TW202121925A - 用於兩步隨機存取通道(rach)混合自動重傳請求(harq)的時延減少的系統和方法 - Google Patents

用於兩步隨機存取通道(rach)混合自動重傳請求(harq)的時延減少的系統和方法 Download PDF

Info

Publication number
TW202121925A
TW202121925A TW109133061A TW109133061A TW202121925A TW 202121925 A TW202121925 A TW 202121925A TW 109133061 A TW109133061 A TW 109133061A TW 109133061 A TW109133061 A TW 109133061A TW 202121925 A TW202121925 A TW 202121925A
Authority
TW
Taiwan
Prior art keywords
message
payload
random access
time
rar
Prior art date
Application number
TW109133061A
Other languages
English (en)
Inventor
敬 雷
穆罕默德納茲穆爾 伊斯萊
林海 何
阿米爾 阿密札帝勾哈瑞
余苑寧
以諾曉光 盧
黃義
鄭瑞銘
陳萬士
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202121925A publication Critical patent/TW202121925A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0836Random access procedures, e.g. with 4-step access with 2-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

提供了與兩步隨機存取通道(RACH)程序中的時序安排和傳輸間隙配置有關的無線通訊系統和方法,以改良RACH HARQ過程的系統時延和可靠性。UE傳輸包括隨機存取前序信號和有效負荷的第一訊息,並且隨後在隨機存取回應(RAR)訊窗期間監測回應於第一訊息的第二訊息。回應於決定在RAR訊窗內UE沒有從BS接收到第二訊息或者接收到後移指示符,UE在RAR訊窗過去之後重傳第一訊息的前序信號和有效負荷。回應於決定在RAR訊窗內接收到的第二訊息是攜帶後移RAR還是成功RAR,UE隨後基於後移RAR來決定要重傳第一訊息的有效負荷,或者基於成功RAR來決定要傳輸認可訊息。

