TW202119824A - 保護喇叭免於過度振動位移 - Google Patents

保護喇叭免於過度振動位移 Download PDF

Info

Publication number
TW202119824A
TW202119824A TW109137833A TW109137833A TW202119824A TW 202119824 A TW202119824 A TW 202119824A TW 109137833 A TW109137833 A TW 109137833A TW 109137833 A TW109137833 A TW 109137833A TW 202119824 A TW202119824 A TW 202119824A
Authority
TW
Taiwan
Prior art keywords
vibration displacement
filter
speaker
audio signal
vibration
Prior art date
Application number
TW109137833A
Other languages
English (en)
Inventor
理查 哈吉斯
哈利 金吉普 劉
麥可 戴爾 湯森
Original Assignee
美商賽納波狄克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商賽納波狄克公司 filed Critical 美商賽納波狄克公司
Publication of TW202119824A publication Critical patent/TW202119824A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/007Protection circuits for transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本發明揭示一種用於保護喇叭免於過度振動位移(Excursion)之系統及方法,其包括一音頻源、一自適應振動位移保護濾波器、一音頻限幅器、一反向振動位移保護濾波器、一放大器和一喇叭。該系統執行的工作包括接收一音頻信號、施加一振動位移保護濾波器,該振動位移保護濾波器即時自適應一或多個喇叭條件、限制該音頻信號、施加一反向振動位移保護濾波器、及使用一放大電路以放大該音頻信號供輸出至該喇叭。

