TW202109355A - 具有偏移微透鏡群組的光學感測器及使用其之光學感測系統 - Google Patents

具有偏移微透鏡群組的光學感測器及使用其之光學感測系統 Download PDF

Info

Publication number
TW202109355A
TW202109355A TW108135075A TW108135075A TW202109355A TW 202109355 A TW202109355 A TW 202109355A TW 108135075 A TW108135075 A TW 108135075A TW 108135075 A TW108135075 A TW 108135075A TW 202109355 A TW202109355 A TW 202109355A
Authority
TW
Taiwan
Prior art keywords
sensing
optical sensor
optical
microlens
pixel
Prior art date
Application number
TW108135075A
Other languages
English (en)
Inventor
周正三
Original Assignee
美三科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美三科技有限公司 filed Critical 美三科技有限公司
Publication of TW202109355A publication Critical patent/TW202109355A/zh

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

一種光學感測器用於感測一目標物的影像,至少包含:多個感測單元,排列成一個二維感測單元陣列,此等感測單元之一部分或全部感測單元的每一個至少包含:一第一感測像素及一第二感測像素;一第一微透鏡及一第二微透鏡,分別對應於第一感測像素及第二感測像素而組成一第一感測元及一第二感測元,第二感測像素不對準於第二微透鏡的一第二光軸,使得此等第一感測元與此等第二感測元結合後所能感測目標物的感測面積大於二維感測單元陣列的實體分佈面積。

