TW202107046A - 雙極性互電容式液體感測 - Google Patents

雙極性互電容式液體感測 Download PDF

Info

Publication number
TW202107046A
TW202107046A TW109109318A TW109109318A TW202107046A TW 202107046 A TW202107046 A TW 202107046A TW 109109318 A TW109109318 A TW 109109318A TW 109109318 A TW109109318 A TW 109109318A TW 202107046 A TW202107046 A TW 202107046A
Authority
TW
Taiwan
Prior art keywords
electrode
capacitor
liquid
container
sensing
Prior art date
Application number
TW109109318A
Other languages
English (en)
Inventor
黃艾瑞克
高翔
Original Assignee
美商微晶片科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商微晶片科技公司 filed Critical 美商微晶片科技公司
Publication of TW202107046A publication Critical patent/TW202107046A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • G01R27/2635Sample holders, electrodes or excitation arrangements, e.g. sensors or measuring cells

Abstract

一種液位感測控制器包括用於產生激勵信號的信號產生器電路。該控制器亦包括用於將該激勵信號的反相路由到第一電容器的第一極電極的連接件。該第一極電極係耦合到用於保持液體的容器。該控制器亦包括用於將該激勵信號路由到第二電容器的第二極電極的連接件。該第二正極電極係耦合到該容器。該控制器亦包括連接到感測電極的連接件,用於與該第一極電極一起形成該第一電容器及與該第二極電極一起形成該第二電容器。該控制器亦包括測量電路,其係配置為測量感測電極處的電荷及基於所測量到的電荷來確定該容器中的液體是否已經達到該第二極電極的液位。

