TW202112245A - Method for bioconversion of mogroside extracts into siamenoside i - Google Patents
Method for bioconversion of mogroside extracts into siamenoside i Download PDFInfo
- Publication number
- TW202112245A TW202112245A TW108134862A TW108134862A TW202112245A TW 202112245 A TW202112245 A TW 202112245A TW 108134862 A TW108134862 A TW 108134862A TW 108134862 A TW108134862 A TW 108134862A TW 202112245 A TW202112245 A TW 202112245A
- Authority
- TW
- Taiwan
- Prior art keywords
- mogroside
- exg1
- siamenoside
- item
- scope
- Prior art date
Links
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本發明係關於一種羅漢果皂苷萃取物之生物轉化方法。更具體地,本發明係關於一種將羅漢果皂苷萃取物生物轉化為賽門苷I之方法。 The present invention relates to a biotransformation method of mogroside saponins extract. More specifically, the present invention relates to a method for biologically converting mogroside extracts into siamenoside I.
在過去幾十年中,由於擔憂作為代糖之人工甜味劑(artificial sweeteners,NAS)的長期消費,全球對天然甜味劑的需求已大幅增加。迄今,美國食品藥物管理局僅批准兩種高甜度天然甜味劑,包括純化之甜菊醣苷(來自甜葉菊(Stevia rebaudiana)的葉子)和羅漢果皂苷萃取物(來自羅漢果(Siraitia grosvenorii)的果實)。 In the past few decades, due to concerns about the long-term consumption of artificial sweeteners (NAS) as sugar substitutes, the global demand for natural sweeteners has increased substantially. So far, the US Food and Drug Administration has only approved two high-sweetness natural sweeteners, including purified steviol glycosides (from the leaves of Stevia rebaudiana ) and mogroside extracts (from the fruit of Siraitia grosvenorii) .
羅漢果皂苷係由三萜苷元(triterpenoid aglycone,即羅漢果醇(mogrol))組成,該三萜苷元具有不同數目的附著葡萄糖分子。羅漢果皂苷的甜度可由葡萄糖部分的數目和位置決定。例如,羅漢果皂苷V之分子結構中包含五個葡萄糖部分,其甜度是5%蔗糖水溶液的392倍。此外,賽門苷I和羅漢果皂苷IV各具有四個葡萄糖部分,但位置不同,甜度分別為5%蔗糖水溶液的563和465倍。另一方面,羅漢果皂苷III E具有三個葡萄糖部分,甜度較低。賽門苷I確實是目前認為甜度最高的羅漢果皂苷。另外,據報導,比起羅漢果皂苷IV和V,賽門苷I的味道更受喜愛。然而,天然羅漢果皂苷萃取物中的賽門苷I含量有限。因 此,分離、純化或濃化等方法有利於生產高濃度天然賽門苷I。目前已有許多將羅漢果皂苷V轉化為賽門苷I的嘗試,包括化學水解、酶處理和微生物發酵。遺憾的是,羅漢果皂苷中葡萄糖分支側鏈的複雜性致使純賽門苷I的生產或分離極具挑戰性。 Mogroside is composed of triterpenoid aglycone (mogrol), which has different numbers of attached glucose molecules. The sweetness of mogroside can be determined by the number and location of glucose moieties. For example, Mogroside V contains five glucose moieties in its molecular structure, and its sweetness is 392 times that of 5% sucrose in water. In addition, siamenoside I and mogroside IV each have four glucose parts, but the positions are different, and the sweetness is 563 and 465 times that of 5% sucrose aqueous solution, respectively. On the other hand, Mogroside III E has three glucose moieties, and its sweetness is low. Simenoside I is indeed the mogroside with the highest sweetness currently considered. In addition, it is reported that the taste of siamenoside I is more popular than mogroside IV and V. However, the content of siamenoside I in the natural mogroside extract is limited. because Therefore, methods such as separation, purification or concentration are conducive to the production of high-concentration natural siamenoside I. There have been many attempts to convert mogroside V into siamenoside I, including chemical hydrolysis, enzyme treatment and microbial fermentation. Unfortunately, the complexity of the glucose branched side chain in mogroside makes the production or isolation of pure siamenoside I extremely challenging.
釀酒酵母菌(Saccharomyces cerevisiae)中的Exg1p是一種糖苷水解酶第五家族(glycoside hydrolase family 5,GH5)酵素,已知其可水解聚合物鏈非還原端的O-β-D-醣苷鍵,從而釋放葡萄糖。目前已發現Exg1p的受質包括類黃酮葡萄糖苷(flavonoid glucosides),如柚苷配基7-O-β-吡喃葡萄糖苷(naringenin 7-O-β-glucopyranoside)和木犀草素-7-O-葡萄糖苷(luteolin 7-O-glucoside),並且已確定Exg1p為參與啟動羅漢果皂苷生物轉化的主要外-(1,3)-β-聚葡萄糖酶(exo-(1,3)-β-glucanase)。在發酵過程中,Exg1p水解羅漢果皂苷V而生成賽門苷I與羅漢果皂苷IV中間產物的混合物,其中以羅漢果皂苷IV為主。在野生型釀酒酵母(S.cerevisiae)中,最終產生羅漢果皂苷III E為終產物。 Exg1p in Saccharomyces cerevisiae is a glycoside hydrolase family 5 (GH5) enzyme, which is known to hydrolyze the O-β-D-glycosidic bond at the non-reducing end of the polymer chain to release glucose. It has been found that the substrates of Exg1p include flavonoid glucosides, such as naringenin 7-O-β-glucopyranoside and luteolin-7-O. -Glucoside (luteolin 7-O-glucoside), and it has been determined that Exg1p is the main exo-(1,3)-β-glucanase (exo-(1,3)-β-glucanase involved in initiating the biotransformation of mogroside saponins). ). During the fermentation process, Exg1p hydrolyzes mogroside V to produce a mixture of siamenoside I and mogroside IV intermediate products, of which mogroside IV is the main product. In wild-type S. cerevisiae , Mogroside III E is finally produced as the final product.
據報導,羅漢果皂苷生物轉化有62種不同的酶,其中只有來自米麴菌(Aspergillus oryzae)的β-半乳糖苷酶(Sigma公司G5160號試劑)和來自青黴菌(Penicillium sp.)的聚葡萄糖酶(美國Worthington品牌DEXC試劑)能夠濃化羅漢果皂苷萃取物中之賽門苷I。據報導,當萃取物使用特定的微生物酶分別在37℃、pH 5的條件下處理7小時或在37℃、pH 6的條件下處理24小時,濃化度最高可達到佔所有羅漢果皂苷的44%和31%。然而,這些酶最終可能會將羅漢果皂苷V轉化為羅漢果皂苷III E或其他羅漢果皂苷作為終產物。另一項研究指出,羅漢果皂苷V經由酸或鹼處理會產生羅漢果皂苷及其他副產物的非特異性立體異構混合物,這是不理想的情況且顯示出產率低。
According to reports, there are 62 different enzymes in the biotransformation of mogrosides, of which only β-galactosidase from Aspergillus oryzae (Sigma company G5160 reagent) and polydextrose from Penicillium sp. Enzyme (DEXC reagent from Worthington, USA) can concentrate siamenoside I in mogroside saponins extract. It is reported that when the extract is treated with specific microbial enzymes at 37°C and
由於糖苷水解酶第五家族(GH5)廣泛分布於細菌和真菌中,具有廣泛的序列多樣性和蛋白質專一性。在本領域中有需求,以從細菌或酵母菌中找到類似Exg1的酶,其可以從羅漢果皂苷萃取物中特異性地產生賽門苷I。 Because the fifth family of glycoside hydrolases (GH5) is widely distributed in bacteria and fungi, it has a wide range of sequence diversity and protein specificity. There is a need in the art to find enzymes similar to Exg1 from bacteria or yeasts, which can specifically produce saimenoside I from mogroside extracts.
因此,本發明的主要目的係提供一種將羅漢果皂苷萃取物生物轉化為賽門苷I之方法,包括:使用(1)DbExg1蛋白或(2)表現DbExg1蛋白之微生物接觸或培養羅漢果皂苷萃取物。 Therefore, the main purpose of the present invention is to provide a method for bioconversion of mogroside saponins extract into siamenoside I, including: using (1) Db Exg1 protein or (2) contacting or cultivating mogroside saponins extraction with a microorganism expressing Db Exg1 protein Things.
