TW202117025A - A partition wall of a reducing furnace - Google Patents

A partition wall of a reducing furnace Download PDF

Info

Publication number
TW202117025A
TW202117025A TW109133892A TW109133892A TW202117025A TW 202117025 A TW202117025 A TW 202117025A TW 109133892 A TW109133892 A TW 109133892A TW 109133892 A TW109133892 A TW 109133892A TW 202117025 A TW202117025 A TW 202117025A
Authority
TW
Taiwan
Prior art keywords
metal
furnace
slag
collection tank
metal collection
Prior art date
Application number
TW109133892A
Other languages
Chinese (zh)
Inventor
基莫 瓦洛
Original Assignee
芬蘭商烏托昆普公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芬蘭商烏托昆普公司 filed Critical 芬蘭商烏托昆普公司
Publication of TW202117025A publication Critical patent/TW202117025A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/004Dry processes separating two or more metals by melting out (liquation), i.e. heating above the temperature of the lower melting metal component(s); by fractional crystallisation (controlled freezing)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0033Linings or walls comprising heat shields, e.g. heat shieldsd
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

The present invention relates to a method for smelting metal- and metal oxide containing wastes and side streams, such as slags, dust, scales and sludges genereated in stainless steel and ferrochrome manufacturing processes. The invented method is a physical separation process of liquid metals produced in a combined ferrochrome and stainless steel slags cleaning furnace. Metal streams are separated mainly for usability and value reason.

Description

還原爐的分隔牆Partition wall of reduction furnace

本發明係關於一種在用於FeCr及煉鋼車間(SMS)熔渣還原及沈降之熔渣清潔爐內部之冷卻耐火牆。該牆使存在於熔化熔渣輸入饋料中之金屬小滴與在還原反應期間產生之金屬小滴能夠部分地分離。此允許一個爐同時生產具有不同化學含量之兩種金屬產物。主驅動因素係提供自上文所提及之熔渣流產生高及低鎳鉻鐵的可能性。The present invention relates to a cooling refractory wall inside a slag cleaning furnace used for FeCr and steelmaking workshop (SMS) slag reduction and precipitation. The wall allows the metal droplets present in the molten slag input feed to be partially separated from the metal droplets produced during the reduction reaction. This allows one furnace to simultaneously produce two metal products with different chemical contents. The main driving factor is to provide the possibility of producing high and low nickel chromium iron from the slag flow mentioned above.

當前,根據目前先進技術水平,允許來自鉻鐵生產之熔渣冷卻,且藉由機械分離方法,通常係藉由簸選、濃煤分離及磁性分離,來使金屬粒子與冷熔渣分離。在此等種類之回收過程中,鉻之總產率通常低於50%,此係因為熔渣相含有未藉由所提及之方法分離之大量氧化鉻。取決於熔煉廠過程及所使用鉻鐵礦等級,熔渣可含有5%至10%之FeCr金屬及5%至20%之氧化鉻。At present, according to the current advanced technology level, the slag from the production of ferrochrome is allowed to cool, and the metal particles are separated from the cold slag by mechanical separation methods, usually by winnowing, thick coal separation, and magnetic separation. In these types of recovery processes, the total yield of chromium is usually less than 50%, because the slag phase contains a large amount of chromium oxide that has not been separated by the methods mentioned. Depending on the smelter process and the grade of chromite used, the slag can contain 5% to 10% FeCr metal and 5% to 20% chromium oxide.

在當前先進技術水平下來自不鏽鋼生產之熔渣當前係藉由允許其冷卻、減小熔渣之粒徑並使用篩網或磁體將金屬粒子分離成個別流進行處理。此等過程中鎳之總產率通常超過95%,此係因為鎳通常存在於僅在金屬粒子中之熔渣中。Under the current advanced technology level, the slag from stainless steel production is currently processed by allowing it to cool, reducing the particle size of the slag, and separating the metal particles into individual streams using screens or magnets. The total yield of nickel in these processes usually exceeds 95%, because nickel is usually present in the slag only in metal particles.