Description

雙極性互電容式液體感測
本揭示涉及液體液位感測,並且更具體地講,涉及雙極性互電容式液體感測。
存在各種用於感測容器中之液體液位的技術。液體係使用接觸或機械傳感器、用於觀察液位的光學傳感器、測量由液體生成的電磁感應的感應傳感器、測量由液體生成的磁場的霍爾效應傳感器以及電容傳感器來感測。
用於測量液體液位的電容傳感器包括自電容傳感器和單極性互電容傳感器。然而,本揭示之實施方案的發明人已經發現這些電容式傳感器隨著環境條件諸如濕度或溫度而漂移。因此,可能由液體液位變化或環境變化引起觸發。當水未覆蓋感測區域時,這些電容式傳感器需要參照一參考值且需要校準。此外,這些電容式傳感器無法辨別傳感器的初始狀態,因此可以假設傳感器在啟動時未被觸發。本揭示之實施方案解決了這些實施方案的發明人所發現到的其他解決方案的這些缺點。
本揭示之實施方案包括一種液位感測控制器。該控制器可包括被配置為產生激勵信號的信號產生器電路。該控制器可包括第一連接件,其係配置為將激勵信號的反相路由到第一電容器的第一極電極,第一極電極係耦合到被配置為保持液體的容器。該控制器可包括第二連接件,其係配置為將激勵信號路由到第二電容器的第二極電極,第二正極電極係耦合到容器。該控制器可包括連接至感測電極的第三連接件。感測電極可被配置為與第一極電極一起形成第一電容器及與第二極電極一起形成第二電容器。該控制器可包括測量電路,其係配置為測量第三連接件處的電荷及基於所測量到的電荷來確定容器中的液體是否已經達到第二極電極的液位。第一極電極的極性可與第二極電極的極性相反。
本揭示之實施方案可包括一種感測液位的方法。該方法可包括產生激勵信號。該方法可包括在第一連接件處將激勵信號的反相路由到第一電容器的第一極電極,第一極電極係耦合到被配置為保持液體的容器。該方法可包括在第二連接件處將激勵信號路由到第二電容器的第二極電極,第二正極電極係耦合到容器。該方法可包括在連接至感測電極的第三連接件處,與第一極電極和感測電極一起形成第一電容器。該方法可包括與第二極電極和感測電極一起形成第二電容器、測量第三連接件處的電荷、並基於所測量到的電荷來確定容器中的液體是否已經達到第二極電極的液位。第一極電極的極性係與第二極電極的極性相反。
本揭示之實施方案可包括一種液位感測控制器。該液位感測控制器可包括被配置為產生激勵信號的信號產生器電路。信號產生器電路可通過類比電路、數位電路或供處理器執行的指令的任何合適的組合來實現。激勵信號可包括電壓脈衝的上升沿或下降沿。信號產生器電路可包括第一連接件,其係配置為將激勵信號的反相路由到第一電容器的第一極電極。第一極電極可耦合到被配置為保持液體的容器。該控制器可包括第二連接件,其係配置為將激勵信號路由到第二電容器的第二極電極。第二正極電極可耦合到容器。該控制器可包括連接至感測電極的第三連接件。感測電極可被配置為與第一極電極一起形成第一電容器及與第二極電極一起形成第二電容器。該控制器可包括測量電路,其係配置為測量第三連接件處的電荷及基於所測量到的電荷來確定容器中的液體是否已經達到第二極電極的液位。連接件可包括任何合適的電子連接件或電連接件。測量電路可通過類比電路、數位電路或供處理器執行的指令的任何合適的組合來實現。第一極電極的極性可與第二極電極的極性相反。例如,第一極電極可為正,而第二極電極可為負。在另一示例中,第一極電極可為負,而第二極電極可為正。電極可位於容器的內部或外部。
結合上述實施方案中的任一個,第三連接件處的電荷可表示第一電容器與第二電容器之間的相對電容。結合上述實施方案中的任一個,測量電路係配置為根據基於第三連接件處的電荷的第一電容器與第二電容器之間的相對電容的變化,來確定容器中的液體已經達到第一極電極的液位。結合上述實施方案中的任一個,該控制器還包括連接至第三電容器的第三極電極之第四連接件,第三極電極係耦合到容器。第二連接件可被進一步配置為:當要檢查容器的液體與第二極電極的接近度時,將激勵信號路由到第二電容器的第二極電極,及當要檢查容器的液體與第三極電極的接近度時,將接地信號路由到第二電容器的第二極電極。結合上述實施方案中的任一個,第四連接件係配置為:當要檢查容器的液體與第三極電極的接近度時,將激勵信號路由到第三電容器的第三極電極,及當要檢查容器的液體與第二極電極的接近度時,將接地信號路由到第三電容器的第三極電極。結合上述實施方案中的任一個,感測電極係進一步配置為與第三極電極一起形成第三電容器。結合上述實施方案中的任一個,第一極電極可在液體的可能範圍之外耦合到容器。結合上述實施方案中的任一個,施加到第二電容器的激勵信號可被配置為引起對容器中的液體的液位進行檢測。結合上述實施方案中的任一個,施加到第一電容器的激勵信號的反相可被配置為引起對因環境變化所致的第二電容器中的電容變化進行補償。
本揭示之實施方案可包括一種系統。該系統可包括上述液位感測控制器中的任一個。該系統可包括電極組件。電極組件可包括上述感測電極和極電極。
