TW202107674A - Micro-led and micro-led manufacturing method - Google Patents

Micro-led and micro-led manufacturing method Download PDF

Info

Publication number
TW202107674A
TW202107674A TW109123679A TW109123679A TW202107674A TW 202107674 A TW202107674 A TW 202107674A TW 109123679 A TW109123679 A TW 109123679A TW 109123679 A TW109123679 A TW 109123679A TW 202107674 A TW202107674 A TW 202107674A
Authority
TW
Taiwan
Prior art keywords
gan
micro leds
leds
silicon substrate
combination
Prior art date
Application number
TW109123679A
Other languages
Chinese (zh)
Inventor
愛羅安東尼歐C 桑契斯
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202107674A publication Critical patent/TW202107674A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)

Abstract

Embodiments of the present disclosure generally relate to micro-LEDs and to methods of forming micro-LEDs. In an embodiment is provided a method of processing a substrate that includes masking GaN-based blue micro-LEDs, GaN-based green micro-LEDs, or a combination thereof disposed on a silicon substrate disposed in a processing system, and forming a plurality of AlInGaP-based red micro-LEDs on the silicon substrate. In another embodiment is provided a device that includes a silicon substrate, a plurality of GaN-based blue micro-LEDs disposed on the silicon substrate, a plurality of GaN-based green micro-LEDs disposed on the silicon substrate, and a plurality of AlInGaP-based red micro-LEDs disposed on the silicon substrate. In another embodiment is provided a non-transitory computer medium storing instructions that, when executed by a processor of a system, perform operations to form micro-LEDs is also disclosed.

Description

微型LED及微型LED製造方法Micro LED and micro LED manufacturing method

本揭露書的實施例大體上關於微型LED以及形成微型LED的方法。特別地,揭露了一種用於在具有預先存在的藍色微型LED及/或綠色微型LED的相同基板(諸如矽晶圓)上製造紅色微型LED的方法。The embodiments of the present disclosure generally relate to micro LEDs and methods of forming micro LEDs. In particular, a method for manufacturing red micro LEDs on the same substrate (such as a silicon wafer) with pre-existing blue micro LEDs and/or green micro LEDs is disclosed.

微型LED(發光二極體)正在考慮用於下一代顯示裝置中。為了實現顏色的完整顯示,傳統的微型LED像素嘗試利用紅色、綠色和藍色微型LED。藍色和綠色微型LED通常由基於六方(纖鋅礦型)氮化鎵(GaN)的層堆疊構成,其中有源發射極層結合了不同濃度的銦(InGaN)以調節顏色。層堆疊或者生長成毯狀膜,隨後對其進行圖案化並蝕刻成微米尺寸的結構,或者選擇性地生長成在介電層之間開口的預定區域中的微米結構。由於在藍寶石和六方氮化鎵之間的晶格匹配,這些微型LED通常形成在藍寶石上。Micro LEDs (light emitting diodes) are being considered for use in next-generation display devices. In order to achieve a complete color display, traditional micro LED pixels try to use red, green and blue micro LEDs. Blue and green micro LEDs are usually composed of a stack of layers based on hexagonal (wurtzite) gallium nitride (GaN), where the active emitter layer combines different concentrations of indium (InGaN) to adjust the color. The layer stack is either grown into a blanket film, which is then patterned and etched into a micron-sized structure, or selectively grown into a micron structure in a predetermined area of openings between the dielectric layers. Due to the lattice match between sapphire and hexagonal gallium nitride, these micro LEDs are usually formed on sapphire.

藍寶石基板的尺寸通常受到限制(通常直徑為四英寸或更小),且因此,在向上縮放以生產用於大螢幕顯示裝置的大量生產的足夠的微型LED時存在挑戰。雖然在更豐富和更大的矽基板上進行微型LED的一些開發工作正在進行中,諸如藉由<111>和<100>矽晶圓上的六方(纖鋅礦型)GaN和立方(鋅共混物)GaN晶相的各種結構的選擇性生長,迄今為止的嘗試都不夠。此外,雖然藍色和綠色微型LED通常為基於GaN的材料,但除了在高銦含量的GaN發射極與下面的GaN/藍寶石或GaN/Si之間的晶格不匹配之外,基於GaN的紅色微型LED由於各種技術原因,其效能貧乏。在GaAs基板上生長的基於InGaP的紅色微型LED具有更高的效能,並且更為常見。因此,為了形成紅綠藍像素,利用了來自多個基板的微型LED。將來自不同基板的微型LED切成小塊,並定位(通常稱為「拾取和放置」操作)到合適的主基板上,諸如最終成為顯示裝置的基板。數以千計的微型LED的「拾取和放置」既乏味、耗時、昂貴,又有其自身的技術局限性。The size of the sapphire substrate is generally limited (typically four inches or less in diameter), and therefore, there are challenges in scaling up to produce sufficient micro LEDs for mass production of large screen display devices. Although some development work for micro-LEDs on more abundant and larger silicon substrates is underway, such as the use of hexagonal (wurtzite) GaN and cubic (zinc total) on <111> and <100> silicon wafers. For the selective growth of various structures of the GaN crystal phase, the attempts so far have not been enough. In addition, although blue and green micro LEDs are usually GaN-based materials, in addition to the lattice mismatch between the GaN emitter with high indium content and the underlying GaN/sapphire or GaN/Si, GaN-based red Due to various technical reasons, micro LEDs have poor performance. InGaP-based red micro LEDs grown on GaAs substrates have higher efficiency and are more common. Therefore, in order to form red, green and blue pixels, micro LEDs from multiple substrates are used. The micro LEDs from different substrates are cut into small pieces and positioned (usually referred to as a "pick and place" operation) on a suitable main substrate, such as the substrate that will eventually become a display device. The "pick and place" of thousands of micro LEDs is tedious, time-consuming, expensive, and has its own technical limitations.

因此,在本領域中存在有改進的微型LED和微型LED製造方法的需求。Therefore, there is a need for improved micro LEDs and micro LED manufacturing methods in this field.

本揭露書的實施例大體上關於微型LED以及形成微型LED的方法。特別地,揭露了一種用於在具有預先存在的藍色微型LED及/或綠色微型LED的相同基板(諸如矽晶圓)上製造紅色微型LED的方法。The embodiments of the present disclosure generally relate to micro LEDs and methods of forming micro LEDs. In particular, a method for manufacturing red micro LEDs on the same substrate (such as a silicon wafer) with pre-existing blue micro LEDs and/or green micro LEDs is disclosed.

在一實施例中,提供了一種處理基板的方法,該方法包括以下步驟:遮蓋設置在處理系統中設置在矽基板上的GaN基藍色微型LED、GaN基綠色微型LED或其組合。該方法進一步包括以下步驟:在矽基板上形成複數個AlInGaP基紅色微型LED。In one embodiment, a method for processing a substrate is provided, the method includes the following steps: covering a GaN-based blue micro LED, a GaN-based green micro LED or a combination thereof that is provided on a silicon substrate in a processing system. The method further includes the following steps: forming a plurality of AlInGaP-based red micro LEDs on the silicon substrate.

在另一個實施例中,提供了一種裝置,該裝置包括:矽基板;設置在矽基板上的複數個GaN基藍色微型LED;設置在矽基板上的複數個GaN基綠色微型LED;及設置在矽基板上的複數個AlInGaP基紅色微型LED。In another embodiment, a device is provided, which includes: a silicon substrate; a plurality of GaN-based blue micro LEDs arranged on the silicon substrate; a plurality of GaN-based green micro LEDs arranged on the silicon substrate; and A plurality of AlInGaP-based red micro LEDs on a silicon substrate.

在另一個實施例中,提供了一種儲存指令的非暫時性電腦可讀媒介,當指令由系統的處理器執行時進行操作,操作包括:在矽基板上形成複數個GaN基藍色微型LED;在矽基板上形成複數個GaN基綠色微型LED;遮罩在矽基板上的複數個GaN基藍色微型LED及複數個GaN基綠色微型LED;及在矽基板上形成複數個AlInGaP基紅色微型LED。In another embodiment, a non-transitory computer-readable medium for storing instructions is provided, which operates when the instructions are executed by the processor of the system, and the operations include: forming a plurality of GaN-based blue micro LEDs on a silicon substrate; A plurality of GaN-based green micro LEDs are formed on a silicon substrate; a plurality of GaN-based blue micro LEDs and a plurality of GaN-based green micro LEDs masked on the silicon substrate; and a plurality of AlInGaP-based red micro LEDs are formed on the silicon substrate .

本揭露書的實施例大體上關於微型LED以及形成微型LED的方法。特別地,揭露了一種用於在具有預先存在的GaN基藍色微型LED及/或綠色微型LED的相同基板(諸如矽晶圓)上製造AlInGaP基紅色微型LED的方法。The embodiments of the present disclosure generally relate to micro LEDs and methods of forming micro LEDs. In particular, a method for manufacturing AlInGaP-based red micro LEDs on the same substrate (such as a silicon wafer) with pre-existing GaN-based blue micro LEDs and/or green micro LEDs is disclosed.