用於組合式液體熔渣處理之已知方法中之一者已描述於Parviainen及Vallo之芬蘭專利申請案第20195153號的「來自不鏽鋼及鉻鐵工廠之熔化熔渣及殘渣之組合式熔煉(Combined Smelting of molten slags and residuals from stainless steel and ferrochromium works)」中。該申請案描述一種用於在一個爐中處理上文所提及之熔渣流以藉由碳熱還原亦自彼等金屬之氧化物回收寶貴的鐵、鎳及鉻單元的爐或轉爐方法。然而,作為小滴存在於不鏽鋼熔渣中之鎳單元被稀釋至氧化物及小滴之總金屬流中,因此減少了產物鎳組成物。典型地,具有高鎳含量之鉻鐵例如對於奧氏體(austenitic)不鏽鋼製造商具有較大價值,且低鎳鉻鐵適合於製造肥粒鐵不鏽鋼等級。One of the known methods for combined liquid slag treatment has been described in the Finnish Patent Application No. 20195153 of Parviainen and Vallo, "Combined smelting of molten slag and residue from stainless steel and ferrochrome plants (Combined Smelting of molten slags and residuals from stainless steel and ferrochromium works)". This application describes a furnace or converter method for processing the above-mentioned slag stream in a furnace to recover precious iron, nickel and chromium units from oxides of their metals by carbothermal reduction. However, the nickel units present as droplets in the stainless steel slag are diluted to the total metal flow of oxides and droplets, thereby reducing the product nickel composition. Typically, ferrochromium with high nickel content is of great value to austenitic stainless steel manufacturers, and low-nickel ferrochromium is suitable for manufacturing high-grade iron stainless steel grades.

在本發明中,揭示了一種用於使用單一爐生產高及低鎳FeCr產物之方法。In the present invention, a method for producing high and low nickel FeCr products using a single furnace is disclosed.

本發明係由獨立請求項中所揭示之內容界定。在附屬請求項中闡述較佳實施方式。The present invention is defined by the content disclosed in the independent claim. The preferred embodiments are described in the attached claims.

根據本發明,存在於饋送至爐之熔渣流中之金屬小滴藉由牆分離至兩個相異金屬池中,該牆由合適耐火材料製成。在金屬氧化物之碳熱還原過程中產生之金屬粒子部分地分離至此牆之各別側上之池。此等小滴之一部分將沈降至第一池中。此等小滴之另一部分將沈降至第二池中。經分離金屬具有不同組成物:第一池將具有高鎳含量,且第二池將具有接近零鎳含量。池二中之鉻含量稍微高於池一中之鉻含量,此係因為不存在鎳之稀釋效應。兩個池中之實際金屬組成物與饋送材料特性及金屬相對於金屬氧化物含量相關。According to the present invention, the metal droplets present in the slag stream fed to the furnace are separated into two dissimilar metal pools by a wall made of suitable refractory material. The metal particles produced during the carbothermal reduction process of metal oxides are partially separated into pools on respective sides of this wall. A part of these droplets will settle into the first pool. Another part of these droplets will settle into the second pool. The separated metals have different compositions: the first pool will have a high nickel content, and the second pool will have a near zero nickel content. The chromium content in pool two is slightly higher than that in pool one because there is no dilution effect of nickel. The actual metal composition in the two pools is related to the characteristics of the feed material and the metal relative to the metal oxide content.

將鎳集中至較低金屬體積會增加其價值。典型地,鐵鎳合金之價值係基於其鎳含量進行評級。鎳含量愈高,則自材料流提供之收益愈大。此創新允許鎳之高分離率,從而增加其組成物及所生產材料之總價值。Concentrating nickel to a lower metal volume will increase its value. Typically, the value of iron-nickel alloys is rated based on their nickel content. The higher the nickel content, the greater the benefit provided by the material flow. This innovation allows a high separation rate of nickel, thereby increasing the total value of its composition and the material produced.

本發明係關於一種用於熔煉諸如在不鏽鋼及鉻鐵製造過程中產生之熔渣、粉塵、積垢及淤渣之含金屬及金屬氧化物廢料及側流的方法。本發明方法為在一組合式鉻鐵及不鏽鋼熔渣清潔爐中生產之液態金屬之一物理分離過程。主要出於可用性及價值原因而將金屬流分離。The present invention relates to a method for smelting metal and metal oxide wastes and side streams such as slag, dust, scale and sludge generated in the manufacturing process of stainless steel and ferrochrome. The method of the present invention is a physical separation process of liquid metal produced in a combined ferrochrome and stainless steel slag cleaning furnace. The separation of the metal flow is mainly due to availability and value reasons.