本揭示之實施方案可包括一種用於確定液位的方法。該方法可包括上述控制器和系統中的任一個的操作。
圖1是根據本揭示之實施方案的用於雙極性互電容式液體感測的示例性系統100的圖示。系統100可用於在任何合適的應用中,諸如在消費者裝置、儲罐、機動車應用、貯存器、水、廢水、公用設施、或石油和天然氣中,感測液體的液位。系統100可被配置為測定任何合適容器104中的液體的液位l。儘管容器104係圖示為圓柱體,但也可使用任何合適形狀、佈置或取向的容器。液體的液位l可參照容器104的任何合適的其他部位(諸如容器104的底部)來界定。系統100可被配置為週期性地、按需地或根據任何合適的刺激或標準來進行l的測量。系統100可被配置為報告l的測量值,或者週期性地、按需地或根據任何合適的刺激或標準來產生l達到上閾值或下閾值的警告。
系統100可包括控制器102。在圖3中更詳細地顯示控制器102,下面將進一步更詳細地討論。控制器102可通過符合本揭示之教示內容的數位電路、類比電路、供處理器執行的指令、或其任何合適的組合來實現。在一個實施方案中,控制器102可包括用於多個雙極性互電容式傳感器的接口或該等傳感器的部分。控制器102可包括將應用於雙極性互電容式傳感器的信號產生電路。此外,控制器102可包括用於對接收自雙極性互電容式傳感器的信號進行積分的電路。
系統100可包括耦合到容器104的電極組件106。電極組件106可在容器104的外部或內部上耦合到容器104。在圖2中更詳細地顯示電極組件106,下面將進一步更詳細地討論。電極組件106可包括任何合適數量和種類的電極。此類電極可彼此以1:1或1:N對的形式來佈置。此外,此類電極可在接收到激勵信號時形成電容器。激勵信號可接收自控制器102。可將激勵信號路由到電極組件106的發射電極和接收電極。當被施加到一對電極時,激勵信號可便利於測量電極之間的電荷。電極之間的電荷的測量可用於測量電極之間的電容。電容測量可用作對容器104中的液體的接近度評估。電極相對於容器104的位置可能是已知的,因此相關聯的電容測量可用於確定液體是否已經達到容器104中的給定液位l ,其中進行接近度檢測或變化的電極的位置可以表示液體已經達到已知的電極位置。
控制器102可被配置為順序地測量容器104中的電極組件106的電極對處的電容,並以任何合適的方式報告液體的接近度。控制器102可例如從電極組件106的頂部處的電極對開始,並且朝著電極組件106的底部處的電極對工作。在一個實施方案中,控制器102可評估電極組件106的所有電極對之間的電容。然後,控制器102可將每個這樣的電極對的電容報告給例如顯示器或警告裝置108。控制器102可報告每個這樣的電極對是否已經檢測到液體與電極對的接近度。控制器102可報告與檢測了與液體的接近度的最高電極對相關聯的給定液位l。在另一個實施方案中,在從頂部到底部評估電極對的同時確定了容器104中的液體的接近度時,控制器102可報告此一檢測以及進行此一檢測的電極對的液位l。
圖2是根據本揭示之實施方案的用於雙極性互電容式液體感測的電極組件106的更詳細圖示。此外,圖2繪示隨時間推移而施加到電極組件106的各種電極的電荷,以便就電容值及因此電極的液體接近度而掃描。
電極組件106可包括感測電極210。在電極組件106中的電極的輪詢期間,感測電極210可用於連接到控制器102的收集節點或感測節點。感測電極210可以是為進行接近度檢測而形成的多對電極中的第一電極。感測電極210可包括高輸入阻抗。當連接到感測電極210時,控制器102可將感測電極210預充電到供電電壓的一半。在後續測量期間,感測電極210的電壓可浮動。
電極組件106可包括兩個或更多個第二電極或極電極212A-212H。極電極212A-212G中的每一個都可用於在給定極電極的輪詢期間連接到來自控制器102的正信號,並且在極電極212A-212G中其他極電極的輪詢期間連接到接地。極電極212H可用於在極電極212A-212G的輪詢期間連接到來自控制器102的負信號。
極電極212A-212H可被配置作為電容式傳感器的發射電極而操作。感測電極210可被配置作為電容式傳感器的接收電極而操作。因此,每對電極,包括感測電極210以及極電極212A-212H中的一個,可為電容式傳感器並且可表示為電容器。
在圖2的示例中,電極組件106可沿著容器104的側面垂直地佈置。因此,極電極212A-212G可在電極組件106內從底部到頂部垂直地佈置。極電極212H可佈置在電極組件106的頂部。極電極212A-212G中的每一個都可被配置為指示容器104中的液體是否已經達到與極電極212A-212G中的給定一個相關聯的垂直位置。根據由電極212A-212G中的給定一個所提供的檢測或接近度感測以及電極212A-212G的已知位置或高度,系統100能夠確定容器104中的液體的液位l。
