TW202111387A - Head-mounted display apparatus and visual inspection method thereof - Google Patents

Head-mounted display apparatus and visual inspection method thereof Download PDF

Info

Publication number
TW202111387A
TW202111387A TW108132475A TW108132475A TW202111387A TW 202111387 A TW202111387 A TW 202111387A TW 108132475 A TW108132475 A TW 108132475A TW 108132475 A TW108132475 A TW 108132475A TW 202111387 A TW202111387 A TW 202111387A
Authority
TW
Taiwan
Prior art keywords
user
processor
vision
head
response
Prior art date
Application number
TW108132475A
Other languages
Chinese (zh)
Other versions
TWI704377B (en
Inventor
邱奕榮
黃士挺
李彥賢
塗宗偉
石維國
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW108132475A priority Critical patent/TWI704377B/en
Application granted granted Critical
Publication of TWI704377B publication Critical patent/TWI704377B/en
Publication of TW202111387A publication Critical patent/TW202111387A/en

Links

Images

Abstract

A head-mounted display apparatus and visual inspection method are provided. The head-mounted display apparatus is adapted to be disposed in front of eyes of a user and includes at least one display, at least on lens, a storage circuit and a processor. The display provides image light and the lens is disposed on the transmission path of the image light to transmit the image light to one eye. The storage circuit records a plurality of instructions. The processor is coupled to the display and the storage circuit and configured to execute the instructions to perform the following steps. A visual inspection pattern is displayed by controlling the display, such that a visual image including the visual inspection pattern is provided by the lens. A user response corresponding to the visual inspection pattern is received. A visual condition of the user is determined according to the user response.

Description

頭戴式顯示裝置與其視力檢查方法Head-mounted display device and its vision inspection method

本發明是有關於一種電子裝置,且特別是有關於一種頭戴式顯示裝置與其視力檢查方法。The present invention relates to an electronic device, and more particularly to a head-mounted display device and its vision inspection method.

隨著顯示技術的進步及人們對於高科技的渴望,虛擬實境(virtual reality)的技術已漸趨成熟,其中頭戴式顯示器(head mounted display,HMD)則是用以實現此技術的顯示器。近年來,隨著微型顯示器中的解析度越來越高,尺寸功耗越來越小,頭戴式顯示器亦發展成為一種攜帶式(portable)顯示裝置。一般而言,頭戴式顯示器通常會使用近眼顯示光學系統(Near Eye Display,NED)來顯示影像。為了製造出視場角更大的頭戴式顯示裝置,頭戴式顯示裝置之光學系統的設計(像是透鏡種類、透鏡尺寸或透鏡位置等等)與顯示螢幕的配置方式都是研發人員考量的重點,其可直接影響視覺感官的體驗效果。With the progress of display technology and people's desire for high technology, the technology of virtual reality (virtual reality) has gradually matured, and head mounted display (HMD) is the display used to realize this technology. In recent years, as the resolution of micro-displays has become higher and the size and power consumption have become smaller and smaller, the head-mounted display has also developed into a portable display device. Generally speaking, head-mounted displays usually use Near Eye Display (NED) to display images. In order to produce a head-mounted display device with a larger field of view, the design of the optical system of the head-mounted display device (such as lens type, lens size or lens position, etc.) and the configuration of the display screen are all considered by developers The key point, which can directly affect the experience of the visual sense organs.

然而,不同使用者的視力狀態皆有所差異。具體而言,有的人患有近視,有的人患有老花眼,有的人患有散光。甚至是,有的人患有色盲。再者,即便同樣患有近視,每個人的近視度數也不盡相同。換言之,每個人透過眼睛能夠看清楚的條件皆不相同,甚至具有很大的差別。因此,若頭戴式顯示裝置使用固定的配置方式提供影像給視力狀態不同的使用者,這些使用者的觀看體驗將會因為個人視力狀態而有相當的區別。However, the vision status of different users is different. Specifically, some people suffer from myopia, some people suffer from presbyopia, and some people suffer from astigmatism. Even some people suffer from color blindness. Moreover, even if the same person suffers from myopia, everyone's degree of myopia is not the same. In other words, the conditions under which everyone can see clearly through their eyes are different, and even have great differences. Therefore, if the head-mounted display device uses a fixed configuration to provide images to users with different vision status, the viewing experience of these users will be quite different due to their personal vision status.

有鑑於此,本發明提出一種頭戴式顯示裝置與其視力檢測方法,其可讓使用者透過提供虛擬實境的頭戴式顯示裝置進行視力檢測,並依據個人化的視力狀態來調整頭戴式顯示裝置的顯示設置。In view of this, the present invention provides a head-mounted display device and its vision detection method, which allows users to perform vision detection through a head-mounted display device that provides virtual reality, and adjust the head-mounted display device according to the personalized vision state. The display settings of the display device.

本發明提供一種頭戴式顯示裝置,適於配置於使用者的眼睛前方,其包括至少一顯示螢幕、至少一透鏡、儲存電路,以及處理器。所述顯示螢幕提供影像光束,而所述透鏡設置於影像光束的傳遞路徑上,將影像光束傳遞至眼睛。所述儲存電路儲存有多個指令。處理器耦接所述儲存電路與所述顯示螢幕,經配置執行所述指令以:控制所述顯示螢幕顯示視力檢查圖樣而使所述透鏡提供包括視力檢查圖樣的虛像。接收對應於視力檢查圖樣的使用者回應。依據使用者回應判斷使用者的視力狀態。The invention provides a head-mounted display device, which is suitable for being arranged in front of a user's eyes, and includes at least one display screen, at least one lens, a storage circuit, and a processor. The display screen provides an image light beam, and the lens is arranged on the transmission path of the image light beam to transmit the image light beam to the eyes. The storage circuit stores a plurality of instructions. The processor is coupled to the storage circuit and the display screen, and is configured to execute the instructions to control the display screen to display a visual inspection pattern so that the lens provides a virtual image including the visual inspection pattern. Receive a user response corresponding to the vision check pattern. Judge the user's vision status based on the user's response.

本發明提供一種視力檢測方法,適用於頭戴式顯示裝置。頭戴式顯示裝置適於配置於使用者的眼睛前方,且所述方法包括下列步驟。控制頭戴式顯示裝置的至少一顯示螢幕顯示視力檢查圖樣而使頭戴式顯示裝置的至少一透鏡提供包括視力檢查圖樣的虛像。接收對應於視力檢查圖樣的使用者回應。依據使用者回應判斷使用者的視力狀態。The invention provides a vision detection method, which is suitable for a head-mounted display device. The head-mounted display device is suitable for being placed in front of the user's eyes, and the method includes the following steps. The at least one display screen of the head-mounted display device is controlled to display the visual inspection pattern so that the at least one lens of the head-mounted display device provides a virtual image including the visual inspection pattern. Receive a user response corresponding to the vision check pattern. Judge the user's vision status based on the user's response.

基於上述,於本發明的實施例中,頭戴式顯示裝置可依據使用者的控制而顯示視力檢查圖樣,從而讓使用者可進行視力檢測。此外,基於使用者所下達的使用者回應,頭戴式顯示裝置可依據與使用者回應相關之視力檢查圖樣的顯示內容或顯示方式來確認使用者的視力狀態。Based on the above, in the embodiment of the present invention, the head-mounted display device can display the vision inspection pattern according to the user's control, so that the user can perform the vision inspection. In addition, based on the user response issued by the user, the head-mounted display device can confirm the user's vision status according to the display content or display mode of the vision check pattern related to the user's response.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的方法與裝置的範例。Part of the embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. The component symbols used in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only a part of the present invention, and do not disclose all the possible implementation modes of the present invention. More precisely, these embodiments are only examples of methods and devices within the scope of the patent application of the present invention.

圖1A是依照本發明實施例所繪示之頭戴式顯示裝置的方塊圖。圖1B是依照本發明實施例所繪示之頭戴式顯示裝置的示意圖。請同時參照圖1A與圖1B,頭戴式顯示裝置10適於配戴於使用者的頭部並可顯示畫面給使用者觀看,其包括穿戴件W1與主體B1。在本實施例中,主體B1是由殼體包覆各式元件而組成。上述元件可包括有透鏡110、顯示螢幕120、處理器130、驅動機構140、儲存電路150、顯示螢幕160,以及透鏡170。FIG. 1A is a block diagram of a head-mounted display device according to an embodiment of the present invention. FIG. 1B is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. Referring to FIGS. 1A and 1B at the same time, the head-mounted display device 10 is suitable for being worn on the head of a user and can display images for the user to view, and it includes a wearing part W1 and a main body B1. In this embodiment, the main body B1 is composed of a shell covering various elements. The above-mentioned components may include a lens 110, a display screen 120, a processor 130, a driving mechanism 140, a storage circuit 150, a display screen 160, and a lens 170.

顯示螢幕120、160分別用以提供包括影像內容的影像光束給使用者的左眼與右眼,例如是液晶顯示器(Liquid Crystal Display,LCD)、發光二極體(Light-Emitting Diode,LED)顯示器或其他種類的顯示器,本發明對此並不限制。The display screens 120 and 160 are respectively used to provide image light beams including image content to the left and right eyes of the user, such as liquid crystal displays (LCD) and light-emitting diode (LED) displays Or other types of displays, the present invention is not limited to this.

透鏡110、170分別對應於使用者的左眼與右眼,其分別設置於影像光束的傳遞路徑上,以分別將影像光束傳遞至使用者的左眼與右眼。透鏡110、170可以分別是由一或多片透鏡組成,本發明對此不限制。具體而言,使用者的左眼可透過透鏡110觀看顯示螢幕120,使用者的右眼可透過透鏡170觀看顯示螢幕160。藉由透鏡110、170的折射,使用者可以觀賞到基於近距離的顯示螢幕120、160所提供之畫面的虛像。透鏡110、170例如是菲涅爾透鏡或其他種類透鏡,本發明對此不限制。The lenses 110 and 170 respectively correspond to the left eye and the right eye of the user, and are respectively arranged on the transmission path of the image light beam to respectively transmit the image light beam to the left eye and the right eye of the user. The lenses 110 and 170 may be composed of one or more lenses, respectively, which is not limited in the present invention. Specifically, the user's left eye can view the display screen 120 through the lens 110, and the user's right eye can view the display screen 160 through the lens 170. Through the refraction of the lenses 110 and 170, the user can view the virtual image of the screen provided by the display screens 120 and 160 based on the close distance. The lenses 110 and 170 are, for example, Fresnel lenses or other types of lenses, and the present invention is not limited thereto.

