TW202118297A - 用於視訊寫碼之縮放矩陣及傳訊 - Google Patents

用於視訊寫碼之縮放矩陣及傳訊 Download PDF

Info

Publication number
TW202118297A
TW202118297A TW109132433A TW109132433A TW202118297A TW 202118297 A TW202118297 A TW 202118297A TW 109132433 A TW109132433 A TW 109132433A TW 109132433 A TW109132433 A TW 109132433A TW 202118297 A TW202118297 A TW 202118297A
Authority
TW
Taiwan
Prior art keywords
lfnst
block
video
code block
scaling
Prior art date
Application number
TW109132433A
Other languages
English (en)
Inventor
阿達許 克里許納 瑞瑪蘇布雷蒙尼安
德 奧維拉 葛特 汎
法迪姆 塞瑞金
席爾米 伊恩斯 埃伊爾梅茲
馬塔 卡茲維克茲
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202118297A publication Critical patent/TW202118297A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本發明提供一種用於寫碼視訊資料之實例器件,其包括:一記憶體,其經組態以儲存該視訊資料;及一或多個處理器,其實施於電路系統中且以通信方式耦接至該記憶體。該一或多個處理器經組態以判定縮放矩陣是否可應用於一低頻不可分離變換(LFNST)經寫碼區塊。該一或多個處理器亦經組態以基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊。該一或多個處理器亦經組態以在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。