第1圖是根據至少一個實施例的用於在基板上形成微型LED的方法100的流程圖。在操作102中,氮化鎵(GaN)層沉積在矽基板的<111>表面上。可使用金屬有機化學氣相沉積(MOCVD)作為沉積方法,但是也可使用氫化物氣相外延(HVPE)或較低溫度的方法,諸如分子束外延(MBE)。與<100>矽表面相反,GaN的晶格和<111>矽表面足夠相似,以允許在其上形成優質的GaN層。在操作102的一個示例中,GaN的沉積是在<111>矽晶圓的表面上的毯式沉積,其厚度具有約500奈米至約10微米的範圍,諸如約1微米至約5微米,或約2微米至約4微米。在矽表面和GaN之間利用一層或多層AlN及/或AlGaN的過渡層,以促進裝置的形成。在這樣的示例中,AlN層可沉積到約100奈米(nm)至約200nm的厚度。可將AlGaN層沉積至約200nm至約800nm的厚度。FIG. 1 is a flowchart of a method 100 for forming a micro LED on a substrate according to at least one embodiment. In operation 102, a gallium nitride (GaN) layer is deposited on the <111> surface of the silicon substrate. Metal organic chemical vapor deposition (MOCVD) can be used as the deposition method, but hydride vapor phase epitaxy (HVPE) or a lower temperature method such as molecular beam epitaxy (MBE) can also be used. In contrast to the <100> silicon surface, the crystal lattice of GaN is sufficiently similar to the <111> silicon surface to allow a high-quality GaN layer to be formed thereon. In an example of operation 102, the deposition of GaN is blanket deposition on the surface of a <111> silicon wafer, the thickness of which has a range of about 500 nanometers to about 10 micrometers, such as about 1 micrometer to about 5 micrometers, Or about 2 microns to about 4 microns. One or more AlN and/or AlGaN transition layers are used between the silicon surface and GaN to facilitate device formation. In such an example, the AlN layer may be deposited to a thickness of about 100 nanometers (nm) to about 200 nm. The AlGaN layer can be deposited to a thickness of about 200 nm to about 800 nm.

如第2圖所示,可利用<100>矽基板200(如,具有<100>曝露的上表面220)。在操作102中的GaN沉積之前,可首先藉由(如)使用同質外延生長處理來處理<100>曝露的上表面220,以生成<111>表面222。<111>表面222可藉由形成刻面表面而從<100>曝露的上表面220形成。<111>表面222有助於在預定的晶體學取向上的GaN沉積。As shown in Figure 2, a <100> silicon substrate 200 (eg, having a <100> exposed upper surface 220) can be used. Before the GaN deposition in operation 102, the upper surface 220 exposed by the <100> may be processed first by, for example, using a homoepitaxial growth process to generate a <111> surface 222. The <111> surface 222 may be formed from the upper surface 220 exposed from the <100> by forming a faceted surface. The <111> surface 222 facilitates the deposition of GaN in a predetermined crystallographic orientation.

為了產生<111>表面222,在矽基板200的上表面220上設置遮罩253(諸如氧化矽或其他氧化物)。在矽基板200的<100>曝露的上表面220的曝露區域上外延形成晶體矽260到高度H1 ,高度H1 超過遮罩的高度H2 ,從而導致形成的晶體矽260(如,刻面的外延矽特徵)的<111>表面222(如,刻面表面)存在遮罩253上方。<111>表面222可為例如矽棱錐、尖頭帶或其他類似特徵。藉由(例如)在攝氏約800度或更高的溫度下進行選擇性外延沉積來生長<111>表面222。<111>表面222具有<111>晶體學取向,其有助於在其上(如,GAN層或結構262)生長c面纖鋅礦GaN。在操作102的一個示例中,GaN在<111>表面222上選擇性地形成約200奈米至約1000奈米的厚度,諸如400奈米至約800奈米的厚度。在<111>表面222上進行GaN沉積之前,可類似地使用AlN和AlGaN過渡層。In order to create the <111> surface 222, a mask 253 (such as silicon oxide or other oxides) is provided on the upper surface 220 of the silicon substrate 200. Crystalline silicon 260 is epitaxially formed on the exposed area of the upper surface 220 of the silicon substrate 200 exposed by <100> to a height H 1 , and the height H 1 exceeds the height H 2 of the mask, resulting in the formation of crystalline silicon 260 (eg, facet The <111> surface 222 (for example, the faceted surface) of the epitaxial silicon feature) exists above the mask 253. The <111> surface 222 can be, for example, a silicon pyramid, a pointed band or other similar features. The <111> surface 222 is grown by, for example, selective epitaxial deposition at a temperature of about 800 degrees Celsius or higher. The <111> surface 222 has a <111> crystallographic orientation, which facilitates the growth of c-plane wurtzite GaN on it (eg, GAN layer or structure 262). In an example of operation 102, GaN is selectively formed on the <111> surface 222 to a thickness of about 200 nanometers to about 1000 nanometers, such as a thickness of 400 nanometers to about 800 nanometers. Before GaN deposition on the <111> surface 222, AlN and AlGaN transition layers can be similarly used.

在操作102的另一示例中,如上所述形成的晶體矽260具有高度H1 。高度H1 約等於在第1圖的後續操作112期間所形成的GaAs特徵的高度。在操作102的另一示例中,在遮罩253的上表面上方的晶體矽260的特徵的高度H1 為約40nm至400nm。在操作102的另一個示例中,峰或頂點在<111>表面222之間形成之前,可停止<111>表面222的外延形成,以減輕GaN橋接。附加地或替代地,可想到的是,在形成GaN之前,(例如)藉由化學機械拋光,可將矽拋光掉任何形成的峰。In another example of operation 102, the crystalline silicon 260 formed as described above has a height H 1 . The height H 1 is approximately equal to the height of the GaAs feature formed during the subsequent operation 112 in FIG. 1. In another example of operation 102, wherein the height H of the crystal silicon mask 253 above the upper surface 260 is from about 1 40nm to 400nm. In another example of operation 102, before the peaks or vertices are formed between the <111> surfaces 222, the epitaxial formation of the <111> surfaces 222 may be stopped to reduce GaN bridging. Additionally or alternatively, it is conceivable that before forming GaN, for example, by chemical mechanical polishing, the silicon can be polished off any peaks formed.

在操作102的另一示例中,在矽基板200的上表面220(可為<111>表面)上生長呈垂直桿形式的GaN層或結構262。GaN層或結構262藉由在矽基板200上沉積遮罩(諸如氧化矽遮罩)並圖案化遮罩253以曝露矽基板200的預定區域用於選擇性地生長桿來形成。接著使用沉積處理(諸如MOCVD)將桿形成在遮罩253的開口中,並藉由成核層(諸如AlN)來輔助,成核層具有約2nm至約50nm的厚度。桿的直徑可從幾百奈米到幾千奈米,諸如約300nm或約3000nm,且高度可為每個相應桿的直徑的約三倍至約八倍。第3A圖描繪了所得的GaN桿結構(如藍色和綠色微型LED 350)的示例。In another example of operation 102, a GaN layer or structure 262 in the form of a vertical rod is grown on the upper surface 220 (which may be a <111> surface) of the silicon substrate 200. The GaN layer or structure 262 is formed by depositing a mask (such as a silicon oxide mask) on the silicon substrate 200 and patterning the mask 253 to expose a predetermined area of the silicon substrate 200 for selectively growing rods. A deposition process (such as MOCVD) is then used to form the rods in the openings of the mask 253, and is assisted by a nucleation layer (such as AlN), which has a thickness of about 2 nm to about 50 nm. The diameter of the rod may be from several hundred nanometers to several thousand nanometers, such as about 300 nm or about 3000 nm, and the height may be about three to about eight times the diameter of each corresponding rod. Figure 3A depicts an example of the resulting GaN rod structure (such as blue and green micro LED 350).

一旦在操作102處形成GaN層或結構262,接著在操作104中進一步處理GaN層或結構262,以形成用於綠色微型LED和藍色微型LED的相應區域。可藉由在其上施加適當的有源發射極層來形成這樣的區域,如,藉由形成具有氮化銦鎵(InGaN)和GaN的交替層的多量子阱(MQW),每層約2-4奈米厚。選擇InGaN層的銦濃度以為微型LED提供期望的顏色輸出(如,綠色)。具有較高銦濃度的MQW發出的波長更長。例如,綠色比藍色需要更高的銦濃度。要注意的是,MQW下方的塊狀GaN層被摻雜為n型或p型,且MQW上方的反向摻雜的GaN層或結構262也被利用以便形成二極體。反向摻雜的GaN層以及可設計成可增強micro-LED效能的其他層細節(諸如應力消除層、電子阻擋層、包覆層等)也可考慮包括在操作104中的MQW形成附近。金屬接點也被施加到摻雜層以完成微型LED,但是在這個方法中,在完成第1圖中涵蓋的所有操作之後(如,在操作114之後)施加金屬接點。Once the GaN layer or structure 262 is formed at operation 102, the GaN layer or structure 262 is then further processed in operation 104 to form corresponding regions for the green micro LED and the blue micro LED. Such a region can be formed by applying a suitable active emitter layer thereon, for example, by forming a multiple quantum well (MQW) with alternating layers of indium gallium nitride (InGaN) and GaN, each layer is about 2 -4nm thick. The indium concentration of the InGaN layer is selected to provide the desired color output (eg, green) of the micro LED. MQWs with higher indium concentrations emit longer wavelengths. For example, green requires a higher indium concentration than blue. It should be noted that the bulk GaN layer below the MQW is doped n-type or p-type, and the counter-doped GaN layer or structure 262 above the MQW is also utilized to form a diode. The counter-doped GaN layer and other layer details that can be designed to enhance the performance of the micro-LED (such as a stress relief layer, an electron blocking layer, a cladding layer, etc.) may also be included in the vicinity of the MQW formation in operation 104. Metal contacts are also applied to the doped layer to complete the micro LED, but in this method, the metal contacts are applied after all operations covered in Figure 1 are completed (eg, after operation 114).