Description

用於兩步隨機存取通道(RACH)混合自動重傳請求(HARQ)的時延減少的系統和方法
本專利申請案主張享受於2019年10月2日提出申請的共同待決且共同擁有的專利合作條約(PCT)國際申請案第PCT/CN2019/109800的優先權,據此將上述申請案經由引用的方式整體明確地併入本文。
下文論述的本案技術係關於無線通訊系統,並且更具體地,下文論述的本案技術係關於減少可以在第五代(5G)新無線電(NR)網路中使用的兩步隨機存取通道(RACH)混合自動重傳請求(HARQ)的重傳方案中的時延。
無線通訊系統被廣泛地部署以提供諸如語音、視訊、封包資料、訊息傳遞、廣播等等各種類型的通訊內容。該等系統能夠經由共享可用的系統資源(例如,時間、頻率以及功率)來支援與多個使用者的通訊。無線多工存取通訊系統可以包括多個基地站(BS),每個基地站同時支援針對多個通訊設備(其可以另外被稱為使用者設備(UE))的通訊。
在無線系統中,BS可以在複數個定向波束中廣播同步信號(諸如主要同步信號(PSS)、次要同步信號(SSS)和擴展同步信號(ESS))、波束參考信號(BRS)和系統資訊。另外,BS可以在波束上傳輸其他參考信號(諸如通道狀態資訊參考信號(CSI-RS)),以使UE能夠量測BS與對應UE之間的通道。UE可以經由監聽廣播信號來執行初始細胞獲取,並且基於同步信號、BRS及/或其他信號來執行信號量測。UE可以基於所接收的信號來決定接收信號強度,並且選擇細胞以及在所選擇的細胞內用於執行存取程序的波束。
為了執行存取程序,UE可以經由使用與所選擇的波束相同的子陣列和波束方向發送隨機存取前序信號來啟動隨機存取通道(RACH)程序,並且在隨機存取回應(RAR)訊窗中監測RAR。當BS偵測到隨機存取前序信號時,BS在與接收到隨機存取前序信號相同的波束方向上向UE發送RAR。RAR可以包括用於UE發送下一隨機存取訊息的傳輸機會。由於波束對應性、使用者行動性、旋轉及/或信號阻塞,波束特性可能會隨時間變化或在UE或BS處的上行鏈路和下行鏈路之間不同。因此,UE可能未能接收到RAR。在未能在RAR訊窗內接收到RAR之後,UE可以選擇在RAR訊窗到期之後重試RACH程序。然而,每當實現重傳時,UE可能需要等待大量時間(例如,至少直到RAR訊窗到期加上額外的後移時間)。因此,重傳可能導致顯著的系統時延。
因此,需要改良無線通訊系統中的RACH程序中的時延效能。
為了對所論述的技術有一個基本的理解,下文概括了本案內容的一些態樣。該概要不是對本案內容的所有預期特徵的泛泛概述,並且既不意欲辨識本案內容的所有態樣的關鍵或重要元素,亦不意欲圖示本案內容的任何或所有態樣的範疇。其唯一目的是用概括的形式呈現本案內容的一或多個態樣的一些概念,作為稍後提供的更加詳細的描述的前序。
例如,在本案內容的一個態樣中,一種無線通訊的方法包括以下步驟:由使用者設備(UE)從基地站(BS)接收用於啟動隨機存取通道(RACH)程序的系統資訊。該方法亦包括以下步驟:由該UE向該BS傳輸包括隨機存取前序信號和連接請求的第一有效負荷的第一訊息;及由該UE在隨機存取回應(RAR)訊窗期間監測來自該BS的回應於該第一訊息的第二訊息。該方法亦包括以下步驟:由該UE回應於基於該監測而決定該UE在該RAR訊窗內沒有從該BS接收到第二訊息,向該BS重傳該第一訊息。該方法亦包括以下步驟:由該UE回應於決定該UE在該RAR訊窗內從該BS接收到該第二訊息,基於從該第二訊息中解碼的第二有效負荷的類型來決定是向該BS重傳該第一有效負荷還是向該BS傳輸認可訊息。
在本案內容的另一態樣中,一種無線通訊的方法包括以下步驟:由BS向UE廣播用於啟動隨機存取通道程序的系統資訊。該方法亦包括以下步驟:由該BS從該UE接收包括隨機存取前序信號和連接請求的第一有效負荷的第一訊息;及由該BS決定該第一訊息的至少一部分是否是可解碼的。該方法亦包括以下步驟:回應於該第一訊息的解碼失敗,避免在隨機存取回應(RAR)訊窗內向該UE傳輸任何訊息。該方法亦包括以下步驟:由該BS回應於該第一訊息的至少該一部分的解碼成功,向該UE傳輸包含第二有效負荷的RAR訊息,該第二有效負荷是基於該第一訊息的該一部分的類型來決定的。
在本案內容的另一態樣中,一種無線通訊的UE包括收發機,該收發機被配置為:接收用於啟動隨機存取通道(RACH)程序的系統資訊;傳輸包括隨機存取前序信號和連接請求的第一有效負荷的第一訊息;在隨機存取回應(RAR)訊窗期間監測回應於該第一訊息的第二訊息;及回應於基於該監測而決定該UE在該RAR訊窗內沒有從BS接收到第二訊息,重傳該第一訊息。該UE亦包括處理器,該處理器被配置為:回應於決定該UE在該RAR訊窗內從該BS接收到該第二訊息,基於從該第二訊息中解碼的第二有效負荷的類型來決定是向該BS重傳該第一有效負荷還是向該BS傳輸認可訊息。
在本案內容的另一態樣中,一種無線通訊的BS包括收發機,該收發機被配置為:廣播用於啟動隨機存取通道程序的系統資訊;接收包括隨機存取前序信號和連接請求的第一有效負荷的第一訊息。該BS亦包括處理器,該處理器被配置為:決定該第一訊息的至少一部分是否是可解碼的;回應於該第一訊息的解碼失敗,避免在隨機存取回應(RAR)訊窗內向UE傳輸任何訊息。該收發機亦被配置為:回應於該第一訊息的至少該一部分的解碼成功,傳輸包含第二有效負荷的RAR訊息,該第二有效負荷是基於該第一訊息的該一部分的類型來決定的。
在結合附圖回顧了以下對本發明的特定的示例性態樣的描述之後,本發明的其他態樣、特徵和態樣對於一般技術者而言將變得顯而易見。儘管下文可能關於某些態樣和附圖論述了本發明的特徵,但是本發明的所有態樣可以包括本文所論述的優勢特徵中的一或多個。換言之,儘管可能將一或多個態樣論述成具有某些優勢特徵,但是根據本文所論述的本發明的各個態樣,亦可以使用該等特徵中的一或多個。用類似的方式,儘管下文可能將示例性態樣論述成設備、系統或者方法態樣,但是應當理解的是,該等示例性態樣可以用各種設備、系統和方法來實現。
下文結合附圖描述的詳細描述意欲作為對各種配置的描述,而不是意欲表示可以在其中實施本文所描述的概念的僅有配置。為了對各種概念有一個透徹理解,詳細描述包括具體細節。然而,對於熟習此項技術者而言將顯而易見的是,可以在不使用該等具體細節的情況下實施該等概念。在一些情況下,為了避免對該等概念造成模糊,公知的結構和元件以方塊圖形式圖示。
概括而言,本案內容係關於無線通訊系統(亦被稱為無線通訊網路)。在各個態樣中,該等技術和裝置可以用於諸如以下各項的無線通訊網路以及其他通訊網路:分碼多工存取(CDMA)網路、分時多工存取(TDMA)網路、分頻多工存取(FDMA)網路、正交FDMA(OFDMA)網路、單載波FDMA(SC-FDMA)網路、LTE網路、行動通訊全球系統(GSM)網路、第五代(5G)或新無線電(NR)網路。如本文所描述的,術語「網路」和「系統」可以互換地使用。
OFDMA網路可以實現諸如進化型UTRA(E-UTRA)、電氣與電子工程師協會(IEEE)802.11、IEEE 802.16、IEEE 802.20、快閃-OFDM等的無線電技術。UTRA、E-UTRA和GSM是通用行動電信系統(UMTS)的一部分。具體地,長期進化(LTE)是UMTS的使用E-UTRA的版本。在從名稱為「第三代合作夥伴計畫」(3GPP)的組織提供的文件中描述了UTRA、E-UTRA、GSM、UMTS和LTE,以及在來自名稱為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述了cdma 2000。該等各種無線電技術和標準是已知的或者是正在開發的。例如,第三代合作夥伴計畫(3GPP)是以定義全球適用的第三代(3G)行動電話規範為目標的電信協會組之間的合作。3GPP長期進化(LTE)是以改良UMTS行動電話標準為目標的3GPP計畫。3GPP可以定義針對下一代行動網路、行動系統和行動設備的規範。本案內容係關於來自LTE、4G、5G、NR以及其以後的無線技術的進化,其具有使用一些新的且不同的無線電存取技術或無線電空中介面在網路之間對無線頻譜的共享存取。
具體地,5G網路預期可以使用基於OFDM的統一的空中介面來實現的多樣的部署、多樣的頻譜以及多樣的服務和設備。為了實現該等目標,除了發展用於5G NR網路的新無線電技術之外,亦考慮對LTE和LTE-A的進一步增強。5G NR將能夠擴展(scale)為提供以下覆蓋:(1)針對具有超高密度(例如,~1M個節點/km2 )、超低複雜度(例如,~10 s的位元/秒)、超低能量(例如,~10+年的電池壽命)的大規模物聯網路(IoT)的覆蓋、以及具有到達具有挑戰性的地點的能力的深度覆蓋;(2)包括具有用於保護敏感的個人、金融或機密資訊的強安全性、超高可靠性(例如,~99.9999%的可靠性)、超低時延(例如,~1 ms)的任務關鍵控制,以及具有寬範圍的行動性或缺少行動性的使用者;及(3)具有增強的行動寬頻,其包括極高容量(例如,~10 Tbps/km2 )、極限資料速率(例如,多Gbps速率,100+ Mbps的使用者體驗速率),以及具有先進的探索和最佳化的深度感知。
5G NR可以被實現為使用經最佳化的基於OFDM的波形,其具有可縮放的參數集(numerology)和傳輸時間間隔(TTI);具有共同的、靈活的框架,以利用動態的、低時延的分時雙工(TDD)/分頻雙工(FDD)設計來高效地對服務和特徵進行多工處理;及具有高級無線技術,例如,大規模多輸入多輸出(MIMO)、穩健的毫米波(mm波)傳輸、高級通道編碼和以設備為中心的行動性。5G NR中的參數集的可縮放性(具有對次載波間隔的縮放)可以高效地解決跨越多樣的頻譜和多樣的部署來操作多樣的服務。例如,在小於3 GHz FDD/TDD的實現方式的各種室外和巨集覆蓋部署中,次載波間隔可以例如在5、10、20 MHz等頻寬(BW)上以15 kHz存在。對於大於3 GHz的TDD的其他各種室外和小型細胞覆蓋部署而言,次載波間隔可以在80/100 MHz BW上以30 kHz存在。對於其他各種室內寬頻實現方式而言,在5 GHz頻帶的未授權部分上使用TDD,次載波間隔可以在160 MHz BW上以60 kHz出現。最後,對於利用28 GHz的TDD處的mm波分量進行傳輸的各種部署而言,次載波間隔可以在500 MHz BW上以120 kHz存在。
5G NR的可縮放參數集促進針對不同的時延和服務品質(QoS)要求的可縮放TTI。例如,較短的TTI可以用於低時延和高可靠性,而較長的TTI可以用於較高的頻譜效率。對長TTI和短TTI的高效多工允許傳輸在符號邊界上開始。5G NR亦預期自包含的整合子訊框設計,其中上行鏈路/下行鏈路排程資訊、資料和認可在同一子訊框中。自包含的整合子訊框支援未授權或基於爭用的共享頻譜中的通訊、自我調整的上行鏈路/下行鏈路(其可以以每個細胞為基礎被靈活地配置為在上行鏈路和下行鏈路之間動態地切換以滿足當前訊務需求)。
下文進一步描述了本案內容的各個其他態樣和特徵。應當顯而易見的是,本文的教示可以以多種多樣的形式來體現,並且本文所揭示的任何特定的結構、功能或兩者僅是代表性的而不是進行限制。基於本文的教示,一般技術者應當明白的是,本文所揭示的態樣可以獨立於任何其他態樣來實現,並且該等態樣中的兩個或更多個態樣可以以各種方式組合。例如,使用本文所闡述的任何數量的態樣,可以實現一種裝置或者可以實施一種方法。此外,使用除了本文所闡述的態樣中的一或多個態樣以外或與其不同的其他結構、功能,或者結構和功能,可以實現此種裝置,或者可以實施此種方法。例如,方法可以被實現為系統、設備、裝置的一部分及/或被實現為儲存在電腦可讀取媒體上以用於在處理器或電腦上執行的指令。此外,一個態樣可以包括請求項的至少一個元素。
在無線系統中,當UE想要存取網路時,UE可以試圖嘗試與BS附著或同步。為了與網路同步,使用RACH程序。例如,傳統上,將四步RACH程序用於UE與BS建立同步連接。具體而言,在系統資訊區塊(SIB2)中,諸如下一代節點B(gNB)之類的BS週期性地廣播若干參數,諸如根序列ID、RACH配置索引、功率偏移和初始功率。在基於爭用的RACH程序中,UE從經由根序列循環移位產生的54個正交zadoff-chu(ZC)序列中隨機地選擇前序信號,該前序信號作為Msg 1在時間上在隨機存取子訊框上以及在頻率上在資源區塊(RB)上被傳輸,此舉隱式地定義RA無線電網路臨時辨識符(RA-RNTI)。gNB在Msg 1成功之後利用Msg 2隨機存取回應(RAR)進行回應,Msg 2 RAR包含臨時細胞RNTI(C-RNTI)、時序提前(TA)和上行鏈路資源容許。在從Msg 2中解碼出RB指派之後,在Msg 3中,UE傳輸包括隨機選擇的初始設備身份的無線電資源控制(RRC)連接請求。多個UE可以選擇Msg 1中的相同的前序信號、RA-RNTI以及亦有Msg 2中的對應的C-RNTI,並且在上行鏈路資源上傳輸其自己的Msg 3,gNB將此偵測為衝突。在Msg 4中,gNB發送具有永久C-RNTI的RRC連接建立和設備在Msg 3中傳輸的初始身份的重複(echo)。若身份匹配,則認為RACH程序成功,否則設備在後移間隔之後重試該程序。成功的UE準備傳輸上行鏈路資料。
為了降低四步RACH存取程序的存取延遲,可以使用兩步RACH程序,其中UE將Msg1和Msg3組合為一個初始訊息,並且BS繼而利用傳統的Msg2和Msg4的組合訊息進行回應。根據本案內容的各態樣,如關於圖3A-圖3C進一步描述的,兩步RACH程序可以包括用於實現混合自動重傳請求(HARQ)的等時線機制,以便在UE進行重傳的情況下以及在UE進行重傳時避免過多的時延。
鑒於期望減少兩步RACH程序中的整體時延,本文描述的各態樣提供了用於兩步RACH程序中的重傳方案的具有改良的系統時延的等時線設計。具體地,如關於圖6A-圖10進一步描述的,採用各種時序參數以在兩步RACH程序中將訊息的傳輸及/或重傳對準。利用所定義的等時線安排,改良了兩步RACH程序的整體時延。
圖1圖示根據本案內容的一些態樣的無線通訊網路100。網路100可以是5G網路。網路100包括多個基地站(BS)105(分別被標記為105a、105b、105c、105d、105e和105f)和其他網路實體。BS 105可以是與UE 115進行通訊的站,並且亦可以被稱為進化型節點B(eNB)、下一代eNB(gNB)、存取點等等。每個BS 105可以為特定地理區域提供通訊覆蓋。在3GPP中,術語「細胞」可以代表BS 105的該特定地理覆蓋區域及/或為該覆蓋區域服務的BS子系統,此情形取決於使用該術語的上下文。
BS 105可以提供針對巨集細胞或小型細胞(例如,微微細胞或毫微微細胞)及/或其他類型的細胞的通訊覆蓋。巨集細胞通常覆蓋相對大的地理區域(例如,半徑為幾公里),並且可以允許由具有與網路提供商的服務訂閱的UE進行不受限制的存取。小型細胞(例如,微微細胞)通常將覆蓋相對較小的地理區域,並且可以允許由具有與網路提供商的服務訂閱的UE進行不受限制的存取。小型細胞(例如,毫微微細胞)通常亦將覆蓋相對小的地理區域(例如,住宅),並且除了不受限制的存取之外,亦可以提供由與該毫微微細胞具有關聯的UE(例如,封閉用戶群組(CSG)中的UE,針對住宅中的使用者的UE等)進行的受限制的存取。用於巨集細胞的BS可以被稱為巨集BS。用於小型細胞的BS可以被稱為小型細胞BS、微微BS、毫微微BS或家庭BS。在圖1中圖示的實例中,BS 105d和105e可以是一般的巨集BS,而BS 105a-105c可以是利用三維(3D)、全維度(FD)或大規模MIMO中的一項來實現的巨集BS。BS 105a-105c可以利用其更高維度MIMO能力,來在仰角和方位角波束成形二者中利用3D波束成形,以增加覆蓋和容量。BS 105f可以是小型細胞BS,其可以是家庭節點或可攜式存取點。BS 105可以支援一或多個(例如,兩個、三個、四個等)細胞。