當感測電極210連接到控制器102的收集節點時,極電極212H連接到負信號,並且極電極212A-212G中的給定一個連接到正信號,第一電容式傳感器可形成在極電極212H與感測電極210之間,並且第二電容式傳感器可形成在感測電極210與極電極212A-212G中的給定一個之間。電容式傳感器可被配置為檢測與容器104中的液體的接近度。
為了掃描電極組合以獲得與容器104中的液體的接近度,在(1)處,可將感測電極210連接到控制器102的收集節點,可向極電極212H施加負信號或脈衝,可向極電極212B-212G施加接地,以及可向極電極212A施加正信號或脈衝。如果容器104中的液體處於極電極212A的高度,那麼由極電極212H、極電極212A和感測電極210的組合所形成的電容式傳感器可向系統100指示液體與極電極212A的接近度。
在(2)處,可將感測電極210連接到控制器102的收集節點,可向極電極212H施加負信號或脈衝,可向極電極212A和212C-212G施加接地,以及可向極電極212B施加正信號或脈衝。如果容器104中的液體處於極電極212B的高度,那麼由極電極212H、極電極212B和感測電極210的組合所形成的電容式傳感器可向系統100指示液體與極電極212B的接近度。
在(3)-(7)處,可對極電極212C-212G執行這個相同的輪詢。
雖然圖2被描述為向極電極212H施加負信號、向極電極212A-212G中的相應一個施加正信號以及將感測電極210連接到控制器102的收集節點,但可施加任何合適的信號和電壓以便在極電極212H與感測電極210之間以及在感測電極210與極電極212A-212G中的給定一個之間產生電容式傳感器。在一個實施方案中,可向極電極212A-212G中的給定幾個施加負信號,並且可向極電極212H施加正信號。對於負信號和正信號可使用任何電壓值,只要下降沿被施加到極電極212而上升沿被施加到極電極212A-212G中的相應一個,或者只要上升沿被施加到極電極212而下降沿被施加到極電極212A-212G中的相應一個即可。上升沿和下降沿可具有大致相同的絕對量值和變化率。
圖3是根據本揭示之實施方案的用於雙極性互電容式液體感測的控制器102的更詳細圖示。此外,圖3繪示電極陣列106的已經形成電容式傳感器的部分。
控制器102可包括用於連接到電極組件106的極電極212H的端子306。此外,控制器102可包括用於連接到電極組件106的感測電極210的端子320。此外,控制器102可包括用於連接到極電極212A-212G中的每一個的端子308A-308G。
控制器102、感測電極210和極電極212A-212H之間的連接可在電極組件106中形成電容式傳感器,在圖3中由電容器310、312A-312G表示。從端子306到極電極212H以及從端子320到感測電極210的連接可形成電容器310。
從端子308A到極電極212A以及從端子320到感測電極210的連接可形成電容器312A。從端子308B到極電極212B以及從端子320到感測電極210的連接可形成電容器312B。類似地,從端子308C-308G到極電極212C-212G以及從端子320到感測電極210的連接可形成電容器312C-312G(端子308C-308F、電容器312C-312F以及相關聯的連接和支路未示出)。
控制器102可包括感測信號產生器302。感測信號產生器302可被配置為針對電容式傳感器的發射電極產生脈衝信號、激勵信號、傳輸信號或任何其他合適的信號。感測信號產生器302可通過類比電路、數位電路、供處理器執行的指令、或其任何合適的組合來實現。在圖3的示例中,感測信號產生器302可被配置為當控制器102正在評估給定電容式傳感器的電容時產生正脈衝信號。
可將由感測信號產生器302所產生的正脈衝信號路由到反相器304,並可將所得的負脈衝信號路由到端子306,以施加到極電極212H。可將由感測信號產生器302所產生的正脈衝信號進一步路由到開關318,該開關繼而可將正脈衝信號路由到端子308A-308G中選定的一個,以施加到極電極212A-212G中選定的一個。
開關318可以任何合適的方式實現,諸如多工器、開關結構、開關矩陣或其他合適的結構。開關318可被配置為將正脈衝信號發送到端子308A-308G中選定的一個,並將接地信號發送到端子308A-308G中的其他端子。
控制器102可包括控制電路320。控制電路320可以任何合適的方式實現,諸如類比電路、數位電路、供處理器執行的指令和處理器、或其任何合適的組合。例如,控制電路320可通過數位邏輯、專用積體電路、現場可程式化閘陣列、處理器或微控制器來實現。控制電路320可被配置為控制系統100的傳感器的操作、定時、輪詢和結果收集。例如,控制電路320可被配置為指定感測信號產生器302何時產生脈衝以在電極組件106中執行測量。此外,控制電路320可被配置為指定開關318的哪些端子將接收脈衝以及哪些端子將接收接地信號。因此,控制電路320可指定電極212A-212G中的哪些將在給定時刻執行容器104中的液體的接近度檢測。此外,控制電路320可被配置為收集測量結果、將結果儲存在記憶體中、或者將這些結果報告給其他實體108。