在操作104的一個示例中,在來自操作102的摻雜毯式GaN的頂部上毯式沉積MQW可將InGaN層的一種特定的銦濃度作為目標,隨後進行遮蓋和蝕刻,以產生用於微米尺寸的區域以用於具有一種顏色(藍色或綠色任一種,而非兩種)的微型LED。換句話說,用於藍色和綠色微型LED的MQW分別形成。然而,可想到,在操作104的另一個示例中,在用於形成第一顏色(如,藍色)的微型LED的上述操作之前,可用氧化矽遮蓋毯式GaN上分配給其他顏色的不同較大區域。濕式蝕刻並曝露那些分配的(如,遮蓋的)區域接著允許隨後在其中形成第二顏色(如,綠色)的微型LED。這是藉由以與上述類似的方式沉積較高的含銦的MQW並圖案化,同時遮蓋已經構建的第一顏色的微型LED(如,藍色)來完成的。In an example of operation 104, blanket deposition of MQW on top of the doped blanket GaN from operation 102 can target a specific indium concentration of the InGaN layer, followed by masking and etching to produce micron-sized The area is used for micro LEDs with one color (either blue or green, not two). In other words, the MQWs for the blue and green micro LEDs are formed separately. However, it is conceivable that, in another example of operation 104, before the above-mentioned operation for forming the micro LED of the first color (eg, blue), silicon oxide may be used to cover the different contrasts allocated to other colors on the blanket GaN. Large area. Wet etching and exposing those allocated (eg, masked) areas then allows subsequent formation of second color (eg, green) micro LEDs therein. This is accomplished by depositing and patterning a higher indium-containing MQW in a similar manner to the above, while covering the already constructed micro LEDs of the first color (eg, blue).

選擇遮罩和濕式蝕刻處理以最小化或避免對先前形成的微型LED的損壞。若將典型的MOCVD或HVPE高溫(>約800°C)處理用於綠色微型LED的有源層,則藍色微型LED的現有有源發射極層也會受到損壞。可藉由使用低溫氮源(諸如肼,或N2 或NH3 任一者的電漿活化)在攝氏700度(諸如攝氏650度)以下沉積來避免這種情況。在一個示例中,在低於約10托(諸如低於約5托或低於約3托)的壓力下利用電漿活化的N2 或NH3 。肼(在沒有電漿的情況下)可在低於約400torr(諸如低於約300torr)的壓力下使用。可設想蝕刻以形成微米尺寸的區域可能會損壞在形狀的邊緣處的有源發射極層,從而導致較低的光輸出效率。在完成第1圖中涵蓋的所有操作之後,可任選地在以後的某些操作中應用鈍化層,以減輕蝕刻造成的可能損壞。The mask and wet etching process are selected to minimize or avoid damage to the previously formed micro LEDs. If a typical MOCVD or HVPE high temperature (>about 800°C) process is used for the active layer of the green micro LED, the existing active emitter layer of the blue micro LED will also be damaged. This can be avoided by using a low-temperature nitrogen source (such as hydrazine, or plasma activation of either N 2 or NH 3 ) to deposit below 700 degrees Celsius (such as 650 degrees Celsius). In one example, plasma activated N 2 or NH 3 is utilized at a pressure of less than about 10 Torr, such as less than about 5 Torr or less than about 3 Torr. Hydrazine (in the absence of plasma) can be used at a pressure of less than about 400 torr, such as less than about 300 torr. It is conceivable that etching to form a micron-sized area may damage the active emitter layer at the edge of the shape, resulting in lower light output efficiency. After completing all the operations covered in Figure 1, a passivation layer can optionally be applied in some subsequent operations to reduce possible damage caused by etching.

在操作104的另一示例中,可使用毯式沉積來形成藍色和綠色微型LED。在操作102中形成在基板上的毯狀GaN被圖案化,以形成與用於形成藍色微型LED的位置相對應的微米尺寸的GaN的第一區域和與用於形成綠色微型LED的位置相對應的微米尺寸的GaN的第二區域。接著在遮蓋第二位置的同時在第一位置上形成用於藍色的一種銦濃度的MQW,且隨後在遮蓋第一位置的同時在第二位置上形成用於綠色的較高銦濃度的MQW。再次地,可將低溫氮源用於第二位置以獲得預定的熱預算。在這個示例或先前的示例中的從毯覆層圖案化以形成微型LED的微米尺寸的區域(如,在MQW和摻雜的GaN的生長之前或之後圖案化)可具有任何形狀,諸如圓盤、正方形或矩形。形狀的尺寸可在小於約微米到幾微米的範圍內,諸如從約0.8um到約8um,然而也可考慮其他尺寸。In another example of operation 104, blanket deposition may be used to form blue and green micro LEDs. The blanket GaN formed on the substrate in operation 102 is patterned to form a first region of micron-sized GaN corresponding to the position for forming the blue micro LED and a position corresponding to the position for forming the green micro LED. Corresponding to the second region of micron-sized GaN. Then, while covering the second position, an MQW with an indium concentration for blue is formed at the first position, and then an MQW with a higher indium concentration for green is formed at the second position while covering the first position. . Again, a low-temperature nitrogen source can be used in the second location to obtain a predetermined thermal budget. The micron-sized regions patterned from the blanket layer to form micro LEDs in this example or previous examples (eg, patterned before or after the growth of MQW and doped GaN) can have any shape, such as a disc , Square or rectangle. The size of the shape may be in the range of less than about micrometers to several micrometers, such as from about 0.8 um to about 8 um, although other sizes can also be considered.

替代地,且在操作104的另一個示例中,可設想可藉由利用MOCVD中的圖案依賴性(也稱為微負載),在沒有遮罩的情況下同時在第一位置和第二位置上形成MQW。在這樣的示例中,第一位置(如,第一顏色的各個微型LED的位置)比第二位置(如,第二顏色的各個微型LED的位置)彼此更近地間隔開,這導致在形成期間,在第一位置處將較低濃度的銦摻入MQW中。較低的銦濃度導致藍色發射,而相對較高的濃度導致綠色發射。第一位置可間隔開約0.2微米至約1.2微米(如,約1.2微米間距),而第二位置可間隔開約1微米至約2微米,諸如約1.6微米。這種間隔導致藍色微型LED的MQW中的銦濃度約為15原子百分比的InGaN,而綠色微型LED的MQW中的銦濃度約為25原子百分比的InGaN。Alternatively, and in another example of operation 104, it is conceivable that the pattern dependence in MOCVD (also referred to as microloading) can be used to simultaneously operate in the first position and the second position without a mask. Form MQW. In such an example, the first position (for example, the position of each micro LED of the first color) is spaced closer to each other than the second position (for example, the position of each micro LED of the second color), which results in the formation of In the meantime, a lower concentration of indium is doped into the MQW at the first position. A lower indium concentration results in blue emission, while a relatively higher concentration results in green emission. The first locations may be spaced apart from about 0.2 microns to about 1.2 microns (eg, about 1.2 microns pitch), and the second locations may be spaced apart from about 1 micron to about 2 microns, such as about 1.6 microns. This spacing results in that the indium concentration in the MQW of the blue micro LED is about 15 atomic percent InGaN, and the indium concentration in the MQW of the green micro LED is about 25 atomic percent InGaN.

在操作104的又一個示例中,利用如先前相對於操作102所述的刻面矽結構上的GaN,綠色微型LED和藍色微型LED各自的區域藉由利用MOCVD微負載現象在MQW的相同的沉積期間同時顯影。也就是,在操作102中創建的具有較低的結構區域密度的區域將在操作104中比具有較高的結構區域密度的其他區域具有帶較高銦濃度(更長的波長發射,諸如綠色)的有源發射極層。當使用來自操作102的GaN桿結構的示例時,可類似地在操作104處獲得此類結果。In yet another example of operation 104, using the GaN on the faceted silicon structure as previously described with respect to operation 102, the respective regions of the green micro LED and the blue micro LED are in the same MQW by using the MOCVD micro-loading phenomenon. Simultaneous development during deposition. That is, the region created in operation 102 with a lower structure area density will have a higher indium concentration (longer wavelength emission, such as green) than other areas with a higher structure area density in operation 104 The active emitter layer. When using the example of the GaN rod structure from operation 102, such results can be obtained at operation 104 similarly.

