TW202107845A - Bulk-acoustic wave resonator - Google Patents
Bulk-acoustic wave resonator Download PDFInfo
- Publication number
- TW202107845A TW202107845A TW109120371A TW109120371A TW202107845A TW 202107845 A TW202107845 A TW 202107845A TW 109120371 A TW109120371 A TW 109120371A TW 109120371 A TW109120371 A TW 109120371A TW 202107845 A TW202107845 A TW 202107845A
- Authority
- TW
- Taiwan
- Prior art keywords
- aspect ratio
- bulk acoustic
- acoustic wave
- rectangle
- wave resonator
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000003780 insertion Methods 0.000 claims description 27
- 230000037431 insertion Effects 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 11
- 238000002161 passivation Methods 0.000 claims description 9
- 230000002265 prevention Effects 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 239000000306 component Substances 0.000 description 14
- 230000003071 parasitic effect Effects 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- -1 areas Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 6
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910015363 Au—Sn Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910000575 Ir alloy Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02086—Means for compensation or elimination of undesirable effects
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02157—Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
以下說明是有關於一種體聲波共振器。 [相關申請案的交叉參考]The following description is about a bulk acoustic resonator. [Cross reference of related applications]
本申請案主張分別於2019年7月31日及2020年3月13日在韓國智慧財產局中提出申請的韓國專利申請案第10-2019-0093323號及第10-2020-0031588號的優先權權益,所述韓國專利申請案的全部揭露內容出於全部目的併入本案供參考。This application claims the priority of Korean patent application No. 10-2019-0093323 and No. 10-2020-0031588 filed in the Korea Intellectual Property Office on July 31, 2019 and March 13, 2020, respectively Rights, all disclosures of the Korean patent application are incorporated into this case for reference for all purposes.
體聲波(bulk acoustic wave,BAW)濾波器是例如前端模組(例如智慧型電話、桌上型個人電腦(personal computer,PC)或類似物)中的核心組件。BAW濾波器容許所期望頻帶的射頻(radio frequency,RF)訊號從中穿過,同時阻擋非需要頻帶中的訊號。隨著近來行動裝置市場的增長,且尤其是近來第五代(5th generation,5G)通訊頻帶的發展,對BAW濾波器的需求在增加。A bulk acoustic wave (BAW) filter is, for example, a core component in a front-end module (such as a smart phone, a desktop personal computer (PC), or the like). The BAW filter allows radio frequency (RF) signals in the desired frequency band to pass through it, while blocking signals in the undesired frequency band. With the recent growth of the mobile device market, and especially the recent development of the 5th generation (5G) communication frequency band, the demand for BAW filters is increasing.
為跟上未來5G通訊頻帶市場的發展,BAW濾波器中使用的頻率應更高。在此種情形中,由於共振器的總厚度應等於垂直波的一半,因此當頻率增加時,共振器的總厚度應減小。因此,由於在高頻應用中設置在共振器中的下部電極及上部電極的厚度變薄,因此當施加相對高的功率時,散熱性質可能有問題,或者共振點(resonance point)處的品質因數(Q)效能可能降低,從而使共振器的插入損耗(insertion loss,IL)效能劣化。In order to keep up with the future development of the 5G communication frequency band market, the frequency used in the BAW filter should be higher. In this case, since the total thickness of the resonator should be equal to half of the vertical wave, when the frequency increases, the total thickness of the resonator should decrease. Therefore, since the thickness of the lower electrode and the upper electrode provided in the resonator becomes thinner in high-frequency applications, when relatively high power is applied, the heat dissipation properties may be problematic, or the quality factor at the resonance point (Q) The performance may be reduced, thereby deteriorating the insertion loss (IL) performance of the resonator.
為解決該些問題,共振器的縱橫比(aspect ratio,AR)可增加,且可容許電流在共振器的單軸方向上流動。舉例而言,共振器的形狀的縱橫比可增加,且可容許電流在共振器的單軸方向上流動,以減小共振點處的電阻損耗。To solve these problems, the aspect ratio (AR) of the resonator can be increased, and current can be allowed to flow in the uniaxial direction of the resonator. For example, the aspect ratio of the shape of the resonator can be increased, and current can be allowed to flow in the uniaxial direction of the resonator to reduce the resistance loss at the resonance point.
然而,當共振器的縱橫比增加時,可能存在Q效能劣化的問題。However, when the aspect ratio of the resonator increases, there may be a problem of deterioration in Q performance.
提供本發明內容是為了以簡化形式介紹下文在實施方式中進一步闡述的一系列概念。本發明內容不旨在辨識所主張標的物的關鍵特徵或本質特徵,亦不旨在用於幫助確定所主張標的物的範圍。The content of the present invention is provided to introduce a series of concepts further elaborated in the following embodiments in a simplified form. The content of the present invention is not intended to identify the key features or essential features of the claimed subject matter, nor is it intended to be used to help determine the scope of the claimed subject matter.
在一個一般態樣中,一種體聲波共振器包括:基板;下部電極,設置在所述基板上;壓電層,至少部分地覆蓋所述下部電極;以及上部電極,至少部分地覆蓋所述壓電層。在所述體聲波共振器的表面上,所述下部電極、所述壓電層及所述上部電極全部彼此重疊的主動區域的形心與界定所述主動區域的縱橫比的矩形的中心對準。所述主動區域具有多邊形的形狀,所述多邊形相對於穿過界定所述縱橫比的所述矩形的所述中心的至少一個軸對稱。所述縱橫比大於或等於2且小於或等於10。In a general aspect, a bulk acoustic wave resonator includes: a substrate; a lower electrode provided on the substrate; a piezoelectric layer at least partially covering the lower electrode; and an upper electrode at least partially covering the pressure Electric layer. On the surface of the bulk acoustic wave resonator, the centroid of the active area where the lower electrode, the piezoelectric layer, and the upper electrode all overlap each other is aligned with the center of the rectangle defining the aspect ratio of the active area . The active area has a polygonal shape that is symmetrical with respect to at least one axis passing through the center of the rectangle defining the aspect ratio. The aspect ratio is greater than or equal to 2 and less than or equal to 10.
界定所述縱橫比的所述矩形可為在接觸所述多邊形的三或更多個頂點的矩形中具有最大縱橫比的矩形。The rectangle defining the aspect ratio may be a rectangle having the largest aspect ratio among rectangles contacting three or more vertices of the polygon.
所述多邊形可為具有N個角的多邊形,其中N是大於或等於4的偶數。The polygon may be a polygon with N angles, where N is an even number greater than or equal to 4.
所述體聲波共振器可更包括與所述基板一起形成空腔的膜層。The bulk acoustic resonator may further include a film layer forming a cavity together with the substrate.
所述體聲波共振器可更包括設置成環繞所述空腔的蝕刻防止部分。The bulk acoustic wave resonator may further include an etching prevention part provided to surround the cavity.
所述體聲波共振器可更包括設置在所述蝕刻防止部分外部的犧牲層。The bulk acoustic wave resonator may further include a sacrificial layer provided outside the etching prevention portion.
所述體聲波共振器可更包括至少部分地設置在所述下部電極與所述壓電層之間的插入層。The bulk acoustic resonator may further include an insertion layer at least partially disposed between the lower electrode and the piezoelectric layer.
所述體聲波共振器可更包括被設置成暴露出所述下部電極的部分及所述上部電極的部分的鈍化層。The bulk acoustic wave resonator may further include a passivation layer provided to expose a portion of the lower electrode and a portion of the upper electrode.
所述體聲波共振器可更包括接觸所述下部電極的被暴露出的所述部分及所述上部電極的被暴露出的所述部分的金屬接墊。The bulk acoustic wave resonator may further include a metal pad contacting the exposed part of the lower electrode and the exposed part of the upper electrode.
在另一一般態樣中,一種體聲波共振器包括:基板;下部電極,設置在所述基板上;壓電層,至少部分地覆蓋所述下部電極;以及上部電極,至少部分地覆蓋所述壓電層。所述下部電極、所述壓電層及所述上部電極全部彼此重疊的主動區域的形心與界定所述主動區域的縱橫比的矩形的中心的第一軸座標值匹配,且所述主動區域的所述形心與界定所述主動區域的所述縱橫比的所述矩形的所述中心的第二軸座標值不匹配。所述第一軸座標值是相對於界定所述縱橫比的所述矩形的第一軸的座標值,且所述第二軸座標值是相對於界定所述縱橫比的所述矩形的第二軸的座標值。所述體聲波共振器滿足h/y’ < 0.067,y’是在所述第二軸的方向上所述主動區域的所述形心與所述矩形的所述中心之間的分離距離,且h是在所述第二軸的所述方向上所述主動區域的長度。In another general aspect, a bulk acoustic resonator includes: a substrate; a lower electrode provided on the substrate; a piezoelectric layer at least partially covering the lower electrode; and an upper electrode at least partially covering the Piezoelectric layer. The centroid of the active area where the lower electrode, the piezoelectric layer, and the upper electrode all overlap each other matches the first axis coordinate value of the center of the rectangle defining the aspect ratio of the active area, and the active area The centroid of does not match the second axis coordinate value of the center of the rectangle defining the aspect ratio of the active area. The first axis coordinate value is relative to the coordinate value of the first axis of the rectangle that defines the aspect ratio, and the second axis coordinate value is relative to the second axis of the rectangle that defines the aspect ratio. The coordinate value of the axis. The bulk acoustic wave resonator satisfies h/y'<0.067, y'is the separation distance between the centroid of the active region and the center of the rectangle in the direction of the second axis, and h is the length of the active area in the direction of the second axis.
