TW202042986A - Transport system - Google Patents

Transport system Download PDF

Info

Publication number
TW202042986A
TW202042986A TW108135257A TW108135257A TW202042986A TW 202042986 A TW202042986 A TW 202042986A TW 108135257 A TW108135257 A TW 108135257A TW 108135257 A TW108135257 A TW 108135257A TW 202042986 A TW202042986 A TW 202042986A
Authority
TW
Taiwan
Prior art keywords
automatic
vehicle
sensor
elevated floor
floor platform
Prior art date
Application number
TW108135257A
Other languages
Chinese (zh)
Inventor
胡政綱
陳正宏
陳彥翰
吳豐光
劉旭水
白峻榮
郭守文
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/580,977 external-priority patent/US11334080B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202042986A publication Critical patent/TW202042986A/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1615Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
    • B25J9/162Mobile manipulator, movable base with manipulator arm mounted on it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

In an embodiment a system includes: an automated vehicle configured to traverse a first predetermined path; and a sensor system located on the automated vehicle, the sensor system configured to detect a vertical obstacle along the first predetermined path along one or two floorboards ahead of the automated vehicle, wherein the automated vehicle is configured to traverse a second predetermined path in response to detecting the vertical obstacle.

Description

運輸系統Transportation System

本揭露實施例係關於一種運輸系統以及運輸方法。The embodiment of the disclosure relates to a transportation system and a transportation method.

自動化材料搬運系統(Automated material handling systems,AMHS)已廣泛用於半導體製造設施(semiconductor fabrication facilities,FABs)中,以在晶片製造中使用的各種處理機器或工具之間自動地搬運和運輸成組的或大量的晶圓。典型的半導體製造設施可包括多個搬運區(process bay),所述搬運區包括製程工具(例如一個製程工具)和晶圓暫存設備。Automated material handling systems (AMHS) have been widely used in semiconductor fabrication facilities (semiconductor fabrication facilities, FABs) to automatically transfer and transport groups of processing machines or tools used in wafer manufacturing Or a lot of wafers. A typical semiconductor manufacturing facility may include multiple process bays, which include process tools (for example, a process tool) and wafer temporary storage equipment.

每個區可以包括晶圓儲料器(stocker),晶圓儲料器包括多個箱子,用於在製造過程中暫時保持和暫存多個晶圓載具(carrier)。晶圓載具可以包括可以容納多個晶圓的標準機械化界面(standard mechanical interface,SMIF)盒,或者可以容納較大晶圓的前開式晶圓傳送盒(front opening unified pods,FOUP)。儲料器通常包括一台單桅杆式(mast)機械升降機(lift)或起重機(crane),其承重能力足以從箱子中一次舉起、插入、和回收單一個晶圓載具。儲料器可容納多個標準機械化界面盒或前開式晶圓傳送盒,以準備將標準機械化界面盒或前開式晶圓傳送盒運送到製程工具的載入口(loadport)。Each zone may include a wafer stocker, and the wafer stocker includes multiple boxes for temporarily holding and temporarily storing multiple wafer carriers during the manufacturing process. The wafer carrier may include a standard mechanical interface (SMIF) box that can accommodate multiple wafers, or a front opening unified pods (FOUP) that can accommodate larger wafers. The stocker usually includes a single-mast-type (mast) mechanical lift or crane, which has a load-bearing capacity sufficient to lift, insert, and retrieve a single wafer carrier from the box at a time. The stocker can accommodate a plurality of standard mechanized interface boxes or front-opening wafer transfer boxes to prepare to transport the standard mechanized interface boxes or front-opening wafer transfer boxes to the loadport of the process tool.