Description

保護喇叭免於過度振動位移
本發明的各種具體實施例通常係關於在工作期間減少喇叭失真及/或保護喇叭。更特別是,例如,本發明係關於用於保護喇叭避免過度振動位移之系統及方法。
諸如行動電話和平板電腦之類的現代消費者電子裝置通常設計成符合各種小型因子(small form factor)、低功率和低成本的目標。這些裝置中使用的組件(包括喇叭)可為設計成適合狹小空間的低成本組件。這些小型喇叭的缺點為降低了可從裝置傳遞給使用者的聲音輸出。為了滿足使用者對通過喇叭要更大聲或更大音量的需求,可將喇叭驅動到接近其機械極限,如果超過所述極限,則有可能導致災難性的喇叭故障。鑑於前述,持續需要在保護喇叭不受損害的同時,改善消費者電子裝置中喇叭的聲學性能之系統及方法。
本說明書揭示用於保護喇叭及/或減少由於過度振動位移所引起失真之系統及方法。在各個具體實施例中,用於保護喇叭免於過度振動位移之系統及方法包括一音頻源、一自適應振動位移保護濾波器、一音頻限幅器、一反向振動位移保護濾波器、一放大器和一喇叭。該系統執行的工作包括接收一音頻信號、施加一振動位移保護濾波器,該振動位移保護濾波器即時自適應一或多個喇叭條件、限制該音頻信號、施加一反向振動位移保護濾波器、及使用一放大電路以放大該音頻信號供輸出至該喇叭。
在一些具體實施例中,該系統包括一邏輯裝置,該邏輯裝置更構成執行包括至少部分基於放大後的音頻信號,以評估用於所述振動位移保護濾波器和所述反向振動位移保護濾波器的濾波器係數之工作。評估該濾波器係數的工作可更包括從該放大器接收電流和電壓資料。該系統可更包括一振膜測量(cone measurement)感測器,其構成測量輸出音頻信號的喇叭振動位移,其中該等一或多個喇叭狀況包括喇叭振動位移測量。該邏輯裝置可更構成在限制音頻信號時執行包括評估臨界值和應用該臨界值之工作。
在一些具體實施例中,評估該振動位移濾波器的工作更包括評估該喇叭的複數阻抗(complex impedance)和評估一直流電阻。評估該振動位移濾波器的工作可更包括計算將振膜振動作表示為施加電壓函數的振動靈敏度函數,及評估所計算振動靈敏度函數的兩或多個峰值。評估該振動位移濾波器的工作可更包括對峰值頻率和振幅施加迴轉率極限,及至少部分基於所評估峰值來建立一模型無限脈衝響應濾波器。
在一些具體實施例中,該邏輯裝置更構成執行多個工作,該等工作包括測試音頻信號的當前幀(Frame)之參數值,該等參數值包括在該振動位移濾波器評估中使用的一或多個參數,並且如果偵測到一參數超出預定範圍之外,則將該幀識別為無效。該邏輯裝置可更構成執行多個工作,該等工作包括通過包括測量比例因子、確定限幅位準臨界值和驗證該限幅位準臨界值的處理來調諧該振動位移保護濾波器。
本發明的範疇由申請專利範圍界定,該申請專利範圍通過引用併入本發明內。通過考慮以下一或多個具體實施例的詳細說明,讓熟習該項技藝者更完整理解本發明具體實施例,以及實現其附加優點。首先將參考簡要描述的附圖。
本發明提供用於在工作期間保護喇叭免於過度振動位移之系統及方法。在各種具體實施例中,通過以比一喇叭的標準規格極限更高之電壓/功率驅動該喇叭,以從該喇叭獲得更大的聲音。系統和方法構成保護該喇叭,免於該喇叭的振膜過度振動位移,否則可能導致聲音失真及/或喇叭損壞。
現將參考圖1說明本發明的具體實施例,其例示用於喇叭保護的範例即時演算法資料流。該演算法100包括一前饋路徑102,其從一音頻源104接收音頻資料並處理該音頻資料以通過一喇叭114輸出。該前饋路徑102可在適合諸如48KHz的高品質音頻播放的取樣率來工作。該演算法100中的其他路徑(例如,路徑120至108、路徑112至130、130至106、及130至110)構成以較低速率(例如100Hz幀率)工作。在工作中,該喇叭114的振動位移受限於限幅臨界(thr) 120之值,該值用於前瞻限幅器(look-ahead clipper)108。該前瞻限幅器108構成避免通過使用簡單瞬時臨界(simple instantaneous threshold)而產生的高頻失真。
該演算法100建立一模型,其在給定驅動電壓波形的情況下預測喇叭的振膜振動位移,並使用此模型將失真限制在安全值。該演算法100以即時方式進行工作以施加此限制工作,並選擇性根據施加到喇叭的即時電流和電壓,以動態更新所述模型的參數。一離線調諧(offline tuning)演算法測量喇叭114的行為,並為即時演算法100產生適當的初始模型和其他參數。