電容器310和電容器312A-312H的電容可根據此類電容器中給定的一個是否與容器104中的液體非常接近而變化。在一個實施方案中,極電極212H可被排除在容器104中的液體的範圍之外。因此,電容器310的電容可不受容器104中液體的液位l 的影響。因此,電容器310的電容可在容器104中的液體的所有液位範圍內保持恆定。然而,電容器310的電容可根據其中使用了系統100的不同環境條件,諸如溫度、濕度或電磁干擾,而變化。如果極電極212A-212G中的給定一個接近容器104中的液體,則給定極電極與感測電極210之間的電容將改變,且因此電容器312A-312G中的相關聯電容器的電容將改變。然而,電容器312A-312G的電容也可根據其中使用了系統100的不同環境條件,諸如溫度、濕度或電磁干擾,而變化。
控制器102可被配置為確定電容器312A-312G中的一個或多個的電容是否已經改變,從而指示極電極212A-212G中的相應極電極與容器104中的液體的接近度。控制器102繼而可輪詢或評估電容器312A-312G中的每一個或者一個或多個。控制器102可被配置為評估電容器312A-312G中的給定一個的電容,並將電容器312A-312G中的給定一個的電容與電容器310的電容進行比較。控制器102可被配置為通過例如評估在電容器312A-312G中的給定一個與電容器310之間的某一點處的電荷來將電容器312A-312G中的一個的電容與電容器310的電容進行比較。
當通過向端子308A-308G中的相應一個施加正信號來選擇電容器312A-312G中的給定一個用於評估時,可向端子308A-308G中的其他端子施加接地,並且可向端子306施加負信號。以電容器312A為例,電容器310的頂板(電極212H)具有負電壓,電容器310的底板(電極210)與電容器312A的頂板(電極210)處於相同的電壓,並且電容器312A的底板(電極212A)具有正電壓。基於電容器312A和電容器310的電容,在電容器310的底板和電容器312A的頂板上將聚積不同量的電荷。如果電容器312A和電容器310的電容相同,則將聚積一定量的電荷。可能發生這樣的情況,其中電容器312A的電極212A與容器104中的液體不相鄰。
電容器312A的寄生電容可能因濕度、溫度、電磁干擾或其他環境條件的變化而漂移。電容的這種變化是緩慢的,但基於變化率,電容的這種變化無法跟容器104中的液體引起的電容變化區分,因為容器104中的液體引起的電容變化也可能很慢。在一個實施方案中,將電容器310包括在內可以解釋電容器312A的電容的這種緩慢的環境變化,因為在共用電極組件106中、在同一印刷電路板上或以複製材料實現的這兩個電容器可具有相同的預期電容。電容器310和電容器312A可經歷相同的環境變化。由於來自感測信號產生器302的所施加信號,電容器310可具有與電容器312A相同的預期電荷,儘管極性相反。因此,電容器310可針對電容器312A因環境變化而經歷的電容變化提供補償。
因此,如果電容器312A和電容器310的電容相同,則在這些電容器之間將聚積第一電荷量,並且該電荷量可表示電極212A與容器104中的液體不相鄰。在一個實施方案中,如果電容器312A和電容器310的電容不同,則將聚積不同的第二電荷量。當電容器312A的電極212A與容器104中的液體相鄰時,可能發生這樣的情況。在這種情況下,控制器102可檢測該不同的第二電荷量並將此一第二電荷量解釋為容器104中的液體已經達到電極212A的指示。控制器102可確定不同的第二電荷量並且將該電荷量相對於閾值解釋為指示容器104中的液體已經接近電極212A。在另一個實施方案中,當這些電容器的電容相同時,在電容器310、312A之間可能聚積零電荷,並且當這些電容器的電容不同時,在電容器310、312A之間可能聚積非零電荷,即第一電荷量可能為零。
控制器102可包括用於評估在電容器310與電容器312A之間聚積的電荷的任何合適的電路。例如,控制器102可包括測量電路,諸如積分器314。積分器314可通過例如數位電路、類比電路或其任何合適的組合來實現。積分器314可被配置為確定在電容器310與電容器312A之間聚積的電荷。積分器314可輸出指示所聚積的電荷的類比信號。可將類比信號路由到類比數位轉換器(ADC) 316。可將來自ADC 316的電荷的值提供給控制電路320或輸出到其他實體諸如顯示器或警告裝置108。
上面關於電容器312A描述的控制器102的示例性操作也可用於電容器312B-312G中的任一個。