透鏡110、170連接驅動機構140,驅動機構140可用以調整透鏡110、170的位置。或者,驅動機構140也可用以調整顯示螢幕120、160的位置。舉例而言,驅動機構140例如可包括步進馬達,以將透鏡110、170往遠離或靠近顯示螢幕120、160的方向推動。或者,驅動機構140可將顯示螢幕120、160往遠離或靠近使用者之雙眼的方向推動。The lenses 110 and 170 are connected to a driving mechanism 140, and the driving mechanism 140 can be used to adjust the positions of the lenses 110 and 170. Alternatively, the driving mechanism 140 can also be used to adjust the positions of the display screens 120 and 160. For example, the driving mechanism 140 may include a stepping motor to push the lenses 110 and 170 away from or close to the display screens 120 and 160. Alternatively, the driving mechanism 140 can push the display screens 120 and 160 in a direction away from or close to the eyes of the user.

儲存電路150例如是任意型式的固定式或可移動式隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)或其他類似裝置或這些裝置的組合,而用以記錄可由處理器130執行的多個指令,這些指令可載入處理器130。The storage circuit 150 is, for example, any type of fixed or removable random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), flash memory (Flash memory) or others. Similar devices or a combination of these devices are used to record multiple instructions that can be executed by the processor 130, and these instructions can be loaded into the processor 130.

處理器130例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置或這些裝置的組合。處理器130係耦接至顯示螢幕120、顯示螢幕160、驅動機構140以及儲存電路150,而可存取並執行記錄在儲存電路150中的指令,以實現本發明實施例的視力檢測方法。此外,處理器130可驅動顯示螢幕120、160,以使顯示螢幕120、160顯示畫面給使用者。The processor 130 is, for example, a central processing unit (Central Processing Unit, CPU), or other programmable general-purpose or special-purpose microprocessor (Microprocessor), digital signal processor (Digital Signal Processor, DSP), programmable Controllers, Application Specific Integrated Circuits (ASIC), Programmable Logic Device (PLD) or other similar devices or a combination of these devices. The processor 130 is coupled to the display screen 120, the display screen 160, the driving mechanism 140, and the storage circuit 150, and can access and execute the instructions recorded in the storage circuit 150 to implement the vision detection method of the embodiment of the present invention. In addition, the processor 130 can drive the display screens 120 and 160 so that the display screens 120 and 160 display images to the user.

應理解的,圖1B所繪示的頭戴式顯示裝置10僅為一實施範例,其並不是限制性的,而是僅為說明性的。依照設計需求,包括圖1A所示之各元件的頭戴式顯示裝置可以相異於圖1B範例的其他結構形式來體現。It should be understood that the head-mounted display device 10 shown in FIG. 1B is only an example of implementation, which is not restrictive, but merely illustrative. According to design requirements, the head-mounted display device including the components shown in FIG. 1A can be embodied in other structural forms different from the example of FIG. 1B.

然而,須先說明的是,為了清楚說明本發明實施例的視力檢測方法,後續實施例將以提供影像給單一隻眼睛的顯示螢幕120與透鏡110為例進行說明,具備通常知識者可理解相同的流程也可應用於提供影像給另一隻眼睛的顯示螢幕160與透鏡170。However, it should be noted that, in order to clearly explain the vision detection method of the embodiment of the present invention, the subsequent embodiments will take the display screen 120 and the lens 110 that provide images to a single eye as an example for description. Those with ordinary knowledge can understand the same. The process can also be applied to the display screen 160 and the lens 170 that provide images to the other eye.

圖2是依照本發明實施例所繪示之視力檢測方法的方法流程圖。請參照圖2,本實施例的方法適用於上述實施例中的頭戴式顯示裝置10,以下即搭配頭戴式顯示裝置10中的各項元件說明本實施例的詳細步驟。FIG. 2 is a method flowchart of the vision detection method according to an embodiment of the present invention. Please refer to FIG. 2, the method of this embodiment is applicable to the head-mounted display device 10 in the above-mentioned embodiment. The detailed steps of this embodiment are described below with various components in the head-mounted display device 10.

需要說明的是,當處理器130控制顯示螢幕120顯示視力檢查圖樣的同時,處理器130控制顯示螢幕160顯示黑畫面,以針對雙眼其中之一進行測量。相反的,當處理器130控制顯示螢幕160顯示視力檢查圖樣的同時,處理器130控制顯示螢幕120顯示黑畫面,以針對雙眼其中之另一進行測量。It should be noted that while the processor 130 controls the display screen 120 to display the vision check pattern, the processor 130 controls the display screen 160 to display a black screen to measure one of the eyes. On the contrary, while the processor 130 controls the display screen 160 to display the vision check pattern, the processor 130 controls the display screen 120 to display a black screen to measure the other of the eyes.

首先,於步驟S201,處理器130控制至少一顯示螢幕120顯示視力檢查圖樣而使至少一透鏡110提供包括視力檢查圖樣的虛像。視力檢查圖樣依據其檢測項目而可呈現不同的圖樣內容。一般而言,視力檢測圖樣可包括字母、數字、幾何符號或經設計的檢測圖樣等等。當顯示螢幕120顯示視力檢查圖樣時,使用者可透過語音輸入或控制手杖(Wand)的操控來控制視力檢查圖樣的顯示方式或圖樣內容。此外,頭戴式顯示裝置10是基於虛像成像原理而讓使用者的眼睛看到包括視力檢查圖樣的虛像。此虛像與眼睛之間的虛像距離取決於透鏡110的物理焦距以及顯示螢幕120與透鏡110之間的間距。於一應用範例中,以鏡片焦距設計為9mm的透鏡110為例,倘若顯示螢幕120與透鏡110之間的間距為36mm,則虛像距離為0.5m;倘若顯示螢幕120與透鏡110之間的間距為34mm,則虛像距離為0.333m。First, in step S201, the processor 130 controls the at least one display screen 120 to display a vision check pattern so that the at least one lens 110 provides a virtual image including the vision check pattern. The visual inspection pattern can present different pattern contents according to the inspection items. Generally speaking, the vision test pattern may include letters, numbers, geometric symbols, or designed test patterns, and so on. When the visual inspection pattern is displayed on the display screen 120, the user can control the display mode of the visual inspection pattern or the content of the pattern through voice input or manipulation of a wand. In addition, the head-mounted display device 10 is based on the principle of virtual image imaging to allow the user's eyes to see a virtual image including a visual inspection pattern. The virtual image distance between the virtual image and the eye depends on the physical focal length of the lens 110 and the distance between the display screen 120 and the lens 110. In an application example, taking the lens 110 with a lens focal length of 9mm as an example, if the distance between the display screen 120 and the lens 110 is 36mm, the virtual image distance is 0.5m; if the distance between the display screen 120 and the lens 110 If it is 34mm, the virtual image distance is 0.333m.

接著,於步驟S202,處理器130接收對應於視力檢查圖樣的使用者回應。於步驟S203,處理器130依據使用者回應判斷使用者的視力狀態。承上述,當顯示螢幕120顯示視力檢查圖樣時,使用者可透過語音輸入或控制手杖的操控來控制顯示螢幕120與/或透鏡係的配置狀態,從而進一步控制視力檢查圖樣的顯示方式或圖樣內容。因此,響應於處理器130偵測到使用者回應,處理器130將判斷顯示螢幕120與/或透鏡110的當下配置狀態,從而依據上述當下配置狀態決定使用者的視力狀態。上述的視力狀態可以是眼睛的近視度數、老花度數、散光軸度、散光度數、視力解析度,或者是否患有色盲等等。然而,針對不同的視力檢測項目,顯示螢幕120與/或透鏡110的控制方式也不同,以下將列舉實施例以更清楚說明之。Next, in step S202, the processor 130 receives a user response corresponding to the vision check pattern. In step S203, the processor 130 determines the user's vision state based on the user's response. In view of the above, when the visual inspection pattern is displayed on the display screen 120, the user can control the configuration state of the display screen 120 and/or the lens system through voice input or the manipulation of the control stick, thereby further controlling the display mode of the visual inspection pattern or the content of the pattern. . Therefore, in response to the processor 130 detecting the user's response, the processor 130 will determine the current configuration state of the display screen 120 and/or the lens 110, and thereby determine the user's vision state according to the above current configuration state. The aforementioned visual state may be the degree of myopia, the degree of presbyopia, the axial degree of astigmatism, the degree of astigmatism, the resolution of vision, or whether they suffer from color blindness, etc. However, for different vision detection items, the control method of the display screen 120 and/or the lens 110 is also different, and the following examples will be listed to explain more clearly.

圖3是依據本發明一實施例所繪示的視力檢測方法的流程圖。請參照圖3,本實施例的方法適用於上述實施例中的頭戴式顯示裝置10,以下即搭配頭戴式顯示裝置10中的各項元件說明本實施例的詳細步驟。FIG. 3 is a flowchart of a vision detection method according to an embodiment of the present invention. Please refer to FIG. 3, the method of this embodiment is applicable to the head-mounted display device 10 in the above-mentioned embodiment. The detailed steps of this embodiment are described below with various components in the head-mounted display device 10.