回到方法100,在操作106處,一旦以期望的圖案形成用於綠色和藍色微型LED的有源層(包括MQW和摻雜的GaN),則將遮罩(諸如氧化矽)置於基板上方。第3A圖示意性地顯示了其上具有藍色或綠色或兩個微型LED 350的基板352(在第1圖的操作104之後完成)。儘管作為一個示例,第3A圖描繪了用於微型LED(如藍色和綠色微型LED 350)的桿GaN結構,但是可使用用於操作104的其他結構。第3B-3E圖示意性地顯示了與第1圖的操作106-114相關聯的示例結構。在操作106的一個示例中,第3B圖中所示的遮罩353可部分地包括在操作104處已經沉積在藍色微型LED上方的預先存在的遮罩,或者可替代地,可移除存在於藍色微型LED上方的遮罩,且新遮罩可放置在基板上方,並接著被圖案化以曝露用於形成紅色微型LED的預定區域。在操作106的另一示例中,遮罩353由氧化矽形成。遮罩353的存在在後續處理期間,在形成紅色微型LED期間保護藍色和綠色微型LED 350。Returning to the method 100, at operation 106, once the active layers (including MQW and doped GaN) for the green and blue micro LEDs are formed in the desired pattern, a mask (such as silicon oxide) is placed on the substrate Above. Figure 3A schematically shows a substrate 352 with blue or green or two micro LEDs 350 thereon (completed after operation 104 of Figure 1). Although as an example, FIG. 3A depicts a rod GaN structure for micro LEDs (such as blue and green micro LEDs 350), other structures for operation 104 may be used. Figures 3B-3E schematically show example structures associated with operations 106-114 of Figure 1. In an example of operation 106, the mask 353 shown in Figure 3B may partially include a pre-existing mask that has been deposited over the blue micro LED at operation 104, or alternatively, the existing mask may be removed. A mask above the blue micro LED, and the new mask can be placed above the substrate and then patterned to expose a predetermined area for forming the red micro LED. In another example of operation 106, the mask 353 is formed of silicon oxide. The presence of the mask 353 protects the blue and green micro LEDs 350 during the formation of the red micro LEDs during subsequent processing.

在操作108中,對應於紅色微型LED的預定形成區域對遮罩353進行圖案化。這些區域可具有(如)正方形或矩形條紋的形狀。如第3B圖所示,將光阻354施加在遮罩353上方,以促進光刻圖案化。用氟基濕式或乾式蝕刻劑(諸如HF、CF4 或NF3 )移除遮罩353,以在遮罩353內的阱的底部或開口355(如,溝槽開口)處曝露基板表面351的部分,如第3C圖所示。操作108的完成導致形成複數個開口355。In operation 108, the mask 353 is patterned corresponding to the predetermined formation area of the red micro LED. These areas may have, for example, the shape of square or rectangular stripes. As shown in FIG. 3B, a photoresist 354 is applied over the mask 353 to facilitate photolithography patterning. The mask 353 is removed with a fluorine-based wet or dry etchant (such as HF, CF 4 or NF 3 ) to expose the substrate surface 351 at the bottom of the well or opening 355 (eg, trench opening) in the mask 353 The part, as shown in Figure 3C. The completion of operation 108 results in the formation of a plurality of openings 355.

在操作110中,藉由曝露於濕式或乾式蝕刻劑來清潔基板表面351。在操作110的一個示例中,藍色和綠色微型LED 350較早地形成在具有<111>取向的基板352上,第3C圖中描繪的基板表面351的曝露區域已經具有用於砷化鎵(GaAs)生成的期望的晶體學取向。在操作110的另一示例中,藍色和綠色微型LED 350較早地在具有<100>取向的基板352上形成,基板表面351的曝露區域首先經受(在操作110中進行蝕刻以清潔基板352之前)蝕刻處理(諸如使用氫氧化四甲銨的濕式蝕刻或使用Cl2 的乾式蝕刻),以將V形刻面356形成到基板表面351中,如第3D圖所示。所得的或V形刻面356具有<111>晶體學取向,其有助於在遮罩353中的開口355內形成GaAs材料358。基板表面351的清潔在低溫下進行,符合預定的熱預算。應用材料SiCoNiTM 乾式清潔是可用於這份揭露書的各態樣的一個示例。In operation 110, the substrate surface 351 is cleaned by exposure to a wet or dry etchant. In an example of operation 110, the blue and green micro LEDs 350 were formed earlier on the substrate 352 with the <111> orientation, and the exposed area of the substrate surface 351 depicted in Figure 3C has been used for gallium arsenide ( GaAs) the desired crystallographic orientation. In another example of operation 110, the blue and green micro LEDs 350 are formed earlier on the substrate 352 having the <100> orientation, and the exposed area of the substrate surface 351 is first subjected to (etching is performed in operation 110 to clean the substrate 352). Previously) an etching process (such as wet etching using tetramethylammonium hydroxide or dry etching using Cl 2 ) to form V-shaped facets 356 into the substrate surface 351 as shown in FIG. 3D. The resulting or V-shaped facet 356 has a <111> crystallographic orientation, which helps to form the GaAs material 358 within the opening 355 in the mask 353. The cleaning of the substrate surface 351 is performed at a low temperature, which meets the predetermined thermal budget. The application material SiCoNi TM dry cleaning is an example of various aspects that can be used in this disclosure.

在操作112中,在基板的曝露、蝕刻及/或清潔的表面(如,具有<111>取向的基板表面351或基板352的V形刻面356)上形成GaAs材料358。GaAs材料358在化學氣相沉積(諸如金屬有機化學氣相沉積)期間中使用含鎵的前驅物氣體、含砷的前驅物氣體或它們的組合(包括三甲基鎵、三乙基鎵、砷化氫和叔丁基砷化氫)選擇性生長。使用基板表面351的下面曝露區域的<111>晶體學取向作為外延模板,在遮罩353中的開口355內垂直向上形成GaAs材料358。由於在沉積處理期間GaAs材料358的高度超過遮罩353特徵的高度,因此可預期,GaAs材料358的形狀和寬度可能會改變。當GaAs材料358的高度超過遮罩353的高度時,可能會發生刻面形成。在操作112的一個示例中,GaAs材料358可在表面357處向外逐漸變細,使得在每個相應的遮罩353特徵中形成的GaAs材料358的寬度具有比在遮罩353的上表面上方的高度處的遮罩353中的相應開口355的寬度更大的寬度。這種形成可能受到如由沉積條件(包括溫度、生長前驅物的流量和生長速率)所促進的形成期間的GaAs材料358的晶體學傾向的影響。In operation 112, a GaAs material 358 is formed on the exposed, etched, and/or cleaned surface of the substrate (eg, the substrate surface 351 having a <111> orientation or the V-shaped facet 356 of the substrate 352). GaAs material 358 uses gallium-containing precursor gases, arsenic-containing precursor gases, or combinations thereof (including trimethylgallium, triethylgallium, arsenic) during chemical vapor deposition (such as metal organic chemical vapor deposition). Hydrogen and tert-butyl arsine) selective growth. Using the <111> crystallographic orientation of the exposed area below the substrate surface 351 as an epitaxial template, a GaAs material 358 is formed vertically upward in the opening 355 in the mask 353. Since the height of the GaAs material 358 exceeds the height of the features of the mask 353 during the deposition process, it is expected that the shape and width of the GaAs material 358 may change. When the height of the GaAs material 358 exceeds the height of the mask 353, facet formation may occur. In an example of operation 112, the GaAs material 358 may taper outwardly at the surface 357, so that the width of the GaAs material 358 formed in each corresponding mask 353 feature is greater than that above the upper surface of the mask 353 The width of the corresponding opening 355 in the mask 353 at the height of the greater width. This formation may be affected by the crystallographic tendency of the GaAs material 358 during formation as promoted by the deposition conditions (including temperature, growth precursor flow rate, and growth rate).

在操作112的另一個示例中,GaAs材料358的基底部分(和開口355)的寬度在約100奈米到約1000奈米的範圍內。至少取決於預定高度、開口355及/或所選擇的生長條件,遮罩353上方的GaAs材料358的寬度可生長至約200nm至約2000nm。在GaAs材料358生長期間,處理溫度可保持在小於650℃(諸如600℃),以避免損壞先前顯影的GaN藍色及/或綠色微型LED 350。In another example of operation 112, the width of the base portion (and opening 355) of the GaAs material 358 is in the range of about 100 nanometers to about 1,000 nanometers. Depending on at least the predetermined height, the opening 355, and/or the selected growth conditions, the width of the GaAs material 358 above the mask 353 can be grown to about 200 nm to about 2000 nm. During the growth of the GaAs material 358, the processing temperature may be maintained at less than 650°C (such as 600°C) to avoid damage to the previously developed GaN blue and/or green micro LED 350.

一旦將GaAs材料358沉積到預定高度,在操作114處,在GaAs的上表面上形成MQW 359,如第3D圖所示。用於紅色微型LED的MQW 359由磷化鋁銦鎵(AlInGaP)和磷化銦鎵(InGaP)的交替層形成,它們經由(如)MOCVD在約攝氏650度或更低的溫度下形成。在操作108的圖案化中形成的每個相應開口355包括在其上形成有MQW 359的GaAs材料358特徵,從而導致複數個紅色微型LED。Once the GaAs material 358 is deposited to a predetermined height, at operation 114, an MQW 359 is formed on the upper surface of the GaAs, as shown in FIG. 3D. The MQW 359 for the red micro LED is formed of alternating layers of aluminum indium gallium phosphide (AlInGaP) and indium gallium phosphide (InGaP), which are formed via, for example, MOCVD at a temperature of about 650 degrees Celsius or lower. Each corresponding opening 355 formed in the patterning of operation 108 includes a GaAs material 358 feature with MQW 359 formed thereon, resulting in a plurality of red micro LEDs.

