenol A epoxy resin and 1.23 g of dicyclopentadiene phenol type epoxy resin to a 250 mL plastic jar, then add 3.38 g of aluminum hydroxide, and finally add solvent MEK 7.83 g, and stir for 2 hours.

加入0.66g實施例1製備的含有甲基基團的二氧化矽,攪拌分散。其中,二氧化矽的品質占合成環氧樹脂複合材料理論品質的3%。Add 0.66 g of the silicon dioxide containing methyl groups prepared in Example 1 and stir to disperse. Among them, the quality of silicon dioxide accounts for 3% of the theoretical quality of synthetic epoxy resin composites.

再加入0.38g固化劑DDS以及15.42g橡膠溶液,使溶劑MEK中的固含量為17%。Then add 0.38g curing agent DDS and 15.42g rubber solution to make the solid content in the solvent MEK 17%.

將配製好的環氧樹脂前驅體塗布於一銅箔上,在140℃下預烘烤2min;然後在烘箱中以160℃烘烤2h以使所述環氧樹脂前驅體進行熱固化反應。最後採用刻蝕液將所述銅箔去除,得到環氧樹脂複合材料。The prepared epoxy resin precursor is coated on a copper foil, and pre-baked at 140° C. for 2 minutes; then, it is baked in an oven at 160° C. for 2 hours to make the epoxy resin precursor undergo a thermal curing reaction. Finally, an etching solution is used to remove the copper foil to obtain an epoxy resin composite material.

實施例7Example 7

與實施例6不同的是:二氧化矽為實施例2製備的含有乙烯基基團的二氧化矽。The difference from Example 6 is that the silicon dioxide is the silicon dioxide containing vinyl groups prepared in Example 2.

其他與實施例6相同,這裡不再贅述。Others are the same as in Embodiment 6, and will not be repeated here.

實施例8Example 8

與實施例6不同的是:二氧化矽為實施例3製備的含有苯基基團的二氧化矽。The difference from Example 6 is that the silica is the silica prepared in Example 3 containing a phenyl group.

其他與實施例6相同,這裡不再贅述。Others are the same as in Embodiment 6, and will not be repeated here.

對比例8Comparative example 8

與實施例6不同的是:不添加二氧化矽。The difference from Example 6 is that no silicon dioxide is added.

其他與實施例6相同,這裡不再贅述。Others are the same as in Embodiment 6, and will not be repeated here.

實施例6-8以及對比例8部分具體處理條件如表10。 表10   二氧化矽來源 二氧化矽特點 實施例6 實施例1 具有孔洞、甲基以及胺基 實施例7 實施例2 具有孔洞、乙烯基以及胺基 實施例8 實施例3 具有孔洞、苯基以及胺基 對比例8 The specific treatment conditions of Examples 6-8 and Comparative Example 8 are shown in Table 10. Table 10 Source of Silicon Dioxide Features of Silicon Dioxide Example 6 Example 1 With holes, methyl groups and amino groups Example 7 Example 2 With holes, vinyl groups and amino groups Example 8 Example 3 With holes, phenyl groups and amino groups Comparative example 8

分別測試實施例6-8以及對比例8製備的環氧樹脂複合材料的介電常數(Dk)以及介質損耗(Df),其結果如表11所示。 表11   Dk(10GHz) Df(10GHz) 實施例6 4.64±0.01 0.058±0.01 實施例7 8.99±0.01 0.064±0.01 實施例8 8.33±0.01 0.060±0.01 對比例8 5.09±0.01 0.071±0.01 The dielectric constant (Dk) and dielectric loss (Df) of the epoxy resin composite materials prepared in Examples 6-8 and Comparative Example 8 were tested respectively, and the results are shown in Table 11. Table 11 Dk (10GHz) Df (10GHz) Example 6 4.64±0.01 0.058±0.01 Example 7 8.99±0.01 0.064±0.01 Example 8 8.33±0.01 0.060±0.01 Comparative example 8 5.09±0.01 0.071±0.01

藉由實施例6與對比例8的結果可知,實施例6提供的二氧化矽具有甲基作為疏水基團,降低水分對介電常數的影響;同時實施例6提供的二氧化矽具有孔洞,孔洞中填充的空氣的介電常數為1,進一步減小介電常數,從而降低製備的聚醯亞胺複合材料的介電常數。From the results of Example 6 and Comparative Example 8, it can be seen that the silica provided in Example 6 has a methyl group as a hydrophobic group to reduce the influence of moisture on the dielectric constant; meanwhile, the silica provided in Example 6 has holes, The dielectric constant of the air filled in the hole is 1, which further reduces the dielectric constant, thereby reducing the dielectric constant of the prepared polyimide composite material.