Description

具有偏移微透鏡群組的光學感測器及使用其之光學感測系統
本發明是有關於一種具有偏移微透鏡群組的光學感測器及使用其之光學感測系統,且特別是有關於一種具有可控角度準直結構(Angle Controllable Collimator)並具有偏移微透鏡群組的光學感測器、以及應用此光學感測器的光學感測系統。
現今的移動電子裝置(例如手機、平板電腦、筆記本電腦等)通常配備有使用者生物識別系統,包括了例如指紋、臉型、虹膜等等不同技術,用以保護個人數據安全,其中例如應用於手機或智慧型手錶等攜帶型裝置,也兼具有行動支付的功能,對於使用者生物識別更是變成一種標準的功能,而手機等攜帶型裝置的發展更是朝向全螢幕(或超窄邊框)的趨勢,使得傳統電容式指紋按鍵(例如iphone 5到iphone 8的按鍵)無法再被繼續使用,進而演進出新的微小化光學成像裝置(非常類似傳統的相機模組,具有互補式金屬氧化物半導體(Complementary Metal-Oxide Semiconductor(CMOS)Image Sensor(簡稱CIS))感測元件及光學鏡頭模組)。將微小化光學成像裝置設置於螢幕下方(可稱為屏下),透過螢幕部分透光(特別是有機發光二極體(Organic Light Emitting Diode,OLED)螢幕),可以擷取按壓於屏幕上方的物體的圖像,特別是 指紋圖像,可以稱為屏幕下指紋感測(Fingerprint On Display,FOD)。
這種習知的微小化光學成像裝置設計成模組後,其厚度大於3mm,而且為了配合使用者按壓位置的習慣,該模組的位置會與部分手機電池的區域重疊,因此就必須要縮小電池的尺寸以讓出空間設置該微小化光學成像裝置。為此,手機電池就無法有較長的使用時間。又因為未來新的5G手機的耗電量更大,對於電池的使用更是斤斤計較。
因此,如何提供超薄的光學成像裝置,特別是可以不犧牲電池的空間,而且可以設置於電池與屏幕之間的超窄區域(<0.5mm),正是本發明的重點。
因此,本發明的一個目的是提供一種具有可控角度準直結構以及具有偏移微透鏡群組的光學感測器、及應用此光學感測器的光學感測系統,藉以消除不必要的雜散光,並可有效縮小光學感測器的厚度而便於應用於光學感測系統中,更可利用偏移微透鏡配合接圖程序來擴大感測面積。
為達上述目的,本發明的實施例提供一種光學感測器,用於感測一目標物的影像,至少包含:多個感測單元,排列成一個二維感測單元陣列,二維感測單元陣列的此等感測單元之一部分或全部感測單元的每一個至少包含:一第一感測像素及一第二感測像素;一第一微透鏡及一第二微透鏡,分別對應於第一感測像素及第二感測像素而組成一第一感測元及一第二感測元,第二感測像素不對準於第二微透鏡的一第二光軸,使得此等第一感測元與此等第二感測元結合後所能感測目標物的感測面積大於二維感測單元陣列的實體分佈面積。
本發明的實施例又提供一種光學感測系統,至少包含: 一底座;一電池,設置於底座上;一框架,設置於電池的上方;上述的光學感測器;一顯示器,用於顯示資訊。光學感測器裝設於框架或貼合於顯示器的一下表面,目標物位於顯示器上或上方,光學感測器通過顯示器感測目標物的影像,電池供電給光學感測器與顯示器。
本發明更提供一種光學感測器,用於感測一目標物的影像,至少包含多個感測元,排列成一個二維感測元陣列,此等感測元的相鄰兩者感測不同方向的斜向入射光,此等斜向入射光不位於此等感測元的光軸的同一側,使得二維感測元陣列所能感測目標物的感測面積大於二維感測元陣列的實體分佈面積。
藉由上述實施例,透過對光學感測器的遮光層、微透鏡及感測像素的設計,可以讓的感測像素接收來自特定入射角範圍的光線,消除不必要的雜散光,並可有效縮小光學感測器的厚度,可以使光學感測器能輕易地設置於手機等電子設備的電池與顯示器之間,更可利用顯示器的光源實現屏下光學感測。再者,利用偏移透鏡群組以及於不同時間點感測目標物的多個影像,利用偏移微透鏡配合接圖的方式,有效擴大感測面積,提升感測品質。
為讓本發明之上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。
ANG‧‧‧角度
ANG2‧‧‧第二角度
AX1、AX2‧‧‧中心對稱軸
CR‧‧‧待測物面積
CR"‧‧‧面積
SR‧‧‧面積
CV1‧‧‧曲線
CV2‧‧‧曲線
d‧‧‧距離
F‧‧‧目標物
G‧‧‧間隙
IM1‧‧‧第一影像
IM2‧‧‧第二影像
L1‧‧‧正向入射光
L1'‧‧‧正向入射光
L2‧‧‧斜向入射光/相同像素斜向入射光
L3‧‧‧第二斜向入射光/第二相同畫素斜向入射光
L4‧‧‧第三斜向入射光/相鄰透鏡雜散光
L5‧‧‧第四斜向入射光/相鄰像素斜向入射光
OA‧‧‧第一光軸/光軸
OAA‧‧‧第二光軸/光軸
OAM‧‧‧目標光軸
OA3‧‧‧第三光軸
OA4‧‧‧第四光軸
OF2‧‧‧偏移量
V1至V4‧‧‧偏移向量
X‧‧‧第一方向
Y‧‧‧第二方向
Z‧‧‧第三方向
203、203'、203M‧‧‧感測像素
203A1‧‧‧第一感測像素
203A2‧‧‧第二感測像素
203G‧‧‧感測像素群組
200‧‧‧光學感測器
201‧‧‧基板
202‧‧‧介電層組
204‧‧‧第一遮光層
204A‧‧‧第一光孔
205‧‧‧保護層
206‧‧‧光學濾波層
207‧‧‧第一透明介質層
208‧‧‧第二遮光層
208A‧‧‧第二光孔
209‧‧‧第二透明介質層
210‧‧‧微透鏡
210A‧‧‧偏移微透鏡
210A1‧‧‧第一微透鏡
210A2‧‧‧第二微透鏡
210B‧‧‧底面
210G‧‧‧微透鏡群組
210M‧‧‧目標微透鏡
211‧‧‧透鏡遮光層
230G、230G"‧‧‧感測單元
230G1‧‧‧第一感測元
230G2‧‧‧第二感測元
230G3‧‧‧第三感測元
230G4‧‧‧第四感測元
300‧‧‧顯示器
350‧‧‧處理器
400‧‧‧框架
410‧‧‧容置槽
420‧‧‧容置底部
430‧‧‧發散結構
500‧‧‧電池
600‧‧‧光學感測系統
610‧‧‧底座
900‧‧‧光學濾波板
1300‧‧‧光學感測器模組
1301‧‧‧承載硬版
1302‧‧‧軟性電路板
1303‧‧‧銲線
1305‧‧‧框體
1306‧‧‧封膠層
圖1顯示依據本發明第一實施例的光學感測系統的剖面示意圖。
圖2顯示依據本發明第一實施例的光學感測器的剖面示意圖。
圖3顯示依據本發明第一實施例的光學感測器的特性曲線圖。
圖4顯示依據本發明第二實施例的光學感測系統的剖面示意圖。
圖5顯示依據本發明第一實施例的光學感測器的工作狀態的示意圖。
圖6顯示依據本發明第三實施例的光學感測器的剖面示意圖。
圖7顯示依據本發明第三實施例的光學感測器的特性曲線圖。
圖8顯示依據本發明第一實施例的光學感測器的另一工作狀態的示意圖。
圖9顯示依據本發明第四實施例的光學感測器的剖面示意圖。
圖10顯示圖8的光學感測器的特性曲線圖。
圖11顯示圖9的光學感測器的特性曲線圖。
圖12顯示依據本發明第四實施例的光學感測器的工作原理的局部剖面示意圖。
圖13顯示依據本發明第五實施例的光學感測器的剖面示意圖。
圖14顯示依據本發明第六實施例的光學感測器的局部剖面示意圖。
圖15顯示圖14的光學感測器的特性曲線圖。
圖16A與16B顯示依據本發明第七實施例的光學感測器的兩個例子的局部剖面示意圖。
圖16C顯示圖16A的變化實施例的光學感測器的局部剖面示意圖。
圖16D顯示應用圖16C的光學感測器的光學感測系統的電路方塊圖。
圖16E顯示圖16C的光學感測器的俯視示意圖。
圖16F至16H顯示圖16E的光學感測器的三個變化例的局部俯視示意圖。
圖16I顯示圖16E的光學感測器的變化例的俯視示意圖。
圖16J顯示圖16E的光學感測器的另一變化例的俯視示意圖。
圖16K顯示圖16E的光學感測器的又另一變化例的俯視示意圖。
圖16L與16M具有光學感測器的光學感測系統的兩個例子的局部剖面示意圖。
圖17A至圖17E顯示依據本發明第八實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。
圖18A至圖18F顯示依據本發明第九實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。
圖19A至圖19F顯示依據本發明第十實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。
圖20顯示依據本發明第八實施例的變化例的光學感測器的結構剖面示意圖。
圖21顯示依據本發明第十實施例的變化例的光學感測器的結構剖面示意圖。
以下公開提供了許多的實施例或範例,各元件和其配置的具體範例描述如下,以簡化本發明實施例的說明。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例而言,敘述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接觸的實施例,也可能包含額外的元件形成在第一和第二元件之間,使得它們不直接接觸的實施例。此外,本發明實施例可能在不同的範例中重複參考數字及/或字母。如此重複是為了簡明和清楚,而非用以表示所討論的不同實施例之間的關係。
此外,其中可能用到與空間相對用詞,例如“在...下方”、“下方”、“較低的”、“上方”、“較高的”及類似的用詞,這些空間相對用詞為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相對用詞包括使用中或操作中的裝置的不同方位,以及附圖中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相對形容詞也將依轉向後的方位來解釋。
在此,“約”、“大約”、“大抵”的用語通常表示在一給定值或範圍的20%之內,優選是10%之內,且優選是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明“約”、“大約”、“大抵”的情況下,仍可隱含“約”、“大約”、“大抵”的含義。
雖然所述的一些實施例中的步驟以特定順序進行,這些步驟亦可以其他合邏輯的順序進行。在不同實施例中,可替換或省略一些所述的步驟,亦可于本發明實施例所述的步驟之前、之中、及/或之後進行一些其他操作。本發明實施例中的光學感測器及光學感測系統可加入其他的特徵。在不同實施例中,可替換或省略一些特徵。
於以下實施例中,相鄰或相近的感測像素或微透鏡(或感測元)可以代表相鄰或相近的感測像素或微透鏡(或感測元)之間沒有屬於該光學感測器的其他感測像素或微透鏡(或感測元),但也可以代表相鄰或相近的感測像素或微透鏡(或感測元)之間有其他感測像素或微透鏡(或感測元),也就是相鄰或相近的感測像素或微透鏡(或感測元)之間依據設計需求仍可能有感測像素或微透鏡(或感測元)。
圖1顯示依據本發明第一實施例的光學感測系統的剖面 示意圖。圖2顯示依據本發明第一實施例的光學感測器的剖面示意圖。如圖1與2所示,本實施例的一種光學感測系統600,譬如是手機或平板電腦的電子設備,至少包含一底座610、一電池500、一框架400、一光學感測器200及一顯示器300。
底座610為電子設備的機殼的一部分,電池500設置於底座610上。框架400設置於電池500的上方,並具有一容置槽410(這一容置槽得視設計予以省略)。光學感測器200裝設於容置槽410的一容置底部420上,用於感測一目標物F的一影像。當容置槽被省略時,光學感測器200裝設於框架400。顯示器300設置於光學感測器200的上方,用於顯示資訊。目標物F位於顯示器300上或上方。光學感測器200通過顯示器300感測目標物F的影像,電池500供電給光學感測器200與顯示器300,以維持電子設備的運作。供光學感測器200安裝的框架400的容置底部420與顯示器300之間的一最短距離d介於0.1mm至0.5mm之間;0.2至0.5mm之間;0.3至0.5mm之間;或0.4至0.5mm之間。
光學感測器200至少包含一基板201、一第一透明介質層207以及多個微透鏡210。基板201具有多個感測像素(Sensor Pixel)203,排列成陣列。第一透明介質層207位於基板201的上方。此等微透鏡210排列成陣列,並位於第一透明介質層207上(圖1)或上方(譬如後述的圖9)。此等微透鏡210分別將從外界進入此等微透鏡210的多個平行的正向入射光(或稱直向入射光)L1,通過第一透明介質層207而入射於此等感測像素203總數的一部分(後述的圖16A與16B,指的是某些感測像素203)或全部(圖1)的內部(表示對應的感測像素203收得到光),並將從外界進入此等微透鏡210的多個平行的斜向入射光L2入射 於此等感測像素203總數的一部分(後述的圖16A與16B,指的是某些感測像素203)或全部(圖1)的外部(表示對應的感測像素203收不到光),藉此感測目標物F的一影像。有關感測像素203總數的一部分的意義說明如下。譬如,總數為(M+N)個感測像素203,其中M與N為自然數,而M個感測像素203就是感測像素203總數的一部分。有關感測像素203總數的全部的意義說明如下。譬如,總數為(M+N)個感測像素203,其中(M+N)個感測像素203就是感測像素203總數的全部。目標物F可以反射來自環境光、顯示器300所提供的光線或兩者的混合而產生此等平行的正向入射光L1以及此等平行的斜向入射光L2。此等正向入射光L1平行於此等微透鏡210的多個光軸OA。各斜向入射光L2與各光軸OA夾出一個角度ANG。由於圖2所繪製的正向入射光L1是沿著鉛直方向行進,故與光軸OA平行。但本實施例並未將正向入射光L1限制成與光軸OA平行。於一實施例中,可以通過微透鏡210被感測像素203接收到的正向入射光L1與光軸OA的夾角的範圍在-3.5度至3.5度之間;-4度至+4度之間;或-5度至+5度之間,也就是角度ANG介於3.5度到90度之間;4度到90度之間;或5度到90度之間。亦即,與光軸OA的夾角大於3.5度或5度的斜向入射光L2都無法進入到感測像素203中。
