TW202117743A - System for diagnosing dyslexia by combining brain wave and artificial intelligence including brain wave detection units and a central processing unit - Google Patents
System for diagnosing dyslexia by combining brain wave and artificial intelligence including brain wave detection units and a central processing unit Download PDFInfo
- Publication number
- TW202117743A TW202117743A TW108137469A TW108137469A TW202117743A TW 202117743 A TW202117743 A TW 202117743A TW 108137469 A TW108137469 A TW 108137469A TW 108137469 A TW108137469 A TW 108137469A TW 202117743 A TW202117743 A TW 202117743A
- Authority
- TW
- Taiwan
- Prior art keywords
- event
- brain wave
- artificial intelligence
- dyslexia
- module
- Prior art date
Links
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
本發明有關於一種結合腦波與人工智慧技術來進行閱讀障礙診斷之系統,尤指偵測一事件刺激時腦波所偵測到的一維維度的事件相關電位,先將其編碼成二維維度的腦波事件相關電位二維特徵圖後,利用該腦波事件相關電位二維特徵圖來訓練人工智慧類神經網路,藉以建置一結合腦波與人工智慧的類神經網路來進行閱讀障礙診斷之系統。The present invention relates to a system for diagnosing dyslexia by combining brain wave and artificial intelligence technology, especially a one-dimensional event-related potential detected by brain waves when an event stimulus is detected, which is first encoded into a two-dimensional After the two-dimensional feature map of brainwave event-related potentials in three dimensions, the two-dimensional feature map of brainwave event-related potentials is used to train artificial intelligence neural networks, so as to build a neural network that combines brainwaves and artificial intelligence. System for diagnosing dyslexia.
傳統閱讀障礙的判定通常是需要經過繁複的量表、測驗、作業單及學校學業表現來進行綜合評估,因此,在蒐集資料的過程中需耗時一年以上的時間。且過程中容易因為施測者對於受測者的不同期待,及對於學習材料的描述與分析有差異,而產生判斷誤差,進而影響受測者是否會被判定為學習障礙,所以傳統閱讀障礙的判定不僅需要耗費較長時間與人力,而且還會延誤有閱讀障礙者進行學習治療的最佳處置時機。The traditional judgment of dyslexia usually requires a comprehensive assessment of complex scales, tests, worksheets, and school academic performance. Therefore, the process of collecting data takes more than one year. And in the process, it is easy to cause judgment errors due to the different expectations of the tester for the testee, and the difference in the description and analysis of the learning materials, which in turn affects whether the testee will be judged as a learning disability, so the traditional dyslexia Judgment not only takes a long time and manpower, but also delays the best time for learning and treatment for people with dyslexia.
腦波訊號是由大腦內成千上億的神經元相互連結所產生的電位變化,因此,近年來不僅有人開始研究如何透過腦波儀來觀察受測者針對一外界刺激後其大腦的腦波訊號的反應,更有人將腦波儀與人工智慧中的人工神經網路(Artificial Neural Network)相結合,透過人工神經網路來分析與分類受測者的腦波訊號,藉此,可透過腦波訊號的分析來輔助醫生篩檢出受測者是否具有癲癇等其他腦部疾病,並做為後續追蹤檢查之依據。Brain wave signals are the potential changes produced by the interconnection of hundreds of billions of neurons in the brain. Therefore, in recent years, not only people have begun to study how to observe the brain waves of the subject after an external stimulus through the brain wave instrument. In response to the signal, some people even combine the brain wave instrument with the artificial neural network (Artificial Neural Network) in artificial intelligence, and use the artificial neural network to analyze and classify the subject’s brain wave signal. The analysis of the wave signal assists the doctor in screening whether the subject has other brain diseases such as epilepsy, and serves as the basis for follow-up examinations.
是以,針對上述傳統閱讀障礙的判定之問題,要如何開發一種可結合腦波訊號及利用具人工神經網路的人工智慧學習系統,使此人工智慧學習系統經過訓練與學習後,能依受測者在一事件發生時所被偵測的腦波訊號來判斷此受測者是否為閱讀障礙者,即為所欲改善之課題所在。Therefore, in view of the above-mentioned traditional dyslexia judgment problem, how to develop an artificial intelligence learning system that can combine brainwave signals and use artificial neural networks so that this artificial intelligence learning system can be relied upon after training and learning The brain wave signal detected by the examinee when an event occurs is used to determine whether the examinee is a person with dyslexia, which is the subject of improvement.