圖4是根據本揭示之實施方案的用於雙極性互電容式液體感測的方法400的圖示。可由例如圖1至圖3的元件的任何合適部分(諸如由控制器102)執行方法400的步驟。可在任何合適的點(諸如在步驟405處)啟動方法400。可選擇性地重複、省略、或遞歸地執行方法400的步驟。可按照下面討論的順序,或者按照任何其他合適的替代順序執行方法400的步驟。此外,與圖4中所顯示的那些步驟相比,在執行方法400期間可執行更多或更少的步驟。可由儲存在非暫態機器可讀取媒體中的用於處理器的指令來執行方法400的一些部分。當由處理器載入和執行時,指令可使處理器執行方法400的步驟。
在步驟405處,可確定是否找到容器中的液體的液位。可例如由較大器具或系統按需地、週期性地、或根據任何其他合適的標準來確定是否要找到液體的液位。如果要找到液體的液位,則方法400可前進至步驟410。否則,方法400可前進至步驟470。
在步驟410處,可產生正感測脈衝。在步驟415處,可使正感測脈衝反相以產生負感測脈衝。在步驟420處,可發送負感測脈衝到與容器相鄰或設置在容器內的電極組件中的負極性電極。發送負感測脈衝到負極性電極可對將由負極性電極和感測電極形成的負極性電容器進行充電。可將感測電極連接到控制器或其他執行方法400的裝置的集合節點。
在步驟425處,可選擇與容器相鄰或設置在容器內的電極組件中的正極性電極。在一個實施方案中,可選擇作為尚未被評估的最高電極的正極性電極。
在步驟430處,可發送正感測脈衝到所選擇的正極性電極。發送正感測脈衝到所選擇的正極性電極可對將由所選擇的正極性電極和感測電極形成的正極性電容器進行充電。
在步驟435處,可將與容器相鄰的電極組件中的當前未被選擇用於評估的其他正極性電極接地,或以其他方式隔離或防止它們影響與被選擇用於評估的正極性電極相關聯的測量。
在步驟440處,可收集負極性電容器與正極性電容器之間的電荷或對其進行積分。在步驟445處,可將所收集的電荷轉換為數字值。在步驟450處,可評估所收集的電荷的值以確定與負極性電容器的電容值相比的正極性電容器的電容值。如所收集的電荷的值所顯示的電容的相對值可說明液體是否已經達到正極性電容器的所選擇的正極性電極。如果該值指示液體與所選擇的正極性電極的接近度,則方法400可前進至步驟455。否則,方法400可前進至步驟460。
在步驟455處,可針對所選擇的正極性電極或其位置產生報告或其他指示符,指示容器的液體液位已經達到所選擇的正極性電極或其位置。方法400可前進至步驟470。
在步驟460處,可確定是否存在額外的尚未被評估的正極性電極。如果是,則方法400可前進至步驟425,在該步驟中可選擇下一個電極進行評估。否則,方法400可前進至步驟465。
在步驟465處,可確定容器是空的。方法400可前進至步驟470。
在步驟470處,可確定方法400是否可重複進行。方法400可連續地、按需地或根據由其中執行液體液位檢測的系統所建立或控制的其他合適的標準重複進行。如果方法400將重複進行,則方法400可前進至步驟405,或者如果方法400將不重複進行,則可前進至步驟475以終止。
已根據一個或多個實施方案描述本揭示,並且應當理解,除了明確陳述的那些之外,許多等同物、替代物、變型和修改是可能的並且在本揭示的範圍內。雖然本揭示容許各種修改形式和替代形式,但是其特定示例性實施方案已顯示於圖式中並在本文中詳細描述。然而,應當理解,本文對特定示例性實施方案的描述並非意圖將本揭示侷限於本文所揭示的特定形式。
100:系統 102:控制器 104:容器 106:電極組件 108:顯示器或警告裝置 210:感測電極 212A:極電極 212B:極電極 212C:極電極 212D:極電極 212E:極電極 212F:極電極 212G:極電極 212H:極電極 302:感測信號產生器 304:反相器 306:端子 308A:端子 308B:端子 308G:端子 310:電容器 312A:電容器 312B:電容器 312G:電容器 314:積分器 316:類比數位轉換器(ADC) 318:開關 320:控制電路 400:方法 405:步驟 410:步驟 415:步驟 420:步驟 425:步驟 430:步驟 435:步驟 440:步驟 445:步驟 450:步驟 455:步驟 460:步驟 465:步驟 470:步驟 475:步驟
圖1是根據本揭示之實施方案的用於雙極性互電容式液體感測的示例性系統的圖示。 圖2是根據本揭示之實施方案的用於雙極性互電容式液體感測的電極組件的更詳細圖示。 圖3是根據本揭示之實施方案的用於雙極性互電容式液體感測的控制器的更詳細圖示。 圖4是根據本揭示之實施方案的用於雙極性互電容式液體感測的方法的圖示。
100:系統
102:控制器
104:容器
106:電極組件
108:顯示器或警告裝置