所述主動區域可相對於所述第一軸對稱。The active area may be symmetrical with respect to the first axis.
界定所述縱橫比的所述矩形可為在接觸所述主動區域的周界形狀的三或更多個頂點的矩形中具有最大縱橫比的矩形。The rectangle defining the aspect ratio may be a rectangle having the largest aspect ratio among rectangles contacting three or more vertices of the peripheral shape of the active region.
所述體聲波共振器可更包括部分地設置在所述下部電極與所述壓電層之間的插入層。The bulk acoustic wave resonator may further include an insertion layer partially disposed between the lower electrode and the piezoelectric layer.
所述插入層可具有環形形狀。The insertion layer may have a ring shape.
在另一一般態樣中,一種體聲波共振器包括:下部電極,設置在基板上;壓電層,設置在所述下部電極上;以及上部電極,設置在所述壓電層上。所述下部電極、所述壓電層及所述上部電極全部彼此重疊的主動區域的周界具有多邊形的形狀,所述多邊形相對於穿過界定所述多邊形的縱橫比的矩形的中心的至少一個軸對稱。所述多邊形的形心與界定所述縱橫比的所述矩形的所述中心對準。所述縱橫比大於或等於2且小於或等於10。In another general aspect, a bulk acoustic resonator includes: a lower electrode provided on a substrate; a piezoelectric layer provided on the lower electrode; and an upper electrode provided on the piezoelectric layer. The perimeter of the active area where the lower electrode, the piezoelectric layer, and the upper electrode all overlap each other has a polygonal shape with respect to at least one passing through the center of the rectangle defining the aspect ratio of the polygon Axisymmetric. The centroid of the polygon is aligned with the center of the rectangle defining the aspect ratio. The aspect ratio is greater than or equal to 2 and less than or equal to 10.
所述至少一個軸可包括僅一個軸。The at least one shaft may include only one shaft.
所述多邊形可為菱形、六邊形及八邊形中的任何一者。The polygon may be any one of a rhombus, a hexagon and an octagon.
所述縱橫比可大於或等於2.4且小於或等於5.6。The aspect ratio may be greater than or equal to 2.4 and less than or equal to 5.6.
界定所述縱橫比的所述矩形可為在接觸所述多邊形的三或更多個頂點的矩形中具有最大縱橫比的矩形。The rectangle defining the aspect ratio may be a rectangle having the largest aspect ratio among rectangles contacting three or more vertices of the polygon.
在另一一般態樣中,一種體聲波共振器包括:下部電極,設置在基板上;壓電層,設置在所述下部電極上;以及上部電極,設置在所述壓電層上。所述下部電極、所述壓電層及所述上部電極全部彼此重疊的主動區域具有多邊形的形狀。所述多邊形的形心與界定所述多邊形的縱橫比的矩形的中心的第一軸座標值匹配,且所述主動區域的所述形心與界定所述多邊形的所述縱橫比的所述矩形的所述中心的第二軸座標值不匹配。所述第一軸座標值是相對於界定所述縱橫比的所述矩形的第一軸的座標值,且所述第二軸座標值是相對於界定所述縱橫比的所述矩形的第二軸的座標值。所述體聲波共振器滿足y’/h < 0.067,y’是在所述第二軸的方向上所述主動區域的所述形心與所述矩形的所述中心之間的分離距離,且h是在所述第二軸的所述方向上所述主動區域的長度。In another general aspect, a bulk acoustic resonator includes: a lower electrode provided on a substrate; a piezoelectric layer provided on the lower electrode; and an upper electrode provided on the piezoelectric layer. The active area where the lower electrode, the piezoelectric layer, and the upper electrode all overlap each other has a polygonal shape. The centroid of the polygon matches the first axis coordinate value of the center of the rectangle defining the aspect ratio of the polygon, and the centroid of the active area matches the rectangle defining the aspect ratio of the polygon The second axis coordinate value of the center does not match. The first axis coordinate value is relative to the coordinate value of the first axis of the rectangle that defines the aspect ratio, and the second axis coordinate value is relative to the second axis of the rectangle that defines the aspect ratio. The coordinate value of the axis. The bulk acoustic wave resonator satisfies y'/h<0.067, y'is the separation distance between the centroid of the active region and the center of the rectangle in the direction of the second axis, and h is the length of the active area in the direction of the second axis.
所述主動區域可相對於所述第一軸對稱。The active area may be symmetrical with respect to the first axis.
所述多邊形可為六邊形。The polygon may be a hexagon.
藉由閱讀以下詳細說明、圖式及申請專利範圍,其他特徵及態樣將顯而易見。By reading the following detailed description, drawings and the scope of patent application, other features and aspects will be obvious.
提供以下詳細闡述是為幫助讀者全面理解本文中所述方法、設備及/或系統。然而,在理解本申請案的揭露內容之後,本文中所述方法、設備及/或系統的各種變化、潤飾及等效形式將顯而易見。舉例而言,本文中所述操作順序僅為實例,且不限於本文中所述操作順序,而是如在理解本申請案的揭露內容之後將顯而易見,除必定以某種次序發生的操作以外,均可有所改變。此外,為增加清晰性及簡潔性,可省略對此項技術中已知特徵的說明。The following detailed description is provided to help readers fully understand the methods, equipment and/or systems described in this article. However, after understanding the disclosed content of this application, various changes, modifications, and equivalent forms of the methods, devices, and/or systems described herein will be obvious. For example, the order of operations described herein is only an example, and is not limited to the order of operations described herein, but as will be obvious after understanding the disclosure of this application, except for operations that must occur in a certain order, Can be changed. In addition, in order to increase clarity and conciseness, descriptions of known features in the art may be omitted.
本文中闡述的特徵可以不同形式實施,且不應被解釋為受限於本文中所述實例。確切而言,提供本文中所述實例僅是為了示出實施本文中所述方法、設備及/或系統的諸多可能方式中的一些方式,該些方式在理解本申請案的揭露內容之後將顯而易見。The features set forth herein can be implemented in different forms and should not be construed as being limited to the examples described herein. To be precise, the examples described herein are only provided to illustrate some of the many possible ways of implementing the methods, devices, and/or systems described herein, which will be apparent after understanding the disclosure of this application. .
注意,本文中相對於實例或實施例使用用語「可」(例如,關於實例或實施例可包括或實施什麼)是意指存在其中包括或實施此種特徵的至少一個實例或實施例,而所有實例及實施例並非僅限於此。Note that the use of the term "may" with respect to an example or embodiment herein (for example, regarding what the example or embodiment may include or implement) means that there is at least one example or embodiment in which such a feature is included or implemented, and all Examples and embodiments are not limited to this.
說明書,當例如層、區或基板等元件被闡述為「位於」另一元件「上」、「連接至」或「耦合至」另一元件時,所述元件可直接「位於」所述另一元件「上」、直接「連接至」或直接「耦合至」所述另一元件,或者可存在介於其間的一或多個其他元件。反之,當元件被闡述為「直接位於」另一元件「上」、「直接連接至」或「直接耦合至」另一元件時,則可不存在介於其間的其他元件。In the specification, when an element such as a layer, region, or substrate is described as being "on", "connected to", or "coupled to" another element, the element can be directly "located" on the other element. An element is "on", directly "connected to" or directly "coupled to" the other element, or there may be one or more other elements in between. Conversely, when an element is described as being "directly on", "directly connected to" or "directly coupled to" another element, there may be no intervening elements.
本文中所使用的用語「及/或」包括相關聯列出項中的任一項或者任兩項或更多項的任意組合。The term "and/or" as used herein includes any one of the associated listed items or any combination of any two or more.
儘管本文中可能使用例如「第一(first)」、「第二(second)」及「第三(third)」等用語闡述各種構件、組件、區、層或區段,然而該些構件、組件、區、層或區段不受該些用語限制。確切而言,該些用語僅用於區分各個構件、組件、區、層或區段。因此,在不背離實例的教示內容的條件下,在本文中所述實例中提及的第一構件、組件、區、層或區段亦可被稱為第二構件、組件、區、層或區段。Although terms such as "first", "second" and "third" may be used in this article to describe various components, components, areas, layers or sections, these components, components , Zone, layer or section are not restricted by these terms. To be precise, these terms are only used to distinguish individual components, components, regions, layers or sections. Therefore, without departing from the teachings of the examples, the first member, component, region, layer, or section mentioned in the examples described herein can also be referred to as a second member, component, region, layer, or Section.