本發明之目的,在於解決傳統閱讀障礙的判定時間過長之問題,本發明係利用事件相關電位(Event-Related Potentials, ERPs)之原理,誘導與偵測受測者在進行閱讀測驗試題時,獲得受測者在測驗試題的刺激上所產生的腦波訊號,並將此腦波訊號進行處理及轉換成事件相關電位,再將不同腦波偵測單元之事件相關電位,以相鄰時間、空間進行編碼,產生腦波事件相關電位二維特徵圖的圖像特徵資料,再以此腦波事件相關電位二維特徵圖來訓練人工智慧神經網路模式,使其先學習如何辨識有閱讀障礙者及無閱讀障礙者之腦波事件相關電位二維特徵圖,進而能較精確的判斷受測者是否為閱讀障礙者。The purpose of the present invention is to solve the problem of excessively long judgment time for traditional dyslexia. The present invention uses the principle of Event-Related Potentials (ERPs) to induce and detect when the subject is taking reading test questions. Obtain the brainwave signal generated by the test subject on the test question stimulus, and process and convert the brainwave signal into event-related potentials, and then convert the event-related potentials of different brainwave detection units to adjacent time, Coding in space to generate the image feature data of the brainwave event-related potential two-dimensional feature map, and then use the brainwave event-related potential two-dimensional feature map to train the artificial intelligence neural network model, so that it first learns how to recognize dyslexia The two-dimensional feature maps of brainwave event-related potentials of people with dyslexia and those without dyslexia can more accurately determine whether the subject is dyslexic
為達上述目的,本發明提供一種結合腦波與人工智慧進行閱讀障礙診斷之系統,其包含:複數腦波偵測單元,係依國際10-20制電極標記法貼附於受測者頭部,以偵測受測者針對至少一事件產生時的腦波訊號;以及一中央處理裝置,包含一訊號處理單元及一電性連接該訊號處理單元的運算單元,其中,該訊號處理單元電性連接該等腦波偵測單元,並將所接收到受測者的腦波訊號進行處理及轉換成複數事件相關電位(Event-Related Potentials, ERPs),而該運算單元包含有一輸入模組、一中央處理模組、一類神經網路模組及一輸出模組,該中央處理模組並分別電性連接該輸入模組、該類神經網路模組及該輸出模組,該運算單元接收該等事件相關電位後,該中央處理模組依該等腦波偵測單元的設置位置與該等事件相關電位其產生的時間點而重新編碼並轉換成該輸入模組所需的一腦波事件相關電位二維特徵圖,該類神經網路模組將該腦波事件相關電位二維特徵圖進行運算處理後,再輸出至該輸出模組顯示判斷結果;其中,該類神經網路模組接收複數筆該腦波事件相關電位二維特徵圖並進行複數次的訓練與學習後,以建立完成該結合腦波與人工智慧進行閱讀障礙診斷之系統,藉此,利用該結合腦波與人工智慧進行閱讀障礙診斷之系統以診斷受測者是否為閱讀障礙者。To achieve the above objective, the present invention provides a system for diagnosing dyslexia by combining brain waves and artificial intelligence, which includes: a complex brain wave detection unit attached to the subject’s head in accordance with the international 10-20 electrode marking method , To detect the brain wave signal generated by the subject for at least one event; and a central processing device, including a signal processing unit and an arithmetic unit electrically connected to the signal processing unit, wherein the signal processing unit is electrically Connect these brain wave detection units, and process and convert the received brain wave signals of the subject into complex event-related potentials (ERPs). The computing unit includes an input module and an A central processing module, a type of neural network module and an output module, the central processing module is electrically connected to the input module, the type of neural network module and the output module, and the arithmetic unit receives the After waiting for the event-related potentials, the central processing module re-encodes and converts it into a brainwave event required by the input module according to the location of the brainwave detection units and the time point when the event-related potentials are generated. A two-dimensional feature map of related potentials. This type of neural network module performs arithmetic processing on the two-dimensional feature map of brainwave event-related potentials, and then outputs it to the output module to display the judgment result; wherein, this type of neural network module After receiving a plurality of two-dimensional feature maps of the brainwave event-related potentials and performing multiple training and learning, the system that combines brainwaves and artificial intelligence for dyslexia diagnosis can be established, thereby using the combined brainwaves and artificial intelligence to diagnose dyslexia. A smart system for diagnosing dyslexia to diagnose whether the subject is a dyslexic.