網路100可以支援同步操作或非同步操作。對於同步操作,BS可以具有相似的訊框時序,並且來自不同BS的傳輸可以在時間上近似地對準。對於非同步操作,BS可以具有不同的訊框時序,並且來自不同BS的傳輸在時間上可以不對準。
UE 115散佈於整個無線網路100中,並且每個UE 115可以是靜止的或行動的。UE 115亦可以被稱為終端、行動站、用戶單元、站等。UE 115可以是蜂巢式電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、平板電腦、膝上型電腦、無線電話、無線區域迴路(WLL)站等。在一個態樣中,UE 115可以是包括通用積體電路卡(UICC)的設備。在另一態樣中,UE 115可以是不包括UICC的設備。在一些態樣中,不包括UICC的UE亦可以被稱為IoT設備或萬物聯網路(IoE)設備。UE 115a-115d是存取網路100的行動智慧型電話類型的設備的實例。UE 115亦可以是被專門配置用於連接的通訊(包括機器類型通訊(MTC)、增強型MTC(eMTC)、窄頻IoT(NB-IoT)等)的機器。UE 115e-115k是被配置用於對網路100進行存取的通訊的各種機器的實例。UE 115可以能夠與任何類型的BS(無論是巨集BS、小型細胞等等)進行通訊。在圖1中,閃電(例如,通訊鏈路)指示UE 115與服務BS 105(其是被指定為在下行鏈路及/或上行鏈路上為UE 115服務的BS)之間的無線傳輸,或者BS之間的期望傳輸和BS之間的回載傳輸。
在操作中,BS 105a-105c可以使用3D波束成形和協調空間技術(例如,協調多點(CoMP)或多連接)來為UE 115a和115b進行服務。巨集BS 105d可以執行與BS 105a-105c以及小型細胞(BS 105f)的回載通訊。巨集BS 105d亦可以傳輸UE 115c和115d訂閱並且接收的多播服務。此種多播服務可以包括行動電視或串流視訊,或者可以包括用於提供細胞資訊的其他服務,例如,天氣緊急狀況或警報(例如,Amber(安珀)警報或灰色警報)。
BS 105亦可以與核心網路進行通訊。核心網路可以提供使用者認證、存取授權、追蹤、網際網路協定(IP)連接以及其他存取、路由或行動性功能。BS 105中的至少一些BS 105(例如,其可以是gNB或存取節點控制器(ANC)的實例)可以經由回載鏈路(例如,NG-C、NG-U等)與核心網路對接,並且可以執行用於與UE 115的通訊的無線電配置和排程。在各個實例中,BS 105可以在回載鏈路(例如,X1、X2等)上彼此直接或間接地(例如,經由核心網路)進行通訊,回載鏈路可以是有線或無線通訊鏈路。
網路100亦可以支援利用用於任務關鍵設備(例如UE 115e,其可以是無人機)的超可靠且冗餘鏈路的任務關鍵通訊。與UE 115e的冗餘通訊鏈路可以包括來自巨集BS 105d和105e的鏈路以及來自小型細胞BS 105f的鏈路。其他機器類型設備(例如,UE 115f(例如,溫度計)、UE 115g(例如,智慧型儀器表)和UE 115h(例如,可穿戴設備))可以經由網路100直接與BS(例如,小型細胞BS 105f和巨集BS 105e)進行通訊,或者經由與將其資訊中繼給網路的另一個使用者設備進行通訊(例如,UE 115f將溫度量測資訊傳送給智慧型儀器表(UE 115g),溫度量測資訊隨後經由小型細胞BS 105f被報告給網路)而處於多躍點配置中。網路100亦可以經由動態的、低時延TDD/FDD通訊(諸如在運載工具到運載工具(V2V)中)來提供額外的網路效率。
在一些實現方式中,網路100將基於OFDM的波形用於通訊。基於OFDM的系統可以將系統BW劃分成多個(K個)正交次載波,該多個正交次載波通常亦被稱為次載波、音調、頻段(bin)等。可以利用資料來調制每個次載波。在一些情況下,相鄰次載波之間的間隔可以是固定的,並且次載波的總數(K)可以取決於系統BW。亦可以將系統BW劃分成次頻帶。在其他情況下,次載波間隔及/或TTI的持續時間可以是可縮放的。
BS 105可以指派或排程用於網路100中的下行鏈路(DL)和上行鏈路(UL)傳輸的傳輸資源(例如,以時頻資源區塊(RB)的形式)。DL是指從BS 105到UE 115的傳輸方向,而UL是指從UE 115到BS 105的傳輸方向。通訊可以是以無線電訊框的形式。無線電訊框可以被劃分成複數個子訊框或時槽,例如,大約10個。每個時槽可以被進一步劃分成微時槽。在FDD模式下,同時的UL和DL傳輸可以發生在不同的頻帶中。例如,每個子訊框包括UL頻帶中的UL子訊框和DL頻帶中的DL子訊框。在TDD模式下,UL和DL傳輸使用相同的頻帶發生在不同的時間段處。例如,無線電訊框中的一子訊框子集(例如,DL子訊框)可以用於DL傳輸,而無線電訊框中的另一子訊框子集(例如,UL子訊框)可以用於UL傳輸。
DL子訊框和UL子訊框可以被進一步劃分成若干區域。例如,每個DL或UL子訊框可以具有用於參考信號、控制資訊和資料的傳輸的預定義的區域。參考信號是促進BS 105與UE 115之間的通訊的預定信號。例如,參考信號可以具有特定的引導頻模式或結構,其中引導頻音調可以跨越操作BW或頻帶,每個引導頻音調位於預定義的時間和預定義的頻率處。例如,BS 105可以傳輸特定於細胞的參考信號(CRS)及/或通道狀態資訊-參考信號(CSI-RS),以使UE 115能夠估計DL通道。類似地,UE 115可以傳輸探測參考信號(SRS),以使BS 105能夠估計UL通道。控制資訊可以包括資源指派和協定控制。資料可以包括協定資料及/或操作資料。在一些態樣中,BS 105和UE 115可以使用自包含子訊框來進行通訊。自包含子訊框可以包括用於DL通訊的部分和用於UL通訊的部分。自包含子訊框可以是以DL為中心的或者以UL為中心的。以DL為中心的子訊框可以包括用於DL通訊的較長的持續時間(與用於UL通訊相比)。以UL為中心的子訊框可以包括用於UL通訊的較長的持續時間(與用於UL通訊相比)。
在一些態樣中,網路100可以是在經授權頻譜上部署的NR網路。BS 105可以在網路100中傳輸同步信號(例如,包括主要同步信號(PSS)和次要同步信號(SSS))以促進同步。BS 105可以廣播與網路100相關聯的系統資訊(例如,包括主資訊區塊(MIB)、剩餘系統資訊(RMSI)和其他系統資訊(OSI)),以促進初始網路存取。在一些情況下,BS 105可以在實體廣播通道(PBCH)上以同步信號區塊(SSB)的形式廣播PSS、SSS及/或MIB,並且可以在實體下行鏈路共享通道(PDSCH)上廣播RMSI及/或OSI。
在一些態樣中,嘗試存取網路100的UE 115可以經由偵測來自BS 105的PSS來執行初始細胞搜尋。PSS可以實現時段時序的同步並且可以指示實體層身份值。隨後,UE 115可以接收SSS。SSS可以實現無線電訊框同步,並且可以提供細胞身份值,其可以與實體層身份值結合來辨識細胞。PSS和SSS可以位於載波的中心部分或載波內的任何適當的頻率中。
在接收到PSS和SSS之後,UE 115可以接收MIB。MIB可以包括用於初始網路存取的系統資訊和用於RMSI及/或OSI的排程資訊。在解碼MIB之後,UE 115可以接收RMSI及/或OSI。RMSI及/或OSI可以包括與隨機存取通道(RACH)程序、傳呼、用於實體下行鏈路控制通道(PDCCH)監測的控制資源集合(CORESET)、實體上行鏈路控制通道(PUCCH)、實體上行鏈路共享通道(PUSCH)、功率控制和SRS相關的無線電資源控制(RRC)資訊。
在獲得MIB、RMSI及/或OSI之後,UE 115可以執行隨機存取程序以建立與BS 105的連接。在一些實例中,隨機存取程序可以是四步隨機存取程序。例如,UE 115可以傳輸隨機存取前序信號,並且BS 105可以利用隨機存取回應進行回應。隨機存取回應(RAR)可以包括偵測到的與隨機存取前序信號相對應的隨機存取前序信號辨識符(ID)、時序提前(TA)資訊、UL容許、臨時細胞無線電網路臨時辨識符(C-RNTI),及/或後移指示符。在接收到隨機存取回應之後,UE 115可以向BS 105傳輸連接請求,並且BS 105可以利用連接回應進行回應。連接回應可以指示爭用解決。在一些實例中,隨機存取前序信號、RAR、連接請求和連接回應可以分別被稱為訊息1(MSG1)、訊息2(MSG2)、訊息3(MSG3)和訊息4(MSG4)。在一些實例中,隨機存取程序可以是兩步隨機存取程序,其中UE 115可以在單個傳輸中傳輸隨機存取前序信號和連接請求,並且BS 105可以經由在單個傳輸中傳輸隨機存取回應和連接回應來進行回應。
在建立連接之後,UE 115和BS 105可以進入正常操作階段,其中可以交換操作資料。例如,BS 105可以排程UE 115進行UL及/或DL通訊。BS 105可以經由PDCCH向UE 115傳輸UL及/或DL排程容許。BS 105可以根據DL排程容許,經由PDSCH來向UE 115傳輸DL通訊信號。UE 115可以根據UL排程容許,經由PUSCH及/或PUCCH來向BS 105傳輸UL通訊信號。
在一些情況下,BS 105可以使用混合自動請求(HARQ)與UE 115傳送資料,以提高通訊可靠性。BS 105可以經由在PDCCH中傳輸DL容許來排程UE 115進行PDSCH通訊。BS 105可以根據PDSCH中的排程來向UE 115傳輸DL資料封包。DL資料封包可以以傳輸塊(TB)的形式傳輸。若UE 115成功接收到DL資料封包,則UE 115可以向BS 105傳輸HARQ ACK。相反,若UE 115未能成功接收到DL傳輸,則UE 115可以向BS 105傳輸HARQ NACK。在從UE 115接收到HARQ NACK之後,BS 105可以向UE 115重傳DL資料封包。重傳可以包括DL資料的與初始傳輸相同的編碼版本。或者,重傳可以包括DL資料的與初始傳輸不同的編碼版本。UE 115可以應用軟組合以對從初始傳輸和重傳接收的編碼資料進行組合以進行解碼。BS 105和UE 115亦可以使用與DL HARQ基本相似的機制來將HARQ應用於UL通訊。
在一些態樣中,網路100可以在系統BW或分量載波BW上操作。網路100可以將系統BW劃分成多個BWP(例如,部分)。BS 105可以動態地指派UE 115在某個BWP(例如,系統BW的某個部分)上進行操作。所指派的BWP可以被稱為活動BWP。UE 115可以針對來自BS 105的信號傳遞資訊來監測活動BWP。BS 105可以排程UE 115在活動BWP中進行UL或DL通訊。在一些態樣中,BS 105可以將分量載波內的一對BWP指派給UE 115以用於UL和DL通訊。例如,BWP對可以包括用於UL通訊的一個BWP和用於DL通訊的一個BWP。另外,BS 105可以將UE 115配置為具有BWP中的一或多個CORESET。CORESET可以包括在時間上跨越多個符號的頻率資源集合。BS 105可以基於CORESET來將UE 115配置為具有用於PDCCH監測的一或多個搜尋空間。UE 115可以在搜尋空間中執行盲解碼,以搜尋來自BS的DL控制資訊(例如,UL及/或DL排程容許)。在一個實例中,BS 105可以經由RRC配置將UE 115配置為具有BWP、CORESET及/或PDCCH搜尋空間。
在一些態樣中,網路100可以在共享頻帶或未授權頻帶上(例如,在mm波頻帶中的大約3.5千兆赫(GHz)、低於6 GHz或更高的頻率處)操作。網路100可以將頻帶劃分為多個通道,例如,每個通道佔用大約20兆赫(MHz)。BS 105和UE 115可以由在共享通訊媒體中共享資源的多個網路操作實體來操作,並且可以採用LBT程序來獲取共享媒體中的通道佔用時間(COT)以進行通訊。COT在時間上可以是不連續的,並且可以是指無線節點在其已經贏得針對無線媒體的爭用時可以發送訊框的時間量。每個COT可以包括複數個傳輸時槽。COT亦可以被稱為傳輸機會(TXOP)。BS 105或UE 115可以在頻帶中進行傳輸之前在頻帶中執行LBT。LBT可以是基於能量偵測或信號偵測的。對於能量偵測,當從通道量測到的信號能量大於某個信號能量閾值時,BS 105或UE 115可以決定該通道繁忙或被佔用。對於信號偵測,當在通道中偵測到某個預留信號(例如,前序信號信號序列)時,BS 105或UE 115可以決定該通道繁忙或被佔用。
此外,BS 105可以將UE 115配置為具有窄頻操作能力(例如,其中傳輸及/或接收被限制為20 MHz或更小的BW),以執行BWP躍變以進行通道監測和通訊。在本文中更詳細地描述了用於執行BWP躍變的機制。
圖2圖示根據本案內容的各態樣的無線通訊網路200中的隨機存取方案。網路200對應於網路100的一部分。為了簡化論述的目的,圖2圖示一個BS 204和一個UE 202,但是將認識到,本案內容的各態樣可以擴展到更多的UE 202及/或BS 204。BS 204對應於BS 104之一。UE 202對應於UE 102之一。UE 202和BS 204可以在任何合適的頻率處彼此通訊。
在圖2中,如虛線橢圓220所示,BS 204在複數個方向上的複數個定向波束211上發送同步信號、BRS和系統資訊。為了存取網路200,UE 202監聽同步信號及/或BRS並且選擇用於執行隨機存取程序的波束。例如,UE 202可以接收波束211a、211b和211c,並且選擇波束211b用於隨機存取。UE 202在波束211b的波束方向上在波束221上發送隨機存取前序信號,並且監測來自BS 204的RAR。在偵測到隨機存取前序信號之後,BS 204在接收到隨機存取前序信號的相同波束方向上在波束211b上發送RAR。BS 204使用整個子訊框來在波束211b上發送RAR。當大頻寬可用時,此舉可能導致資源低效。另外,到BS 204發送RAR的時候,UE 202可能已經移動到遠離波束211b的不同位置,如虛線箭頭所示。因此,UE 202可能未能從波束211b接收到RAR。RAR失敗的額外原因可能是由於波束對應性。儘管UE 202可以在等待一段時間(例如,後移時段)之後重試另一隨機存取嘗試,但是重試增加了額外的時延。因此,每次隨機存取嘗試在單個波束方向上發送單個隨機存取前序信號可能沒有穩健到足以成功完成RACH程序。
圖3A-圖3C圖示根據本案內容的一些態樣的可以在圖1-圖2中所示的無線通訊網路中實現的在UE 202與BS 204之間的兩步RACH方案的各種傳輸場景。
圖3A中的圖300a圖示兩步RACH程序,其中與傳統的四步RACH相比,兩步RACH程序降低了控制平面中的存取延遲。在315處從BS 204向UE 202傳輸系統資訊區塊(例如,SIB2)和RRC信號傳遞並且UE 202在320處解碼系統資訊和RRC信號傳遞之後,在340處,UE 202傳輸攜帶標準四步LTE RACH Msg 1和Msg 3的Msg A,例如,包括隨機存取前序信號,之後跟隨有用於隨機存取訊息的有效負荷(連接請求、設備ID、緩衝器狀態報告等)。隨後,UE 202在345處監測來自BS 204的Msg B,同時BS 204在350處處理和解碼Msg A。從BS 204傳輸Msg B,其對應於標準四步LTE RACH的Msg 2和Msg 4(例如,RAR、時序提前),並且最終在355處利用RRC回應訊息完成連接。因此,兩步RACH能夠以減少的存取延遲(例如,2訊息交換相對於傳統的4訊息交換)為UE 202建立UE 202與BS 204之間的連接,以開始傳輸上行鏈路資料。