以下說明第一實施例的細部結構。光學感測器200更包含一介電層組202、一第一遮光層204、一保護層205以及一光學濾波層206(保護層205也可以被視為是光學濾波層206的一部分)。介電層組202位於基板201上並覆蓋此等感測像素203。第一遮光層204位於介電層組202上,並具有多個第一光孔(Aperture)204A。此等正向入射光L1通過此等第一光孔204A,此等斜向入射光L2不通過此等第一 光孔204A。保護層205位於第一遮光層204上,並可填入於第一遮光層204中。光學濾波層206位於保護層205上,並對此等正向入射光L1與此等斜向入射光L2執行光線波長過濾動作,其中第一透明介質層207位於光學濾波層206上,且此等微透鏡210位於第一透明介質層207上。
因此,本發明提供了光學感測器及應用此光學感測器的光學感測系統及其製造方法,特別是一種應用於屏幕下光學式生物識別感測器及應用此光學感測器的光學感測系統。如圖1所示,本發明實施例所提供的光學感測器200具有可控角度準直結構(Angle Controllable Collimator),此可控角度準直結構包含了露出感測像素203的第一遮光層204及去除部分第一遮光層204所形成的第一光孔204A、形成在第一遮光層204及第一光孔204A上的光學濾波層206及第一透明介質層207、以及形成在第一透明介質層207上的微透鏡210。
此可控角度準直結構係利用微透鏡210與第一光孔204A(包含感測像素203)間的相對位置設計(例如光軸對準或偏移),可以控制特定入射光的角度(正向入射或者斜向入射)才能被感測像素203感測,因此可以有效提高光學感測器的質量。本發明所提供的光學感測器的可控角度準直結構的形成方式,相較於傳統工藝之下,具有成本及製造流程簡化的優點,最重要的是,使用此光學感測器,其模組設計的高度或厚度更可以低於0.5mm,完全可以在不影響電池的配置下,將該光學感測器模組,設置於屏幕下與電池之間,完全解決習知技術的問題。值得一提的是,應用本發明的感測器及光學感測器模組,並不受限於如背景技術所述之指紋應用,其更可以應用於包括指靜脈、血流速及血氧偵測。甚者,其可以用來做非接觸的影像拍攝,例如屏下像機等,拍攝例如人臉或眼睛或者一般的拍照功能,用以作為人臉識別或虹膜識別等 等。
當圖1的光學感測器200應用於例如手機系統的光學感測系統600時,由於手機系統為習知技術,在此並不會展示所有的細部結構,反而只針對配合本發明的光學感測器200必須要整合一起考慮的幾個關鍵組件做描述。光學感測系統600包含顯示器300以及在顯示器300之下方的光學感測器200,其中顯示器300可為有機發光二極管(Organic Light-Emitting Diode,OLED)顯示器或微型發光二極管(Micro LED)顯示器、或者其他未來可能發展的各種顯示屏。在一些實施例中,可利用光學感測系統600中的顯示器300作為光源,其發出的光線將照射與顯示器300的上表面接觸或非接觸的目標物F,目標物F再將此光線反射至設置在顯示器300下的光學感測器200以對目標物F的輪廓特徵(例如:手指的指紋特徵)進行感測與識別。值得注意的是,光學感測系統600中的光學感測器200也可搭配其他形態及波長的光源(例如紅外線光源),故本發明實施例並不以此為限,該光學感測器也可以是被動式拍照,也就是不需要投射光源到待測目標物(物體)F。另外,值得說明的是,本發明為了說明簡化起見,光學感測器200的結構並沒有顯示出所有的細部結構層,例如CMOS製程分為前段(Front End Of Line,FEOL)及後段(Back End Of Line,BEOL),前段包括金屬氧化物半導體(Metal Oxide Semiconductor,MOS)結構,或者後段包括多層的金屬連接層及金屬間介電層(Inter-Metal Dielectric,IMD),在此大部分省略,僅著重於本發明創新精神之處加以說明,此一部分將在後面製造流程再詳細說明。
在圖1中,光學感測器200係被設置成包含於一光學感測器模組1300中,光學感測器模組1300至少包含一承載硬版1301、 一軟性電路板1302及將光學感測器200與軟性電路板1302電性連接的銲線(bond wire)1303,銲線1303由封膠層1306封裝保護住。封膠層1306的頂面可與第一透明介質層207的頂面齊平,但不限定於此。在一些實施例中,銲線1303可由鋁(Aluminum)、銅(Copper)、金(Gold)、其他適當的導電材料、上述的合金、或上述的組合所形成。
光學感測器模組1300(包含光學感測器200)係被設置於一手機內部組裝支撐使用的框架400(俗稱中框)上,該框架400通常為一金屬材料所製成。如本發明前言所提,為了將本發明的光學感測器模組1300設置於小於0.5mm的狹小距離d內(在本發明係定義為光學感測器模組1300的底部到顯示器300的底部之距離),當然框架400也可以事先製造形成一凹處(如圖所示,當然不限定於此,也可以不需要凹處,亦或者該中框可以形成一穿孔,該模組設置於該穿孔中,此時的光學感測器200裝設於框架400),以供光學感測器模組1300設置,增加整體厚度設計時的彈性。另外在框架400的底下設置電池500,用以說明本發明最主要的重點就是,在不需要讓出部分電池的空間下,提出超薄的光學感測器模組1300(包含光學感測器200),設置於框架400(電池500)與顯示器300之間,當然設置的方式為了便於生產維修,也可以是採用膠合、螺絲或其他方式的固定。
根據本發明的一些實施例,在圖1中所示出的光學感測器200至少包含具有排列成陣列的感測像素(例如光電二極體(Photodiode))203的基板201、介電層組(可包含一個或多個介電層及一個或多個金屬導線層)202、具有多個第一光孔204A的第一遮光層204、保護層205、光學濾波層206(用以過濾太陽光中的紅外光,當然不限定於此)、第一透明層207以及微透鏡210。在一些實施例中,第一光孔204A 與感測像素203可以是一對一、一對多或多對一的設計;微透鏡210與感測像素203也可以是一對一、一對多或多對一的設計。
以下將用圖2來解釋本發明的光學感測器200的操作原理,正向入射光L1、斜向入射光L2分別以不同的角度入射至光學感測器200。如果微透鏡210與第一光孔204A對準同一光軸,則因為透鏡的聚焦效應,正向入射光L1就會被聚焦到感測像素203,而斜向入射光L2也因為透鏡效應而被偏離光軸聚焦,因而被第一遮光層204阻擋。因此便具有可控角度準直結構的功能。圖3顯示依據本發明第一實施例的光學感測器的特性曲線圖。圖3清楚的展現利用本發明所量測到的數據,可以輕易的控制半高寬僅有3.5度左右的發散角,證明瞭本發明的可控角度準直結構的特殊性及優越性。
圖4顯示依據本發明第二實施例的光學感測系統的剖面示意圖。如圖4所示,本實施例類似於第一實施例,不同之處在於由積體化晶圓製造(晶圓的薄膜製程)所形成的光學濾波層206是以光學濾波板900來取代,其中光學濾波板900為一後段模組組裝的獨立光學濾波板,利用一設置於一軟性電路板1302上的支撐體(dam structure)或框體1305,用以承載光學濾波板900,其餘部分皆相同於圖1的各部件說明,因此在此就不贅述。因此,保護層205位於第一遮光層204上,此等微透鏡210位於第一透明介質層207上。光學濾波板900位於此等微透鏡210的上方,並對此等正向入射光L1與此等斜向入射光L2執行光線波長過濾動作。譬如,光學濾波板900通過光學感測器模組1300而設置於微透鏡210的上方。
值得注意的是,雖然本發明的光學感測系統600的光學感測器模組1300係設置於框架400的上方或中間,但其他實施例也可 以是貼合於顯示器300的一下表面300B。
圖5顯示依據本發明第一實施例的光學感測器的工作狀態的示意圖。如圖5所示,因為組成的陣列的微透鏡210彼此之間在製造時會有留下空白區域(譬如間隙G所指區域),如圖所示的平坦區。這主要是因為微透鏡210為圓形結構,而微透鏡210下方的感測像素203的陣列因為光罩佈局,而無法完全匹配微透鏡210的幾何尺度。因此如果有光線從微透鏡210之間的空白區域入射,例如圖中所示的第二斜向入射光(或稱相鄰間隙雜散光)L3,因而進入第一光孔204A中所露出的感測像素203,則會造成雜光干擾,降低影像品質。
圖6顯示依據本發明第三實施例的光學感測器的剖面示意圖。如圖6所示,本實施例類似於第一實施例,不同之處在於在相鄰或相近的微透鏡210之間的空白處設置一透鏡遮光層211,而僅露出微透鏡210的曲面區域,這樣可以有效解決上述第二斜向入射光L3造成的相鄰間隙雜散光干擾問題。
因此,光學感測器200可以更包含透鏡遮光層211,位於第一透明介質層207上,以及此等微透鏡210之間的多個間隙G中,以遮蔽從外界進入此等間隙G中的多個平行的第二斜向入射光L3免於進入第一透明介質層207及此等感測像素203中。有關圖2的斜向入射光L2的特徵,同樣適用於本實施例,故亦可參見圖2的相關說明。
圖7顯示依據本發明第三實施例的光學感測器的特性曲線圖。如圖7所示為實際的量測結果圖,微透鏡210之間的相鄰間隙雜散光可以被有效壓制。譬如,曲線CV1是沒有設置透鏡遮光層211的結果,而曲線CV2是有設置透鏡遮光層211的結果。
圖8顯示依據本發明第一實施例的光學感測器的另一工 作狀態的示意圖。如圖8所示,類似於圖5的相鄰間隙雜散光干擾,當相鄰或相近的微透鏡之間(不限於兩個相鄰的微透鏡之間沒有其他微透鏡)會有串擾(Cross Talk)的問題,即一目標微透鏡210M的隔壁的相鄰或相近的微透鏡210N的第三斜向入射光(或稱相鄰透鏡雜散光)L4會耦合進入目標微透鏡210M的正向入射光L1,一起入射至從第一光孔204A露出的一目標感測像素203M,會造成干擾,降低影像品質。以下將說明解決上述問題的方法。
圖9顯示依據本發明第四實施例的光學感測器的剖面示意圖。如圖9所示,光學感測器200更包含一第二遮光層208及一第二透明介質層209。第二遮光層208位於第一透明介質層207上,並具有多個第二光孔208A,此等光軸OA分別通過此等第二光孔208A。第二透明介質層209位於第二遮光層208上。此等微透鏡210位於第二透明介質層209上。為簡化說明,定義此等微透鏡210的其中一個為目標微透鏡210M,目標微透鏡210M所具有的光軸OA定義為一目標光軸OAM,目標光軸OAM所通過的感測像素203定義為目標感測像素203M,與目標微透鏡210M相鄰或相近的此等微透鏡210定義為相鄰或相近的微透鏡210N。於此狀態下,第二遮光層208遮蔽從外界進入此等相鄰或相近的微透鏡210N的多個平行的第三斜向入射光L4免於進入第一透明介質層207及目標感測像素203M中。有關圖2的斜向入射光L2的特徵,同樣適用於本實施例,故亦可參見圖2的相關說明。
因此,通過設置第二遮光層208及第二光孔208A於微透鏡210與第一遮光層204及第一光孔204A之間,則可以有效遮擋來自於相鄰或相近的微透鏡間的串擾所造成的光線干擾。
圖10顯示圖8的光學感測器的特性曲線圖。圖11顯示 圖9的光學感測器的特性曲線圖。如圖10所示,沒有設置第二遮光層208時,感測像素接收到正向入射光L1(通過目標微透鏡210M)與第三斜向入射光L4(通過相鄰或相近的微透鏡210N),造成影像重影現象。如圖11所示,有設置第二遮光層208時,感測像素僅接收到正向入射光L1,而沒有接收到第三斜向入射光,不會造成影像重影現象。因此,第二遮光層208可以非常有效的解決串擾問題,增強訊號品質,提高影像清晰度。同時,透過設置第二遮光層208,不僅可以有效解決串擾問題,連同圖5所描述的微透鏡之間的空白區域的雜光干擾,也可以同時被壓抑,是很有效的一石兩鳥的作法。
圖12顯示依據本發明第四實施例的光學感測器的工作原理的局部剖面示意圖。透過圖9的結構的優越特性,圖12可以更細部的闡述如何結合微透鏡210、第一光孔204A與第二光孔208A的幾何設計並且結合第一透明介質層207與第二透明介質層209的控制,設計出不同解析度的光學感測器,以利應用於不同的系統及應用。當設計任何一種感測陣列元件時,有一個品質因數(Figure Of Merit)就是要儘量提高單一感測元有效的填充因子(Fill Factor)(有效感測區面積/單一畫素面積)。應用此觀念於本發明的光學感測器,就是要提高每一微透鏡210的填充因子(包含了對應的感測像素203),在圖6中,最佳的填充因子就是相鄰或相近的微透鏡210之間幾乎沒有留下空白。在圖12中,A1是第一光孔204A的直徑(孔徑),而A2是第二光孔208A的直徑(孔徑),h為第一遮光層204與第二遮光層208之間的厚度,而H則是第一遮光層204至微透鏡210的底面210B之間的厚度。透過幾何三角關係(相似三角形),可以得到一種解析度的設計公式,也就是X(兩微透鏡210之間的節距或間距(pitch))表示如下:
Figure 108135075-A0101-12-0016-1
,也就是 X
Figure 108135075-A0101-12-0016-53
A1+
Figure 108135075-A0101-12-0016-2
(A2-A1)。
在作為指紋感測使用時,一個較佳實施例可以設計為H約等於43μm,h約等於15μm,A1約等於4.5μm,A2約等於9μm,則根據上述公式,X約等於20μm。因此這公式可以做為設計不同解析度的光學感測器的一種設計準則,當然由於製造的工序不可能完美,因此,此公式不是採用完全的”=”號,而是”
Figure 108135075-A0101-12-0016-55
”近似號,其誤差是可以被容許在20μm以內。
因此,在光學感測器200中,第一遮光層204位於基板201的上方,並具有多個第一光孔204A;第二遮光層208位於第一遮光層204的上方,並具有多個第二光孔208A。此等微透鏡210分別位於此等第二光孔208A的上方,且此等光軸OA分別通過此等第二光孔208A及此等第一光孔204A。此等微透鏡210的間距(pitch)X由以下公式表示:X=A1+(H/h)*(A2-A1)±20μm
其中A1表示第一光孔204A的孔徑,A2表示第二光孔208A的孔徑,H表示微透鏡210的底面210B與第一遮光層204之間的距離,h表示第二遮光層208與第一遮光層204之間的距離。