為易於說明,本文中可能使用例如「上方」、「上部」、「下方」、「下部」、「前面」、「後面」及「側面」等空間相對性用語來闡述如圖中所示的一個元件與另一元件的關係。此種空間相對性用語旨在囊括除圖中所繪示的定向以外,裝置在使用中或操作中的不同定向。舉例而言,若翻轉圖中的裝置,則闡述為相對於另一元件位於「上方」或「上部」的元件此時將相對於所述另一元件位於「下方」或「下部」。因此,用語「上方」端視裝置的空間定向而同時囊括上方及下方兩種定向。另舉一例,若翻轉圖中的裝置,則闡述為相對於另一元件位於「前面」的元件此時將相對於所述另一元件位於「後面」。因此,用語「前面」端視裝置的空間定向而同時囊括前面及後面兩種定向。所述裝置亦可以其他方式定向(例如,旋轉90度或處於其他定向),且本文中所使用的空間相對性用語要相應地進行解釋。For ease of explanation, this article may use spatially relative terms such as "above", "upper", "below", "lower", "front", "back", and "side" to describe the one shown in the figure. The relationship between a component and another component. Such spatially relative terms are intended to cover the different orientations of the device in use or operation in addition to the orientations shown in the figure. For example, if the device in the figure is turned over, the element described as being "above" or "upper" with respect to another element will now be "below" or "lower" with respect to the other element. Therefore, the term "above" depends on the spatial orientation of the device and encompasses both the top and bottom orientations. As another example, if the device in the figure is turned over, it is stated that the element located "in front" relative to another element will now be located "rearward" relative to the other element. Therefore, the term "front" is based on the spatial orientation of the device and encompasses both front and rear orientations. The device can also be oriented in other ways (for example, rotated by 90 degrees or in other orientations), and the terms of spatial relativity used herein shall be explained accordingly.
本文中所使用的術語僅是為闡述各種實例,而並不用於限制本揭露內容。除非上下文另外清楚指示,否則冠詞「一(a、an)」及「所述(the)」旨在亦包括複數形式。用語「包括(comprises)」、「包含(includes)」及「具有(has)」具體說明所陳述特徵、數目、操作、構件、元件及/或其組合的存在,但不排除一或多個其他特徵、數目、操作、構件、元件及/或其組合的存在或添加。The terminology used herein is only to illustrate various examples, and is not used to limit the content of this disclosure. Unless the context clearly dictates otherwise, the articles "一 (a, an)" and "the" are intended to also include plural forms. The terms "comprises", "includes" and "has" specify the existence of stated features, numbers, operations, components, elements, and/or combinations thereof, but do not exclude one or more other The existence or addition of features, numbers, operations, components, elements, and/or combinations thereof.
由於製造技術及/或容差,圖式中所示形狀可能出現變型。因此,本文中所述實例不限於圖式中所示的具體形狀,而是包括在製造期間發生的形狀變化。Due to manufacturing technology and/or tolerances, the shapes shown in the drawings may be deformed. Therefore, the examples described herein are not limited to the specific shapes shown in the drawings, but include shape changes that occur during manufacturing.
如在理解本申請案的揭露內容之後將顯而易見,本文中所述實例的特徵可以各種方式組合。此外,儘管本文中所述實例具有各種配置,然而如在理解本申請案的揭露內容之後將顯而易見,可存在其他配置。As will be apparent after understanding the disclosure of this application, the features of the examples described herein can be combined in various ways. In addition, although the examples described herein have various configurations, as will be apparent after understanding the disclosure of this application, other configurations may exist.
圖1是示出根據實施例的體聲波共振器100的示意性平面圖。圖2是沿圖1所示的線I-I’截取的剖視圖。圖3是沿圖1所示的線II-II’截取的剖視圖。FIG. 1 is a schematic plan view showing a bulk
參照圖1至圖3,體聲波共振器100可例如包括基板110、犧牲層120、蝕刻防止部分130、下部電極150、壓電層160、上部電極170、插入層180、鈍化層190及金屬接墊195。1 to 3, the bulk
基板110可為矽基板。舉例而言,基板110可為矽晶片或絕緣體上矽(silicon-on-insulator,SOI)型基板。The
絕緣層112可形成在基板110的上表面上,且可將基板110與設置在其上的結構電性隔離。另外,當在製造製程中形成空腔C時,絕緣層112可防止基板110被蝕刻氣體蝕刻。The insulating
在此實例中,絕緣層112可由二氧化矽(SiO2
)、氮化矽(Si3
N4
)、氧化鋁(Al2
O3
)及氮化鋁(AlN)中的任一者或者任兩者或更多者的任意組合形成。絕緣層112可藉由化學氣相沈積製程(chemical vapor deposition process)、RF磁控濺鍍製程(RF magnetron sputtering process)及蒸鍍製程(evaporation process)中的任一者形成在基板110上。In this example, the insulating
犧牲層120可形成在絕緣層112上,且空腔C及蝕刻防止部分130可設置在犧牲層120中。舉例而言,空腔C可藉由在製造製程中移除犧牲層120的部分來形成。因此,由於空腔C形成在犧牲層120中,因此佈置在犧牲層120上的下部電極150及其他層可被形成為平面的或實質上平面的。The
蝕刻防止部分130可沿空腔C的邊界設置。蝕刻防止部分130可防止在形成空腔C的操作中蝕刻進行到空腔的區域之外。The
下部電極150的部分可設置在空腔C的上部部分上。此外,下部電極150可被配置成輸入電極或輸出電極,以用於分別輸入或輸出例如射頻(RF)訊號或類似物等電性訊號。The portion of the
舉例而言,下部電極150可由例如鉬(Mo)或Mo的合金等導電材料形成。然而,下部電極不限於由Mo形成,且可由例如釕(Ru)、鎢(W)、銥(Ir)、鉑(Pt)、銅(Cu)、鈦(Ti)、鉭(Ta)、鎳(Ni)、鉻(Cr)及類似物或者Ru、W、Ir、Pt、Cu、Ti、Ta、Ni或Cr的合金等導電材料形成。For example, the
壓電層160可被形成為至少部分地覆蓋下部電極150的設置在空腔C的上部部分上的部分。壓電層160可為產生以彈性波形式將電能轉換成機械能的壓電效應(piezoelectric effect)的層,且可由氮化鋁(AlN)、氧化鋅(ZnO)或鋯鈦酸鉛氧化物(PbZrTiO,PZT)中的任一者形成。舉例而言,當壓電層160由氮化鋁(AlN)形成時,壓電層160可更包含稀土金屬。舉例而言,稀土金屬可包括鈧(Sc)、鉺(Er)、釔(Y)及鑭(La)中的任一者或者任兩者或更多者的任意組合。另外,作為實例,過渡金屬可包括鈦(Ti)、鋯(Zr)、鉿(Hf)、鉭(Ta)及鈮(Nb)中的任一者或者任兩者或更多者的任意組合。另外,亦可包括二價金屬鎂(Mg)。The
壓電層160可包括壓電部分162及彎曲部分164,壓電部分162設置在一般位於壓電層160的中心區中的平面區段S中,彎曲部分164設置在平面區段S外部設置的延伸區段E中。The
壓電部分162可為直接堆疊在下部電極150的上表面上的部分。因此,壓電部分162可夾置在下部電極150與上部電極170之間、與下部電極150及上部電極170一起形成平面形狀。The
彎曲部分164可為自壓電部分162向外延伸並位於延伸區段E中的部分。The
彎曲部分164可設置在稍後將闡述的插入層180上,且可被形成為具有隨著插入層180的形狀而升高的形狀。因此,壓電層160可在壓電部分162與彎曲部分164之間的邊界處彎曲,且彎曲部分164可與插入層180的厚度及形狀對應地升高。The
彎曲部分164可包括傾斜部分164a及延伸部分164b。The
傾斜部分164a是例如被形成為沿稍後欲闡述的插入層180的傾斜表面L傾斜的部分。另外,延伸部分164b是例如自傾斜部分164a向外延伸的部分。The
傾斜部分164a可被形成為平行於插入層180的傾斜表面L,且傾斜部分164a的傾斜角可被形成為與插入層180的傾斜表面L的傾斜角θ相同。The
上部電極170可被形成為至少部分地覆蓋壓電層160的設置在空腔C的上部部分上的部分。上部電極170可被配置成輸入電極或輸出電極,以用於分別輸入或輸出例如射頻(RF)訊號或類似物等電性訊號。舉例而言,當下部電極150被配置成輸入電極時,上部電極170可被配置成輸出電極,且當下部電極150被配置成輸出電極時,上部電極170可被配置成輸入電極。The
作為實例,上部電極170可由例如鉬(Mo)或Mo的合金等導電材料形成。然而,上部電極不限於由Mo形成,且上部電極170可由例如釕(Ru)、鎢(W)、銥(Ir)、鉑(Pt)、銅(Cu)、鈦(Ti)、鉭(Ta)、鎳(Ni)、鉻(Cr)及類似物或者Ru、W、Ir、Pt、Cu、Ti、Ta、Ni或Cr的合金等導電材料形成。As an example, the
主動區域是例如下部電極150、壓電層160及上部電極170全部重疊的區域。The active area is, for example, an area where the
如圖1中所示,在體聲波共振器100的上表面上(例如,在俯視平面圖中),主動區域的形心可與界定主動區域的縱橫比的矩形的中心匹配,且主動區域可具有多邊形的形狀,所述多邊形相對於穿過界定縱橫比的矩形的中心的至少一個軸對稱。在本文中,對主動區域的形狀的說明闡述共振器的上表面上主動區域的整體平面形狀或者主動區域的周界的平面形狀。As shown in FIG. 1, on the upper surface of the bulk acoustic wave resonator 100 (for example, in a top plan view), the centroid of the active area may match the center of the rectangle defining the aspect ratio of the active area, and the active area may have The shape of a polygon that is symmetric with respect to at least one axis passing through the center of the rectangle defining the aspect ratio. In this article, the description of the shape of the active region explains the overall planar shape of the active region or the planar shape of the periphery of the active region on the upper surface of the resonator.
在此實例中,將更詳細地闡述縱橫比的定義及界定縱橫比的矩形的定義。In this example, the definition of the aspect ratio and the definition of the rectangle defining the aspect ratio will be explained in more detail.