進一步地,該羅漢果皂苷萃取物係羅漢果皂苷V。 Further, the mogroside extract is mogroside V.
進一步地,該微生物係酒香酵母菌(Dekkera bruxellensis)。 Furthermore, the microorganism is brechleromyces ( Dekkera bruxellensis ).
進一步地,該微生物係一酵母菌,該酵母菌包含帶有DbExg1基因之載體或帶有天然DbExg1基因啟動子之修飾。 Further, the microorganism is a yeast, which contains a vector carrying the DbExg1 gene or a modification with a natural DbExg1 gene promoter.
進一步地,該酵母菌係缺失Exg1的釀酒酵母菌(Saccharomyces cerevisiae)。 Further, the yeast strain is Saccharomyces cerevisiae (Saccharomyces cerevisiae) lacking Exg1.
進一步地,該DbExg1蛋白係重組DbExg1蛋白。 Further, the Db Exg1 protein is a recombinant Db Exg1 protein.
進一步地,該生物轉化係於pH值3.0至7.0進行。 Further, the biotransformation is performed at a pH value of 3.0 to 7.0.
進一步地,該生物轉化係於pH值5.0至7.0進行。 Further, the biotransformation is performed at a pH value of 5.0 to 7.0.
進一步地,該生物轉化係於30℃至60℃的溫度範圍內進行。 Further, the biotransformation is carried out in a temperature range of 30°C to 60°C.
進一步地,該生物轉化係於50℃至60℃進行。 Further, the biotransformation is carried out at 50°C to 60°C.
如上所述,本發明比起習知技術具有以下優勢功效: As mentioned above, the present invention has the following advantages compared with the conventional technology:
1.本發明之方法將羅漢果皂苷萃取物轉化為較其他羅漢果皂苷具有更高甜度和更佳味道的賽門苷I。 1. The method of the present invention converts the mogroside saponins extract into siamenoside I which has higher sweetness and better taste than other mogrosides.
2.本發明使用表現DbExg1酶之微生物,其在本發明中扮演羅漢果皂苷V轉化為賽門苷I的媒介,以優先生產出賽門苷I。 2. The present invention uses microorganisms expressing Db Exg1 enzyme, which act as a medium for the conversion of mogroside V into siamenoside I in the present invention to preferentially produce siamenoside I.
因此,本發明之方法提供一種生產大量天然甜味劑──賽門苷I的可行方法,從而可將賽門苷I應用於多種產業,例如飲料或烘焙產業。 Therefore, the method of the present invention provides a feasible method for producing a large amount of natural sweetener ─ siamenoside I, so that siamenoside I can be applied to various industries, such as the beverage or baking industry.
圖1係羅漢果皂苷的HPLC-MS層析圖,示出由不同酵母菌株進行生物轉化4天後之羅漢果皂苷之分析。(A)未發酵的羅漢果皂苷萃取物(B)釀酒酵母菌las21Δ突變體(S.cerevisiae las21Δ mutant)(C)釀酒酵母菌(S.cerevisiae Meyen ex Hansen E.C.)(D)馬克斯克魯維酵母菌(Kluyveromyces marxianus(EC Hansen)van der Walt)(E)巴氏酵母菌(Saccharomyces pastorianus)(F)乳酒假絲酵母菌(Candida kefyr(Beijerinck)van uden and Buckley)(G)高蛋白假絲酵母菌(Candida utilis)(H)解脂耶氏酵母菌(I)漢遜德巴利酵母菌(Debaryomyces hansenii)(J)酒香酵母菌(Dekkera bruxellensis)。峰1:羅漢果皂苷V;峰2:賽門苷I;峰3:羅漢果皂苷IV;峰4:羅漢果皂苷III E。箭頭指示對應於該峰之羅漢果皂苷的化學結構。 Figure 1 is a HPLC-MS chromatogram of mogrosides, showing the analysis of mogrosides after biotransformation by different yeast strains for 4 days. (A) Unfermented mogroside extract (B) Saccharomyces cerevisiae las21Δ mutant ( S.cerevisiae las21Δ mutant) (C) Saccharomyces cerevisiae ( S.cerevisiae Meyen ex Hansen EC) (D) Kluyveromyces marxianus ( Kluyveromyces marxianus (EC Hansen) van der Walt) (E) Saccharomyces pastorianus (F) Candida kefyr (Beijerinck) van uden and Buckley) (G) High protein Candida ( Candida utilis ) (H) Yarrowia lipolytica (I) Debaryomyces hansenii (J) Dekkera bruxellensis . Peak 1: Mogroside V; Peak 2: Siammonin I; Peak 3: Mogroside IV; Peak 4: Mogroside III E. The arrow indicates the chemical structure of mogroside corresponding to the peak.
圖2示出個別菌株在有或無1%羅漢果皂苷萃取物的條件下的細胞生長。(A)釀酒酵母菌(S.cerevisiae)(B)漢遜德巴利酵母菌(Debaryomyces hansenii)(C)解脂耶氏酵母菌(Yarrowia lipolytica)(D)酒香酵母菌(D.bruxellensis)在含有或不含有1%羅漢果皂苷萃取物的YPD或YM培養基中生長;羅漢果皂苷萃取物以LHK(Lo Han Kuo)表示。藉由使用分光光度計測量600nm處之光密度來確定不同時間點的細胞生長。所示數據為三個獨立實驗的平均值±標準差。 Figure 2 shows the cell growth of individual strains with or without 1% mogroside extract. (A) Saccharomyces cerevisiae ( S. cerevisiae ) (B) Debaryomyces hansenii (C) Yarrowia lipolytica (D) D. bruxellensis Grow in YPD or YM medium with or without 1% Mogroside extract; Mogroside extract is expressed as LHK (Lo Han Kuo). The cell growth at different time points was determined by measuring the optical density at 600 nm using a spectrophotometer. The data shown is the mean ± standard deviation of three independent experiments.
圖3示出重組ScExg1及DbExg1的特性分析。純化重組酶,並測定pH(A和C)及溫度(B和D)對重組ScExg1(A和B)及DbExg1(C和D)之穩定性與活性的影響。所示數據為三個獨立實驗的平均值±標準差。 Figure 3 shows the characteristic analysis of recombinant Sc Exg1 and Db Exg1. Purify the recombinant enzyme, and determine the effects of pH (A and C) and temperature (B and D) on the stability and activity of recombinant Sc Exg1 (A and B) and Db Exg1 (C and D). The data shown is the mean ± standard deviation of three independent experiments.
圖4示出羅漢果皂苷生物轉化的HPLC-MS/MS分析。(A)在發酵過程中誘導重組DbExg1表現後羅漢果皂苷萃取物的生物轉化。(B)使用純化重組DbExg1,在45℃水浴中,在pH 5.0下,經過24小時反應,轉化純羅漢果皂苷V。(C)標準羅漢果皂苷混合物。(D)未發酵的純羅漢果皂苷V。(E)漢遜德巴利酵母菌(D.hansenii)及(F)解脂耶氏酵母菌(Y.lipolytica)對純羅漢果皂苷V的轉化。將酵母菌接種到含有1%純羅漢果皂苷V的培養基中發酵11天。峰1:羅漢果皂苷V;峰2:賽門苷I;峰3:羅漢果皂苷IV;峰4:羅漢果皂苷III E。 Figure 4 shows the HPLC-MS/MS analysis of mogrosides bioconversion. (A) Biotransformation of mogroside extracts after induction of recombinant Db Exg1 expression during fermentation. (B) Purified recombinant Db Exg1 was used to transform pure mogroside V in a water bath at 45°C at pH 5.0 for 24 hours. (C) Standard mogroside saponins mixture. (D) Unfermented pure mogroside V. (E) The transformation of pure mogroside V by Debaryomyces hansenii (D.hansenii ) and (F) Y. lipolytica (Y. lipolytica). The yeast was inoculated into a medium containing 1% pure Mogroside V and fermented for 11 days. Peak 1: Mogroside V; Peak 2: Siammonin I; Peak 3: Mogroside IV; Peak 4: Mogroside III E.