進一步地,該類神經網路模組並包含至少一卷積層、至少一ReLU層、至少一池化層和至少一全連接層。Further, this type of neural network module includes at least one convolutional layer, at least one ReLU layer, at least one pooling layer, and at least one fully connected layer.
進一步地,該類神經網路模組係包含三個全連接層,該等全連接層包含至少一sigmoid函數、至少一softmax函數或其組合。Further, this type of neural network module includes three fully connected layers, and the fully connected layers include at least one sigmoid function, at least one softmax function, or a combination thereof.
進一步地,該等事件相關電位係監測每一該腦波偵測單元其每一該事件產生之N200、P300、N400、P600、N2P3及P3N4之該腦波訊號。Furthermore, the event-related potentials monitor the brainwave signals of N200, P300, N400, P600, N2P3, and P3N4 generated by each of the brainwave detection units for each of the events.
進一步地,該腦波偵測單元設置位置係包含A1、A2、Fp1、Fp2、C3、C4、Fz、Cz及Pz的九個位置。Further, the location of the brain wave detection unit includes nine locations of A1, A2, Fp1, Fp2, C3, C4, Fz, Cz, and Pz.
進一步地,該A1及該A2的位置係黏貼於受測者左、右耳垂做為參考電位,該Fp1及該Fp2的位置係黏貼於受測者眼睛旁側與下方做為過濾受測者眨眼雜訊。Further, the positions of the A1 and A2 are pasted on the subject's left and right earlobes as reference potentials, and the positions of the Fp1 and Fp2 are pasted on the side and below the subject's eyes to filter the subject's blinking Noise.
進一步地,該中央處理模組將該腦波事件相關電位二維特徵圖正規化為灰階圖像,其灰階圖像值的範圍為0~255的數值。Further, the central processing module normalizes the brainwave event-related potential two-dimensional feature map into a grayscale image, and the grayscale image value ranges from 0 to 255.
進一步地,該中央處理模組將該腦波事件相關電位二維特徵圖正規化為灰階圖像,其灰階圖像值的範圍為0~1的數值。Further, the central processing module normalizes the two-dimensional feature map of brainwave event-related potentials into a grayscale image, and the grayscale image value ranges from 0 to 1.
進一步地,該類神經網路模組會依該輸出模組判斷結果的正確與否而修正該等全連接層的一計算權重。Further, the neural network module of this type will modify a calculation weight of the fully connected layers according to the correctness of the judgment result of the output module.
是以,本發明較先前技術具有以下有益功效:Therefore, the present invention has the following beneficial effects compared with the prior art:
1、本發明先將受測者的腦波訊號轉換為腦波事件相關電位二維特徵圖後,並於中央處理裝置的該類神經網路模組進行學習辨識,使該類神經網路模組透過多組包含閱讀障礙者與無閱讀障礙者的複數筆該腦波事件相關電位二維特徵圖的訓練與學習後,受測者可以經此閱讀障礙診斷系統來判斷是否為閱讀障礙者,縮短閱讀障礙者其診斷確診的時間及避免人為的不客觀所產生的誤判情事。1. The present invention first converts the brainwave signal of the subject into a two-dimensional feature map of brainwave event-related potentials, and then performs learning and identification on the neural network module of the central processing unit to make the neural network model After training and learning multiple sets of two-dimensional feature maps of brainwave event-related potentials for people with dyslexia and those without dyslexia, the testees can use the dyslexia diagnostic system to determine whether they are dyslexic. Shorten the time to diagnose and confirm the diagnosis of people with dyslexia and avoid misjudgments caused by artificial unobjectiveness.