圖3B中的圖300b圖示針對當BS 204未能接收到MsgA前序信號或有效負荷時的重傳的場景。例如,由於通道衝突、通道衰落或干擾,MsgA傳輸340可能不成功。BS 204可以在375處監測Msg A,但是未能接收到任何內容。或者BS 204可能接收到損壞的MsgA,而未能從損壞版本中解碼出前序信號或有效負荷。在此種情況下,BS 204可以不利用MsgB對UE 202進行回應。UE 202可以在一段時間內監測MsgB 345,並且在380處嘗試重傳MsgA。由於兩步RACH未指定用於UE 202監測MsgB 345的等待時間或重傳方案,所以在重傳過程中可能導致額外的時延310。
圖3B中的圖300c圖示針對當UE 202未能從BS 204接收到MsgB時的重傳的另一種場景。例如,即使BS 204在350處成功接收到並且解碼了MsgA,並且隨後在355處回應於MsgA來向UE 202傳輸MsgB,但是由於通道受損、UE 202處的接收器故障等,在355處對MsgB的傳輸可能不成功。在此種情況下,UE 202可能在一段時間內監測MsgB 345,但是未能接收到任何內容,或者僅接收到MsgB的無法解碼的損壞版本。當UE 202未能接收到回應於所傳輸的MsgA的MsgB或者從其解碼出RAR回應時,類似於圖300b中的場景,UE 202可以在380處再次嘗試重傳MsgA,並且隨後BS 204可以在385處嘗試重傳MsgB。由於在兩步RACH中未定義MsgA或MsgB的重傳等時線,因此,若UE 202等待不明確的時間段以進行重傳,則可能導致額外的時延310。
鑒於對於減少兩步RACH程序中的整體時延的需求,本文描述的各態樣提供了用於兩步RACH程序中的重傳方案的具有改良的系統時延的等時線設計。具體地,如關於圖6A-圖10進一步描述的,可以根據在UE 202或BS 204處的解碼失敗的特定場景來重傳MsgA或MsgB,並且採用各種時序參數以在兩步RACH程序中將MsgA和MsgB的傳輸或重傳對準。利用在重傳中定義的等時線安排,改良了兩步RACH程序的整體時延。
圖4是根據本案內容的一些態樣的示例性UE 400的方塊圖。例如,UE 400可以是上文在圖1中論述的UE 115或者在其他圖中圖示的UE 202。如圖所示,UE 400可以包括處理器402、記憶體404、BWP躍變模組408、通訊介面409、包括數據機子系統412和射頻(RF)單元414的收發機410,以及一或多個天線416。該等元件可以例如經由一或多個匯流排彼此直接或間接地通訊。
處理器402可以包括被配置為執行本文所描述的操作的中央處理單元(CPU)、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、控制器、現場可程式設計閘陣列(FPGA)設備、另一種硬體設備、韌體設備或其任何組合。處理器402亦可以被實現為計算設備的組合,例如,DSP與微處理器的組合、複數個微處理器、一或多個微處理器與DSP核的結合,或者任何其他此種配置。
記憶體404可以包括快取記憶體(例如,處理器402的快取記憶體)、隨機存取記憶體(RAM)、磁阻RAM(MRAM)、唯讀記憶體(ROM)、可程式設計唯讀記憶體(PROM)、可抹除可程式設計唯讀記憶體(EPROM)、電子可抹除可程式設計唯讀記憶體(EEPROM)、快閃記憶體、固態記憶體設備、硬碟、其他形式的揮發性和非揮發性記憶體,或者不同類型的記憶體的組合。在一個態樣中,記憶體404包括非暫時性電腦可讀取媒體。記憶體404可以儲存或具有記錄在其上的指令406。指令406可以包括:當由處理器402執行時,使得處理器402執行本文結合本案內容的各態樣(例如,圖3A-圖3C和圖6A-圖10的各態樣),參照UE 115所描述的操作的指令。指令406亦可以被稱為程式碼。程式碼可以用於使得無線通訊設備執行該等操作,例如,經由使得一或多個處理器(諸如處理器402)控制或命令無線通訊設備如此做。術語「指令」和「代碼」應當被廣義地解釋為包括任何類型的電腦可讀取語句。例如,術語「指令」和「代碼」可以代表一或多個程式、常式、子常式、函數、程序等等。「指令」和「代碼」可以包括單個電腦可讀取語句或者多個電腦可讀取語句。
兩步RACH模組408可以與通訊介面409進行通訊以從另一設備接收訊息或向另一設備傳輸訊息。可以經由硬體、軟體或其組合來實現兩步RACH模組408和通訊介面409中的每一者。例如,兩步RACH模組408和通訊介面409中的每一者可以被實現為處理器、電路及/或儲存在記憶體404中並且由處理器402執行的指令406。在一些實例中,兩步RACH模組408和通訊介面409可以整合在數據機子系統412內。例如,可以經由數據機子系統412內的軟體元件(例如,由DSP或通用處理器執行)和硬體元件(例如,邏輯閘和電路系統)的組合來實現兩步RACH模組408和通訊介面409。在一些實例中,UE可以包括兩步RACH模組408和通訊介面409之一。在其他實例中,UE可以包括兩步RACH模組408和通訊介面409兩者。
兩步RACH模組408和通訊介面409可以用於本案內容的各個態樣,例如,圖2-圖3和圖6-圖17的各態樣。兩步RACH模組408被配置為:從BS(例如,204)接收用於啟動RACH程序的系統資訊。兩步RACH模組408亦被配置為:向BS傳輸包括隨機存取前序信號和有效負荷的MsgA,有效負荷包含連接請求。兩步RACH模組408亦被配置為:在隨機存取回應(RAR)訊窗期間監測來自BS的回應於MsgA的MsgB。兩步RACH模組408亦被配置為:若在RAR訊窗內沒有從BS接收到MsgB,則重傳MsgA。或者,兩步RACH模組408亦被配置為:若在RAR訊窗內從BS接收到MsgB,則基於從接收到的MsgB中解碼出的有效負荷的類型,來決定是在Msg 3中重傳連接請求作為對標準四步RACH的後移還是傳輸認可訊息。
通訊介面409被配置為:與兩步RACH模組408協調以從BS接收系統資訊、MsgB及/或其他DL排程容許,及/或根據UL及/或DL排程容許與BS進行通訊。通訊介面409亦被配置為向BS傳輸MsgA及/或其他UL資料。
如圖所示,收發機410可以包括數據機子系統412和RF單元414。收發機410可以被配置為與其他設備(諸如BS 105)進行雙向通訊。數據機子系統412可以被配置為根據調制和編碼方案(MCS)(例如,低密度同位元檢查(LDPC)編碼方案、turbo編碼方案、迴旋編碼方案、數位波束成形方案等等),對來自記憶體404、兩步RACH模組408及/或通訊介面409的資料進行調制及/或編碼。RF單元414可以被配置為對來自數據機子系統412的經調制/編碼的資料(例如,PUCCH、PUSCH、通道報告、ACK/NACK)(關於出站傳輸)或者源自於另一個源(諸如UE 115或BS 105)的傳輸的經調制/編碼的資料進行處理(例如,執行類比數位轉換或者數位類比轉換等等)。RF單元414亦可以被配置為與數位波束成形相結合來執行類比波束成形。儘管被示為與收發機410整合在一起,但是數據機子系統412和RF單元414可以是單獨的設備,數據機子系統412和RF單元414在UE 115處耦合在一起以使得UE 115能夠與其他設備進行通訊。
RF單元414可以將經調制及/或經處理的資料(例如,資料封包(或者更一般地,可以包含一或多個資料封包和其他資訊的資料訊息))提供給天線416,以便傳輸給一或多個其他設備。天線416亦可以接收從其他設備傳輸的資料訊息。天線416可以提供所接收的資料訊息以便在收發機410處進行處理及/或解調。收發機410可以將經解調和解碼的資料(例如,DL資料區塊、PDSCH、PUSCH、BWP躍變配置及/或指令)提供給兩步RACH模組408及/或通訊介面409以進行處理。天線416可以包括具有類似設計或不同設計的多個天線,以便維持多個傳輸鏈路。RF單元414可以配置天線416。
在一個態樣中,UE 400可以包括實現不同RAT(例如,NR和LTE)的多個收發機410。在一個態樣中,UE 400可以包括實現多種RAT(例如,NR和LTE)的單個收發機410。在一個態樣中,收發機410可以包括各種元件,其中元件的不同組合可以實現不同的RAT。
圖5是根據本案內容的一些態樣的示例性BS 500的方塊圖。例如,BS 500可以是如上文在圖1中論述的BS 105和在其他圖中描述的BS 204。如圖所示,BS 500可以包括處理器502、記憶體504、兩步RACH模組508、通訊介面509、包括數據機子系統512和RF單元514的收發機510,以及一或多個天線516。該等元件可以例如經由一或多個匯流排彼此直接或間接地通訊。
處理器502可以具有作為特定於類型的處理器的各種特徵。例如,該等可以包括被配置為執行本文描述的操作的CPU、DSP、ASIC、控制器、FPGA設備、另一種硬體設備、韌體設備或其任何組合。處理器502亦可以被實現為計算設備的組合,例如,DSP與微處理器的組合、複數個微處理器、一或多個微處理器結合DSP核心,或者任何其他此種配置。
記憶體504可以包括快取記憶體(例如,處理器502的快取記憶體)、RAM、MRAM、ROM、PROM、EPROM、EEPROM、快閃記憶體、固態記憶體設備、一或多個硬碟、基於憶阻器的陣列、其他形式的揮發性和非揮發性記憶體,或者不同類型的記憶體的組合。在一些態樣中,記憶體504可以包括非暫時性電腦可讀取媒體。記憶體504可以儲存指令506。指令506可以包括:當由處理器502執行時,使得處理器502執行本文所描述的操作(例如,圖2-圖3和圖6-圖16和圖18的各態樣)的指令。指令506亦可以被稱為代碼,代碼可以被廣義地解釋為包括任何類型的電腦可讀取語句,如上文關於圖4論述的。
兩步RACH模組408可以與通訊介面409進行通訊以從另一設備接收訊息或向另一設備傳輸訊息。可以經由硬體、軟體或其組合來實現兩步RACH模組508和通訊介面509中的每一者。例如,兩步RACH模組508和通訊介面509中的每一者可以被實現為處理器、電路及/或儲存在記憶體504中並且由處理器502執行的指令506。在一些實例中,兩步RACH模組508和通訊介面509可以整合在數據機子系統512內。例如,可以經由數據機子系統512內的軟體元件(例如,由DSP或通用處理器執行)和硬體元件(例如,邏輯閘和電路系統)的組合來實現兩步RACH模組508和通訊介面509。在一些實例中,UE可以包括兩步RACH模組508和通訊介面509之一。在其他實例中,UE可以包括兩步RACH模組508和通訊介面509兩者。
兩步RACH模組508和通訊介面509可以用於本案內容的各個態樣,例如,圖3A-圖3C和圖6A-圖10的各態樣。兩步RACH模組508被配置為:廣播用於啟動隨機存取通道程序的系統資訊。兩步RACH模組508亦被配置為:接收包括隨機存取前序信號和有效負荷的MsgA,有效負荷包含連接請求。兩步RACH模組508亦被配置為:決定MsgA的至少一部分是否可解碼。回應於MsgA的解碼失敗,兩步RACH模組508亦被配置為:避免在RAR訊窗內向UE 202傳輸任何訊息。回應於第一訊息的至少一部分的解碼成功,兩步RACH模組508亦被配置為:傳輸包含有效負荷的RAR訊息,該有效負荷是基於MsgA的成功解碼的該部分的類型來決定的。
通訊介面509被配置為:與兩步RACH模組508協調以廣播系統資訊或者向UE傳輸MsgB。通訊介面509亦被配置為:從UE接收MsgA或其他UL資料。
如圖所示,收發機510可以包括數據機子系統512和RF單元514。收發機510可以被配置為與其他設備(諸如UE 115及/或400及/或另一種核心網路元件)進行雙向通訊。數據機子系統512可以被配置為根據MCS(例如,LDPC編碼方案、turbo編碼方案、迴旋編碼方案、數位波束成形方案等等),對資料進行調制及/或編碼。RF單元514可以被配置為對來自數據機子系統512的經調制/編碼的資料(例如,BWP躍變配置和指令、PDCCH、PDSCH)(關於出站傳輸)或者源自於另一個源(諸如UE 115和400)的傳輸的經調制/編碼的資料進行處理(例如,執行類比數位轉換或者數位類比轉換等等)。RF單元514亦可以被配置為結合數位波束成形來執行類比波束成形。儘管被示為與收發機510整合在一起,但是數據機子系統512及/或RF單元514可以是單獨的設備,數據機子系統512及/或RF單元514在BS 105處耦合在一起以使得BS 105能夠與其他設備進行通訊。
RF單元514可以將經調制及/或經處理的資料(例如,資料封包(或者更一般地,可以包含一或多個資料封包和其他資訊的資料訊息))提供給天線516,以便傳輸給一或多個其他設備。例如,根據本案內容的各態樣,此舉可以包括傳輸資訊以完成到網路的附著和與常駐的UE 115或400的通訊。天線516亦可以接收從其他設備傳輸的資料訊息,並且提供所接收的資料訊息以便在收發機510處進行處理及/或解調。收發機510可以將經解調和解碼的資料(例如,通道報告、PUSCH、PUCCH、HARQ ACK/NACK)提供給兩步RACH模組508及/或通訊介面509以進行處理。天線516可以包括具有類似設計或不同設計的多個天線,以便維持多個傳輸鏈路。
在一個態樣中,BS 500可以包括實現不同RAT(例如,NR和LTE)的多個收發機510。在一個態樣中,BS 500可以包括實現多種RAT(例如,NR和LTE)的單個收發機510。在一個態樣中,收發機510可以包括各種元件,其中元件的不同組合可以實現不同的RAT。
圖6A-圖6C圖示根據本案內容的一些態樣的在UE與BS之間的兩步RACH程序的不同場景中的重傳等時線設計。在圖6A-圖6C中,方案600a-c可以由在諸如在共享頻帶或未授權頻帶上操作的網路100之類的網路中的BS(諸如圖1中的BS 105、圖2中的BS 204及/或圖5中的500)和UE(諸如圖1中的UE 115、圖2中的UE 202及/或圖4中的400)採用。UE 202可以是在大約20 MHz或更小的窄頻上操作的低成本UE設備。另外,在圖6A-圖6C中,水平軸以某種恆定單位表示時間。
圖600a圖示當UE 202和BS 204之間的兩步RACH程序成功地建立連接時的場景。BS 204可以向通訊範圍中的多個UE廣播下行鏈路通道或信號605。例如,下行鏈路通道或信號605可以包括系統資訊區塊,該系統資訊區塊包含根序列辨識符、循環移位、RA子訊框、上行鏈路容許等。在接收下行鏈路資料605完成之後,UE 202可以在向BS 204傳輸MsgA(610a-b,其亦被統稱為610)之前,在最後的下行鏈路資料符號之後等待T0 的時間間隙。
在一些態樣中,時間間隙T0 促進從下行鏈路傳輸到上行鏈路傳輸的轉換並且可以具有下界值。可以基於多種因素來預先決定T0 下界,包括但不限於BS 202和UE 204之間的雙工模式(例如,時域雙工或頻域雙工)、用於最後的下行鏈路資料符號與MsgA 610的第一上行鏈路資料符號之間的參數集或頻寬部分(BWP)切換的調諧時間、UE 202準備MsgA有效負荷610b所需要的準備時間、從BS 204向UE 202傳輸下行鏈路通道資訊610的下行鏈路通道所需要的處理時間等。