圖4是示出非對稱多邊形的縱橫比及形心的示例性說明圖。FIG. 4 is an exemplary explanatory diagram showing the aspect ratio and centroid of an asymmetric polygon.
參照圖4,多邊形中的縱橫比可被定義為接觸多邊形的三或更多個頂點的矩形的短軸與長軸的比率。舉例而言,縱橫比(AR)= h/b。Referring to FIG. 4, the aspect ratio in a polygon may be defined as the ratio of the short axis to the long axis of a rectangle contacting three or more vertices of the polygon. For example, aspect ratio (AR) = h/b.
舉例而言,在非對稱多邊形的情形中,如圖4中所示,可繪製接觸三個頂點的矩形。如圖4中所示,當縱橫比接近1時,接觸多邊形的矩形的中心(x, y)可能幾乎與多邊形的形心(x’, y’)匹配,但隨著縱橫比的增加,矩形的中心(x, y)可能越來越與多邊形的形心(x’, y’)不匹配。For example, in the case of an asymmetric polygon, as shown in FIG. 4, a rectangle that touches three vertices can be drawn. As shown in Figure 4, when the aspect ratio is close to 1, the center (x, y) of the rectangle contacting the polygon may almost match the centroid (x', y') of the polygon, but as the aspect ratio increases, the rectangle The center (x, y) of may increasingly not match the centroid (x', y') of the polygon.
圖5是示出界定非對稱多邊形的縱橫比的矩形的示例性說明圖。FIG. 5 is an exemplary explanatory diagram showing a rectangle defining the aspect ratio of an asymmetric polygon.
如圖5中所示,接觸非對稱多邊形的三或更多個頂點的矩形可端視相同多邊形的旋轉角而被示為各種類型的矩形。在圖5中所示各種類型的矩形中,界定縱橫比的矩形將被定義為具有最大縱橫比的矩形。舉例而言,以為0°的旋轉角接觸多邊形的矩形可被定義為界定縱橫比的矩形。As shown in FIG. 5, rectangles contacting three or more vertices of an asymmetric polygon may be shown as various types of rectangles depending on the rotation angle of the same polygon. Among the various types of rectangles shown in FIG. 5, the rectangle defining the aspect ratio will be defined as the rectangle having the largest aspect ratio. For example, a rectangle that contacts a polygon with a rotation angle of 0° can be defined as a rectangle that defines an aspect ratio.
根據實例,縱橫比可例如大於或等於2且小於或等於10。舉例而言,如圖6中所示,可理解,峰值插入損耗(Peak_IL)隨著縱橫比(AR)的增加而提高,且寄生雜訊亦隨著縱橫比(AR)的增加而提高。According to an example, the aspect ratio may be greater than or equal to 2 and less than or equal to 10, for example. For example, as shown in FIG. 6, it can be understood that the peak insertion loss (Peak_IL) increases as the aspect ratio (AR) increases, and the parasitic noise also increases as the aspect ratio (AR) increases.
舉例而言,隨著縱橫比(AR)的增加,共振點處的電阻損耗可減少。舉例而言,可理解,當縱橫比大於2時,峰值插入損耗(Peak_IL)提高到約-0.06分貝(dB),且當縱橫比大於3時,峰值插入損耗(Peak_IL)提高到約-0.05分貝。For example, as the aspect ratio (AR) increases, the resistance loss at the resonance point can be reduced. For example, it can be understood that when the aspect ratio is greater than 2, the peak insertion loss (Peak_IL) is increased to about -0.06 decibels (dB), and when the aspect ratio is greater than 3, the peak insertion loss (Peak_IL) is increased to about -0.05 decibels .
另外,隨著縱橫比(AR)的增加,自每條邊反射的共振模式與諧波模式的重疊可減少,以改善寄生雜訊。舉例而言,可理解,當縱橫比大於2時,寄生雜訊可小於0.08分貝,且當縱橫比大於3時,寄生雜訊可小於0.07分貝。In addition, as the aspect ratio (AR) increases, the overlap of the resonant mode and the harmonic mode reflected from each side can be reduced to improve spurious noise. For example, it can be understood that when the aspect ratio is greater than 2, the parasitic noise can be less than 0.08 decibels, and when the aspect ratio is greater than 3, the parasitic noise can be less than 0.07 decibels.
作為實例,當主動區域具有為菱形的形狀,且主動區域的縱橫比(AR)為10或大於10時,菱形中的夾角可變得非常窄。即,菱形中具有公共頂點的邊之間的至少一個角可能非常窄。在此種情形中,諧波模式的重疊可能會增加,或者共振本身可能不會被平滑地驅動。As an example, when the active area has a rhombus shape and the aspect ratio (AR) of the active area is 10 or greater, the angle in the rhombus may become very narrow. That is, at least one angle between the sides having a common vertex in the rhombus may be very narrow. In this case, the overlap of harmonic modes may increase, or the resonance itself may not be driven smoothly.
重新參照圖2及圖3,插入層180可設置在下部電極150與壓電層160之間。插入層180可由例如氧化矽(SiO2
)、氮化鋁(AlN)、氧化鋁(Al2
O3
)、氮化矽(Si3
N4
)、氧化錳(MgO)、氧化鋯(ZrO2
)、鋯鈦酸鉛(PZT)、鎵砷(GaAs)、氧化鉿(HfO2
)、氧化鈦(TiO2
)、氧化鋅(ZnO)或類似物等介電材料形成,但可由與壓電層160的材料不同的材料形成。2 and 3 again, the
另外,插入層180的至少部分可設置在壓電層160與下部電極150之間。作為實例,插入層180可具有環形形狀。In addition, at least part of the
鈍化層190可形成在除下部電極150及上部電極170的部分之外的區域中。鈍化層190可防止在體聲波共振器100的操作期間對上部電極170及下部電極150的損壞。The
作為實例,鈍化層190可由包含氮化矽(Si3
N4
)、氧化矽(SiO2
)、氧化錳(MgO)、氧化鋯(ZrO2
)、氮化鋁(AlN)、鋯鈦酸鉛(PZT)、鎵砷(GaAs)、氧化鉿(HfO2
)、氧化鋁(Al2
O3
)、氧化鈦(TiO2
)及氧化鋅(ZnO)中的任一者的介電層形成。As an example, the
金屬接墊195可形成在下部電極150上,以及上部電極170的上面未形成鈍化層190的部分上。作為實例,金屬接墊195可由例如金(Au)、金-錫(Au-Sn)合金、銅(Cu)、銅-錫(Cu-Sn)合金、鋁(Al)、鋁合金或類似物等材料製成。舉例而言,鋁合金可為鋁鍺(Al-Ge)合金。The
如上所述,由於主動區域具有為軸對稱菱形的形狀,因此可在共振驅動期間改善Q效能。另外,由於主動區域具有軸對稱形狀,因此寄生雜訊可減少。As described above, since the active region has an axisymmetric rhombus shape, the Q performance can be improved during resonance driving. In addition, since the active area has an axisymmetric shape, parasitic noise can be reduced.
圖7是示出體聲波共振器(下文中稱為「共振器」)的主動區域具有為軸對稱菱形的形狀及為1的縱橫比的實例的示意性平面圖。圖8是示出共振器的主動區域具有為軸對稱菱形的形狀及為1.5的縱橫比的實例的示意性平面圖。圖9是示出共振器的主動區域具有為軸對稱菱形的形狀及為2.0的縱橫比的實例的示意性平面圖。圖10是示出共振器的主動區域具有為軸對稱菱形的形狀及為2.5的縱橫比的實例的示意性平面圖。圖11是示出共振器的主動區域具有為軸對稱菱形的形狀及為3.0的縱橫比的實例的示意性平面圖。圖12是示出共振器的主動區域具有為軸對稱菱形的形狀及為3.5的縱橫比的實例的示意性平面圖。FIG. 7 is a schematic plan view showing an example in which the active region of a bulk acoustic wave resonator (hereinafter referred to as a “resonator”) has an axisymmetric rhombus shape and an aspect ratio of 1. FIG. 8 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric rhombus shape and an aspect ratio of 1.5. FIG. 9 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric rhombus shape and an aspect ratio of 2.0. 10 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric rhombus shape and an aspect ratio of 2.5. FIG. 11 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric rhombus shape and an aspect ratio of 3.0. FIG. 12 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric rhombus shape and an aspect ratio of 3.5.
如圖7至圖12中所示,可看出,當共振器的主動區域在共振器的上表面上具有為菱形的形狀時(例如,在俯視平面圖中),菱形的形心與界定菱形/主動區域的縱橫比的矩形的中心匹配。As shown in Figures 7 to 12, it can be seen that when the active area of the resonator has a rhombus shape on the upper surface of the resonator (for example, in a top plan view), the centroid of the rhombus and the defining rhombus/ The aspect ratio of the active area matches the center of the rectangle.
圖13至圖15是示出根據實例的共振器的示意性平面圖,其中共振器的主動區域具有為軸對稱菱形的形狀。13 to 15 are schematic plan views showing a resonator according to an example, in which the active area of the resonator has a shape that is an axisymmetric rhombus.
在以下說明中,提及菱形的夾角是闡述菱形的夾角中的最小夾角。In the following description, referring to the included angle of the rhombus is to explain the smallest included angle among the included angles of the rhombus.