半導體製造設施可以包括多種類型的自動和手動車輛,用以在製造過程中在整個半導體製造設施中移動和運輸晶圓載具。所述車輛可包括例如手動移動的手推車、有軌式無人搬運車(rail guided vehicles,RGV)、空中無人搬運車(overhead shuttles,OHS)、和空中單軌無人搬運車(overhead hoist transports,OHTs)。在自動化材料搬運系統中,空中單軌無人搬運車系統會自動將攜帶並運輸晶圓載具(例如裝有多個晶圓的標準機械化界面盒或前開式晶圓傳送盒)的空中單軌無人搬運車從處理或計量工具(例如製程工具)或儲料器移動到半導體製造設施中的其他設備或其他工具的載入口。空中單軌無人搬運車系統可用於在每個區之內(區內,intra-bay)或區之間(區間,inter-bay)運輸車輛。空中單軌無人搬運車系統還將空的車輛(即沒有晶圓載具的車輛)移動到其他設備或工具的載入口,以接收和移除空的或可能裝有晶圓的滿的標準機械化界面盒或前開式晶圓傳送盒,以進一步運輸及/或在其他工具中處理。Semiconductor manufacturing facilities can include various types of automated and manual vehicles to move and transport wafer carriers throughout the semiconductor manufacturing facility during the manufacturing process. The vehicles may include, for example, manually moving trolleys, rail guided vehicles (RGV), overhead shuttles (OHS), and overhead hoist transports (OHTs). In the automated material handling system, the aerial monorail unmanned transport vehicle system will automatically carry and transport wafer carriers (such as a standard mechanized interface box with multiple wafers or a front-opening wafer transfer box) from the aerial monorail unmanned transport vehicle. Handling or metering tools (such as process tools) or stockers are moved to other equipment or other tools in a semiconductor manufacturing facility. The aerial monorail unmanned guided vehicle system can be used to transport vehicles within each zone (intra-bay) or between zones (inter-bay). The aerial monorail unmanned transport vehicle system also moves empty vehicles (that is, vehicles without wafer carriers) to the loading ports of other equipment or tools to receive and remove empty or full standard mechanized interfaces that may contain wafers Boxes or front opening wafer transfer boxes for further transportation and/or processing in other tools.

自動化材料搬運系統中的晶圓的搬運和運輸通常內建在半導體製造設施中,並且當在半導體製造設施中移動或更換晶片製造中使用的處理機器或工具時,可能會不容易適應。然而,典型的晶圓手動處理和運輸也需要大型的空中搬運車,並且容易會有人為破壞。因此,需要一種用於處理半導體製造設施中的晶圓傳輸的改進的系統和方法。The handling and transportation of wafers in an automated material handling system are usually built in a semiconductor manufacturing facility, and when moving or replacing processing machines or tools used in wafer manufacturing in the semiconductor manufacturing facility, it may not be easy to adapt. However, the typical manual handling and transportation of wafers also requires a large aerial truck, and is prone to human damage. Therefore, there is a need for an improved system and method for handling wafer transfer in semiconductor manufacturing facilities.

在一些實施例中提供一種運輸系統,包括:自動車,配置成橫越/通過(traverse)第一預定路徑;以及感應器系統,位在自動車上,感應器系統配置成沿著第一預定路徑在自動車前方的一或兩個樓板上偵測垂直障礙物,其中自動車配置成響應於偵測到垂直障礙物而橫越第二預定路徑。In some embodiments, a transportation system is provided, including: an automatic vehicle configured to traverse a first predetermined path; and a sensor system located on the automatic vehicle, the sensor system configured to travel along the first predetermined path Vertical obstacles are detected on one or two floors in front of the automatic vehicle, wherein the automatic vehicle is configured to traverse the second predetermined path in response to detecting the vertical obstacle.

在一些實施例中提供一種運輸系統,包括:架高樓板平台,配置成減少從架高樓板平台的一側傳遞到架高樓板平台的第二側的震動;自動車,配置成沿著第一預定路徑橫越架高樓板平台;以及感應器系統,配置成沿著在自動車前方之地板沿著第一預定路徑偵測垂直障礙物,其中自動車配置成響應於偵測到垂直障礙物時,沿著第二預定路徑橫越架高樓板平台。In some embodiments, a transportation system is provided, including: an elevated floor platform configured to reduce vibration transmitted from one side of the elevated floor platform to a second side of the elevated floor platform; an automatic vehicle configured to follow a first predetermined The path traverses the elevated floor platform; and the sensor system is configured to detect vertical obstacles along the first predetermined path along the floor in front of the automatic car, wherein the automatic car is configured to follow the vertical obstacle when the vertical obstacle is detected. The second predetermined path traverses the elevated floor platform.