隨後,移除形成在藍色和綠色微型LED 350上方的遮罩353,並且可進行進一步的處理。例如,可將接點施加到微型LED。附加地或可替代地,可將基板切割成單元,其中每個單元包括紅色綠色藍色(RGB)微型LED。在後一示例中,選擇上述遮蓋和沉積操作以將各自的紅色、綠色和藍色微型LED彼此緊靠放置,以促進切成RGB單元(如,RGB像素)。在又一示例中,可省略切割,並且其上具有RGB微型LED的基板直接接合至其上形成有預定CMOS佈局的基板。在這樣的示例中,選擇RGB微型LED佈局以對應於預定的CMOS佈局。因為在這樣的示例中省略了切割及拾取和放置操作,所以增加了產量並且降低了製造成本。Subsequently, the mask 353 formed over the blue and green micro LEDs 350 is removed, and further processing can be performed. For example, contacts can be applied to micro LEDs. Additionally or alternatively, the substrate may be cut into units, where each unit includes red, green, blue (RGB) micro LEDs. In the latter example, the masking and deposition operations described above are selected to place the respective red, green, and blue micro LEDs next to each other to facilitate cutting into RGB units (eg, RGB pixels). In yet another example, cutting may be omitted, and the substrate with the RGB micro LEDs thereon is directly bonded to the substrate with the predetermined CMOS layout formed thereon. In such an example, the RGB micro LED layout is selected to correspond to the predetermined CMOS layout. Because cutting and pick-and-place operations are omitted in such an example, the yield is increased and the manufacturing cost is reduced.

第3E圖顯示了基板352(如,矽基板)上的區域的平面圖。區域360包括藍色微型LED,區域361包括綠色微型LED,且區域362包括紅色微型LED,它們全部形成在單個基板352上。雖然基板352被顯示為具有每種顏色(RGB)聚集在一起的複數個微型LED,每種顏色的任意數量的微型LED都可設計成一個區域,取決於(如)每種發射GaN和GaAs微結構的尺寸、每種顏色的光輸出或強度及/或要填充的區域尺寸。在一個示例中,指定區域包括一個圓形的藍色微型LED結構、一個圓形的綠色微型LED結構和一個紅色的微型LED條。在另一個示例中,指定區域包括每個相應的顏色LED的不同數量的群集。例如,指定區域可包括三個正方形藍色微型LED、十個圓形綠色微型LED和五個紅色微型LED條的群集。可根據裝置設計參數在圖案化中定義描繪不同區域(如,各個像素區域)的線段。Figure 3E shows a plan view of the area on the substrate 352 (eg, silicon substrate). The area 360 includes blue micro LEDs, the area 361 includes green micro LEDs, and the area 362 includes red micro LEDs, all of which are formed on a single substrate 352. Although the substrate 352 is shown as having a plurality of micro LEDs of each color (RGB) grouped together, any number of micro LEDs of each color can be designed as an area, depending on (eg) each emitting GaN and GaAs micro The size of the structure, the light output or intensity of each color and/or the size of the area to be filled. In one example, the designated area includes a circular blue micro LED structure, a circular green micro LED structure, and a red micro LED strip. In another example, the designated area includes a different number of clusters of each corresponding color LED. For example, the designated area may include a cluster of three square blue micro LEDs, ten circular green micro LEDs, and five red micro LED strips. Line segments depicting different areas (for example, each pixel area) can be defined in the patterning according to the device design parameters.

另外,儘管區域361的綠色微型LED的尺寸在第3E圖中顯示為與區域360中的藍色微型LED的尺寸相似,但是可預期,可調節每個微型LED的尺寸以形成不同物理尺寸的微型LED。類似地,儘管區域362的紅色微型LED在第3E圖中顯示為具有與區域360的藍色微型LED和區域361的綠色微型LED不同的尺寸,但是可預期,每個微型LED的尺寸可調整成形成具有相似物理尺寸的微型LED。替代地,可調節每個微型LED的尺寸以形成具有相似光(如,強度)輸出的微型LED。In addition, although the size of the green micro LED in area 361 is shown in Figure 3E as similar to the size of the blue micro LED in area 360, it is expected that the size of each micro LED can be adjusted to form micro LEDs of different physical sizes. LED. Similarly, although the red micro LEDs in area 362 are shown in Figure 3E as having different sizes from the blue micro LEDs in area 360 and the green micro LEDs in area 361, it is expected that the size of each micro LED can be adjusted to The formation of micro LEDs with similar physical dimensions. Alternatively, the size of each micro LED can be adjusted to form a micro LED with similar light (eg, intensity) output.

第4A-4B圖示意性地顯示了根據另一個實施例的在矽基板452上的微型LED的形成。在這樣的示例中,藉由遮蓋具有<001>取向的矽基板452的上表面460,並且蝕刻到矽基板452中以曝露矽基板452的蝕刻特徵465內的表面464,來形成藍色和綠色微型LED。在蝕刻的特徵465內具有<111>取向的表面464有助於在矽上生長立方(鋅混合的)GaN 466。如上所述,在蝕刻的特徵465中形成立方的(鋅混合的)GaN 466,並接著在其上形成InGaN/GaN MQW。AlInGaP基的紅色微型LED可接著如上所述(例如,在第1圖的操作106-114中)形成在基板452上。在第4B圖中顯示了這種矽基板452的平面圖。矽基板452包括綠色、藍色和紅色(分別)微型LED的區域461、462和463。值得注意的是,在區域461中的相鄰綠色微型LED之間的間隔大於在區域462中的相鄰藍色微型LED之間的間隔,以促進各個MQW的銦濃度的差異以調節發射顏色。Figures 4A-4B schematically show the formation of micro LEDs on a silicon substrate 452 according to another embodiment. In such an example, the blue and green colors are formed by covering the upper surface 460 of the silicon substrate 452 with the <001> orientation and etching into the silicon substrate 452 to expose the surface 464 within the etched features 465 of the silicon substrate 452 Micro LED. The surface 464 having a <111> orientation within the etched feature 465 helps to grow cubic (zinc mixed) GaN 466 on silicon. As described above, a cubic (zinc mixed) GaN 466 is formed in the etched feature 465, and then an InGaN/GaN MQW is formed thereon. The AlInGaP-based red micro LED can then be formed on the substrate 452 as described above (for example, in operations 106-114 of FIG. 1). A plan view of such a silicon substrate 452 is shown in FIG. 4B. The silicon substrate 452 includes areas 461, 462, and 463 of green, blue, and red (respectively) micro LEDs. It is worth noting that the interval between adjacent green micro LEDs in the area 461 is greater than the interval between adjacent blue micro LEDs in the area 462 to promote the difference in indium concentration of each MQW to adjust the emission color.

第5圖是根據至少一個實施例的處理系統530。處理系統530可為用於實施本揭露書的各態樣的一個系統。然而,可預期的是,可附加地或替代地利用其他處理系統。Figure 5 is a processing system 530 according to at least one embodiment. The processing system 530 may be a system for implementing various aspects of this disclosure. However, it is contemplated that other processing systems may be utilized additionally or alternatively.

處理系統530包括用於接收匣534的工廠界面532。工廠界面532耦合至緩衝站536,基板藉由工廠界面機械手538通過緩衝站536傳送。基板藉由位於傳送腔室542中的傳送機械手540從緩衝站536傳送接收。傳送腔室耦接到一個或多個處理腔室500a-500e。可預期的是,處理腔室500a-500e可包括可從加州聖克拉拉市的應用材料公司獲得的(例如)一個或多個清潔腔室(諸如SiCoNi®腔室)、一個或多個MOCVD腔室及一個或多個鈍化腔室(諸如可從加州聖克拉拉市的應用材料公司獲得的用於Al2 O3 、SiO2 、AlN的一個或多個ALD鈍化腔室,或用於Al2 O3 、SiO2 、AlN或H2 S的一個或多個CVD鈍化腔室)。儘管顯示了五個處理腔室500a-500e,但是可預期可利用更多或更少的處理腔室。另外,雖然處理腔室500a-500e以群集配置顯示,但是可預期,處理腔室可以非群集配置操作。The processing system 530 includes a factory interface 532 for receiving the cassette 534. The factory interface 532 is coupled to the buffer station 536, and the substrate is transferred through the buffer station 536 by the factory interface robot 538. The substrate is transferred and received from the buffer station 536 by the transfer robot 540 located in the transfer chamber 542. The transfer chamber is coupled to one or more processing chambers 500a-500e. It is contemplated that the processing chambers 500a-500e may include (for example) one or more clean chambers (such as SiCoNi® chambers), one or more MOCVD chambers available from Applied Materials of Santa Clara, California Chamber and one or more passivation chambers (such as one or more ALD passivation chambers for Al 2 O 3 , SiO 2 , AlN available from Applied Materials of Santa Clara, California, or for Al 2 One or more CVD passivation chambers of O 3 , SiO 2 , AlN or H 2 S). Although five processing chambers 500a-500e are shown, it is contemplated that more or fewer processing chambers may be utilized. In addition, although the processing chambers 500a-500e are shown in a cluster configuration, it is contemplated that the processing chambers may be operated in a non-clustered configuration.