Description

用於視訊寫碼之縮放矩陣及傳訊
本發明係關於視訊編碼及視訊解碼。
數位視訊能力可併入至廣泛範圍之器件中,該等器件包括數位電視、數位直播系統、無線廣播系統、個人數位助理(PDA)、膝上型或桌上型電腦、平板電腦、電子書閱讀器、數位攝影機、數位記錄器件、數位媒體播放機、視訊遊戲器件、視訊遊戲主控台、蜂巢式或衛星無線電話(所謂的「智慧型電話」)、視訊電傳會議器件、視訊串流器件及其類似者。數位視訊器件實施視訊寫碼技術,諸如由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4第10部分進階視訊寫碼(AVC)、ITU-T H.265/高效視訊寫碼(HEVC)定義之標準及此類標準之擴展中所描述之技術。視訊器件可藉由實施此類視訊寫碼技術更有效地傳輸、接收、編碼、解碼及/或儲存數位視訊資訊。
視訊寫碼技術包括空間(圖像內)預測及/或時間(圖像間)預測以減少或移除為視訊序列所固有的冗餘。針對基於區塊之視訊寫碼,視訊圖塊(例如,視訊圖像或視訊圖像之一部分)可分割成視訊區塊,視訊區塊亦可稱為寫碼樹單元(CTU)、寫碼單元(CU)及/或寫碼節點。使用相對於同一圖像中之相鄰區塊中之參考樣本的空間預測來編碼圖像之經框內寫碼(I)圖塊中之視訊區塊。圖像之經框間寫碼(P或B)圖塊中之視訊區塊可使用相對於同一圖像中之相鄰區塊中之參考樣本的空間預測或相對於其他參考圖像中之參考樣本的時間預測。圖像可稱為框,且參考圖像可稱為參考框。
大體而言,本發明描述用於判定用於視訊寫碼之縮放矩陣及縮放矩陣傳訊的技術。將現有縮放矩陣應用於低頻不可分離變換(LFNST)係數可能不產生所要效應。本發明之技術可避免使用現有縮放矩陣之缺點,且可藉由在選擇性基礎上在應用縮放矩陣係非所要的時不應用縮放矩陣來改進寫碼效率。
在一個實例中,一種方法包括:判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
在另一實例中,一種器件包括:一記憶體,其經組態以儲存該視訊資料;及一或多個處理器,其實施於電路系統中且以通信方式耦接至該記憶體,該一或多個處理器經組態以:判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
在另一實例中,一種器件包括:用於判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊的構件;用於基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定不將該等縮放矩陣應用於該LFNST經寫碼區塊的構件;及用於在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料的構件。
在另一實例中,一種非暫時性電腦可讀儲存媒體具有儲存於其上之指令,該等指令在由一或多個處理器執行時使得該一或多個處理器:判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
一或多個實例之細節闡述於隨附圖式及以下描述中。其他特徵、目標及優勢將自描述、圖式及申請專利範圍而顯而易見。
本申請案主張2019年9月20日申請之標題為SCALING MATRICES FOR VIDEO CODING的美國臨時申請案第62/903,679號及2019年9月25日申請之SCALING MATRICES FOR VIDEO CODING的美國臨時申請案第62/905,873號的優先權,兩個臨時申請案之全部內容特此以引用之方式併入。
當將特定草案標準之現有縮放矩陣應用於LFNST係數矩陣時,縮放矩陣之應用可能不具有所要效應。舉例而言,當視訊解碼器300將與M×N區塊相關聯之縮放矩陣應用於變換區塊之4×4區時,係數之相對差可能不引起所要行為。舉例而言,若區塊為8×8區塊,則區塊之左上4×4區可對應於低頻係數。縮放矩陣可使得低頻係數未經量化為與高頻係數一樣重,從而引起4×4區中之縮放係數的相對平坦分佈。當用LFNST寫碼區塊時,縮放矩陣因4×4區中之係數之平坦性質而可能不引起係數之任何相對縮放。
當變換區塊為32×32時,縮放矩陣在8×8柵上經規定且使用複製經上取樣以獲得32×32縮放矩陣。因此,有效地,用對應於8×8柵之左上係數的一個值填充左上4×4區。當此縮放矩陣應用於應用LFNST之32×32區塊時,LFNST係數(例如受限於左上4×4區)經縮放恆定值且不存在係數之相對縮放。此有效地導致用於一次變換係數之「平坦」縮放矩陣,此與縮放矩陣之所要行為相反。
當LFNST由視訊寫碼器應用時,存在於變換區塊中之LFNST係數之數目可僅為8或16。在固定量化參數寫碼組態中,此可導致用以寫碼區塊之顯著更少位元。此可能因係數之較大調零及非零一次變換係數之相對較小準確度而產生視覺假影。
另外,當LFNST啟用時,視訊編碼器可能難以使用縮放矩陣對LFNST經寫碼區塊應用速率控制。當速率控制啟用時,LFNST之應用可能必須停用或受限,使得可預期更可預測之速率控制行為。
根據本發明之技術,視訊編碼器可判定縮放矩陣及/或傳訊與縮放矩陣相關之語法元素以避免上文所闡述的缺點。舉例而言,視訊編碼器可判定將縮放矩陣應用於LFNST經變換寫碼區塊之LFNST變換係數係非所要的,如下文進一步論述。視訊編碼器可判定指示縮放矩陣是否可應用於LFNST變換係數之一或多個語法元素,且可在位元流中傳訊語法元素。視訊解碼器可藉由剖析語法元素來判定指示縮放矩陣是否可應用於LFNST變換係數之語法元素,且基於指示縮放矩陣可不應用於LFNST係數之語法元素,不將縮放矩陣應用於LFNST係數。視訊解碼器可在未將縮放矩陣應用於LFNST經寫碼區塊之LFNST係數之情況下解碼視訊資料。以此方式,視訊寫碼器可避免上述缺點,且可減小處理功率及藉由在不應用縮放矩陣係合乎需要時或(相反)在應用縮放矩陣係非所要的時不應用縮放矩陣來改進潛時。
圖1為說明可進行本發明之技術的實例視訊編碼及解碼系統100之方塊圖。本發明之技術大體上係針對寫碼(編碼及/或解碼)視訊資料。大體而言,視訊資料包括用於處理視訊之任何資料。因此,視訊資料可包括原始未經編碼視訊、經編碼視訊、經解碼(例如經重建構)視訊及視訊後設資料,諸如傳訊資料。
如圖1中所展示,在此實例中,系統100包括源器件102,其提供待由目的地器件116解碼及顯示的經編碼視訊資料。特定而言,源器件102經由電腦可讀媒體110將視訊資料提供至目的地器件116。源器件102及目的地器件116可包含廣泛範圍之器件中之任一者,包括桌上型電腦、筆記型(亦即膝上型)電腦、平板電腦、機上盒、諸如智慧型電話之電話手持機、電視、攝影機、顯示器件、數位媒體播放機、視訊遊戲主控台、視訊串流器件或其類似者。在一些情況下,源器件102及目的地器件116可經裝備用於無線通信,且由此可稱為無線通信器件。
在圖1之實例中,源器件102包括視訊源104、記憶體106、視訊編碼器200及輸出介面108。目的地器件116包括輸入介面122、視訊解碼器300、記憶體120及顯示器件118。根據本發明,源器件102之視訊編碼器200及目的地器件116之視訊解碼器300可經組態以應用用於判定用於視訊寫碼之縮放矩陣及縮放矩陣傳訊之技術。因此,源器件102表示視訊編碼器件之實例,而目的地器件116表示視訊解碼器件之實例。在其他實例中,源器件及目的地器件可包括其他組件或配置。舉例而言,源器件102可自外部視訊源(諸如外部攝影機)接收視訊資料。同樣,目的地器件116可與外部顯示器件介接,而非包括積體顯示器件。
如圖1中所展示之系統100僅為一個實例。大體而言,任何數位視訊編碼及/或解碼器件均可進行用於判定用於視訊寫碼之縮放矩陣及縮放矩陣傳訊的技術。源器件102及目的地器件116僅為其中源器件102產生經寫碼視訊資料以用於傳輸至目的地器件116的此類寫碼器件之實例。本發明將「寫碼」器件稱為對資料進行寫碼(編碼及/或解碼)的器件。因此,視訊編碼器200及視訊解碼器300表示寫碼器件之實例,特定而言,分別表示視訊編碼器及視訊解碼器之實例。在一些實例中,源器件102及目的地器件116可以實質上對稱的方式操作,使得源器件102及目的地器件116中之每一者包括視訊編碼及解碼組件。因此,系統100可支援源器件102與目的地器件116之間的單向或雙向視訊傳輸,例如用於視訊串流、視訊播放、視訊廣播或視訊電話。
大體而言,視訊源104表示視訊資料源(亦即,原始未經編碼視訊資料)且將視訊資料之連續系列圖像(亦稱為「框」)提供至視訊編碼器200,該視訊編碼器200編碼圖像之資料。源器件102之視訊源104可包括視訊擷取器件(諸如視訊攝影機)、含有先前所擷取之原始視訊的視訊存檔及/或用以自視訊內容提供者接收視訊的視訊饋入介面。作為另一替代方案,視訊源104可產生基於電腦圖形之資料作為源視訊,或實況視訊、存檔視訊及電腦產生之視訊之組合。在每一情況下,視訊編碼器200編碼所擷取、所預先擷取或電腦產生之視訊資料。視訊編碼器200可將圖像之接收次序(有時稱為「顯示次序」)重新配置成寫碼次序以供寫碼。視訊編碼器200可產生包括經編碼視訊資料的位元流。源器件102接著可經由輸出介面108將經編碼視訊資料輸出至電腦可讀媒體110上,以供由例如目的地器件116之輸入介面122接收及/或檢索。
源器件102之記憶體106及目的地器件116之記憶體120表示通用記憶體。在一些實例中,記憶體106、120可儲存原始視訊資料,例如來自視訊源104之原始視訊及來自視訊解碼器300之原始經解碼視訊資料。另外或替代地,記憶體106、120可儲存可分別由例如視訊編碼器200及視訊解碼器300執行之軟體指令。儘管在此實例中記憶體106及記憶體120與視訊編碼器200及視訊解碼器300分開展示,但應理解,視訊編碼器200及視訊解碼器300亦可包括用於功能上類似或等效目的之內部記憶體。另外,記憶體106、120可儲存(例如)自視訊編碼器200輸出及輸入至視訊解碼器300之經編碼視訊資料。在一些實例中,可分配記憶體106、120之部分作為一或多個視訊緩衝器,例如以儲存原始、經解碼及/或經編碼視訊資料。
電腦可讀媒體110可表示能夠將經編碼視訊資料自源器件102傳送至目的地器件116的任何類型之媒體或器件。在一個實例中,電腦可讀媒體110表示用以使得源器件102能夠即時將經編碼視訊資料(例如)經由射頻網路或基於電腦之網路直接傳輸至目的地器件116之通信媒體。根據通信標準(諸如無線通信協定),輸出介面108可調變包括經編碼視訊資料的傳輸信號,且輸入介面122可解調接收到之傳輸信號。通信媒體可包含任何無線或有線通信媒體,諸如射頻(RF)頻譜或一或多個實體傳輸線。通信媒體可形成基於封包之網路(諸如區域網路、廣域網路或諸如網際網路之全域網路)之部分。通信媒體可包括路由器、交換器、基地台或可用於促進自源器件102至目的地器件116之通信的任何其他設備。
在一些實例中,源器件102可將經編碼資料自輸出介面108輸出至儲存器件112。類似地,目的地器件116可經由輸入介面122自儲存器件112存取經編碼資料。儲存器件112可包括各種分散式或本端存取之資料儲存媒體中之任一者,諸如硬碟機、藍光光碟、DVD、CD-ROM、快閃記憶體、揮發性或非揮發性記憶體,或用於儲存經編碼視訊資料的任何其他合適之數位儲存媒體。
在一些實例中,源器件102可將經編碼視訊資料輸出至檔案伺服器114,或可儲存藉由源器件102所產生之經編碼視訊的另一中間儲存器件。目的地器件116可經由串流或下載而自檔案伺服器114存取經儲存視訊資料。檔案伺服器114可為能夠儲存經編碼視訊資料且將經編碼視訊資料傳輸至目的地器件116的任何類型之伺服器器件。檔案伺服器114可表示網頁伺服器(例如用於網站)、檔案傳送協定(FTP)伺服器、內容遞送網路器件或網路附接儲存(NAS)器件。目的地器件116可經由包括網際網路連接之任何標準資料連接自檔案伺服器114存取經編碼視訊資料。此可包括無線通道(例如Wi-Fi連接)、有線連接(例如數位用戶線(DSL)、電纜數據機等),或適合於存取儲存於檔案伺服器114上之經編碼視訊資料的兩者之組合。檔案伺服器114及輸入介面122可經組態以根據串流傳輸協定、下載傳輸協定或其組合來操作。
輸出介面108及輸入介面122可表示無線傳輸器/接收器、數據機、有線網路連接組件(例如乙太網卡)、根據各種IEEE 802.11標準中之任一者來操作的無線通信組件或其他實體組件。在輸出介面108及輸入介面122包含無線組件之實例中,輸出介面108及輸入介面122可經組態以根據蜂巢式通信標準(諸如4G、4G-LTE(長期演進)、LTE進階、5G或其類似者)來傳遞資料,諸如經編碼視訊資料。在輸出介面108包含無線傳輸器的一些實例中,輸出介面108及輸入介面122可經組態以根據其他無線標準(諸如IEEE 802.11規格、IEEE 802.15規格(例如ZigBee™)、Bluetooth™標準或其類似者)來傳遞資料,諸如經編碼視訊資料。在一些實例中,源器件102及/或目的地器件116可包括各別晶片上系統(SoC)器件。舉例而言,源器件102可包括SoC器件以進行歸於視訊編碼器200及/或輸出介面108之功能性,且目的地器件116可包括SoC器件以進行歸於視訊解碼器300及/或輸入介面122之功能性。
本發明之技術可應用於支援各種多媒體應用中之任一者的視訊寫碼,諸如空中電視廣播、有線電視傳輸、衛星電視傳輸、網際網路串流視訊傳輸(諸如經由HTTP之動態自適應串流(DASH))、經編碼至資料儲存媒體上之數位視訊、儲存於資料儲存媒體上之數位視訊之解碼或其他應用。
目的地器件116之輸入介面122自電腦可讀媒體110 (例如通信媒體、儲存器件112、檔案伺服器114或其類似者)接收經編碼視訊位元流。經編碼視訊位元流可包括由視訊編碼器200定義之傳訊資訊(其亦由視訊解碼器300使用),諸如具有描述視訊區塊或其他經寫碼單元(例如圖塊、圖像、圖像組、序列或其類似者)之特性及/或處理的值的語法元素。顯示器件118向使用者顯示經解碼視訊資料之經解碼圖像。顯示器件118可表示各種顯示器件中之任一者,諸如陰極射線管(CRT)、液晶顯示器(LCD)、電漿顯示器、有機發光二極體(OLED)顯示器或另一類型之顯示器件。
儘管圖1中未展示,但在一些實例中,視訊編碼器200及視訊解碼器300可各自與音訊編碼器及/或音訊解碼器整合,且可包括適當之MUX-DEMUX單元或其他硬體及/或軟體,以處置在共同資料流中包括音訊及視訊兩者之多工流。若適用,則MUX-DEMUX單元可符合ITU H.223多工器協定或其他協定(諸如使用者資料報協定(UDP))。
視訊編碼器200及視訊解碼器300可各自實施為各種合適編碼器及/或解碼器電路系統中之任一者,諸如一或多個微處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)、離散邏輯、軟體、硬體、韌體或其任何組合。當該等技術部分地以軟體實施時,器件可將用於軟體之指令儲存於合適之非暫時性電腦可讀媒體中,且在硬體中使用一或多個處理器執行指令以進行本發明之技術。視訊編碼器200及視訊解碼器300中之每一者可包括於一或多個編碼器或解碼器中,編碼器或解碼器中之任一者可經整合為各別器件中之組合式編碼器/解碼器(編碼解碼器(CODEC))之部分。包括視訊編碼器200及/或視訊解碼器300之器件可包含積體電路、微處理器及/或無線通信器件,諸如蜂巢式電話。
視訊編碼器200及視訊解碼器300可根據視訊寫碼標準來操作,該視訊寫碼標準諸如ITU-T H.265,亦稱為高效視訊寫碼(HEVC)或其擴展,諸如多視圖及/或可縮放視訊寫碼擴展。替代地,視訊編碼器200及視訊解碼器300可根據其他專有或行業標準,諸如ITU-T H.266 (亦稱為多功能視訊寫碼(VVC))來操作。在ITU-T SG 16 WP 3及ISO/IEC JTC 1/SC 29/WG 11之聯合視訊專家組(JVET)第15次會議:2019年7月3日至12日,Gothenburg,SE,JVET-O2001-vE,Bross等人之「Versatile Video Coding (Draft 6)」(下文中稱為「VVC草案6」)中描述VVC標準之草案。在ITU-T SG 16 WP 3及ISO/IEC JTC 1/SC 29/WG 11之聯合視訊專家組(JVET)第19次會議:2020年6月22日至7月1日,電話會議,JVET-S2001-vA,Bross等人之「Versatile Video Coding (Draft 10)」(下文中「VVC草案10」)中描述VVC標準之更為新近草案。然而,本發明之技術不限於任何特定寫碼標準。
大體而言,視訊編碼器200及視訊解碼器300可對圖像進行基於區塊之寫碼。術語「區塊」通常係指包括待處理(例如編碼、解碼或以其他方式用於編碼及/或解碼過程中)之資料的結構。舉例而言,區塊可包括亮度及/或色度資料之樣本之二維矩陣。大體而言,視訊編碼器200及視訊解碼器300可寫碼以YUV (例如Y、Cb、Cr)格式表示之視訊資料。亦即,視訊編碼器200及視訊解碼器300可寫碼亮度及色度分量,而非寫碼圖像之樣本的紅色、綠色及藍色(RGB)資料,其中色度分量可包括紅色調及藍色調色度分量兩者。在一些實例中,視訊編碼器200在編碼之前將接收到之RGB格式資料轉換成YUV表示,且視訊解碼器300將YUV表示轉換成RGB格式。替代地,預處理單元及後處理單元(未展示)可進行此等轉換。
本發明大體可指對圖像進行寫碼(例如編碼及解碼)以包括編碼或解碼圖像之資料的過程。類似地,本發明可指對圖像之區塊進行寫碼以包括編碼或解碼區塊之資料的過程,例如預測及/或殘餘寫碼。經編碼視訊位元流大體上包括表示寫碼決策(例如寫碼模式)及圖像至區塊之分割的語法元素的一系列值。因此,對寫碼圖像或區塊之參考大體上應理解為寫碼形成該圖像或區塊之語法元素的值。
HEVC定義各種區塊,包括寫碼單元(CU)、預測單元(PU),及變換單元(TU)。根據HEVC,視訊寫碼器(諸如視訊編碼器200)根據四元樹結構將寫碼樹單元(CTU)分割成CU。亦即,視訊寫碼器將CTU及CU分割成四個相等之非重疊正方形,且四元樹之每一節點具有零個或四個子節點。不具有子節點之節點可稱為「葉節點」,且此類葉節點之CU可包括一或多個PU及/或一或多個TU。視訊寫碼器可進一步分割PU及TU。舉例而言,在HEVC中,殘餘四元樹(RQT)表示TU之分割。在HEVC中,PU表示框間預測資料,而TU表示殘餘資料。經框內預測之CU包括框內預測資訊,諸如框內模式指示。
作為另一實例,視訊編碼器200及視訊解碼器300可經組態以根據VVC來操作。根據VVC,視訊寫碼器(諸如視訊編碼器200)將圖像分割成複數個寫碼樹單元(CTU)。視訊編碼器200可根據樹結構分割CTU,諸如四元樹二元樹(QTBT)結構或多類型樹(MTT)結構。QTBT結構移除多個分割類型之概念,諸如HEVC之CU、PU及TU之間的分離。QTBT結構包括兩個層級:根據四元樹分割來分割的第一層級,及根據二元樹分割來分割的第二層級。QTBT結構之根節點對應於CTU。二元樹之葉節點對應於寫碼單元(CU)。
在MTT分割結構中,區塊可使用四元樹(QT)分割、二元樹(BT)分割及一或多種類型之三重樹(TT) (亦稱為三元樹(TT))分割來分割。三重或三元樹分割為區塊分裂成三個子區塊的分割。在一些實例中,三重或三元樹分割在不經由中心劃分初始區塊之情況下將區塊劃分成三個子區塊。MTT中之分割類型(例如QT、BT及TT)可為對稱或不對稱的。
在一些實例中,視訊編碼器200及視訊解碼器300可使用單一QTBT或MTT結構來表示亮度及色度分量中之每一者,而在其他實例中,視訊編碼器200及視訊解碼器300可使用兩個或更多個QTBT或MTT結構,諸如用於亮度分量之一個QTBT/MTT結構及用於兩個色度分量之另一QTBT/MTT結構(或用於各別色度分量之兩個QTBT/MTT結構)。
視訊編碼器200及視訊解碼器300可經組態以使用根據HEVC之四元樹分割、QTBT分割、MTT分割或其他分割結構。出於解釋之目的,相對於QTBT分割呈現對本發明之技術的描述。然而,應理解,本發明之技術亦可應用於經組態以使用四元樹分割亦或其他類型之分割的視訊寫碼器。
區塊(例如CTU或CU)可在圖像中以各種方式分組。作為一個實例,磚(brick)可指圖像中之特定磚片內之CTU列之矩形區。磚片可為圖像中之特定磚片行及特定磚片列內之CTU之矩形區。磚片行係指具有等於圖像之高度的高度及由(例如,諸如圖像參數集中之)語法元素規定之寬度的CTU之矩形區。磚片列係指具有由(例如,諸如圖像參數集中之)語法元素規定之高度及等於圖像之寬度的寬度的CTU之矩形區。
在一些實例中,磚片可分割成多個磚,其中之每一者可包括磚片內之一或多個CTU列。未分割成多個磚之磚片亦可稱為磚。然而,為磚片之真子集的磚可能不稱為磚片。
圖像中之磚亦可配置於圖塊中。圖塊可為獨佔地含於單一網路抽象層(NAL)單元中之圖像之整數數目個磚。在一些實例中,圖塊包括數個完整磚片或僅包括一個磚片之完整磚的連續序列。
本發明可能可互換地使用「N×N」及「N乘N」來指區塊(諸如CU或其他視訊區塊)在豎直及水平尺寸方面之樣本尺寸,例如16×16樣本或16乘16樣本。大體而言,16×16 CU將在豎直方向上具有16個樣本(y = 16)且在水平方向上具有16個樣本(x = 16)。同樣,N×N CU大體在豎直方向上具有N個樣本且在水平方向上具有N個樣本,其中N表示非負整數值。可按列及行來配置CU中之樣本。此外,CU不一定在水平方向上與在豎直方向上具有相同數目個樣本。舉例而言,CU可包含N×M個樣本,其中M不必等於N。