在一些態樣中,在時間間隙T0 之後,UE 202向BS 204傳輸MsgA前序信號610a和MsgA有效負荷610b。例如,MsgA有效負荷610b可以包括與BS 204的RRC連接請求(例如,RA-RNTI、上行鏈路資料、初始設備身份等)。為了傳輸MsgA,UE 202可以等待MsgA前序信號610a的傳輸與MsgA有效負荷610b的傳輸之間的時間間隙Tg ,此舉促進BS 204偵測MsgA有效負荷610b的開始。時間間隙Tg 大於下界值,該下界值可以經由多種因素來預先決定,包括但不限於MsgA 610的實體隨機存取通道(PRACH)格式、用於MsgA 610的時域資源分配、時槽格式、用於MsgA前序信號610a與MsgA有效負荷610b之間的參數集切換的調諧時間、BS 204與UE 202之間的先聽後說(LBT)機制、BS 204與UE 202之間的通道佔用時間、用於RACH程序的頻帶,以及用於MsgA 610的實體上行鏈路共享通道(PUSCH)映射類型。
在一些態樣中,時序參數T0 Tg 可以被預先儲存在查閱資料表中。例如,可以根據上述因素的各種組合來以經驗為主地決定T0 Tg 的參數值並且將其儲存在查閱資料表中。UE 202可以基於系統的因素來從預定義的查閱資料表中取得對應的時序參數T0 Tg
在傳輸MsgA 610完成之後,UE 202可以啟動用於RAR訊窗的計時器以監測來自BS 204的MsgB。RAR訊窗615的起始點615a是與MsgB的PDCCH搜尋空間中的第一PDCCH符號對準的。關於圖10進一步論述了對RAR訊窗615的起始點615a的決定。UE 202在RAR訊窗長度內執行計時器,直到RAR訊窗的結束615b為止。BS 204可以將RAR訊窗的長度提供給UE 202,將關於圖9進一步描述該點。
在RAR訊窗615期間,BS 204可以接收和解碼MsgA 610,並且為MsgB(包括MsgB PDCCH 620a和MsgB有效負荷620b,MsgB PDCCH 620a和MsgB有效負荷620b被統稱為620)作準備,而UE 202可以監測MsgB。若BS 204成功地解碼MsgA有效負荷610b並且從中取得資訊,則BS 205可以在MsgB 620的有效負荷中包括由「成功RAR」620b表示的RAR回應。隨後,BS 204向UE 202傳輸MsgB 620。
在接收到MsgB 620之後,UE 202可以對MsgB 620進行解碼。若從MsgB 620的有效負荷中解碼出成功RAR 620b,則UE 202向BS 204傳輸認可訊息625以通知已經建立了RRC連接。UE 202可以在傳輸認可訊息625之前在MsgB 620的PDSCH的最後一個資料符號之後等待時間間隙T1 。例如,時間間隙T1 提供用於UE 202對接收到的MsgB 620進行解碼以及針對UE 202的基於TA的上行鏈路時序調整的處理時間。時間間隙T1 亦被決定為使得認可訊息625是利用RAR訊窗615傳輸的,但是亦大於下界值。可以基於各種因素來預先決定用於T1 的下界值,包括但不限於PDSCH處理時間、時槽格式(是否使用TDD)、是否在PUSCH上搭載認可訊息625等等。
在一些態樣中,類似於時間間隙T0 Tg ,可以從預儲存的查閱資料表中取得T1 ,該查閱資料表列出了與因素的各種組合相對應的針對T1 以經驗為主地決定的值。在一些態樣中,可以根據RAR訊窗615來動態地決定時間間隙T1 ,使得在RAR訊窗結束615b之前為認可訊息625留有足夠的時間。
圖600b圖示當由於MsgA有效負荷610b的解碼失敗而導致UE 202與BS 204之間的兩步RACH程序後移到傳統的四步RACH程序時的場景。類似於圖600a,BS 204向通訊範圍中的多個UE廣播下行鏈路通道或信號605,隨後UE 202向BS 204傳輸MsgA 610。UE 202可以啟動用於RAR訊窗的計時器以監測來自BS 204的MsgB。
與圖600a不同,在圖600b中,若BS 204未能解碼出MsgA有效負荷610b,例如,所接收的MsgA 610由於通道衰落或衝突而被損壞,並且僅能夠從所接收的訊息中偵測到MsgA前序信號610a,則BS 204由於缺失來自MsgA有效負荷610b的連接請求而無法利用連接建立來進行回應。在此種情況下,BS 204可以在MsgB 620的有效負荷中包括由「後移RAR」620c表示的後移指示,並且向UE 202傳輸MsgB 620以指示RRC連接建立不成功並且兩步RACH將後移到四步方式。
在從BS 204接收到MsgB 620之後,UE 202對所接收的MsgB 620進行解碼。若從MsgB 620的有效負荷中解碼出後移RAR 620c,則UE 202在PUSCH上傳輸Msg3 630以向BS 204通知RACH程序將後移到四步RACH。在一些態樣中,Msg3 630可以是在BS 204處未成功解碼的MsgA有效負荷610b的重傳版本。在一些態樣中,Msg3 630可以不同於MsgA有效負荷610b,例如以啟動新的RRC連接請求。當Msg3 630具有與MsgA有效負荷610b不同的長度時,UE 202可以添加填充位元或截短Msg3,以確保可以在RAR訊窗的結束615b時完成Msg3的傳輸。
UE 202可以在重傳MsgA有效負荷610b之前在MsgB 620的最後一個資料符號之後等待時間間隙T2 。例如,時間間隙T2 提供用於UE 202對所接收的MsgB 620進行解碼以及針對UE 202的基於TA的上行鏈路時序調整的處理時間。時間間隙T2 亦被決定為使得在RAR訊窗615中為傳輸Msg3 630留有足夠的時間,但是亦大於下界值。可以基於各種因素來預先決定用於T1 的下界值,包括但不限於PDSCH處理時間、時槽格式、PUSCH準備時間等。
在一些態樣中,類似於時間間隙T0 Tg ,可以從預儲存的查閱資料表中取得T2 ,該查閱資料表列出了與因素的各種組合相對應的針對T2 以經驗為主地決定的值。在一些態樣中,可以根據RAR訊窗615來動態地決定時間間隙T2 ,使得在RAR訊窗的結束615b之前為Msg3 630留有足夠的時間。在一些態樣中,時間間隙T2 可以比時間間隙T1 短,因為Msg3 630可能要求與認可訊息625相比更多的傳輸時間。
圖600c圖示當BS 204根本未能解碼或接收到MsgA時UE 202與BS 204之間的兩步RACH程序要求MsgA的完整重傳的場景。類似於圖600a-b,BS 204向通訊範圍中的多個UE廣播下行鏈路通道或信號605,隨後UE 202向BS 204傳輸MsgA 610。UE 202可以啟動用於RAR訊窗的計時器以監測來自BS 204的MsgB。
與圖600a-b不同,在圖600c中,BS 204可能由於通道損壞而沒有從UE 202接收到任何訊息,或者接收到很大程度上不可解碼的損壞的MsgA 610。若BS 204由於在RAR訊窗615期間在613處的解碼失敗而未能偵測到MsgA前序信號610a或MsgA有效負荷610b中的任何一者,則BS 204可以不進行動作並且在RAR訊窗615期間不傳輸任何內容。同時,UE 202可以在RAR訊窗615期間進行監測,但是沒有從BS 204接收到任何內容。
在此種情況下,當UE 202在RAR訊窗615期間沒有從BS 204接收到MsgB 620時,UE 202可以要求對MsgA 610的重傳。在623處進行後移和MAC協定處理之後,UE 202可以重傳包含MsgA前序信號635a和MsgA有效負荷635b的MsgA。在一些態樣中,MsgA前序信號635a和MsgA有效負荷635b可以分別與MsgA前序信號610a和MsgA有效負荷610b相同。在一些態樣中,UE 202可以在時域或頻域中重新選擇MsgA前序信號635a或PUSCH時機,或者重新選擇用於重傳的解調參考信號源。在一些態樣中,UE 202可以針對所重傳的MsgA,利用與MsgA有效負荷610b不同的內容、不同的調制和編碼方案(MCS)、不同的傳輸塊大小(TBS)等來重構MsgA有效負荷635b。在一些態樣中,所重傳的MsgA前序信號635a或MsgA有效負荷635b可以被配置為具有功率斜升或傳輸器波束切換。
如圖6A-圖6C所示,UE 202並不總是向BS 204傳輸用於MsgB的HARQ回饋信號(例如,認可訊息或非認可訊息)以通知RRC連接是否已經成功建立。如圖600b處所示,若UE 202成功地從MsgB 620中解碼出後移RAR 620b,則UE 202不向BS 204傳輸「ACK」或「NACK」。如圖600c處所示,若UE 202未接收到成功RAR 620b或後移RAR 620c,則UE 202亦不向BS 204傳輸任何「ACK」或「NACK」。
如圖600a處所示,僅當UE 202能夠從MsgB 620中解碼出成功RAR 620b時,UE 202才向BS 204傳輸「ACK」。在UE 202傳輸認可訊息625之前,UE 202可以應用「時序提前」以調整上行鏈路上的時序偏移。例如,用於時序提前命令的媒體存取控制(MAC)控制元素可以被包括在成功RAR 620b中。
在一些態樣中,可以在PUCCH、在PUSCH上搭載的上行鏈路控制資訊(UCI)或上行鏈路參考信號上傳輸認可訊息625。在一些態樣中,UE 202可以在與有效負荷620b相對應的MAC控制元素、MAC子標頭、子協定資料單元(PDU)的索引處配置用於認可訊息625的資源分配指示符。或者,UE 202可以在下行鏈路控制資訊(DCI)的子欄位或者PDCCH上的CCE的資源映射模式處配置用於認可訊息625的資源分配指示符。或者,UE 202可以利用經由MsgB PDCCH和MsgB PDSCH的聯合指示來配置用於認可訊息625的資源分配指示符。或者,UE 202可以經由RRC和前序信號資源索引來配置用於認可訊息625的資源分配指示符。
圖7A-圖7B圖示根據本案內容的一些態樣的由UE執行的與在圖6A-圖6C中所示的兩步RACH程序的不同場景中的重傳等時線設計相對應的邏輯流程。方法700的步驟可以由無線通訊設備的計算設備(例如,處理器、處理電路及/或其他合適的元件)或用於執行該等步驟的其他合適的構件來執行。例如,無線通訊設備(諸如UE 115、UE 202或UE 400)可以利用一或多個元件(諸如處理器402、記憶體404、兩步RACH模組408、通訊介面409、收發機410、數據機412和一或多個天線416)來執行方法700的步驟。方法700可以結合以上關於圖6A-圖6C描述的圖600a-c來使用。如圖所示,方法700包括多個列舉的步驟,但是方法700的各態樣在列舉的步驟之前、之後以及之間包括額外的步驟。在一些態樣中,列舉的步驟中的一或多個步驟可以被省略或以不同的順序執行。
在步驟702處,UE 202例如從BS 204接收用於配置RACH程序的系統資訊或RRC信號傳遞。例如,可以經由在圖6A-圖6C中所示的下行鏈路通道或信號傳遞605來傳輸系統資訊或RRC信號傳遞。
在步驟704處,UE 202在向BS傳輸第一訊息之前在來自BS的最後一個下行鏈路符號(例如,系統資訊、控制或參考信號的最後一個符號)之後等待時間間隙。例如,如圖6A所示,UE 202在傳輸MsgA前序信號610a之前等待時間段T0 。在一些實施例中,可以基於多種因素來預先決定T0 的值,包括但不限於BS 202與UE 204之間的雙工模式(例如,時域雙工或頻域雙工)、用於最後一個符號與MsgA 610的第一訊息的隨機存取前序信號的第一上行鏈路符號之間的參數集或頻寬部分(BWP)切換的調諧時間、UE 202準備MsgA有效負荷610b所需要的準備時間、用於媒體存取控制(MAC)協定的處理時延、從BS 204向UE 202傳輸下行鏈路通道資訊610的下行鏈路通道所需要的處理時間等。
在步驟706處,UE 204開始第一訊息(例如,圖6A中的MsgA 610)到BS的上行鏈路傳輸。具體地,在步驟708處,UE 202在MsgA前序信號(例如,圖6A中的610a)的傳輸與MsgA有效負荷(例如,圖6A中的610b)的傳輸之間等待時間間隙Tg (如圖6A所示)。在一些實施例中,Tg 的值大於下界值,該下界值可以經由多種因素預先決定,包括但不限於PRACH格式的前序信號格式、用於MsgA前序信號610a的時域資源分配、在分時雙工(TDD)模式中使用的時槽格式、用於MsgA前序信號610a與攜帶MsgA有效負荷610b的PUSCH之間的參數集切換的調諧時間、當RACH程序正在共享或未授權頻譜上進行操作時BS 204與UE 202之間的LBT機制、當RACH程序正在共享或未授權頻譜上進行操作時用於UE 202的通道佔用時間、用於RACH程序的頻帶,以及用於MsgA有效負荷610b的PUSCH映射類型。
在步驟710處,UE 202啟動用於MsgB RAR訊窗(例如,圖6A中的615)的計時器。例如,經由圖10中的方法1000來決定MsgB RAR訊窗的起始點。
在步驟712處,UE 202在RAR訊窗期間監測回應於第一訊息的第二訊息。例如,UE 202可以在RAR訊窗期間在MsgB PDCCH搜尋空間中搜尋回應於MsgA的MsgB(例如,圖6A中的620)。
在步驟714處,UE 202決定是否接收到第二訊息(例如,MsgB 620)。若沒有接收到MsgB,則方法700繼續進行到步驟716,在步驟716處,UE 202決定RAR訊窗是否已經到期。若RAR訊窗尚未到期,則方法700繼續進行到步驟712,以使UE 202繼續監測MsgB。
若在步驟716處RAR訊窗已經到期,則UE 202在步驟718處停止用於MsgB RAR訊窗的計時器。在步驟720處,UE 202等待後移時間以進行上行鏈路時序調整,並且隨後在步驟722處,UE 202重傳第一訊息。例如,UE 202可以重傳MsgA,例如,參見圖6C中的635a-b。在一些實施例中,UE 202可以重構用於所重傳的MsgA的訊息有效負荷。返回到步驟714處,若UE 202決定已經接收到第二訊息(例如,MsgB 620),則方法700繼續進行到步驟724,在步驟724處,UE 202處理和解碼MsgB。在步驟726處,UE 202決定是否能夠解碼MsgB以及能夠解碼MsgB的何者部分。若MsgB的前序信號根本不能被解碼,則方法700繼續進行到步驟718。例如,若在步驟726處僅從MsgB中解碼出後移指示符(BI)但沒有解碼出有效負荷,則UE 202在步驟720處根據從MsgB中解碼出的後移指示符以及在RAR訊窗已經過去之後MAC協定的處理時延來執行後移。隨後,UE 202在步驟722處重傳MsgA。
在一些實施例中,在步驟722處,UE 202在碼域、空間域、時域或頻域中重新選擇隨機存取前序信號資源或PUSCH資源以用於對MsgA的重傳。
在一些實施例中,UE 202利用與MsgA有效負荷610b不同的內容來重構用於所重傳的MsgA的有效負荷,並且將功率斜升應用於對MsgA的重傳。
若MsgB的至少一部分(例如,MsgB前序信號620a或有效負荷620b)被解碼,則方法700繼續進行到步驟728,在步驟728處,UE 202決定能夠從MsgB中解碼出何種類型的MsgB有效負荷,例如,是成功RAR 620b還是後移RAR 620c。若經解碼的MsgB有效負荷指示MsgA有效負荷在BS 204被成功解碼,例如,成功RAR 620b被解碼,則方法700繼續進行到步驟730,在步驟730處,UE 202在任何上行鏈路傳輸之前在MsgB的最後一個符號之後等待時間間隙T1 (例如,在圖6A中所示)。例如,時間間隙T1 提供用於UE 202對所接收的MsgB 620進行解碼以及針對UE 202的基於TA的上行鏈路時序調整的處理時間。時間間隙T1 亦被決定為使得認可訊息625是利用RAR訊窗615傳輸的,但是亦大於下界值。可以基於各種因素來預先決定用於T1 的下界值,包括但不限於PDSCH處理時間、時槽格式(是否使用TDD)、MAC協定處理時延、是否在PUSCH上搭載認可訊息625等等。
在一些實施例中,在步驟728處解碼出成功RAR之後,UE 202對由網路配置的資源分配進行解碼,以用於UE準備回應於成功RAR的認可訊息。