圖13顯示依據本發明第五實施例的光學感測器的剖面示意圖。如圖13所示,本實施例類似於第一實施例,不同之處在於感測像素203'的橫向尺寸(圖13的水平方向的尺寸)被設計成接收到此等正向入射光L1,但不接收到此等斜向入射光L2,而光學感測器200於第一透明介質層207與此等感測像素203'之間不具有任何遮光層來遮蔽此等斜向入射光L2。
詳細來說,在光學感測器200中,介電層組202,位於基板201上並覆蓋此等感測像素203',保護層205位於介電層組202上,光學濾波層206位於保護層205上,並對此等正向入射光L1與此等斜向入射光L2執行光線波長過濾動作。第一透明介質層207位於光學濾波層206上,此等微透鏡210位於第一透明介質層207上。因此,本實施例並沒有圖2的第一遮光層204及第一光孔204A的設計,而是透過設計感測像素203'的幾何尺寸(約相當於圖2中第一光孔204A的尺寸),以避開如圖2中的斜向入射光L2所造成的干擾,此舉可以有效簡化製程步驟及成本。
圖14顯示依據本發明第六實施例的光學感測器的局部剖面示意圖。圖15顯示圖14的光學感測器的特性曲線圖。圖16A與16B顯示依據本發明第七實施例的光學感測器的兩個例子的局部剖面示意圖。如圖14至16所示,為避免混淆起見,僅繪製出遮光層的剖面線,本實施例類似於第一實施例,不同之處在於光學感測器200更包含:多個偏移微透鏡210A,排列成陣列,並位於第一透明介質層207上或上方;以及類似於圖6的透鏡遮光層211,位於第一透明介質層207上,以及此等偏移微透鏡210A之間的間隙G中。於圖16A中,此等偏移微透鏡210A排列於此等微透鏡210的外圍。此等微透鏡210分別將此等平行的正向入射光L1入射於此等感測像素203總數的一部分的內部,並將此等平行的斜向入射光L2(參見圖2)入射於此等感測像素203總數的一部分的外部。此等偏移微透鏡210A分別將從外界進入此等偏移微透鏡210A的多個平行的第二正向入射光L1',通過第一透明介質層207而入射於此等感測像素203總數的其餘部分的外部,並將從外界進入此等偏移微透鏡210A的多個平行的第四斜向入射光L5入射於此等感測 像素203總數的其餘部分的內部。目標物F產生此等平行的第二正向入射光L1'以及此等平行的第四斜向入射光L5。此等第二正向入射光L1'平行於此等偏移微透鏡210A的多個光軸OAA。各第四斜向入射光L5與各光軸OAA夾出一個第二角度ANG2(參見圖14)。如圖15的角度響應結果所示,本實施例可以控制35度±3.5度左右的第四斜向入射光L5進入到感測像素203,也就是本實施例的第二角度ANG2介於31.5度與38.5度之間,當然這個第二角度ANG2是可以透過設計來選定的,在本發明中,介於3.5或5度到60度之間的任一角度的斜向入射光可以入射於該感測像素203的內部。故第二角度ANG2是可以選擇性改變的。圖16B類似於圖16A,不同之處在於併入第二遮光層208及第二透明介質層209,相關特徵可參見圖9的相關說明,於此不再贅述。
因此,在圖14中,是將前述幾個實施例僅允許正向入射光L1的準直器的設計,更改為全部或者部分像素僅允許第四斜向入射光L5進入其中,或者是允許幾個斜向角度的入射光,亦或者是漸進式的改變入射斜向角度的入射光進入其中。由於可以實施的方式很多種,為了簡化說明,圖14僅描述允許一特定斜向角度入射的設計。圖中所示,並不需要增加新的材料或結構(相較於圖2),而是透過設計將微透鏡210的光軸偏移,使其不與相對應的第一光孔204A對齊,因而包括正向入射的光線會被第一遮光層204阻擋(如圖14中的第二正向入射光L1')。從圖14顯示的實際量測數據中,可以看出即使在斜向35度左右的入射光,依然可以得到半高寬約3.5度的品質(相較於圖3的正向入射的數據)。
應用圖14的發明精神,圖16A與16B係結合了圖2與圖14,在感測像素203所排列成的陣列中,由中心至外圍所對應的微 透鏡210的光軸與光孔的偏移量,從0度偏移到可以對應至預定的斜向角度(例如35度),其中可以允許幾個斜向角度(幾個光軸的偏移量),亦或者是漸進式的改變入射斜向角度(連續性光軸偏移),這樣可以用較小的感測像素203的陣列的面積SR,感測到更大的待測物面積CR(例如指紋接觸面積),不僅增加感測的準度(隨面積增大而增大),也有效降低成本(隨感測器面積降低而降低)。熟悉本項技藝者,當可以透過本發明的幾個實施例的描述,組合出不同的設計,這些都不超出本實施例及發明的範圍。
值得注意的是,依據圖14所示的結構,本實施例亦提供一種光學感測器200,至少包含一基板201、一第一透明介質層207以及多個偏移微透鏡210A。基板201具有多個感測像素203,排列成陣列。第一透明介質層207位於基板201的上方。此等偏移微透鏡210A排列成陣列,並位於第一透明介質層207上或上方。此等偏移微透鏡210A分別將從外界進入此等偏移微透鏡210A的多個平行的正向入射光L1',通過第一透明介質層207而入射於此等感測像素203總數的一部分或全部的外部,並將從外界進入此等偏移微透鏡210A的多個平行的第四斜向入射光L5入射於此等感測像素203總數的一部分或全部的內部,藉此感測一目標物F的一影像,目標物F產生此等平行的正向入射光L1'以及此等平行的第四斜向入射光L5,此等正向入射光L1'平行於此等偏移微透鏡210A的多個光軸OAA,各第四斜向入射光L5與各光軸OAA夾出第二角度ANG2。
於光學感測器200中,介電層組202位於基板201上並覆蓋此等感測像素203;第一遮光層204位於介電層組202上,並具有多個第一光孔204A。此等正向入射光L1'不通過此等第一光孔204A, 此等第四斜向入射光L5通過此等第一光孔204A。保護層205位於第一遮光層204上。光學濾波層206位於保護層205上,並對此等正向入射光L1'與此等第四斜向入射光L5執行光線波長過濾動作。第一透明介質層207位於光學濾波層206上,此等偏移微透鏡210A位於第一透明介質層207上。圖14的光學感測器200亦可應用於圖1的光學感測系統600,本領域具有通常知識者可以輕易推敲其應用於圖1的光學感測系統600的設置方式,故於此不再詳述。
圖16C係結合了圖1、圖13、圖14與圖16A,在感測像素的陣列,由中心至外圍所對應的微透鏡,改變了微透鏡的光軸與感測像素(光孔)的偏移量,從0偏移到預定的斜向角度(例如15度),其中可以允許幾個斜向角度(幾個光軸偏移量),亦或者是漸進式的改變入射斜向角度(連續性光軸偏移),這樣可以用較小的感測像素的陣列的面積,感測到更大的待測物的面積(例如指紋接觸面積),不僅增加感測的準度(隨面積增大而增大),也有效降低成本(隨感測器面積降低而降低)。於一例子中,這些微透鏡是以相等間距(pitch)排列,而對應的感測像素是以不等間距排列。於另一例子中,這些微透鏡是以不等間距排列,而對應的感測像素是以相等間距排列。於又另一例子中,這些微透鏡是以不等間距排列,而對應的感測像素是以不等間距排列。熟悉本項技藝者,當可以透過本發明的幾個實施例的描述,組合出不同的設計,這些都不超出本實施例及發明的範圍。
如圖16C所示,本實施例類似於第一實施例,不同之處在於使用微透鏡群組及感測像素群組。如圖16C所示,光學感測器200至少包含一基板201、一第一透明介質層207以及N個微透鏡群組210G。基板201具有N個感測像素群組203G,排列成陣列。各感測像 素群組203G包含一第一感測像素203A1及一第二感測像素203A2,其中N為大於1的正整數。第一透明介質層207位於基板201的上方。N個微透鏡群組210G排列成陣列並且分別對應於N個感測像素群組203G而組成N個感測單元230G。感測單元230G包含一個微透鏡及一個感測像素,接收微透鏡聚焦過來的光線。N個微透鏡群組210G位於第一透明介質層207上或上方。各微透鏡群組210G包含一第一微透鏡210A1及一第二微透鏡210A2,分別對應於第一感測像素203A1及第二感測像素203A2。於各感測單元230G中,第一感測像素203A1對準於第一微透鏡210A1的一第一光軸OA,且第二感測像素203A2不對準於第二微透鏡210A2的一第二光軸OAA。因此,圖16C的兩個感測像素相當於圖1的一個感測像素。
於本實施例中,光學感測器200更包含一感測電路240,形成於基板201中,並且電連接至此等感測像素群組203G,於各感測像素群組203G中,各感測電路240於一第一時間點致能第一感測像素203A1並禁能第二感測像素203A2,並於一第二時間點禁能第一感測像素203A1並致能第二感測像素203A2。
圖16C的結構類似於圖1,故適用於圖1、圖4、圖6、圖9及圖13的所有特徵。如圖16C與圖1所示,光學感測器200更包含一介電層組202、一第一遮光層204以及一光學濾波層206。介電層組202位於基板201上並覆蓋此等第一感測像素203A1與此等第二感測像素203A2。第一遮光層204位於介電層組202上,並具有多個第一光孔204A,此等正向入射光L1'(以及相鄰像素斜向入射光L5)通過此等第一光孔204A。來自目標物F的多個相同像素斜向入射光L2不通過此等第一光孔204A,相同像素斜向入射光L2指的是原本會被接收到 正向入射光L1'的同一個第一感測像素203A1及/或接收到相鄰像素斜向入射光L5的同一個第二感測像素203A2接收的入射光L2。光學濾波層206位於第一遮光層204上,並對此等正向入射光L1'、此等相同像素斜向入射光L2與此等相鄰像素斜向入射光L5執行光線波長過濾動作,其中第一透明介質層207位於光學濾波層206上,此等第一微透鏡210A1及此等第二微透鏡210A2位於第一透明介質層207上。
如圖16C與圖4所示,介電層組202位於基板201上並覆蓋此等第一感測像素203A1與此等第二感測像素203A2。第一遮光層204位於介電層組202上,並具有多個第一光孔204A,此等正向入射光L1'(以及相鄰像素斜向入射光L5)通過此等第一光孔204A,來自目標物F的多個相同像素斜向入射光L2不通過此等第一光孔204A。光學濾波板900,位於此等第一微透鏡210A1與此等第二微透鏡210A2的上方,並對此等正向入射光L1'、此等相同像素斜向入射光L2與此等相鄰像素斜向入射光L5執行光線波長過濾動作,此等第一微透鏡210A1與此等第二微透鏡210A2位於第一透明介質層207上。
如圖16C與圖6所示,介電層組202位於基板201上並覆蓋此等第一感測像素203A1與此等第二感測像素203A2。第一遮光層204位於介電層組202上,並具有多個第一光孔204A。此等正向入射光L1'(以及相鄰像素斜向入射光L5)通過此等第一光孔204A,來自目標物F的多個相同像素斜向入射光L2不通過此等第一光孔204A。光學濾波層206位於第一遮光層204上,並對此等正向入射光L1'、此等相同像素斜向入射光L2與此等相鄰像素斜向入射光L5執行光線波長過濾動作。第一透明介質層207位於光學濾波層206上,此等第一微透鏡210A1與此等第二微透鏡210A2位於第一透明介質層207上。透 鏡遮光層211位於第一透明介質層207上,以及此等第一微透鏡210A1與此等第二微透鏡210A2之間的多個間隙G中,以遮蔽從外界進入此等間隙G中的多個第二相同畫素斜向入射光L3免於進入第一透明介質層207及此等第一感測像素203A1中。於另一例子中,透鏡遮光層211也可被設計成遮蔽多個第二相同畫素斜向入射光L3免於進入此等第二感測像素203A2中。
如圖16C與圖9所示,介電層組202位於基板201上並覆蓋此等第一感測像素203A1與此等第二感測像素203A2。第一遮光層204位於介電層組202上,並具有多個第一光孔204A,此等正向入射光L1'(以及相鄰像素斜向入射光L5)通過此等第一光孔204A,來自目標物F的多個相同像素斜向入射光L2不通過此等第一光孔204A。光學濾波層206位於第一遮光層204上,並對此等正向入射光L1'、此等相同像素斜向入射光L2與此等相鄰像素斜向入射光L5執行光線波長過濾動作。第二遮光層208位於第一透明介質層207上,並具有多個第二光孔208A,此等第一光軸OA分別通過此等第二光孔208A,此等第二光軸OAA可以被設計成通過或不通過此等第二光孔208A。第二透明介質層209位於第二遮光層208上,此等第一微透鏡210A1與此等第二微透鏡210A2位於第二透明介質層209上,第二遮光層208遮蔽相鄰透鏡雜散光L4免於進入此等第一感測像素203A1中。於另一例子中,第二遮光層208也可被設計成遮蔽相鄰透鏡雜散光L4免於進入此等第二感測像素203A2中。
如圖16C與圖13所示,此等第一感測像素203A1的橫向尺寸被設計成接收到此等正向入射光L1'/L1,但不接收到相同像素斜向入射光L2,而光學感測器於第一透明介質層207與此等第一感測像 素203A1之間不具有任何遮光層來遮蔽此等相同像素斜向入射光L2。此外,此等第二感測像素203A2的橫向尺寸被設計成接收到此等相鄰像素斜向入射光L5,但不接收到相同像素斜向入射光L2,而光學感測器於第一透明介質層207與此等第一感測像素203A1之間不具有任何遮光層來遮蔽此等相同像素斜向入射光L2。
如圖16C與圖16D所示,此等微透鏡群組210G分別將從外界進入此等微透鏡群組210G的多個正向入射光L1'及多個相鄰像素斜向入射光L5,通過第一透明介質層207而入射於此等感測像素群組203G中。於一例子中,此等感測像素群組203G於不同時間點選擇性接收(可利用開關機構來達成)此等正向入射光L1'及此等相鄰像素斜向入射光L5,藉此感測一目標物F的多個影像,目標物F產生此等正向入射光L1'以及此等相鄰像素斜向入射光L5,各正向入射光L1'與此等各第一光軸OA夾出一第一角度ANG,各相鄰像素斜向入射光L5與各第二光軸OAA夾出一第二角度ANG2。於另一例子中,此等感測像素群組203G於相同時間點選擇性接收此等正向入射光L1'及此等相鄰像素斜向入射光L5。
第一角度ANG介於-3.5度與+3.5度之間;以及第二角度ANG2介於-3.5度與-60度之間以及+3.5度與+60度之間。或者,第一角度ANG介於-5度與+5度之間;以及第二角度ANG2介於-5度與-60度之間以及+5度與+60度之間。