視訊編碼器200對CU之表示預測及/或殘餘資訊及其他資訊的視訊資料進行編碼。預測資訊指示將如何預測CU以便形成CU之預測區塊。殘餘資訊大體上表示編碼之前的CU之樣本與預測區塊之間的逐樣本差。
為了預測CU,視訊編碼器200可大體上經由框間預測或框內預測形成CU之預測區塊。框間預測通常係指根據先前經寫碼圖像之資料來預測CU,而框內預測通常係指根據同一圖像之先前經寫碼資料來預測CU。為進行框間預測,視訊編碼器200可使用一或多個運動向量來產生預測區塊。視訊編碼器200大體可進行運動搜尋以識別(例如在CU與參考區塊之間的差方面)緊密匹配CU之參考區塊。視訊編碼器200可使用絕對差總和(SAD)、平方差總和(SSD)、平均絕對差(MAD)、均方差(MSD)或其他此類差計算來計算差度量,以判定參考區塊是否緊密匹配當前CU。在一些實例中,視訊編碼器200可使用單向預測或雙向預測來預測當前CU。
VVC之一些實例亦提供仿射運動補償模式,其可視為框間預測模式。在仿射運動補償模式中,視訊編碼器200可判定表示非平移運動(諸如放大或縮小、旋轉、透視運動或其他不規則運動類型)之兩個或更多個運動向量。
為進行框內預測,視訊編碼器200可選擇框內預測模式以產生預測區塊。VVC之一些實例提供六十七種框內預測模式,包括各種定向模式以及平面(planar)模式及DC模式。大體而言,視訊編碼器200選擇描述與當前區塊(例如CU之區塊)相鄰之樣本的框內預測模式,根據該框內預測模式來預測當前區塊之樣本。此類樣本可大體上與當前區塊在同一圖像中,位於當前區塊之上方、左上方或左方,假定視訊編碼器200以光柵掃描次序(左至右、上至下)寫碼CTU及CU。
視訊編碼器200編碼表示用於當前區塊之預測模式的資料。舉例而言,針對框間預測模式,視訊編碼器200可編碼表示使用各種可用框間預測模式中之哪一者以及對應模式之運動資訊的資料。舉例而言,針對單向或雙向框間預測,視訊編碼器200可使用進階運動向量預測(AMVP)或合併模式來編碼運動向量。視訊編碼器200可使用類似模式來編碼用於仿射運動補償模式之運動向量。
在區塊之預測(諸如框內預測或框間預測)之後,視訊編碼器200可計算該區塊之殘餘資料。殘餘資料(諸如殘餘區塊)表示區塊與該區塊之使用對應預測模式所形成的預測區塊之間的逐樣本差。視訊編碼器200可將一或多個變換應用於殘餘區塊,以在變換域而非樣本域中產生經變換資料。舉例而言,視訊編碼器200可將離散餘弦變換(DCT)、整數變換、小波變換或概念上類似的變換應用於殘餘視訊資料。另外,視訊編碼器200可在首次變換之後應用二次變換,諸如模式依賴不可分離二級變換(MDNSST)、信號依賴變換、Karhunen-Loeve變換(KLT)或其類似者。視訊編碼器200在應用一或多個變換之後產生變換係數。
如上文所提及,在任何變換以產生變換係數後,視訊編碼器200可進行變換係數之量化。量化通常係指變換係數經量化以可能地減小用以表示變換係數的資料之量從而提供進一步壓縮之過程。藉由進行量化過程,視訊編碼器200可減小與變換係數中之一些或所有相關聯之位元度。舉例而言,視訊編碼器200可在量化期間將n 位元值捨去至m 位元值,其中n 大於m 。在一些實例中,為進行量化,視訊編碼器200可進行待量化值之逐位元右移位。
在量化之後,視訊編碼器200可掃描變換係數,從而自包括經量化變換係數之二維矩陣產生一維向量。掃描可經設計以將較高能量(且因此較低頻率)變換係數置於向量前部,且將較低能量(且因此較高頻率)變換係數置於向量後部。在一些實例中,視訊編碼器200可利用預定義掃描次序來掃描經量化變換係數以產生串列化向量,且隨後熵編碼向量之經量化變換係數。在其他實例中,視訊編碼器200可進行自適應掃描。在掃描經量化變換係數以形成一維向量之後,視訊編碼器200可例如根據上下文自適應二進位算術寫碼(CABAC)來熵編碼一維向量。視訊編碼器200亦可熵編碼描述與經編碼視訊資料相關聯之後設資料之語法元素的值,以供由視訊解碼器300用於解碼視訊資料。
為進行CABAC,視訊編碼器200可將上下文模型內之上下文指派給待傳輸之符號。上下文可係關於(例如)符號之相鄰值是否為零值。機率判定可基於指派給符號之上下文。
視訊編碼器200可進一步例如在圖像標頭、區塊標頭、圖塊標頭或其他語法資料(諸如序列參數集(SPS)、圖像參數集(PPS)或視訊參數集(VPS))中向視訊解碼器300產生語法資料,諸如基於區塊之語法資料、基於圖像之語法資料及基於序列之語法資料。視訊解碼器300可同樣地解碼此類語法資料以判定如何解碼對應視訊資料。
以此方式,視訊編碼器200可產生包括經編碼視訊資料(例如描述將圖像分割成區塊(例如CU)之語法元素)及區塊之預測及/或殘餘資訊之位元流。最終,視訊解碼器300可接收位元流且解碼經編碼視訊資料。
大體而言,視訊解碼器300進行與由視訊編碼器200進行之過程互逆的過程,以解碼位元流之經編碼視訊資料。舉例而言,視訊解碼器300可使用CABAC以與視訊編碼器200之CABAC編碼過程實質上類似但互逆的方式解碼位元流之語法元素的值。語法元素可定義圖像至CTU之分割資訊及每一CTU根據對應分割結構(諸如QTBT結構)之分割,以定義CTU之CU。語法元素可進一步定義視訊資料之區塊(例如,CU)之預測及殘餘資訊。
殘餘資訊可由例如經量化變換係數表示。視訊解碼器300可逆量化及逆變換區塊之經量化變換係數,以再生區塊之殘餘區塊。視訊解碼器300使用傳訊之預測模式(框內或框間預測)及相關預測資訊(例如框間預測之運動資訊)以形成區塊之預測區塊。視訊解碼器300可接著(在逐樣本基礎上)使經預測區塊與殘餘區塊組合以再生初始區塊。視訊解碼器300可進行額外處理,諸如進行解區塊過程以減少沿區塊邊界之視覺假影。
將現有縮放矩陣應用於低頻不可分離變換(LFNST)係數可能不產生所要效應。本發明之技術可避免使用現有縮放矩陣之缺點,且可藉由在應用縮放矩陣係非所要的時不應用縮放矩陣來改進寫碼效率。
根據本發明之技術,一種方法包括:判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
根據本發明之技術,一種器件包括:一記憶體,其經組態以儲存該視訊資料;及一或多個處理器,其實施於電路系統中且以通信方式耦接至該記憶體,該一或多個處理器經組態以:    判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
根據本發明之技術,一種器件包括:用於判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊的構件;用於基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定不將該等縮放矩陣應用於該LFNST經寫碼區塊的構件;及用於在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料的構件。
根據本發明之技術,一種非暫時性電腦可讀儲存媒體具有儲存於其上之指令,該等指令在由一或多個處理器執行時使得該一或多個處理器:判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
本發明大體上可指「傳訊」特定資訊,諸如語法元素。術語「傳訊」大體上可指用於解碼經編碼視訊資料之語法元素的值及/或其他資料之通信。亦即,視訊編碼器200可傳訊位元流中之語法元素的值。大體而言,傳訊係指在位元流中產生值。如上文所提及,源器件102可實質上即時將位元流傳送至目的地器件116,或不即時傳送,諸如可在將語法元素儲存至儲存器件112以供目的地器件116稍後檢索時發生。
圖2A及2B為說明實例四元樹二元樹(QTBT)結構130及對應寫碼樹單元(CTU) 132的概念圖。實線表示四元樹分裂,且虛線指示二元樹分裂。在二元樹之每一分裂(亦即,非葉)節點中,一個旗標經傳訊以指示使用哪一分裂類型(亦即,水平或豎直),其中在此實例中,0指示水平分裂且1指示豎直分裂。對於四元樹分裂,不需要指示分裂類型,此係由於四元樹節點將區塊水平地及豎直地分裂成具有相等大小之4個子區塊。因此,視訊編碼器200可編碼且視訊解碼器300可解碼用於QTBT結構130之區樹層級(亦即實線)的語法元素(諸如分裂資訊)及用於QTBT結構130之預測樹層級(亦即虛線)的語法元素(諸如分裂資訊)。視訊編碼器200可編碼且視訊解碼器300可解碼用於由QTBT結構130之端葉節點表示之CU的視訊資料(諸如預測及變換資料)。
大體而言,圖2B之CTU 132可與定義對應於在第一及第二層級處的QTBT結構130之節點的區塊之大小的參數相關聯。此等參數可包括CTU大小(表示樣本中之CTU 132之大小)、最小四元樹大小(MinQTSize,表示最小允許四元樹葉節點大小)、最大二元樹大小(MaxBTSize,表示最大允許二元樹根節點大小)、最大二元樹深度(MaxBTDepth,表示最大允許二元樹深度),及最小二元樹大小(MinBTSize,表示最小允許二元樹葉節點大小)。
QTBT結構之對應於CTU之根節點可具有在QTBT結構之第一層級處的四個子節點,該等子節點中之每一者可根據四元樹分割來分割。亦即,第一層級之節點為葉節點(不具有子節點)或具有四個子節點。QTBT結構130之實例將此類節點表示為包括具有用於分枝之實線之父節點及子節點。若第一層級之節點不大於最大允許二元樹根節點大小(MaxBTSize),則該等節點可藉由各別二元樹進一步分割。一個節點之二元樹分裂可迭代,直至由分裂產生之節點達到最小允許二元樹葉節點大小(MinBTSize)或最大允許二元樹深度(MaxBTDepth)為止。QTBT結構130之實例將此類節點表示為具有用於分枝之虛線。二元樹葉節點稱為寫碼單元(CU),其用於預測(例如圖像內或圖像間預測)及變換而無需任何進一步分割。如上文所論述,CU亦可稱為「視訊區塊」或「區塊」。
在QTBT分割結構之一個實例中,CTU大小經設定為128×128(亮度樣本及兩個對應64×64色度樣本),MinQTSize經設定為16×16,MaxBTSize經設定為64×64,MinBTSize(對於寬度及高度兩者)經設定為4,且MaxBTDepth經設定為4。將四元樹分割首先應用於CTU以產生四元樹葉節點。四元樹葉節點可具有自16×16 (亦即,MinQTSize)至128×128 (亦即,CTU大小)之大小。若葉四分樹節點為128×128,則由於大小超過MaxBTSize (亦即在此實例中,64×64),故該葉四分樹節點將不由二元樹進一步分裂。否則,葉四元樹節點將由二元樹進一步分割。因此,四元樹葉節點亦為二元樹之根節點且具有為0之二元樹深度。當二元樹深度達至MaxBTDepth (在此實例中為4)時,不准許進一步分裂。當二元樹節點具有等於MinBTSize (在此實例中為4)之寬度時,其意指不准許進一步水平分裂。類似地,具有等於MinBTSize之高度的二元樹節點意指不准許對彼二元樹節點進行進一步豎直分裂。如上文所提及,二元樹之葉節點稱為CU,且根據預測及變換來進一步處理而無需進一步分割。
圖3為說明可進行本發明之技術的實例視訊編碼器200之方塊圖。出於解釋之目的而提供圖3,且不應將該圖視為對如本發明中廣泛例示及描述之技術的限制。出於解釋之目的,本發明在諸如HEVC視訊寫碼標準及開發中之H.266視訊寫碼標準的視訊寫碼標準之上下文中描述視訊編碼器200。然而,本發明之技術不限於此等視訊寫碼標準,且大體可適用於視訊編碼及解碼。
在圖3之實例中,視訊編碼器200包括視訊資料記憶體230、模式選擇單元202、殘餘產生單元204、變換處理單元206、量化單元208、逆量化單元210、逆變換處理單元212、重建構單元214、濾波器單元216、經解碼圖像緩衝器(DPB) 218及熵編碼單元220。視訊資料記憶體230、模式選擇單元202、殘餘產生單元204、變換處理單元206、量化單元208、逆量化單元210、逆變換處理單元212、重建構單元214、濾波器單元216、DPB 218及熵編碼單元220中之任一者或所有可實施於一或多個處理器中或處理電路系統中。此外,視訊編碼器200可包括額外或替代性處理器或處理電路系統以進行此等及其他功能。
視訊資料記憶體230可儲存待由視訊編碼器200之組件編碼的視訊資料。視訊編碼器200可自(例如)視訊源104 (圖1)接收儲存於視訊資料記憶體230中之視訊資料。DPB 218可充當參考圖像記憶體,其儲存參考視訊資料以供用於由視訊編碼器200對後續視訊資料之預測中。視訊資料記憶體230及DPB 218可由各種記憶體器件中之任一者形成,諸如動態隨機存取記憶體(DRAM) (包括同步DRAM (SDRAM))、磁阻式RAM (MRAM)、電阻式RAM (RRAM)或其他類型之記憶體器件。視訊資料記憶體230及DPB 218可由同一記憶體器件或單獨的記憶體器件提供。在各種實例中,視訊資料記憶體230可與視訊編碼器200之其他組件一起在晶片上,如所說明,或相對於彼等組件在晶片外。
在本發明中,對視訊資料記憶體230之參考不應解釋為限於視訊編碼器200內部之記憶體(除非具體地如此描述),或限於視訊編碼器200外部之記憶體(除非具體地如此描述)。實情為,對視訊資料記憶體230之參考應理解為儲存視訊編碼器200接收以供編碼的視訊資料(例如待編碼的當前區塊之視訊資料)的參考記憶體。圖1之記憶體106亦可提供對來自視訊編碼器200之各種單元的輸出的暫時儲存。
圖3之各種單元經說明以輔助理解由視訊編碼器200進行的操作。單元可經實施為固定功能電路、可程式化電路或其組合。固定功能電路係指提供特定功能性且在可進行之操作上預設之電路。可程式化電路係指可經程式化以進行各種任務且在可進行之操作中提供靈活功能性的電路。舉例而言,可程式化電路可執行使得可程式化電路以由軟體或韌體之指令定義的方式操作的軟體或韌體。固定功能電路可執行軟體指令(例如,以接收參數或輸出參數),但固定功能電路進行的操作之類型大體係不可變的。在一些實例中,單元中之一或多者可為相異的電路區塊(固定功能或可程式化),且在一些實例中,單元中之一或多者可為積體電路。
視訊編碼器200可包括由可程式化電路形成之算術邏輯單元(ALU)、基本功能單元(EFU)、數位電路、類比電路及/或可程式化核心。在視訊編碼器200之操作係使用由可程式化電路執行之軟體進行的實例中,記憶體106 (圖1)可儲存視訊編碼器200接收及執行的軟體之指令(例如目標程式碼),或視訊編碼器200內之另一記憶體(未展示)可儲存此類指令。
視訊資料記憶體230經組態以儲存接收到之視訊資料。視訊編碼器200可自視訊資料記憶體230檢索視訊資料之圖像,且將視訊資料提供至殘餘產生單元204及模式選擇單元202。視訊資料記憶體230中之視訊資料可為待編碼之原始視訊資料。
模式選擇單元202包括運動估計單元222、運動補償單元224及框內預測單元226。模式選擇單元202可包括額外功能單元以根據其他預測模式來進行視訊預測。作為實例,模式選擇單元202可包括調色板單元、區塊內複製單元(其可為運動估計單元222及/或運動補償單元224之部分)、仿射單元、線性模型(LM)單元或其類似者。
模式選擇單元202大體上協調多個編碼遍次以測試編碼參數之組合,及用於此類組合之所得速率-失真值。編碼參數可包括CTU至CU之分割、用於CU之預測模式、用於CU之殘餘資料的變換類型、用於CU之殘餘資料的量化參數等等。模式選擇單元202可最終選擇相比其他經測試組合具有更佳速率-失真值的編碼參數之組合。
視訊編碼器200可將自視訊資料記憶體230檢索到之圖像分割成一系列CTU,且將一或多個CTU囊封於圖塊內。模式選擇單元202可根據樹結構來分割圖像之CTU,諸如上文所描述之HEVC的QTBT結構或四元樹結構。如上文所描述,視訊編碼器200可用根據樹結構分割CTU來形成一或多個CU。此CU大體亦可稱為「視訊區塊」或「區塊」。
大體而言,模式選擇單元202亦控制其組件(例如運動估計單元222、運動補償單元224及框內預測單元226)以產生當前區塊(例如當前CU或HEVC中之PU與TU的重疊部分)之預測區塊。對於當前區塊之框間預測,運動估計單元222可進行運動搜尋以識別一或多個參考圖像(例如儲存於DPB 218中之一或多個先前經寫碼圖像)中之一或多個緊密匹配參考區塊。特定而言,運動估計單元222可例如根據絕對差總和(SAD)、平方差總和(SSD)、平均絕對差(MAD)、均方差(MSD)或其類似者來計算表示潛在參考區塊與當前區塊類似程度的值。運動估計單元222可大體使用當前區塊與所考慮之參考區塊之間的逐樣本差來進行此等計算。運動估計單元222可識別具有由此等計算產生之最低值的參考區塊,從而指示最緊密匹配當前區塊之參考區塊。
運動估計單元222可形成一或多個運動向量(MV),其相對於當前區塊在當前圖像中之位置定義參考區塊在參考圖像中之位置。運動估計單元222接著可將運動向量提供至運動補償單元224。舉例而言,對於單向框間預測,運動估計單元222可提供單一運動向量,而對於雙向框間預測,運動估計單元222可提供兩個運動向量。運動補償單元224接著可使用運動向量來產生預測區塊。舉例而言,運動補償單元224可使用運動向量來檢索參考區塊之資料。作為另一實例,若運動向量具有分數樣本精確度,則運動補償單元224可根據一或多個內插濾波器為預測區塊內插值。此外,對於雙向框間預測,運動補償單元224可檢索用於藉由各別運動向量識別之兩個參考區塊的資料,且(例如)經由逐樣本求平均或加權求平均來組合檢索到之資料。
作為另一實例,對於框內預測,或框內預測寫碼,框內預測單元226可自與當前區塊相鄰之樣本產生預測區塊。舉例而言,對於定向模式,框內預測單元226可在數學上大體組合相鄰樣本之值,且在跨當前區塊之所定義方向上填入此等計算值以產生預測區塊。作為另一實例,對於DC模式,框內預測單元226可計算當前區塊之相鄰樣本的平均值,且產生預測區塊以包括預測區塊之每一樣本的此所得平均值。
模式選擇單元202將預測區塊提供至殘餘產生單元204。殘餘產生單元204接收來自視訊資料記憶體230之當前區塊及來自模式選擇單元202之預測區塊的原始未經編碼版本。殘餘產生單元204計算當前區塊與預測區塊之間的逐樣本差。所得逐樣本差定義當前區塊之殘餘區塊。在一些實例中,殘餘產生單元204亦可判定殘餘區塊中之樣本值之間的差,以使用殘餘差分脈碼調變(RDPCM)來產生殘餘區塊。在一些實例中,可使用進行二進位減法之一或多個減法器電路來形成殘餘產生單元204。
在模式選擇單元202將CU分割成PU之實例中,每一PU可與亮度預測單元及對應色度預測單元相關聯。視訊編碼器200及視訊解碼器300可支援具有各種大小之PU。如上文所指示,CU之大小可指CU之亮度寫碼區塊的大小,且PU之大小可指PU之亮度預測單元的大小。假定特定CU之大小為2N×2N,則視訊編碼器200可支援用於框內預測的2N×2N或N×N之PU大小,及用於框間預測的2N×2N、2N×N、N×2N、N×N或類似大小之對稱PU大小。視訊編碼器200及視訊解碼器300亦可支援用於框間預測的2N×nU、2N×nD、nL×2N及nR×2N之PU大小的不對稱分割。
在模式選擇單元202未將CU進一步分割成PU的實例中,每一CU可與亮度寫碼區塊及對應色度寫碼區塊相關聯。如上,CU之大小可指CU之亮度寫碼區塊的大小。視訊編碼器200及視訊解碼器300可支援2N×2N、2N×N或N×2N之CU大小。
對於諸如區塊內複製模式寫碼、仿射模式寫碼及線性模型(LM)模式寫碼之其他視訊寫碼技術,如少數實例,模式選擇單元202經由與寫碼技術相關聯之各別單元產生正編碼之當前區塊的預測區塊。在諸如調色板模式寫碼的一些實例中,模式選擇單元202可能不產生預測區塊,而是產生指示基於所選調色板來重建構區塊之方式的語法元素。在此類模式中,模式選擇單元202可將此等語法元素提供至熵編碼單元220以待編碼。
如上文所描述,殘餘產生單元204接收用於當前區塊及對應預測區塊之視訊資料。殘餘產生單元204接著產生當前區塊之殘餘區塊。為產生殘餘區塊,殘餘產生單元204計算預測區塊與當前區塊之間的逐樣本差。
變換處理單元206將一或多個變換應用於殘餘區塊以產生變換係數之區塊(在本文中稱為「變換係數區塊」)。變換處理單元206可將各種變換應用於殘餘區塊以形成變換係數區塊。舉例而言,變換處理單元206可將LFNST、離散餘弦變換(DCT)、定向變換、Karhunen-Loeve變換(KLT)或概念上類似之變換應用於殘餘區塊。在一些實例中,變換處理單元206可對殘餘區塊進行多個變換,例如一次變換及二次變換,諸如旋轉變換。在一些實例中,變換處理單元206不將變換應用於殘餘區塊。
量化單元208可量化變換係數區塊中之變換係數,以產生經量化變換係數區塊。量化單元208可根據與當前區塊相關聯之量化參數(QP)值來量化變換係數區塊之變換係數。視訊編碼器200 (例如,經由模式選擇單元202)可藉由調整與CU相關聯之QP值來調整應用於與當前區塊相關聯之變換係數區塊的量化程度。量化可引入資訊之損耗,且因此,經量化變換係數可相比由變換處理單元206產生之初始變換係數而具有較低精確度。