於步驟S301,處理器130驅動顯示螢幕120顯示包括視力檢測圖樣的圖形介面。於步驟S302,處理器130偵測使用者的控制指令。上述之使用者的控制指令例如是使用者透過控制手杖點選圖形介面中的箭頭圖樣。於步驟S303,處理器130依據使用者下達的控制指令來控制驅動機構140調整至少一顯示螢幕120與至少一透鏡110之間的間距,而使虛像與眼睛之間的虛像距離於預設區間內改變。與此同時,處理器130偵測使用者的使用者回應。詳細而言,處理器130可透過推動顯示螢幕120或透鏡110而調整顯示螢幕120與110之間的間距。響應於螢幕120與110之間間距的改變,虛像與眼睛之間的虛像距離也對應改變。In step S301, the processor 130 drives the display screen 120 to display a graphical interface including a vision detection pattern. In step S302, the processor 130 detects the user's control command. The above-mentioned user's control command is, for example, the user clicks on the arrow pattern in the graphical interface through the control stick. In step S303, the processor 130 controls the driving mechanism 140 to adjust the distance between the at least one display screen 120 and the at least one lens 110 according to the control command issued by the user, so that the virtual image distance between the virtual image and the eye is within a preset interval change. At the same time, the processor 130 detects the user's user response. In detail, the processor 130 can adjust the distance between the display screens 120 and 110 by pushing the display screen 120 or the lens 110. In response to the change in the distance between the screens 120 and 110, the virtual image distance between the virtual image and the eyes also changes correspondingly.

之後,於步驟S304,處理器130響應於接收到使用者回應而獲取預設區間內的選定虛像距離。於步驟S305,處理器130依據選定虛像距離判斷眼睛的屈光度。承上述,由於虛像與眼睛之間的虛像距離可基於使用者的控制指令遞增或遞減,因此患有近視或老花的使用者將感受到包括視力檢測圖樣之虛像的清晰程度也將對應虛像距離而有所不同。因此,於本實施例中,當改變顯示螢幕120與110之間的間距的時候,一旦使用者覺得可清晰地看清視力檢測圖樣時,使用者可透過控制手杖發出使用者回應。上述的使用者回應可以是使用者按壓控制手杖上的按鈕或使用者透過控制手杖點選圖形介面的特定icon。響應於使用者回應,處理器130可獲取使用者主覺可清看清視力檢測圖樣的選定虛像距離。基此,處理器130可依據使用者回應選定的選定虛像距離判斷眼睛的屈光度。上述屈光度可以是近視度數或老花度數。After that, in step S304, the processor 130 obtains the selected virtual image distance in the preset interval in response to receiving the user response. In step S305, the processor 130 determines the refractive power of the eye according to the selected virtual image distance. In view of the above, since the virtual image distance between the virtual image and the eyes can be increased or decreased based on the user's control commands, users suffering from myopia or presbyopia will feel that the clarity of the virtual image including the vision detection pattern will also correspond to the virtual image distance It's different. Therefore, in this embodiment, when the distance between the display screens 120 and 110 is changed, once the user feels that the vision detection pattern can be clearly seen, the user can send a user response through the control stick. The above-mentioned user response may be that the user presses a button on the control stick or the user clicks a specific icon on the graphical interface through the control stick. In response to the user's response, the processor 130 may obtain the selected virtual image distance at which the user can clearly see the vision detection pattern. Based on this, the processor 130 can determine the diopter of the eye according to the selected virtual image distance selected by the user in response. The above-mentioned refractive power may be myopia power or presbyopia power.

於本發明的一實施例中,當進行近視程度的檢測時,處理器130控制驅動機構140逐漸增加顯示螢幕120與透鏡110之間的間距,而使虛像與眼睛之間的虛像距離於預設區間中的第一預設區間內逐漸遞增。上述之第一預設區間例如是0.25公尺至5公尺。接著,處理器130響應於接收到使用者回應而獲取選定虛像距離中的第一選定虛像距離,並依據第一選定虛像距離判斷眼睛的近視度數。In an embodiment of the present invention, when detecting the degree of myopia, the processor 130 controls the driving mechanism 140 to gradually increase the distance between the display screen 120 and the lens 110, so that the virtual image distance between the virtual image and the eye is at a preset value. The interval gradually increases within the first preset interval. The aforementioned first predetermined interval is, for example, 0.25 meters to 5 meters. Then, the processor 130 obtains the first selected virtual image distance among the selected virtual image distances in response to receiving the user's response, and determines the myopia degree of the eye according to the first selected virtual image distance.

舉例而言,圖4A與圖4B是依據本發明一實施例所繪示的檢測近視度數的示意圖。請參照圖4A與圖4B,處理器130可驅動顯示螢幕120顯示圖形介面41。圖形介面41包括視力檢測圖樣40,視力檢測圖樣40於此示範為大寫英文字母「E」。此外,圖形介面41還包括箭頭圖示(icon)42、43以及近視度數顯示圖示(icon)44。使用者可透過控制手杖將游標移動至箭頭圖示42或箭頭圖示43而下達控制指令。處理器130將依據上述控制指令控制驅動機構140逐漸增加顯示螢幕120與透鏡110之間的間距。For example, FIGS. 4A and 4B are schematic diagrams of detecting myopia according to an embodiment of the present invention. 4A and 4B, the processor 130 can drive the display screen 120 to display the graphic interface 41. The graphical interface 41 includes a vision detection pattern 40, and the vision detection pattern 40 is illustrated as a capital English letter "E" here. In addition, the graphical interface 41 further includes arrow icons (icons) 42 and 43 and a nearsightedness display icon (icon) 44. The user can move the cursor to the arrow icon 42 or the arrow icon 43 by controlling the stick to give control commands. The processor 130 will control the driving mechanism 140 to gradually increase the distance between the display screen 120 and the lens 110 according to the above-mentioned control command.

於圖4B的範例中,驅動機構140推動鏡片110往靠近眼睛E1的方向移動,從而使顯示螢幕120與透鏡110之間的間距自距離G1開始逐漸增加。對應的,眼睛E1與虛像V1之間的虛像距離將自距離Vd1逐漸遞增。對於近視患者而言,虛像V1距離眼睛E1越來越遠,因而使用者可能發現再也無法清晰地看到視力檢測圖樣40。於本範例實施例中,當顯示螢幕120與透鏡110之間的間距為距離G2時,使用者可清晰地看清楚視力檢測圖樣40。但是,當顯示螢幕120與透鏡110之間的間距大於距離G2時,使用者將無法清晰地看清楚視力檢測圖樣40。換言之,距離G2為使用者眼睛可看清楚的最遠距離。因此,當顯示螢幕120與透鏡110之間的間距為距離G2且眼睛E1與虛像V1之間的虛像距離為距離Vd2時,使用者可透過控制手杖點選近視度數顯示圖示44以提供使用者回應。In the example of FIG. 4B, the driving mechanism 140 pushes the lens 110 to move closer to the eye E1, so that the distance between the display screen 120 and the lens 110 gradually increases from the distance G1. Correspondingly, the virtual image distance between the eye E1 and the virtual image V1 will gradually increase from the distance Vd1. For myopia patients, the virtual image V1 is getting farther and farther from the eye E1, so the user may find that the vision detection pattern 40 can no longer be clearly seen. In this exemplary embodiment, when the distance between the display screen 120 and the lens 110 is the distance G2, the user can clearly see the vision detection pattern 40. However, when the distance between the display screen 120 and the lens 110 is greater than the distance G2, the user will not be able to see the vision detection pattern 40 clearly. In other words, the distance G2 is the farthest distance that the user's eyes can see clearly. Therefore, when the distance between the display screen 120 and the lens 110 is the distance G2 and the virtual image distance between the eye E1 and the virtual image V1 is the distance Vd2, the user can click the myopia display icon 44 by controlling the stick to provide the user with Response.

於是,處理器130可響應於接收到使用者點選近視度數顯示圖示44而獲取眼睛E1與虛像V1之間的選定虛像距離(即第一選定虛像距離)為距離Vd2。處理器130接著可依據距離Vd2判斷眼睛E1的近視度數。就一般的近視檢測標準而言,近視度數大約等於可以看清楚之最遠距離的倒數乘上100。像是,當眼睛可以看清楚的最遠距離為0.5公尺時,代表眼睛近視200度。當眼睛可以看清楚的最遠距離為0.25公尺時,代表眼睛近視400度。於本發明的實施例中,儲存電路150可儲存有依據上述近視檢測標準所建立的查找表,因而處理器130可在依據使用者回應所對應的選定虛像距離查找上述查找表而獲取使用者的近視度數。表1為查找表的範例,但並非用以限定本發明。 表1 近視度數 選定虛像距離 100 1.00m 200 0.50m 400 0.25m 500 0.20m Accordingly, the processor 130 may obtain the selected virtual image distance (ie, the first selected virtual image distance) between the eye E1 and the virtual image V1 as the distance Vd2 in response to receiving the user clicking the myopia display icon 44. The processor 130 can then determine the degree of myopia of the eye E1 according to the distance Vd2. As far as general myopia detection standards are concerned, the degree of myopia is approximately equal to the reciprocal of the farthest distance that can be seen clearly multiplied by 100. For example, when the maximum distance that the eyes can see clearly is 0.5 meters, it means that the eyes are nearsighted by 200 degrees. When the farthest distance that the eyes can see clearly is 0.25 meters, it means that the eyes are nearsighted 400 degrees. In the embodiment of the present invention, the storage circuit 150 may store a look-up table established according to the above-mentioned myopia detection criteria, so the processor 130 may search the above-mentioned look-up table according to the selected virtual image distance corresponding to the user's response to obtain the user The degree of myopia. Table 1 is an example of a lookup table, but it is not used to limit the present invention. Table 1 Myopia Selected virtual image distance 100 1.00m 200 0.50m 400 0.25m 500 0.20m

另一方面,於本發明的一實施例中,當進行老花程度的檢測時,處理器130控制驅動機構140逐漸減少顯示螢幕120與透鏡110之間的間距,而使虛像與眼睛之間的虛像距離於預設區間中的第二預設區間內逐漸遞減。上述之第一預設區間例如是1公尺至0.1公尺。接著,處理器130響應於接收到使用者回應而獲取選定虛像距離中的第二選定虛像距離,並依據第二選定虛像距離判斷眼睛的老花度數。On the other hand, in an embodiment of the present invention, when detecting the degree of presbyopia, the processor 130 controls the driving mechanism 140 to gradually reduce the distance between the display screen 120 and the lens 110, so that the gap between the virtual image and the eye The virtual image distance gradually decreases in the second preset interval in the preset interval. The aforementioned first predetermined interval is, for example, 1 meter to 0.1 meter. Then, the processor 130 obtains the second selected virtual image distance among the selected virtual image distances in response to receiving the user's response, and determines the presbyopia degree of the eye according to the second selected virtual image distance.