本發明之實施方式係關於一種用於清潔熔渣之方法。出於本說明書之目的,術語熔渣包括諸如例如在不鏽鋼及鉻鐵製造過程中產生之熔渣、粉塵、積垢及淤渣之所有含金屬及金屬廢料及側流。在本發明之過程中,熔渣自一側被饋送至爐100中。在爐100之相對側上,經純化熔渣自爐100被排出20。在爐100之下部部分中設置有耐火牆200,其在自入口朝向出口20流動之熔渣層70下方產生兩個金屬池30、50。牆200足夠高以將金屬池30、50分離,但足夠低以允許除金屬外之熔渣層70在牆200上方自入口側10朝向出口側20自由地移動。在爐100中,耐火牆200之每一側上之底部為用於液態金屬之排出配置40、60。The embodiment of the present invention relates to a method for cleaning molten slag. For the purposes of this specification, the term slag includes all metal-containing and metal scraps and side streams such as, for example, slag, dust, fouling, and sludge produced during the manufacturing of stainless steel and ferrochrome. In the process of the present invention, the molten slag is fed into the furnace 100 from one side. On the opposite side of the furnace 100, purified slag is discharged 20 from the furnace 100. A refractory wall 200 is provided in the lower part of the furnace 100, which generates two metal pools 30, 50 under the slag layer 70 flowing from the inlet to the outlet 20. The wall 200 is high enough to separate the metal pools 30, 50, but low enough to allow the slag layer 70 other than metal to move freely from the inlet side 10 toward the outlet side 20 above the wall 200. In the furnace 100, the bottom on each side of the refractory wall 200 is a discharge arrangement 40, 60 for liquid metal.

因此,在一實施方式中,一種用於清潔爐100中之一個或多個熔渣之方法包含以下步驟:經由一個或多個入口10將一個或多個熔渣饋送至爐100中,以形成流動通過爐100之熔渣層70;將存在於熔渣中之金屬小滴自熔渣重力分離至第一金屬收集池30中;將形成於金屬氧化物還原過程中之其他金屬小滴自熔渣重力分離至第二金屬收集池50中,該第二金屬收集池藉由耐火牆200與第一金屬收集池30分離;通過出口40自第一金屬收集池30回收金屬;通過出口60自第二金屬收集池50回收金屬;及通過出口20回收經清潔熔渣。Therefore, in one embodiment, a method for cleaning one or more slags in a furnace 100 includes the following steps: feeding one or more slags into the furnace 100 through one or more inlets 10 to form Flow through the slag layer 70 of the furnace 100; Gravity separation of metal droplets present in the slag from the slag into the first metal collection pool 30; Self-melting of other metal droplets formed in the metal oxide reduction process The slag is gravity separated into the second metal collection pool 50, which is separated from the first metal collection pool 30 by the refractory wall 200; the metal is recovered from the first metal collection pool 30 through the outlet 40; and the metal is recovered from the first metal collection pool 30 through the outlet 60 The second metal collection tank 50 recovers metal; and the cleaned slag is recovered through the outlet 20.

在合適實施方式中,入口10中之一者或多者為熔渣饋送流槽。在特定實施方式中,入口10中之一者或多者經調適以將熔化不鏽鋼熔渣饋送至爐100中。在其他實施方式中,入口10中之一者或多者經調適以饋送熔化鉻鐵熔渣。In a suitable embodiment, one or more of the inlets 10 are slag feed launders. In certain embodiments, one or more of the inlets 10 are adapted to feed molten stainless steel slag into the furnace 100. In other embodiments, one or more of the inlets 10 are adapted to feed molten ferrochrome slag.

在一些實施方式中,饋送至爐100中之熔渣富含鎳。出於本說明書之目的,術語富含鎳之熔渣應被理解為意謂熔渣包含鎳複合物。在特定實施方式中,富含鎳之熔渣具有至少1:1之鎳複合物對非鎳金屬複合物比率,例如至少1:1之鎳複合物對鉻複合物比率,較佳地為3:2,合適地為2:1。In some embodiments, the slag fed into the furnace 100 is rich in nickel. For the purposes of this specification, the term nickel-rich slag should be understood to mean that the slag contains nickel compounds. In a particular embodiment, the nickel-rich slag has a nickel compound to non-nickel metal compound ratio of at least 1:1, for example a nickel compound to chromium compound ratio of at least 1:1, preferably 3: 2. Appropriately 2:1.

在較接近熔渣饋料之金屬池——第一金屬收集池30中,富含鎳之金屬積聚,此係因為存在於熔渣流中之金屬小滴沈降至該池中。在較接近用於排出經純化熔渣之出口之金屬池——第二金屬收集池50中,主要源自金屬氧化物還原反應且鎳含量非常低之材料將沈降。In the metal pool closer to the slag feed, the first metal collection pool 30, nickel-rich metal accumulates because the metal droplets present in the slag stream settle into the pool. In the second metal collecting pool 50, which is closer to the outlet for discharging the purified slag, the material that mainly originates from the reduction reaction of metal oxides and has a very low nickel content will settle.

因此,在一實施方式中,自第二金屬收集池回收之金屬實質上不同於自第一金屬收集池回收之金屬。Therefore, in one embodiment, the metal recovered from the second metal collection tank is substantially different from the metal recovered from the first metal collection tank.