逆量化單元210及逆變換處理單元212可將逆量化及逆變換分別應用於經量化變換係數區塊,以根據變換係數區塊重建構殘餘區塊。重建構單元214可基於經重建構殘餘區塊及由模式選擇單元202產生之預測區塊,產生對應於當前區塊之經重建構區塊(儘管可能具有一些程度之失真)。舉例而言,重建構單元214可將經重建構殘餘區塊之樣本添加至來自由模式選擇單元202產生之預測區塊的對應樣本,以產生經重建構區塊。
濾波器單元216可對經重建構區塊進行一或多個濾波操作。舉例而言,濾波器單元216可進行解區塊操作以沿CU之邊緣減少區塊效應假影。在一些實例中,可跳過濾波器單元216之操作。
視訊編碼器200將經重建構區塊儲存於DPB 218中。舉例而言,在不需要濾波器單元216之操作的實例中,重建構單元214可將經重建構區塊儲存至DPB 218。在需要濾波器單元216之操作的實例中,濾波器單元216可將經濾波經重建構區塊儲存至DPB 218。運動估計單元222及運動補償單元224可自DPB 218檢索由經重建構(及可能經濾波)區塊形成之參考圖像,以對隨後經編碼圖像之區塊進行框間預測。此外,框內預測單元226可使用當前圖像之DPB 218中的經重建構區塊來對當前圖像中之其他區塊進行框內預測。
在一些實例中,視訊編碼器200之變換處理單元206、量化單元208、逆量化單元210、逆變換處理單元212及/或其他單元可判定將縮放矩陣應用於LFNST係數係非所要的。舉例而言,將縮放矩陣應用於LFNST係數可能因係數之平坦性質而不引起係數之任何相對縮放,或可能產生視覺假影,如下文進一步論述。
視訊編碼器200之變換處理單元206、量化單元208、逆量化單元210、逆變換處理單元212及/或其他單元可判定指示縮放矩陣是否將不應用於LFNST係數的語法元素。在一實例中,量化單元208及逆量化單元210基於指示縮放矩陣將不應用於LFNST係數的語法元素而不將縮放矩陣應用於LFNST係數。
大體而言,熵編碼單元220可熵編碼自視訊編碼器200之其他功能組件接收到之語法元素。舉例而言,熵編碼單元220可熵編碼指示縮放矩陣是否將不應用於LFNST係數的語法元素。舉例而言,熵編碼單元220可熵編碼來自量化單元208之經量化變換係數區塊。作為另一實例,熵編碼單元220可熵編碼來自模式選擇單元202之預測語法元素(例如用於框間預測之運動資訊或用於框內預測之框內模式資訊)。熵編碼單元220可對語法元素(其為視訊資料之另一實例)進行一或多個熵編碼操作以產生經熵編碼資料。舉例而言,熵編碼單元220可對資料進行上下文自適應可變長度寫碼(CAVLC)操作、CABAC操作、可變至可變(V2V)長度寫碼操作、基於語法之上下文自適應二進位算術寫碼(SBAC)操作、機率區間分割熵(PIPE)寫碼操作、指數-哥倫布編碼操作或另一類型之熵編碼操作。在一些實例中,熵編碼單元220可以旁路模式操作,其中語法元素未經熵編碼。
視訊編碼器200可輸出位元流,該位元流包括重建構圖塊或圖像之區塊所需的經熵編碼語法元素。特定而言,熵編碼單元220可輸出該位元流。
上文所描述之操作係相對於區塊進行描述。此描述應理解為用於亮度寫碼區塊及/或色度寫碼區塊的操作。如上文所描述,在一些實例中,亮度寫碼區塊及色度寫碼區塊為CU之亮度及色度分量。在一些實例中,亮度寫碼區塊及色度寫碼區塊為PU之亮度及色度分量。
在一些實例中,無需針對色度寫碼區塊重複相對於亮度寫碼區塊進行之操作。作為一個實例,無需針對識別色度區塊之運動向量(MV)及參考圖像重複用以識別亮度寫碼區塊之MV及參考圖像的操作。實情為,亮度寫碼區塊之MV可經按比例調整以判定色度區塊之MV,且參考圖像可為相同的。作為另一實例,框內預測過程可針對亮度寫碼區塊及色度寫碼區塊而為相同的。
視訊編碼器200表示經組態以編碼視訊資料之器件之實例,該器件包括:一記憶體,其經組態以儲存該視訊資料;及一或多個處理器,其實施於電路系統中且以通信方式耦接至該記憶體,該一或多個處理器經組態以:判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下編碼該視訊資料。
圖4為說明可進行本發明之技術的實例視訊解碼器300之方塊圖。出於解釋之目的提供圖4,且其並不限制如本發明中所廣泛例示及描述之技術。出於解釋之目的,本發明根據VVC及HEVC之技術描述視訊解碼器300。然而,本發明之技術可由經組態用於其他視訊寫碼標準的視訊寫碼器件進行。
在圖4之實例中,視訊解碼器300包括經寫碼圖像緩衝器(CPB)記憶體320、熵解碼單元302、預測處理單元304、逆量化單元306、逆變換處理單元308、重建構單元310、濾波器單元312及經解碼圖像緩衝器(DPB) 314。CPB記憶體320、熵解碼單元302、預測處理單元304、逆量化單元306、逆變換處理單元308、重建構單元310、濾波器單元312及DPB 314中之任一者之或所有可實施於一或多個處理器中或處理電路系統中。此外,視訊解碼器300可包括額外或替代性處理器或處理電路系統以進行此等及其他功能。
預測處理單元304包括運動補償單元316及框內預測單元318。預測處理單元304可包括根據其他預測模式進行預測之額外單元。作為實例,預測處理單元304可包括調色板單元、區塊內複製單元(其可形成運動補償單元316之部分)、仿射單元、線性模型(LM)單元或其類似者。在其他實例中,視訊解碼器300可包括更多、更少或不同功能組件。
CPB記憶體320可儲存待由視訊解碼器300之組件解碼之視訊資料,諸如經編碼視訊位元流。可(例如)自電腦可讀媒體110 (圖1)獲得儲存於CPB記憶體320中之視訊資料。CPB記憶體320可包括儲存來自經編碼視訊位元流之經編碼視訊資料(例如語法元素)的CPB。此外,CPB記憶體320可儲存除經寫碼圖像之語法元素以外的視訊資料,諸如表示來自視訊解碼器300之各種單元之輸出的暫時資料。DPB 314大體儲存經解碼圖像,視訊解碼器300可在解碼經編碼視訊位元流之後續資料或圖像時輸出該等經解碼圖像及/或將其用作參考視訊資料。CPB記憶體320及DPB 314可由各種記憶體器件中之任一者形成,諸如DRAM (包括SDRAM)、MRAM、RRAM或其他類型之記憶體器件。CPB記憶體320及DPB 314可由同一記憶體器件或單獨記憶體器件提供。在各種實例中,CPB記憶體320可與視訊解碼器300之其他組件一起在晶片上,或相對於彼等組件在晶片外。
另外或替代地,在一些實例中,視訊解碼器300可自記憶體120 (圖1)檢索經寫碼視訊資料。亦即,記憶體120可用CPB記憶體320儲存如上文所論述之資料。同樣,當視訊解碼器300之功能性中之一些或所有實施於待由視訊解碼器300之處理電路系統執行的軟體中時,記憶體120可儲存待由視訊解碼器300執行之指令。
圖4中所展示之各種單元經說明以輔助理解由視訊解碼器300進行的操作。單元可經實施為固定功能電路、可程式化電路或其組合。類似於圖3,固定功能電路係指提供特定功能性且在可進行之操作上預設之電路。可程式化電路係指可經程式化以進行各種任務且在可進行之操作中提供靈活功能性的電路。舉例而言,可程式化電路可執行使得可程式化電路以由軟體或韌體之指令定義的方式操作的軟體或韌體。固定功能電路可執行軟體指令(例如,以接收參數或輸出參數),但固定功能電路進行的操作之類型大體係不可變的。在一些實例中,單元中之一或多者可為相異的電路區塊(固定功能或可程式化),且在一些實例中,單元中之一或多者可為積體電路。
視訊解碼器300可包括由可程式化電路形成之ALU、EFU、數位電路、類比電路及/或可程式化核心。在藉由在可程式化電路上執行之軟體進行視訊解碼器300之操作的實例中,晶片上或晶片外記憶體可儲存視訊解碼器300接收及執行之軟體之指令(例如目標程式碼)。
熵解碼單元302可自CPB接收經編碼視訊資料,且熵解碼視訊資料以再生語法元素。預測處理單元304、逆量化單元306、逆變換處理單元308、重建構單元310及濾波器單元312可基於自位元流提取之語法元素產生經解碼視訊資料。
大體而言,視訊解碼器300在逐區塊基礎上重建構圖像。視訊解碼器300可單獨對每一區塊進行重建構操作(其中當前經重建構(亦即經解碼)之區塊可稱為「當前區塊」)。
熵解碼單元302可熵解碼定義經量化變換係數區塊之經量化變換係數的語法元素以及變換資訊,諸如量化參數(QP)及/或變換模式指示。逆量化單元306可使用與經量化變換係數區塊相關聯之QP來判定量化程度,且同樣判定逆量化程度供逆量化單元306應用。逆量化單元306可例如進行逐位元左移操作以將經量化變換係數逆量化。逆量化單元306可從而形成包括變換係數之變換係數區塊。
在一些實例中,視訊解碼器300之逆量化單元306及/或其他單元可例如藉由剖析語法元素來判定指示縮放矩陣是否將不應用於LFNST係數的語法元素。在一實例中,逆量化單元306基於指示縮放矩陣將不應用於LFNST係數的語法元素而不將縮放矩陣應用於LFNST係數。
在逆量化單元306形成變換係數區塊之後,逆變換處理單元308可將一或多個逆變換應用於變換係數區塊以產生與當前區塊相關聯之殘餘區塊。舉例而言,逆變換處理單元308可將逆DCT、逆整數變換、逆Karhunen-Loeve變換(KLT)、逆旋轉變換、逆定向變換或另一逆變換應用於變換係數區塊。
另外,預測處理單元304根據藉由熵解碼單元302熵解碼之預測資訊語法元素來產生預測區塊。舉例而言,若預測資訊語法元素指示當前區塊經框間預測,則運動補償單元316可產生預測區塊。在此情況下,預測資訊語法元素可指示DPB 314中之參考圖像(自其檢索參考區塊),以及運動向量,其識別參考圖像中之參考區塊相對於當前圖像中之當前區塊之方位的方位。運動補償單元316可大體上以實質上類似於相對於運動補償單元224 (圖3)所描述之方式的方式進行框間預測過程。
作為另一實例,若預測資訊語法元素指示當前區塊經框內預測,則框內預測單元318可根據由預測資訊語法元素指示之框內預測模式來產生預測區塊。同樣,框內預測單元318可大體上以實質上類似於相對於框內預測單元226 (圖3)所描述之方式的方式進行框內預測過程。框內預測單元318可將相鄰樣本之資料自DPB 314檢索至當前區塊。
重建構單元310可使用預測區塊及殘餘區塊來重建構當前區塊。舉例而言,重建構單元310可將殘餘區塊之樣本添加至預測區塊之對應樣本以重建構當前區塊。
濾波器單元312可對經重建構區塊進行一或多個濾波操作。舉例而言,濾波器單元312可進行解區塊操作以沿經重建構區塊之邊緣減少區塊效應假影。濾波器單元312之操作未必在所有實例中進行。
視訊解碼器300可將經重建構區塊儲存於DPB 314中。舉例而言,在不進行濾波器單元312之操作的實例中,重建構單元310可將經重建構區塊儲存至DPB 314。在進行濾波器單元312之操作的實例中,濾波器單元312可將經濾波經重建構區塊儲存至DPB 314。如上文所論述,DPB 314可將諸如用於框內預測之當前圖像及用於後續運動補償之先前經解碼圖像之樣本的參考資訊提供至預測處理單元304。此外,視訊解碼器300可輸出來自DPB 314之經解碼圖像(例如經解碼視訊)以供後續呈現於諸如圖1之顯示器件118的顯示器件上。
以此方式,視訊解碼器300表示視訊解碼器件之實例,該視訊解碼器件包括:一記憶體,其經組態以儲存該視訊資料;及一或多個處理器,其實施於電路系統中且以通信方式耦接至該記憶體,該一或多個處理器經組態以:判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊;基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下解碼該視訊資料。
視訊寫碼標準包括ITU-T H.261、ISO/IEC MPEG-1 Visual、ITU-T H.262或ISO/IEC MPEG-2 Visual、ITU-T H.263、ISO/IEC MPEG-4 Visual及ITU-T H.264 (亦稱為ISO/IEC MPEG-4 AVC),包括其可縮放視訊寫碼(SVC)及多視圖視訊寫碼(MVC)擴展。當前最新技術視訊寫碼標準,亦即高效視訊寫碼(HEVC)係由ITU-T視訊寫碼專家組(VCEG)及ISO/IEC動畫專家組(MPEG)之視訊寫碼(JCT-VC)的聯合協作組在2013年4月定案。
由MPEG及ITU-T研究組16's VCEG形成的協作組,即聯合視訊專家組(JVET)在研究將稱為VVC之新的視訊寫碼標準。VVC之主要目標係提供對於現有HEVC標準的壓縮效能之顯著改良,從而輔助較高品質視訊服務及新興應用(諸如360°全向沉浸式多媒體及高動態範圍(HDR)視訊)的部署。VVC標準之開發預期於2020年完成。
QP值由視訊編碼器200及視訊解碼器300用以例如判定待用於量化或逆量化變換係數之步長。QP值在-QpBdOffset至63 (包括端點)範圍內經規定,其中63為最大QP值。QpBdOffset經規定為特定位元度之固定值,導出為6*(位元度- 8)。藉由將QpBdOffset加至所規定QP值計算出的QP質數值用以導出實際步長。為易於描述,在理解QP值用於大部分QP導出過程中且QP質數值僅在臨判定步長之前的最終階段處使用之情況下,QP及QP質數值可在本發明之其餘部分中互換使用。將QP值改變1大致指示步長改變12%;將QP值改變6對應於步長改變2倍。QP值愈高,量化步長愈大且經量化之變換係數之表示變得愈粗略。
在視訊寫碼中,使用DCT2或其他變換操作來變換在預測操作之後獲得之殘餘。隨後,變換係數經量化且經量化係數可經熵寫碼。
視訊編碼器200或視訊解碼器300之量化過程例如由兩個因素控制:1) QP及;2)縮放矩陣。上文已提供對QP之描述。在視訊解碼器(例如視訊解碼器300)處,判定對應於QP之縮放因數。視訊解碼器300可如下應用此縮放因數: levelScale[ ][ qP % 6 ] ) << ( qP / 6 ) 其中qP為量化參數,levelScale[ ][ ]為如下定義之陣列: 列表levelScale[ ][ ]經規定為levelScale[ j ][ k ] = { { 40, 45, 51, 57, 64, 72 }, { 57, 64, 72, 80, 90, 102 } },其中j = 0..1,k = 0..5。
QP差為六引起為1之位元移位,且因此視訊解碼器300可藉由(qP / 6)之移位應用與QP相關聯之縮放且可使用qP % 6計算出縮放。
此外,縮放參數可由視訊編碼器200及視訊解碼器300針對每一係數而應用。縮放參數可針對不同係數而為不同的。視訊編碼器200或視訊解碼器300可判定與縮放矩陣相關聯之縮放因數。舉例而言,縮放因數可自縮放參數導出。縮放參數可用縮放列表及/或矩陣定義。視訊編碼器200或視訊解碼器300可如下判定中間縮放因數m[ x ][ y ]:若以下條件中之一或多者為真,則m[ x ][ y ]經設定等於16:1) sps_scaling_list_enabled_flag等於0;或2) transform_skip_flag[ xTbY ][ yTbY ]等於1。若彼等條件皆不為真,則以下可適用:m[ x ][ y ] = ScalingFactor[ Log2( nTbW ) ][ Log2( nTbH ) ][ matrixId ][ x ][ y ],其中matrixId如在VVC草案6中之表7 -5 (8-958)中所規定。
視訊編碼器200或視訊解碼器300可如下藉由將(來自QP及縮放矩陣之)兩個縮放項相乘來判定用於逆量化中之最終縮放因數:若dep_quant_enabled_flag等於1,則以下可適用:ls[ x ][ y ] = ( m[ x ][ y ] * levelScale[ rectNonTsFlag ][ (qP + 1) % 6 ] ) << ( (qP + 1) / 6 ) (8-959) 否則(dep_quant_enabled_flag等於0),以下可適用:ls[ x ][ y ] = ( m[ x ][ y ] * levelScale[ rectNonTsFlag ][ qP % 6 ] ) << ( qP / 6 ) (8-960)
經縮放變換係數如下導出且用於逆量化步驟中。值dnc[ x ][ y ]如下導出: dnc[ x ][ y ] = ( dz[ x ][ y ] * ls[ x ][ y ] +bdOffset )  >>  bdShift          (8-693) 經縮放變換係數d[ x ][ y ]如下導出:d[ x ][ y ] = Clip3( CoeffMin, CoeffMax, dnc[ x ][ y ] )                           (8-694)
現在論述縮放矩陣之傳訊及定義。縮放矩陣為由視訊編碼器200及視訊解碼器300用於例如縮放變換係數之係數集合。視訊編碼器200及/或視訊解碼器300可使用縮放矩陣用於速率控制及感知控制,其在下文描述。
視訊之速率控制通常藉由調整區塊之QP值進行。然而,QP差產生應用於整個區塊之均一縮放因數。縮放矩陣可用於變換區塊內之各種係數之間的相對控制。舉例而言,縮放矩陣可經定義,使得低頻係數比高頻係數經量化更少。縮放矩陣之此使用對於其中存在較少高頻內容之視訊資料可為有益的。
縮放矩陣亦可用以控制變換區塊內之係數之相對準確度,使得以更低位元率保持視訊之感知品質。使用縮放矩陣之基於人類視覺系統(HVS)之量化可提供特定類型之內容的更佳品質視訊。參見Sze、Budagavi及Sullivan,High Efficiency Video Coding (HEVC),Springer。
視訊編碼器200可使用縮放列表來傳訊縮放矩陣,且此等縮放列表可在自適應參數集(APS)中經傳訊。縮放列表可在SPS中啟用或停用。若SPS指示縮放列表啟用,則視訊編碼器可進一步控制例如圖塊標頭中之縮放矩陣以打開及關閉縮放矩陣。
縮放矩陣可針對每一變換區塊大小且針對區塊之預測類型經定義。如上文所提及,矩陣可自縮放列表導出。視訊編碼器200可如下使用在PPS及/或SPS中傳訊之縮放列表之語法:
scaling_list_data( ) { 描述符
    for( sizeId = 1; sizeId < 7; sizeId++ )   
       for( matrixId = 0; matrixId < 6; matrixId ++ ) {   
       if( ! ( ( ( sizeId = = 1 ) && ( matrixId % 3 = = 0 ) ) | |               ( ( sizeId = = 6 ) && ( matrixId % 3 != 0 ) ) ) ) {   
scaling_list_pred_mode_flag [ sizeId ][ matrixId ] u(1)
           if( !scaling_list_pred_mode_flag[ sizeId ][ matrixId ] )   
scaling_list_pred_matrix_id_delta [ sizeId ][ matrixId ] ue(v)
           else {   
              nextCoef = 8   
              coefNum = Min( 64, ( 1  <<  ( sizeId  <<  1 ) ) )   
              if( sizeId > 3 ) {   
                 scaling_list_dc_coef_minus8 [ sizeId − 4 ][ matrixId ] se(v)
                  nextCoef = scaling_list_dc_coef_minus8[ sizeId − 4 ][ matrixId ] + 8   
              }   
              for( i = 0; i < coefNum; i++ ) {   
                      x = DiagScanOrder[ 3 ][ 3 ][ i ][ 0 ]   
                      y = DiagScanOrder[ 3 ][ 3 ][ i ][ 1 ]   
                      if ( !( sizeId = = 6 && x >= 4 && y >= 4) ) {   
                    scaling_list_delta_coef se(v)
                     nextCoef = ( nextCoef + scaling_list_delta_coef + 256 ) % 256   
                     ScalingList[ sizeId ][ matrixId ][ i ] = nextCoef   
                      }   
              }   
           }   
           }   
       }   
    }   
}   
表1