圖13中所示共振器(AR 1.0)是菱形的夾角θ為90°且菱形的縱橫比為1的實例。在此種情形中,每條邊上的法向向量的重疊面積(OA,其中O是菱形的中心,且A是菱形的頂點)可等於菱形的總面積(的100%)。The resonator (AR 1.0) shown in FIG. 13 is an example in which the angle θ of the rhombus is 90° and the aspect ratio of the rhombus is 1. In this case, the overlap area of the normal vectors on each side (OA, where O is the center of the rhombus, and A is the vertex of the rhombus) can be equal to (100% of) the total area of the rhombus.
另外,圖14中所示共振器(AR 1.7)是菱形的夾角θ為60°且菱形的縱橫比為1.7的實例。在此種情形中,每條邊上的法向向量的重疊面積(OA)可為菱形的總面積的50%。In addition, the resonator (AR 1.7) shown in FIG. 14 is an example in which the angle θ of the rhombus is 60° and the aspect ratio of the rhombus is 1.7. In this case, the overlap area (OA) of the normal vectors on each side can be 50% of the total area of the rhombus.
另外,圖15中所示共振器(AR 3.8)是菱形的夾角θ為26°且菱形的縱橫比為3.8的實例。在此種情形中,每條邊上的法向向量的重疊面積可為菱形的總面積的12%。In addition, the resonator (AR 3.8) shown in FIG. 15 is an example in which the angle θ of the rhombus is 26° and the aspect ratio of the rhombus is 3.8. In this case, the overlapping area of the normal vectors on each side can be 12% of the total area of the rhombus.
如圖16中所示,共振器的寄生雜訊在AR 1.0的實例中可能最大,在AR 1.7的實例中可能小於AR 1.0的情形,且在AR 3.8的實例中可能最小。As shown in FIG. 16, the parasitic noise of the resonator may be the largest in the case of AR 1.0, may be smaller than that of AR 1.0 in the case of AR 1.7, and may be smallest in the case of AR 3.8.
寄生雜訊相依於具有為菱形的形狀的主動區域中的縱橫比而變化,此乃因所述縱橫比影響共振模式與諧波模式的重疊量。舉例而言,在縱橫比接近1.0的菱形的相對兩條邊平行佈置的情形中,自每條邊反射的共振模式與諧波模式可能發生100%重疊,且寄生雜訊可能增加。The spurious noise changes depending on the aspect ratio in the active region having a diamond shape, because the aspect ratio affects the overlap amount of the resonance mode and the harmonic mode. For example, in a case where two opposite sides of a rhombus with an aspect ratio close to 1.0 are arranged in parallel, the resonance mode and harmonic mode reflected from each side may overlap 100%, and the parasitic noise may increase.
隨著縱橫比的增加,菱形的相對兩條邊可平行佈置,但每條邊上的法向向量的重疊面積的大小可相對減小。在此種情形中,自每條邊反射的共振模式與諧波模式的重疊可減小。因此,在具有相對大的縱橫比的軸對稱多邊形結構的情形中,寄生雜訊可藉由此原理而減小。As the aspect ratio increases, the two opposite sides of the rhombus can be arranged in parallel, but the size of the overlap area of the normal vector on each side can be relatively reduced. In this case, the overlap of the resonance mode and the harmonic mode reflected from each side can be reduced. Therefore, in the case of an axisymmetric polygonal structure with a relatively large aspect ratio, the parasitic noise can be reduced by this principle.
舉例而言,由於在軸對稱菱形中每條邊的長度可為相同的,因此如圖17中所示,可看出每條邊的法向向量的重疊面積比可相依於菱形的夾角θ的值而變化。另外,為減小寄生雜訊,菱形的夾角θ可為30°或小於30°。For example, since the length of each side in an axisymmetric rhombus can be the same, as shown in FIG. 17, it can be seen that the overlap area ratio of the normal vector of each side can depend on the value of the angle θ of the rhombus. Variety. In addition, in order to reduce the parasitic noise, the angle θ of the rhombus can be 30° or less than 30°.
當菱形的夾角θ為30°時,每條邊的法向向量的重疊面積比可為13.4%,且在此種情形中,軸對稱菱形的縱橫比可為3.7。When the angle θ of the rhombus is 30°, the overlap area ratio of the normal vectors of each side can be 13.4%, and in this case, the aspect ratio of the axisymmetric rhombus can be 3.7.
下表1示出圖13至圖15的共振器的示例性效能特性。Table 1 below shows exemplary performance characteristics of the resonators of FIGS. 13 to 15.
表1
在圖13中所示共振器具有為3.8的縱橫比的情形中,在圖13至圖15中所示共振器中,可理解,共振點處的插入損耗效能可如上表1中所示得到顯著改善。此表明共振點處的電阻損耗相對小。在此實例中,「IL」指代共振點處量值S21的最大值,且「衰減(Attn.)」指代反共振點(anti-resonance point)處量值S21的最小值。In the case where the resonator shown in FIG. 13 has an aspect ratio of 3.8, in the resonator shown in FIGS. 13 to 15, it can be understood that the insertion loss performance at the resonance point can be significantly improved as shown in Table 1 above. improve. This indicates that the resistance loss at the resonance point is relatively small. In this example, “IL” refers to the maximum value of the magnitude S21 at the resonance point, and “attenuation (Attn.)” refers to the minimum value of the magnitude S21 at the anti-resonance point.
圖18是示出共振器的主動區域具有為軸對稱六邊形的形狀及為1的縱橫比的實例的示意性平面圖。圖19是示出共振器的主動區域具有為軸對稱六邊形的形狀及為1.5的縱橫比的實例的示意性平面圖。圖20是示出共振器的主動區域具有為軸對稱六邊形的形狀及為2.0的縱橫比的實例的示意性平面圖。圖21是示出共振器的主動區域具有為軸對稱六邊形的形狀及為2.5的縱橫比的實例的示意性平面圖。圖22是示出共振器的主動區域具有為軸對稱六邊形的形狀及為3.0的縱橫比的實例的示意性平面圖。圖23是示出共振器的主動區域具有為軸對稱六邊形的形狀及為3.5的縱橫比的實例的示意性平面圖。FIG. 18 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric hexagonal shape and an aspect ratio of 1. FIG. 19 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric hexagonal shape and an aspect ratio of 1.5. 20 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric hexagonal shape and an aspect ratio of 2.0. 21 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric hexagonal shape and an aspect ratio of 2.5. 22 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric hexagonal shape and an aspect ratio of 3.0. FIG. 23 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric hexagonal shape and an aspect ratio of 3.5.
如圖18至圖23中所示,可看出,當共振器的主動區域在共振器的上表面上具有為六邊形的形狀時(例如,在俯視平面圖中),六邊形的形心與界定六邊形/主動區域的縱橫比的矩形的中心匹配。As shown in FIGS. 18 to 23, it can be seen that when the active region of the resonator has a hexagonal shape on the upper surface of the resonator (for example, in a top plan view), the centroid of the hexagon Matches the center of the rectangle defining the aspect ratio of the hexagon/active area.
如上所述,即使當軸對稱六邊形具有相對高的縱橫比時,亦可維持對稱性,以在共振驅動期間改善Q效能。另外,在具有相對高的縱橫比的六邊形中,由於設計變量可能由於六邊形的上部邊及下部邊的增加而增加,因此設計自由度可能增加以進一步減小共振點電阻。在此種情形中,六邊形的上部邊與下部邊可彼此平行,但當形成具有相對高的縱橫比的六邊形時,六邊形的上部邊與下部邊之間的距離可較長,以減少上部邊與下部邊彼此之間的影響,從而抑制寄生雜訊效能的劣化。As described above, even when the axisymmetric hexagon has a relatively high aspect ratio, symmetry can be maintained to improve Q performance during resonance driving. In addition, in a hexagon with a relatively high aspect ratio, since design variables may increase due to the increase of the upper and lower sides of the hexagon, the degree of design freedom may increase to further reduce the resonance point resistance. In this case, the upper and lower sides of the hexagon can be parallel to each other, but when a hexagon with a relatively high aspect ratio is formed, the distance between the upper and lower sides of the hexagon can be longer , In order to reduce the influence between the upper side and the lower side, thereby suppressing the deterioration of the parasitic noise performance.
圖24是示出共振器的主動區域具有為軸對稱八邊形的形狀及為1的縱橫比的實例的示意性平面圖。圖25是示出共振器的主動區域具有軸對稱八邊形的形狀及為1.5的縱橫比的實例的示意性平面圖。圖26是示出共振器的主動區域具有為軸對稱八邊形的形狀及為2.0的縱橫比的實例的示意性平面圖。圖27是示出共振器的主動區域具有為軸對稱八邊形的形狀及為2.5的縱橫比的實例的示意性平面圖。圖28是示出共振器的主動區域具有為軸對稱八邊形的形狀及為3的縱橫比的實例的示意性平面圖。圖29是示出共振器的主動區域具有為軸對稱八邊形的形狀及為3.5的縱橫比的實例的示意性平面圖。FIG. 24 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric octagonal shape and an aspect ratio of 1. FIG. 25 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric octagonal shape and an aspect ratio of 1.5. FIG. 26 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric octagonal shape and an aspect ratio of 2.0. FIG. 27 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric octagonal shape and an aspect ratio of 2.5. FIG. 28 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric octagonal shape and an aspect ratio of 3. FIG. FIG. 29 is a schematic plan view showing an example in which the active region of the resonator has an axisymmetric octagonal shape and an aspect ratio of 3.5.