不鏽鋼製造之固體熔渣可用作增加金屬生產或調節熔渣化學性質之原料。若來自不鏽鋼生產之固體熔渣或金屬氧化物流用作爐之原料輸入,則應將饋料引導至對第一金屬收集池30之鎳回收最高的區域,亦即,在第一金屬收集池30上方,較佳地接近第一金屬收集池20之熔渣饋送側以允許材料完全熔化。此處,將熔渣熔化物及氧化鎳在熔渣層中還原成鎳金屬,且含鎳小滴沈降至第一金屬收集池30。因此,在一實施方式中,一個或多個熔渣包含氧化鎳。Solid slag made of stainless steel can be used as a raw material to increase metal production or adjust the chemical properties of slag. If the solid slag or metal oxide stream from stainless steel production is used as the raw material input of the furnace, the feed should be directed to the area where the nickel recovery of the first metal collection tank 30 is highest, that is, in the first metal collection tank 30 Above, it is preferably close to the slag feeding side of the first metal collection tank 20 to allow the material to melt completely. Here, the slag melt and nickel oxide are reduced to nickel metal in the slag layer, and the nickel-containing droplets settle into the first metal collection pool 30. Therefore, in one embodiment, the one or more slags contain nickel oxide.

在其他實施方式中,一個或多個熔渣包含氧化鉻。固體鉻鐵生產熔渣可作為原料用於增加金屬生產,或用於調節熔渣化學性質。為了使第二金屬收集池50鉻含量最大化,來自鉻鐵生產之固體熔渣或金屬氧化物流之饋送區域應接近或高於第二金屬收集池50之耐火牆側,例如在耐火牆下游。此處,將熔渣熔化物及其氧化鐵及氧化鉻在熔渣層中還原成鉻鐵金屬,且金屬小滴沈降至第二金屬收集池50。因此,在一個實施方式中,一個或多個熔渣經由熔渣入口10饋送至爐中到達耐火牆200下游之位置以繞過第一金屬收集池0。在其他實施方式中,一個或多個熔渣經由入口10饋送至爐中到達耐火牆200上游之位置以用於將鎳自第一金屬收集池30分離。In other embodiments, the one or more slag contains chromium oxide. The solid ferrochrome production slag can be used as a raw material to increase metal production or to adjust the chemical properties of the slag. In order to maximize the chromium content of the second metal collection tank 50, the feeding area of the solid slag or metal oxide stream from ferrochrome production should be close to or higher than the refractory wall side of the second metal collection tank 50, for example, downstream of the refractory wall. Here, the slag melt and its iron oxide and chromium oxide are reduced to ferrochrome metal in the slag layer, and the metal droplets settle to the second metal collection pool 50. Therefore, in one embodiment, one or more slags are fed into the furnace through the slag inlet 10 to a position downstream of the refractory wall 200 to bypass the first metal collection pool 0. In other embodiments, one or more slags are fed into the furnace through the inlet 10 to a position upstream of the refractory wall 200 for separating nickel from the first metal collection pool 30.

饋送至爐100中之熔渣在各實施方式中可為固體且在其他實施方式中可為液體。在另外其他實施方式中,饋送至爐100中之熔渣可包含液體熔渣及固體熔渣兩者之組合。The slag fed into the furnace 100 may be solid in various embodiments and may be liquid in other embodiments. In still other embodiments, the slag fed into the furnace 100 may include a combination of both liquid slag and solid slag.

其他實施方式係關於一種用於清潔一個或多個熔化熔渣之爐100。在一實施方式中,爐100包含:一個或多個入口10,其用於將熔渣饋送至爐中以形成流動熔渣層70;第一金屬收集池30,其經組態以收集與流動熔渣層70重力分離之金屬小滴;第二金屬收集池50,其位於第一金屬收集池下游,第一金屬收集池30及第二金屬收集池50藉由耐火牆200物理上分離;及一個或多個出口20,其用於自爐移除經清潔熔渣。在一個實施方式中,熔渣層70直接在金屬收集池上方流動。在一實施方式中,一個或多個出口20可為熔渣排出流槽。Other embodiments relate to a furnace 100 for cleaning one or more molten slag. In one embodiment, the furnace 100 includes: one or more inlets 10 for feeding molten slag into the furnace to form a flowing slag layer 70; a first metal collection tank 30 configured to collect and flow The metal droplets separated by the slag layer 70 by gravity; the second metal collection pool 50, which is located downstream of the first metal collection pool, the first metal collection pool 30 and the second metal collection pool 50 are physically separated by the refractory wall 200; and One or more outlets 20, which are used to remove cleaned slag from the furnace. In one embodiment, the slag layer 70 flows directly above the metal collection pool. In one embodiment, one or more outlets 20 may be slag discharge launders.