舉例而言,圖5A與圖5B是依據本發明一實施例所繪示的檢測老花度數的示意圖。請參照圖5A與圖5B,處理器130可驅動顯示螢幕120顯示圖形介面51。圖形介面51包括視力檢測圖樣50,視力檢測圖樣50於此示範為大寫英文字母「E」。此外,圖形介面51還包括箭頭圖示(icon)52、53以及老花度數顯示圖示(icon)54。使用者可透過控制手杖將游標移動至箭頭圖示52或箭頭圖示53而下達控制指令。處理器130將依據上述控制指令控制驅動機構140逐漸減少顯示螢幕120與透鏡110之間的間距。For example, FIGS. 5A and 5B are schematic diagrams of detecting presbyopia according to an embodiment of the present invention. Referring to FIGS. 5A and 5B, the processor 130 can drive the display screen 120 to display the graphic interface 51. The graphical interface 51 includes a vision detection pattern 50, and the vision detection pattern 50 is exemplified here as a capital English letter "E". In addition, the graphic interface 51 further includes arrow icons (icons) 52 and 53 and a presbyopia degree display icon (icon) 54. The user can move the cursor to the arrow icon 52 or the arrow icon 53 by controlling the stick to give a control command. The processor 130 will control the driving mechanism 140 to gradually reduce the distance between the display screen 120 and the lens 110 according to the above-mentioned control command.

於圖5B的範例中,驅動機構140推動鏡片110往遠離眼睛E2的方向移動,從而使顯示螢幕120與透鏡110之間的間距自距離G3開始逐漸減少。對應的,眼睛E2與虛像V2之間的虛像距離將從距離Vd3逐漸遞減。對於老花患者而言,虛像V2距離眼睛E2越來越近,因而使用者可能發現再也無法清晰地看到視力檢測圖樣50。於本範例實施例中,當顯示螢幕120與透鏡110之間的間距為距離G4時,使用者可清晰地看清楚視力檢測圖樣50。電視,當顯示螢幕120與透鏡110之間的間距小於距離G4時,使用者將再也無法清晰地看清楚視力檢測圖樣50。換言之,距離G4為使用者可以看清楚的最近距離。因此,當顯示螢幕120與透鏡110之間的間距為距離G4且眼睛E2與虛像V2之間的虛像距離為距離Vd4時,使用者將透過控制手杖點選老花度數顯示圖示44以提供使用者回應。In the example of FIG. 5B, the driving mechanism 140 pushes the lens 110 to move away from the eye E2, so that the distance between the display screen 120 and the lens 110 gradually decreases from the distance G3. Correspondingly, the virtual image distance between the eye E2 and the virtual image V2 will gradually decrease from the distance Vd3. For the presbyopic patient, the virtual image V2 is getting closer and closer to the eye E2, so the user may find that the vision test pattern 50 can no longer be clearly seen. In this exemplary embodiment, when the distance between the display screen 120 and the lens 110 is the distance G4, the user can clearly see the vision detection pattern 50. In a television, when the distance between the display screen 120 and the lens 110 is less than the distance G4, the user will no longer be able to clearly see the vision detection pattern 50 clearly. In other words, the distance G4 is the closest distance that the user can see clearly. Therefore, when the distance between the display screen 120 and the lens 110 is the distance G4 and the virtual image distance between the eye E2 and the virtual image V2 is the distance Vd4, the user will click on the presbyopic power display icon 44 by controlling the walking stick to provide use The person responded.

於是,處理器130可響應於接收到使用者點選老花度數顯示圖示54而獲取眼睛E2與虛像V2之間的選定虛像距離(即第二選定虛像距離)為距離Vd4。處理器130接著可依據距離Vd4判斷眼睛E2的老花度數。相似的,於本發明的實施例中,儲存電路150可儲存有關聯於老花度數的查找表,上述查找表可記錄有多筆老花度數以及與各筆老花度數對應的選定虛像距離。因此,處理器130可在依據使用者回應所對應的選定虛像距離查找上述查找表而獲取使用者的老花度數。Accordingly, the processor 130 may obtain the selected virtual image distance (ie, the second selected virtual image distance) between the eye E2 and the virtual image V2 as the distance Vd4 in response to receiving the user clicking the presbyopia display icon 54. The processor 130 can then determine the presbyopia degree of the eye E2 according to the distance Vd4. Similarly, in the embodiment of the present invention, the storage circuit 150 may store a look-up table associated with the presbyopia degree. The look-up table may record multiple presbyopia degrees and the selected virtual image distance corresponding to each presbyopia degree. Therefore, the processor 130 can search the above-mentioned look-up table according to the selected virtual image distance corresponding to the user's response to obtain the user's presbyopia degree.

值得一提的是,在進行近視程度與老花程度的視力檢測之後,處理器130可將使用者的屈光度(即近視度數與/或老花度數)記錄於儲存電路150。之後,當使用者欲使用頭戴式顯示裝置10時,處理器130可依據記錄下來的屈光度自動調整顯示螢幕120與透鏡110之間的間距來控制另一虛像的成像位置。換言之,頭戴式顯示裝置10可依據使用者雙眼的屈光度分別進行個人化的自動調整,從而讓使用者可清晰的看清楚頭戴式顯示裝置10提供的虛像畫面。It is worth mentioning that after performing vision detection of the degree of myopia and presbyopia, the processor 130 may record the user's diopter (ie, the degree of myopia and/or the degree of presbyopia) in the storage circuit 150. Later, when the user wants to use the head-mounted display device 10, the processor 130 can automatically adjust the distance between the display screen 120 and the lens 110 according to the recorded diopter to control the imaging position of another virtual image. In other words, the head-mounted display device 10 can be individually and automatically adjusted according to the diopters of the user's eyes, so that the user can clearly see the virtual image provided by the head-mounted display device 10.

圖6是依據本發明一實施例所繪示的視力檢測方法的流程圖。請參照圖6,本實施例的方法適用於上述實施例中的頭戴式顯示裝置10,以下即搭配頭戴式顯示裝置10中的各項元件說明本實施例的詳細步驟。Fig. 6 is a flowchart of a vision detection method according to an embodiment of the present invention. Please refer to FIG. 6, the method of this embodiment is applicable to the head-mounted display device 10 in the above-mentioned embodiment. The detailed steps of this embodiment are described below with various components in the head-mounted display device 10.

須先說明的是,於本實施例中,視力檢查圖樣可包括對應至多個預設視力解析度的多個子圖樣。上述子圖案可以是對應至不同圖樣尺寸的相同符號或字元,並基於所對應的圖樣尺寸而對應至不同的預設視力解析度。It should be noted that, in this embodiment, the vision check pattern may include a plurality of sub-patterns corresponding to a plurality of preset vision resolutions. The aforementioned sub-patterns may be the same symbols or characters corresponding to different pattern sizes, and correspond to different preset vision resolutions based on the corresponding pattern sizes.

於步驟S601,處理器130依據使用者下達的控制指令來控制顯示螢幕120依序顯示對應至多個預設視力解析度的子圖樣。具體而言,處理器130可依據控制指令控制顯示螢幕120依序顯示對應至不同圖樣尺寸的子圖樣。於一實施例中,上述之使用者的控制指令例如是使用者透過控制手杖點選圖形介面中的箭頭圖樣或其他提示圖示。於步驟S602,處理器130偵測使用者回應。上述之使用者回應可以是使用者點選特定圖示的回應操作,或是使用者回覆不正確答案的回應操作。In step S601, the processor 130 controls the display screen 120 to sequentially display sub-patterns corresponding to a plurality of preset vision resolutions according to the control command issued by the user. Specifically, the processor 130 can control the display screen 120 to sequentially display sub-patterns corresponding to different pattern sizes according to the control command. In one embodiment, the above-mentioned user's control command is, for example, the user clicks on an arrow pattern or other prompt icon in the graphical interface through a control stick. In step S602, the processor 130 detects the user's response. The above-mentioned user response may be a response operation of the user clicking a specific icon, or a response operation of the user replying to an incorrect answer.

於步驟S603,響應於在顯示子圖樣其中一者時接收到使用者回應,處理器130取得對應至子圖樣其中所述一者所對應的預設視力解析度。於步驟S604,處理器130將對應至子圖樣其中所述一者所對應的預設視力解析度判斷為眼睛的實際視力解析度。換言之,藉由依序顯示不同圖樣尺寸的子圖樣,處理器130可依據使用者回應而判斷出眼睛的實際視力解析度。可知的,眼睛的視力解析度越佳,使用者可看清楚圖樣尺寸越小的子圖樣。In step S603, in response to receiving a user response when one of the sub-patterns is displayed, the processor 130 obtains the default vision resolution corresponding to the one of the sub-patterns. In step S604, the processor 130 determines the preset vision resolution corresponding to the one of the sub-patterns as the actual vision resolution of the eye. In other words, by sequentially displaying sub-patterns of different pattern sizes, the processor 130 can determine the actual vision resolution of the eye according to the user's response. It can be seen that the better the vision resolution of the eyes, the user can clearly see the sub-pattern with the smaller pattern size.