當將光學感測器200應用於光學感測系統600時,如圖16D所示,光學感測系統600更包含一處理器350,電連接至電池500、光學感測器200及顯示器300,其中處理器350控制感測電路240的運作以於第一時間點產生一第一影像IM1,並於第二時間點產生一第二影 像IM2。處理器350依據第一影像IM1及第二影像IM2進行接圖動作而產生一最終影像。
如圖16C與圖16E所示,此等感測像素群組203G對於一中心對稱軸AX1呈現鏡射關係排列。於各感測單元230G中,第二感測像素203A2偏移於第二微透鏡210A2的第二光軸OAA達到一偏移量OF2,此等偏移量OF2相同。於另一例子中,此等偏移量OF2從光學感測器200的一內圈區段到一外圈區段呈現漸增的趨勢,外圈區段位於內圈區段的外側或包圍內圈區段。於本例子中,此等感測像素群組203G所分佈的面積SR(N個第一感測像素203A1與N個第二感測像素203A2所排列成的二維陣列的分佈面積)小於光學感測器200所能感測的目標物F的面積(CR+CR",又稱為N個第一感測元230G1與N個第二感測元230G2的一收光面積)(兩側的面積CR"看做一個區域的面積)或(CR+2CR")(兩側的面積CR"看做兩個區域的面積,也就是上述的收光面積)。
在圖16C中,水平方向表示第一方向X,垂直方向表示第三方向Z。在圖16E中,水平方向表示第一方向X,垂直方向表示第二方向Y。換句話說,圖16C與16E所示的光學感測器200至少包含基板201、第一透明介質層207以及N個第一微透鏡210A1及N個第二微透鏡210A2。基板201,具有N個第一感測像素203A1及N個第二感測像素203A2,排列成二維陣列。此二維陣列具有正交的第一方向X及第二方向Y。N個第一感測像素203A1與N個第二感測像素203A2沿著第一方向X與第二方向Y的一者或兩者彼此穿插交錯(於本實施例中僅是沿著第一方向X彼此穿插交錯)。第一透明介質層207位於基板201的上方。N個第一微透鏡210A1及N個第二微透鏡210A2分別 對應於N個第一感測像素203A1及N個第二感測像素203A2而組成N個第一感測元230G1及N個第二感測元230G2。在第一方向X上連續相鄰或相近排列的N個第一感測元230G1的至少兩個及N個第二感測元230G2的至少兩個中,第一感測像素203A1對準於第一微透鏡210A1的一第一光軸OA,且第二感測像素203A2不對準於第二微透鏡210A2的一第二光軸OAA,使得N個第一感測元230G1與N個第二感測元230G2的一收光面積大於二維陣列的一分佈面積。值得注意的是,可以設置一個最內圈區段,位於內圈區段中,其中最內圈區段的感測像素都正對準於微透鏡的光軸且不被分成多個感測單元,用於在同一時間點感測小區域的圖像來跟內圈區段與外圈區段配合接圖(於另一例子中也可以被分成多個感測單元,用於在不同時間點感測小區域的圖像來跟內圈區段與外圈區段配合接圖),此外,在應用後述的圖16H的架構(二維外擴的例子)中,在第二方向Y上,也可以具有類似於上述的特徵。
圖16E是以一維的向外擴展的感測單元230G當作例子作說明,但並未將本發明限制於此。於圖16F中與圖16H中,感測單元230G可以作二維的向外擴展。於圖16F所示,於一個光學感測器200中,各感測像素群組203G更包含一第三感測像素203A3及一第四感測像素203A4。各微透鏡群組210G更包含一第三微透鏡210A3及一第四微透鏡210A4,分別對應於第三感測像素203A3及第四感測像素203A4。第三微透鏡210A3與第四微透鏡210A4分別對應於第三感測像素203A3與第四感測像素203A4而組成一第三感測元230G3及一第四感測元230G4。感測單元230G包含第一至第四感測元230G1至230G4。於各感測單元230G中,第三感測像素203A3不對準於第三微透鏡210A3的一第三光軸OA3,且第四感測像素203A4不對準於第四微透鏡210A4 的一第四光軸OA4。此外,且第一微透鏡210A1與第四微透鏡210A4的一第一連接線C1相交於第二微透鏡210A2與第三微透鏡210A3的一第二連接線C2。於圖16H中,此等感測像素群組203G對於兩個正交的中心對稱軸AX1、AX2呈現鏡射關係排列,感測到的第二影像IM2的面積大於第一影像IM1的面積,感測像素群組203G的數目不限於4個,也可以是16個。於此情況下,中心對稱軸AX1、AX2將16個感測像素群組203G分成四個象限的區域,各個象限的區域包含4個感測像素群組203G,各感測像素群組203G沿著第一方向X與第二方向Y彼此穿插交錯。
圖16G的結構類似於圖16F,不同之處在於,於各感測單元230G中,第三感測像素203A3不對準於第三微透鏡210A3的一第三光軸OA3,且第四感測像素203A4對準於第四微透鏡210A4的一第四光軸OA4。值得注意的是,第四感測像素203A4可以當作虛設(Dummy)的感測像素,不執行收光的動作。或者,也可以將第四感測像素203A4與第四微透鏡210A4予以省略,仍能達成本發明的效果。
圖16I的結構類似於圖16E,差異點在於更包含中心對稱軸AX1兩側的一個感測單元230G",此感測單元230G"包含兩個相鄰或相近的第一感測像素203A1(沒有第二感測像素203A2),以及兩個相鄰的第一微透鏡210A1(沒有第二微透鏡210A2),也就是感測像素都是對準於微透鏡的光軸。感測單元230G"可以提供另一種接圖的基準。因此,整合圖16C至16I可以得知,本實施例提供的光學感測器200可以用於感測目標物F的影像,並且至少包含多個感測單元230G、230G"(圖16I有感測單元230G、230G",圖16C只有感測單元230G),排列成一個二維感測單元陣列,二維感測單元陣列的此等感測單元230G、 230G"之一部分感測單元(圖16I是一部分的感測單元230G)或全部感測單元(圖16C是全部的感測單元230G)的每一個至少包含:第一感測像素203A1及相鄰或相近的第二感測像素203A2(圖16F與圖16G就有第三感測像素203A3及第四感測像素203A4);第一微透鏡210A1及相鄰或相近的第二微透鏡210A2(圖16F與圖16G就有第三微透鏡210A3及第四微透鏡210A4),分別對應於第一感測像素203A1及第二感測像素203A2而組成第一感測元230G1及第二感測元230G2。第一感測像素203A1對準於第一微透鏡210A1的第一光軸OA,且第二感測像素203A2不對準於第二微透鏡210A2的第二光軸OAA,使得此等第一感測元230G1與此等第二感測元230G2結合後所能感測目標物F的感測面積大於二維感測單元陣列的實體分佈面積。換句話說,此第一感測元230G1與此第二感測元230G2結合後所能感測目標物F的感測面積大於此第一感測元230G1與此第二感測元230G2的實體分佈面積。
值得注意的是,可以將圖16I的感測單元230G"視為正向感測單元,可以感測正向入射光,並將感測單元230G視為斜向感測單元,可以感測正向入射光及斜向入射光。感測單元230G所具有的第一微透鏡210A1與第二微透鏡210A2可以稱為是偏移透鏡群組。
值得注意的是,第七實施例的製造方法可以適用於以下的製造方法,只要將微透鏡與感測畫素作適當配置即可。
如圖16J所示,本例子類似於圖16E,不同之處在於第一感測像素203A1不對準於第一微透鏡210A1的第一光軸OA。於此,將第一感測元230G1的第一偏移向量V1定義為從第一光軸OA到第一感測像素203A1的中心的向量,將第二感測元230G2的第二偏移向量V2定義為從第二光軸OAA到第二感測像素203A2的中心的向量。於 此情況下,第一偏移向量V1與第二偏移向量V2的方向相反(兩向量所形成的夾角等於180度,大小可以相同或不同)。因此,第一感測像素203A1的感測區域是涵蓋待測物面積CR與右邊的面積CR",第二感測像素203A2的感測區域是涵蓋待測物面積CR與左邊的面積CR",同樣可以達到接圖及擴大感測面積的效果。
圖16K類似於圖16F,不同之處在於第三感測像素203A3不對準於第三微透鏡210A3的第三光軸OA3,且第四感測像素203A4不對準於第四微透鏡210A4的第四光軸OA4。於此,更將第三感測元230G3的第三偏移向量V3定義為從第三光軸OA3到第三感測像素203A3的中心的向量,將第四感測元230G4的第四偏移向量V4定義為從第四光軸OA4到第四感測像素203A4的中心的向量。於此情況下,第一至第四偏移向量V1至V4的方向互相正交(大小可以相同或不同),或者說第一至第四偏移向量V1至V4形成四個90度的夾角。
整合上述實施例,可以得知本發明的實施例提供一種光學感測器,用於感測目標物的影像,至少包含多個感測元,排列成一個二維感測元陣列,此等感測元的相鄰兩者(可以是屬於同一感測單元,供後續接圖處理用,也可以是屬於不同感測單元)感測不同方向的斜向入射光,此等斜向入射光沿著垂直此等感測元的光軸的組成向量(分量)的方向不同(譬如一個斜向入射光的分量朝+X軸的方向,另一個的分量朝-X軸、+Y軸或-Y軸的方向,或者說該等斜向入射光不位於該等感測元的光軸的同一側,只要能使斜向入射光是從目標物往感測元的方向收斂即可),使得該二維感測元陣列所能感測該目標物的感測面積大於該二維感測元陣列的實體分佈面積。值得注意的是,於上述實施例中,斜向入射光所代表的是一個光束的主光軸方向的入射光,其行進方向或 入射方向為光束的中心線所指的方向,正向入射光也是作類似的解釋及定義。
於圖16C與16J中,此等感測元的相鄰兩者所接收的所述斜向入射光的入射方向互不平行。於圖16J中,此等感測元的相鄰兩者所接收的所述斜向入射光的入射方向相對於此等光軸互相對稱。於圖16C與16J中,感測元的光軸相同於微透鏡的光軸,感測像素不對準微透鏡的光軸,使得此等感測元所感測到的此等斜向入射光結合後,所能代表的目標物的感測面積大於二維感測單元陣列的實體分佈面積。各感測元具有從光軸到感測像素的中心的一偏移向量,此等感測元的相鄰兩者的兩偏移向量的方向不同(一個向左,一個向右,相當於偏移向量之間的夾角等於180度)。於圖16K中,此等感測元的相鄰四者的四偏移向量形成四個90度的夾角。
從上述所有的實施例中,雖然利用每一感測單元中包含至少兩個感測元的組合來達成組圖(接圖)的目的,但是實際實施時透過讀取電路的設計是可以有各種變化的,例如也可以透過晶片內或系統內暫存記憶體的分割成不同區塊,每一區塊記錄不同方向入射光的面積,而最終組合成最後的所有面積,同時每一感測單元裡至少兩個感測元,描述的只是幾何關係,並不是要求一定要共用相同的讀取電路及路徑,也可以是個別的讀取電路及路徑,這種感測單元及內含至少兩個感測元的設計,僅是為了說明,讓熟悉本項技藝者得據以了解,而並不是用以限定本發明精神。
如圖16L與16M所示,本例子可以應用本發明各實施例的光學感測器,甚至是其他的光學感測器。本例子類似於圖1,,不同之處在於,光學感測器200全部或部分裝設於框架400的一容置槽410 中,或者是光學感測器200的頂部埋入於容置槽410中(圖16L),或光學感測器200的頂部貼於該框架400的下表面,以增加光學感測器200與顯示器300的距離,以獲得更大的感測面積(或者是說可以縮小光學感測器200的尺寸)。於本例子中,容置槽410貫通框架400,光學感測器200較佳是與框架400的底部位於同一平面,但並未將本發明限制於此,亦可是需要作些微的調整,譬如容置槽410不貫通框架400,但是開口朝向顯示器300(如圖1所示),又譬如容置槽410貫通框架400,但是容置槽410具有一個凸緣415(如圖16M所示),光學感測器200可以全部或部分埋入容置槽410中,而光學感測器200的頂部貼合於凸緣415以獲得穩固固定的效果。
圖17A至圖17E顯示依據本發明第八實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。本實施例的結構類似於圖2的第一實施例,不同之處在於更具有透鏡遮光層211。首先,如圖17A所示,提供一基板201,具有多個感測像素203,排列成陣列。接著,如圖17B至17D所示,於基板201的上方形成第一透明介質層207。詳細而言,如圖17B所示,於基板201上形成介電層組202,再於介電層組202上形成第一遮光層204(也就是於基板201與第一透明介質層207之間形成第一遮光層204)以及第一光孔204A。然後,如圖17C所示,於第一遮光層204與第一光孔204A上形成保護層205,再於保護層205上形成光學濾波層206。接著,如圖17D所示,於光學濾波層206上形成第一透明介質層207。然後,於第一透明介質層207上或上方形成多個微透鏡210,排列成陣列,至此形成圖2的光學感測器200。
接著,如圖17E所示,於第一透明介質層207上與此等微透鏡210之間形成透鏡遮光層211。亦即,於此等微透鏡210之間的 多個間隙G中形成透鏡遮光層211。
值得注意的是,上述製造方法亦可應用於圖14的偏移微透鏡210A而製造出具有偏移微透鏡210A的光學感測器200。本領域具有通常知識者可以輕易推敲此光學感測器200的製造方法,故於此不再詳述。
圖18A至圖18F顯示依據本發明第九實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。本實施例的結構類似於圖9的第四實施例,不同之處在於更具有透鏡遮光層211。圖19A至圖19F顯示依據本發明第十實施例的光學感測器的製造方法的各步驟的結構剖面示意圖。本實施例的結構類似於圖13的第五實施例,不同之處在於更具有第二遮光層208、第二透明介質層209與透鏡遮光層211。
以下將透過製造方法的各步驟的結構圖對圖17A到17F、圖18A到18F以及圖19A到19F作綜合說明。