在其他實施方式中,第一金屬收集池30包含用於回收金屬之一個或多個出口40。在一實施方式中,此類出口40可為經調適以排出液態金屬之分接頭。在其他實施方式中,一個或多個出口40可包含一個或多個排出孔及流槽。In other embodiments, the first metal collection tank 30 includes one or more outlets 40 for metal recovery. In one embodiment, such an outlet 40 may be a tap adapted to discharge liquid metal. In other embodiments, the one or more outlets 40 may include one or more discharge holes and launders.

類似地,在一實施方式中,第二金屬收集池50包含用於回收金屬之一個或多個出口60。再次,在一實施方式中,此類出口可為經調適以排出液態金屬之分接頭。在其他實施方式中,一個或多個出口60可包含一個或多個排出孔及流槽。Similarly, in one embodiment, the second metal collection tank 50 includes one or more outlets 60 for recovering metal. Again, in one embodiment, such an outlet may be a tap adapted to discharge the liquid metal. In other embodiments, the one or more outlets 60 may include one or more discharge holes and launders.

在其他實施方式中,爐100進一步包含定位於一個或多個入口10與一個或多個出口20之間的一個或多個電極80。需要電極80來供應電能以將材料流加熱直至反應溫度——1600℃至1650℃,並向實際還原反應提供熱。In other embodiments, the furnace 100 further includes one or more electrodes 80 positioned between the one or more inlets 10 and the one or more outlets 20. The electrode 80 is needed to supply electrical energy to heat the material flow up to the reaction temperature-1600°C to 1650°C, and to provide heat to the actual reduction reaction.

在一實施方式中,一個或多個入口10包含一個或多個熔渣饋送流槽。在其他實施方式中,一個或多個出口20包含熔渣排出流槽。In one embodiment, the one or more inlets 10 comprise one or more slag feed launders. In other embodiments, the one or more outlets 20 comprise slag discharge launders.

取決於待饋送至爐100中之熔渣之組成物,入口10相對於第一金屬收集池30及第二金屬收集池50而定位。在一個實施方式中,一個或多個入口10定位於第一金屬收集池30及第二金屬收集池50上游。在其他實施方式中,一個或多個入口10定位於第一金屬收集池30下游。Depending on the composition of the slag to be fed into the furnace 100, the inlet 10 is positioned relative to the first metal collection tank 30 and the second metal collection tank 50. In one embodiment, one or more inlets 10 are positioned upstream of the first metal collection tank 30 and the second metal collection tank 50. In other embodiments, one or more inlets 10 are located downstream of the first metal collection tank 30.

耐火牆200之實際位置取決於爐操作溫度、金屬及熔渣密度差,及在操作溫度下之熔渣黏度。因此,在一實施方式中,耐火牆經定位以使鎳分離能力最佳化。若牆過於接近入口端或過於遠離入口端,則鎳分離可能會受損。The actual position of the refractory wall 200 depends on the furnace operating temperature, the difference in metal and slag density, and the slag viscosity at the operating temperature. Therefore, in one embodiment, the refractory wall is positioned to optimize the nickel separation ability. If the wall is too close to the entrance end or too far away from the entrance end, the nickel separation may be damaged.

耐火牆200可藉由合適冷卻介質在內部冷卻以增加其使用壽命。合適冷卻介質為例如不可燃油或空氣。使用水可能會造成安全問題。The refractory wall 200 can be internally cooled by a suitable cooling medium to increase its service life. Suitable cooling media are, for example, non-fuel oil or air. The use of water may cause safety issues.

耐火牆200結構可獨立於爐耐火材料以避免與耐火材料之熱膨脹相關的設計問題。The structure of the refractory wall 200 can be independent of the furnace refractory to avoid design problems related to the thermal expansion of the refractory.

在替代方案中,耐火牆200可經設計為爐耐火材料之功能部分以避免與關於耐火材料、金屬及熔渣之不同密度之浮力效應相關的設計問題。In the alternative, the refractory wall 200 may be designed as a functional part of the furnace refractory to avoid design issues related to the buoyancy effect of different densities of refractories, metals, and slag.

耐火牆200之目的係將爐中之金屬池間隔成兩個區段30、50,一個區段具有高鎳且一個區段具有低鎳。The purpose of the refractory wall 200 is to divide the metal pool in the furnace into two sections 30, 50, one section with high nickel and one section with low nickel.

其他實施方式描述一種爐之用途。在一個實施方式中,上文中所描述之爐100係在用於清潔一個或多個熔渣之方法中使用。在其他實施方式中,上文中所描述之爐100係在如上文中所描述之方法中使用。Other embodiments describe the use of a furnace. In one embodiment, the furnace 100 described above is used in a method for cleaning one or more slags. In other embodiments, the furnace 100 described above is used in the method described above.