舉例而言,圖7是依據本發明一實施例所繪示的檢測視力解析度的示意圖。請參照圖7,處理器130可先控制顯示螢幕120顯示包括第一尺寸之子圖樣70a的圖形介面71。於本實施範例中,顯示螢幕120顯示包括第一字型大小之英文字母「E」。圖形介面71還包括箭頭圖示(icon)72、73以及視力顯示圖示(icon)74。若使用者自覺可清晰的觀看到子圖樣70a,使用者可透過控制手杖點選箭頭圖示73。之後,處理器130可控制顯示螢幕120顯示包括第二尺寸之子圖樣70b的圖形介面75。於本實施範例中,顯示螢幕120顯示包括第二字型大小之英文字母「E」。第二尺寸小於第一尺寸。假設使用者覺得看不清楚子圖樣70b,使用者可透過控制手杖移動游標而點選視力顯示圖示74。基此,處理器130可響應於在顯示子圖樣70b時接收到使用者點選視力顯示圖示74的使用者回應,而取得對應至子圖樣70b所對應的預設視力解析度「0.2」,並將預設視力解析度「0.2」判斷為使用者的實際視力解析度。For example, FIG. 7 is a schematic diagram of detecting vision resolution according to an embodiment of the present invention. Please refer to FIG. 7, the processor 130 may first control the display screen 120 to display the graphic interface 71 including the sub-pattern 70 a of the first size. In this embodiment, the display screen 120 displays the English letter "E" including the first font size. The graphical interface 71 also includes arrow icons (icons) 72 and 73 and a vision display icon (icon) 74. If the user can clearly see the sub-pattern 70a consciously, the user can click the arrow icon 73 by controlling the stick. After that, the processor 130 may control the display screen 120 to display the graphic interface 75 including the sub-pattern 70b of the second size. In this embodiment, the display screen 120 displays the English letter "E" including the second font size. The second size is smaller than the first size. Assuming that the user feels that the sub-pattern 70b cannot be seen clearly, the user can click the vision display icon 74 by controlling the stick to move the cursor. Based on this, the processor 130 can obtain the default vision resolution "0.2" corresponding to the sub-pattern 70b in response to the user's response that the user clicks the vision display icon 74 when the sub-pattern 70b is displayed. And the default vision resolution "0.2" is judged as the user's actual vision resolution.

值得一提的是,圖7所示範例係由使用者自覺是否可清楚看到子圖樣為依據而判斷實際視力解析度。於另一實施例中,處理器130可透過圖形介面通知使用者依據子圖樣的內容或特性做出回答,處理器130便可依據使用者的回答是否正確而客觀判斷使用者的實際視力解析度。舉例而言,不同圖樣尺寸之子圖樣更可以分別具備不同的開口方向,使用者可透過揮動控制手杖回答子圖樣的開口方向。一旦使用者回答錯誤的開口方向,處理器130便可判定收到使用者回應而判斷出使用者的實際視力解析度。It is worth mentioning that the example shown in FIG. 7 is based on whether the user can clearly see the sub-patterns to determine the actual vision resolution. In another embodiment, the processor 130 can notify the user to make an answer based on the content or characteristics of the sub-pattern through a graphical interface, and the processor 130 can objectively determine the user's actual vision resolution according to whether the user's answer is correct. . For example, sub-patterns of different pattern sizes can also have different opening directions, and the user can answer the opening directions of the sub-patterns by waving the control stick. Once the user answers the wrong direction of the opening, the processor 130 can determine the user's response and determine the user's actual vision resolution.

此外,於本發明的一實施例中,處理器130可據使用者一眼的實際視力解析度控制顯示螢幕120的顯示解析度。具體而言,當實際視力解析度為第一值時,顯示螢幕120所顯示之畫面的顯示解析度被調整為第一解析度。當實際視力解析度為低於第一值的第二值時,顯示螢幕120所顯示之畫面的顯示解析度被調整為低於第一解析度的第二解析度。具體而言,對於實際視力解析度不佳的使用者而言,即便提供再好的顯示解析度,也可能受限於使用者的視力不佳而不會提高觀看體驗。基此,當使用者的實際視力解析度越低,顯示螢幕120所顯示之畫面的顯示解析度可被配置越低。藉此,隨著顯示解析度的降低,處理畫面的運算資源可明顯降低。相似的,處理器130也可據使用者另一眼的實際視力解析度控制顯示螢幕160的顯示解析度。舉例而言,處理器130可依據表2來調整顯示解析度。其中,表2中的VGA為視訊圖形陣列(video graphic array),而2K、4K、8K為對應至不同解析度的高解析度(high-definition,HD)。換言之,當實際視力解析度不佳的使用者使用頭戴式顯示裝置10時,本發明可在不影響使用者體驗的情況下提高畫面處理速度。 表2 實際視力解析度 0.1 0.12 0.2 0.8 1.0 1.5 2.0 解析度 VGA 2K 4K 8K In addition, in an embodiment of the present invention, the processor 130 can control the display resolution of the display screen 120 according to the user's actual vision resolution at a glance. Specifically, when the actual vision resolution is the first value, the display resolution of the screen displayed on the display screen 120 is adjusted to the first resolution. When the actual vision resolution is a second value lower than the first value, the display resolution of the picture displayed on the display screen 120 is adjusted to a second resolution lower than the first resolution. Specifically, for users with poor eyesight resolution, even if the display resolution is provided, it may be limited by the poor eyesight of the user and will not improve the viewing experience. Based on this, when the user's actual vision resolution is lower, the display resolution of the screen displayed on the display screen 120 can be configured to be lower. In this way, as the display resolution decreases, the computing resources for processing images can be significantly reduced. Similarly, the processor 130 can also control the display resolution of the display screen 160 according to the actual vision resolution of the user's other eye. For example, the processor 130 may adjust the display resolution according to Table 2. Among them, VGA in Table 2 is a video graphic array, and 2K, 4K, and 8K are high-definition (HD) corresponding to different resolutions. In other words, when a user with poor actual vision resolution uses the head-mounted display device 10, the present invention can increase the screen processing speed without affecting the user's experience. Table 2 Actual vision resolution 0.1 0.12 0.2 0.8 1.0 1.5 2.0 Resolution VGA 2K 4K 8K

圖8是依據本發明一實施例所繪示的視力檢測方法的流程圖。請參照圖8,本實施例的方法適用於上述實施例中的頭戴式顯示裝置10,以下即搭配頭戴式顯示裝置10中的各項元件說明本實施例的詳細步驟。FIG. 8 is a flowchart of a vision detection method according to an embodiment of the present invention. Please refer to FIG. 8, the method of this embodiment is applicable to the head-mounted display device 10 in the above-mentioned embodiment. The detailed steps of this embodiment are described below with various components in the head-mounted display device 10.

於步驟S801,處理器130控制顯示螢幕120顯示關聯於色盲檢測的視力檢查圖樣。換言之,視力檢查圖樣為經過設計的色盲檢測圖樣。於步驟S802,處理器130偵測使用者回應。使用者可透過控制手杖回答色盲檢測圖樣所表示的數字或字符。正常人與色盲患者經有不同的回答答案。因此,於步驟S803,處理器130判斷使用者回應是否正確。若否,於步驟S804,處理器130判定使用者具有色盲。若是,於步驟S805,處理器130判定使用者不具有色盲。In step S801, the processor 130 controls the display screen 120 to display a vision check pattern related to color blindness detection. In other words, the vision inspection pattern is a designed color blindness inspection pattern. In step S802, the processor 130 detects the user's response. The user can answer the numbers or characters represented by the color blindness detection pattern by controlling the stick. Normal people and color blind patients have different answers. Therefore, in step S803, the processor 130 determines whether the user response is correct. If not, in step S804, the processor 130 determines that the user has color blindness. If yes, in step S805, the processor 130 determines that the user does not have color blindness.

舉例而言,圖9是依據本發明一實施例所繪示的檢測色盲的示意圖。顯示螢幕120顯示包括色盲檢測圖樣90的圖形介面91。此外,圖形介面91更包括確認圖示92與回答欄位93。使用者可在觀看色盲檢測圖樣90,藉由控制手杖於回答欄位93回答色盲檢測圖樣90所表示的數字,並在完成回答之後點選確認圖示92。藉此,處理器130可依據使用者於回答欄位93所輸入的資訊是否正確判斷使用者是否患有色盲。For example, FIG. 9 is a schematic diagram of detecting color blindness according to an embodiment of the present invention. The display screen 120 displays a graphical interface 91 including a color blindness detection pattern 90. In addition, the graphical interface 91 further includes a confirmation icon 92 and an answer field 93. The user can watch the color blindness detection pattern 90, answer the number indicated by the color blindness detection pattern 90 in the answer column 93 by controlling the stick, and click the confirmation icon 92 after completing the answer. In this way, the processor 130 can determine whether the user suffers from color blindness according to whether the information input by the user in the answer field 93 is correct.

於本發明的一實施例中,當處理器130判定使用者有色盲時,顯示螢幕120以第一色彩深度顯示畫面。當處理器130判定使用者沒有色盲,顯示螢幕120以第二色彩深度顯示畫面。詳細而言,對於患有色盲的使用者而言,其色彩辨識率並不佳,因此顯示過多顏色反而浪費運算資源。因此,當使用者有色盲時,處理器130可控制顯示螢幕120以顏色種類較少的第一色彩深度顯示畫面。當使用者玫有色盲時,處理器130可控制顯示螢幕120以顏色種類較多的第二色彩深度顯示畫面。第一色彩深度例如是8位元的色彩深度,而第二色彩深度例如是24位元的色彩深度。換言之,當患有色盲的使用者使用頭戴式顯示裝置10時,本發明可在不影響使用者體驗的情況下提高畫面處理速度。In an embodiment of the present invention, when the processor 130 determines that the user is color-blind, the display screen 120 displays the image at the first color depth. When the processor 130 determines that the user is not color-blind, the display screen 120 displays the image in the second color depth. In detail, for users suffering from color blindness, the color recognition rate is not good, so displaying too many colors wastes computing resources. Therefore, when the user is color-blind, the processor 130 can control the display screen 120 to display the image in the first color depth with fewer color types. When the user is color-blind, the processor 130 can control the display screen 120 to display the image in the second color depth with more color types. The first color depth is, for example, an 8-bit color depth, and the second color depth is, for example, a 24-bit color depth. In other words, when a user suffering from color blindness uses the head-mounted display device 10, the present invention can increase the screen processing speed without affecting the user experience.

圖10是依據本發明一實施例所繪示的頭戴示顯是裝置的方塊圖。請參照圖10,本實施例的頭戴式顯示裝置20與頭戴式顯示裝置10差別在於,頭戴式顯示裝置20更包括旋轉驅動機構180、插槽H1、插槽H2、輔助柱狀鏡190a,以及輔助柱狀鏡190b。FIG. 10 is a block diagram of a head-mounted display device according to an embodiment of the present invention. 10, the head-mounted display device 20 of this embodiment is different from the head-mounted display device 10 in that the head-mounted display device 20 further includes a rotation driving mechanism 180, a slot H1, a slot H2, and an auxiliary lenticular lens. 190a, and auxiliary lenticular lens 190b.