近似模型以即時方式進行工作,以從所施加的電壓波形來預測喇叭114的振動位移。所述近似模型可實施為由SOS係數(例如,IIR濾波器的二階區段(second-order sections)中之係數)指定的無限脈衝響應(Infinite Impulse Response,IIR)濾波器S 106。在方塊106中施加的濾波器S具有在方塊110中施加的一穩定反向濾波器S-1 。通過施加近似模型濾波器106 (例如,IIR濾波器S),然後施加一前瞻限幅器108或其他限制器,然後施加反向濾波器110 (例如,反向濾波器S-1 ),將喇叭振動位移限制到安全值。所述振動位移模型S不斷進行即時更新,以適應於由於諸如老化和溫度等因素而引起的喇叭性能變化。
對喇叭114的初始振動位移模型130進行評估。例如,針對一特定喇叭,根據結合電機喇叭理論和啟發式技術(heuristics)的方法來評估初始振動位移模型130,該方法允許以低計算功率來計算近似模型。此程序可使用來自驅動喇叭114的放大器112 (例如,D類放大器)之電流(I)和電壓(V)資料,並且可選擇性使用感測器132來測量瞬時振膜振動位移,例如,諸如使用一雷射位移測量裝置。
相較於習知演算法,該演算法100構成在振動位移頻率響應中追蹤一個以上的峰值。例如,多數迷你喇叭具有一個以上的峰值,這是因為通常使用接口(port)、被動輻射器、或多馬達來增加低頻響應。
請即參考圖2,現將描述用於評估該模型的具體實施例。在例示的具體實施例中,在方塊230中根據喇叭端子處的時域電流I和電壓V (例如,IV 202)來評估模型S。此資料例如可通過與圖1的D類放大器112整合之電路來獲得。該輸入資料IV提供給一子頻帶分析方塊210,其構成例如通過短暫傅立葉轉換,將時域輸入信號轉換為頻域子頻帶。一自適應濾波器220構成在頻域中評估喇叭複數阻抗Z(f)。在各個具體實施例中,所述喇叭阻抗的絕對值|Z(f)|會在喇叭振膜的機械共振峰處顯示一突出峰及其彈性限制(例如,星形、環繞和空氣反應的組合)。這是由於喇叭/音圈在其磁場中的振動所引起之逆向電場和磁場(Electric and Magnetic Field,EMF)。當振動速度較高時,例如在共振時,逆向EMF會與驅動電壓相反,因此施加到線圈DC電阻的較小有效驅動電壓會導致電流減小。
頻域中的電壓V(f)與電流I(f)、喇叭線圈和振膜的速度、速度(f)、音圈的DC電阻Rdc、和一力常數BL有關,其為(平均)磁場B與音圈繞組長度L的乘積,如下所示: V(f) = Rdc * I (f) + velocity (f) * Bl
請即參考圖3,現將描述用於更新濾波器S的即時自適應演算法之具體實施例。在步驟310,該演算法300接收代表喇叭阻抗的輸入資料,例如Z(f)資料幀。在一些具體實施例中,該等幀可例如以8毫秒的間隔出現,因此代表實際音頻時域資料的許多樣本。
在步驟312,該演算法使用最小均方根(Least Mean Square,LMS)或其他演算法來評估喇叭Z(F)的複數阻抗(complex impedance),以獲得複數阻抗Z(f),使得最小化norm(V(f)–Z(f) * I(f))。所述norm函數可為整個頻率上的平方和。
在步驟314,該演算法將DC電阻Rdc評估為abs(Z(f))的最小值。由於相位抵消,所述函數abs(Z(f))之值可小於Rdc的實際值。在各個具體實施例中, abs(Z(f))之值的直方圖係經計算,且從此直方圖中選擇代表abs(Z(f))的低百分數值之值。例如,可使用10%之值,該值在所有相關頻率上都低於abs(Z(f))值的90%。
在步驟316,該演算法計算有效振動靈敏度函數Gmot(f),該函數將該振膜的振動表示為施加電壓的函數:Gmot(f) = (1 – Rdc / Z(f)) / f。在例示的具體實施例中,該演算法除以f,因為振動是速度隨時間的積分,且信號分量在f處的每個週期之持續時間與f成反比。因此,在較低頻率下振動趨向於更大。
在步驟318,該演算法評估|Gmot(f)|的兩(或多個)峰值。在一些具體實施例中,該演算法在頻域表示中使用頻率f的粗網格(coarse grid)內之峰值,然後通過|Gmot(f)|之值的二次插值來細化峰值頻率和振幅之評估。對於許多喇叭,例如PC、電話和智慧型裝置中使用的迷你喇叭,該演算法將選擇兩峰值:(i)對應於喇叭共振頻率的峰值;及(ii)較低的頻率峰值,該峰值是Gmot中1/f因子與喇叭外殼中接口可能產生的低頻聲共振之總和。
在步驟320,該演算法對峰值頻率和振幅施加迴轉率(slew-rate)極限,以防止所建立的濾波器(S和S-1 )變化太快,這可能導致聽見殘響。換句話說,我們不會立即使用所觀察到的峰值和幅度,而是保持峰值和幅度的可工作值,這些值朝觀察到的峰值和幅度移動之速率不超過某個恆定速率。
在步驟322,該演算法建立與可工作(actionable)峰值匹配的模型IIR濾波器S。該濾波器可使用濾波器設計演算法用兩對(或多對)極點和原點(Zero)產生,並且可由SOS係數表示。