在圖17A/18A/19A中,基板201可為半導體基板,例如矽基板。此外,在一些實施例中,上述半導體基板亦可為元素半導體(Elemental Semiconductor),包含:鍺(Germanium);化合物半導體(Compound Semiconductor),包含:氮化鎵(Gallium Nitride)、碳化矽(Silicon Carbide)、砷化鎵(Gallium Arsenide)、磷化鎵(Gallium Phosphide)、磷化銦(Indium Phosphide)、砷化銦(Indium Arsenide)及/或銻化銦(Indium Antimonide);合金半導體(Alloy Semiconductor),包含:矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)、及/或磷砷銦鎵合金(GaInAsP)、或上述材料的組合。在其他實施例中,基板201也可以是絕緣層上覆半導體(Semiconductor On Insulator)基 板,上述絕緣層上覆半導體基板可包含底板、設置於底板上的埋藏氧化層、及設置於埋藏氧化層上的半導體層。此外,基板201可為N型或P型導電類型。
在一些實施例中,基板201可包含各種隔離部件(未示出),用以定義主動區,並電性隔離基板201之中/之上的主動區元件。在一些實施例中,隔離部件包含淺溝槽隔離(Shallow Trench Isolation,STI)部件、局部矽氧化(local oxidation of silicon,LOCOS)部件、其他合適的隔離部件、或上述的組合。
在一些實施例中,基板201可包含各種以如離子布植及/或擴散工藝所形成的P型摻雜區及/或N型摻雜區(未示出)。在一些實施例中,摻雜區可形成晶體管、光電二極管(Photodiode)等元件。此外,基板201亦可包含各種主動元件、無源元件以及各種導電部件(例如:導電墊、導線或導孔)。
在基板201中形成感測像素203/203'的陣列,並且感測像素203/203'可與信號處理電路(Signal Processing Circuitry)(未示出)連接。在一些實施例中,感測像素203/203'的數量取決於光學感測區的面積SR的大小。每個感測像素203/203'可包含一或多個光檢測器(Photodetector)。在一些實施例中,光檢測器可包含光電二極管,其中光電二極管可包含P型半導體層、本質層(Intrinsic Layer)、以及N型半導體層的三層結構的光電材料(Photoelectric Material),本質層吸收光以產生出激子(Exciton),並且激子會在P型半導體層及N型半導體層的接面分成電子與空穴,進而產生電流信號。在一些實施例中,光檢測器可為CMOS影像感測器,例如前照式(Front-Side Illumination,FSI)CMOS影像感測器或背照式(Back-Side Illumination,BSI)CMOS 影像感測器。在一些其他實施例中,光檢測器也可包含電荷耦合元件(Charged Coupling Device,CCD)感測器、主動感測器、被動感測器、其他適合的感測器或上述的組合。在一些實施例中,感測像素203/203'可通過光檢測器將接收到的光信號轉換成電子信號,並通過信號處理電路處理上述電子信號。
在一些實施例中,感測像素203/203'為陣列排列,從而形成感測像素陣列。然而,在圖2中所示的剖面圖僅示出感測像素203/203'的陣列的其中一列,並位於基板201的上表面的下方。值得注意的是,在所有實施例圖中所示出的感測像素203/203'的數量與排列方式僅為例示性的,本發明實施例並不以此為限。感測像素203/203'可為任意行列數目的陣列或其他的排列方式。
在圖17B/18B/19B中,介電層組202形成於基板201與感測像素203/203'上方,介電層組202主要為積體電路製程的後段BEOL金屬連接線及金屬間介電層的組合,由於其為習知技術,在此不贅述,特別注意的是在設計時,在光的入射光路上,不要有任何的金屬以免遮蔽。接著,形成第一遮光層204在介電層組202上。第一遮光層204可包含遮光材料,其對於在1200納米波長範圍以下的光穿透率小於1%以下,但當然不限定於此。
在一些實施例中,第一遮光層204可包含金屬材料(在本實施例為積體電路製程的最後一道金屬),例如鎢(W)、鉻(Cr)、鋁(Al)或鈦(Ti)等。在此實施例中,可通過例如化學氣相沉積(Chemical Vapor Deposition,CVD)、物理氣相沉積工藝(Physical Vapor Deposition,PVD)(例如:真空蒸鍍工藝(Vacuum Evaporation Process)、濺鍍工藝(Sputtering Process)、脈衝激光沉積(Pulsed Laser Deposition,PLD))、 原子層沉積(Atomic Layer Deposition,ALD)、其他適合的沉積工藝、或前述的組合,來毯覆性地形成第一遮光層204。在一些實施例中,第一遮光層204可包含具有遮光特性的高分子材料,例如環氧樹脂、聚醯亞胺等。在此實施例中,可通過例如旋轉塗佈法(Spin-Coating)、化學氣相沉積法(CVD)、其他適當的方法、或上述的組合將第一遮光層204形成於介電層組202上。通過上述方法所形成的第一遮光層204的厚度在約0.3微米(micrometer,μm)至約5微米的範圍,例如可為2微米。在一些實施例中,第一遮光層204的選用厚度取決於第一遮光層204的材料的遮光能力,例如第一遮光層204所包含的遮光材料的遮光能力與其厚度呈負相關。
接著對第一遮光層204執行圖案化工藝,以形成具有第一孔徑A1的多個第一光孔204A。上述的圖案化工藝可包含光刻工藝與蝕刻工藝。光刻工藝可包含例如:光刻膠塗佈(例如旋轉塗佈)、軟烤、曝光圖案、曝光後烘烤、光刻膠顯影、清洗及乾燥(例如硬烤)、其他適當的工藝、或上述的組合。蝕刻工藝可包含例如:濕式蝕刻工藝、乾式蝕刻工藝(例如反應離子蝕刻(Reactive Ion Etching,RIE))、等離子體蝕刻、離子研磨)、其他適合的工藝、或上述的組合。通過上述方法所形成的第一孔徑A1在約0.3微米至約50微米的範圍,例如可為約4微米至約5微米。
值得注意的是,在圖5中所示出的第一光孔204A與感測像素203是以一對一的方式對應設置,然而,在本發明的其他實施例中的第一光孔204A與感測像素203亦可以一對多或多對一的方式對應設置。舉例來說,一個第一光孔204A可露出兩個以上的感測像素203(未示出),或者一個感測像素203可從兩個以上的第一光孔204A露 出(未示出)。圖5僅示出例示性的設置方式,本發明並不以此為限。根據本發明的一些實施例,通過控制圖案化第一遮光層204的第一孔徑A1,可調整入射光的視場角的範圍。
在圖17C/18C/19C中,一保護層205及一光學濾波層206形成於第一遮光層204及第一光孔204A上方。在本實施例中,保護層205係為積體電路的保護層,其可以為氧化矽或氮化矽材料或兩者之組合。當然此一保護層205可以選擇性不要(參見圖20與21),例如在第一遮光層204材料為具有遮光特性的高分子材料的狀況下。光學濾波層206可為紅外線濾光層(Infrared Cut Filter,ICF)。可見光(Visible Light)對於此紅外線濾光層具有高穿透率(Transmittance),而紅外光對其則具有高反射率(Reflectivity),可以減少例如來自太陽光的紅外線的干擾。
在圖17D/19D中,形成第一透明介質層207於光學濾波層206上,第一透明介質層207可包含光固化材料(UV-Curable Material)、熱固化材料(TThermosetting Material)、或上述的組合。舉例來說,第一透明介質層207可包含例如聚甲基丙烯酸甲酯(Poly(Methyl Methacrylate),PMMA)、聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate,PEN)聚碳酸酯(Polycarbonate,PC)、全氟環丁基(Perfluorocyclobutyl,PFCB)聚合物、聚亞醯胺(Polyimide,PI)、亞克力樹酯、環氧樹脂(Epoxy resins)、聚丙烯(Polypropylene,PP)、聚乙烯(Polyethylene,PE)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Polyvinyl Chloride,PVC)、其他適當的材料、或上述的組合。在一些實施例中,可以旋轉塗佈法(Spin-Coating)、乾膜(Dry Film)工藝、鑄模(Casting)、棒狀塗佈 (BarCoating)、刮刀塗佈(Blade Coating)、滾筒塗佈(Roller Coating)、線棒塗佈(Wire Bar Coating)、浸漬塗佈(Dip Coating)、化學氣相沉積法(CVD)、其他適合的方法。在一些實施例中,通過上述方法所形成的第一透明介質層207的厚度在約1微米至約100微米的範圍,例如可為10至50微米。根據本發明的一些實施例,通過上述工藝方法所形成的第一透明介質層207具有高良率及良好的品質。並且,通過控制第一透明介質層207的厚度可增加或減少光線經過微透鏡210後偏移的距離,進而提升感測像素203的陣列所能接收的入射光角度的精準度。
微透鏡210形成於第一透明介質層207上方,兩者可以是同質材料或異質材料(在此為同質),其形成方法通常是透過高溫回焊(Reflow)將一厚膜高分子材料透過內聚力的方式形成半球結構。當然第一透明介質層207及微透鏡210也可以是介電材料,例如玻璃等,其更可以提高透光性。在這些實施例中,可在光刻工藝中乾燥(例如硬烤)的步驟利用表面張力的效果來形成半球狀的微透鏡210,並且,可通過控制加熱的溫度來調整所需要的微透鏡210的曲率半徑。在一些實施例中,所形成的微透鏡210的厚度在約1微米至約50微米之間的範圍。值得注意的是,微透鏡210的輪廓並不以半球狀為限,本發明實施例亦可根據所需要的入射光角度來調整微透鏡210的輪廓,例如可為非球面狀(aspheric)。
在圖18D/19D中,其係為增加一第二遮光層208的結構,其材料特性在本實施例相同於第一遮光層204,在此不贅述。並且透過光刻技術形成第二光孔208A於第二遮光層208中,相同於第一光孔204A的形成方法,在此不贅述。
在圖18E/19E中,形成第二透明介質層209於第二遮光 層208及第二光孔208A上方,第二透明介質層209的材料與形成方法與第一透明介質層207相同,在此不贅述。綜合來說,於微透鏡210與第一透明介質層207之間形成第二遮光層208與第二透明介質層209。最後形成微透鏡210於第二透明介質層209上方,形成方法與材料前面已描述,在此省略。
在圖17E/18F/19F中,可以根據需求更進一步形成一透鏡遮光層211於微透鏡210之間的空白處,透鏡遮光層211的材料可以相同於第一遮光層204/第二遮光層208的材料,因此不贅述。
圖20顯示依據本發明第八實施例的變化例的光學感測器的結構剖面示意圖。本變化例是省去圖17E的保護層205的結構,相同之處不再贅述。於本變化例中,光學濾波層206位於第一遮光層204上,並且可以填入第一光孔204A中。如此可以減少製造步驟數目,降低製造成本,並減少光學感測器的厚度。
圖21顯示依據本發明第十實施例的變化例的光學感測器的結構剖面示意圖。本變化例是省去圖19F的保護層205的結構,相同之處不再贅述。於本變化例中,光學濾波層206位於介電層組202上。如此可以減少製造步驟數目,降低製造成本,並減少光學感測器的厚度。
綜上所述,本發明的實施例所提供的光學感測系統包含利用顯示器(例如移動裝置的屏幕面板)作為光源的設計。再者,在光學感測系統中,光學感測器所包含的具有不同橫向偏移距離的微透鏡與第一遮光層的第一開孔的配置及/或其他參數(例如第一開孔的孔徑、第一透明介質層的厚度、及/或微透鏡的曲率半徑)的配置,可使得感測像素接收來自不同入射角範圍的光線。據此,從特定範圍的視場角入射的光線可入射至感測像素。另外,由於本發明所提供的光學感測系統 可接收斜角入射的光,使得光學感測區的面積可小於待測物面積,而實現縮小光學感測器的面積並取得良好的影像品質的技術效果。
綜上所述,本發明的實施例通過符合上述關係式之微透鏡與具有較小尺寸的感測像素的配置,可達成在不具備額外的遮光層的情況下,使得感測像素亦能接收來自特定範圍的視場角入射的光線,並可降低光學感測器的厚度。通過將電路設計配置於具有較小尺寸的感測像素之間,可有效提升光學感測器的集成密度。本發明的實施例所提供的光學感測器可利用顯示器(例如移動裝置的屏幕面板)作為光源的設計。再者,光學感測器所包含的具有不同橫向偏移距離的微透鏡層與感測像素的配置及/或其他參數(例如感測像素的尺寸、第一透明介質層之折射率、第一透明介質層之厚度、微透鏡的焦距、微透鏡的直徑)的配置,可使得感測像素接收來自不同入射角範圍的光線。據此,從特定範圍的視場角入射的光線可入射至感測像素。
藉由上述實施例,透過對光學感測器的遮光層、微透鏡及感測像素的設計,可以讓的感測像素接收來自特定入射角範圍的光線,消除不必要的雜散光,並可有效縮小光學感測器的厚度,可以使光學感測器能輕易地設置於手機等電子設備的電池與顯示器之間,更可利用顯示器的光源實現屏下光學感測。再者,利用偏移透鏡群組以及於不同時間點感測目標物的多個影像,利用偏移微透鏡配合接圖的方式,有效擴大感測面積,提升感測品質。
以上概述數個實施例,以便在本發明所屬技術領域中技術人員可以更理解本發明實施例的觀點。在本發明所屬技術領域中技術人員應該理解,他們能以本發明實施例為基礎,設計或修改其他工藝和結構,以達到與在此介紹的實施例相同的目的及/或優勢。在本發明所 屬技術領域中技術人員也應該理解到,此類等效的工藝和結構並無悖離本發明的構思與範圍,且他們能在不違背本發明的構思和範圍之下,做各式各樣的改變、取代和替換。
AX1‧‧‧中心對稱軸
OF2‧‧‧偏移量
CR‧‧‧待測物面積
CR"‧‧‧面積
IM1‧‧‧第一影像
IM2‧‧‧第二影像
SR‧‧‧面積
X‧‧‧第一方向
Y‧‧‧第二方向
203A1‧‧‧第一感測像素
203A2‧‧‧第二感測像素
210A1‧‧‧第一微透鏡
210A2‧‧‧第二微透鏡
230G‧‧‧感測單元