輔助柱狀鏡190a、190b可設置於影像光束的傳遞路徑,用以改變特定方向的光折射率,因而可達到矯正散光與測量散光度數的功能。於本發明的實施例中,頭戴式顯示裝置20的機構可經設計而具有分別位於雙眼前方的插槽H1與插槽H2。輔助柱狀鏡190a、190b適於分別插入至插槽H1與插槽H2。旋轉驅動機構180連接處理器130與輔助柱狀鏡190a、190b,旋轉驅動機構180用以旋轉插槽H1、H2內的輔助柱狀鏡190a、190b。The auxiliary lenticular lenses 190a and 190b can be arranged in the transmission path of the image beam to change the refractive index of the light in a specific direction, so as to achieve the functions of correcting astigmatism and measuring astigmatism. In the embodiment of the present invention, the mechanism of the head-mounted display device 20 may be designed to have a slot H1 and a slot H2 respectively located in front of the eyes. The auxiliary lenticular lenses 190a and 190b are adapted to be inserted into the slot H1 and the slot H2, respectively. The rotation driving mechanism 180 connects the processor 130 and the auxiliary lenticular lenses 190a and 190b, and the rotation driving mechanism 180 is used to rotate the auxiliary lenticular lenses 190a and 190b in the slots H1 and H2.

圖11是依據本發明一實施例所繪示的視力檢測方法的流程圖。圖11所示方法適用於上述實施例中的頭戴式顯示裝置20,以下即搭配頭戴式顯示裝置20中的各項元件說明本實施例的詳細步驟。FIG. 11 is a flowchart of a vision detection method according to an embodiment of the invention. The method shown in FIG. 11 is applicable to the head-mounted display device 20 in the above-mentioned embodiment. The detailed steps of this embodiment are described below with various components in the head-mounted display device 20.

須先說明的是,於本發明實施例中,視力檢測圖樣可包括散光軸度表,以進行散光的檢測。舉例而言,圖12是依據本發明一實施例所繪示的散光軸度表的範例。散光軸度表X1具有放射狀的多條黑線,這些黑線分別對應至不同的散光軸度。於步驟S1101,處理器130控制顯示螢幕120顯示散光軸度表。詳細而言,當使用者患有散光時,其眼睛角膜的變形程度不均勻。因此,當使用者觀看散光軸度表X1時,散光軸度表X1上的黑線會呈現不一樣的清晰度。於步驟S1102,處理器130接收選定散光軸度表上之散光軸度的使用者回應。具體而言,使用者可透過控制手杖點選散光軸度表上的某一條最為清晰之黑線而選定一個特定的散光軸度,而處理器130也將接收到使用者選定散光軸度表上之散光軸度的使用者回應。舉例而言,若使用者覺得散光軸度表X1上散光軸度40∘的黑線最為清晰,則使用者可透過游標點選散光軸度40∘的黑線。It should be noted that, in the embodiment of the present invention, the visual acuity detection pattern may include an astigmatism axis meter to perform astigmatism detection. For example, FIG. 12 is an example of an astigmatism axis table according to an embodiment of the present invention. The astigmatism axis degree table X1 has a plurality of radially black lines, and these black lines respectively correspond to different astigmatism axis degrees. In step S1101, the processor 130 controls the display screen 120 to display the astigmatism axis meter. In detail, when a user suffers from astigmatism, the degree of deformation of the cornea of his eye is uneven. Therefore, when the user looks at the astigmatism axis degree table X1, the black line on the astigmatism axis degree table X1 will show a different definition. In step S1102, the processor 130 receives a user response of the selected astigmatism axis degree on the astigmatism axis degree table. Specifically, the user can select a specific astigmatism axis degree by clicking on the clearest black line on the astigmatism axis degree table by controlling the stick, and the processor 130 will also receive the user’s selected astigmatism axis degree table. The user’s response to the astigmatism axis. For example, if the user feels that the black line with the astigmatism axis degree of 40∘ on the astigmatism axis meter X1 is the clearest, the user can use the cursor to select the black line with the astigmatism axis degree of 40∘.

基此,於步驟S1103,處理器130依據使用者回應獲取眼睛的散光軸度。在獲取散光軸度之後,使用者可將輔助柱狀鏡190a插入至插槽H1內。之後,於步驟S1104,處理器130透過旋轉驅動機構180旋轉輔助柱狀鏡190a與透過驅動機構140調整透鏡110之位置的同時判斷是否接收到另一使用者回應。具體而言,隨著輔助柱狀鏡190a的旋轉,使用者可於輔助柱狀鏡190a轉動至特定角度時而覺得散光軸度表上之每一黑線都均勻顯示且清晰。此外,處理器130可透過調整於輔助柱狀鏡190a的旋轉狀態與控制透鏡110的位置來進行散光度數的測量,以獲取眼睛於不同軸度上的屈光度。換言之,處理器130可在透過旋轉驅動機構180旋轉輔助柱狀鏡190a與調整透鏡110之位置的同時,判斷是否接收到另一使用者回應。於是,於步驟S1105,處理器130響應於另一使用者回應而依據輔助柱狀鏡190a的旋轉狀態與透鏡110的位置獲取眼睛的散光度數。Based on this, in step S1103, the processor 130 obtains the astigmatism axial degree of the eye according to the user's response. After obtaining the axial degree of astigmatism, the user can insert the auxiliary lenticular lens 190a into the slot H1. After that, in step S1104, the processor 130 determines whether another user response is received while rotating the auxiliary lenticular lens 190a through the rotation driving mechanism 180 and adjusting the position of the lens 110 through the driving mechanism 140. Specifically, as the auxiliary lenticular lens 190a rotates, the user can feel that each black line on the astigmatism axis scale is uniformly displayed and clear when the auxiliary lenticular lens 190a is rotated to a specific angle. In addition, the processor 130 can measure the astigmatism by adjusting the rotation state of the auxiliary lenticular lens 190a and the position of the control lens 110, so as to obtain the refractive power of the eye in different axial degrees. In other words, the processor 130 can determine whether another user response is received while rotating the auxiliary lenticular lens 190a and adjusting the position of the lens 110 through the rotation driving mechanism 180. Then, in step S1105, the processor 130 obtains the astigmatism of the eye according to the rotation state of the auxiliary lenticular lens 190a and the position of the lens 110 in response to another user's response.

圖13是依據本發明一實施例所繪示的頭戴示顯是裝置的方塊圖。請參照圖13,本實施例的頭戴式顯示裝置30與頭戴式顯示裝置10差別在於,頭戴式顯示裝置30更包括分別設置於左眼與右眼前方的電控液晶鏡片VL1與電控液晶鏡片VL1。FIG. 13 is a block diagram of a head-mounted display device according to an embodiment of the present invention. Referring to FIG. 13, the head-mounted display device 30 of this embodiment differs from the head-mounted display device 10 in that the head-mounted display device 30 further includes an electrically controlled liquid crystal lens VL1 and a battery respectively arranged in front of the left eye and the right eye. Control liquid crystal lens VL1.

電控液晶鏡片VL1、VL1可設置於影像光束的傳遞路徑,用以改變電控液晶鏡片VL1、VL1上不同位置的折射率,因而可達到矯正散光與測量散光度數的功能。於本發明的實施例中,電控液晶鏡片VL1、VL1可利用電壓改變液晶單元的轉動方向,因而於鏡片上不同的位置提供不同的折射率。The electronically controlled liquid crystal lenses VL1 and VL1 can be arranged in the transmission path of the image beam to change the refractive index of different positions on the electronically controlled liquid crystal lenses VL1 and VL1, so as to achieve the functions of correcting astigmatism and measuring astigmatism. In the embodiment of the present invention, the electrically controlled liquid crystal lenses VL1 and VL1 can use voltage to change the rotation direction of the liquid crystal cell, thereby providing different refractive indexes at different positions on the lens.

圖14是依據本發明一實施例所繪示的視力檢測方法的流程圖。圖14所示方法適用於上述實施例中的頭戴式顯示裝置30,以下即搭配頭戴式顯示裝置30中的各項元件說明本實施例的詳細步驟。FIG. 14 is a flowchart of a vision detection method according to an embodiment of the present invention. The method shown in FIG. 14 is applicable to the head-mounted display device 30 in the above-mentioned embodiment. The detailed steps of this embodiment will be described below in conjunction with various components in the head-mounted display device 30.

於步驟S1401,處理器130控制顯示螢幕120顯示散光軸度表。於步驟S1402,處理器130接收選定散光軸度表上之散光軸度的使用者回應。於步驟S1403,處理器130依據使用者回應獲取眼睛的散光軸度。步驟S1401~步驟S1403與圖11實施例之步驟S1101~S1103相似,於此不再贅述。In step S1401, the processor 130 controls the display screen 120 to display the astigmatism axis meter. In step S1402, the processor 130 receives a user response of the selected astigmatism axis degree on the astigmatism axis degree table. In step S1403, the processor 130 obtains the astigmatism axial degree of the eye according to the user's response. Steps S1401 to S1403 are similar to steps S1101 to S1103 in the embodiment of FIG. 11, and will not be repeated here.

需特別說明的是,於步驟S1404,處理器130控制電控液晶鏡片VL1的液晶單元旋轉的同時判斷是否接收到另一使用者回應。於步驟S1405,處理器130響應於另一使用者回應而依據液晶單元的旋轉狀態獲取眼睛的散光度數。具體而言,在獲取使用者的散光軸度之後,處理器130可依據散光軸度控制電控液晶鏡片VL1上的多個液晶單元旋轉至特定角度,其可達到如柱狀鏡的散光校正效果。此外,處理器130可基於散光驗光流程而控制電控液晶鏡片VL1上的多個液晶單元旋轉,致使電控液晶鏡片VL1可呈現不同的折射狀態,致使處理器130可依據使用者回應獲取散光度數。It should be particularly noted that in step S1404, the processor 130 controls the rotation of the liquid crystal unit of the electronically controlled liquid crystal lens VL1 and determines whether another user response is received. In step S1405, the processor 130 obtains the astigmatism of the eye according to the rotation state of the liquid crystal cell in response to another user's response. Specifically, after obtaining the astigmatism axis degree of the user, the processor 130 can control the plurality of liquid crystal cells on the electronically controlled liquid crystal lens VL1 to rotate to a specific angle according to the astigmatism axis degree, which can achieve the astigmatism correction effect such as a cylindrical lens . In addition, the processor 130 can control the rotation of multiple liquid crystal cells on the electronically controlled liquid crystal lens VL1 based on the astigmatism refraction process, so that the electronically controlled liquid crystal lens VL1 can present different refraction states, so that the processor 130 can obtain the astigmatism power according to the user's response. .