藉由實施例6與實施例7-8的結果可知,實施例6-8提供的二氧化矽都具有疏水基團,可以降低水分對Dk值及Df值的影響,其中乙烯基及苯基中都具有C=C的高摩爾極化率基團,根據克勞修斯-摸索提(Claslius-Mosotti)公式計算可知,高摩爾極化率基團能夠增加Dk值。其中,Claslius-Mosotti公式如下:

Figure 02_image001
From the results of Example 6 and Example 7-8, it can be seen that the silica provided in Examples 6-8 all have hydrophobic groups, which can reduce the influence of moisture on the Dk value and Df value. Among them, the vinyl group and the phenyl group have hydrophobic groups. All have C=C high molar susceptibility groups. According to the Claslius-Mosotti formula calculation, it can be seen that the high molar susceptibility groups can increase the Dk value. Among them, the Claslius-Mosotti formula is as follows:
Figure 02_image001

其中,Pm 為原子團的摩爾極化率,Vm 為原子團的摩爾體積,ε為介電常數。Among them, P m is the molar polarizability of the atomic group, V m is the molar volume of the atomic group, and ε is the dielectric constant.

另外,藉由添加的二氧化矽的含量來對製備的聚醯亞胺複合材料的潤濕性能探討。其中,部分具體的處理條件以及接觸角的測試結果如表12所示。 表12   二氧化矽來源 二氧化矽含量(%) 接觸角 實施例9 實施例2 1 75.58 實施例10 實施例2 3 75.45 實施例11 實施例1 1 80.99 實施例12 實施例1 3 87.52 對比例9 74.81 對比例10 對比例1 1 53.62 對比例11 對比例1 3 26.39 In addition, the wettability of the prepared polyimide composite was discussed by the content of added silica. Among them, some specific processing conditions and the test results of the contact angle are shown in Table 12. Table 12 Source of Silicon Dioxide Silicon dioxide content (%) Contact angle Example 9 Example 2 1 75.58 Example 10 Example 2 3 75.45 Example 11 Example 1 1 80.99 Example 12 Example 1 3 87.52 Comparative example 9 74.81 Comparative example 10 Comparative example 1 1 53.62 Comparative example 11 Comparative example 1 3 26.39

從表12中可以看出,對比例10-11相較於對比例9,由於添加了對比例1製備的二氧化矽,對比例1製備的二氧化矽含有胺基,但不含疏水基,因此增加了複合材料的親水性能,導致接觸角減小;實施例9-12相較於對比例9,添加了實施例1或實施例2製備的具有疏水基團的二氧化矽,從而降低了複合材料的親水性,增加了接觸角。It can be seen from Table 12 that compared to Comparative Examples 10-11, since the silica prepared in Comparative Example 1 is added, the silica prepared in Comparative Example 1 contains amine groups but no hydrophobic groups. Therefore, the hydrophilic properties of the composite material are increased, resulting in a decrease in the contact angle; compared with Comparative Example 9, Examples 9-12 are added with the silica with hydrophobic groups prepared in Example 1 or Example 2, thereby reducing The hydrophilicity of the composite material increases the contact angle.