Claims (18)

  1. 一種液位感測控制器,包括: 一信號產生器電路,其係配置為產生一激勵信號; 一第一連接件,其係配置為將該激勵信號的反相路由到一第一電容器的一第一極電極,該第一極電極係耦合到一被配置為保持液體的容器; 一第二連接件,其係配置為將該激勵信號路由到一第二電容器的一第二極電極,該第二正極電極係耦合到該容器; 連接至一感測電極的一第三連接件,該感測電極係配置為與該第一極電極一起形成該第一電容器及與該第二極電極一起形成該第二電容器;以及 一測量電路,其係配置為測量該第三連接件處的電荷及基於所測量到的電荷來確定該容器中的液體是否已經達到該第二極電極的液位; 其中,該第一極電極的極性係與該第二極電極的極性相反。
  2. 如請求項1之液位感測控制器,其中,該第三連接件處的電荷表示該第一電容器與該第二電容器之間的相對電容。
  3. 如請求項1之液位感測控制器,其中,該測量電路係配置為根據基於該第三連接件處的電荷的該第一電容器與該第二電容器之間的相對電容的變化,來確定該容器中的液體已經達到該第一極電極的液位。
  4. 如請求項1之液位感測控制器,還包括連接至一第三電容器的一第三極電極之一第四連接件,該第三極電極係耦合到該容器,其中: 該第二連接件係進一步配置為: 當要檢查該容器的液體與該第二極電極的接近度時,將該激勵信號路由到該第二電容器的該第二極電極;及 當要檢查該容器的液體與該第三極電極的接近度時,將一接地信號路由到該第二電容器的該第二極電極;以及 該第四連接件係配置為: 當要檢查該容器的液體與該第三極電極的接近度時,將該激勵信號路由到該第三電容器的該第三極電極;及 當要檢查該容器的液體與該第二極電極的接近度時,將一接地信號路由到該第三電容器的該第三極電極。
  5. 如請求項4之液位感測控制器,其中,該感測電極係進一步配置為與該第三極電極一起形成該第三電容器。
  6. 如請求項4之液位感測控制器,其中,該第一極電極係在該液體的可能範圍之外耦合到該容器。
  7. 一種用於感測液位的方法,包括: 產生一激勵信號; 在一第一連接件處,將該激勵信號的反相路由到一第一電容器的一第一極電極,該第一極電極係耦合到一被配置為保持液體的容器; 在一第二連接件處,將該激勵信號路由到一第二電容器的一第二極電極,該第二正極電極係耦合到該容器; 在連接至一感測電極的一第三連接件處,與該第一極電極和該感測電極一起形成該第一電容器; 與該第二極電極和該感測電極一起形成該第二電容器; 測量該第三連接件處的電荷;以及 基於所測量到的電荷來確定該容器中的液體是否已經達到該第二極電極的液位; 其中,該第一極電極的極性係與該第二極電極的極性相反。
  8. 如請求項7之方法,其中,該第三連接件處的電荷表示該第一電容器與該第二電容器之間的相對電容。
  9. 如請求項7之方法,還包括根據基於該第三連接件處的電荷的該第一電容器與該第二電容器之間的相對電容的變化,來確定該容器中的液體已經達到該第一極電極的液位。
  10. 如請求項9之方法,還包括: 通過連接至一第三電容器的一第三極電極之一第四連接件,將該第三極電極耦合到該容器; 通過該第二連接件: 當要檢查該容器的液體與該第二極電極的接近度時,將該激勵信號路由到該第二電容器的該第二極電極;及 當要檢查該容器的液體與該第三極電極的接近度時,將一接地信號路由到該第二電容器的該第二極電極;以及 通過該第四連接件: 當要檢查該容器的液體與該第三極電極的接近度時,將該激勵信號路由到該第三電容器的該第三極電極;及 當要檢查該容器的液體與該第二極電極的接近度時,將一接地信號路由到該第三電容器的該第三極電極。
  11. 如請求項10之方法,還包括與該感測電極和該第三極電極一起形成該第三電容器。
  12. 如請求項10之方法,還包括通過將該第一極電極在該液體的可能範圍之外耦合到該容器來提供該第一極電極。
  13. 一種系統,包括: 一電極組件,包括一感測電極、一第一電容器的一第一極電極和一第二電容器的一第二極電極,該電極組件係耦合到一被配置為保持液體的容器; 一信號產生器電路,其係配置為產生一激勵信號; 一第一連接件,其係配置為將該激勵信號的反相路由到該第一電容器的該第一極電極; 一第二連接件,其係配置為將該激勵信號路由到該第二電容器的該第二極電極; 連接至該感測電極的一第三連接件,該感測電極係配置為與該第一極電極一起形成該第一電容器及與該第二極電極一起形成該第二電容器;以及 一測量電路,其係配置為測量該第三連接件處的電荷及基於所測量到的電荷來確定該容器中的液體是否已經達到該第二極電極的液位; 其中,該第一極電極的極性係與該第二極電極的極性相反。
  14. 如請求項13之系統,其中,該第三連接件處的電荷表示該第一電容器與該第二電容器之間的相對電容。
  15. 如請求項13之系統,其中,該測量電路係配置為根據基於該第三連接件處的電荷的該第一電容器與該第二電容器之間的相對電容的變化,來確定該容器中的液體已經達到該第一極電極的液位。
  16. 如請求項13之系統,還包括連接至一第三電容器的一第三極電極之一第四連接件,該第三極電極係包括在該電極組件中,其中: 該第二連接件係進一步配置為: 當要檢查該容器的液體與該第二極電極的接近度時,將該激勵信號路由到該第二電容器的該第二極電極;及 當要檢查該容器的液體與該第三極電極的接近度時,將一接地信號路由到該第二電容器的該第二極電極;以及 該第四連接件係配置為: 當要檢查該容器的液體與該第三極電極的接近度時,將該激勵信號路由到該第三電容器的該第三極電極;及 當要檢查該容器的液體與該第二極電極的接近度時,將一接地信號路由到該第三電容器的該第三極電極。
  17. 如請求項16之系統,其中,該感測電極係進一步配置為與該第三極電極一起形成該第三電容器。
  18. 如請求項16之系統,其中,該第一極電極係在該液體的可能範圍之外耦合到該容器。
TW109109318A 2019-04-22 2020-03-20 雙極性互電容式液體感測 TW202107046A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910322862.9 2019-04-22
CN201910322862.9A CN111829613A (zh) 2019-04-22 2019-04-22 双极性互电容式液体感测
US16/799,897 2020-02-25
US16/799,897 US11199434B2 (en) 2019-04-22 2020-02-25 Dual polarity mutual capacitive liquid sensing