圖1說明一實施方式,其中熔化FeCr及不鏽鋼(SS)熔渣通過饋送入口10饋送至矩形一線六自焙極爐100。圖中之電極配置係例示性的。FIG. 1 illustrates an embodiment in which molten FeCr and stainless steel (SS) slag is fed to a rectangular one-line six self-baking furnace 100 through a feed inlet 10. The electrode configuration in the figure is exemplary.

組合式熔渣層70流動通過爐100,其中經純化熔渣排出至(例如)熔渣罐20。The combined slag layer 70 flows through the furnace 100 where the purified slag is discharged to, for example, the slag pot 20.

在爐100內部,存在於饋送熔渣中之金屬小滴因重力而沈降至第一金屬池30。自第一金屬池30,金屬通過排出孔及流槽40而自爐100排出。Inside the furnace 100, metal droplets present in the feed slag settle down to the first metal pool 30 due to gravity. From the first metal pool 30, the metal is discharged from the furnace 100 through the discharge hole and the launder 40.

在爐100內部,藉由金屬氧化物還原過程生產之金屬小滴可因重力而沈降至金屬池30、50兩者。若富含鉻之固體饋送材料之饋送經配置至耐火牆200之下游側,則經沈降金屬將不稀釋第一金屬收集池30中之鎳含量。存在於熔化熔渣饋料中之氧化鉻將進入兩個池。存在於固體饋送材料中之氧化鎳應被饋送至爐100之上游側以增強對第一金屬收集池30之鎳回收。自第二金屬收集池50,類似於第一金屬收集池30,金屬通過排出孔及流槽60而自爐排出。Inside the furnace 100, the metal droplets produced by the metal oxide reduction process can settle to both the metal pools 30 and 50 due to gravity. If the feed of the chromium-rich solid feed material is arranged to the downstream side of the refractory wall 200, the deposited metal will not dilute the nickel content in the first metal collection tank 30. The chromium oxide present in the molten slag feed will enter the two pools. The nickel oxide present in the solid feed material should be fed to the upstream side of the furnace 100 to enhance the nickel recovery of the first metal collection tank 30. From the second metal collection tank 50, similar to the first metal collection tank 30, the metal is discharged from the furnace through the discharge hole and the launder 60.

no

參考所附圖式更詳細地說明本發明,其中: [圖1]示意性地展示根據本發明之具有電極及耐火牆金屬間隔物之矩形爐。在矩形爐中,爐內部之金屬池被間隔成兩個區段,一個區段具有小滴沈降,且一個區段用於來自氧化還原反應之金屬。The present invention will be explained in more detail with reference to the accompanying drawings, in which: [Figure 1] Schematically shows a rectangular furnace with electrodes and refractory wall metal spacers according to the present invention. In a rectangular furnace, the metal pool inside the furnace is divided into two sections, one section has droplet sedimentation, and one section is used for the metal from the oxidation-reduction reaction.

10:入口/入口側 10: entrance/entrance side

20:出口/出口側/熔渣罐/排出/第一金屬收集池 20: Outlet/outlet side/slag tank/discharge/first metal collection tank

30:金屬池/第一金屬收集池/區段 30: Metal pool/first metal collection pool/section

40:用於液態金屬之排出配置/出口/排出孔及流槽 40: Discharge configuration/outlet/discharge hole and launder for liquid metal

50:金屬池/第二金屬收集池/區段 50: Metal Pool/Second Metal Collection Pool/Section

60:用於液態金屬之排出配置/出口/排出孔及流槽 60: Discharge configuration/outlet/discharge hole and launder for liquid metal

70:熔渣層/流動熔渣層 70: Slag layer/flowing slag layer

80:電極 80: Electrode

100:爐 100: furnace

200:耐火牆 200: Refractory Wall

Claims (17)