本發明提供的多孔二氧化矽的製備方法,藉由清洗水溶性模板劑便可在二氧化矽粉體中產生孔洞,代替傳統方法的高溫煆燒步驟,防止二氧化矽表面的-Si-OH因高溫煆燒而導致不可控,並簡化制程,節約成本;其次,所述製備方法藉由採用分別具有疏水基團和胺基基團的第二矽烷化合物以及第三矽烷化合物,從而直接在二氧化矽粉體上形成疏水基團和親水基團,省略傳統的在高溫煆燒後所需的表面改性的步驟,而且,藉由控制第二矽烷化合物和第三矽烷化合物的加入比例,即可得到具有疏水基團與親水基團平衡的多孔二氧化矽;所述製備方法製備的多孔二氧化矽具有孔洞(孔洞中空氣的介電常數約為1),當所述多孔二氧化矽應用於製備複合材料時,有利於降低複合材料的介電常數。由於本發明提供的多孔二氧化矽同時具有疏水基團與親水基團,所述多孔二氧化矽用於製備絕緣樹脂時,既能保證所述多孔二氧化矽的分散性,又能保證相容性,還能降低絕緣樹脂的介電常數。The method for preparing porous silica provided by the present invention can generate pores in silica powder by cleaning the water-soluble template, instead of the high-temperature sintering step of the traditional method, and prevent -Si-OH on the surface of the silica It is uncontrollable due to high-temperature sintering, and simplifies the process and saves costs; secondly, the preparation method uses a second silane compound and a third silane compound with a hydrophobic group and an amine group, respectively, so as to directly use the second silane compound. Hydrophobic groups and hydrophilic groups are formed on the silica powder, and the traditional surface modification steps required after high-temperature sintering are omitted. Moreover, by controlling the addition ratio of the second silane compound and the third silane compound, that is, Porous silica with a balance of hydrophobic groups and hydrophilic groups can be obtained; the porous silica prepared by the preparation method has pores (the dielectric constant of the air in the pores is about 1), when the porous silica is used When preparing composite materials, it is beneficial to reduce the dielectric constant of composite materials. Since the porous silica provided by the present invention has both a hydrophobic group and a hydrophilic group, when the porous silica is used to prepare an insulating resin, it can not only ensure the dispersibility of the porous silica, but also ensure compatibility It can also reduce the dielectric constant of the insulating resin.

以上實施方式僅用以說明本發明的技術方案而非限制,儘管參照以上較佳實施方式對本發明進行了詳細說明,本領域的普通技術人員應當理解,可以對本發明的技術方案進行修改或等同替換都不應脫離本發明技術方案的精神和範圍。The above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be modified or equivalently replaced. None should deviate from the spirit and scope of the technical solution of the present invention.

圖1為本發明實施例提供的一種多孔二氧化矽的製備方法流程圖。 圖2A為第一矽烷化合物在溶劑中的反應過程示意圖。 圖2B為第一矽烷化合物、第二矽烷化合物以及第三矽烷化合物在溶劑中的反應過程示意圖。 圖3為實施例1-2以及對比例1所製備的二氧化矽進行紅外測試圖。 圖4為實施例3所製備的二氧化矽進行紅外測試圖。 圖5A為實施例1-2以及對比例1所製備的二氧化矽進行矽譜核磁共振測試圖。 圖5B為矽譜核磁共振中有機矽及無機矽在化合物中的位置示意圖。 圖5C為實施例1-2以及對比例1所製備的二氧化矽進行碳譜核磁共振測試圖。 圖6A為實施例1所製備的二氧化矽的比表面積測試圖。 圖6B為實施例1所製備的二氧化矽的孔徑分佈測試圖。 圖7A為實施例2所製備的二氧化矽的比表面積測試圖。 圖7B為實施例2所製備的二氧化矽的孔徑分佈測試圖。 圖8A為實施例3所製備的二氧化矽的比表面積測試圖。 圖8B為實施例3所製備的二氧化矽的孔徑分佈測試圖。 圖9A為對比例1所製備的二氧化矽的比表面積測試圖。 圖9B為對比例1所製備的二氧化矽的孔徑分佈測試圖。Fig. 1 is a flow chart of a method for preparing porous silica provided by an embodiment of the present invention. 2A is a schematic diagram of the reaction process of the first silane compound in a solvent. 2B is a schematic diagram of the reaction process of the first silane compound, the second silane compound, and the third silane compound in a solvent. FIG. 3 is an infrared test diagram of the silicon dioxide prepared in Example 1-2 and Comparative Example 1. FIG. 4 is an infrared test diagram of the silicon dioxide prepared in Example 3. FIG. 5A is a graph of silicon spectrum nuclear magnetic resonance test of the silicon dioxide prepared in Example 1-2 and Comparative Example 1. FIG. FIG. 5B is a schematic diagram of the positions of organic silicon and inorganic silicon in the compound in the silicon spectrum nuclear magnetic resonance. 5C is a carbon spectrum nuclear magnetic resonance test diagram of the silicon dioxide prepared in Example 1-2 and Comparative Example 1. FIG. 6A is a test diagram of the specific surface area of the silicon dioxide prepared in Example 1. FIG. FIG. 6B is a test diagram of the pore size distribution of the silicon dioxide prepared in Example 1. FIG. FIG. 7A is a test diagram of the specific surface area of the silicon dioxide prepared in Example 2. FIG. FIG. 7B is a test diagram of the pore size distribution of the silicon dioxide prepared in Example 2. FIG. FIG. 8A is a test diagram of the specific surface area of the silicon dioxide prepared in Example 3. FIG. FIG. 8B is a test diagram of the pore size distribution of the silicon dioxide prepared in Example 3. FIG. FIG. 9A is a test chart of the specific surface area of the silicon dioxide prepared in Comparative Example 1. FIG. FIG. 9B is a test diagram of the pore size distribution of the silicon dioxide prepared in Comparative Example 1. FIG.