Publications (1)

Publication Number Publication Date
TW202107046A true TW202107046A (zh) 2021-02-16

Family

ID=72833320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109109318A TW202107046A (zh) 2019-04-22 2020-03-20 雙極性互電容式液體感測

Country Status (7)

Country Link
US (1) US11199434B2 (zh)
JP (1) JP2022529498A (zh)
KR (1) KR20210154139A (zh)
CN (1) CN111829613A (zh)
DE (1) DE112020002075T5 (zh)
TW (1) TW202107046A (zh)
WO (1) WO2020219197A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021042230A1 (en) * 2019-09-02 2021-03-11 Texas Instruments Incorporated Container disturbance filtering for capacitive liquid level sensing
CN115698650A (zh) * 2020-06-02 2023-02-03 微芯片技术股份有限公司 利用差分值指示的电容感测
CN112484810A (zh) * 2020-12-02 2021-03-12 上海钛米机器人股份有限公司 一种溶液检测装置及方法
CN113777408A (zh) * 2021-08-19 2021-12-10 北京他山科技有限公司 一种分布式电容传感器系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5802728A (en) 1995-08-17 1998-09-08 Watson Industries, Inc. Liquid level and angle detector
US6497144B1 (en) 2000-07-31 2002-12-24 Delphi Technologies, Inc. Method for measuring fluid level
EP1754029A1 (en) * 2004-05-14 2007-02-21 Scientific Generics Limited Capacitive position sensor
WO2006123141A2 (en) 2005-05-16 2006-11-23 Scientific Generics Ltd. Capacitive liquid level sensor
DE102013005963A1 (de) 2013-04-09 2014-10-09 Balluff Gmbh Kapazitiver Füllstandssensor

Also Published As

Publication number Publication date
WO2020219197A1 (en) 2020-10-29
US11199434B2 (en) 2021-12-14
JP2022529498A (ja) 2022-06-22
KR20210154139A (ko) 2021-12-20
CN111829613A (zh) 2020-10-27
US20200333175A1 (en) 2020-10-22
DE112020002075T5 (de) 2022-01-05

Similar Documents

Publication Publication Date Title
TW202107046A (zh) 雙極性互電容式液體感測
US8931340B2 (en) Contactless filling level measurement of liquids
US10416020B2 (en) Method and apparatus for monitoring fill level of a medium in a container
JPS63282669A (ja) 電気部品のキャパシタンスと抵抗を測定するための方法及び装置
CN201583315U (zh) 电容阵列式液位传感器探头及使用这种探头的液位传感器
US20130207674A1 (en) Detecting a Dielectric Article
CN207976198U (zh) 一种电容式液位检测装置
CN104634385B (zh) 物位与温度感测装置
CN108089047A (zh) 使用多个电容器的非接触式电压测量系统
US20120291541A1 (en) Digital field-induction water-level intelligent sensing system and its implementation method
US9846069B2 (en) Level measurement system for conductive liquids
US11860022B2 (en) Capacitive sensing utilizing a differential value indication
JP2017223498A (ja) 流動体の表面位置検出装置およびセンサ情報送信装置
CN107449489A (zh) 一种用于车辆的油位传感器及油位测量装置
CN201255648Y (zh) 液位检测装置
KR101414194B1 (ko) 정전용량식 수위 감지 회로
CN207263261U (zh) 一种用于车辆的油位传感器及油位测量装置
KR20200105708A (ko) 다상 매체에서의 용량성 측정들을 위한 디바이스
CN109186713A (zh) 电容传感器和液位高度检测系统
JP2010203871A (ja) センサ装置
CN219178675U (zh) 一种液位检测电路及容器及烟机
CN209181876U (zh) 浮标式油量传感器
RU2377552C2 (ru) Устройство для измерения влажности
TWI610081B (zh) 量測微電容之探針卡
JP2001183217A (ja) 静電容量式液面レベル計の電極