處理器548耦合到處理系統530以控制其各態樣。處理器548可包括執行儲存在有形、非暫時性電腦可讀媒介上的程式代碼指令的處理器,以執行及/或控制於此所述的各種操作。電腦可讀媒介可包括用於儲存指令的任何合適的記憶體,例如唯讀記憶體(ROM)、隨機存取記憶體(RAM)、快閃記憶體、電可擦除可程式化ROM(EEPROM)、硬碟驅動器、光碟ROM(CD-ROM)、軟碟、打孔卡、磁帶及類似者。處理器548可控制處理系統530的操作,以促進於此所述的方法的操作。實施例清單 The processor 548 is coupled to the processing system 530 to control various aspects thereof. The processor 548 may include a processor that executes program code instructions stored on a tangible, non-transitory computer-readable medium to perform and/or control various operations described herein. The computer-readable medium may include any suitable memory for storing instructions, such as read-only memory (ROM), random access memory (RAM), flash memory, electrically erasable programmable ROM (EEPROM) ), hard disk drive, compact disc ROM (CD-ROM), floppy disk, punch card, tape and the like. The processor 548 may control the operation of the processing system 530 to facilitate the operation of the methods described herein. Example list

除其他之外,本揭露書提供了以下態樣,每個態樣可被認為任選地包括任何替代態樣。Among other things, this disclosure provides the following aspects, each aspect may be considered to optionally include any alternative aspect.

第1條.一種處理基板的方法,包含以下步驟:在設置在處理系統中的設置在矽基板上遮蓋GaN基藍色微型LED、GaN基綠色微型LED或它們的組合;及在矽基板上形成複數個AlInGaP基紅色微型LED。Article 1. A method for processing a substrate, comprising the following steps: covering a GaN-based blue micro LED, a GaN-based green micro LED or a combination of them on a silicon substrate provided in a processing system; and forming on the silicon substrate Multiple AlInGaP based red micro LEDs.

第2條.根據請求項1所述的方法,其中在矽基板上形成複數個AlInGaP基紅色微型LED的步驟包含以下步驟:在低於650℃的溫度下在圖案化區域中選擇性地沉積GaAs結構。Article 2. The method according to claim 1, wherein the step of forming a plurality of AlInGaP-based red micro LEDs on a silicon substrate includes the following steps: selectively depositing GaAs in the patterned area at a temperature lower than 650°C structure.

第3條.如第1條或第2條所述的方法,其中GaN基藍色微型LED、GaN基綠色微型LED或它們的組合是在遮蓋GaN基藍色微型LED、GaN基綠色微型LED或它們的組合之前選擇性沉積的GaN結構。Clause 3. The method as described in Clause 1 or 2, wherein the GaN-based blue micro-LED, GaN-based green micro-LED or a combination thereof is covering the GaN-based blue micro-LED, GaN-based green micro-LED or The combination of the previously selectively deposited GaN structure.

第4條.如第3條所述的方法,其中GaN基藍色微型LED、GaN基綠色微型LED或它們的組合形成在<111>刻面外延生長的矽特徵上。Clause 4. The method as described in Clause 3, wherein the GaN-based blue micro-LED, GaN-based green micro-LED or a combination thereof are formed on <111> facet epitaxially grown silicon features.

第5條.如第3條或第4條所述的方法,其中GaN基藍色微型LED、GaN基綠色微型LED或它們的組合形成在蝕刻到矽基板中的特徵的<111>表面上。Clause 5. The method as described in Clause 3 or 4, wherein GaN-based blue micro LEDs, GaN-based green micro LEDs, or a combination thereof are formed on the <111> surface of the features etched into the silicon substrate.

第6條.如第3-5條任一條所述的方法,其中GaN基藍色微型LED、GaN基綠色微型LED或它們的組合包含垂直桿。Clause 6. The method according to any one of clauses 3-5, wherein the GaN-based blue micro LED, GaN-based green micro LED, or a combination thereof includes vertical rods.

第7條.如第1-6條任一條所述的方法,其中GaN基藍色微型LED、GaN基綠色微型LED或它們的組合由毯覆層形成。Clause 7. The method according to any one of clauses 1 to 6, wherein the GaN-based blue micro-LED, GaN-based green micro-LED, or a combination thereof is formed by a blanket layer.

第8條.如第1-7條的任一條所述的方法,其中遮蓋GaN基藍色微型LED、GaN基綠色微型LED或它們的組合的步驟包含以下步驟:遮蓋GaN基藍色微型LED和GaN基綠色微型LED兩者。Clause 8. The method according to any one of Clauses 1-7, wherein the step of covering GaN-based blue micro LEDs, GaN-based green micro LEDs, or a combination thereof includes the following steps: covering GaN-based blue micro LEDs and Both GaN-based green micro LEDs.

第9條.如第1-8條任一條所述的方法,其中處理系統包括與清潔腔室、MOCVD腔室和鈍化腔室耦接的傳送腔室。Clause 9. The method of any one of Clauses 1-8, wherein the processing system includes a transfer chamber coupled to the cleaning chamber, the MOCVD chamber, and the passivation chamber.

第10條:一種裝置,包含:矽基板;複數個GaN基藍色微型LED,設置在矽基板上;複數個GaN基綠色微型LED,設置在矽基板上;及複數個AlInGaP基紅色微型LED,設置在矽基板上。Article 10: A device comprising: a silicon substrate; a plurality of GaN-based blue micro LEDs arranged on a silicon substrate; a plurality of GaN-based green micro LEDs arranged on a silicon substrate; and a plurality of AlInGaP-based red micro LEDs, Set on the silicon substrate.

第11條:一種非暫時性電腦可讀媒介,儲存指令,指令在由系統的處理器執行時執行以下操作,包含:在設置在處理系統中的矽基板上形成複數個GaN基藍色微型LED;在矽基板上形成複數個GaN基綠色微型LED;遮蓋在矽基板上的複數個GaN基藍色微型LED、複數個GaN基綠色微型LED或它們的組合;及在矽基板上形成複數個AlInGaP基紅色微型LED。Article 11: A non-transitory computer-readable medium that stores instructions. The instructions perform the following operations when executed by the processor of the system, including: forming a plurality of GaN-based blue micro LEDs on a silicon substrate set in the processing system ; A plurality of GaN-based green micro LEDs are formed on a silicon substrate; a plurality of GaN-based blue micro LEDs, a plurality of GaN-based green micro LEDs or a combination thereof covered on the silicon substrate; and a plurality of AlInGaPs are formed on the silicon substrate Base red micro LED.

第12條.如第11條所述的非暫時性電腦可讀媒介,其中在矽基板上形成複數個AlInGaP基紅色微型LED的步驟包含以下步驟:在低於650℃的溫度下在圖案化區域中選擇性地沉積GaAs結構。Article 12. The non-transitory computer readable medium as described in Article 11, wherein the step of forming a plurality of AlInGaP-based red micro LEDs on a silicon substrate includes the following steps: in the patterned area at a temperature lower than 650°C In the selective deposition of GaAs structure.

第13條.如第11條或第12條所述的非暫時性電腦可讀媒介,其中複數個GaN基藍色微型LED、複數個GaN基綠色微型LED或它們的組合是在遮蓋步驟之前選擇性沉積的GaN結構。Article 13. The non-transitory computer readable medium as described in Article 11 or Article 12, wherein a plurality of GaN-based blue micro LEDs, a plurality of GaN-based green micro LEDs, or a combination thereof are selected before the masking step Deposition of GaN structure.

第14條.如第13條所述的非暫時性電腦可讀媒介,其中複數個GaN基藍色微型LED、複數個GaN基綠色微型LED或它們的組合形成在蝕刻到矽基板中的特徵的<111>表面上。Clause 14. The non-transitory computer-readable medium as described in Clause 13, wherein a plurality of GaN-based blue micro LEDs, a plurality of GaN-based green micro LEDs, or a combination thereof are formed on the features etched into the silicon substrate <111> On the surface.

第15條.如第13條或第14條所述的非暫時性電腦可讀媒介,其中複數個GaN基藍色微型LED、複數個GaN基綠色微型LED或它們的組合形成在<111>刻面外延生長的矽特徵上。Clause 15. The non-transitory computer-readable medium as described in Clause 13 or 14, wherein a plurality of GaN-based blue micro LEDs, a plurality of GaN-based green micro LEDs, or a combination thereof are formed on the <111> mark Surface epitaxial growth of silicon features.

第16條.如第13-15條任一條所述的非暫時性電腦可讀媒介,其中複數個GaN基藍色微型LED、複數個GaN基綠色微型LED或它們的組合包含垂直桿。Clause 16. The non-transitory computer readable medium as described in any of Clauses 13-15, wherein the plurality of GaN-based blue micro LEDs, the plurality of GaN-based green micro LEDs, or a combination thereof comprise vertical rods.

第17條.如第11-16條任一條所述的非暫時性電腦可讀媒介,其中複數個GaN基藍色微型LED、複數個GaN基綠色微型LED或它們的組合是由毯覆層形成。Article 17. The non-transitory computer-readable medium as described in any of Articles 11-16, wherein a plurality of GaN-based blue micro-LEDs, a plurality of GaN-based green micro-LEDs, or a combination thereof are formed of a blanket layer .

第18條.如第11-17條任一條所述的非暫時性電腦可讀媒介,其中遮蓋的步驟包含以下步驟:遮蓋GaN基藍色微型LED和GaN基綠色微型LED兩者。Article 18. The non-transitory computer-readable medium as described in any of Articles 11-17, wherein the covering step includes the following steps: covering both the GaN-based blue micro LED and the GaN-based green micro LED.

第19條.如第11-18條任一條所述的非暫時性電腦可讀媒介,其中處理系統包括與清潔腔室、MOCVD腔室和鈍化腔室耦接的傳送腔室。Clause 19. The non-transitory computer readable medium as described in any of Clauses 11-18, wherein the processing system includes a transfer chamber coupled to the cleaning chamber, the MOCVD chamber, and the passivation chamber.