無。no.

Claims (11)

一種多孔二氧化矽的製備方法,其改良在於,包括以下步驟: 提供一水溶性模板劑及溶劑,將所述水溶性模板劑溶於所述溶劑中得到混合溶液; 加入第一矽烷化合物、第二矽烷化合物以及第三矽烷化合物至所述混合溶液中,所述第一矽烷化合物在所述混合溶液中的摩爾濃度為0.02mol/L-0.08mol/L,所述第二矽烷化合物在所述混合溶液中的摩爾濃度為0.02mol/L-0.08mol/L,所述第三矽烷化合物在所述混合溶液中的摩爾濃度為0.002mol/L-0.006mol/L,所述第一矽烷化合物、所述第二矽烷化合物和所述第三矽烷化合物均水解生成二氧化矽,並以水溶性模板劑為模板進行溶膠凝膠反應,得到中間產物;其中,所述第二矽烷化合物包括疏水基團,所述第三矽烷化合物包括胺基基團;以及 清洗並乾燥所述中間產物,使得所述水溶性模板溶解並去除,得到所述多孔二氧化矽。A preparation method of porous silica, which is improved in that it includes the following steps: Provide a water-soluble template and a solvent, and dissolve the water-soluble template in the solvent to obtain a mixed solution; The first silane compound, the second silane compound, and the third silane compound are added to the mixed solution, and the molar concentration of the first silane compound in the mixed solution is 0.02 mol/L-0.08 mol/L. The molar concentration of the second silane compound in the mixed solution is 0.02 mol/L-0.08 mol/L, and the molar concentration of the third silane compound in the mixed solution is 0.002 mol/L-0.006 mol/L, The first silane compound, the second silane compound, and the third silane compound are all hydrolyzed to generate silicon dioxide, and the water-soluble template is used as a template to perform a sol-gel reaction to obtain an intermediate product; wherein, the first The disilane compound includes a hydrophobic group, and the third silane compound includes an amine group; and The intermediate product is washed and dried, so that the water-soluble template is dissolved and removed to obtain the porous silica. 如申請專利範圍第1項所述之多孔二氧化矽的製備方法,其中所述第一矽烷化合物的化學式為Si-(OR)4 ,其中,R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2。The method for preparing porous silica as described in item 1 of the scope of patent application, wherein the chemical formula of the first silane compound is Si-(OR) 4 , wherein R is a saturated alkane group, and the carbon of the saturated alkane group is The number of atoms is n, where n is an integer, and 1≤n≤2. 如申請專利範圍第1項所述之多孔二氧化矽的製備方法,其中所述第二矽烷化合物的化學式為R1-Si-(OR)3 ,其中,R1 為所述疏水基團,R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2,R1 包括直鏈烷烴基、環烷基、乙烯基以及苯基中的至少一種。The method for preparing porous silica as described in item 1 of the scope of patent application, wherein the chemical formula of the second silane compound is R1-Si-(OR) 3 , wherein R 1 is the hydrophobic group, and R is A saturated alkane group, the number of carbon atoms of the saturated alkane group is n, where n is an integer and 1≤n≤2, and R 1 includes at least one of a linear alkane group, a cycloalkyl group, a vinyl group, and a phenyl group. 如申請專利範圍第1項所述之多孔二氧化矽的製備方法,其中所述第三矽烷化合物的化學式為R2 -Si-(OR)3 ,其中, R為飽和烷烴基,所述飽和烷烴基的碳原子數為n,其中n為整數,且1≤n≤2;R2 包括-NH2The method for preparing porous silica as described in item 1 of the scope of patent application, wherein the chemical formula of the third silane compound is R 2 -Si-(OR) 3 , wherein R is a saturated alkane group, and the saturated alkane The number of carbon atoms of the group is n, where n is an integer and 1≤n≤2; R 2 includes -NH 2 . 