在步驟732處,UE 202在RAR訊窗到期之前傳輸指示成功完成隨機存取程序的認可訊息(例如,圖6A中的625)。例如,可以在PUCCH、在PUSCH上搭載的UCI或上行鏈路參考信號上傳輸認可訊息。
在一些實施例中,UE 202在傳輸認可訊息之前應用時序提前命令來調整從UE到BS的上行鏈路上的時序偏移。時序提前命令被包括在來自MsgB有效負荷的隨機存取回應中。
返回到步驟728處,若UE 202決定從MsgB中解碼出的有效負荷的類型是BS處的MsgA有效負荷的解碼失敗,例如,後移RAR 620c被解碼,則方法700繼續進行到步驟731,在步驟731處,UE 202在任何上行鏈路傳輸之前在MsgB的最後一個符號之後等待時間間隙T2 (例如,在圖6A中所示)。例如,T2 的值被決定為使得在RAR訊窗615中為傳輸Msg3 630留有足夠的時間,T2 的值可以是基於各種因素來預先決定的,包括但不限於PDSCH處理時間、MAC協定處理時延、TDD的時槽格式、PUSCH準備時間等。在步驟733處,UE 202基於被包括在後移RAR中的上行鏈路容許來在PUSCH上在Msg3(例如,圖6B中的630)中重傳MsgA有效負荷。
圖8圖示根據本案內容的一些態樣的由BS執行的與在圖6A-圖6C中所示的兩步RACH程序的不同場景中的重傳等時線設計相對應的邏輯流程。方法800的步驟可以由無線通訊設備的計算設備(例如,處理器、處理電路及/或其他合適的元件)或用於執行該等步驟的其他合適的構件來執行。例如,無線通訊設備(諸如BS 105、BS 204或BS 500)可以利用一或多個元件(諸如處理器502、記憶體504、兩步RACH模組508、通訊介面509、收發機510、數據機512和一或多個天線516)來執行方法800的步驟。方法800可以結合以上關於圖6A-圖6C描述的圖600a-c來使用。如圖所示,方法800包括多個列舉的步驟,但是方法800的各態樣在列舉的步驟之前、之後以及之間包括額外的步驟。在一些態樣中,列舉的步驟中的一或多個步驟可以被省略或以不同的順序執行。
在步驟802處,BS 204在下行鏈路向多個UE傳輸系統資訊和RRC信號傳遞。例如,可以經由在圖6A中所示的下行鏈路通道或信號605來傳送系統資訊和RRC信號傳遞。
在步驟804處,BS 204接收第一訊息的上行鏈路傳輸。例如,BS 204從UE 202接收MsgA(例如,圖6A中的610)。
在步驟806處,BS 204對所接收的第一訊息進行解碼。例如,如圖6A所示,BS 204在RAR訊窗615期間處理和解碼MsgA。
在步驟808處,BS 204決定第一訊息是否能夠被解碼。若第一訊息不能被解碼,則方法800繼續進行到步驟810,在步驟810處,BS 204避免在RAR訊窗期間傳輸任何下行鏈路。例如,若在步驟808處未能從MsgA中解碼出MsgA前序信號,則BS 204向UE 202傳輸後移指示符。
在步驟812處,BS 204在RAR訊窗到期之後監測MsgA重傳。在步驟814處,BS 204接收重傳的第一訊息。例如,重傳的訊息(例如,圖6C中的635a-b)可以具有相同的MsgA有效負荷610b,或者可以具有經重構的有效負荷(例如,具有新的連接請求)。
返回到步驟808處,若BS 204決定第一訊息的至少一部分能夠被解碼,例如,MsgA有效負荷(例如,圖6A中的610b)能夠被解碼,則方法800繼續進行到步驟818,在步驟818處,BS 204解碼MsgA有效負荷以獲得UE 202的唯一辨識碼,並且準備具有用於指示解碼成功的有效負荷的第二訊息。例如,BS 204準備具有成功RAR的有效負荷的MsgB(例如,圖6A中的620b)以指示連接成功。BS 204亦準備具有PDCCH和PDSCH的MsgB,並且配置針對用於MsgB的PSDCH的排程資訊。對於另一實例,BS 204亦經由利用細胞無線電網路臨時辨識符(C-RNTI)或群組RNT對PDCCH的循環冗餘檢查進行加擾並且將MsgB的有效負荷映射到PDSCH,從而準備MsgB。MsgB有效負荷至少包括後移指示符(BI)。
在一些實施例中,BS 204從MsgA偵測MsgA前序信號以獲得UE 202的時序提前,並且隨後準備MsgB,MsgB包括時序提前命令、UE 202的唯一辨識以及在MsgB中的用於UE的資源分配。
在步驟820處,BS 204向UE傳輸第二訊息,例如,具有成功RAR 620b的MsgB。在步驟822處,BS 204從UE接收指示成功完成隨機存取程序的認可訊息(例如,圖6A中的625)。
返回到步驟808處,若BS 204決定僅第一訊息的前序信號(例如,圖6B中的MsgA前序信號610a)能夠被解碼,則方法800繼續進行到步驟819,在步驟819處,BS 204準備具有用於指示解碼失敗的有效負荷的第二訊息。例如,BS 204準備具有後移RAR的有效負荷的MsgB(例如,圖6B中的620c)以指示MsgA有效負荷的解碼失敗,並且因此需要後移到四步RACH。
在一些實施例中,BS 204在MsgB中包括時序提前命令、隨機存取前序信號序列(RAPID)的索引以及用於UE 202重傳MsgA有效負荷的上行鏈路容許。
在步驟821處,BS 204傳輸第二訊息,例如,具有MsgB後移RAR的MsgB(例如,圖6B中的620b)。在步驟823處,BS 204接收第三訊息,該第三訊息通知UE將後移到四步RACH。例如,可以以四步RACH的Msg3的形式向BS 204重傳MsgA有效負荷。以此種方式,向BS 204通知在接收到Msg3之後正在實現四步RACH。
圖9圖示根據本案內容的一些態樣的在兩步RACH程序中配置隨機存取回應(RAR)訊窗長度的邏輯流程。方法900的步驟可以由無線通訊設備的計算設備(例如,處理器、處理電路及/或其他合適的元件)或用於執行該等步驟的其他合適的構件來執行。例如,無線通訊設備(諸如BS 105、BS 204或BS 500)可以利用一或多個元件(諸如處理器502、記憶體504、兩步RACH模組508、通訊介面509、收發機510、數據機512和一或多個天線516)來執行方法800的步驟。方法900可以結合以上關於圖6A-圖6C描述的圖600a-c來使用。如圖所示,方法900包括多個列舉的步驟,但是方法900的各態樣在列舉的步驟之前、之後以及之間包括額外的步驟。在一些態樣中,列舉的步驟中的一或多個步驟可以被省略或以不同的順序執行。
在步驟902處,BS 204獲得MsgB RAR訊窗的長度,該長度可以由網路預先決定。在一些實施例中,可以基於諸如但不限於以下各項的因素來決定RAR訊窗長度:MsgA優先順序、用於MsgA前序信號/有效負荷資源分配的密度、同步信號區塊(SSB)與時機關聯週期性、UE能力等。例如,RAR訊窗長度可以與MsgA優先順序等級成反比,例如,可以將較短的訊窗長度指派給具有較高優先順序的MsgA。對於另一實例,當用於MsgA的資源分配減少時,可以增加RAR訊窗長度。
在步驟904處,BS 204決定任何UE是否處於RRC連接狀態。若UE 202未處於RRC連接,例如處於閒置狀態,則BS 204可以在步驟906處在系統資訊廣播中向UE發送RAR訊窗長度。若在步驟904處UE 202處於RRC連接,則BS 204在步驟908處經由RRC信號傳遞向UE 202發送RAR訊窗長度。在步驟910處,UE 202可以經由來自BS 204的RRC信號傳遞來動態地更新RAR訊窗長度。
圖10圖示根據本案內容的一些態樣的在兩步RACH程序中配置隨機存取回應(RAR)訊窗的起始點的邏輯流程。方法1000的步驟可以由無線通訊設備的計算設備(例如,處理器、處理電路及/或其他合適的元件)或用於執行該等步驟的其他合適的構件來執行。例如,無線通訊設備(諸如UE 115、UE 202或UE 400)可以利用一或多個元件(諸如處理器402、記憶體404、兩步RACH模組408、通訊介面409、收發機410、數據機412和一或多個天線416)來執行方法1000的步驟。方法1000可以結合以上關於圖6A-圖6C描述的圖600a-c來使用。如圖所示,方法1000包括多個列舉的步驟,但是方法1000的各態樣在列舉的步驟之前、之後以及之間包括額外的步驟。在一些態樣中,列舉的步驟中的一或多個步驟可以被省略或以不同的順序執行。
在步驟1002處,UE 202完成PUSCH時機。在步驟1004處,UE 202決定UE是否處於RRC連接狀態,例如,是否連接到BS。若UE 202未處於RRC連接,例如處於閒置狀態,則方法1000繼續進行到步驟1006,在步驟1006處,UE 202在用於MsgB PDCCH的最早的共用搜尋空間(CSS)的第一PDCCH符號處啟動用於RAR訊窗的計時器。在此種情況下,UE 202在由系統資訊配置的CSS內搜尋MsgB的第一PDCCH符號。
否則,若UE 202處於RRC連接,則UE 202在步驟1008處進一步決定隨機存取是基於爭用的(CBRA)還是無爭用的(CFRA)。在步驟1008處的CBRA方案下,UE 202在步驟1010處在用於MsgB PDCCH的最早的CSS或特定於UE的搜尋空間(USS)的第一PDCCH符號處啟動用於MsgB RAR訊窗的計時器。在此種情況下,UE 202在由系統資訊配置的CSS內或由RRC信號傳遞配置USS內搜尋MsgB的第一PDCCH符號。
否則,在步驟1008處的CFBA方案下,方法繼續進行到步驟1012,在步驟1012處,UE 202在用於MsgB PDCCH的最早的USS的第一PDCCH符號處啟動用於MsgB RAR訊窗的計時器。在此種情況下,用於MsgB PDCCH的搜尋空間僅是USS。
資訊和信號可以使用多種不同的技術和方法中的任何一種來表示。例如,可能貫穿以上描述所提及的資料、指令、命令、資訊、信號、位元、符號和碼片可以由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任何組合來表示。
結合本文的揭示內容描述的各種說明性的方塊和模組可以利用被設計為執行本文描述的功能的通用處理器、DSP、ASIC、FPGA或其他可程式設計邏輯設備、個別閘門或者電晶體邏輯、個別硬體元件或者其任何組合來實現或執行。通用處理器可以是微處理器,但是在替代的方式中,處理器可以是任何習知的處理器、控制器、微控制器或者狀態機。處理器亦可以被實現為計算設備的組合(例如,DSP和微處理器的組合、多個微處理器、一或多個微處理器與DSP核的結合,或者任何其他此種配置)。
本文中所描述的功能可以用硬體、由處理器執行的軟體、韌體或其任何組合來實現。若用由處理器執行的軟體來實現,該等功能可以作為一或多個指令或代碼儲存在電腦可讀取媒體上或經由其進行傳輸。其他實例和實現方式在本案內容和所附請求項的範疇之內。例如,由於軟體的性質,上文描述的功能可以使用由處理器執行的軟體、硬體、韌體、硬接線或該等項中的任何項的組合來實現。實現功能的特徵亦可以在實體上位於各個位置處,包括被分佈為使得功能中的各部分功能在不同的實體位置處實現。此外,如本文所使用的(包括在請求項中),如專案列表(例如,以諸如「中的至少一個」或「中的一或多個」之類的短語結束的專案列表)中所使用的「或」指示包含性列表,使得例如[A、B或C中的至少一個]的列表意指A或B或C或AB或AC或BC或ABC(亦即,A和B和C)。
如一般技術者到目前為止並且根據當時的具體應用將理解的,可以在不脫離本案內容的精神和範疇的情況下,在本案內容的設備的材料、裝置、配置和使用方法中以及對其進行許多修改、替換和改變。鑒於此,本案內容的範疇應當不限於本文所說明和描述的特定態樣的範疇(因為其僅是經由其一些實例的方式),而是應當完全相稱於後文所附的請求項以及其功能性均等物。
100:無線通訊網路 105a:BS 105b:BS 105c:BS 105d:BS 105e:BS 105f:BS 115a:UE 115b:UE 115c:UE 115d:UE 115e:UE 115f:UE 115g:UE 115h:UE 115i:UE 115j:UE 115k:UE 200:無線通訊網路 202:UE 204:BS 211:定向波束 211a:波束 211b:波束 211c:波束 221:波束 300a:圖 300b:圖 300c:圖 310:時延 315:元件符號 320:元件符號 340:元件符號 345:元件符號 350:元件符號 355:元件符號 375:元件符號 380:元件符號 385:元件符號 400:UE 402:處理器 404:記憶體 406:指令 408:BWP躍變模組 409:通訊介面 410:收發機 412:數據機子系統 414:射頻(RF)單元 416:天線 500:BS 502:處理器 504:記憶體 506:指令 508:兩步RACH模組 509:通訊介面 510:收發機 512:數據機子系統 514:RF單元 516:天線 600a:方案 600b:方案 600c:方案 605:信號 610a:MsgA 610b:MsgA 613:元件符號 615:RAR訊窗 615a:起始點 615b:RAR訊窗的結束 620a:MsgB PDCCH 620b:MsgB有效負荷 620c:後移RAR 623:元件符號 625:認可訊息 630:Msg3 635a:MsgA前序信號 635b:MsgA有效負荷 700:方法 702:步驟 704:步驟 706:步驟 708:步驟 710:步驟 712:步驟 714:步驟 716:步驟 718:步驟 720:步驟 722:步驟 724:步驟 726:步驟 728:步驟 730:步驟 731:步驟 732:步驟 733:步驟 800:方法 802:步驟 804:步驟 806:步驟 808:步驟 810:步驟 812:步驟 814:步驟 816:步驟 818:步驟 819:步驟 820:步驟 821:步驟 822:步驟 823:步驟 900:方法 902:步驟 904:步驟 906:步驟 908:步驟 910:步驟 1000:方法 1002:步驟 1004:步驟 1006:步驟 1008:步驟 1010:步驟 1012:步驟
圖1圖示根據本案內容的一些態樣的無線通訊網路。
圖2圖示根據本案內容的各態樣的在圖1中所示的無線通訊網路中的隨機存取方案。
圖3A-圖3C圖示根據本案內容的一些態樣的可以在圖1-圖2中所示的無線通訊網路中實現的在UE與BS之間的兩步RACH方案的各種傳輸場景。
圖4是根據本案內容的一些態樣的使用者設備(UE)的方塊圖。
圖5是根據本案內容的一些態樣的示例性基地站(BS)的方塊圖。
圖6A-圖6C圖示根據本案內容的一些態樣的在UE與BS之間的兩步RACH程序的不同場景中的重傳等時線設計。
圖7A-圖7B圖示根據本案內容的一些態樣的由UE執行的與在圖6A-圖6B中所示的兩步RACH程序的不同場景中的重傳等時線設計相對應的邏輯流程。
圖8圖示根據本案內容的一些態樣的由BS執行的與在圖6A-圖6B中所示的兩步RACH程序的不同場景中的重傳等時線設計相對應的邏輯流程。
圖9圖示根據本案內容的一些態樣的在兩步RACH程序中配置隨機存取回應(RAR)訊窗長度的邏輯流程。
圖10圖示根據本案內容的一些態樣的在兩步RACH程序中配置隨機存取回應(RAR)訊窗的起始點的邏輯流程。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:無線通訊網路
105a:BS
105b:BS
105c:BS
105d:BS
105e:BS
105f:BS
115a:UE
115b:UE
115c:UE
115d:UE
115e:UE
115f:UE
115g:UE
115h:UE
115i:UE
115j:UE
115k:UE