有關本發明之詳細說明及技術內容,現就配合圖式說明如下。再者,本發明中之圖式,為說明方便,其比例未必照實際比例繪製,該等圖式及其比例並非用以限制本發明之範圍,在此先行敘明。 The detailed description and technical content of the present invention will now be described in conjunction with the drawings as follows. Furthermore, the figures in the present invention are not necessarily drawn according to actual proportions for the convenience of description, and these figures and their proportions are not used to limit the scope of the present invention, and are described here first.
除非另有定義,否則本文中使用的所有科學及技術術語具有本領域通常知識者一般理解的含義。本申請全文中使用的下列術語應具有以下含義。 Unless otherwise defined, all scientific and technical terms used in this article have meanings generally understood by those skilled in the art. The following terms used throughout this application shall have the following meanings.
除非另有說明,否則用語「或」係包括「及/或」。所使用之詞彙「包含」或「包括」意謂著除了描述的組成、步驟、操作指令及/或元素以外,不排除一或多個其他組成、步驟、操作指令及/或存在或附加元素。類似地,「包含」和「包括」可互換,不予限制。如在本說明書及所附申請專利範圍中所用之單數型式「一」及「該/上述」包括複數指涉,除非上下文另有明確說明。例如,用語「一」、「該」、「一或多個」和「至少一」在本文中可互換使用。 Unless otherwise stated, the term "or" includes "and/or". The term "include" or "include" used means that in addition to the described components, steps, operating instructions and/or elements, it does not exclude one or more other components, steps, operating instructions and/or the existence or additional elements. Similarly, "include" and "include" are interchangeable and are not restricted. The singular forms "a" and "the/above" used in this specification and the scope of the appended application include plural references unless the context clearly dictates otherwise. For example, the terms "a", "the", "one or more" and "at least one" are used interchangeably in this article.
本發明涉及一種將羅漢果皂苷萃取物生物轉化為賽門苷I之方法,包括:使用(1)DbExg1蛋白或(2)表現DbExg1蛋白之微生物接觸或培養羅漢果皂苷萃取物。 The present invention relates to a method for biologically converting mogroside saponins extracts into siamenoside I, including: contacting or cultivating mogrosides extracts with (1) Db Exg1 protein or (2) microorganisms expressing Db Exg1 protein.
本文所用之「羅漢果皂苷」意指已被用作餐桌上使用的糖替代品的天然羅漢果皂苷甜味劑。尤其羅漢果皂苷III E和賽門苷I以可作為甜味劑和增味劑而聞名。賽門苷I係羅漢果中的微量化合物,通常在發酵過程中以羅漢果皂苷代謝的中間產物存在。於一較佳實施例中,本發明所述之羅漢果皂苷萃取物係羅漢果皂苷V。 "Mogrosides" as used herein refers to the natural sweeteners of mogrosides that have been used as sugar substitutes on the table. In particular, Mogroside III E and Simenoside I are well known as sweeteners and flavor enhancers. Saimenoside I is a trace compound in Momordica grosvenori, and usually exists as an intermediate product of the metabolism of mogroside saponins during the fermentation process. In a preferred embodiment, the mogroside extract of the present invention is mogroside V.
Exg1蛋白為酵母菌細胞壁中主要的外-1,3-β-聚葡萄糖酶(exo-1,3-β-glucanase)。於一較佳實施例中,所述之微生物係酒香酵母菌(Dekkera bruxellensis)。於一較佳實施例中,該微生物係一酵母菌,該酵母菌包含帶有DbExg1基因之載體或帶有天然DbExg1基因啟動子之修飾。於一較佳實施例中,該酵母菌係缺失Exg1的釀酒酵母菌(Saccharomyces cerevisiae)。於一較佳實施例中,該DbExg1蛋白係重組DbExg1蛋白。 Exg1 protein is the main exo-1,3-β-glucanase (exo-1,3-β-glucanase) in the cell wall of yeast. In a preferred embodiment, the microorganism is Dekkera bruxellensis (Dekkera bruxellensis). In a preferred embodiment, the microorganism is a yeast, which contains a vector carrying the DbExg1 gene or a modification with a natural DbExg1 gene promoter. In a preferred embodiment, the yeast strain Saccharomyces cerevisiae lacking Exg1 . In a preferred embodiment, the Db Exg1 protein is a recombinant Db Exg1 protein.
本發明之生物轉化可在一較佳條件下進行,例如但不限於在一較佳pH值及/或溫度下進行。於一較佳實施例中,該生物轉化係於pH值3.0至7.0進行,例如pH 3.0至7.0、pH 3.0至6.5、pH 3.0至6.0、pH 3.0至5.5、pH 3.0至5.0、pH 3.0至4.5、pH 3.0至4.0、pH 3.0至3.5、pH 3.5至7.0、pH 3.5至6.5、pH 3.5至6.0、pH 3.5至5.5、pH 3.5至5.0、pH 3.5至4.5、pH 3.5至4.0、pH 4.0至7.0、pH 4.0至6.5、pH 4.0至6.0、pH 4.0至5.5、pH 4.0至5.0、pH 4.0至4.5、pH 4.5至7.0、pH 4.5至6.5、pH 4.5至6.0、pH 4.5至5.5、pH 4.5至5.0、pH 5.0至7.0、pH 5.0至6.5、pH 5.0至6.0、pH 5.0至5.5、pH 5.5至7.0、pH 5.5至6.5、pH 5.5至6.0、pH 6.0至7.0、pH 6.0至6.5 或pH 6.5至7.0。於一更佳實施例中,該生物轉化係於pH值5.0至7.0進行,例如pH 5.0、pH 5.1、pH 5.2、pH 5.3、pH 5.4、pH 5.5、pH 5.6、pH 5.7、pH 5.8、pH 5.9、pH 6.0、pH 6.1、pH 6.2、pH 6.3、pH 6.4、pH 6.5、pH 6.6、pH 6.7、pH 6.8、pH 6.9或pH 7.0。於一較佳實施例中,該生物轉化係於30℃至60℃的溫度範圍內進行,例如30至60℃、30至55℃、30至50℃、30至45℃、30至40℃、30至35℃、40至60℃、40至55℃、40至50℃、40至45℃、45至60℃、45至55℃、45至50℃、50至60℃、50至55℃或55至60℃。於一更佳實施例中,該生物轉化係於50℃至60℃進行,例如50℃、51℃、52℃、53℃、54℃、55℃、56℃、57℃、58℃、59℃或60℃。 The biotransformation of the present invention can be carried out under a preferable condition, such as but not limited to a preferable pH value and/or temperature. In a preferred embodiment, the biotransformation is performed at a pH value of 3.0 to 7.0, such as pH 3.0 to 7.0, pH 3.0 to 6.5, pH 3.0 to 6.0, pH 3.0 to 5.5, pH 3.0 to 5.0, pH 3.0 to 4.5 , PH 3.0 to 4.0, pH 3.0 to 3.5, pH 3.5 to 7.0, pH 3.5 to 6.5, pH 3.5 to 6.0, pH 3.5 to 5.5, pH 3.5 to 5.0, pH 3.5 to 4.5, pH 3.5 to 4.0, pH 4.0 to 7.0 , PH 4.0 to 6.5, pH 4.0 to 6.0, pH 4.0 to 5.5, pH 4.0 to 5.0, pH 4.0 to 4.5, pH 4.5 to 7.0, pH 4.5 to 6.5, pH 4.5 to 6.0, pH 4.5 to 5.5, pH 4.5 to 5.0 , PH 5.0 to 7.0, pH 5.0 to 6.5, pH 5.0 to 6.0, pH 5.0 to 5.5, pH 5.5 to 7.0, pH 5.5 to 6.5, pH 5.5 to 6.0, pH 6.0 to 7.0, pH 6.0 to 6.5 Or pH 6.5 to 7.0. In a more preferred embodiment, the biotransformation is performed at a pH value of 5.0 to 7.0, such as pH 5.0, pH 5.1, pH 5.2, pH 5.3, pH 5.4, pH 5.5, pH 5.6, pH 5.7, pH 5.8, pH 5.9 , PH 6.0, pH 6.1, pH 6.2, pH 6.3, pH 6.4, pH 6.5, pH 6.6, pH 6.7, pH 6.8, pH 6.9, or pH 7.0. In a preferred embodiment, the biotransformation is carried out in a temperature range of 30°C to 60°C, such as 30 to 60°C, 30 to 55°C, 30 to 50°C, 30 to 45°C, 30 to 40°C, 30 to 35°C, 40 to 60°C, 40 to 55°C, 40 to 50°C, 40 to 45°C, 45 to 60°C, 45 to 55°C, 45 to 50°C, 50 to 60°C, 50 to 55°C or 55 to 60°C. In a more preferred embodiment, the biotransformation is performed at 50°C to 60°C, such as 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C Or 60°C.