如申請專利範圍第1項所述之多孔二氧化矽的製備方法,其中所述水溶性模板劑為糖類,所述水溶性模板劑在所述混合溶液中的摩爾濃度為0.05mol/L-0.20mol/L。The method for preparing porous silica as described in item 1 of the scope of patent application, wherein the water-soluble template is a carbohydrate, and the molar concentration of the water-soluble template in the mixed solution is 0.05 mol/L-0.20 mol/L. 如申請專利範圍第1項所述之多孔二氧化矽的製備方法,其中在加入所述第一矽烷化合物、所述第二矽烷化合物以及所述第三矽烷化合物之前,所述製備方法還包括向所述混合溶液中加入催化劑,所述催化劑包括酸或堿,所述催化劑在所述混合溶液中的摩爾濃度為0.1mol/L-0.5mol/L。The method for preparing porous silica as described in item 1 of the scope of patent application, wherein before adding the first silane compound, the second silane compound, and the third silane compound, the preparation method further includes A catalyst is added to the mixed solution, the catalyst includes an acid or a salt, and the molar concentration of the catalyst in the mixed solution is 0.1 mol/L-0.5 mol/L. 如申請專利範圍第1項所述之多孔二氧化矽的製備方法,其中所述溶劑為無機溶劑與有機溶劑的混合物,所述無機溶劑與所述有機溶劑的體積比為1-3:1-5。The method for preparing porous silica as described in item 1 of the scope of patent application, wherein the solvent is a mixture of an inorganic solvent and an organic solvent, and the volume ratio of the inorganic solvent to the organic solvent is 1-3:1- 5. 如申請專利範圍第1項所述之多孔二氧化矽的製備方法,其中所述溶膠凝膠反應的反應溫度為25℃-100℃。The method for preparing porous silica as described in item 1 of the scope of patent application, wherein the reaction temperature of the sol-gel reaction is 25°C-100°C. 一種多孔二氧化矽,其改良在於,所述多孔二氧化矽包括二氧化矽主體結構以及連接於所述二氧化矽主體結構上的疏水基團和胺基基團;所述二氧化矽主體結構包括多個孔洞,所述孔洞的孔徑為2nm-50nm,所述疏水基團與所述胺基基團的摩爾比為3.33-4.0。A porous silica, which is improved in that the porous silica includes a silica main structure and a hydrophobic group and an amine group connected to the silica main structure; the silica main structure It includes a plurality of pores, the pore diameter of the pores is 2 nm-50 nm, and the molar ratio of the hydrophobic group to the amino group is 3.33-4.0. 如申請專利範圍第9項所述之多孔二氧化矽,其中所述疏水基團包括直鏈烷烴基、環烷基、乙烯基以及苯基中的至少一種。The porous silica described in item 9 of the scope of patent application, wherein the hydrophobic group includes at least one of a linear alkane group, a cycloalkyl group, a vinyl group, and a phenyl group. 一種如申請專利範圍第9至10項任一項所述之多孔二氧化矽的應用,其改良在於,所述多孔二氧化矽應用於絕緣樹脂中。An application of the porous silica according to any one of items 9 to 10 in the scope of the patent application. The improvement is that the porous silica is used in an insulating resin.
TW108145568A 2019-12-12 2019-12-12 Method for processing porous silica , porous silica made, and application of the porous silica TWI721707B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108145568A TWI721707B (en) 2019-12-12 2019-12-12 Method for processing porous silica , porous silica made, and application of the porous silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108145568A TWI721707B (en) 2019-12-12 2019-12-12 Method for processing porous silica , porous silica made, and application of the porous silica