2、本發明將傳統的一維維度的腦波訊號的事件相關電位資料在考慮時間與空間相關性後,將其重新編碼為二維維度的腦波事件相關電位二維特徵圖,再藉由具卷積層的類神經網路模組來進行訓練與學習,並做為判斷是否為閱讀障礙的基準,藉此,建立一高精度且即時化之人工智慧閱讀障礙診斷系統。2. The present invention recodes the event-related potential data of the traditional one-dimensional brainwave signal into a two-dimensional brainwave event-related potential two-dimensional feature map after considering the time and space correlation, and then uses A neural network module with a convolutional layer is used for training and learning, and used as a benchmark for judging whether it is dyslexia, thereby establishing a high-precision and real-time artificial intelligence dyslexia diagnosis system.
茲就本申請案的技術特徵暨操作方式舉數個較佳實施態樣,並配合圖示說明謹述於后,俾提供審查參閱。再者,本發明中之圖式,為便於說明其比例未必按實際比例繪製,圖式中之比例並不用以限制本發明所欲請求保護之範圍。Here are a few preferred implementation aspects of the technical features and operation methods of this application, which will be described in conjunction with the illustration below for review and reference. Furthermore, the figures in the present invention are not necessarily drawn according to the actual scale for the convenience of explanation, and the proportions in the figures are not used to limit the scope of protection of the present invention.
請參照第1圖至第3圖所示,本發明係關於一種結合腦波與人工智慧進行閱讀障礙診斷之系統,係透過偵測受測者1在閱讀測驗時所量測到的腦波訊號,將此腦波訊號重新編碼為二維圖像的資料,再利用此二維圖像的資料來訓練具人工智慧的類神經網路;當此人工智慧類神經網路學習完成後,將完成能診斷受測者1的腦波訊號是否為閱讀障礙者的診斷系統,其包含:複數腦波偵測單元10及一電性連接該等腦波偵測單元10之中央處理裝置20,其中:Please refer to Figures 1 to 3, the present invention relates to a system that combines brain waves and artificial intelligence to diagnose dyslexia, by detecting the brain wave signals measured by the
該等腦波偵測單元10,係依國際10-20制電極標記法貼附於受測者1頭部,以偵測受測者1針對一事件刺激時,例如:閱讀測驗等事件刺激,所產生的腦波訊號,本實施例之該等腦波偵測單元10其設置位置係包含A1、A2、Fp1、Fp2、C3、C4、Fz、Cz及Pz等九個位置,為避免該等腦波偵測單元10在第1圖中產生過多標號而產生混亂情事,因此在第1圖中僅先選擇其中兩個該腦波偵測單元10給予標號作為代表,其中,該A1及該A2的位置係黏貼於受測者1左、右耳垂做為參考電位,該Fp1及該Fp2的位置係黏貼於受測者1眼睛旁側與下方做為過濾受測者1眨眼雜訊,本實施例中,該事件是指受測者1進行閱讀測驗時進行受測者1的腦波訊號的量測,但不以此為限。The brain
該中央處理裝置20,包含一訊號處理單元21及一電性連接該訊號處理單元21的運算單元22,其中,該訊號處理單元21電性連接該等腦波偵測單元10,並將所接收到受測者1的腦波訊號進行處理及轉換成複數事件相關電位ERPs(Event-Related Potentials, ERPs),請再參閱第1圖所示,而該運算單元22包含有一輸入模組221、一中央處理模組222、一類神經網路模組223及一輸出模組224,該中央處理模組222並分別電性連接該輸入模組221、該類神經網路模組223及該輸出模組224,該運算單元22接收該等事件相關電位ERPs後,該中央處理模組222依該等腦波偵測單元10的設置位置與該等事件相關電位ERPs其產生的時間點而重新編碼並轉換成該輸入模組221所需的一腦波事件相關電位二維特徵圖2211,請再參閱第3圖所示,而該類神經網路模組223包含一卷積層2231、一ReLU(Rectified Linear Unit, ReLU)層2232、一池化層2233與三個全連接層2234,藉此,將該腦波事件相關電位二維特徵圖2211依序經由該卷積層2231、該ReLU層2232、該池化層2233及該等全連接層2234的運算處理後,再輸出至該輸出模組224顯示判斷結果,而本實施例中有一個該全連接層2234是含一sigmoid函數,另一該全連接層2234是含一softmax函數,但不以此為限,也就是該等全連接層2234可以都含sigmoid函數,或都含softmax函數,亦或者如本實施例是各含有一sigmoid函數與一softmax函數在該全連接層2234中,藉此,可以調整每一該全連接層2234的一計算權重W。The