縮放矩陣之語義提供於VVC草案6之章節7.4.3.16中。由變數ScalingFactor[ wId ][ hId ][ matrixId ][ x ][ y ]表示之縮放矩陣自縮放列表資料導出。wId及hId係指表示變換區塊之大小的sizeID變數。sizeId (表2)及matrixId (表3)闡述於下表中:
量化矩陣之大小 sizeId
1x1 0
2x2 1
4x4 2
8x8 3
16x16 4
32x32 5
64x64 6
表2
sizeId CuPredMode cIdx ( 色彩分量 ) matrixId
2, 3, 4, 5, 6 MODE_INTRA 0 (Y) 0
1, 2, 3, 4, 5, 6 MODE_INTRA 1 (Cb) 1
1, 2, 3, 4, 5, 6 MODE_INTRA 2 (Cr) 2
2, 3, 4, 5, 6 MODE_INTER, MODE_IBC 0 (Y) 3
1, 2, 3, 4, 5, 6 MODE_INTER, MODE_IBC 1 (Cb) 4
1, 2, 3, 4, 5, 6 MODE_INTER, MODE_IBC 2 (Cr) 5
表3
在表3中,基於sizeId、預測模式及色彩分量規定matrixId。
現在論述縮放矩陣及其導出之一些值得注意的特徵。針對三個色彩分量中之每一者單獨規定縮放矩陣,且將兩個預測類型(框間預測及IBC)一起視為一個預測類型,且將框內預測視為另一預測類型。
針對方形TB規定縮放列表(及因此,導出之矩陣)。對於矩形TB,縮放矩陣自對應方形TB之縮放矩陣導出。
對於16×16、32×32及64×64縮放矩陣,僅將64個係數規定為8×8柵,且藉由將係數上取樣為所要大小來獲得用於更大區塊之矩陣係數。在此類情況下,視訊編碼器200亦傳訊DC係數。
可自相同sizeID之其他縮放矩陣預測特定sizeID之縮放矩陣。在此情況下之預測為參考矩陣之拷貝。當亦針對特定sizeID傳訊DC係數時,自參考矩陣之DC係數複製DC係數。
在HEVC之前的視訊寫碼標準中,僅使用固定可分離變換,其中既豎直且亦水平地使用DCT-2。在HEVC中,除DCT-2之外,亦針對4×4區塊採用DST-7作為固定可分離變換。
標題為Enhanced Multiple Transforms for Prediction Residual、發佈於2019年5月28日且主張2015年1月26日申請之美國臨時專利申請案62/107,996之優先權的美國專利第10,306,229號;標題為Look-Up Table for Enhanced Multiple Transform、公開於2018年1月18日且主張2016年7月15日申請之美國臨時專利申請案第62/363,188號之優先權的美國公開案第2018-0020218 A1號;及標題為Coding Adaptive Multiple Transform Information for Video Coding、申請於2019年5月30日且主張2018年6月1日申請之美國臨時專利申請案第62/679,570號之優先權的美國專利公開案第2019-0373261 A1號涵蓋多重變換選擇(MTS)方法。MTS先前稱為自適應多重變換(AMT)。美國專利公開案第2019-0373261 A1號中之MTS之實例已在聯合視訊專家組(JVET)之聯合實驗模型(JEM-7.0)中採用,且之後MTS之簡化版本在VVC中採用。
圖5為說明編碼器及解碼器(例如視訊編碼器200及視訊解碼器300)中之低頻不可分離變換(LFNST)之概念圖。在圖5之實例中,諸如視訊編碼器200之視訊編碼器可應用可分離變換400。視訊編碼器接著可應用LFNST 402。視訊編碼器接著可量化LFNST係數404。諸如視訊解碼器300之視訊解碼器可逆量化經量化係數406。視訊解碼器接著可應用逆LFNST 408。視訊解碼器接著可應用逆可分離變換410。
圖5中所說明之LFNST用於JEM-7.0中以進一步改進MTS之寫碼效率,其中LFNST之實施係基於標題為Multi-Pass Non-Separable Transforms for Video Coding、發佈於2019年10月15日且主張均在2016年2月15日申請之美國臨時專利申請案第62/295,440號及第62/295,448號之權益的美國專利第10,448,053號中所揭示之超立方體吉文斯變換(HyGT) (對於替代性設計及其他細節,參見發佈於2019年11月26日之標題為Non-Separable Secondary Transform for Video Coding的美國專利第10,491,922號;標題為Efficient Parameter Storage for Compact Multi-Pass Transforms、發佈於2019年7月9日且主張均在2016年2月15日申請之美國臨時專利申請案第62/295,456號及第62/295,448號之權益的美國專利第10,349,085號,及公開於2019年9月26日之標題為Minimization of Transform Memory and Latency Via Parallel Factorizations的美國專利公開案第2019-0297351 A1號)。LFNST先前稱為不可分離二次變換(NSST)或二次變換,其中所有縮寫係相同的。近來,LFNST已在ITU-T SG 16 WP 3及ISO/IEC JTC 1/SC 29/WG 11之聯合視訊專家組(JVET)第14次會議:2019年3月19日至27日,Geneva,CH,JVET-N0193,Koo等人之「CE6:Reduced Secondary Transform (RST) (CE6-3.1)」中採用。
圖6為說明具有LFNST的實例逆變換過程之概念圖。具有LFNST之逆變換涉及圖6中所說明之以下技術,且可例如由視訊編碼器200之逆變換處理單元212且由視訊解碼器300之逆變換處理單元308進行。2-D區塊420中之經解碼變換係數藉由首先經由預定義掃描或排序將2-D區塊420轉換成係數之1-D列表(或向量)而用作逆LFNST的輸入。不使用零化係數422。零化係數可為根據預定義規則基於其在2-D區塊內之位置將其值設定為零的係數。逆LFNST應用於輸入係數之1-D列表且經由預定義掃描或排序將輸出係數重組至2-D區塊424中。不使用零化係數426。經逆變換LFNST係數用作可分離逆DCT-2之輸入以獲得經重建構殘餘428。
圖7為說明用以重建構來自16個輸入係數之列表的16個中間係數的4×4逆LFNST之概念圖。圖8為說明用以重建構來自16個輸入係數之列表的48個中間係數的8×8逆LFNST之概念圖。在VVC草案6中,LFNST可應用於4×4或8×8子區塊。在兩種情況下,4×4子區塊中之16個經解碼係數(其中一些可經按規範零化)為逆LFNST之輸入。對於4×4子區塊430,視訊解碼器300可在應用可分離逆DCT-2之前使用16×16逆LFNST來建構16個中間係數432,如圖7中所展示。對於8×8子區塊440,視訊解碼器300可在可分離逆DCT-2之前使用16×48逆LFNST來建構48個中間係數442,如圖8中所展示。注意,48個中間係數442以L形圖案重組。剩餘係數444 (展示為無陰影)零化。逆LFNST過程可基於(i)變換(例如LFNST)矩陣及(ii)用於中間係數之重組圖案或掃描來充分定義。VVC草案6中之零化過程的細節之一個實例描述於標題為Low-Frequency Non-Separable Transformation Signaling Based on Zero-Out Patterns for Video Coding、申請於2020年5月13日且主張2019年5月17日申請之美國臨時專利申請案62/849,689之優先權的美國專利申請案第15/931,271號中。
對於4×4 LFNST,取決於框內模式使用以下兩種圖案/掃描中之一者: const int g_lfnstRGScan4x4    [16] = {  // 0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 }; const int g_lfnstRGTranScan4x4[16] = {  // 0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 0,  4,  8, 12,  1,  5,  9, 13,  2,  6, 10, 14,  3,  7, 11, 15 }; 其中以上兩種圖案/掃描指示中間係數之重新排序。舉例而言,g_lfnstRGScan4x4不改變係數之列主重新排序。然而,g_lfnstRGTranScan4x4藉由轉置係數之次序(例如1、2、3、6、7及11處之係數分別與4、8、12、9、13及14處之係數調換)來重新排序。在一些實例中,g_lfnstRGScan4x4可用於在0與34之間(包括端點)索引之框內模式且g_lfnstRGTranScan4x4可用於在34以上索引之框內模式。
對於4×4 LFNST,根據VVC草案6之章節8.7.4.3,八個16×16矩陣用作候選。
對於8×8 LFNST,取決於框內模式使用以下兩種圖案/掃描中之一者: const int g_lfnstRGScan8x8    [48] = {  // 0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 48, 49, 50, 51, 56, 57, 58, 59 }; const int g_lfnstRGTranScan8x8[48] = {  // 0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47 0,  8, 16, 24, 32, 40, 48, 56,  1,  9, 17, 25, 33, 41, 49, 57,  2, 10, 18, 26, 34, 42, 50, 58,  3, 11, 19, 27, 35, 43, 51, 59,  4, 12, 20, 28,  5, 13, 21, 29,  6, 14, 22, 30,  7, 15, 23, 31 }; 其中以上兩種圖案/掃描指示中間係數之重新排序。具體而言,g_lfnstRGScan8x8以L形圖案重組48個中間係數(例如第48個係數映射至圖8中之方位59)。掃描g_lfnstRGTranScan8x8藉由轉置係數(例如第48個係數映射至圖8中之方位31)來重新排序L形圖案。在一些實例中,g_lfnstRGScan4x4可用於在0與34之間(包括端點)索引之框內模式且g_lfnstRGTranScan4x4可用於在34以上索引之框內模式。對於8×8 LFNST,根據VVC草案6之章節8.7.4.3,八個16×48矩陣用作候選。
圖9為說明編碼器及解碼器中之LFNST及縮放矩陣之概念圖。在圖9之實例中,諸如視訊編碼器200之視訊編碼器可應用可分離變換450。視訊編碼器接著可應用LFNST 452。視訊編碼器接著可量化LFNST係數且應用縮放矩陣454。諸如視訊解碼器300之視訊解碼器可逆量化經量化係數且應用縮放矩陣456。視訊解碼器接著可應用逆LFNST 458。視訊解碼器接著可應用逆可分離變換460。
縮放矩陣針對各種變換區塊大小經定義。當變換區塊具有大小M×N時,視訊解碼器300在逆量化步驟中如下應用對應於區塊大小之縮放矩陣。當應用LFNST時,每一區塊僅含有8個或16個LFNST係數。由於LFNST為不可分離變換,故此等係數係一維的。然而,係數可按用變換區塊之左上4×4區計算之對角掃描次序配置。縮放矩陣通常針對一次變換係數經定義。在VVC草案6中,當應用縮放矩陣時,直接對LFNST係數應用可適用於M×N區塊之縮放矩陣。
儘管將縮放矩陣應用於LFNST係數矩陣可能不使解碼器崩潰,但此應用可能不具有所要效應。舉例而言,當視訊解碼器300將與M×N區塊相關聯之縮放矩陣應用於變換區塊之4×4區時,係數之相對差可能不引起所要行為。舉例而言,若區塊為8×8區塊,則區塊之左上4×4區可對應於低頻係數。縮放矩陣可使得低頻係數未經量化為與高頻係數一樣重,從而引起4×4區中之縮放係數的相對平坦分佈。當用LFNST寫碼區塊時,縮放矩陣因4×4區中之係數之平坦性質而可能不引起係數之任何相對縮放。
當變換區塊為32×32時,縮放矩陣在8×8柵上經規定且使用複製經上取樣以獲得32×32縮放矩陣。因此,有效地,用對應於8×8柵之左上係數的一個值填充左上4×4區。當此縮放矩陣應用於應用LFNST之32×32區塊時,LFNST係數(例如受限於左上4×4區)經縮放恆定值且不存在係數之相對縮放。此有效地導致用於一次變換係數之「平坦」縮放矩陣,此與縮放矩陣之所要行為相反。
當LFNST由視訊編碼器200或視訊解碼器300應用時,存在於變換區塊中之LFNST係數之數目可僅為8或16。在固定QP寫碼組態中,此可導致用以寫碼區塊之顯著更少位元。此可能因係數之較大調零及非零一次變換係數之相對較小準確度而產生視覺假影。
適用於用LFNST寫碼之變換區塊的縮放矩陣設計係合乎需要的。然而,在VVC草案6之縮放矩陣設計之情況下,以下情形中之一者係可能的:1)當LFNST啟用時,視訊編碼器200可能難以使用縮放矩陣對LFNST經寫碼區塊應用速率控制;或2)當速率控制啟用時,LFNST之應用可能停用或受限,使得可預期更可預測之速率控制行為。
本發明描述可改進基於混合變換之視訊編碼解碼器的色度QP導出之若干技術,包括傳訊技術。此等技術中之一或多者可獨立地或結合其他技術使用。對於具有索引lfnstIdx之LFNST所應用於之M×N變換區塊(其中nZ為非零LFNST係數之數目,其中nZ係數可配置於變換區塊之M1×N1區中),揭示若干技術。
在一些實例中,視訊編碼器200或視訊解碼器300可將對應於M1×N1變換區塊的縮放矩陣應用於LFNST係數(例如而非對應於M×N區塊的縮放矩陣)。在一些實例中,可應用對應於M2×N2之區塊大小的縮放矩陣,其中僅左上M1×N1係數應用於LFNST係數。舉例而言,對於具有16個係數之LFNST,可應用對應於8×8區塊的縮放矩陣之左上4×4係數。
在一些實例中,當視訊編碼器200或視訊解碼器300藉由使用最初在按比例放大(upscaling)之前使用之K1×K2縮放矩陣按比例放大來獲得M×N區塊的縮放矩陣時,以下可適用。若M1不大於K1且N1不大於K2,則K1×K2矩陣之左上M1×N1樣本可應用於LFNST係數。在此情況下,可不應用縮放矩陣係數之上取樣。舉例而言,若M = N = 32,M1 = N1 = 4,K1 = K2 = 8,則對於區塊,僅8×8初始縮放矩陣係數之左上4×4樣本可用作縮放矩陣。當M1及N1中之一或兩者分別大於K1及K2時,則按比例放大可僅應用於更大之維度。
在一些實例中,視訊編碼器200或視訊解碼器300可應用第一QP-偏移-LFNST來寫碼變換區塊。第一QP偏移可為隱含的或推斷為等於一值。舉例而言,當應用LFNST時,可添加為-1之QP偏移,從而產生變換區塊之係數之較低QP或較精細量化。在一些替代方案中,第一QP偏移可取決於區塊大小。對於更大區塊,第一QP偏移之幅度可比更小區塊更大。在一些實例中,可使用區塊之其他特性(包括但不限於框內模式、使用之一次變換、使用之預測模式、QP值等)來判定待應用於LFNST區塊之QP偏移。在一些實例中,視訊編碼器200可在位元流中傳訊第一QP偏移值。在一些實例中,視訊解碼器300可導出第一QP偏移值。在一個替代性實例中,QP偏移可作為區塊之QP、lfnstIdx及框內模式之函數而獲得。視訊編碼器200或視訊解碼器300可應用該函數作為一函數,或可經由查找表之使用來應用該函數。
在一些實例中,視訊編碼器200或視訊解碼器300可將大小為nZ之縮放向量應用於LFNST區塊。此縮放向量可代替LFNST矩陣應用於LFNST係數。替代地,視訊編碼器200可傳訊M1×N1矩陣,其含有待在針對LFNST區塊規定LFNST時應用之縮放係數。在另一實例中,可針對LFNST所應用於之不同區塊大小規定不同縮放向量/矩陣。不同向量/矩陣亦可取決於區塊之其他特性(例如框內模式、lfnstIdx、預測模式等)來應用。在一些實例中,視訊編碼器200或視訊解碼器300可自所規定之其他縮放矩陣預測針對LFNST區塊規定之縮放向量/矩陣。替代地,可自針對LFNST規定之縮放向量/矩陣預測其他縮放矩陣。
在一些實例中,視訊解碼器300可推斷未藉由以上技術中之一者規定的矩陣中之一或多個係數的縮放因數等於0。
在一些實例中,旗標可經傳訊或導出以規定縮放矩陣可不應用於LFNST經寫碼區塊。視訊編碼器200可在位元流之參數集(例如SPS、PPS、APS等)中之一或多者中傳訊此旗標,或視訊解碼器300可經由其他方式推斷旗標。在一些實例中,旗標可經進一步組態以僅在特定準則下限制將縮放矩陣應用於LFNST區塊。舉例而言,準則中之一或多者可取決於區塊特性,諸如區塊寬度/高度/縱橫比、使用之預測模式、分量、應用之一次變換等。更大體而言,對於用以寫碼視訊之工具,旗標可經傳訊或導出以規定縮放矩陣可不應用於用彼特定工具或具有特定參數之工具寫碼之區塊。舉例而言,當用具有非DCT2核心之一次變換寫碼區塊時,可不應用縮放矩陣。
在一些實例中,以上所揭示之技術中之一些亦可應用於一次變換係數。舉例而言,當一次變換係數(例如因零化)受限於小於區塊大小的區時,以上技術中之一或多者可用以導出待應用之縮放矩陣。
本文中所揭示之一或多種技術可進一步受限於色度映射表所應用於之樣本之一或多個特性,例如區塊形狀、縱橫比、使用之預測模式、相鄰區塊之特性、樣本相對於圖像之方位(靠近邊界或遠離邊界,包括圖像邊界、磚片邊界、圖塊邊界、磚邊界等)。
上文所描述之一些技術可在編碼器或解碼器或兩者處應用。儘管所揭示之技術中之許多者係針對色度分量,但其亦可適用於亮度且適用於可用以表示視訊資料的其他色空間中之分量。一或多種技術可一起應用或獨立地應用。
對於已啟用LFNST的區塊,可應用對應於4×4變換區塊大小之縮放矩陣。可對VVC草案6之章節8.7.3中之變換係數之縮放過程作出以下改變。添加展示於<ADD>與</ADD>之間且刪除展示於<DELETE>與</DELETE>之間。 列表levelScale[ ][ ]經規定為levelScale[ j ][ k ] = { { 40, 45, 51, 57, 64, 72 }, { 57, 64, 72, 80, 90, 102 } },其中j = 0..1,k = 0..5。 (nTbW)×(nTbH)陣列dz經設定等於(nTbW)×(nTbH)陣列TransCoeffLevel[ xTbY ][ yTbY ][ cIdx ]。 對於經縮放變換係數d[ x ][ y ] (其中x = 0..nTbW − 1,y = 0..nTbH − 1)之導出,以下適用: –      中間縮放因數m[ x ][ y ]如下導出: –  若以下條件中之一或多者為真,則m[ x ][ y ]經設定等於16: –    sps_scaling_list_enabled_flag等於0。 –    transform_skip_flag[ xTbY ][ yTbY ]等於1。 –  否則,以下適用: <ADD>若( lfnst_idx[ xTbY ][ yTbY ] != 0 ) scW = 4 swH = 4 否則 scW = nTbW scH = nTbH </ADD> m[ x ][ y ] = ScalingFactor[ Log2( <ADD> scW </ADD> <DELETE> nTbW </DELETE>) ][ Log2( <ADD> scH </ADD> <DELETE> nTbH </DELETE> ) ][ matrixId ][ x ][ y ], 其中matrixId如在表7-5       (8-958)中所規定 –      縮放因數ls[ x ][ y ]如下導出: …
在一些實例中,對於不同區塊大小,LFNST係數可係不同的。舉例而言,當LFNST啟用時,值scW及scH可取決於區塊大小nTbW、nTbH及lfnstIdx。舉例而言,對於區塊大小64×64,係數之數目可受限於8×8區而非4×4區內。在此情況下,scW及scH可經設定為8而非4。
在一些實例中,視訊編碼器200或視訊解碼器300可將為-1之隱含QP偏移應用於所有LFNST區塊。可對VVC草案6之章節8.7.3中之變換係數之縮放過程作出以下改變。添加展示於<ADD>與</ADD>之間。變換係數之縮放過程 … –      縮放因數ls[ x ][ y ]如下導出: <ADD> – 變數qPFinal經設定等於( lfnstIdx[ xTbY ][ yTbY ] != 0) ? qP - 1 :qP </ADD> –  若dep_quant_enabled_flag等於1,則以下適用: ls[ x ][ y ] = ( m[ x ][ y ] * levelScale[ rectNonTsFlag ][ (qP <ADD>最終</ADD> + 1) % 6 ] ) << ( (qP <ADD>最終</ADD> + 1) / 6 )  (8-959) –  否則(dep_quant_enabled_flag等於0),以下適用: ls[ x ][ y ] = ( m[ x ][ y ] * levelScale[ rectNonTsFlag ][ qP <ADD>最終</ADD>% 6 ] ) << ( qP <ADD>最終</ADD> / 6 )     (8-960)