一種用於在一爐(100)中清潔一個或多個熔渣之方法,其包含以下步驟: 經由一個或多個入口(10)將一個或多個熔渣饋送至該爐(100)中,以形成流動通過該爐(100)之一熔渣層(70), 將存在於該熔渣中之金屬小滴自該熔渣重力分離至一第一金屬收集池(30)中, 將形成於金屬氧化物還原過程中之其他金屬小滴自該熔渣重力分離至一第二金屬收集池(50)中,該第二金屬收集池藉由一耐火牆(200)與該第一金屬收集池(30)分離, 通過一出口(4)自該第一金屬收集池(30)回收金屬, 通過一出口(60)自該第二金屬收集池(50)回收金屬,及 通過一出口(20)回收經清潔熔渣。A method for cleaning one or more slags in a furnace (100), which includes the following steps: Feeding one or more slags into the furnace (100) via one or more inlets (10) to form a slag layer (70) flowing through the furnace (100), Gravity separation of metal droplets present in the slag from the slag into a first metal collection pool (30), The other metal droplets formed in the metal oxide reduction process are gravity separated from the slag into a second metal collection pool (50), the second metal collection pool is connected by a refractory wall (200) and the first The metal collection tank (30) is separated, Metal is recovered from the first metal collection tank (30) through an outlet (4), Recover metal from the second metal collection tank (50) through an outlet (60), and The cleaned slag is recovered through an outlet (20). 如請求項1之方法,其中自該第二金屬收集池(50)回收之該金屬實質上不同於自該第一金屬收集池(30)回收之該金屬。The method of claim 1, wherein the metal recovered from the second metal collection tank (50) is substantially different from the metal recovered from the first metal collection tank (30). 如請求項1或2之方法,其中該一個或多個熔渣包含氧化鉻。The method of claim 1 or 2, wherein the one or more slags contain chromium oxide. 如前述請求項中任一項之方法,其中該一個或多個熔渣包含氧化鎳。The method of any one of the preceding claims, wherein the one or more slags comprise nickel oxide. 如請求項1至3中任一項之方法,其中該一個或多個熔渣經由熔渣饋送流槽(10)饋送至該爐中到達該耐火牆(200)下游之一位置以繞過該第一金屬收集池(30)。Such as the method of any one of claims 1 to 3, wherein the one or more slags are fed into the furnace via the slag feed launder (10) to a position downstream of the refractory wall (200) to bypass the The first metal collection tank (30). 如前述請求項中任一項之方法,其中該一個或多個熔渣經由熔渣饋送流槽(10)饋送至該爐中到達該耐火牆(200)上游之一位置以用於將鎳自該第一金屬收集池(30)分離。The method according to any one of the preceding claims, wherein the one or more slags are fed into the furnace via the slag feed launder (10) to a position upstream of the refractory wall (200) for the purpose of removing nickel from The first metal collection tank (30) is separated. 一種用於清潔一個或多個熔化熔渣之爐(100),其包含: 一個或多個入口(10),其用於將熔渣饋送至該爐中以形成一流動熔渣層(70), 一第一金屬收集池(30),其經組態以收集與該流動熔渣層(70)重力分離之金屬小滴, 一第二金屬收集池(50),其位於該第一金屬收集池下游,該第一金屬收集池(30)及該第二金屬收集池(50)藉由一耐火牆(200)物理上分離,及 一個或多個出口(20),其用於自該爐移除經清潔熔渣。A furnace (100) for cleaning one or more molten slag, which contains: One or more inlets (10) for feeding molten slag into the furnace to form a layer of flowing slag (70), A first metal collection tank (30) configured to collect metal droplets separated by gravity from the flowing slag layer (70), A second metal collection tank (50) located downstream of the first metal collection tank, the first metal collection tank (30) and the second metal collection tank (50) are physically separated by a refractory wall (200) ,and One or more outlets (20) for removing cleaned slag from the furnace. 如請求項7之爐(100),其中該第一金屬收集池包含用於回收金屬之一個或多個出口(40)。Such as the furnace (100) of claim 7, wherein the first metal collection tank includes one or more outlets (40) for metal recovery. 如請求項7或8之爐(100),其中該第二金屬收集池包含用於回收金屬之一個或多個出口(60)。Such as the furnace (100) of claim 7 or 8, wherein the second metal collection tank includes one or more outlets (60) for metal recovery. 如請求項7至9中任一項之爐(100),其進一步包含定位於該一個或多個入口(10)與該一個或多個出口(20)之間的一個或多個電極(80)。Such as the furnace (100) of any one of claims 7 to 9, which further comprises one or more electrodes (80) positioned between the one or more inlets (10) and the one or more outlets (20) ). 如請求項7至10中任一項之爐(100),其中該一個或多個入口(10)包含一個或多個熔渣饋送流槽。Such as the furnace (100) of any one of claims 7 to 10, wherein the one or more inlets (10) include one or more slag feeding launders. 如請求項7至11中任一項之爐(100),其中該一個或多個出口(20)包含熔渣排出流槽。Such as the furnace (100) of any one of claims 7 to 11, wherein the one or more outlets (20) comprise a slag discharge launder. 如請求項7至12中任一項之爐(100),其中用於回收金屬之該一個或多個出口(40、60)包含排出孔及流槽。Such as the furnace (100) of any one of claims 7 to 12, wherein the one or more outlets (40, 60) for recovering metal include discharge holes and launders. 如請求項7至13中任一項之爐(100),其中一個或多個入口(10)定位於該第一金屬收集池及該第二金屬收集池(30、50)上游。Such as the furnace (100) of any one of claims 7 to 13, wherein one or more inlets (10) are positioned upstream of the first metal collection tank and the second metal collection tank (30, 50). 如請求項7至14中任一項之爐(100),其中一個或多個入口(10)定位於該第一金屬收集池(30)下游。For example, the furnace (100) of any one of claims 7 to 14, wherein one or more inlets (10) are located downstream of the first metal collection tank (30). 一種如請求項7至15中任一項之爐(100)之用途,該爐係在用於清潔一個或多個熔渣之方法中使用。A use of the furnace (100) according to any one of claims 7 to 15, which is used in a method for cleaning one or more slags. 一種爐(100)之用途,該爐係在如請求項1至6中任一項之方法中使用。A furnace (100) used in the method of any one of claims 1 to 6.
TW109133892A 2019-09-30 2020-09-29 A partition wall of a reducing furnace TW202117025A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20195830 2019-09-30
FI20195830A FI20195830A1 (en) 2019-09-30 2019-09-30 A partition wall of a reducing furnace