Claims (20)

  1. 一種光學感測器,用於感測一目標物的影像,至少包含:多個感測單元,排列成一個二維感測單元陣列,該二維感測單元陣列的該等感測單元之一部分或全部感測單元的每一個至少包含:一第一感測像素及一第二感測像素;以及一第一微透鏡及一第二微透鏡,分別對應於該第一感測像素及該第二感測像素而組成一第一感測元及一第二感測元,該第二感測像素不對準於該第二微透鏡的一第二光軸,使得該等第一感測元與該等第二感測元結合後所能感測該目標物的感測面積大於該二維感測單元陣列的實體分佈面積。
  2. 如請求項1所述的光學感測器,其中該第一感測像素對準於該第一微透鏡的一第一光軸。
  3. 如請求項1所述的光學感測器,其中該二維感測單元陣列的該等感測單元之一部分或全部感測單元的每一個更包含:一第三感測像素及一第四感測像素;以及一第三微透鏡及一第四微透鏡,分別對應於該第三感測像素及該第四感測像素而組成一第三感測元及一第四感測元。
  4. 如請求項3所述的光學感測器,其中於各該感測單元中,該第三感測像素不對準於該第三微透鏡的一第三光軸,且該第四感測像素對準於該第四微透鏡的一第四光軸。
  5. 如請求項3所述的光學感測器,其中於各該感測單元中,該第三感測像素不對準於該第三微透鏡的一第三光軸,且該第四感測像素不對準於該第四微透鏡的一第四光軸。
  6. 如請求項1所述的光學感測器,其中該第一感測像素不對準於該第一微透鏡的一第一光軸。
  7. 如請求項6所述的光學感測器,其中於各該感測單元中,該第一感測元與該第二感測元的第一與第二偏移向量所形成的夾角等於180度。
  8. 如請求項6所述的光學感測器,其中該二維感測單元陣列的該等感測單元之一部分或全部感測單元的每一個更包含:一第三感測像素及一第四感測像素;以及一第三微透鏡及一第四微透鏡,分別對應於該第三感測像素及該第四感測像素而組成一第三感測元及一第四感測元。
  9. 如請求項8所述的光學感測器,其中於各該感測單元中,該第三感測像素不對準於該第三微透鏡的一第三光軸,且該第四感測像素不對準於該第四微透鏡的一第四光軸。
  10. 如請求項8所述的光學感測器,其中於各該感測單元中,該第一感測元到該第四感測元的四個偏移向量形成四個90度的夾角。
  11. 一種光學感測系統,至少包含:一底座;一電池,設置於該底座上; 一框架,設置於該電池的上方;如請求項1所述的光學感測器;以及一顯示器,用於顯示資訊,其中該光學感測器裝設於該框架或貼合於該顯示器的一下表面,該目標物位於該顯示器上或上方,該光學感測器通過該顯示器感測該目標物的影像,該電池供電給該光學感測器與該顯示器。
  12. 一種光學感測系統,至少包含:一底座;一電池,設置於該底座上;一框架,設置於該電池的上方;一光學感測器;以及一顯示器,用於顯示資訊,其中該光學感測器全部或部分裝設於該框架的一容置槽中,一目標物位於該顯示器上或上方,該光學感測器通過該顯示器感測該目標物的影像,該電池供電給該光學感測器與該顯示器。
  13. 如請求項12所述的光學感測系統,其中該容置槽具有朝向該顯示器發散的一發散結構,已允許該光學感測器的視野可朝向該顯示器擴大發散。
  14. 一種光學感測器,用於感測一目標物的影像,包含:多個感測元,排列成一個二維感測元陣列,該等感測元的相鄰兩者感測不同方向的斜向入射光,該等斜向入射光不位於該等感測元的光軸的同一側,使得該二維感測元陣列所 能感測該目標物的感測面積大於該二維感測元陣列的實體分佈面積。
  15. 如請求項14所述的光學感測器,其中該等感測元的相鄰兩者所接收的所述斜向入射光的入射方向互不平行。
  16. 如請求項14所述的光學感測器,其中該等感測元的相鄰兩者所接收的所述斜向入射光的入射方向相對於該等光軸互相對稱。
  17. 如請求項14所述的光學感測器,其中該等感測元的部分或全部的每一個包含一感測像素及一微透鏡,該感測元的該光軸相同於該微透鏡的一光軸,該感測像素不對準該微透鏡的該光軸。
  18. 如請求項17所述的光學感測器,其中各該感測元具有從該光軸到該感測像素的中心的一偏移向量,該等感測元的相鄰兩者的該兩偏移向量的方向不同。
  19. 如請求項17所述的光學感測器,其中各該感測元具有從該光軸到該感測像素的中心的一偏移向量,該等感測元的相鄰兩者的該兩偏移向量之間的夾角等於180度。
  20. 如請求項17所述的光學感測器,其中各該感測元具有從該光軸到該感測像素的中心的一偏移向量,該等感測元的相鄰四者的該四偏移向量形成四個90度的夾角。
TW108135075A 2019-08-30 2019-09-27 具有偏移微透鏡群組的光學感測器及使用其之光學感測系統 TW202109355A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108131257 2019-08-30
TW108131257 2019-08-30