在一些替代方案中,隱含QP可不應用於所有色彩分量。舉例而言,隱含QP可僅應用於亮度分量且未應用於色度分量。
在一個實例中,視訊編碼器200可在APS或scaling_list_data語法結構中傳訊旗標以規定縮放矩陣是否可應用於LFNST經寫碼區塊。在一些實例中,當應用縮放矩陣時,可將對應於4×4變換區塊大小之縮放矩陣應用於給定matrixID值(亦即,預測類型及分量)。對VVC草案6之改變如下所示。添加展示於<ADD>與</ADD>之間且刪除展示於<DELETE>與</DELETE>之間。
scaling_list_data( ) { 描述符
    <ADD> scaling_matrix_for_lfnst_disable_flag </ADD> <ADD> u(1) </ADD>
    for( sizeId = 1; sizeId < 7; sizeId++ )   
      for( matrixId = 0; matrixId < 6; matrixId ++ ) {   
      if( ! ( ( ( sizeId = = 1 ) && ( matrixId % 3 = = 0 ) ) | |            ( ( sizeId = = 6 ) && ( matrixId % 3 != 0 ) ) ) ) {   
表4
<ADD> scaling_matrix_for_lfnst_disable_flag 等於1規定縮放矩陣不應用於用LFNST寫碼之區塊。Scaling_matrix_for_lfnst_disable_flag 等於0規定縮放矩陣可應用於用LFNST寫碼之區塊。</ADD>
對章節8.7.3之變換係數之縮放過程作出以下改變。 對於經縮放變換係數d[ x ][ y ] (其中x = 0..nTbW − 1,y = 0..nTbH − 1)之導出,以下適用: … 中間縮放因數m[ x ][ y ]如下導出: – 若以下條件中之一或多者為真,則m[ x ][ y ]經設定等於16: sps_scaling_list_enabled_flag等於0。 transform_skip_flag[ xTbY ][ yTbY ]等於1。 <ADD> scaling_matrix_for_lfnst_disable_flag等於1且lfnst_idx[ xTbY ][ yTbY ]不等於0 以下條件中之所有者為真: scaling_matrix_for_lfnst_disable_flag等於0 lfnst_idx[ xTbY ][ yTbY ]不等於0 x大於或等於4 y大於或等於4 </ADD> –  否則,以下適用: <ADD> scW = ( lfnst_idx[ xTbY ][ yTbY ] != 0 ) ? 4 :nTbW scH = ( lfnst_idx[ xTbY ][ yTbY ]  != 0 ) ? 4 :nTbH </ADD> m[ x ][ y ] = ScalingFactor[ Log2( <DELETE> nTbsc </DELETE> W ) ][ Log2( <DELETE> nTbsc </DELETE> H ) ][ matrixId ][ x ][ y ],其中matrixId如在表7 5      (8-958)中所規定 -  縮放因數ls[ x ][ y ]如下導出: …
圖10為說明根據本發明之實例縮放矩陣傳訊技術之流程圖。視訊編碼器200或視訊解碼器300可判定縮放矩陣是否可應用於視訊資料之LFNST經寫碼區塊(330)。舉例而言,視訊編碼器200可判定不應將縮放矩陣用於LFNST經寫碼區塊。視訊編碼器200可藉由產生語法元素來處理+指示縮放矩陣是否可待應用於LFNST經寫碼區塊的語法元素,且可在位元流中傳訊指示縮放矩陣是否可應用於LFNST經寫碼區塊的語法元素。視訊編碼器200可在SPS、PPS或APS中傳訊語法元素。視訊編碼器200可在位元流中之縮放列表資料語法結構中傳訊語法元素。視訊解碼器300基於在SPS、PPS或APS中之一者內接收到之語法元素來判定縮放矩陣是否可應用於LFNST經寫碼區塊。舉例而言,視訊解碼器300可剖析語法元素。在一些實例中,視訊解碼器300可導出指示縮放矩陣是否可應用於LFNST經寫碼區塊的值。
基於縮放矩陣可不應用於LFNST經寫碼區塊之判定,視訊編碼器200或視訊解碼器300可不將該等縮放矩陣應用於LFNST經寫碼區塊(332)。舉例而言,視訊編碼器200或視訊解碼器可基於縮放矩陣可不應用於LFNST經寫碼區塊之判定來阻止將縮放矩陣應用於LFNST經寫碼區塊。視訊編碼器200或視訊解碼器300可在未將縮放矩陣應用於LFNST經寫碼區塊之情況下寫碼視訊資料(334)。舉例而言,視訊編碼器200可在未將縮放矩陣應用於LFNST經寫碼區塊之情況下編碼視訊資料,且視訊解碼器300可在未將縮放矩陣應用於LFNST經寫碼區塊之情況下解碼視訊資料。
在一些實例中,視訊解碼器300可基於至少一個準則判定是否處理語法元素。在一些實例中,至少一個準則可為LFNST經寫碼區塊之特性、用以寫碼LFNST經寫碼區塊之預測模式、LFNST經寫碼區塊之分量或應用於LFNST經寫碼區塊之一次變換中之至少一者。在一些實例中,特性包括LFNST經寫碼區塊之區塊寬度、LFNST經寫碼區塊之區塊高度或LFNST經寫碼區塊之區塊縱橫比中之至少一者。在一些實例中,分量包括LFNST經寫碼區塊之亮度分量或LFNST經寫碼區塊之色度分量。
在其他實例中,視訊編碼器200或視訊解碼器300可基於用以寫碼LFNST經寫碼區塊之工具或與該工具一起使用之特定參數來判定縮放矩陣是否可應用於LFNST經寫碼區塊。
圖11為說明用於編碼當前區塊之實例方法之流程圖。當前區塊可包含當前CU。儘管相對於視訊編碼器200 (圖1及3)加以描述,但應理解,其他器件可經組態以進行類似於圖11之方法的方法。
在此實例中,視訊編碼器200初始地預測當前區塊(350)。舉例而言,視訊編碼器200可形成當前區塊之預測區塊。視訊編碼器200接著可計算當前區塊之殘餘區塊(352)。為了計算殘餘區塊,視訊編碼器200可計算當前區塊的初始未經編碼區塊與預測區塊之間的差。視訊編碼器200接著可變換及量化殘餘區塊之係數(354)。在一些實例中,視訊編碼器200可例如藉由產生指示縮放矩陣是否將不應用於LFNST係數的語法元素來判定指示縮放矩陣是否將不應用於低頻不可分離變換(LFNST)係數的語法元素。視訊編碼器200可基於指示縮放矩陣將不應用於LFNST係數的語法元素不將縮放矩陣應用於LFNST係數。接下來,視訊編碼器200可掃描殘餘區塊之經量化變換係數(356)。在掃描期間或在掃描之後,視訊編碼器200可對變換係數進行熵編碼(358)。舉例而言,視訊編碼器200可使用CAVLC或CABAC對變換係數進行編碼。視訊編碼器200接著可輸出區塊之經熵編碼資料(360)。
圖12為說明用於解碼視訊資料之當前區塊的實例方法之流程圖。當前區塊可包含當前CU。儘管相對於視訊解碼器300 (圖1及4)加以描述,但應理解,其他器件可經組態以進行類似於圖12之方法的方法。
視訊解碼器300可接收當前區塊之經熵編碼資料,諸如對應於當前區塊的殘餘區塊之係數的經熵編碼預測資訊及經熵編碼資料(370)。視訊解碼器300可熵解碼經熵編碼資料以判定當前區塊之預測資訊且再生殘餘區塊之係數(372)。視訊解碼器300可例如使用如由當前區塊之預測資訊指示之框內或框間預測模式來預測當前區塊(374),以計算當前區塊之預測區塊。視訊解碼器300接著可逆掃描經再生係數(376),以產生經量化變換係數之區塊。視訊解碼器300接著可逆量化及逆變換該等變換係數以產生殘餘區塊(378)。在一些實例中,視訊解碼器300可判定指示縮放矩陣是否將不應用於LFNST係數的語法元素。基於指示縮放矩陣將不應用於LFNST係數的語法元素,視訊解碼器300可不將縮放矩陣應用於LFNST係數。視訊解碼器300可最終藉由組合預測區塊與殘餘區塊來解碼當前區塊(380)。
根據本發明之技術,可避免使用現有縮放矩陣之缺點。另外,可藉由在應用縮放矩陣係非所要的時不應用縮放矩陣來改進寫碼效率(例如處理功率及潛時)。
本發明包括以下實例。
實例1.     一種寫碼視訊資料之方法,該方法包含:判定指示縮放矩陣是否將不應用於低頻不可分離變換(LFNST)係數的語法元素;基於指示縮放矩陣將不應用於LFNST係數的語法元素,不將縮放矩陣應用於LFNST係數;及基於不將縮放矩陣應用於LFNST係數來寫碼視訊資料。
實例2.     如實例1之方法,其中語法元素在位元流中經傳訊。
實例3.     如實例2之方法,其中語法元素在位元流中之序列參數集、圖像參數集或自適應參數集中之一者中經傳訊。
實例4.     如實例3之方法,其中語法元素在自適應參數集中經傳訊。
實例5.     如實例2之方法,其中語法元素在縮放列表資料語法結構中經傳訊。
實例6.     如實例1之方法,其中判定語法元素包含導出語法元素。
實例7.     如實例1至6之任何組合之方法,其中語法元素在存在預定條件之情況下指示縮放矩陣是否將不應用於LFNST係數,其中預定條件包含區塊特性、使用之預測模式、分量或應用之一次變換中之至少一者。
實例8.     如實例7之方法,其中區塊特性包含區塊寬度、區塊高度或區塊縱橫比中之至少一者。
實例9.     如實例7或8之方法,其中分量包含亮度分量或色度分量。
實例10.   如實例1至9之任何組合之方法,其中語法元素基於應用於視訊資料之區塊的工具或具有應用於視訊資料之區塊的預定參數的工具來指示縮放矩陣是否將不應用於LFNST係數。
實例11.    如實例10之方法,其中預定參數包含非DCT2核心之一次變換。
實例12.   一種寫碼視訊資料之方法,該方法包含:將對應於M1×N1變換區塊大小之縮放矩陣應用於低頻不可分離變換(LFNST)係數以產生經縮放係數;及基於經縮放係數來寫碼視訊資料。
實例13.   如實例12之方法,其中縮放矩陣對應於4×4變換區塊大小。
實例14.   如實例12之方法,當LFNST啟用時,scW及scH之值取決於區塊大小nTbW、nTbH及lfnstIdx。
實例15.   一種寫碼視訊資料之方法,該方法包含:判定是否藉由按比例放大獲得M×N之縮放矩陣;若藉由按比例放大獲得縮放方法,則判定M1是否不大於K1及N1是否不大於K2;若M1不大於K1且N1不大於K2,則將K1×K2矩陣之左上M1×N1樣本應用於LFNST係數以產生經縮放係數;及基於經縮放係數來寫碼視訊資料,其中K1×K2矩陣為在按比例放大之前使用之縮放矩陣。
實例16.   如實例15之方法,其中不應用縮放矩陣係數之上取樣。
實例17.   如實例15之方法,其中若M1大於K1,則在M1維度中對縮放矩陣係數進行上取樣。
實例18.   如實例15之方法,其中若N1大於K2,則在N1維度中對縮放矩陣係數進行上取樣。
實例19.   一種寫碼視訊資料之方法,該方法包含:應用第一量化參數(QP)偏移以寫碼變換區塊(TB);及基於TB來寫碼視訊資料。
實例20.   如實例19之方法,其中推斷第一QP偏移等於一值。
實例21.   如實例20之方法,其中該值為-1。
實例22.   如實例19之方法,其中第一QP偏移係隱含的。
實例23.   如實例22之方法,其中第一QP偏移係基於區塊大小。
實例24.   如實例23之方法,其中對於更小區塊大小,第一QP偏移更大。
實例25.   如實例22至24之任何組合之方法,其中第一QP偏移係基於區塊大小、框內模式、使用之一次變換、使用之預測模式或QP值中之一或多者。
實例26.   如實例22至25之任何組合之方法,其中第一QP偏移係基於區塊之QP、lfnstIdx及框內模式。
實例27.   如實例26之方法,其中應用第一QP偏移作為函數或作為查找表。
實例28.   如實例19至27之任何組合之方法,其中第一QP偏移在位元流中經傳訊或由視訊寫碼器導出。
實例29.   如實例19至28之任何組合之方法,其中隱含,其中第一QP偏移未應用於所有色彩分量。
實例30.   一種寫碼視訊資料之方法,該方法包含:    將大小為nZ之縮放向量代替LFNST矩陣應用於LFNST區塊之係數以產生經縮放係數;及基於經縮放係數來寫碼視訊資料。
實例31.   一種寫碼視訊資料之方法,該方法包含:判定LFNST是否應用於區塊;若應用LFNST,則判定區塊之特性;將縮放矩陣或向量應用於區塊以產生經縮放係數,縮放矩陣或向量係基於區塊之特性;及基於經縮放係數來寫碼視訊資料。
實例32.   如實例31之方法,其中區塊之特性包含區塊大小、框內模式、lfnstIdx或預測模式中之一或多者。
實例33.   一種寫碼視訊資料之方法,該方法包含:判定LFNST是否應用於區塊;若應用LFNST,則基於其他縮放向量或矩陣判定縮放向量或縮放矩陣;將縮放向量或矩陣應用於區塊以產生經縮放係數;及基於經縮放係數來寫碼視訊資料。
實例34.   如實例12至33之任何組合之方法,其中推斷一或多個係數之未規定的縮放因數等於0。
實例35.   一種寫碼視訊資料之方法,該方法包含:判定縮放矩陣是否可應用於LFNST經寫碼區塊;及基於判定來寫碼LFNST經寫碼區塊。
實例36.   如實例35之方法,其進一步包含:判定LFNST經寫碼區塊之特性;及基於LFNST經寫碼區塊之至少一個特性來限制將縮放矩陣應用於LFNST經寫碼區塊。
實例37.   如實例36之方法,其中特性包含區塊寬度/高度/縱橫比、使用之預測模式、分量及應用之一次變換中之一或多者。
實例38.   如實例35之方法,其進一步包含判定用以寫碼視訊資料之工具;及基於工具來限制將縮放矩陣應用於LFNST經寫碼區塊。
實例39.   如實例38之方法,其中該工具為非DCT2核心。
實例40.   如實例1至39之任何組合之方法,其中該方法應用於一次變換係數。
實例41.   如實例1至40中任一者之方法,其中寫碼包含解碼。
實例42.   如實例1至41中任一者之方法,其中寫碼包含編碼。
實例43.   一種用於寫碼視訊資料之器件,該器件包含用於進行如實例1至42中任一者之方法的一或多個構件。
實例44.   如實例43之器件,其中該一或多個構件包含實施於電路系統中之一或多個處理器。
實例45.   如實例43或44中任一者之器件,其進一步包含記憶體以儲存視訊資料。
實例46.   如實例43至45之任何組合之器件,其進一步包含經組態以顯示經解碼視訊資料之顯示器。
實例47.   如實例43至46之任何組合之器件,其中該器件包含攝影機、電腦、行動器件、廣播接收器器件或機上盒中之一或多者。
實例48.   如實例43至47之任何組合之器件,其中該器件包含視訊解碼器。
實例49.   如實例43至48之任何組合之器件,其中該器件包含視訊編碼器。
實例50.   一種在其上儲存有指令之電腦可讀儲存媒體,該等指令在執行時使得一或多個處理器進行如實例1至42中任一者之方法。
儘管上文所描述之一或多種方法可相對於特定類型之區塊加以描述,但此等方法可應用於不同類型之區塊,例如寫碼區塊、預測區塊、變換區塊或規定圖像之一些空間分割的其他類型之區塊。
應認識到,取決於實例,本文中所描述之技術中之任一者的特定動作或事件可以不同順序進行,可添加、合併或完全省略該等動作或事件(例如,並非所有所描述動作或事件對於該等技術之實踐皆係必要的)。此外,在特定實例中,可(例如)經由多執行緒處理、中斷處理或多個處理器同時而非依序進行動作或事件。
在一或多個實例中,所描述之功能可以硬體、軟體、韌體或其任何組合來實施。若以軟體實施,則該等功能可作為一或多個指令或程式碼而儲存於電腦可讀媒體上或經由電腦可讀媒體傳輸,且由基於硬體之處理單元執行。電腦可讀媒體可包括電腦可讀儲存媒體(其對應於諸如資料儲存媒體之有形媒體)或通信媒體,該通信媒體包括例如根據通信協定來促進電腦程式自一處傳遞至另一處的任何媒體。以此方式,電腦可讀媒體大體可對應於(1)非暫時性之有形電腦可讀儲存媒體,或(2)諸如信號或載波之通信媒體。資料儲存媒體可為可由一或多個電腦或一或多個處理器存取以檢索指令、程式碼及/或資料結構以用於實施本發明中所描述之技術的任何可用媒體。電腦程式產品可包括電腦可讀媒體。
藉由實例而非限制,此類電腦可讀儲存媒體可包含RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器、磁碟儲存器或其他磁性儲存器件、快閃記憶體或可用於儲存呈指令或資料結構形式之所要程式碼且可由電腦存取的任何其他媒體。此外,任何連接均適當地稱為電腦可讀媒體。舉例而言,若使用同軸電纜、光纜、雙絞線、數位用戶線(DSL)或無線技術(諸如紅外、無線及微波)自網站、伺服器或其他遠端源傳輸指令,則同軸電纜、光纜、雙絞線、DSL或無線技術(諸如紅外、無線及微波)包括於媒體之定義中。然而,應理解,電腦可讀儲存媒體及資料儲存媒體不包括連接、載波、信號或其他暫時性媒體,而係針對非暫時性有形儲存媒體。如本文中所使用,磁碟及光碟包括緊密光碟(CD)、雷射光碟、光學光碟、數位多功能光碟(DVD)、軟碟及藍光光碟,其中磁碟通常以磁性方式再現資料,而光碟藉由雷射以光學方式再現資料。以上之組合亦應包括於電腦可讀媒體之範疇內。
指令可由一或多個處理器執行,該一或多個處理器諸如一或多個數位信號處理器(DSP)、通用微處理器、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA),或其他等效積體或離散邏輯電路系統。因此,如本文中所使用之術語「處理器」及「處理電路系統」可指前述結構或適合於實施本文中所描述之技術的任何其他結構中之任一者。此外,在一些態樣中,本文中所描述的功能性可提供於經組態用於編碼及解碼的專用硬體及/或軟體模組內,或併入於組合式編碼解碼器中。此外,技術可充分實施於一或多個電路或邏輯元件中。
本發明之技術可實施於廣泛多種器件或裝置中,該等器件或裝置包括無線手持機、積體電路(IC)或IC集合(例如,晶片集)。在本發明中描述各種組件、模組或單元以強調經組態以進行所揭示技術之器件的功能態樣,但未必需要由不同硬體單元來實現。實情為,如上文所描述,各種單元可與合適的軟體及/或韌體一起組合於編碼解碼器硬體單元中或由互操作性硬體單元之集合提供,該等硬體單元包括如上文所描述之一或多個處理器。
各種實例已予以描述。此等及其他實例係在以下申請專利範圍之範疇內。
100:視訊編碼及解碼系統 102:源器件 104:視訊源 106:記憶體 108:輸出介面 110:電腦可讀媒體 112:儲存器件 114:檔案伺服器 116:目的地器件 118:顯示器件 120:記憶體 122:輸入介面 130:四元樹二元樹結構 132:寫碼樹單元 200:視訊編碼器 202:模式選擇單元 204:殘餘產生單元 206:變換處理單元 208:量化單元 210:逆量化單元 212:逆變換處理單元 214:重建構單元 216:濾波器單元 218:經解碼圖像緩衝器 220:熵編碼單元 222:運動估計單元 224:運動補償單元 226:框內預測單元 230:視訊資料記憶體 300:視訊解碼器 302:熵解碼單元 304:預測處理單元 306:逆量化單元 308:逆變換處理單元 310:重建構單元 312:濾波器單元 314:經解碼圖像緩衝器 316:運動補償單元 318:框內預測單元 320:經寫碼圖像緩衝器記憶體 330:動作 332:動作 334:動作 350:動作 352:動作 354:動作 356:動作 358:動作 360:動作 370:動作 372:動作 374:動作 376:動作 378:動作 380:動作 400:可分離變換 402:LFNST 404:LFNST係數 406:經量化係數 408:逆LFNST 410:逆可分離變換 420:2-D區塊 422:零化係數 424:2-D區塊 426:零化係數 428:經重建構殘餘 430:4×4子區塊 432:16個中間係數 440:8×8子區塊 442:48個中間係數 444:剩餘係數 450:可分離變換 452:LFNST 454:縮放矩陣 456:縮放矩陣 458:逆LFNST 460:逆可分離變換
圖1為說明可進行本發明之技術的實例視訊編碼及解碼系統之方塊圖。
圖2A及2B為說明實例四元樹二元樹(QTBT)結構及對應寫碼樹單元(CTU)之概念圖。
圖3為說明可進行本發明之技術的實例視訊編碼器之方塊圖。
圖4為說明可進行本發明之技術的實例視訊解碼器之方塊圖。
圖5為說明編碼器及解碼器中之低頻不可分離變換(LFNST)之概念圖。
圖6為說明具有LFNST的逆變換過程之概念圖。
圖7為說明用以重建構來自16個輸入係數之列表的16個中間係數的4×4逆LFNST之概念圖。
圖8為說明用以重建構來自16個輸入係數之列表的48個中間係數的8×8逆LFNST之概念圖。
圖9為說明編碼器及解碼器中之LFNST及縮放矩陣之概念圖。
圖10為說明根據本發明之縮放矩陣傳訊技術之流程圖。
圖11為說明根據本發明之技術的用於編碼視訊資料之方法之流程圖。
圖12為說明根據本發明之技術的用於解碼視訊資料之方法之流程圖。
330:動作
332:動作
334:動作