值得一提的是,在獲取使用者的散光軸度與散光度數之後,處理器130可將散光軸度與散光度數記錄於儲存電路150。日後,當使用者欲使用頭戴式顯示裝置20、30時,處理器130可依據散光軸度與散光度數自動調整輔助柱狀鏡190a、190b的旋轉角度或自動調整電控液晶鏡片VL1、VL2上液晶單元的旋轉狀態。藉此,即便使用者的散光程度不一,本發明所提供之頭戴式顯示裝置20、30還是可提供良好的顯示效果。It is worth mentioning that after obtaining the astigmatism and the astigmatism of the user, the processor 130 may record the astigmatism and the astigmatism in the storage circuit 150. In the future, when the user wants to use the head-mounted display device 20, 30, the processor 130 can automatically adjust the rotation angle of the auxiliary lenticular lens 190a, 190b or automatically adjust the electronically controlled liquid crystal lens VL1, VL2 according to the astigmatism axis degree and the astigmatism degree. The rotation state of the upper liquid crystal cell. In this way, even if the degree of astigmatism of the user is different, the head-mounted display device 20, 30 provided by the present invention can still provide a good display effect.

綜上所述,於本發明的實施例中,頭戴式顯示裝置可依據使用者的控制而顯示視力檢查圖樣,從而讓使用者可進行視力檢測。此外,基於使用者所下達的使用者回應,頭戴式顯示裝置可依據與使用者回應相關之視力檢查圖樣的顯示內容或顯示方式來確認使用者的視力狀態。基此,頭戴式顯示裝置可依據個人化的視力狀態自動調整光學組件與/或顯示螢幕的配置方式,以提供最佳的觀看體驗。除此之外,當視力狀態具有特殊條件的使用者使用頭戴式顯示裝置時,本發明實施例可在不影響觀看體驗的條件下節省運算效能。To sum up, in the embodiment of the present invention, the head-mounted display device can display the visual inspection pattern according to the user's control, so that the user can perform visual inspection. In addition, based on the user response issued by the user, the head-mounted display device can confirm the user's vision status according to the display content or display mode of the vision check pattern related to the user's response. Based on this, the head-mounted display device can automatically adjust the configuration of the optical components and/or the display screen according to the personalized vision state to provide the best viewing experience. In addition, when a user with a special vision condition uses the head-mounted display device, the embodiment of the present invention can save computing performance without affecting the viewing experience.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

10、20、30:頭戴式顯示裝置 110、170:透鏡 120、160:顯示螢幕 130:處理器 140:驅動機構 150:儲存電路 41、51、71、75、91:圖形介面 40、50、90:視力檢測圖樣 42、43、52、53、72、73:箭頭圖示 44:近視度數顯示圖示 53:老花度數顯示圖示 74:視力顯示圖示 92:回答欄位 93:確認圖示 E1、E2:眼睛 V1、V2:虛像 70a、70b:子圖樣 G1~G4、Vd1~Vd4:距離 H1、H2:插槽 190a、190b:輔助柱狀鏡 180:旋轉驅動機構 VL1、VL1:電控液晶鏡片 S201~S203、S301~S305、S601~S604、S801~S805、S1101~S1105、S1401~S1405:步驟10, 20, 30: head-mounted display device 110, 170: lens 120, 160: display screen 130: processor 140: drive mechanism 150: storage circuit 41, 51, 71, 75, 91: Graphical interface 40, 50, 90: vision test pattern 42, 43, 52, 53, 72, 73: Arrow icon 44: Myopia degree display icon 53: Presbyopia degree display icon 74: Vision display icon 92: Answer field 93: Confirmation icon E1, E2: eyes V1, V2: virtual image 70a, 70b: Sub-pattern G1~G4, Vd1~Vd4: distance H1, H2: Slot 190a, 190b: auxiliary cylindrical lens 180: Rotary drive mechanism VL1, VL1: Electronically controlled liquid crystal lens S201~S203, S301~S305, S601~S604, S801~S805, S1101~S1105, S1401~S1405: steps

圖1A是依照本發明實施例所繪示之頭戴式顯示裝置的方塊圖。 圖1B是依照本發明實施例所繪示之頭戴式顯示裝置的示意圖。 圖2是依據本發明一實施例所繪示的視力檢測方法的流程圖。 圖3是依據本發明一實施例所繪示的視力檢測方法的流程圖。 圖4A與圖4B是依據本發明一實施例所繪示的檢測近視度數的示意圖。 圖5A與圖5B是依據本發明一實施例所繪示的檢測老花度數的示意圖。 圖6是依據本發明一實施例所繪示的視力檢測方法的流程圖。 圖7是依據本發明一實施例所繪示的檢測視力解析度的示意圖。 圖8是依據本發明一實施例所繪示的視力檢測方法的流程圖。 圖9是依據本發明一實施例所繪示的檢測色盲的示意圖。 圖10是依據本發明一實施例所繪示的頭戴示顯是裝置的方塊圖。 圖11是依據本發明一實施例所繪示的視力檢測方法的流程圖。 圖12是依據本發明一實施例所繪示的散光軸度表的範例。 圖13是依據本發明一實施例所繪示的頭戴示顯是裝置的方塊圖。 圖14是依據本發明一實施例所繪示的視力檢測方法的流程圖。FIG. 1A is a block diagram of a head-mounted display device according to an embodiment of the present invention. FIG. 1B is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. Fig. 2 is a flowchart of a vision detection method according to an embodiment of the present invention. FIG. 3 is a flowchart of a vision detection method according to an embodiment of the present invention. 4A and 4B are schematic diagrams of detecting myopia according to an embodiment of the present invention. 5A and 5B are schematic diagrams of detecting presbyopia according to an embodiment of the present invention. Fig. 6 is a flowchart of a vision detection method according to an embodiment of the present invention. FIG. 7 is a schematic diagram of detecting vision resolution according to an embodiment of the present invention. FIG. 8 is a flowchart of a vision detection method according to an embodiment of the present invention. FIG. 9 is a schematic diagram of detecting color blindness according to an embodiment of the present invention. FIG. 10 is a block diagram of a head-mounted display device according to an embodiment of the present invention. FIG. 11 is a flowchart of a vision detection method according to an embodiment of the invention. FIG. 12 is an example of an astigmatism axial degree table drawn according to an embodiment of the present invention. FIG. 13 is a block diagram of a head-mounted display device according to an embodiment of the present invention. FIG. 14 is a flowchart of a vision detection method according to an embodiment of the present invention.

S201~S203:步驟S201~S203: steps

Claims (10)