在步驟324,確定該穩定反S-1 濾波器(例如,如圖1的喇叭保護佈局中使用)。通過僅交換SOS表示中的分子項和分母項,然後選擇性將第零分子係數正歸化為1.0,即可獲得此反向。
在步驟326,該演算法通過運行測試以驗證來自步驟312-324的各種參數在正常範圍內,從而驗證輸入資料幀的有效性。如果這些測試中有任何一者失敗,則將該幀標記為「無效」,且不會修改峰值和幅度的可工作值。
請即參考圖4,現將根據一或多個具體實施例描述離線「調諧」演算法400。在步驟410,該演算法評估一初始模型濾波器S。在例示的具體實施例中,將取樣率為48KHz的寬頻信號發送至喇叭。此寬頻信號內含低於尼奎斯特(Nyquist)頻率範圍內(例如,低於Nyquist的所有頻率)的能量,並具有足夠能量,足以在喇叭上產生振動位移,從而能夠準確測量喇叭音圈的電阻抗,但是沒有太多能量讓音圈發熱或造成其他損壞。在一實施中,該信號包括一系列相對於最大RMS電壓驅動大約為-12 dB的粉紅色噪音短脈衝。瞬時電流和電壓可由具有電壓/電流感測電路的D類放大器測量。在子頻帶分析過程中,通過合適的短暫傅立葉轉換,將這些時域信號轉換成頻域。在一實施中,例如,將48 KHz資料向下採樣成16 KHz,並將320個16 KHz取樣的重疊幀轉換成64個複頻域值電流I(f)和電壓V(f)。圖3中的步驟312至322可執行以估計一初始濾波器S。
在步驟412,一比例因子係經測量。在一實施中,在通過圖1的路徑102之後,將S主峰頻率處的一系列增加振幅短正弦突波發送到喇叭,其中具有限幅臨界thr 120的額定常數值。喇叭114的振動位移由雷射測距裝置或其他振膜測量感測器132測量。通過匹配濾波器技術(例如,韓恩視窗(Hann-windowed)正弦的均方根(rms)值與測得的振動位移波形進行捲積),以計算振動位移頻率在突波頻率處的振幅。該振動位移幅度將在額定臨界thr乘以比例因子時以漸近方式達到最大值。然後可將該比例因子計算為漸近最大值除以額定臨界thr。然後將此比例因子合併到代表濾波器S的SOS係數值中。
在步驟414,建立限幅位準(clipping level)臨界thr以供線上使用。為了即時施加本說明書揭示的所述演算法,確定限幅臨界thr,其將提供盡可能高的音量而不會過度失真。為了確定thr,如圖1所示,一系列正弦突波發送到喇叭,在許多頻率下(例如,以1/12倍頻程的對數間距從100 Hz到8000 Hz),thr的額定值最初設定得太高(例如,對於thr為1.0 mm的典型迷你喇叭,其實際安全thr已知約為0.5 mm),並增加幅度(例如,以3 dB的步階從-12 dB FS增加到0 dB FS)。針對每個突波計算振動位移信號的諧波失真(由雷射或其他感測組件132測量)。設定一臨界thr,使得如果將振動位移限制為該值,則諧波失真將不會超過預定極限,例如10% (相當於20 dB SDR)。
在步驟416,驗證臨界值thr。在一實施例中,將具有完整比例的一系列正弦突波(例如,經由圖1的佈局)發送給喇叭,其具有在步驟414中計算的thr值和在步驟412中計算的比例因子。該喇叭的振動位移由雷射或其他感測器132測量,並繪製為突波頻率的函數。在各種具體實施例中,在每個頻率處將該振動位移限制在接近thr之值。
在一些具體實施例中,可能希望以非自適應性方式來運行即時演算法。在這種情況下,可通過該調諧演算法確定濾波器S、臨界thr、和比例因子。然後於實際使用中將S保持恆定。這消除自適應步驟,簡化實施並減少計算需求。例如,非自適應演算法可用於控制嵌入式應用的晶片上系統實施中之失真。
如所討論,本說明書提供的各種技術可由一或多個系統實現,在一些具體實施例中,該系統可包括一或多個子系統及其相關組件。例如,圖5例示根據本發明具體實施例的範例處理系統500之方塊圖。該系統500可用於實施本說明書描述的各種組件、電路、處理步驟、和其他工作的任何想要組合。儘管在圖5中例示各種部件,但在各種具體實施例中可針對不同類型的裝置適當添加及/或省略組件。
如圖所示,處理系統500包括一音頻處理系統510,其包括一記憶體520、一處理器540、和音頻輸出電路550。處理器540可實施為一或多個邏輯裝置,例如微處理器、微控制器、特定應用積體電路(Application Specific Integrated Circuit,ASIC)、可程式邏輯裝置(Programmable Logic Device,PLD) (例如,場域可程式閘陣列(Field Programmable Gate Array,FPGA)、複合可程式邏輯裝置(Complex Programmable Logic Device,CPLD))、晶片上系統、或其他類型的可程式裝置。