本發明透過以下示例性實施例更詳細地說明。儘管本文公開示例性實施例,應當理解,該些實施例係用於說明本發明,而非限制本發明的範圍。 The present invention is explained in more detail through the following exemplary embodiments. Although exemplary embodiments are disclosed herein, it should be understood that these embodiments are used to illustrate the present invention, but not to limit the scope of the present invention.
實施例1:Example 1:
A.實驗A. Experiment
(1)篩選羅漢果皂苷轉化 (1) Screening the transformation of mogrosides
從食品工業發展研究所的生物資源保存及研究中心(台灣新竹)獲得18種酵母菌株和13種乳酸菌(lactic acid bacteria,LABs)(表1),用於篩選羅漢果皂苷轉化。含有25.9%混合羅漢果皂苷的羅漢果皂苷萃取物係購自長沙市惠瑞生物科技有限公司(中國湖南)。將酵母菌或乳酸菌分別在酵母菌抽出物-蛋白腖-葡萄糖(yeast extract-peptone-dextrose,YPD)(Difco公司,美國馬里蘭州斯巴克斯)或MRS(Man-Rogosa-Sharpe)(Difco公司,美國馬里蘭州斯巴克斯)培養基中活化。透過將1%(w/v)羅漢果皂苷萃取物溶解於YPD或MRS培養液中來製備含有羅漢果皂苷的培養基。將酵母菌置於迴轉式振盪器上以200rpm於25℃進行有氧培 養,而乳酸菌在37℃進行厭氧培養。透過在培養基中加入一體積的純甲醇來終止羅漢果皂苷的轉化,並藉由HPLC-MS/MS分析羅漢果皂苷的含量。 Eighteen yeast strains and 13 lactic acid bacteria (LABs) (Table 1) were obtained from the Biological Resources Conservation and Research Center of the Food Industry Development Institute (Hsinchu, Taiwan) (Table 1), which were used to screen the transformation of mogrosides. The mogroside extract containing 25.9% mixed mogrosides was purchased from Changsha Huirui Biotechnology Co., Ltd. (Hunan, China). The yeast or lactic acid bacteria were respectively placed in yeast extract-peptone-dextrose (YPD) (Difco, Sparks, Maryland, U.S.) or MRS (Man-Rogosa-Sharpe) (Difco, U.S. Sparks, Maryland) activated in the medium. A medium containing mogroside is prepared by dissolving 1% (w/v) mogroside extract in YPD or MRS medium. Place the yeast on a rotary shaker and conduct aerobic culture at 200 rpm at 25°C The lactic acid bacteria are cultured anaerobic at 37°C. The conversion of mogrosides was terminated by adding a volume of pure methanol to the medium, and the content of mogrosides was analyzed by HPLC-MS/MS.
表1:菌株列表
(2)羅漢果皂苷的HPLC-MS/MS分析 (2) HPLC-MS/MS analysis of mogrosides
首先使用固相萃取管柱(C-18,500mg/3mL,Chrome Expert公司,美國加利福尼亞州薩克拉門托)純化發酵培養基的等分試樣。使用45%甲醇清洗未結合的雜質,並使用純甲醇沖提羅漢果皂苷。如先前的研究所述,收集沖提出的羅漢果皂苷萃取部分進行HPLC-ESI-MS/MS(YMC Hydrosphere C18分析管柱,YMC公司,日本京都;Thermo Finnigan廠牌LXQ型號線性離子阱式質譜儀,
美國加利福尼亞州聖荷西)分析,並略為修改。注入10μL所製備的樣本,以分析羅漢果皂苷。使用以下電噴灑游離(electron spray ionization,ESI)參數:噴灑電壓-4.8kV、毛細管溫度400℃、霧化氣體25 arb、輔助氣體8 arb、碰撞能量20%及隔離寬度2.0Da。質量掃描範圍為50至2000 m/z。使用Xcalibur 2.0.7軟體(美國加利福尼亞州聖荷西)進行數據分析。羅漢果皂苷在ESI/MSn頻譜中的主要分子離子為[M+Na]+;在碰撞誘導解離模式下,以碎斷圖式觀察依續的葡萄糖損失(-162 m/z)。根據[M+Na]+之m/z值分別為1309、1147、1147和985之離子的存在,識別羅漢果皂苷V、賽門苷I、羅漢果皂苷IV和羅漢果皂苷III E。
First, a solid phase extraction column (C-18, 500 mg/3 mL, Chrome Expert, Sacramento, California, USA) was used to purify an aliquot of the fermentation medium. Use 45% methanol to clean unbound impurities, and use pure methanol to extract mogroside. As mentioned in the previous study, collect the extracted part of mogroside saponins for HPLC-ESI-MS/MS (YMC Hydrosphere C18 analytical column, YMC Company, Kyoto, Japan; Thermo Finnigan brand LXQ model linear ion trap mass spectrometer, San Jose, California, USA) analysis with slight modification. Inject 10 μL of the prepared sample to analyze mogrosides. The following electron spray ionization (ESI) parameters were used: spray voltage -4.8kV, capillary temperature 400°C, atomizing gas 25 arb,
(3)重組蛋白之分子選殖、表現及純化 (3) Molecular selection, expression and purification of recombinant protein
使用Gateway選殖系統選殖來自酒香酵母菌(Dekkera bruxellensis)之似Exg1 β-葡萄糖苷酶(Exg1-like β-glucosidase,DbExg1)。簡而言之,首先透過PCR擴增DbExg1的編碼區,其正向引子為5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACCATGAAGTTTATTTTATTGTC-3'(SEQ ID NO:1,劃線處表示基因編碼區),反向引子為5'-GGGGACCACTTTGTACAAGAAAGCTGGGTCGAAGCTACACTGGTTAGG-3'(SEQ ID NO:2,劃線處表示基因編碼區)。將萃取自D.bruxellensis之基因體DNA用作模板。進一步引入酵母菌表現載體(pYES-DEST52)以產生帶有正確的DbExg1序列的半乳糖可誘導(galactose-inducible)質體。然後將酵母菌載體擴增並轉變為缺失Exg1的釀酒酵母菌(S.cerevisiae)(exg1Δ突變體),用於半乳糖誘導之DbExg1蛋白表現測定。DbExg1基因也透過GPD啟動子整合到(exg1Δ突變體)中。為了純化蛋白質,使用30kDa截留分子量(molecular weight cutoff,MWCO)之超濾膜(品名Vivaspin 20,奇異股份有限公司,台灣台北)將培養基濃縮。使用Ni2+親和層析法純化細胞外蛋白質濃縮物。透過十二烷基硫酸鈉-聚丙烯醯胺凝膠電泳
(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)和銀染(silver staining)評估每一流份(traction)中的蛋白質同質性。
Cloning using the Gateway cloning system from Brettanomyces (Dekkera bruxellensis) Similarity Exg1 β- glucosidase (Exg1 -like β-glucosidase, DbExg1 ). In short, the coding region of DbExg1 is first amplified by PCR, the forward primer is 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACC ATGAAGTTTATTTTATTGTC -3' (SEQ ID NO: 1, underlined indicates the coding region of the gene), and the reverse primer is 5' -GGGGACCACTTTGTACAAGAAAGCTGGGTC GAAGCTACACTGGTTAGG -3' (SEQ ID NO: 2, underlined indicates the gene coding region). The genomic DNA extracted from D. bruxellensis was used as a template. The yeast expression vector (pYES-DEST52) was further introduced to produce galactose-inducible plastids with the correct DbExg1 sequence. The yeast is then amplified and converted to vector deleted Exg1 Saccharomyces cerevisiae (S.cerevisiae) (exg1Δ mutant), galactose for induction of the protein expression assay Db Exg1. The DbExg1 gene is also integrated into ( exg1Δ mutant) through the GPD promoter. In order to purify the protein, a 30kDa molecular weight cutoff (MWCO) ultrafiltration membrane (