Claims (27)

  1. 一種寫碼視訊資料之方法,該方法包含: 判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊; 基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及 在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
  2. 如請求項1之方法,其進一步包含基於在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內接收到之一語法元素判定該等縮放矩陣是否可應用於該LFNST經寫碼區塊。
  3. 如請求項2之方法,其進一步包含基於至少一個準則判定是否處理該語法元素。
  4. 如請求項3之方法,其中該至少一個準則係基於該LFNST經寫碼區塊之一特性、用以寫碼該LFNST經寫碼區塊之一預測模式、該LFNST經寫碼區塊之一分量或應用於該LFNST經寫碼區塊之一一次變換中之至少一者。
  5. 如請求項4之方法,其中該特性包含該LFNST經寫碼區塊之一區塊寬度、該LFNST經寫碼區塊之一區塊高度或該LFNST經寫碼區塊之一區塊縱橫比中之至少一者。
  6. 如請求項4之方法,其中該分量包含該LFNST經寫碼區塊之一亮度分量或該LFNST經寫碼區塊之一色度分量。
  7. 如請求項1之方法,其進一步包含在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內傳訊指示該等縮放矩陣是否可應用於該LFNST經寫碼區塊的一語法元素。
  8. 如請求項7之方法,其進一步包含在一縮放列表資料語法結構中傳訊該語法元素。
  9. 如請求項1之方法,其進一步包含導出指示縮放矩陣是否可應用於該LFNST經寫碼區塊之一值。
  10. 如請求項1之方法,其進一步包含基於用以寫碼該LFNST經寫碼區塊之一工具或與該工具一起使用之一特定參數來判定縮放矩陣是否可應用於該LFNST經寫碼區塊。
  11. 一種用於寫碼視訊資料之器件,該器件包含: 一記憶體,其經組態以儲存該視訊資料;及 一或多個處理器,其實施於電路系統中且以通信方式耦接至該記憶體,該一或多個處理器經組態以: 判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊; 基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及 在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
  12. 如請求項11之器件,其中該一或多個處理器經進一步組態以基於在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內接收到之一語法元素判定該等縮放矩陣是否可應用於該LFNST經寫碼區塊。
  13. 如請求項12之器件,其中該一或多個處理器經進一步組態以基於至少一個準則判定是否處理該語法元素。
  14. 如請求項13之器件,其中該至少一個準則係基於該LFNST經寫碼區塊之一特性、用以寫碼該LFNST經寫碼區塊之一預測模式、該LFNST經寫碼區塊之一分量或應用於該LFNST經寫碼區塊之一一次變換中之至少一者。
  15. 如請求項14之器件,其中該特性包含該LFNST經寫碼區塊之一區塊寬度、該LFNST經寫碼區塊之一區塊高度或該LFNST經寫碼區塊之一區塊縱橫比中之至少一者。
  16. 如請求項14之器件,其中該分量包含該LFNST經寫碼區塊之一亮度分量或該LFNST經寫碼區塊之一色度分量。
  17. 如請求項11之器件,其中該一或多個處理器經進一步組態以在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內傳訊指示該等縮放矩陣是否可應用於該LFNST經寫碼區塊的一語法元素。
  18. 如請求項17之器件,其中該語法元素在一縮放列表資料語法結構中經傳訊。
  19. 如請求項11之器件,其中該一或多個處理器經進一步組態以導出指示縮放矩陣是否可應用於該LFNST經寫碼區塊之一值。
  20. 如請求項11之器件,其中該一或多個處理器經進一步組態以基於用以寫碼該LFNST經寫碼區塊之一工具或與該工具一起使用之一特定參數來判定縮放矩陣是否可應用於該LFNST經寫碼區塊。
  21. 如請求項11之器件,其中該器件包含一無線通信器件。
  22. 一種非暫時性電腦可讀儲存媒體,其具有儲存於其上之指令,該等指令在由一或多個處理器執行時使得該一或多個處理器: 判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊; 基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定,不將該等縮放矩陣應用於該LFNST經寫碼區塊;及 在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料。
  23. 如請求項22之非暫時性電腦可讀儲存媒體,其中該等指令進一步使得該一或多個處理器基於在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內接收到之一語法元素判定該等縮放矩陣是否可應用於該LFNST經寫碼區塊。
  24. 如請求項22之非暫時性電腦可讀儲存媒體,其中該等指令進一步使得該一或多個處理器在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內傳訊指示該等縮放矩陣是否可應用於該LFNST經寫碼區塊的一語法元素。
  25. 一種用於寫碼視訊資料之器件,該器件包含: 用於判定縮放矩陣是否可應用於該視訊資料之一低頻不可分離變換(LFNST)經寫碼區塊的構件; 用於基於縮放矩陣可不應用於該LFNST經寫碼區塊之一判定不將該等縮放矩陣應用於該LFNST經寫碼區塊的構件;及 用於在未將該等縮放矩陣應用於該LFNST經寫碼區塊之情況下寫碼該視訊資料的構件。
  26. 如請求項25之器件,其進一步包含用於基於在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內接收到之一語法元素判定該等縮放矩陣是否可應用於該LFNST經寫碼區塊的構件。
  27. 如請求項25之器件,其進一步包含用於在一位元流之一序列參數集、一圖像參數集或一自適應參數集中之一者內傳訊指示該等縮放矩陣是否可應用於該LFNST經寫碼區塊的一語法元素的構件。
TW109132433A 2019-09-20 2020-09-18 用於視訊寫碼之縮放矩陣及傳訊 TW202118297A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962903679P 2019-09-20 2019-09-20
US62/903,679 2019-09-20
US201962905873P 2019-09-25 2019-09-25
US62/905,873 2019-09-25
US17/024,551 US11153576B2 (en) 2019-09-20 2020-09-17 Scaling matrices and signaling for video coding
US17/024,551 2020-09-17