Claims (30)

  1. 一種無線通訊的方法,包括以下步驟: 由一使用者設備(UE)從一基地站(BS)接收用於配置一隨機存取通道(RACH)程序的系統資訊或無線電資源控制(RRC)信號傳遞; 由該UE向該BS傳輸包括一隨機存取前序信號和一第一有效負荷的一第一訊息;及 由該UE在一隨機存取回應(RAR)訊窗期間監測來自該BS的回應於該第一訊息的一第二訊息; 由該UE回應於基於該監測而決定該UE在該RAR訊窗內沒有從該BS接收到第二訊息,向該BS重傳該第一訊息;及 由該UE回應於決定該UE在該RAR訊窗內從該BS接收到該第二訊息,基於從該第二訊息中解碼的一第二有效負荷的一類型來決定是向該BS重傳該第一有效負荷還是向該BS傳輸一認可訊息。
  2. 根據請求項1之方法,亦包括以下步驟: 由該UE在向該BS傳輸該第一訊息之前,在從該BS接收到一最後一個下行鏈路符號之後等待一時間間隙, 其中該時間間隙是經由以下各項中的至少一項來決定的: 該BS與該UE之間的一雙工模式; 用於該最後一個符號與該第一訊息的該隨機存取前序信號的一第一上行鏈路符號之間的參數集或一頻寬部分(BWP)切換的一調諧時間; 用於該RACH程序的一頻帶; 用於該第一有效負荷的一準備時間;或者 用於一媒體存取控制(MAC)協定的一處理時延。
  3. 根據請求項1之方法,亦包括以下步驟: 由該UE在該隨機存取前序信號的傳輸與該第一有效負荷的傳輸之間等待一時間間隙, 其中該時間間隙是經由以下各項中的至少一項來決定的: 用於該實體隨機存取通道(PRACH)的一前序信號格式; 用於該隨機存取前序信號的一時域資源分配; 在一分時雙工(TDD)模式下使用的一時槽格式; 用於該隨機存取前序信號與攜帶該第一有效負荷的該實體上行鏈路共享通道(PUSCH)之間的參數集切換的一調諧時間; 當該RACH程序正在一共享或未授權頻譜上操作時該BS與該UE之間的一先聽後說機制; 當該RACH程序正在一共享或未授權頻譜上操作時用於該UE的一通道佔用時間; 用於該RACH程序的一頻帶;或者 用於該第一訊息的該第一有效負荷的一實體上行鏈路共享通道(PUSCH)映射類型。
  4. 根據請求項1之方法,其中該由該UE決定之步驟包括以下步驟: 由該UE決定該UE在該RAR訊窗內從該BS接收到該第二訊息,但是僅從該第二訊息中解碼出一後移指示符(BI),而沒有解碼出有效負荷;及 該方法亦包括以下步驟: 在該RAR訊窗已經過去之後,根據從該第二訊息中解碼出的一後移指示符和MAC協定的一處理時延來執行一後移; 由該UE在該後移之後向該BS重傳該第一訊息。
  5. 根據請求項4之方法,亦包括以下步驟: 由該UE在碼域、空間域、時域或頻域中重新選擇一隨機存取前序信號資源或一PUSCH資源,以用於對該第一訊息的該重傳。
  6. 根據請求項4之方法,亦包括以下步驟: 利用與該第一有效負荷不同的一內容來重構用於所重傳的該第一訊息的一有效負荷;及 將功率斜升應用於對該第一訊息的該重傳。
  7. 根據請求項1之方法,其中該由該UE決定之步驟進一步包括以下步驟: 決定該UE在該RAR訊窗內從該BS接收到該第二訊息,以及 該方法亦包括以下步驟: 對來自該第二訊息的該第二有效負荷進行解碼; 偵測到來自該第二訊息的該第二有效負荷中的一隨機存取回應的一類型指示以下內容: 該第一有效負荷在該BS處被成功解碼;及 由該UE向該BS傳輸指示成功完成該隨機存取程序的一認可訊息。
  8. 根據請求項7之方法,亦包括以下步驟: 在傳輸該認可訊息之前在該第二訊息的一最後一個下行鏈路符號之後等待一時間間隙, 其中該時間間隙是經由以下各項中的至少一項來決定的: 一實體下行鏈路共享通道(PDSCH)處理時間; TDD的一時槽格式; 一MAC協定處理時延;或者 該認可訊息是否是搭載在PUSCH上的。
  9. 根據請求項7之方法,亦包括以下步驟: 由該UE在傳輸該認可訊息之前應用一時序提前命令以調整從該UE到該BS的一上行鏈路上的一時序偏移,其中該時序提前命令被包括在來自該第二有效負荷的一隨機存取回應中。
  10. 根據請求項7之方法,其中該認可是經由以下各項來傳輸的: 一實體上行鏈路控制通道(PUCCH); 在PUSCH上搭載的上行鏈路控制資訊(UCI);或者 一上行鏈路參考信號。
  11. 根據請求項7之方法,亦包括以下步驟: 由該UE回應於來自該第二有效負荷的該隨機存取回應,對用於由UE對於BS的該認可訊息的一資源分配進行解碼。
  12. 根據請求項1之方法,其中該由該UE決定之步驟進一步包括以下步驟: 決定該UE在該RAR訊窗內從該BS接收到該第二訊息,以及該方法亦包括以下步驟: 對來自該第二訊息的該第二有效負荷進行解碼; 偵測到來自該第二訊息的該第二有效負荷中的該隨機存取回應的一類型指示在該BS處該第一有效負荷的一解碼失敗;及 由該UE基於被包括在該隨機存取回應中的一上行鏈路容許來在PUSCH上向該BS重傳該第一訊息的該第一有效負荷。
  13. 根據請求項12之方法,亦包括以下步驟: 在重傳該第一有效負荷之前在該第二訊息的一最後一個下行鏈路符號之後等待一時間間隙, 其中該時間間隙是經由以下各項中的至少一項來決定的: 一PDSCH處理時間; 一MAC協定處理時延; TDD的一時槽格式;或者 一PUSCH準備時間。
  14. 根據請求項1之方法,亦包括以下步驟: 由該UE從該BS獲得來自用於UE的該系統資訊的對該RAR訊窗的一長度的一指示。
  15. 根據請求項1之方法,亦包括以下步驟: 當該UE處於一無線電資源控制(RRC)連接狀態時,由該UE從該BS獲得來自RRC信號傳遞的對該RAR訊窗的一長度的一指示, 其中該RAR訊窗的該長度覆蓋一先前獲得的該RAR訊窗的長度。
  16. 根據請求項1之方法,其中該RAR訊窗的一長度是基於以下各項中的至少一項來決定的: 該第一訊息的一優先順序等級; 一UE能力; 針對該第一訊息的資源分配的一密度;或者 同步信號區塊(SSB)與時機關聯週期性。
  17. 根據請求項1之方法,亦包括以下步驟: 當該UE處於RRC不活動或閒置狀態時,由該UE在由該系統資訊配置的一共用搜尋空間內搜尋該第二訊息的一第一PDCCH符號。
  18. 根據請求項1之方法,亦包括以下步驟: 當處於RRC連接狀態的該UE正在執行基於爭用的隨機存取(CBRA)程序時,由該UE在由該系統資訊配置的一共用搜尋空間(CSS)內以及在由該RRC信號傳遞配置的一特定於UE的搜尋空間(USS)內搜尋該第二訊息的一第一PDCCH符號;或者當處於RRC連接狀態的該UE正在執行一無爭用的隨機存取(CFRA)程序時,由該UE僅在該USS中搜尋一第一PDCCH符號。
  19. 根據請求項1之方法,亦包括以下步驟: 由該UE在該第一訊息的一PUSCH時機之後啟動用於該RAR訊窗的一計時器, 其中該RAR訊窗的一起始點是與該第二訊息的一最早的PDCCH共用搜尋空間中的一第一PDCCH符號對準的。
  20. 根據請求項1之方法,亦包括以下步驟: 由處於一RRC連接狀態的該UE在一最早的CSS或USS中在該第一訊息的一PUSCH時機之後啟動用於該RAR訊窗的一計時器, 其中在CBRA下,用於CBRA的該RAR訊窗的一起始點是與用於該第二訊息的PDCCH的一最早的CSS或USS中的一第一PDCCH符號對準的,並且 其中在CFRA下,用於CFRA的該RAR訊窗的該起始點是與用於該第二訊息的該PDCCH的該最早的USS中的該第一PDCCH符號對準的。
  21. 一種無線通訊的基地站(BS),包括: 一收發機,其被配置為: 廣播用於啟動一隨機存取通道程序的系統資訊; 接收包括一隨機存取前序信號和一連接請求的一第一有效負荷的一第一訊息;及 一處理器,其被配置為: 決定該第一訊息的至少一部分是否是可解碼的; 回應於該第一訊息的一解碼失敗,避免在一隨機存取回應(RAR)訊窗內向該UE傳輸任何訊息;並且 其中該收發機亦被配置為:回應於該第一訊息的至少該一部分的一解碼成功,傳輸包含一第二有效負荷的一RAR訊息,該第二有效負荷是基於該第一訊息的該一部分的一類型來決定的。
  22. 根據請求項21之BS,其中該第一訊息是在該系統資訊的一最後一個資料符號之後的一時間間隙之後接收到的, 其中該時間間隙是經由以下各項中的至少一項來決定的: 該BS與該UE之間的一雙工模式; 用於該最後一個資料符號與該第一訊息的一第一資料符號之間的參數集或一頻寬部分(BWP)切換的一調諧時間; 用於該第一有效負荷的一準備時間;或者 用於從該BS向該UE傳輸該系統資訊的一下行鏈路通道的一處理時間。
  23. 根據請求項21之BS,其中該隨機存取前序信號的該傳輸與該第一有效負荷的傳輸被一時間間隙分開,並且 其中該時間間隙是經由以下各項中的至少一項來決定的: 一實體隨機存取通道(PRACH)格式; 時域資源分配; 時槽格式; 用於該隨機存取前序信號與該第一有效負荷之間的參數集切換的一調諧時間; 該BS與該UE之間的一先聽後說機制; 該BS與該UE之間的一通道佔用時間; 用於該RACH程序的一頻帶;或者 用於該第一訊息的一實體上行鏈路共享通道(PUSCH)映射類型。
  24. 根據請求項21之BS,其中該收發機亦被配置為: 回應於該第一訊息的一解碼失敗,在該RAR訊窗已經過去之後接收對該第一訊息的一重傳。
  25. 根據請求項24之BS,其中時域或頻域中的該隨機存取前序信號或一PUSCH時機被重新選擇以用於所重傳的該第一訊息。
  26. 根據請求項24之BS,其中針對所重傳的該第一訊息,一有效負荷是利用與該第一有效負荷不同的一內容來重構的。
  27. 根據請求項21之BS,其中該收發機亦被配置為: 對來自該第一訊息的該第一有效負荷進行解碼; 並且該收發機亦被配置為:回應於決定該第一有效負荷被成功解碼,傳輸包括該第二有效負荷的該第二訊息,該第二訊息指示解碼成功,以及 在該RAR訊窗內接收回應於該連接請求的一認可訊息,該認可訊息指示一連接建立。
  28. 根據請求項27之BS,其中該認可訊息是在自該第二訊息的一最後一個資料符號起的一時間間隙之後接收到的,並且 其中該時間間隙以經由以下各項中的至少一項而決定的一值為下界: 一實體下行鏈路共享通道(PDSCH)處理時間; 一時槽格式;及 該認可訊息是否是搭載在PUSCH上的。
  29. 根據請求項27之BS,其中一時序提前偏移是在該認可訊息被傳輸之前被應用的,以調整從該UE到該BS的一上行鏈路上的一時序偏移。
  30. 根據請求項27之BS,其中該認可訊息是經由以下各項中的至少一項來接收的: 一實體上行鏈路控制通道(PUCCH); 在PUSCH上搭載的上行鏈路控制資訊(UCI);及 一上行鏈路參考信號。
TW109133061A 2019-10-02 2020-09-24 用於兩步隨機存取通道(rach)混合自動重傳請求(harq)的時延減少的系統和方法 TW202121925A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109800 WO2021062864A1 (en) 2019-10-02 2019-10-02 Systems and methods for latency reduction for 2-step random access channel (rach) hybrid automatic repeat requests (harq)
WOPCT/CN2019/109800 2019-10-02