如圖24至圖29中所示,可看出,當共振器的主動區域在共振器的上表面上具有為八邊形的形狀時(例如,在俯視平面圖中),八邊形的形心與界定八邊形/主動區域的縱橫比的矩形的中心匹配。As shown in FIGS. 24 to 29, it can be seen that when the active area of the resonator has an octagonal shape on the upper surface of the resonator (for example, in a top plan view), the centroid of the octagon Matches the center of the rectangle defining the aspect ratio of the octagon/active area.
如上所述,即使當軸對稱八邊形具有相對高的縱橫比時,亦可維持對稱性,以在共振驅動期間改善Q效能。另外,在高縱橫比八邊形中,有利於改善寄生雜訊效能,此乃因每條邊(例如八邊形的上部邊及下部邊)上的法向向量的重疊面積可進一步減小。As described above, even when the axisymmetric octagon has a relatively high aspect ratio, symmetry can be maintained to improve Q performance during resonance driving. In addition, in the high aspect ratio octagon, it is helpful to improve the spurious noise performance, because the overlap area of the normal vector on each side (for example, the upper side and the lower side of the octagon) can be further reduced.
圖30是示出共振器的主動區域具有為非對稱多邊形的形狀及為2.4的縱橫比的實例的示意性平面圖。圖31是示出共振器的主動區域具有為非對稱多邊形的形狀及為3.8的縱橫比的實例的示意性平面圖。圖32是示出共振器的主動區域具有為非對稱多邊形的形狀及為5.1的縱橫比的實例的示意性平面圖。圖33是示出共振器的主動區域具有為非對稱多邊形的形狀及為12.4的縱橫比的實例的示意性平面圖。FIG. 30 is a schematic plan view showing an example in which the active region of the resonator has a shape of an asymmetric polygon and an aspect ratio of 2.4. FIG. 31 is a schematic plan view showing an example in which the active region of the resonator has an asymmetric polygonal shape and an aspect ratio of 3.8. FIG. 32 is a schematic plan view showing an example in which the active region of the resonator has an asymmetric polygonal shape and an aspect ratio of 5.1. FIG. 33 is a schematic plan view showing an example in which the active region of the resonator has a shape of an asymmetric polygon and an aspect ratio of 12.4.
相依於圖30至圖33中所示共振器的頻率而變化的阻抗值的實例可見於圖34中所示曲線圖。圖30至圖33中所示共振器的寄生雜訊的實例可見於圖35中所示曲線圖。如圖35中所示,可理解,在圖33中所示具有為10或小於10的縱橫比的共振器中,寄生雜訊大幅劣化。An example of the impedance value that changes depending on the frequency of the resonator shown in FIGS. 30 to 33 can be seen in the graph shown in FIG. 34. Examples of the spurious noise of the resonator shown in FIGS. 30 to 33 can be seen in the graph shown in FIG. 35. As shown in FIG. 35, it can be understood that in the resonator having an aspect ratio of 10 or less as shown in FIG. 33, the spurious noise is greatly deteriorated.
如下表2中所示,可理解,隨著縱橫比的增加,共振點處的電阻損耗可減小以改善插入損耗,但kt2 效能及衰減效能可能劣化。As shown in Table 2 below, it can be understood that as the aspect ratio increases, the resistance loss at the resonance point can be reduced to improve the insertion loss, but the kt 2 performance and attenuation performance may be degraded.
表2
圖36是示出共振器的主動區域具有為軸對稱多邊形的形狀及為2.4的縱橫比的實例的示意性平面圖。圖37是示出共振器的主動區域具有為軸對稱多邊形的形狀及為3.8的縱橫比的實例的示意性平面圖。圖38是示出共振器的主動區域具有為軸對稱多邊形的形狀及為5.1的縱橫比的實例的示意性平面圖。圖39是示出共振器的主動區域具有為軸對稱多邊形的形狀及為12.4的縱橫比的實例的示意性平面圖。36 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 2.4. FIG. 37 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 3.8. FIG. 38 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 5.1. FIG. 39 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 12.4.
相依於圖36至圖39中所示共振器的頻率而變化的示例性阻抗值可見於圖40中所示曲線圖。圖36至圖39中所示共振器的示例性寄生雜訊可見於圖41中所示曲線圖。如圖41中所示,可理解,在圖39中所示具有為10或小於10的縱橫比的共振器中,寄生雜訊大幅劣化。Exemplary impedance values that vary depending on the frequency of the resonator shown in FIGS. 36 to 39 can be seen in the graph shown in FIG. 40. The exemplary spurious noise of the resonator shown in FIGS. 36 to 39 can be seen in the graph shown in FIG. 41. As shown in FIG. 41, it can be understood that in the resonator having an aspect ratio of 10 or less as shown in FIG. 39, the spurious noise is greatly deteriorated.
表3
如表3中所示,可理解,軸對稱多邊形共振器的插入損耗(IL)、kt2 效能及寄生雜訊效能等於或高於表2的非對稱多邊形共振器的插入損耗(IL)、kt2 效能及寄生雜訊效能。舉例而言,如表3中所示,可理解,相較於表2的非對稱多邊形共振器,軸對稱多邊形共振器的衰減效能得到改善。As shown in Table 3, it can be understood that the insertion loss (IL), kt 2 performance, and parasitic noise performance of the axisymmetric polygon resonator are equal to or higher than the insertion loss (IL), kt of the asymmetric polygon resonator in Table 2. 2 Performance and parasitic noise performance. For example, as shown in Table 3, it can be understood that compared to the asymmetric polygonal resonator in Table 2, the attenuation performance of the axisymmetric polygonal resonator is improved.
改善的效能可歸因於:相較於呈相對高縱橫比結構的非對稱多邊形共振器,軸對稱多邊形共振器的較平滑共振驅動所導致的Q效能的改善。另外,如表3中所示,相較於非對稱多邊形共振器的寄生雜訊效能,當軸對稱多邊形共振器的縱橫比為12.4時,寄生雜訊效能可得到改善。The improved performance can be attributed to the improvement in Q performance caused by the smoother resonance drive of the axisymmetric polygonal resonator compared to the asymmetric polygonal resonator with a relatively high aspect ratio structure. In addition, as shown in Table 3, compared to the spurious noise performance of the asymmetric polygonal resonator, when the aspect ratio of the axisymmetric polygonal resonator is 12.4, the spurious noise performance can be improved.
圖42是示出共振器的主動區域具有為軸對稱多邊形的形狀及為3.8的縱橫比的實例的示意性平面圖。圖43是示出共振器的主動區域具有為軸對稱多邊形的形狀及為4.8的縱橫比的實例的示意性平面圖。圖44是示出共振器的主動區域具有為軸對稱多邊形的形狀及為5.1的縱橫比的實例的示意性平面圖。圖45是示出共振器的主動區域具有為軸對稱多邊形的形狀及為5.6的縱橫比的實例的示意性平面圖。42 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 3.8. FIG. 43 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 4.8. 44 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 5.1. FIG. 45 is a schematic plan view showing an example in which the active region of the resonator has a shape of an axisymmetric polygon and an aspect ratio of 5.6.
圖42中所示共振器是其中夾角θ為26°且一條邊的長度為130微米(μm)的實例,且圖43中所示共振器是其中夾角θ為13°且一條邊的長度為130微米的實例。The resonator shown in FIG. 42 is an example in which the included angle θ is 26° and the length of one side is 130 micrometers (μm), and the resonator shown in FIG. 43 is an example in which the included angle θ is 13° and the length of one side is 130 Examples of micrometers.
另外,圖44中所示共振器是其中夾角θ為19°且一條邊的長度為150微米的實例,且圖45中所示共振器是其中夾角θ為15°且一條邊的長度為150微米的實例。In addition, the resonator shown in FIG. 44 is an example in which the included angle θ is 19° and the length of one side is 150 microns, and the resonator shown in FIG. 45 is an example in which the included angle θ is 15° and the length of one side is 150 microns. Instance.
相依於圖42至圖45中所示共振器的頻率而變化的示例性阻抗值可見於圖46中所示曲線圖。圖42至圖45中所示共振器的示例性寄生雜訊可見於圖47中所示曲線圖。Exemplary impedance values that vary depending on the frequency of the resonator shown in FIGS. 42 to 45 can be seen in the graph shown in FIG. 46. The exemplary spurious noise of the resonator shown in FIGS. 42 to 45 can be seen in the graph shown in FIG. 47.
下表4示出圖42至圖45的共振器的示例性效能特性。Table 4 below shows exemplary performance characteristics of the resonators of FIGS. 42 to 45.
表4
參照表4,當對圖42中所示共振器的效能與圖43中所示共振器的效能進行比較時,可理解,圖43中所示共振器具有改善的插入損耗(IL)效能及衰減效能。另外,當對圖44中所示共振器的效能與圖45中所示共振器的效能進行比較時,可理解,圖45中所示共振器具有改善的插入損耗(IL)效能及衰減效能。Referring to Table 4, when comparing the performance of the resonator shown in FIG. 42 with the performance of the resonator shown in FIG. 43, it can be understood that the resonator shown in FIG. 43 has improved insertion loss (IL) performance and attenuation efficacy. In addition, when comparing the performance of the resonator shown in FIG. 44 with the performance of the resonator shown in FIG. 45, it can be understood that the resonator shown in FIG. 45 has improved insertion loss (IL) performance and attenuation performance.