在一些具體實施例中,處理器540執行儲存在記憶體520中的機器可讀指令(例如,軟體、韌體、或其他指令)。就這一點而言,記憶體520可包括使處理器540執行本說明書所述的各種工作、處理、和技術中任一者之邏輯。在其他具體實施例中,處理器540及/或記憶體520可取代及/或追加成專屬硬體組件,以執行本說明書所描述各種技術的任何想要組合。
記憶體520可實施為儲存各種機器可讀指令和資料的機器可讀媒體。例如,在一些具體實施例中,記憶體520可將一或多種演算法儲存為機器可讀指令,其可由處理器540讀取並執行,以執行本說明書所述各種技術,包括子頻帶分析演算法522、濾波器評估演算法524、離線調諧演算法526、及/或其他可執行邏輯。記憶體520還可儲存音頻處理系統510使用的資料。在一些具體實施例中,記憶體520可實施為非揮發性記憶體(例如,快閃記憶體、硬碟、固態硬碟、或其他非暫態機器可讀媒體)、揮發性記憶體、或其組合。
系統500還包括音頻源570和一或多個喇叭560。在工作中,音頻源570提供音頻資料,以供音頻輸出電路進行處理並由一或多個喇叭560播放。該系統500可用於執行本說明書所揭示的處理,以保護一或多個喇叭560免於過度振動位移。在一些具體實施例中,該等一或多個喇叭560之每一者都具有本說明書所揭示的對應振動位移保護濾波器。該系統500可更包括其他喇叭保護技術,包括喇叭560的溫度和功率保護。
如本說明書的使用,用語「大體上」、「大約」和類似用語當成近似術語而不是程度用語,且意在解釋熟習該項技藝者所識別的測量或計算值的固有偏差。此外,當描述具體實施例時,使用「可為」係指「本發明的一或多個具體實施例」。如本說明書的使用,用語「使用」、「正使用」和「使用中」可分別認為與用語「利用」、「正利用」和「利用中」同義。另外,用語「示範」在此表示範例或例示。
可利用任何合適的硬體、韌體(例如特定應用積體電路)、軟體、或軟體、韌體、及/或硬體的組合,以實施根據本說明書所描述的本發明具體實施例之電子或電氣裝置及/或任何其他相關裝置或組件。例如,這些裝置的各種組件可在一個積體電路(Integrated Circuit,IC)晶片上或在單獨的IC晶片上形成。此外,這些裝置的各種組件可在撓性印刷電路薄膜、帶載體封裝(Tape Carrier Package ,TCP)、印刷電路板(Printed Circuit Board,PCB)上實現,或在一基材上形成。此外,這些裝置的各種組件可為在一或多個計算裝置中的一或多個處理器上運行之處理或執行緒,其執行電腦程式指令並與其他系統組件進行互動,以執行本說明書所述的各種功能。所述電腦程式指令儲存在記憶體中,其可使用諸如,例如隨機存取記憶體(RAM)之類的標準儲存裝置在計算裝置中實施。該電腦程等式指令也可儲存在其他非暫態電腦可讀媒體中,諸如,例如CD-ROM、隨身碟等。而且,熟習該項技藝者應明白,可將各種計算裝置的功能組合或整合到單一計算裝置中,或者可將特定計算裝置的功能分散在一或多個其他計算裝置上,而不悖離本發明示範具體實施例的精神和範疇。
本說明書描述的具體實施例僅為範例。熟習該項技藝者可從具體揭示的那些中認識各種替代具體實施例。這些替代具體實施例也旨在本發明的範疇內。因此,所述具體實施例僅受限於文後申請專利範圍及其等同項。
100:演算法 102:前饋路徑 104:音頻源 106:無限脈衝響應濾波器S 108:前瞻限幅器 110:穩定反向濾波器S-1 112:放大器 114:喇叭 120:限幅臨界 130:初始振動位移模型 132:感測器 300:演算法 400:演算法 500:範例處理系統 510:音頻處理系統 520:記憶體 522:子頻帶分析演算法 524:濾波器評估演算法 526:離線調諧演算法 540:處理器 550:音頻輸出電路 560:喇叭 570:音頻源
圖1為根據一或多個具體實施例,例示即時喇叭保護的流程圖。
圖2為根據一或多個具體實施例,例示用於即時喇叭保護的模型評估之流程圖。
圖3根據一或多個具體實施例,例示用於更新該模型評估濾波器的一即時自適應演算法。
圖4根據一或多個具體實施例,例示用於調諧一模型評估濾波器的一離線調諧演算法。
圖5根據一或多個具體實施例,例示構成保護一喇叭免於過度振動位移的一範例處理系統。
通過參考下面的實施方式,將更了解本發明的具體實施例及其優點。應明白,相同的參考編號記用於識別例示在一或多個附圖中的相同元件,其中所顯示係出於說明本發明具體實施例的目的,而非出於限制本發明的目的。
100:演算法
102:前饋路徑
104:音頻源
106:無限脈衝響應濾波器S
108:前瞻限幅器
110:穩定反向濾波器S-1
112:放大器
114:喇叭
120:限幅臨界
130:初始振動位移模型
132:感測器