(4)β-葡萄糖苷酶活性及藉由重組DbExg1轉化羅漢果皂苷V (4) β-glucosidase activity and conversion of mogroside V by recombinant Db Exg1
測定β-葡萄糖苷酶活性的最適條件。透過在反應緩衝液中監測一pH值範圍(從pH 3到pH 9)內的酶活性,以獲得最適pH。在60℃下培養30分鐘。為了分析酶的穩定性,使用相同的緩衝系統和pH值範圍,但反應在4℃下進行1小時。於pH 5、溫度範圍為20℃至90℃的條件下,在20mM乙酸鹽緩衝液中測定最適溫度。為了分析溫度穩定性,在20mM乙酸鹽緩衝液(pH 5)中培養1小時後,萃取β-葡萄糖苷酶並監測其活性。將剛純化的重組DbExg1(recombinant DbExg1,簡稱rDbExg1)添加到10mM之對硝苯β-D-葡萄糖苷(p-nitrophenyl β-D-glucoside,pNPG)、鄰硝苯酚β-D-葡萄糖苷(o-nitrophenol β-D-glucoside,oNPG)或原始羅漢果皂苷V(最終濃度2mg/mL)之乙酸鹽緩衝液中。在60℃、pH 5之最適酶反應條件下培養酶與受質之混合物。在葡萄糖苷酶將葡萄糖水解之後,藉由測量對硝苯酚(p-nitrophenol,pNP)或鄰硝苯酚(o-nitrophenol,oNP)從pNPG或oNPG釋出的程度來測定β-葡萄糖苷酶之活性。於波長405nm檢測釋出之pNP或oNP,並以標準曲線進行校準。在特定的時間點透過添加一體積的純甲醇來停止羅漢果皂苷的轉化。然後將轉化的產物純化,以進行HPLC-MS/MS分析。
The optimal conditions for determining β-glucosidase activity. The optimal pH is obtained by monitoring the enzyme activity in a pH range (from
B.結果B. Results
(1)篩選羅漢果皂苷轉化菌株 (1) Screening the transformed strains of mogroside saponins
根據先前關於異黃酮生物轉化過程中葡萄糖苷酶活性之報導,選擇數種微生物菌株(18種酵母菌和13種乳酸菌)進行羅漢果皂苷轉化測試。使用主要含有羅漢果皂苷V的羅漢果皂苷萃取物為生物轉化受質(圖1A)。意外地,所選之乳酸菌皆未表現出羅漢果皂苷生物轉化活性。反之,大多數可能發揮生物調 味功能之酵母菌株在發酵4天後,可將羅漢果皂苷V轉化為羅漢果皂苷IV、賽門苷I和羅漢果皂苷III E的混合物(圖1D至G);唯有解脂耶氏酵母菌(Yarrowia lipolytica)和漢遜德巴利酵母菌(Debaryomyces hansenii)兩種酵母菌株未表現出轉化活性(圖1H和I)。由於Exg1 β-葡萄糖苷酶的過度漏失及羅漢果皂苷的有效轉化,缺失LAS 21的釀酒酵母菌(S.cerevisiae)(las21Δ突變體)可將羅漢果皂苷V完全生物轉化為羅漢果皂苷III E(圖1B)。釀酒酵母菌(S.cerevisiae Meyen ex Hansen E.C.)亦可於發酵4天後有效地將羅漢果皂苷V轉化為羅漢果皂苷III E(圖1C)。有趣的是,只有酒香酵母菌(D.bruxellensis)明顯地將羅漢果皂苷V轉化為賽門苷I中間產物(圖1J),而未伴隨顯著地羅漢果皂苷IV和羅漢果皂苷III E增加。 According to previous reports on glucosidase activity during isoflavone biotransformation, several microbial strains (18 yeasts and 13 lactic acid bacteria) were selected for the conversion test of mogrosides. The mogroside extract mainly containing mogroside V was used as the substrate for biotransformation (Figure 1A). Unexpectedly, none of the selected lactic acid bacteria showed mogroside biotransformation activity. Conversely, most yeast strains that may play a biological flavoring function can convert Mogroside V into a mixture of Mogroside IV, Simenoside I and Mogroside III E after 4 days of fermentation (Figures 1D to G); only solution Two yeast strains, Yarrowia lipolytica and Debaryomyces hansenii , did not show transformation activity (Figure 1H and I). Due to the excessive loss of Exg1 β-glucosidase and the effective conversion of mogrosides, S. cerevisiae ( las21Δ mutant) lacking LAS 21 can completely biotransform mogroside V into mogroside III E (Figure 1B) ). Saccharomyces cerevisiae ( S. cerevisiae Meyen ex Hansen EC) can also effectively convert mogroside V into mogroside III E after 4 days of fermentation (Figure 1C). Interestingly, only Brettanomyces ( D. bruxellensis ) significantly converted mogroside V to siamenoside I intermediate product (Figure 1J), without the significant increase in mogroside IV and mogroside III E.
(2)酒香酵母菌(D.bruxellensis)獨特生產賽門苷I (2) Brettanomyces ( D. bruxellensis ) uniquely produces siamenoside I
先前的研究指出,細菌分泌的α-澱粉酶和蛋白酶可透過生長階段和營養物質的利用來調節。因此,我們懷疑緩慢的細胞生長是否會導致發酵培養基中分泌的胞外酶水平降低,尤其是在解脂耶氏酵母菌(Y.lipolytica)、漢遜德巴利酵母菌(D.hansenii)和酒香酵母菌(D.bruxellensis)中。確實,漢遜德巴利酵母菌(D.hansenii)、解脂耶氏酵母菌(Y.lipolytica)和酒香酵母菌(D.bruxellensis)表現出相似的生長速率(圖2B至D),在YPD和YM培養基中,無論有無羅漢果皂苷萃取物,其等之生長速率皆明顯慢於釀酒酵母菌(S.cerevisiae Meyen ex Hansen E.C.)的生長速率(圖2A)和其他釀酒酵母菌(S.cerevisiae)菌株的生長速率(數據未顯示)。然而,酒香酵母菌(D.bruxellensis)的獨特之處在於,隨著羅漢果皂苷V的降解,賽門苷I的含量穩定地累積,而羅漢果皂苷IV和III E的含量沒有顯著變化(圖1J)。是以,我們的數據不排除在解脂耶氏酵母菌(Y.lipolytica)和漢遜德巴利 酵母菌(D.hansenii)中羅漢果皂苷的低生物轉化率可能是導因於這些細胞中β-葡萄糖苷酶的低效率或不同的受質專一性。 Previous studies have pointed out that the alpha-amylase and protease secreted by bacteria can be regulated by the growth stage and the utilization of nutrients. Therefore, we suspect that slow cell growth will lead to a decrease in the level of extracellular enzymes secreted in the fermentation medium, especially in Y. lipolytica (Y.lipolytica), D.hansenii ( D.hansenii ) and Brettanomyces ( D. bruxellensis ). Indeed, Debaryomyces hansenii ( D.hansenii ), Y. lipolytica (Y.lipolytica ) and Brettanomyces ( D.bruxellensis ) showed similar growth rates (Figure 2B to D). In YPD and YM media, whether with or without mogroside extract, their growth rate was significantly slower than that of S. cerevisiae Meyen ex Hansen EC (Figure 2A) and other S. cerevisiae ( S. cerevisiae) ) Growth rate of the strain (data not shown). However, the uniqueness of D. bruxellensis is that with the degradation of mogroside V, the content of siamenoside I steadily accumulates, while the content of mogroside IV and III E did not change significantly (Figure 1J). ). Therefore, our data do not exclude the Y. lipolytica yeast (Y.lipolytica) and Debaryomyces yeast (D.hansenii) low rate of biotransformation of mogroside is the cause in these cells β- Low efficiency of glucosidase or different substrate specificity.