其中,該類神經網路模組223接收複數筆該腦波事件相關電位二維特徵圖2211並進行複數次的訓練與學習後,該類神經網路模組223會依該輸出模組224判斷結果的正確與否而修正該等全連接層2234中的該計算權重W,以建立完成該結合人工智慧進行閱讀障礙診斷之系統,藉此,利用此系統以診斷受測者1是否為閱讀障礙者。After this type of
為了更進一步地瞭解本發明如何結合腦波與人工智慧來進行閱讀障礙的診斷系統設計,請再參閱第1圖與第2圖所示,該中央處理裝置20會透過該等腦波偵測單元10來偵測受測者1的腦波訊號,監測受測者1在進行閱讀測驗之該事件時,受測者1每一該腦波偵測單元10接收在測驗試題刺激時所產生的腦波訊號,並將此腦波訊號所產生的電位或電位差透過該訊號處理單元21的處理,使其可以依其產生時間而轉為該事件相關電位ERPs,其中,該事件相關電位ERPs可以是受測者1針對同一測驗試題在出現複數次的刺激時其腦波訊號經平均化而獲得之,或者在不同測驗試題的刺激時其偵測到的腦波訊號,亦或者是上述的組合獲得之,本實施例是偵測受測者1在接受刺激後其N200、P300、N400、P600、N2P3及P3N4之該腦波訊號,而N200代表在200毫秒左右之負向電位,P600代表在600毫秒左右之正向電位,N400代表在400毫秒左右之負向電位,N2P3代表在300毫秒左右之正向電位與200毫秒左右之負向電位間的電位差,P3N4代表在300毫秒左右之正向電位與400毫秒左右之負向電位間的電位差,再由該運算單元22的該中央處理模組222依該等腦波偵測單元10的不同設置位置與該事件相關電位ERPs其時間先後關係重新編碼,而產生受測者1於此閱讀測驗之該事件中的該腦波事件相關電位二維特徵圖2211,又,該中央處理模組222將該腦波事件相關電位二維特徵圖2211正規化為灰階圖像,而灰階圖像值其正規化的範圍為0~255的數值,或者,該灰階圖像值其正規化的範圍為0~1的數值;In order to further understand how the present invention combines brain waves and artificial intelligence to design a dyslexia diagnosis system, please refer to Figure 1 and Figure 2. The
請再參閱第1圖至第3圖所示,其中,本發明實施例是先利用複數筆已知受測者1是具閱讀障礙腦者或不具閱讀障礙者之腦波訊號進行機器學習(machine learning),因此,該類神經網路模組223將複數筆該腦波事件相關電位二維特徵圖2211依序經該卷積層2231、該ReLU層2232、該池化層2233及該等全連接層2234進行運算處理,並將判續結果輸出至該輸出模組224,該中央處理模組222將判讀結果與實際結果進行比較,該類神經網路模組223再依輸出模組224的判讀結果的正確性來修改該等全連接層2234的該計算權重W,該類神經網路模組223進行複數次的訓練與學習,及修正該等全連接層2234的該計算權重W後,可增加此系統其診斷的正確率,藉此,待該類神經網路模組223將複數筆已知結果之該腦波事件相關電位二維特徵圖2211完成判讀結果之訓練與學習後,即建置完成該結合人工智慧進行閱讀障礙診斷之系統。隨後,再將其他受測者的該腦波訊號,經編碼成該腦波事件相關電位二維特徵圖2211,再透過該類神經網路模組223之運算,將結果於輸出模組224顯示即可判斷此受測者1是否為閱讀障礙者。Please refer to Figures 1 to 3 again. Among them, the embodiment of the present invention uses a plurality of brain wave signals that are known to be a person with or without dyslexia to perform machine learning (machine learning). learning), therefore, the
並請參閱第4圖所示,在相同訓練次數下,本發明之該類神經網路模組是具有該卷積層2231、該ReLU層2232、該池化層2233及該等全連接層2234,所以在利用二維維度的該腦波事件相關電位二維特徵圖222進行訓練後,其診斷受測者是否為閱讀障礙者的正確率值是高於傳統利用一維維度的腦波訊號進行訓練的多層認知神經網路(Multilayer perceptron, MLP)的正確率值,請參閱第5圖所示可知,本發明大致在第200次時對於受測者1是否為閱讀障礙者的判斷正確率大致接近1,也就是相當於有100%的正確率,但在相同訓練次數下,傳統多層認知神經網路MLP的判斷正確率則還不到0.9,也就是相當於只有90%的正確率,因此,本發明透過該訊號處理單元21將腦波偵測單元10所偵測的腦波訊號資料轉換為一維維度的複數事件相關電位ERPs,再由該中央處理模組222將其重新編碼為二維維度的該腦波事件相關電位二維特徵圖2211,再經由該類神經網路模組223的訓練與學習後,可成功建置一即時判讀出受測者是否有閱讀障礙問題的該結合人工智慧進行閱讀障礙診斷之系統。Please also refer to Figure 4, under the same number of training times, the neural network module of the present invention has the