Claims (20)

  1. 一種用於處理音頻信號以通過一喇叭輸出的之方法,該方法包括: 接收該音頻信號; 即時使一振動位移保護濾波器適應於一或多個喇叭條件; 施加該振動位移保護濾波器至該音頻信號; 限幅該音頻信號; 施加一反向振動位移保護濾波器;及 使用一放大電路以放大該音頻信號供輸出至該喇叭。
  2. 如請求項1之方法,其更包括: 至少部分基於該已放大的音頻信號,評估用於該振動位移保護濾波器和該反向振動位移保護濾波器的濾波器係數。
  3. 如請求項2之方法,其中評估該濾波器係數更包括從該放大電路接收電流和電壓資料。
  4. 如請求項2之方法,其中評估該振動位移濾波器更包括: 評估該喇叭的一複數阻抗;及 評估一直流阻抗。
  5. 如請求項4之方法,其中評估該振動位移濾波器更包括: 計算一振動靈敏度函數,其將該振膜的振動表示為施加電壓的函數;及 評估該已計算振動靈敏度函數的兩或多個峰值。
  6. 如請求項5之方法,其中評估該振動位移濾波器更包括: 對該等峰值頻率和幅度施加一迴轉率限制;及 至少部分基於該已評估峰值,建立一模型無限脈衝響應濾波器。
  7. 如請求項4之方法,其更包括測試用於該音頻信號的一當前幀之參數值,該等參數值包括在該振動位移濾波器評估中使用的一或多個參數,並且如果偵測到一參數超出一預定範圍之外,則將該幀識別為無效。
  8. 如請求項1之方法,其更包括測量該輸出音頻信號的喇叭振動位移,其中該等一或多個喇叭狀況包括一喇叭振動位移測量值。
  9. 如請求項1之方法,其更包括當限幅該音頻信號時評估一臨界值並施加該臨界值。
  10. 如請求項1之方法,其更包括通過一處理來調諧該振動位移保護濾波器,其包括: 測量一比例因子; 決定一限幅位準臨界值;及 確認該限幅位準臨界值。
  11. 一種系統,其包括: 一放大器,其構成驅動一喇叭以輸出一處理後的音頻信號; 一邏輯裝置,其構成通過執行以下工作來保護該喇叭免於過度振動位移: 接收一音頻信號; 施加一振動位移保護濾波器,該振動位移保護濾波器即時自適應於一或多個喇叭條件; 限幅該音頻信號; 施加一反向振動位移保護濾波器,以產生該已處理的音頻信號;及 提供該已處理的音頻信號給該放大器供輸出至該喇叭。
  12. 如請求項11之系統,其中該邏輯裝置更構成執行多個工作,其包括: 至少部分基於該已放大音頻信號,評估用於該振動位移保護濾波器和該反向振動位移保護濾波器的濾波器係數。
  13. 如請求項12之系統,其中評估該濾波器係數更包括從該放大器接收電流和電壓資料。
  14. 如請求項12之系統,其中評估該振動位移濾波器更包括: 評估該喇叭的一複數阻抗;及 評估一直流阻抗。
  15. 如請求項14之系統,其中評估該振動位移濾波器更包括: 計算一振動靈敏度函數,其將該振膜的振動表示為施加電壓的函數;及 評估該已計算振動靈敏度函數的兩或多個峰值。
  16. 如請求項15之系統,其中評估該振動位移濾波器更包括: 對該等峰值頻率和幅度施加一迴轉率限制;及 至少部分基於該已評估峰值,建立一模型無限脈衝響應濾波器。
  17. 如請求項14之系統,其中該邏輯裝置更構成執行多個工作,該等工作包括測試該音頻信號的一當前幀之參數值,該等參數值包括在該振動位移濾波器評估中使用的一或多個參數,並且如果偵測到一參數超出一預定範圍之外,則將該幀識別為無效。
  18. 如請求項11之系統,其更包括一振膜測量感測器,其構成測量輸出音頻信號的喇叭振動位移;而且其中該等一或多個喇叭狀況包括一喇叭振動位移測量。
  19. 如請求項11之系統,其中該邏輯裝置更構成在限幅該音頻信號時執行包括評估一臨界值和施加該臨界值之工作。
  20. 如請求項11之系統,其中該邏輯裝置更構成執行多個工作,該等工作包括通過一處理來調諧該振動位移保護濾波器,其包括: 測量一比例因子; 決定一限幅位準臨界值;及 確認該限幅位準臨界值。
TW109137833A 2019-11-01 2020-10-30 保護喇叭免於過度振動位移 TW202119824A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/672,251 US11184705B2 (en) 2019-11-01 2019-11-01 Protection of speaker from excess excursion
US16/672,251 2019-11-01