Publications (2)

Publication Number Publication Date
TWI721707B TWI721707B (en) 2021-03-11
TW202122347A true TW202122347A (en) 2021-06-16

Family

ID=76035961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108145568A TWI721707B (en) 2019-12-12 2019-12-12 Method for processing porous silica , porous silica made, and application of the porous silica

Country Status (1)

Country Link
TW (1) TWI721707B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001246832A1 (en) * 2000-04-04 2001-10-15 Asahi Kasei Kabushiki Kaisha Coating composition for the production of insulating thin films
DE102009029555A1 (en) * 2009-09-17 2011-03-24 Wacker Chemie Ag Continuous production of macroscopic silica materials with high specific surface and/or ordered pore structure, comprises continuously hydrolyzing homogeneous precursor and isolating silica particles as a macroscopic mold
CN110203938A (en) * 2019-06-10 2019-09-06 蚌埠学院 A kind of method and its application preparing multi-stage porous silicon dioxide ultrafine powder body for template based on glucan

Also Published As

Publication number Publication date
TWI721707B (en) 2021-03-11

Similar Documents

Publication Publication Date Title
EP2128193B1 (en) Porous polyimide
TWI466949B (en) Polyamic acid resin composition and polyimide film prepared therefrom
US10906009B2 (en) Method for manufacturing gas separation membrane
CN106750435B (en) A kind of preparation method of the ordered porous Kapton of low-k
TWI470003B (en) Polyamic acid polymer composite and method for producing same
US20060122350A1 (en) Convalently bonded polyhedral oligomeric silsesquioxane/polyimide nanocomposites and process for synthesizing the same
JP6967230B2 (en) Gas separation membrane containing irregularly shaped silica nanoparticles
US20070027284A1 (en) Covalently bonded polyhedral oligomeric silsesquioxane/polyimide nanocomposites and process for synthesizing the same
JP2013109842A (en) Manufacturing method of separator for lithium ion battery
CN112960675B (en) Porous silica, method for producing same and use thereof
CN112646372B (en) Polyimide film with low dielectric constant and application thereof
CN114891209A (en) Organosilicon modified polyimide film with low dielectric constant and preparation method thereof
CN114349962A (en) Low-dielectric-constant polyimide film and preparation method thereof
JP2005068347A (en) Polyimide composition, method for producing the same and use thereof
KR101086073B1 (en) Polyurea porous materials-polyimide composite membrane and method for fabricating the same
TWI818990B (en) Gas separation membrane manufacturing method
CN112143000B (en) Preparation method of all-organic PI/PVDF film composite material
TWI721707B (en) Method for processing porous silica , porous silica made, and application of the porous silica
JP4752993B2 (en) POLYIMIDE POROUS MEMBRANE AND METHOD FOR PRODUCING THE SAME
JPH11310411A (en) Production of organic-inorganic composite and porous silicon oxide
US10975218B2 (en) Nanoporous micro-spherical polyimide aerogels and method for preparing same
CN110387041A (en) A kind of polyimide composite film and preparation method thereof
KR102186186B1 (en) Organic―Inorganic Composite Particles and Method for Fabrication Thereof
CN113527735A (en) Low-dielectric polyimide film and preparation method thereof
JPS59113035A (en) Method for forming polyimide layer having improved adhesive property on ground surface consisting of material containing silicon