Publications (1)

Publication Number Publication Date
TW202117025A true TW202117025A (en) 2021-05-01

Family

ID=72744759

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109133892A TW202117025A (en) 2019-09-30 2020-09-29 A partition wall of a reducing furnace

Country Status (3)

Country Link
FI (1) FI20195830A1 (en)
TW (1) TW202117025A (en)
WO (1) WO2021064055A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE427047B (en) * 1976-06-17 1983-02-28 Gnii Tsvetny PROCEDURE AND OVEN FOR THE TREATMENT OF NON-IRON METAL INDUSTRY RECOVERY COATS WITH CARBONAL REDUCING AGENT
US4110107A (en) * 1977-06-16 1978-08-29 The United States Of America As Represented By The Secretary Of The Interior Process for reducing molten furnace slags by carbon injection
CH688325A5 (en) * 1994-11-25 1997-07-31 Holderbank Financ Glarus Process for the treatment of solid residues from waste incineration plants and apparatus for Drchfuehrung the process.
EP1252347B1 (en) * 2000-01-28 2003-08-27 Holcim Ltd. Method for removing chrome and/or nickel from liquid slags
DE102006052181A1 (en) * 2006-11-02 2008-05-08 Sms Demag Ag A process for the continuous or discontinuous recovery of a metal or metals from a slag containing the metal or compound of the metal
WO2011045755A1 (en) * 2009-10-13 2011-04-21 Petrus Hendrik Ferreira Bouwer Ferrochrome alloy production
DE102014015302A1 (en) * 2014-10-13 2016-04-14 Sms Group Gmbh Apparatus and method for cleaning slags
DE102016207798A1 (en) * 2015-11-19 2017-05-24 Sms Group Gmbh Settling furnace and method of its operation

Also Published As

Publication number Publication date
FI20195830A1 (en) 2021-03-31
WO2021064055A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
CN101827951B (en) Recovery of residues containing copper and other valuable metals
CN104302792B (en) For the method processing the dregs that non-ferric is smelted
WO2002095078A1 (en) Aluminum shapes, method and reactor for the production of aluminum and aluminum shapes by carbothermic reduction of alumina
US20140026713A1 (en) Refining of platinum group metals concentrates
CN111566234B (en) Improved pyrometallurgical process
JP2001247922A (en) Method for operating copper smelting furnace
US8110019B2 (en) Modified induction furnace and process for removing zinc-containing metallurgical waste, with recovery of the metals therefrom
WO2012008453A1 (en) Rotary kiln and metal recovery method
EP2898106B1 (en) Plasma induced fuming
WO2012035611A1 (en) Method and apparatus for recovering metal from electric furnace dust
CN113249591B (en) Continuous copper smelting equipment and two-stage continuous copper smelting process
KR20170097123A (en) Methods and apparatus for metal recovery from slag
CN105087952A (en) Method for removing sulfur and gathering copper, silver and antimony from sulfur-containing multi-metal smelting slag through vacuum distillation
CN102674353A (en) Method for preparing spherical wolfram carbide powder
US4349383A (en) Method for the pyrometallurgical production of copper
CN110512077A (en) A kind of method of lead anode slurry high efficiente callback gold and silver bismuth antimony tellurium
CN101407862A (en) Method for previously removing copper from copper-containing solution
CN102912156B (en) System and method for recycling magnesium and magnesium alloy waste
TW202117025A (en) A partition wall of a reducing furnace
CN105506300A (en) Precious lead vacuum distilling furnace
WO2023151602A1 (en) Continuous copper smelting process and continuous copper smelting equipment for treating complex gold concentrate
JP4751100B2 (en) Copper recovery method by flotation
CN112981134A (en) Continuous copper smelting process and continuous copper smelting system
JP3969522B2 (en) Operation method of copper smelting furnace
RU64331U1 (en) AUTOMOGENEOUS SULPHIDE RAW MATERIAL FURNACE ON MATTE