Publications (1)

Publication Number Publication Date
TW202119824A true TW202119824A (zh) 2021-05-16

Family

ID=75689167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109137833A TW202119824A (zh) 2019-11-01 2020-10-30 保護喇叭免於過度振動位移

Country Status (4)

Country Link
US (2) US11184705B2 (zh)
CN (1) CN114586377A (zh)
TW (1) TW202119824A (zh)
WO (1) WO2021086797A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022111608A (ja) * 2021-01-20 2022-08-01 本田技研工業株式会社 能動騒音制御装置及び車両
US11362694B1 (en) * 2021-05-05 2022-06-14 Qualcomm Incorporated Signal reconstruction for non-linearly distorted signal
US11457311B1 (en) * 2021-06-22 2022-09-27 Bose Corporation System and method for determining voice coil offset or temperature
JP2023013398A (ja) * 2021-07-16 2023-01-26 アルプスアルパイン株式会社 スピーカの歪み補正装置及びスピーカユニット
US20230362541A1 (en) * 2022-05-03 2023-11-09 Infineon Technologies Austria Ag Measurement-Based Loudspeaker Excursion Limiting

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940981B2 (en) 2003-03-12 2005-09-06 Qsc Audio Products, Inc. Apparatus and method of limiting power applied to a loudspeaker
US7372966B2 (en) * 2004-03-19 2008-05-13 Nokia Corporation System for limiting loudspeaker displacement
US8259953B2 (en) 2008-04-10 2012-09-04 Bang & Olufsen Icepower A/S Thermal protection of electro dynamic transducers used in loudspeaker systems
WO2011076288A1 (en) * 2009-12-24 2011-06-30 Nokia Corporation Loudspeaker protection apparatus and method thereof
US8983092B2 (en) 2010-07-15 2015-03-17 Conexant Systems, Inc. Waveform shaping system to prevent electrical and mechanical saturation in loud speakers
EP2448115B1 (en) 2010-10-28 2015-06-03 Nxp B.V. Audio amplifier
US9837971B2 (en) 2011-05-04 2017-12-05 Texas Instruments Incorporated Method and system for excursion protection of a speaker
US20130077796A1 (en) 2011-09-28 2013-03-28 Texas Instruments Incorporated Thermal Protection for Loudspeakers
US9654866B2 (en) 2012-01-27 2017-05-16 Conexant Systems, Inc. System and method for dynamic range compensation of distortion
US10200000B2 (en) 2012-03-27 2019-02-05 Htc Corporation Handheld electronic apparatus, sound producing system and control method of sound producing thereof
WO2014045123A2 (en) 2012-09-24 2014-03-27 Actiwave Ab Control and protection of loudspeakers
US9729986B2 (en) 2012-11-07 2017-08-08 Fairchild Semiconductor Corporation Protection of a speaker using temperature calibration
US9226071B2 (en) * 2012-12-13 2015-12-29 Maxim Integrated Products, Inc. Direct measurement of an input signal to a loudspeaker to determine and limit a temperature of a voice coil of the loudspeaker
US9161126B2 (en) * 2013-03-08 2015-10-13 Cirrus Logic, Inc. Systems and methods for protecting a speaker
US9258659B2 (en) * 2013-07-23 2016-02-09 Analog Devices Global Method of detecting enclosure leakage of enclosure mounted loudspeakers
US9402131B2 (en) * 2013-10-30 2016-07-26 Knowles Electronics, Llc Push-pull microphone buffer
KR101527004B1 (ko) 2013-12-26 2015-06-09 크레신 주식회사 능동소음제어 오디오입출력장치
CA2924443A1 (en) 2016-02-11 2017-08-11 Stephanie England Audio transmitter and receiver
US10097939B2 (en) 2016-02-22 2018-10-09 Sonos, Inc. Compensation for speaker nonlinearities
KR102273650B1 (ko) * 2016-02-22 2021-07-07 한국전자통신연구원 생체 자극 및 생체 신호 측정 겸용 회로
US9952948B2 (en) 2016-03-23 2018-04-24 GM Global Technology Operations LLC Fault-tolerance pattern and switching protocol for multiple hot and cold standby redundancies
WO2017164380A1 (ja) * 2016-03-25 2017-09-28 ヤマハ株式会社 スピーカ動作確認装置及び方法
GB2556015B (en) 2016-04-29 2018-10-17 Cirrus Logic Int Semiconductor Ltd Audio Signals
US9992571B2 (en) * 2016-05-09 2018-06-05 Cirrus Logic, Inc. Speaker protection from overexcursion
US9967655B2 (en) * 2016-10-06 2018-05-08 Sonos, Inc. Controlled passive radiator
US10368167B2 (en) 2016-11-28 2019-07-30 Motorola Solutions, Inc. Audio power circuit and method
US10341767B2 (en) * 2016-12-06 2019-07-02 Cirrus Logic, Inc. Speaker protection excursion oversight
US20190182589A1 (en) * 2017-12-07 2019-06-13 Texas Instruments Incorporated Excursion control based on an audio signal bandwidth estimate obtained from back-emf analysis
US10827265B2 (en) * 2018-01-25 2020-11-03 Cirrus Logic, Inc. Psychoacoustics for improved audio reproduction, power reduction, and speaker protection
US10862446B2 (en) * 2018-04-02 2020-12-08 Sonos, Inc. Systems and methods of volume limiting
IT201900015144A1 (it) * 2019-08-28 2021-02-28 St Microelectronics Srl Procedimento per monitorare carichi elettrici, circuito, amplificatore e sistema audio corrispondenti
US11399247B2 (en) * 2019-12-30 2022-07-26 Harman International Industries, Incorporated System and method for providing advanced loudspeaker protection with over-excursion, frequency compensation and non-linear correction
US11425476B2 (en) * 2019-12-30 2022-08-23 Harman Becker Automotive Systems Gmbh System and method for adaptive control of online extraction of loudspeaker parameters