一種頭戴式顯示裝置,適於配置於一使用者的一眼睛前方,包括: 至少一顯示螢幕,提供影像光束; 至少一透鏡,設置於該影像光束的傳遞路徑上,將該影像光束傳遞至該眼睛; 一儲存電路,儲存有多個指令;以及 一處理器,耦接該儲存電路與該至少一顯示螢幕,經配置執行該些指令以: 控制該至少一顯示螢幕顯示一視力檢查圖樣而使該至少一透鏡提供包括該視力檢查圖樣的一虛像; 接收對應於該視力檢查圖樣的一使用者回應;以及 依據該使用者回應判斷該使用者的一視力狀態。A head-mounted display device, suitable for being arranged in front of an eye of a user, includes: At least one display screen, providing image beams; At least one lens is arranged on the transmission path of the image light beam, and transmits the image light beam to the eye; A storage circuit storing a plurality of instructions; and A processor, coupled to the storage circuit and the at least one display screen, and configured to execute the commands to: Controlling the at least one display screen to display a vision inspection pattern so that the at least one lens provides a virtual image including the vision inspection pattern; Receiving a user response corresponding to the vision check pattern; and Judging a vision state of the user based on the user's response. 如申請專利範圍第1項所述的頭戴式顯示裝置,更包括: 一驅動機構,連接該至少一顯示螢幕或該至少一透鏡, 其中該處理器經配置以依據該使用者下達的控制指令來控制該驅動機構調整該至少一顯示螢幕與該至少一透鏡之間的間距,而使該虛像與該眼睛之間的虛像距離於一預設區間內改變, 該處理器經配置以響應於接收到該使用者回應而獲取該預設區間內的一選定虛像距離,並依據該選定虛像距離判斷該眼睛的一屈光度。The head-mounted display device described in item 1 of the scope of patent application further includes: A driving mechanism connected to the at least one display screen or the at least one lens, The processor is configured to control the driving mechanism to adjust the distance between the at least one display screen and the at least one lens according to the control command issued by the user, so that the virtual image distance between the virtual image and the eye is within a range Change within the preset interval, The processor is configured to obtain a selected virtual image distance in the predetermined interval in response to receiving the user response, and determine a diopter of the eye according to the selected virtual image distance. 如申請專利範圍第2項所述的頭戴式顯示裝置,其中該處理器經配置以控制該驅動機構逐漸增加該至少一顯示螢幕與該至少一透鏡之間的該間距,而使該虛像與該眼睛之間的該虛像距離於該預設區間中的第一預設區間內逐漸遞增, 其中該處理器經配置以響應於接收到該使用者回應而獲取該選定虛像距離中的第一選定虛像距離,並依據該第一選定虛像距離判斷該眼睛的一近視度數。According to the head-mounted display device of claim 2, wherein the processor is configured to control the driving mechanism to gradually increase the distance between the at least one display screen and the at least one lens, so that the virtual image and The virtual image distance between the eyes gradually increases in the first preset interval among the preset intervals, The processor is configured to obtain a first selected virtual image distance in the selected virtual image distance in response to receiving the user response, and determine a myopia degree of the eye according to the first selected virtual image distance. 如申請專利範圍第2項所述的頭戴式顯示裝置,其中該處理器經配置以控制該驅動機構逐漸減少該至少一顯示螢幕與該至少一透鏡之間的該間距,而使該虛像與該眼睛之間的該虛像距離於該預設區間中的第二預設區間內逐漸遞減, 其中該處理器經配置以響應於接收到該使用者回應而獲取該選定虛像距離中的第二選定虛像距離,並依據該第二選定虛像距離判斷該眼睛的一老花度數。According to the head-mounted display device of claim 2, wherein the processor is configured to control the driving mechanism to gradually reduce the distance between the at least one display screen and the at least one lens, so that the virtual image and The virtual image distance between the eyes gradually decreases in a second preset interval of the preset interval, The processor is configured to obtain a second selected virtual image distance in the selected virtual image distance in response to receiving the user response, and determine a presbyopia degree of the eye according to the second selected virtual image distance. 如申請專利範圍第1項所述的頭戴式顯示裝置,其中該視力檢查圖樣包括對應至多個預設視力解析度的多個子圖樣,而該處理器經配置以依據該使用者下達的控制指令來控制該至少一顯示螢幕依序顯示該些子圖樣, 其中該處理器經配置以響應於在顯示該些子圖樣其中一者時接收到該使用者回應,而依據該些子圖樣其中所述一者所對應的該些預設視力解析度其中一者判斷該眼睛的實際視力解析度。The head-mounted display device according to claim 1, wherein the vision check pattern includes a plurality of sub-patterns corresponding to a plurality of preset vision resolutions, and the processor is configured to follow a control command issued by the user To control the at least one display screen to sequentially display the sub-patterns, The processor is configured to respond to receiving the user response when displaying one of the sub-patterns, and according to one of the predetermined vision resolutions corresponding to the one of the sub-patterns Determine the actual vision resolution of the eye. 如申請專利範圍第5項所述的頭戴式顯示裝置,其中該處理器經配置以依據該實際視力解析度控制該至少一顯示螢幕的顯示解析度;當該實際視力解析度為第一值時,該顯示解析度被調整為一第一解析度,當該實際視力解析度為低於該第一值的第二值時,該顯示解析度被調整為低於該第一解析度的一第二解析度。The head-mounted display device according to claim 5, wherein the processor is configured to control the display resolution of the at least one display screen according to the actual vision resolution; when the actual vision resolution is the first value When the display resolution is adjusted to a first resolution, when the actual vision resolution is a second value lower than the first value, the display resolution is adjusted to a lower resolution than the first resolution. The second resolution. 如申請專利範圍第1項所述的頭戴式顯示裝置,更包括: 一輔助柱狀鏡,設置於該影像光束的傳遞路徑上;以及 一旋轉驅動機構,連接該輔助柱狀鏡,其中該處理器經配置以依據散光軸度控制該輔助柱狀鏡旋轉, 其中該處理器經配置以於旋轉該輔助柱狀鏡與調整該至少一透鏡之位置的同時判斷是否接收到另一使用者回應,並響應於該另一使用者回應而依據該輔助柱狀鏡的旋轉狀態獲取該眼睛的散光度數。The head-mounted display device described in item 1 of the scope of patent application further includes: An auxiliary lenticular lens arranged on the transmission path of the image beam; and A rotation driving mechanism connected to the auxiliary lenticular lens, wherein the processor is configured to control the rotation of the auxiliary lenticular lens according to the astigmatism axis degree, The processor is configured to determine whether another user response is received while rotating the auxiliary lenticular lens and adjusting the position of the at least one lens, and in response to the other user’s response, according to the auxiliary lenticular lens Get the astigmatism of the eye. 如申請專利範圍第1項所述的頭戴式顯示裝置,其更包括: 一電控液晶鏡片,設置於該影像光束的傳遞路徑上, 其中該處理器經配置以依據散光軸度控制該電控液晶鏡片上該些液晶單元旋轉, 其中該處理器經配置以於控制該些液晶單元旋轉的同時判斷是否接收到另一使用者回應,並響應於該另一使用者回應而依據該些液晶單元的旋轉狀態獲取該眼睛的散光度數。The head-mounted display device described in item 1 of the scope of patent application further includes: An electrically controlled liquid crystal lens is arranged on the transmission path of the image beam, The processor is configured to control the rotation of the liquid crystal cells on the electronically controlled liquid crystal lens according to the astigmatism axis degree, The processor is configured to determine whether to receive a response from another user while controlling the rotation of the liquid crystal units, and to obtain the astigmatism of the eye according to the rotation state of the liquid crystal units in response to the response of the other user . 如申請專利範圍第1項所述的頭戴式顯示裝置,其中該視力檢查圖樣包括一色盲檢測圖樣,該處理器經配置以接收對應於該色盲檢測圖樣的該使用者回應,並依據該使用者回應是否正確而判斷該使用者是否有色盲;當判定該使用者有色盲,該至少一顯示螢幕以第一色彩深度顯示畫面;以及當判定該使用者沒有色盲,該至少一顯示螢幕以第二色彩深度顯示畫面。According to the head-mounted display device described in claim 1, wherein the vision check pattern includes a color blindness detection pattern, and the processor is configured to receive the user response corresponding to the color blindness detection pattern, and based on the use The user responds correctly to determine whether the user has color blindness; when it is determined that the user has color blindness, the at least one display screen displays the screen with the first color depth; and when it is determined that the user is not color blind, the at least one display screen is displayed with the first color depth. Two color depth display screen. 一種視力檢測方法,適用於一頭戴式顯示裝置,其中該頭戴式顯示裝置適於配置於一使用者的一眼睛前方,且所述方法包括: 控制該頭戴式顯示裝置的至少一顯示螢幕顯示一視力檢查圖樣而使該頭戴式顯示裝置的至少一透鏡提供包括該視力檢查圖樣的一虛像; 接收對應於該視力檢查圖樣的一使用者回應;以及 依據該使用者回應判斷該使用者的一視力狀態。A vision detection method is suitable for a head-mounted display device, wherein the head-mounted display device is suitable for being arranged in front of an eye of a user, and the method includes: Controlling at least one display screen of the head-mounted display device to display a vision inspection pattern so that at least one lens of the head-mounted display device provides a virtual image including the vision inspection pattern; Receiving a user response corresponding to the vision check pattern; and Judging a vision state of the user based on the user's response.
TW108132475A 2019-09-09 2019-09-09 Head-mounted display apparatus and visual inspection method thereof TWI704377B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108132475A TWI704377B (en) 2019-09-09 2019-09-09 Head-mounted display apparatus and visual inspection method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108132475A TWI704377B (en) 2019-09-09 2019-09-09 Head-mounted display apparatus and visual inspection method thereof

Publications (2)

Publication Number Publication Date
TWI704377B TWI704377B (en) 2020-09-11
TW202111387A true TW202111387A (en) 2021-03-16

Family

ID=73643994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132475A TWI704377B (en) 2019-09-09 2019-09-09 Head-mounted display apparatus and visual inspection method thereof

Country Status (1)

Country Link
TW (1) TWI704377B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798842B (en) * 2021-05-13 2023-04-11 中強光電股份有限公司 Light field near-eye display device and method of light field near-eye display
US11841513B2 (en) 2021-05-13 2023-12-12 Coretronic Corporation Light field near-eye display device and method of light field near-eye display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103190883B (en) * 2012-12-20 2015-06-24 苏州触达信息技术有限公司 Head-mounted display device and image adjusting method
WO2018014045A2 (en) * 2016-07-15 2018-01-18 Light Field Lab, Inc. Method of calibration for holographic energy directing systems
WO2018191846A1 (en) * 2017-04-17 2018-10-25 深圳市柔宇科技有限公司 Head-mounted display device and adaptive diopter adjustment method
AU2018386296B2 (en) * 2017-12-15 2023-11-23 Magic Leap, Inc. Eyepieces for augmented reality display system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798842B (en) * 2021-05-13 2023-04-11 中強光電股份有限公司 Light field near-eye display device and method of light field near-eye display
US11841513B2 (en) 2021-05-13 2023-12-12 Coretronic Corporation Light field near-eye display device and method of light field near-eye display

Also Published As

Publication number Publication date
TWI704377B (en) 2020-09-11

Similar Documents

Publication Publication Date Title
US11727695B2 (en) Language element vision augmentation methods and devices
US11656468B2 (en) Steerable high-resolution display having a foveal display and a field display with intermediate optics
US20230118575A1 (en) Computerized refraction and astigmatism determination
US10517476B2 (en) Computerized testing and determination of a visual field of a patient
CN107113366B (en) Reproducing the effects of an optical lens
US9727946B2 (en) Method of customizing an electronic image display device
US20160133170A1 (en) High resolution perception of content in a wide field of view of a head-mounted display
CN105164576A (en) A method of controlling a head mounted electro-optical device adapted to a wearer
Wolffsohn et al. A review of current knowledge on Electronic Vision Enhancement Systems for the visually impaired
JP2010540005A (en) Methods and devices for prevention and treatment of myopia and fatigue
TWI704377B (en) Head-mounted display apparatus and visual inspection method thereof
Wolffsohn et al. TFOS Lifestyle: Impact of the digital environment on the ocular surface
WO2018120751A1 (en) Position adjusting method and terminal
JP2007010924A (en) Picture display device
CN107291233B (en) Wear visual optimization system, intelligent terminal and head-mounted device of 3D display device
JP2010148742A (en) Visual acuity amelioration training device, and visual acuity amelioration training control program
US11841513B2 (en) Light field near-eye display device and method of light field near-eye display
US10522110B1 (en) Apparatuses, systems, and methods for measuring and adjusting the luminance of a head-mounted display
JP2021124520A (en) Image display device, program for image display, and image display method
JP2000171751A (en) Binocular display
US11513359B1 (en) Lens
JP2006163009A (en) Video display method
Jones Optical and Neural Properties of Vision as Applied to Virtual Reality
US20180003960A1 (en) Vision correction system
JP2023549439A (en) Vision correction display devices, eye tracking systems, and methods to compensate for visual impairment