接下來,本實施例延長發酵時間以使生物轉化最大化。我們比較含有或不含有粗製羅漢果皂苷萃取物之各種酵母菌於培養基中發酵7天之羅漢果皂苷的概況(表2)。結果顯示,具有細胞壁缺陷並釋出大量Exg1p至培養基中的las21Δ突變體可將羅漢果皂苷V完全轉化為羅漢果皂苷III E(表2)。相似地,釀酒酵母菌(S.cerevisiae Meyen ex Hansen E.C.)(數據未顯示)和巴氏酵母菌(S.pastorianus)也將羅漢果皂苷V轉化為羅漢果皂苷III E。然而,發酵7天後,馬克斯克魯維酵母菌(Kluyveromyces marxianus(EC Hansen)van der Walt)、乳酒假絲酵母菌(Candida kefyr(Beijerinck)van uden and Buckley)和高蛋白假絲酵母菌(Candida utilis)可將羅漢果皂苷V轉化為賽門苷I和羅漢果皂苷III E(表2)。出乎意料的是,發酵7天後,解脂耶氏酵母菌(Y.lipolytica)、漢遜德巴利酵母菌(D.hansenii)和酒香酵母菌(D.bruxellensis)皆表現出較差的轉化結果,導致培養基中保留大量的羅漢果皂苷V和一些羅漢果皂苷IV(表2)。酒香酵母菌(D.bruxellensis)的最終發酵產物中,羅漢果皂苷IV(1.48±0.38%)和羅漢果皂苷III E(10.74±1.13%)所佔百分比最低。儘管漢遜德巴利酵母菌(D.hansenii)表現出相似於酒香酵母菌(D.bruxellensis)的轉化情形,但相較於粗製羅漢果皂苷萃取物與酒香酵母菌(D.bruxellensis)發酵培養基,粗製羅漢果皂苷萃取物與漢遜德巴利酵母菌(D.hansenii)發酵培養基中羅漢果皂苷IV和III E所佔百分比顯著增加(表2)。這些結果指出,漢遜德巴利酵母菌(D.hansenii)可能將羅漢果皂苷萃取物中的羅漢果皂苷V轉化為賽門苷I及羅漢果皂苷IV,這可用以解釋所觀察到羅漢果皂苷III E逐漸累積的現象。相反地,酒香酵母菌(D.bruxellensis)似乎具有一種獨特的酶,可將 羅漢果皂苷V水解為較佳的產物,即賽門苷I,而非羅漢果皂苷IV;因此,羅漢果皂苷IV及羅漢果皂苷III E的總百分比(約佔所有羅漢果皂苷的12%)相似於羅漢果皂苷萃取物中羅漢果皂苷IV及羅漢果皂苷III E的總百分比。 Next, this example extends the fermentation time to maximize bioconversion. We compare the profiles of mogrosides with or without crude mogroside extracts fermented in the culture medium for 7 days (Table 2). The results showed that the las21Δ mutant with cell wall defects and releasing a large amount of Exg1p into the medium can completely convert mogroside V into mogroside III E (Table 2). Similarly, Saccharomyces cerevisiae ( S. cerevisiae Meyen ex Hansen EC) (data not shown) and S. pastorianus (S. pastorianus) also convert mogroside V into mogroside III E. However, after 7 days of fermentation, Kluyveromyces marxianus (EC Hansen) van der Walt, Candida kefyr (Beijerinck) van uden and Buckley and Candida high protein (Kluyveromyces marxianus (EC Hansen) van der Walt) Candida utilis ) can convert mogroside V into siamenoside I and mogroside III E (Table 2). Unexpectedly, after 7 days of fermentation, Y. lipolytica (Y.lipolytica), D.hansenii ( D.hansenii ) and Brettanomyces ( D.bruxellensis ) all showed poor performance. As a result of the transformation, a large amount of mogroside V and some mogroside IV remained in the medium (Table 2). Among the final fermentation products of D. bruxellensis , Mogroside IV (1.48±0.38%) and Mogroside III E (10.74±1.13%) accounted for the lowest percentages. Although Debaryomyces hansenii ( D.hansenii ) showed similar transformation conditions to that of D. bruxellensis , it was compared with the fermentation of crude mogroside saponins extract and D. bruxellensis. Medium, crude mogroside extract and Debaryomyces hansenii ( D.hansenii ) fermentation medium, the percentage of mogroside IV and III E in the fermentation medium increased significantly (Table 2). These results indicate that Debaryomyces hansenii ( D.hansenii ) may convert mogroside V in the mogroside extract into simenosin I and mogroside IV, which can explain the observed gradual progress of mogroside III E Cumulative phenomenon. On the contrary, D. bruxellensis seems to have a unique enzyme that can hydrolyze mogroside V into a better product, namely saimenoside I, rather than mogroside IV; therefore, mogroside IV and mogroside The total percentage of saponin III E (approximately 12% of all mogrosides) is similar to the total percentage of mogroside IV and mogroside III E in the mogroside extract.
表2:不同酵母菌對粗製羅漢果皂苷萃取物進行生物轉化7天後
(3)酒香酵母菌(D.bruxellensis)之Exg1p的特性 (3) The characteristics of Exg1p of Brettanomyces (D. bruxellensis)
因為已知羅漢果皂苷由釀酒酵母菌(S.cerevisiae)之Exg1p(即ScExg1)所水解,因此我們假設酒香酵母菌(D.bruxellensis)之似Exg1葡聚糖-β-葡萄糖苷酶(即DbExg1)可能是造成所觀察到的羅漢果皂苷轉化的原因。為了驗證此一假設,使用半乳糖誘導的啟動子序列及位於該基因C端之組氨酸標籤(six-histidine tag,6xHis-tag)選殖DbExg1。如前所述,轉型該質體並在釀酒酵母菌(S.cerevisiae)中表現。半乳糖誘導6小時後,以西方墨點轉漬法進行分析,結果顯示,DbExg1蛋白的大小因組氨酸標籤而略微增加至約55kDa(數據未顯示)。透過Ni2+親和層析法純化重組DbExg1(稱rDbExg1)(數據未顯示)。 Because it is known that mogroside is hydrolyzed by Exg1p ( Sc Exg1) of S. cerevisiae , we assume that D. bruxellensis is similar to Exg1 glucan-β-glucosidase (that is Db Exg1) may be responsible for the observed conversion of mogrosides. To test this hypothesis, Db Exg1 was cloned using a galactose-induced promoter sequence and a six-histidine tag (6xHis-tag) located at the C-terminal of the gene. As mentioned earlier, this plastid was transformed and expressed in S. cerevisiae. After 6 hours of galactose induction, analysis was performed by Western blot transfer method. The results showed that the size of Db Exg1 protein slightly increased to about 55 kDa due to histidine tag (data not shown). The recombinant Db Exg1 (called r Db Exg1) was purified by Ni 2+ affinity chromatography (data not shown).
為了評估rDbExg1的較佳pH值、較佳溫度和水解能力,我們使用pNPG受質並將結果與ScExg1進行比較。rDbExg1在pH值3.0至7.0的範圍內保留一半的活性,在pH值5.0至7.0的條件下處於穩定狀態。在磷酸鈉緩衝系統中,最佳pH值為5.0(圖3C)。這些結果與ScExg1的結果相似,但pH穩定性略有不同(圖3A)。rDbExg1的最佳溫度為60℃。然而,rDbExg1在60℃培養30分鐘後僅保留其活性的40%。相反地,ScExg1在50℃下表現出最高的水解活性(圖3B)。ScExg1和rDbExg1在低於50℃的溫度下皆處於穩定狀態(圖3B和D)。另外,比較及計算rDbExg1和rScExg1的米氏常數(K m )和最大反應速率(V max )(表3)。整體而言,結果顯示rDbExg1是一種假定的葡萄糖苷酶,可水解oNPG和pNPG的醣苷鍵。有趣的是,就oNPG和pNPG受質而言,在rDbExg1與ScExg1之間未觀察到酶動力學上的顯著差異(表3)。 In order to evaluate the better pH, better temperature and hydrolysis ability of r Db Exg1, we used pNPG substrate and compared the results with Sc Exg1. r Db Exg1 retains half of its activity in the range of pH 3.0 to 7.0, and is stable under the condition of pH 5.0 to 7.0. In the sodium phosphate buffer system, the optimal pH value is 5.0 (Figure 3C). These results are similar to those of Sc Exg1, but the pH stability is slightly different (Figure 3A). The optimum temperature of r Db Exg1 is 60℃. However, r Db Exg1 only retains 40% of its activity after incubating at 60°C for 30 minutes. In contrast, Sc Exg1 showed the highest hydrolysis activity at 50°C (Figure 3B). Sc Exg1 and r Db Exg1 are in a stable state at temperatures below 50°C (Figure 3B and D). In addition, the Michaelis constant ( K m ) and the maximum reaction rate ( V max ) of r Db Exg1 and r Sc Exg1 were compared and calculated (Table 3). Overall, the results show that r Db Exg1 is a hypothetical glucosidase that can hydrolyze the glycosidic bonds of oNPG and pNPG. Interestingly, in terms of oNPG and pNPG substrates, no significant difference in enzyme kinetics was observed between r Db Exg1 and Sc Exg1 (Table 3).