Publications (1)

Publication Number Publication Date
TW202109355A true TW202109355A (zh) 2021-03-01

Family

ID=76035351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108135075A TW202109355A (zh) 2019-08-30 2019-09-27 具有偏移微透鏡群組的光學感測器及使用其之光學感測系統

Country Status (1)

Country Link
TW (1) TW202109355A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11668862B2 (en) * 2019-08-30 2023-06-06 Boe Technology Group Co., Ltd. Texture image acquiring device, display device, and collimator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11668862B2 (en) * 2019-08-30 2023-06-06 Boe Technology Group Co., Ltd. Texture image acquiring device, display device, and collimator
US12105306B2 (en) 2019-08-30 2024-10-01 Boe Technology Group Co., Ltd. Texture image acquiring device, display device, and collimator

Similar Documents

Publication Publication Date Title
CN210349840U (zh) 光学传感器
TWI765170B (zh) 光學感測器、光學感測系統及其製造方法
CN211320103U (zh) 集成光学传感器
JP6480919B2 (ja) プレノプティックセンサとその製造方法およびプレノプティックセンサを有する配置
US9880391B2 (en) Lens array modules and wafer-level techniques for fabricating the same
KR102568441B1 (ko) 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
TWI791938B (zh) 光學感測器、光學感測系統以及光學感測器的製造方法
EP3338305B1 (en) System and method to extend near infrared spectral response for imaging systems
US20140183334A1 (en) Image sensor for light field device and manufacturing method thereof
JP2015082566A (ja) 固体撮像装置、その製造方法及びカメラ
JP2013089880A (ja) 固体撮像装置およびカメラ
TW202205654A (zh) 攝像裝置及電子機器
KR20160099434A (ko) 비평면 광학 인터페이스를 구비한 이면 조사형 이미지 센서
US7884397B2 (en) Solid-state image sensor and method for producing the same
US20240120358A1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
TWI803863B (zh) 光學成像裝置
JP2016031993A (ja) 固体撮像装置及びカメラ
TW202109355A (zh) 具有偏移微透鏡群組的光學感測器及使用其之光學感測系統
JP2014022649A (ja) 固体撮像素子、撮像装置、及び電子機器
CN111199167B (zh) 光学感测结构及其形成方法
TW202018925A (zh) 光學感測結構及其形成方法
JP2006196503A (ja) 固体撮像素子及びその製造方法
TW202013241A (zh) 光學感測器及其形成方法