圖48是示出共振器的示例性說明圖,其中共振器的主動區域具有為X軸對稱多邊形的形狀,且主動區域的形心及界定縱橫比的矩形的中心在Y軸方向上彼此間隔開。圖49是示出根據實例的衰減效能相依於主動區域的形心的分離比而變化的曲線圖。FIG. 48 is an exemplary explanatory diagram showing a resonator in which the active region of the resonator has a shape that is an X-axis symmetric polygon, and the centroid of the active region and the center of the rectangle defining the aspect ratio are spaced apart from each other in the Y-axis direction . FIG. 49 is a graph showing that the attenuation efficiency according to an example varies depending on the separation ratio of the centroid of the active region.
如圖48中所示,共振器的上表面上的主動區域的形心(例如,在俯視平面圖中)與界定主動區域的縱橫比的矩形的中心不匹配。可看出,主動區域的形心的X軸座標值可與界定主動區域的縱橫比的矩形的中心的X軸座標值匹配,且主動區域的形心的Y軸座標值可與界定主動區域的縱橫比的矩形的中心的Y軸座標值不匹配。As shown in FIG. 48, the centroid of the active area on the upper surface of the resonator (for example, in a top plan view) does not match the center of the rectangle defining the aspect ratio of the active area. It can be seen that the X-axis coordinate value of the centroid of the active area can match the X-axis coordinate value of the center of the rectangle that defines the aspect ratio of the active area, and the Y-axis coordinate value of the centroid of the active area can be the same as that of the active area. The Y-axis coordinate value of the center of the rectangle of the aspect ratio does not match.
另外,根據實施例,體聲波共振器可滿足y’/h < 0.067,其中y’是在Y軸方向上主動區域的形心與矩形的中心之間的分離距離,且h是在Y軸方向上主動區域的長度。舉例而言,如圖49中所示,可理解,當y’/h的值大於0.067時,衰減效能可能迅速劣化。此外,可理解,當y’/h的值小於0.067時,即使在主動區域的對稱性略微錯誤的情形中,衰減效能亦可不顯著劣化。In addition, according to the embodiment, the bulk acoustic wave resonator may satisfy y'/h<0.067, where y'is the separation distance between the centroid of the active region and the center of the rectangle in the Y-axis direction, and h is in the Y-axis direction The length of the upper active area. For example, as shown in FIG. 49, it can be understood that when the value of y'/h is greater than 0.067, the attenuation performance may be rapidly degraded. In addition, it can be understood that when the value of y'/h is less than 0.067, even in the case where the symmetry of the active region is slightly wrong, the attenuation performance may not be significantly degraded.
即使當主動區域具有相對高的縱橫比時,共振點處的電阻損耗及寄生雜訊效能亦可得到改善,且Q效能亦可得到改善。Even when the active area has a relatively high aspect ratio, the resistance loss and parasitic noise performance at the resonance point can be improved, and the Q performance can also be improved.
儘管本揭露內容包括具體實例,然而在理解本申請案的揭露內容之後將顯而易見,在不背離申請專利範圍及其等效範圍的精神及範圍的條件下,可對該些實例作出形式及細節上的各種改變。本文中所述實例僅被視為是說明性的,而非用於限制目的。對每一實例中的特徵或態樣的說明要被視為可應用於其他實例中的相似特徵或態樣。若所述技術被以不同的次序執行,及/或若所述系統、架構、裝置或電路中的組件以不同的方式組合及/或被其他組件或其等效物替換或補充,則可達成合適的結果。另外,相應的實施例可彼此結合。舉例而言,在上述實施例中揭露的按壓構件可在一個力感測裝置中彼此結合使用。因此,本揭露內容的範圍並非由詳細說明來界定,而是由申請專利範圍及其等效範圍來界定,且在申請專利範圍及其等效範圍的範圍內的所有變化要被解釋為包括於本揭露內容中。Although the content of this disclosure includes specific examples, it will be obvious after understanding the disclosure content of this application that without departing from the spirit and scope of the scope of the patent application and its equivalent scope, the forms and details of these examples can be made. Various changes. The examples described herein are only to be regarded as illustrative and not for limiting purposes. The description of the feature or aspect in each example should be regarded as applicable to similar features or aspects in other examples. If the technology is executed in a different order, and/or if the components in the system, architecture, device, or circuit are combined in different ways and/or replaced or supplemented by other components or their equivalents, it can be achieved Appropriate results. In addition, the corresponding embodiments may be combined with each other. For example, the pressing members disclosed in the above embodiments can be used in combination with each other in a force sensing device. Therefore, the scope of the disclosure is not defined by the detailed description, but by the scope of the patent application and its equivalent scope, and all changes within the scope of the patent application and its equivalent scope shall be interpreted as being included in In the content of this disclosure.
100:體聲波共振器
110:基板
112:絕緣層
120:犧牲層
130:蝕刻防止部分
150:下部電極
160:壓電層
162:壓電部分
164:彎曲部分
164a:傾斜部分
164b:延伸部分
170:上部電極
180:插入層
190:鈍化層
195:金屬接墊
C:空腔
E:延伸區段
h:長度
I-I’、II-II’:線
L:傾斜表面
S:平面區段
S21:量值
(x, y):中心
(x’, y’):形心
θ:傾斜角/夾角100: Bulk Acoustic Wave Resonator
110: substrate
112: Insulation layer
120: Sacrifice Layer
130: Etching prevention part
150: lower electrode
160: Piezo layer
162: Piezoelectric part
164:
圖1是示出根據實施例的體聲波共振器的示意性平面圖。 圖2是沿圖1所示的線I-I’截取的剖視圖。 圖3是沿圖1所示的線II-II’截取的剖視圖。 圖4是示出非對稱多邊形的縱橫比及形心的示例性說明圖。 圖5是示出界定非對稱多邊形的縱橫比的矩形的示例性說明圖。 圖6是示出根據實例的體聲波共振器的效能相依於縱橫比而變化的曲線圖。 圖7是示出體聲波共振器的主動區域具有為軸對稱菱形的形狀及為1的縱橫比的實例的示意性平面圖。 圖8是示出體聲波共振器的主動區域具有為軸對稱菱形的形狀及為1.5的縱橫比的實例的示意性平面圖。 圖9是示出體聲波共振器的主動區域具有為軸對稱菱形的形狀及為2.0的縱橫比的實例的示意性平面圖。 圖10是示出體聲波共振器的主動區域具有為軸對稱菱形的形狀及為2.5的縱橫比的實例的示意性平面圖。 圖11是示出體聲波共振器的主動區域具有為軸對稱菱形的形狀及為3.0的縱橫比的實例的示意性平面圖。 圖12是示出體聲波共振器的主動區域具有為軸對稱菱形的形狀及為3.5的縱橫比的實例的示意性平面圖。 圖13至圖15是示出根據實例的體聲波共振器的示意性平面圖,其中共振器的主動區域具有為軸對稱菱形的形狀。 圖16是根據實例的S21相依於頻率而變化的曲線圖,其示出圖13至圖15的體聲波共振器的寄生雜訊(spurious noise)。 圖17是示出根據實例的每條邊的法向向量的重疊面積比相依於軸對稱菱形之間的夾角而變化的曲線圖。 圖18是示出體聲波共振器的主動區域具有為軸對稱六邊形的形狀及為1的縱橫比的實例的示意性平面圖。 圖19是示出體聲波共振器的主動區域具有為軸對稱六邊形的形狀及為1.5的縱橫比的實例的示意性平面圖。 圖20是示出體聲波共振器的主動區域具有為軸對稱六邊形的形狀及為2.0的縱橫比的實例的示意性平面圖。 圖21是示出體聲波共振器的主動區域具有為軸對稱六邊形的形狀及為2.5的縱橫比的實例的示意性平面圖。 圖22是示出體聲波共振器的主動區域具有為軸對稱六邊形的形狀及為3.0的縱橫比的實例的示意性平面圖。 圖23是示出體聲波共振器的主動區域具有為軸對稱六邊形的形狀及為3.5的縱橫比的實例的示意性平面圖。 圖24是示出體聲波共振器的主動區域具有為軸對稱八邊形的形狀及為1的縱橫比的實例的示意性平面圖。 圖25是示出體聲波共振器的主動區域具有為軸對稱八邊形的形狀及為1.5的縱橫比的實例的示意性平面圖。 圖26是示出體聲波共振器的主動區域具有為軸對稱八邊形的形狀及為2.0的縱橫比的實例的示意性平面圖。 圖27是示出體聲波共振器的主動區域具有為軸對稱八邊形的形狀及為2.5的縱橫比的實例的示意性平面圖。 圖28是示出體聲波共振器的主動區域具有為軸對稱八邊形的形狀及為3的縱橫比的實例的示意性平面圖。 圖29是示出體聲波共振器的主動區域具有為軸對稱八邊形的形狀及為3.5的縱橫比的實例的示意性平面圖。 圖30是示出體聲波共振器的主動區域具有為非對稱多邊形的形狀及為2.4的縱橫比的實例的示意性平面圖。 圖31是示出體聲波共振器的主動區域具有為非對稱多邊形的形狀及為3.8的縱橫比的實例的示意性平面圖。 圖32是示出體聲波共振器的主動區域具有為非對稱多邊形的形狀及為5.1的縱橫比的實例的示意性平面圖。 圖33是示出體聲波共振器的主動區域具有為非對稱多邊形的形狀及為12.4的縱橫比的實例的示意性平面圖。 圖34是示出根據實例的阻抗值相依於圖30至圖33中所示體聲波共振器的頻率而變化的曲線圖。 圖35是根據實例的S21相依於頻率而變化的曲線圖,其示出圖30至圖33中所示體聲波共振器的寄生雜訊。 圖36是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為2.4的縱橫比的實例的示意性平面圖。 圖37是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為3.8的縱橫比的實例的示意性平面圖。 圖38是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為5.1的縱橫比的實例的示意性平面圖。 圖39是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為12.4的縱橫比的實例的示意性平面圖。 圖40是示出根據實例的阻抗值相依於圖36至圖39中所示體聲波共振器的頻率而變化的曲線圖。 圖41是根據實例的S21相依於頻率而變化的曲線圖,其示出圖36至圖39中所示體聲波共振器的寄生雜訊。 圖42是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為3.8的縱橫比的實例的示意性平面圖。 圖43是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為4.8的縱橫比的實例的示意性平面圖。 圖44是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為5.1的縱橫比的實例的示意性平面圖。 圖45是示出體聲波共振器的主動區域具有為軸對稱多邊形的形狀及為5.6的縱橫比的實例的示意性平面圖。 圖46是示出根據實例的阻抗值相依於圖42至圖45中所示體聲波共振器的頻率而變化的曲線圖。 圖47是根據實例的S21相依於頻率而變化的曲線圖,其示出圖42至圖45中所示體聲波共振器的寄生雜訊。 圖48是示出體聲波共振器的示例性說明圖,其中體聲波共振器的主動區域具有X軸對稱多邊形,且主動區域的形心與界定縱橫比的矩形的中心在Y軸方向上彼此間隔開。 圖49是示出根據實例的衰減效能相依於主動區域的形心的分離比(separation ratio)而變化的曲線圖。 在所有圖式及詳細說明通篇中,相同的參考編號指代相同的元件。圖式可不按比例繪製,且為清晰、例示及方便起見,可誇大圖式中的元件的相對大小、比例及繪示。FIG. 1 is a schematic plan view showing a bulk acoustic wave resonator according to the embodiment. Fig. 2 is a cross-sectional view taken along the line I-I' shown in Fig. 1. Fig. 3 is a cross-sectional view taken along the line II-II' shown in Fig. 1. FIG. 4 is an exemplary explanatory diagram showing the aspect ratio and centroid of an asymmetric polygon. FIG. 5 is an exemplary explanatory diagram showing a rectangle defining the aspect ratio of an asymmetric polygon. FIG. 6 is a graph showing how the performance of a bulk acoustic wave resonator according to an example varies depending on the aspect ratio. FIG. 7 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric rhombus shape and an aspect ratio of 1. FIG. FIG. 8 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric rhombus shape and an aspect ratio of 1.5. 