Publications (1)

Publication Number Publication Date
TW202118297A true TW202118297A (zh) 2021-05-01

Family

ID=74881389

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109132433A TW202118297A (zh) 2019-09-20 2020-09-18 用於視訊寫碼之縮放矩陣及傳訊

Country Status (6)

Country Link
US (1) US11153576B2 (zh)
EP (1) EP4032304A1 (zh)
KR (1) KR20220061131A (zh)
CN (1) CN114375576A (zh)
TW (1) TW202118297A (zh)
WO (1) WO2021055781A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317094B1 (ko) * 2017-09-28 2021-10-25 삼성전자주식회사 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
JP2021529462A (ja) 2018-06-29 2021-10-28 ヴィド スケール インコーポレイテッド アフィン動きモデルを基にしたビデオコーディングのためのアダプティブ制御点の選択
US11228787B2 (en) * 2019-11-27 2022-01-18 Mediatek Inc. Signaling multiple transmission selection
JP7400115B2 (ja) 2020-02-24 2023-12-18 バイトダンス インコーポレイテッド サブピクチャとタイル行シグナリングとの間のインタラクション
KR20220143857A (ko) * 2020-03-03 2022-10-25 바이트댄스 아이엔씨 비디오 코딩에서의 저 주파수 비-분리가능 변환 시그널링
CN115299064A (zh) * 2020-03-11 2022-11-04 抖音视界有限公司 基于颜色格式的自适应参数集信令通知
US11425400B2 (en) * 2020-04-20 2022-08-23 Qualcomm Incorporated Adaptive scaling list control for video coding
CN115699769A (zh) 2020-05-31 2023-02-03 抖音视界有限公司 使用通用约束信息语法元素的约束信令

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8442337B2 (en) * 2007-04-18 2013-05-14 Microsoft Corporation Encoding adjustments for animation content
US9332259B2 (en) * 2012-01-18 2016-05-03 Qualcomm Incorporated Indication of use of wavefront parallel processing in video coding
KR20150054554A (ko) * 2013-11-12 2015-05-20 삼성전자주식회사 영상 처리장치 및 방법
US10306229B2 (en) 2015-01-26 2019-05-28 Qualcomm Incorporated Enhanced multiple transforms for prediction residual
US10681379B2 (en) 2015-09-29 2020-06-09 Qualcomm Incorporated Non-separable secondary transform for video coding with reorganizing
US10448053B2 (en) 2016-02-15 2019-10-15 Qualcomm Incorporated Multi-pass non-separable transforms for video coding
US10349085B2 (en) 2016-02-15 2019-07-09 Qualcomm Incorporated Efficient parameter storage for compact multi-pass transforms
US10972733B2 (en) 2016-07-15 2021-04-06 Qualcomm Incorporated Look-up table for enhanced multiple transform
US10863199B2 (en) 2018-03-26 2020-12-08 Qualcomm Incorporated Minimization of transform memory and latency via parallel factorizations
US10986340B2 (en) 2018-06-01 2021-04-20 Qualcomm Incorporated Coding adaptive multiple transform information for video coding
CN109685729B (zh) * 2018-12-11 2023-06-02 上海集成电路研发中心有限公司 一种像素级阈值自适应的泊松去噪方法

Also Published As

Publication number Publication date
EP4032304A1 (en) 2022-07-27
US20210092408A1 (en) 2021-03-25
US11153576B2 (en) 2021-10-19
WO2021055781A1 (en) 2021-03-25
CN114375576A (zh) 2022-04-19
KR20220061131A (ko) 2022-05-12

Similar Documents

Publication Publication Date Title
CN113940069A (zh) 用于视频译码中的低频不可分离变换的变换和最后有效系数位置信令
TW202101989A (zh) 用於視訊寫碼之參考圖像重採樣及框間寫碼工具
TW202118297A (zh) 用於視訊寫碼之縮放矩陣及傳訊
TW202115977A (zh) 用於視訊編碼的跨分量自我調整迴路濾波
US11399199B2 (en) Chroma intra prediction units for video coding
JP2023542841A (ja) ビデオコーディング中にフィルタ処理するための複数のニューラルネットワークモデル
US20200288130A1 (en) Simplification of sub-block transforms in video coding
TW202038609A (zh) 用於視訊寫碼之共享候選清單及平行候選清單推導
TW202041003A (zh) 用於視訊資料之框間-框內預測模式
KR20230081701A (ko) 비디오 코딩 동안 조인트-컴포넌트 뉴럴 네트워크 기반 필터링
WO2022020068A1 (en) Multiple adaptive loop filter sets
KR20230078658A (ko) 비디오 코딩을 위한 뉴럴 네트워크-기반 필터링 프로세스에서의 활성화 함수 설계
KR20230002323A (ko) 비디오 코딩을 위한 적응적 스케일링 리스트 제어
TW202133615A (zh) 基於色度變換跳過的用於色度的lfnst信號傳遞
US11729381B2 (en) Deblocking filter parameter signaling
TW202143712A (zh) 視訊轉碼中的低頻不可分離變換處理
WO2021061618A1 (en) Signaling number of sub-pictures in high-level syntax for video coding
TW202106026A (zh) 用於基於區塊差量脈衝碼調變(bdpcm)模式之最大允許區塊尺寸
TWI840427B (zh) 用於置零轉換之掃描及最後係數位置寫碼
US20210176468A1 (en) Residual coding selection and low-level signaling based on quantization parameter
TW202418805A (zh) 視頻編解碼複雜性降低的幀內預測融合
TW202344059A (zh) 視訊解碼中的重疊區塊運動補償(obmc)混合選擇
KR20230079049A (ko) 비디오 코딩에서의 크로스-컴포넌트 리니어 모델 (cclm) 모드에 대한 고정된 비트 심도 프로세싱
TW202234886A (zh) 具有固定濾波器的自我調整迴路濾波器
TW202408239A (zh) 用於視訊譯碼的訊框內預測融合