Publications (1)

Publication Number Publication Date
TW202121925A true TW202121925A (zh) 2021-06-01

Family

ID=75337723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109133061A TW202121925A (zh) 2019-10-02 2020-09-24 用於兩步隨機存取通道(rach)混合自動重傳請求(harq)的時延減少的系統和方法

Country Status (7)

Country Link
US (1) US20220377801A1 (zh)
EP (1) EP4039040A4 (zh)
KR (1) KR20220083683A (zh)
CN (1) CN114451057B (zh)
BR (1) BR112022005316A2 (zh)
TW (1) TW202121925A (zh)
WO (1) WO2021062864A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020102159A1 (en) * 2018-11-12 2020-05-22 Sony Corporation Method and apparatus for network management of assistance information signaling
US20230082452A1 (en) * 2020-01-21 2023-03-16 Lg Electronics Inc. Method and apparatus for performing random access procedure in wireless communication system
US11646826B2 (en) * 2020-01-29 2023-05-09 Qualcomm Incorporated Message repetition configurations for random access procedures
KR20220031248A (ko) * 2020-09-04 2022-03-11 한국전자통신연구원 통신 시스템에서 랜덤 액세스 절차를 사용하여 데이터를 전송하기 위한 방법 및 장치
WO2024155131A1 (ko) * 2023-01-18 2024-07-25 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스 절차를 위한 방법 및 그 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10433339B2 (en) * 2015-04-14 2019-10-01 Qualcomm Incorporated Random access for low latency wireless communications
CN107872899B (zh) * 2016-09-23 2022-12-06 中兴通讯股份有限公司 一种随机接入方法、装置和设备
US10405342B2 (en) * 2016-11-01 2019-09-03 Qualcomm Incorporated Two step random access procedure
CN108282897B (zh) * 2017-01-06 2020-04-17 电信科学技术研究院 一种随机接入反馈、处理方法、基站及终端
CA3113871C (en) * 2018-09-27 2023-04-04 Zte Corporation Methods, apparatus and systems for performing a random access procedure in a wireless communication
WO2020083265A1 (en) * 2018-10-26 2020-04-30 Huawei Technologies Co., Ltd. Channel access mechanism for random access channel in unlicensed spectrum
EP3780871B1 (en) * 2019-08-16 2024-10-09 Comcast Cable Communications LLC Random access procedures using repetition

Also Published As

Publication number Publication date
KR20220083683A (ko) 2022-06-20
EP4039040A4 (en) 2023-05-03
EP4039040A1 (en) 2022-08-10
US20220377801A1 (en) 2022-11-24
CN114451057A (zh) 2022-05-06
WO2021062864A1 (en) 2021-04-08
CN114451057B (zh) 2024-08-23
BR112022005316A2 (pt) 2022-06-14

Similar Documents

Publication Publication Date Title
US12082243B2 (en) Channel access priority for sidelink and relay communications in NR-U
US20220103232A1 (en) Transmission reception point (trp)-specific beam failure detection (bfd) reference signal (rs) determination
TW202234935A (zh) 用於側行鏈路的通道佔用時間(cot)共享
TWI729343B (zh) 用於多波束操作中針對多個前序信號傳輸的隨機存取回應(rar)監測的方法及裝置
US11223411B2 (en) Systems and methods for joint beam sweep configuration in 5G networks
CN114451057B (zh) 用于两步随机接入信道(rach)混合自动重传请求(harq)的时延减少的系统和方法
US11405975B2 (en) Link failure recovery procedure for a primary cell (PCell) and a secondary cell (SCell)
CN113924816A (zh) 用于随机接入过程的自适应重传
US20210144751A1 (en) Systems and methods for autonomous transmission of deprioritized protocol data units
US11516838B2 (en) Systems and methods for physical uplink shared channel repetition adaptation
US20210112603A1 (en) Systems and methods for physical uplink shared channel (pusch) occasion validation for 2-step random access channel (rach)
US20220338263A1 (en) Failed receiving of timing advance (ta) command for radio resource control (rrc) connected user equipment (ue) in two-step random access procedure
CN115486002B (zh) 通过pusch的增强cg-ul传输
CN113056956B (zh) 新无线电-非许可(nr-u)中改进的rach过程
US12107788B2 (en) Multiplexing synchronization signal blocks, control resource set, and system information blocks
US20230199856A1 (en) Random access channel transmission for frame based equipment (fbe) mode
US11395334B2 (en) Multiple grant scheduling for hybrid automatic repeat request (HARQ) and random access
TW202135552A (zh) 無線通訊系統中的頻寬部分指派
CN114503479A (zh) 用于配置授权的混合自动重复请求(harq)
WO2023164834A1 (en) Random access channel occasion configurations for random access preamble repetitions
TW202130147A (zh) 用於非同步分時雙工的干擾減輕方案
CN116711274A (zh) 复用同步信号块、控制资源集和系统信息块