9 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric rhombus shape and an aspect ratio of 2.0. 10 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric rhombus shape and an aspect ratio of 2.5. FIG. 11 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric rhombus shape and an aspect ratio of 3.0. FIG. 12 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric rhombus shape and an aspect ratio of 3.5. 13 to 15 are schematic plan views showing a bulk acoustic wave resonator according to an example, in which the active area of the resonator has a shape that is an axisymmetric rhombus. FIG. 16 is a graph of frequency-dependent variation of S21 according to an example, which shows spurious noise of the bulk acoustic wave resonator of FIGS. 13 to 15. FIG. 17 is a graph showing the variation of the overlap area ratio of the normal vector of each side according to an example depending on the included angle between the axisymmetric rhombuses. FIG. 18 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric hexagonal shape and an aspect ratio of 1. FIG. 19 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric hexagonal shape and an aspect ratio of 1.5. 20 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric hexagonal shape and an aspect ratio of 2.0. 21 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric hexagonal shape and an aspect ratio of 2.5. 22 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric hexagonal shape and an aspect ratio of 3.0. FIG. 23 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric hexagonal shape and an aspect ratio of 3.5. FIG. 24 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric octagonal shape and an aspect ratio of 1. FIG. 25 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric octagonal shape and an aspect ratio of 1.5. FIG. 26 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric octagonal shape and an aspect ratio of 2.0. 27 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric octagonal shape and an aspect ratio of 2.5. FIG. 28 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric octagonal shape and an aspect ratio of 3. FIG. FIG. 29 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an axisymmetric octagonal shape and an aspect ratio of 3.5. FIG. 30 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an asymmetric polygonal shape and an aspect ratio of 2.4. FIG. 31 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an asymmetric polygonal shape and an aspect ratio of 3.8. 32 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an asymmetric polygonal shape and an aspect ratio of 5.1. FIG. 33 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has an asymmetric polygonal shape and an aspect ratio of 12.4. FIG. 34 is a graph showing that the impedance value according to an example changes depending on the frequency of the bulk acoustic wave resonator shown in FIG. 30 to FIG. 33. FIG. 35 is a graph of the frequency-dependent variation of S21 according to an example, which shows the spurious noise of the bulk acoustic wave resonator shown in FIG. 30 to FIG. 33. 36 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 2.4. FIG. 37 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 3.8. FIG. 38 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 5.1. FIG. 39 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 12.4. FIG. 40 is a graph showing that the impedance value according to an example changes depending on the frequency of the bulk acoustic wave resonator shown in FIG. 36 to FIG. 39. FIG. 41 is a graph of frequency-dependent variation of S21 according to an example, which shows the spurious noise of the bulk acoustic wave resonator shown in FIG. 36 to FIG. 39. 42 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 3.8. FIG. 43 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 4.8. 44 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 5.1. FIG. 45 is a schematic plan view showing an example in which the active region of the bulk acoustic wave resonator has a shape of an axisymmetric polygon and an aspect ratio of 5.6. FIG. 46 is a graph showing that the impedance value according to an example changes depending on the frequency of the bulk acoustic wave resonator shown in FIGS. 42 to 45. FIG. 47 is a graph of S21 varying with frequency according to an example, which shows the spurious noise of the bulk acoustic wave resonator shown in FIG. 42 to FIG. 45. 48 is an exemplary explanatory diagram showing a bulk acoustic wave resonator, in which the active area of the bulk acoustic wave resonator has an X-axis symmetrical polygon, and the centroid of the active area and the center of the rectangle defining the aspect ratio are spaced apart from each other in the Y-axis direction open. FIG. 49 is a graph showing that the attenuation efficiency according to an example changes depending on the separation ratio of the centroid of the active region. Throughout the drawings and detailed description, the same reference numbers refer to the same elements. The drawings may not be drawn to scale, and for clarity, illustration, and convenience, the relative sizes, proportions, and drawings of the elements in the drawings may be exaggerated.
100:體聲波共振器 100: Bulk Acoustic Wave Resonator
190:鈍化層 190: passivation layer
195:金屬接墊 195: Metal pad
I-I’、II-II’:線 I-I’, II-II’: Line
Claims (22)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20190093323 | 2019-07-31 | ||
KR10-2019-0093323 | 2019-07-31 | ||
KR1020200031588A KR20210015612A (en) | 2019-07-31 | 2020-03-13 | Bulk-acoustic wave resonator |
KR10-2020-0031588 | 2020-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202107845A true TW202107845A (en) | 2021-02-16 |
Family
ID=74561086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109120371A TW202107845A (en) | 2019-07-31 | 2020-06-17 | Bulk-acoustic wave resonator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2021027581A (en) |
KR (1) | KR20210015612A (en) |
TW (1) | TW202107845A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230055786A (en) * | 2021-10-19 | 2023-04-26 | 삼성전기주식회사 | Bulk-acoustic wave filter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5229945B2 (en) | 1972-08-25 | 1977-08-04 |
-
2020
- 2020-03-13 KR KR1020200031588A patent/KR20210015612A/en not_active Application Discontinuation
- 2020-06-17 TW TW109120371A patent/TW202107845A/en unknown
- 2020-06-23 JP JP2020108281A patent/JP2021027581A/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2021027581A (en) | 2021-02-22 |
KR20210015612A (en) | 2021-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11558027B2 (en) | Bulk-acoustic wave resonator | |
TWI758799B (en) | Bulk acoustic resonator and filter device | |
CN114374370A (en) | Bulk acoustic wave resonator | |
TWI735999B (en) | Bulk-acoustic wave resonator | |
TWI841740B (en) | Bulk-acoustic wave resonator | |
TW202107845A (en) | Bulk-acoustic wave resonator | |
US11595022B2 (en) | Bulk-acoustic wave resonator | |
US11558026B2 (en) | Bulk-acoustic wave resonator | |
US11843365B2 (en) | Bulk-acoustic wave resonator | |
US11394363B2 (en) | Bulk-acoustic wave resonator | |
US11558025B2 (en) | Bulk-acoustic wave resonator | |
TWI765656B (en) | Bulk acoustic wave resonator | |
US20230125049A1 (en) | Bulk acoustic wave filter | |
US20230170872A1 (en) | Bulk-acoustic wave resonator | |
US20220085791A1 (en) | Bulk-acoustic wave resonator | |
KR102097320B1 (en) | Bulk-acoustic wave resonator | |
TW202139596A (en) | Bulk-acoustic wave resonator and bulk-acoustic wave filter device | |
TW202306205A (en) | Acoustic resonator | |
CN117674755A (en) | Bulk acoustic wave resonator and method for manufacturing bulk acoustic wave resonator |