第20條.如第11-19條任一條所述的非暫時性電腦可讀媒介,其中在矽基板上形成複數個AlInGaP基紅色微型LED的步驟包含以下步驟:在低於600℃的溫度下在圖案化區域中選擇性地沉積GaAs結構。Article 20. The non-transitory computer readable medium as described in any of Articles 11-19, wherein the step of forming a plurality of AlInGaP-based red micro LEDs on a silicon substrate includes the following steps: at a temperature lower than 600°C A GaAs structure is selectively deposited in the patterned area.

儘管於此的態樣是用沉積技術(諸如MOCVD)描述的,但是也可考慮其他沉積技術(諸如分子束外延(MBE))。Although the aspect here is described using deposition techniques (such as MOCVD), other deposition techniques (such as molecular beam epitaxy (MBE)) can also be considered.

本揭露書包括用於在單個基板上形成紅色、藍色和綠色微型LED的方法。與常規使用的藍寶石基板相比,在矽基板上形成紅色、藍色和綠色微型LED至少可提供增加的生產率,這是由於操作次數減少、省去了拾取和放置處理及矽基板的增加尺寸。This disclosure includes methods for forming red, blue, and green micro LEDs on a single substrate. Compared with conventionally used sapphire substrates, the formation of red, blue, and green micro LEDs on silicon substrates can at least provide increased productivity due to the reduction in the number of operations, the elimination of pick-and-place processing, and the increased size of the silicon substrate.

儘管前述內容涉及本揭露書的實施例,但是在不背離本揭露書的基本範圍的情況下,可設計本揭露書的其他和進一步的實施例,且本揭露書的範圍由以下的申請專利範圍決定。Although the foregoing content relates to the embodiments of this disclosure, other and further embodiments of this disclosure can be designed without departing from the basic scope of this disclosure, and the scope of this disclosure is defined by the scope of the following patent applications Decided.

100:方法 102:操作 104:操作 106:操作 108:操作 110:操作 112:操作 114:操作 200:矽基板 220:上表面 222:表面 253:遮罩 260:晶體矽 262:結構 350:微型LED 351:基板表面 352:基板 353:遮罩 354:光阻 355:開口 356:V形刻面 357:表面 358:gaAs材料 359:MQW 360:區域 361:區域 362:區域 452:矽基板/基板 460:上表面 461:區域 462:區域 463:區域 464:表面 465:特徵 466:立方(鋅混合的)GaN 500a-e:處理腔室 530:處理系統 532:工廠界面 534: 匣 536:緩衝站 538:工廠界面機械手 540:傳送機械手 542:傳送腔室 548:處理器100: method 102: Operation 104: Operation 106: Operation 108: Operation 110: Operation 112: Operation 114: Operation 200: Silicon substrate 220: upper surface 222: Surface 253: Mask 260: crystalline silicon 262: structure 350: Micro LED 351: substrate surface 352: Substrate 353: Mask 354: photoresist 355: open 356: V-shaped facet 357: Surface 358: gaAs material 359: MQW 360: area 361: area 362: area 452: silicon substrate/substrate 460: upper surface 461: region 462: region 463: region 464: surface 465: feature 466: Cubic (zinc mixed) GaN 500a-e: processing chamber 530: Processing System 532: Factory Interface 534: Box 536: Buffer Station 538: Factory interface manipulator 540: Transport Robot 542: Transfer Chamber 548: processor

為了可詳細地理解本揭露書的上述特徵的方式,可藉由參考實施例來獲得上面簡要概述的本揭露書的更詳細的描述,一些實施例顯示在附隨的圖式中。然而,應注意,附隨的圖式僅顯示了示例性實施例,且因此不應認為是對其範圍的限制,可允許其他等效實施例。In order to understand the above-mentioned features of the disclosure in detail, a more detailed description of the disclosure briefly outlined above can be obtained by referring to the embodiments. Some embodiments are shown in the accompanying drawings. However, it should be noted that the accompanying drawings only show exemplary embodiments, and therefore should not be considered as limiting the scope thereof, and other equivalent embodiments may be allowed.

第1圖是根據至少一個實施例的在基板上形成微型LED的方法的流程圖。Fig. 1 is a flowchart of a method of forming a micro LED on a substrate according to at least one embodiment.

第2圖示意性地顯示了根據至少一個實施例的可在其上形成微型LED的起始基板結構。Figure 2 schematically shows a starting substrate structure on which micro LEDs can be formed according to at least one embodiment.

第3A-3E圖示意性地顯示了根據至少一個實施例的在與第1圖的流程圖相關聯的操作期間的基板。Figures 3A-3E schematically show the substrate during operation associated with the flowchart of Figure 1 according to at least one embodiment.

第4A-4B圖示意性地顯示了根據至少一個實施例的在基板上的微型LED的形成。Figures 4A-4B schematically show the formation of micro LEDs on a substrate according to at least one embodiment.

第5圖是根據至少一個實施例的處理系統。Figure 5 is a processing system according to at least one embodiment.

為促進理解,在可能的地方使用了相同的元件符號來表示圖式中共有的相同元件。可預期的是,一個實施例的元件和特徵可有益地併入其他實施例中,而無需進一步敘述。To facilitate understanding, the same element symbols are used where possible to represent the same elements in the drawings. It is contemplated that the elements and features of one embodiment can be beneficially incorporated into other embodiments without further description.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Domestic deposit information (please note in the order of deposit institution, date and number) no Foreign hosting information (please note in the order of hosting country, institution, date, and number) no

100:方法 100: method

102:操作 102: Operation

104:操作 104: Operation

106:操作 106: Operation

108:操作 108: Operation

110:操作 110: Operation

112:操作 112: Operation

114:操作 114: Operation

Claims (20)