表3:在oNPG和pNPG受質上的重組DbExg1和ScExg1蛋白的動力參數
(4)羅漢果皂苷的酶水解 (4) Enzymatic hydrolysis of mogrosides
為了測試rDbExg1是否可參與羅漢果皂苷的轉化,本實施例將帶有rDbExg1基因的質體引入不能水解羅漢果皂苷之釀酒酵母菌exg1Δ突變體(S.cerevisiae exg1Δ mutant)中。在半乳糖誘導9小時後,可輕易檢測到細胞外rDbExg1的表現(數據未顯示)。確實,rDbExg1轉型的突變體不僅恢復轉化羅漢果皂苷的能力,並且表現出將羅漢果皂苷萃取物的成分轉化為賽門苷I的能力,而羅漢果皂苷III E在24小時內的產量卻很少(圖4A)。接著,使用純羅漢果皂苷V測試rDbExg1是否可將此分子專一性地生物轉化為賽門苷I,並測試是否會發生殘餘轉化為羅漢果皂苷III E的情況。如圖4B所示,rDbExg1可專一性地水解羅漢果皂苷V之C-3位置的β-1,6鍵結的葡萄糖部分,從而產生賽門苷I。是以,用酒香酵母菌(D.bruxellensis)發酵的羅漢果皂苷萃取物中的羅漢果皂苷III E(圖4A),最有可能是由於原先的羅漢果皂苷萃取物中存有羅漢果皂苷IV。值得注意的是,漢遜德巴利酵母菌(D.hansenii)可將純羅漢果皂苷V生物轉化為賽門苷I和羅漢果皂苷III E(圖4E),而解脂耶氏酵母菌(Y.lipolytica)可在發酵11天後將羅漢果皂苷V轉化為羅漢果皂苷IV、賽門苷I和羅漢果皂苷III E的混合物(圖4F)。這些結果清楚顯 示,在所測試的那些菌株中,酒香酵母菌(D.bruxellensis)轉化羅漢果皂苷和生成賽門苷I是獨特的。 To test whether r Db Exg1 may be involved in the conversion mogroside, with the present embodiment will be introducing plastid gene rDbExg1 not hydrolyze mogroside exg1Δ mutant of Saccharomyces cerevisiae (S.cerevisiae exg1Δ mutant) in. After 9 hours of galactose induction, the expression of extracellular r Db Exg1 can be easily detected (data not shown). Indeed, the mutants transformed by rDbExg1 not only restored the ability to transform mogrosides, but also showed the ability to convert the components of mogroside saponins into mogrosides I, while the yield of mogrosides III E within 24 hours was very small (Figure 4A). Next, pure mogroside V was used to test whether r Db Exg1 can specifically bioconvert this molecule into siamenoside I, and whether there would be residual conversion to mogroside III E. As shown in Figure 4B, r Db Exg1 can specifically hydrolyze the β-1,6-bonded glucose moiety at the C-3 position of mogroside V to produce siamenoside I. Therefore, the mogroside III E in the mogroside saponins extract fermented by D. bruxellensis (Figure 4A) is most likely due to the mogroside IV in the original mogroside saponins extract. It is worth noting that Debaryomyces hansenii ( D.hansenii ) can biologically convert pure mogroside V into siamenoside I and mogroside III E (Figure 4E), while Y. lipolytica (Y. lipolytica ) can convert mogroside V into a mixture of mogroside IV, simenoside I and mogroside III E after 11 days of fermentation (Figure 4F). These results clearly show that among the strains tested, D. bruxellensis (D. bruxellensis) transforms mogroside and produces saimenoside I is unique.
綜上所述,本發明描述一種酶(即DbExg1),在羅漢果皂苷V的生物轉化中,該酶水解羅漢果皂苷V之C3位置的β-1,6吡喃葡萄糖苷(β-1,6glucopyranoside),而非C24位置的β-1,6吡喃葡萄糖苷。DbExg1之酶活性係根據其水解oNPG和pNPG之醣苷鍵的能力來表徵。本發明亦表明酒香酵母菌(D.bruxellensis)具有將羅漢果皂苷V生物轉化為賽門苷I的罕見能力。 In summary, the present invention describes an enzyme (ie Db Exg1) that hydrolyzes β-1,6 glucopyranoside (β-1,6glucopyranoside) at the C3 position of mogroside V in the biotransformation of mogroside V. ) Instead of β-1,6 glucopyranoside at position C24. The enzymatic activity of Db Exg1 is characterized by its ability to hydrolyze the glycosidic bonds of oNPG and pNPG. The present invention also shows that D. bruxellensis (D. bruxellensis) has a rare ability to biologically convert mogroside V into siamenoside I.
賽門苷I係羅漢果中的次要化合物,通常在發酵過程中以羅漢果皂苷代謝的中間產物存在。透過發酵篩選,發現酒香酵母菌(D.bruxellensis)具有極限定之能力以完全水解羅漢果皂苷。該菌株將羅漢果皂苷萃取物從約80%之羅漢果皂苷V、約8%之賽門苷I、約10%之羅漢果皂苷IV和3%之羅漢果皂苷III E轉化為約86%之賽門苷I和約14%之羅漢果皂苷III E。根據使用純化羅漢果皂苷V的實施例,可得出結論:羅漢果皂苷III E的累積係因羅漢果皂苷IV的轉化所致(表2和圖4);以酒香酵母菌(D.bruxellensis)發酵純羅漢果皂苷V僅產生賽門苷I(圖4B)。 Saimenoside I is a minor compound in momordica grosvenori, and usually exists as an intermediate product of the metabolism of momordica grosvenori during fermentation. Through fermentation screening, it was found that D. bruxellensis has a limited ability to completely hydrolyze mogrosides. This strain converts the mogroside extract from about 80% of mogroside V, about 8% of mogroside I, about 10% of mogroside IV and 3% of mogroside III E to about 86% of mogroside I And about 14% of Mogroside III E. According to the example using purified mogroside V, it can be concluded that the accumulation of mogroside III E is caused by the conversion of mogroside IV (Table 2 and Figure 4); the pure fermentation with D. bruxellensis Mogroside V only produces siamenoside I (Figure 4B).
在本實施例中,我們還透過酶之集群分析(cluster analysis)比較DbExg1與其他酵母菌外聚葡萄糖酶(exoglucanases)(數據未顯示)。結果顯示,在所測試的18種酵母菌株中之Exg1蛋白與DbExg1聚葡萄糖酶密切相關,可能源自共同的原型基因(ancestral gene)。然而,該些菌株之間的羅漢果皂苷發酵情形完全不同。有趣的是,某些酵母菌優先積累羅漢果皂苷III E作為主要的最終發酵產物,如高蛋白假絲酵母菌(C.utilis),而另一些酵母菌則在羅漢果皂苷萃取物發酵 7天後傾向於產生賽門苷I,如乳酒假絲酵母菌(Candida kefyr(Beijerinck)van uden and Buckley)(表2)。 In this example, we also compared Db Exg1 with other yeast exoglucanases (data not shown) through enzyme cluster analysis. The results showed that the Exg1 protein in the 18 yeast strains tested is closely related to Db Exg1 glucosinolates and may be derived from a common ancestral gene. However, the fermentation conditions of mogroside saponins between these strains are completely different. Interestingly, some yeasts preferentially accumulate mogroside III E as the main final fermentation product, such as high protein Candida ( C.utilis ), while other yeasts tend to accumulate mogroside extracts after 7 days of fermentation. For the production of siamenoside I, such as Candida kefyr (Beijerinck) van uden and Buckley (Table 2).