Also Published As

Publication number Publication date
CN114586377A (zh) 2022-06-03
WO2021086797A1 (en) 2021-05-06
US11184705B2 (en) 2021-11-23
US11696070B2 (en) 2023-07-04
US20210136491A1 (en) 2021-05-06
US20220038815A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
TW202119824A (zh) 保護喇叭免於過度振動位移
US9363599B2 (en) Systems and methods for protecting a speaker
US9173027B2 (en) Systems and methods for protecting a speaker
US9980068B2 (en) Method of estimating diaphragm excursion of a loudspeaker
NL2014251B1 (en) Echo cancellation methodology and assembly for electroacoustic communication apparatuses.
KR101798120B1 (ko) 능동 잡음 제거와 지각적 잡음 보상의 결합에 의해 음향 재생의 지각 품질을 향상시키기 위한 장치 및 방법
US8259953B2 (en) Thermal protection of electro dynamic transducers used in loudspeaker systems
US20170257686A1 (en) Loudspeaker controller
JP7188082B2 (ja) 音響処理装置および方法、並びにプログラム
US9084049B2 (en) Automatic equalization using adaptive frequency-domain filtering and dynamic fast convolution
US20150146875A1 (en) Determining the temperature of a loudspeaker voice coil
JP6258061B2 (ja) 音響処理装置、音響処理方法及び音響処理プログラム
TW201733370A (zh) 揚聲器之振膜偏移量的計算裝置、計算方法及揚聲器的控制方法
US10438606B2 (en) Pop noise control
US20100046772A1 (en) Sound level control
JP4662912B2 (ja) 反響のある環境での音源定位に適当な測定ウィンドウの決定
US11570563B1 (en) Method for estimating fundamental resonance frequency of loudspeaker and associated loudspeaker controller
JP2015169901A (ja) 音響処理装置
TWI760707B (zh) 揚聲器振膜振動位移之計算方法、揚聲器保護裝置及電腦可讀取記錄媒體
CN116137148A (zh) 噪声降低的设备、系统和方法
JP2018019168A (ja) オーディオ装置