一種處理一基板的方法,包含以下步驟: 在設置在一處理系統中的設置在一矽基板上遮蓋多個GaN基藍色微型LED、多個GaN基綠色微型LED或它們的組合;及 在該矽基板上形成複數個AlInGaP基紅色微型LED。A method of processing a substrate includes the following steps: Covering a plurality of GaN-based blue micro LEDs, a plurality of GaN-based green micro LEDs, or a combination thereof on a silicon substrate installed in a processing system; and A plurality of AlInGaP-based red micro LEDs are formed on the silicon substrate. 如請求項1所述之方法,其中在該矽基板上形成複數個AlInGaP基紅色微型LED的該步驟包含以下步驟:在低於650℃的溫度下在多個圖案化區域中選擇性地沉積多個GaAs結構。The method according to claim 1, wherein the step of forming a plurality of AlInGaP-based red micro LEDs on the silicon substrate comprises the following steps: selectively depositing a plurality of AlInGaP-based red micro LEDs at a temperature lower than 650° C. A GaAs structure. 如請求項1所述之方法,其中該等GaN基藍色微型LED、該等GaN基綠色微型LED或它們的組合是在遮蓋多個GaN基藍色微型LED、多個GaN基綠色微型LED或它們的組合之前選擇性沉積的多個GaN結構。The method according to claim 1, wherein the GaN-based blue micro-LEDs, the GaN-based green micro-LEDs, or a combination thereof are covering multiple GaN-based blue micro-LEDs, multiple GaN-based green micro-LEDs, or The combination of multiple GaN structures previously selectively deposited. 如請求項3所述之方法,其中該等GaN基藍色微型LED、該等GaN基綠色微型LED或它們的組合形成在多個<111>刻面外延生長的矽特徵上。The method according to claim 3, wherein the GaN-based blue micro LEDs, the GaN-based green micro LEDs, or a combination thereof are formed on a plurality of <111> facet epitaxially grown silicon features. 如請求項3所述之方法,其中該等GaN基藍色微型LED、該等GaN基綠色微型LED或它們的組合形成在蝕刻到該矽基板中的多個特徵的多個<111>表面上。The method according to claim 3, wherein the GaN-based blue micro LEDs, the GaN-based green micro LEDs, or a combination thereof are formed on a plurality of <111> surfaces of a plurality of features etched into the silicon substrate . 如請求項3所述之方法,其中該等GaN基藍色微型LED、該等GaN基綠色微型LED或它們的組合包含多個垂直桿。The method according to claim 3, wherein the GaN-based blue micro LEDs, the GaN-based green micro LEDs, or a combination thereof include a plurality of vertical rods. 如請求項1所述之方法,其中該等GaN基藍色微型LED、該等GaN基綠色微型LED或它們的組合由多個毯覆層形成。The method according to claim 1, wherein the GaN-based blue micro LEDs, the GaN-based green micro LEDs, or a combination thereof are formed by a plurality of blanket layers. 如請求項1所述之方法,其中遮蓋多個GaN基藍色微型LED、多個GaN基綠色微型LED或它們的組合的該步驟包含以下步驟:遮蓋該等GaN基藍色微型LED和該等GaN基綠色微型LED兩者。The method according to claim 1, wherein the step of covering a plurality of GaN-based blue micro LEDs, a plurality of GaN-based green micro LEDs, or a combination thereof includes the following steps: covering the GaN-based blue micro LEDs and the Both GaN-based green micro LEDs. 如請求項1所述之方法,其中該處理系統包括與一清潔腔室、一MOCVD腔室和一鈍化腔室耦接的一傳送腔室。The method according to claim 1, wherein the processing system includes a transfer chamber coupled with a cleaning chamber, a MOCVD chamber, and a passivation chamber. 一種裝置,包含: 一矽基板; 複數個GaN基藍色微型LED,設置在該矽基板上; 複數個GaN基綠色微型LED,設置在該矽基板上;及 複數個AlInGaP基紅色微型LED,設置在該矽基板上。A device that includes: A silicon substrate; A plurality of GaN-based blue micro LEDs are arranged on the silicon substrate; A plurality of GaN-based green micro LEDs are arranged on the silicon substrate; and A plurality of AlInGaP-based red micro LEDs are arranged on the silicon substrate. 一種非暫時性電腦可讀媒介,儲存多個指令,該等指令在由一系統的一處理器執行時執行以下操作,包含: 在設置在一處理系統中的一矽基板上形成複數個GaN基藍色微型LED; 在該矽基板上形成複數個GaN基綠色微型LED; 遮蓋在該矽基板上的該複數個GaN基藍色微型LED、該複數個GaN基綠色微型LED或它們的組合;及 在該矽基板上形成複數個AlInGaP基紅色微型LED。A non-transitory computer-readable medium that stores a plurality of instructions that, when executed by a processor of a system, perform the following operations, including: Forming a plurality of GaN-based blue micro LEDs on a silicon substrate set in a processing system; A plurality of GaN-based green micro LEDs are formed on the silicon substrate; The plurality of GaN-based blue micro LEDs, the plurality of GaN-based green micro LEDs, or a combination thereof covered on the silicon substrate; and A plurality of AlInGaP-based red micro LEDs are formed on the silicon substrate. 如請求項11所述之非暫時性電腦可讀媒介,其中在該矽基板上形成複數個AlInGaP基紅色微型LED的該步驟包含以下步驟:在低於650℃的溫度下在多個圖案化區域中選擇性地沉積多個GaAs結構。The non-transitory computer-readable medium according to claim 11, wherein the step of forming a plurality of AlInGaP-based red micro LEDs on the silicon substrate includes the following steps: in a plurality of patterned areas at a temperature lower than 650°C In the selective deposition of multiple GaAs structures. 如請求項11所述之非暫時性電腦可讀媒介,其中該複數個GaN基藍色微型LED、該複數個GaN基綠色微型LED或它們的組合是在該遮蓋步驟之前選擇性沉積的多個GaN結構。The non-transitory computer-readable medium according to claim 11, wherein the plurality of GaN-based blue micro LEDs, the plurality of GaN-based green micro LEDs, or a combination thereof are a plurality of selectively deposited before the covering step GaN structure. 如請求項13所述之非暫時性電腦可讀媒介,其中該複數個GaN基藍色微型LED、該複數個GaN基綠色微型LED或它們的組合形成在蝕刻到該矽基板中的多個特徵的多個<111>表面上。The non-transitory computer-readable medium of claim 13, wherein the plurality of GaN-based blue micro LEDs, the plurality of GaN-based green micro LEDs, or a combination thereof form a plurality of features etched into the silicon substrate The multiple <111> on the surface. 如請求項13所述之非暫時性電腦可讀媒介,其中該複數個GaN基藍色微型LED、該複數個GaN基綠色微型LED或它們的組合形成在多個<111>刻面外延生長的矽特徵上。The non-transitory computer-readable medium according to claim 13, wherein the plurality of GaN-based blue micro LEDs, the plurality of GaN-based green micro LEDs, or a combination thereof are formed on a plurality of <111> facet epitaxial growth Silicon characteristics. 如請求項13所述之非暫時性電腦可讀媒介,其中該複數個GaN基藍色微型LED、該複數個GaN基綠色微型LED或它們的組合包含多個垂直桿。The non-transitory computer-readable medium according to claim 13, wherein the plurality of GaN-based blue micro LEDs, the plurality of GaN-based green micro LEDs, or a combination thereof includes a plurality of vertical bars. 如請求項11所述之非暫時性電腦可讀媒介,其中該複數個GaN基藍色微型LED、該複數個GaN基綠色微型LED或它們的組合是由多個毯覆層形成。The non-transitory computer-readable medium according to claim 11, wherein the plurality of GaN-based blue micro LEDs, the plurality of GaN-based green micro LEDs, or a combination thereof are formed by a plurality of blanket layers. 如請求項11所述之非暫時性電腦可讀媒介,其中該遮蓋的步驟包含以下步驟:遮蓋該等GaN基藍色微型LED和該等GaN基綠色微型LED兩者。The non-transitory computer-readable medium according to claim 11, wherein the covering step includes the following steps: covering both the GaN-based blue micro LEDs and the GaN-based green micro LEDs. 如請求項11所述之非暫時性電腦可讀媒介,其中該處理系統包括與一清潔腔室、一MOCVD腔室和一鈍化腔室耦接的一傳送腔室。The non-transitory computer-readable medium according to claim 11, wherein the processing system includes a transfer chamber coupled with a cleaning chamber, a MOCVD chamber, and a passivation chamber. 如請求項11所述之非暫時性電腦可讀媒介,其中在該矽基板上形成複數個AlInGaP基紅色微型LED的該步驟包含以下步驟:在低於600℃的溫度下在多個圖案化區域中選擇性地沉積多個GaAs結構。The non-transitory computer-readable medium according to claim 11, wherein the step of forming a plurality of AlInGaP-based red micro LEDs on the silicon substrate includes the following steps: in a plurality of patterned areas at a temperature lower than 600°C In the selective deposition of multiple GaAs structures.
TW109123679A 2019-07-28 2020-07-14 Micro-led and micro-led manufacturing method TW202107674A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962879479P 2019-07-28 2019-07-28
US62/879,479 2019-07-28
US201962900058P 2019-09-13 2019-09-13
US62/900,058 2019-09-13

Publications (1)

Publication Number Publication Date
TW202107674A true TW202107674A (en) 2021-02-16

Family

ID=74230535

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123679A TW202107674A (en) 2019-07-28 2020-07-14 Micro-led and micro-led manufacturing method

Country Status (2)

Country Link
TW (1) TW202107674A (en)
WO (1) WO2021021415A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3866189B1 (en) 2020-02-14 2022-09-28 Epinovatech AB A mmic front-end module
EP4080575A1 (en) * 2021-04-22 2022-10-26 Epinovatech AB Method for forming a matrix of led elements of different colours

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187477B (en) * 2008-10-17 2014-09-24 国立大学法人北海道大学 Semiconductor light-emitting element array and manufacturing method thereof
US10453996B2 (en) * 2012-05-04 2019-10-22 Stc.Unm Growth of cubic crystalline phase structure on silicon substrates and devices comprising the cubic crystalline phase structure
US9054233B2 (en) * 2013-06-07 2015-06-09 Glo Ab Multicolor LED and method of fabricating thereof
US9368672B2 (en) * 2013-06-18 2016-06-14 Glo Ab Removal of 3D semiconductor structures by dry etching
WO2018063391A1 (en) * 2016-09-30 2018-04-05 Intel Corporation High performance light emitting diode and monolithic multi-color pixel

Also Published As

Publication number Publication date
WO2021021415A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US10586829B2 (en) Full-color monolithic micro-LED pixels
US8492185B1 (en) Large area nonpolar or semipolar gallium and nitrogen containing substrate and resulting devices
US8735867B2 (en) Group III nitride nanorod light emitting device
US8278125B2 (en) Group-III nitride epitaxial layer on silicon substrate
JP5666164B2 (en) Method for manufacturing light emitting device
JP4092927B2 (en) Group III nitride compound semiconductor, group III nitride compound semiconductor element, and method for manufacturing group III nitride compound semiconductor substrate
US8134169B2 (en) Patterned substrate for hetero-epitaxial growth of group-III nitride film
JP4903189B2 (en) Method of growing semipolar nitride single crystal thin film and method of manufacturing nitride semiconductor light emitting device using the same
EP2389693B1 (en) Light emitting diode device and method for manufacturing the same
US20070164298A1 (en) LED having vertical structure and method for fabricating the same
US20110140127A1 (en) Semi-conductor light emitting device and method for manufacturing thereof
JP2017504221A (en) III-V nitride semiconductor epitaxial wafer, device including the epitaxial wafer, and method for manufacturing the same
US9660135B2 (en) Enhanced performance active pixel array and epitaxial growth method for achieving the same
US20170148945A1 (en) Method for Manufacturing a Light Emitting Element
JP2010147164A (en) Method of manufacturing semiconductor element
TW202107674A (en) Micro-led and micro-led manufacturing method
JP2018536618A (en) Method for obtaining a semipolar nitride layer on a crystalline substrate
TW201921820A (en) Laser diodes, LEDs, and silicon integrated sensors on patterned substrates
US8501597B2 (en) Method for fabricating group III-nitride semiconductor
US11450747B2 (en) Semiconductor structure with an epitaxial layer
WO2022077254A1 (en) Manufacturing method for miniature led structure
KR100648813B1 (en) Method of fabricating vertical type light emitting device
JP2008028385A (en) Semiconductor substrate with less defect, semiconductor light emitting devices and method for fabrication thereof
US20210210656A1 (en) Method for micro-led epitaxial wafer manufacturing and micro-led epitaxial wafer
KR101647303B1 (en) Substrate, Method of manufacturing the same and Light-Emitting Diode of using the same