這些發現共同導出了幾種可能性。第一,我們在實施例中使用的酵母菌種中可能存在其他Exg1同源物。因此,羅漢果皂苷III E或賽門苷I的產生可能由不同的Exg1同源物介導。實際上,在釀酒酵母菌(S.cerevisiae)中,存在三種具有高度保守之外1,3-β-聚葡萄糖酶區域(exo-1,3-β-glucanase regions)的同源物,包括Exg1、Exg2和Spr1。先前的研究指出,ScExg1負責羅漢果皂苷的生物轉化。在本發明中,DbExg1用於補足釀酒酵母菌exg1Δ突變體(S.cerevisiae exg1Δ mutant)的缺陷,並將羅漢果皂苷V專一性地轉化為賽門苷I。第二,當以羅漢果皂苷為受質時,Exg1同源物可能表現出不同的酶特異性。是以,菌株之間的催化差異可能是因Exg1同源物活性位中受質可親性不同所致。 These findings led to several possibilities together. First, there may be other Exg1 homologues in the yeast strains we used in the examples. Therefore, the production of mogroside III E or siamenoside I may be mediated by different Exg1 homologs. In fact, in S. cerevisiae , there are three homologues with highly conserved 1,3-β-glucanase regions (exo-1,3-β-glucanase regions), including Exg1 , Exg2 and Spr1. Previous studies have pointed out that Sc Exg1 is responsible for the biotransformation of mogrosides. In the present invention, Db Exg1 used to complement the S. cerevisiae mutants defective exg1Δ (S.cerevisiae exg1Δ mutant), and specific mogroside V siamenoside converted to I. Second, when mogroside is used as substrate, Exg1 homologues may show different enzyme specificities. Therefore, the difference in catalysis between strains may be due to the different affinity of the substrate in the active site of Exg1 homologue.
如上所述,與習知技術相比,本發明具有以下優勢:本發明之方法將羅漢果皂苷萃取物轉化為較其他羅漢果皂苷具有更高甜度和更佳味道之賽門苷I;本發明使用表現DbExg1酶的微生物,該酶在本發明中扮演羅漢果皂苷V轉化為賽門苷I的媒介,用以優先生產出賽門苷I。因此,本發明之方法的使用提供一種生產大量天然甜味劑-賽門苷I的可行方法,從而可將賽門苷I應用於多種產業。 As mentioned above, compared with the conventional technology, the present invention has the following advantages: the method of the present invention converts the mogroside extract into saimenoside I, which has higher sweetness and better taste than other mogrosides; the present invention uses A microorganism expressing the Db Exg1 enzyme, which acts as a mediator for the conversion of mogroside V into siamenoside I in the present invention, for the preferential production of siamenoside I. Therefore, the use of the method of the present invention provides a feasible method for producing a large amount of natural sweetener-siamenoside I, so that siamenoside I can be applied to various industries.
以上已透過較佳之示例性實施例將本發明做一更詳細的說明。儘管本文已公開示例性實施例,應當理解,其他變化也是可能的。這樣的變化不應視為背離本申請之示例性實施例的精神和範圍,並且對於本領域技術人員顯而易見的所有修飾皆包括在所附申請專利範圍之內。 The present invention has been described in more detail through the preferred exemplary embodiments. Although exemplary embodiments have been disclosed herein, it should be understood that other variations are also possible. Such changes should not be regarded as departing from the spirit and scope of the exemplary embodiments of the present application, and all modifications obvious to those skilled in the art are included in the scope of the appended application.
<110> 國立臺灣大學 <110> National Taiwan University
<120> 將羅漢果皂苷萃取物生物轉化為賽門苷I之方法 <120> Method of biologically converting mogroside saponins extract into siamenoside I
<130> P191723TW <130> P191723TW
<160> 2 <160> 2
<170> PatentIn version 3.5 <170> PatentIn version 3.5
<210> 1 <210> 1
<211> 54 <211> 54
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
<220> <220>
<223> 正向引子 <223> Forward primer
<220> <220>
<221> 引子_結合 <221> Introduction_Combination
<222> (1)..(54) <222> (1)..(54)
<400> 1 <400> 1
<210> 2 <210> 2
<211> 48 <211> 48
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
<220> <220>
<223> 反向引子 <223> Reverse primer
<220> <220>
<221> 引子_結合 <221> Introduction_Combination
<222> (1)..(48) <222> (1)..(48)
<400> 2 <400> 2
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108134862A TWI711385B (en) | 2019-09-26 | 2019-09-26 | Method for bioconversion of mogroside extracts into siamenoside i |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108134862A TWI711385B (en) | 2019-09-26 | 2019-09-26 | Method for bioconversion of mogroside extracts into siamenoside i |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI711385B TWI711385B (en) | 2020-12-01 |
TW202112245A true TW202112245A (en) | 2021-04-01 |
Family
ID=74670104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108134862A TWI711385B (en) | 2019-09-26 | 2019-09-26 | Method for bioconversion of mogroside extracts into siamenoside i |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI711385B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116172068A (en) * | 2023-04-26 | 2023-05-30 | 山东蒙天乳业有限公司 | Fermented low-protein flavored beverage and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3201315A2 (en) * | 2014-10-01 | 2017-08-09 | Evolva SA | Methods and materials for biosynthesis of mogroside compounds |
-
2019
- 2019-09-26 TW TW108134862A patent/TWI711385B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI711385B (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sarry et al. | Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors | |
EP1354944B1 (en) | Ginsenoside glycosidase which hydrolyzes ginsenoside glycosyl and the use thereof | |
Belancic et al. | β-Glucosidase from the grape native yeast Debaryomyces vanrijiae: purification, characterization, and its effect on monoterpene content of a Muscat grape juice | |
Chen et al. | Purification and characterisation of exo-and endo-inulinase from Aspergillus ficuum JNSP5-06 | |
Gerstorferová et al. | Recombinant α-L-rhamnosidase from Aspergillus terreus in selective trimming of rutin | |
Yanai et al. | Isolation and properties of β-glucosidase produced by Debaryomyces hansenii and its application in winemaking | |
Ping et al. | Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacu | |
Guo et al. | Glycyrrhetic Acid 3‐O‐Mono‐β‐d‐glucuronide (GAMG): An Innovative High‐Potency Sweetener with Improved Biological Activities | |
Li et al. | Heterologous expression and characterization of a new clade of Aspergillus α-L-rhamnosidase suitable for citrus juice processing | |
Wang et al. | Dekkera bruxellensis, a beer yeast that specifically bioconverts mogroside extracts into the intense natural sweetener siamenoside I | |
Zhang et al. | Purification and characterization of an intracellular α-L-rhamnosidase from a newly isolated strain, Alternaria alternata SK37. 001 | |
KR101079293B1 (en) | Method of rare ginsenosides production using thermostable beta-glycosidase | |
JP4801872B2 (en) | Novel enzyme having β-glucosidase activity and use thereof | |
CN111808831A (en) | Preparation method of recombinant manganese peroxidase and application of recombinant manganese peroxidase in degradation of Chinese herbal medicine lignin | |
Volkov et al. | Cloning, purification and study of recombinant GH3 family β-glucosidase from Penicillium verruculosum | |
Park et al. | Enhanced extraction of reducing sugars from fruit of Hovenia dulcis with treatment of cellulase and sequential production of ethanol and acetic acid containing ampelopsin from extracted reducing sugars | |
JP6562735B2 (en) | New xylanase | |
TWI711385B (en) | Method for bioconversion of mogroside extracts into siamenoside i | |
JP4923739B2 (en) | Acid cellulase-producing bacteria | |
US6087131A (en) | β-glucosidase from filamentous fungi, and uses thereof | |
KR20080036044A (en) | Process for production of liquid koji | |
US11180789B2 (en) | Method for bioconversion of mogroside extracts into siamenoside I | |
Aziz et al. | Hyperproduction and thermal characterization of a novel invertase from a double mutant derivative of Kluyveromyces marxianus | |
Yanai et al. | Purification and characterization of a novel α-L-arabinofuranosidase from Pichia capsulata X91 | |
Brimer et al. | Amygdalin degradation by Mucor circinelloides and Penicillium aurantiogriseum: mechanisms of hydrolysis |