茲,再將本發明之特徵及其可達成之預期功效陳述如下:Hereinafter, the characteristics of the present invention and the expected effects that can be achieved are stated as follows:
本發明之結合腦波與人工智慧進行閱讀障礙診斷之系統,先將受測者的腦波訊號由一維維度的該事件相關電位ERPs重新編碼而轉換為二維維度的該腦波事件相關電位二維特徵圖2211後,藉由該中央處理裝置20的該類神經網路模組223的訓練與學習,藉此,該類神經網路模組223透過訓練與學習時,會修正該等全連接層2234的該計算權重W而增加其判斷的正確性,因此可縮短診斷受測者是否為閱讀障礙者的診斷時間,也避免人為判斷的不客觀所產生的誤判情事。The system for diagnosing dyslexia by combining brain waves and artificial intelligence of the present invention first converts the brain wave signal of the subject from the one-dimensional event-related potential ERPs to the two-dimensional event-related potential. After the two-
以上已詳細說明本發明之內容,惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。The content of the present invention has been described in detail above, but the above are only the preferred embodiments of the present invention, and should not be used to limit the scope of implementation of the present invention, that is, all equivalent changes and changes made in accordance with the scope of the patent application of the present invention Modifications should still fall within the scope of the patent of the present invention.
1:受測者 10:腦波偵測單元 20:中央處理裝置 21:訊號處理單元 22:運算單元 221:輸入模組 2211:腦波事件相關電位二維特徵圖 222:中央處理模組 223:類神經網路模組 2231:卷積層 2232:ReLU層 2233:池化層 2234:全連接層 224:輸出模組 ERPs:事件相關電位 W:計算權重1: Subject 10: Brain wave detection unit 20: Central processing unit 21: signal processing unit 22: arithmetic unit 221: Input Module 2211: Two-dimensional feature map of brainwave event-related potentials 222: Central Processing Module 223: Neural Network-like Module 2231: Convolutional layer 2232: ReLU layer 2233: Pooling layer 2234: Fully connected layer 224: output module ERPs: event-related potentials W: calculate weight
第1圖:為本發明之架構示意圖。 第2圖:為本發明之運作流程示意圖。 第3圖:為本發明之類神經網路運算之架構示意圖。 第4圖:為本發明與傳統類神經網路多層認知模式(MLP)在150次與300次之訓練次數時其正確率比較圖。 第5圖:為本發明與傳統MLP 模式在相同訓練次數時之正確率變化曲線圖。Figure 1: A schematic diagram of the structure of the present invention. Figure 2: A schematic diagram of the operation process of the present invention. Figure 3: A schematic diagram of the architecture of the neural network operation of the present invention. Figure 4: Comparison of accuracy rates between the present invention and the traditional neural network multi-layer cognitive model (MLP) at 150 and 300 training times. Figure 5: It is a graph showing the change of the accuracy rate of the present invention and the traditional MLP mode at the same number of training times.
1:受測者1: Subject
10:腦波偵測單元10: Brain wave detection unit
20:中央處理裝置20: Central processing unit
21:訊號處理單元21: signal processing unit
22:運算單元22: arithmetic unit
221:輸入模組221: Input Module
2211:腦波事件相關電位二維特徵圖2211: Two-dimensional feature map of brainwave event-related potentials
222:中央處理模組222: Central Processing Module
223:類神經網路模組223: Neural Network-like Module
224:輸出模組224: output module
ERPs:事件相關電位ERPs: event-related potentials
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108137469A TWI734222B (en) | 2019-10-17 | 2019-10-17 | A system that combines brain waves and artificial intelligence to diagnose dyslexia |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108137469A TWI734222B (en) | 2019-10-17 | 2019-10-17 | A system that combines brain waves and artificial intelligence to diagnose dyslexia |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202117743A true TW202117743A (en) | 2021-05-01 |
TWI734222B TWI734222B (en) | 2021-07-21 |
Family
ID=77020613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108137469A TWI734222B (en) | 2019-10-17 | 2019-10-17 | A system that combines brain waves and artificial intelligence to diagnose dyslexia |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI734222B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI823577B (en) * | 2021-11-26 | 2023-11-21 | 國立成功大學 | Exercise training system able to recognize fatigue of user |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101690659B (en) * | 2009-09-29 | 2012-07-18 | 华东理工大学 | Brain wave analysis method |
CN103226665B (en) * | 2013-05-08 | 2016-03-23 | 北京爱智慧科技发展有限公司 | Based on the human brain health exercising system of SAAS platform |
CN105068644A (en) * | 2015-07-24 | 2015-11-18 | 山东大学 | Method for detecting P300 electroencephalogram based on convolutional neural network |
CN105718953B (en) * | 2016-01-25 | 2019-07-05 | 西北工业大学 | A kind of single P300 detection method based on matrix Motar transport |
-
2019
- 2019-10-17 TW TW108137469A patent/TWI734222B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI823577B (en) * | 2021-11-26 | 2023-11-21 | 國立成功大學 | Exercise training system able to recognize fatigue of user |
Also Published As
Publication number | Publication date |
---|---|
TWI734222B (en) | 2021-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5680866A (en) | Artificial neural network cardiopulmonary modeling and diagnosis | |
US8308646B2 (en) | Trainable diagnostic system and method of use | |
US20060282008A1 (en) | System and method for vision examination utilizing fault detection | |
US6741888B2 (en) | Method and apparatus for estimating degree of neuronal impairment in brain cortex | |
MacIsaac et al. | Fatigue estimation with a multivariable myoelectric mapping function | |
CN108305680A (en) | Intelligent parkinsonism aided diagnosis method based on multi-element biologic feature and device | |
CN115517681A (en) | Method and system for monitoring mood fluctuation and evaluating emotional disorder state of MD (MD) patient | |
CN110693510A (en) | Attention deficit hyperactivity disorder auxiliary diagnosis device and using method thereof | |
TWI734222B (en) | A system that combines brain waves and artificial intelligence to diagnose dyslexia | |
Raghu et al. | Automated biomedical signal quality assessment of electromyograms: Current challenges and future prospects | |
Johns et al. | Force modelling of upper limb biomechanics using ensemble fast orthogonal search on high-density electromyography | |
Chen et al. | An interpretable deep learning optimized wearable daily detection system for Parkinson’s disease | |
Al Younis et al. | Non-invasive technologies for heart failure, systolic and diastolic dysfunction modeling: A scoping review | |
US20220395226A1 (en) | Headset for diagnosis of concussion | |
TWI590802B (en) | System and method for arrhythmia judgment data base and ecg arrhythmia judgment | |
US10966652B1 (en) | Method and system for quantifying movement disorder systems | |
CN108324272A (en) | A kind of device for checking and examining anxiety degree based on LZC complexities | |
CN113729708B (en) | Lie judgment method based on eye movement technology | |
WO2023069057A1 (en) | A computer-implemented method and system for assisting in the diagnosis of hyperactivity disorder | |
US11363982B1 (en) | Method and system for quantifying movement disorder symptoms | |
CN114869272A (en) | Posture tremor detection model, posture tremor detection algorithm, and posture tremor detection apparatus | |
CN114983434A (en) | System and method based on multi-mode brain function signal recognition | |
Kalimuthukumar et al. | Early-detection of Parkinson’s disease by patient voice modulation analysis through MFCC Feature extraction technique | |
Angiolelli et al. | The Virtual Parkinsonian Patient | |
TWI784513B (en) | Method of monitoring apnea events based on electrocardiogram delayed reactions |