在一些實施例中提供一種運輸方法,包括:當自動車沿著第一預定路徑行進時,沿著自動車前方之線段收集深度感應器數據;基於深度感應器數據偵測自動車前方之垂直障礙物;以及響應於偵測到垂直障礙物而重新定向自動車,以使自動車沿著第二預定路徑移動。In some embodiments, a transportation method is provided, including: when the automatic vehicle is traveling along a first predetermined path, collecting depth sensor data along a line segment in front of the automatic vehicle; detecting a vertical obstacle in front of the automatic vehicle based on the depth sensor data; and In response to detecting the vertical obstacle, the automatic vehicle is redirected to move the automatic vehicle along the second predetermined path.

以下公開許多不同的實施方法或是範例來實行所提供之標的之不同特徵,以下描述具體的元件及其排列的實施例以闡述本揭露。當然這些實施例僅用以例示,且不該以此限定本揭露的範圍。舉例來說,應理解的是,當元件被稱為「連接到」或「耦接到」另一個元件時,其可直接連接到或耦接到另一個元件,或亦可存在一或多個中間的元件。Many different implementation methods or examples are disclosed below to implement the different features of the provided subject. The following describes specific components and their arrangement embodiments to illustrate the present disclosure. Of course, these embodiments are only for illustration, and should not be used to limit the scope of the disclosure. For example, it should be understood that when an element is referred to as being "connected to" or "coupled to" another element, it can be directly connected or coupled to the other element, or one or more The middle element.

此外,在不同實施例中可能使用重複的標號或標示,這些重複僅為了簡單清楚地敘述本揭露,不代表所討論的不同實施例及/或結構之間有特定的關係。In addition, repeated reference signs or labels may be used in different embodiments. These repetitions are only used to describe the present disclosure simply and clearly, and do not represent a specific relationship between the different embodiments and/or structures discussed.

此外,其中可能用到與空間相關用詞,例如「在…下方」、「下方」、「較低的」、「上方」、「較高的」 及類似的用詞,這些空間相關用詞係為了便於描述圖示中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係,這些空間相關用詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。當裝置被轉向不同方位時(旋轉90度或其他方位),則其中所使用的空間相關形容詞也將依轉向後的方位來解釋。In addition, terms related to space may be used, such as "below", "below", "lower", "above", "higher" and similar terms. These space-related terms are In order to facilitate the description of the relationship between one element or feature and another element or feature in the illustration, these spatially related terms include the different orientations of the device in use or operation, as well as the description in the diagram The orientation. When the device is turned in different directions (rotated by 90 degrees or other directions), the space-related adjectives used therein will also be interpreted according to the turned position.

根據各種實施例,本揭露提供關於一種作為具有深度感應器的自動引導車(automated guided vehicle)的自動感應車(automated sensor vehicle)的系統和方法。深度感應器可以配置成基於自動感應車前方的深度變化來偵測垂直障礙物(例如相對於架高樓板平台之標準上(nominal)平坦且一致的表面的不一致處或異常處)。所述垂直障礙物可為例如自動感應車會在其上橫越/通過(traverse)的一組架高地板的開口,或者是自動感應車會在其上橫越之架高地板上的物體。深度感應器可以將此垂直障礙物偵測為沿著自動感應車前方的水平線的深度變化。According to various embodiments, the present disclosure provides a system and method related to an automated guided vehicle (automated guided vehicle) with a depth sensor. The depth sensor can be configured to detect vertical obstacles (for example, inconsistencies or abnormalities relative to a nominal flat and consistent surface of the elevated floor platform) based on the automatic sensing of the depth change in front of the vehicle. The vertical obstacle may be, for example, a set of raised floor openings on which the automatic sensor car will traverse, or an object on the raised floor on which the automatic sensor car will traverse. The depth sensor can detect this vertical obstacle as the depth change along the horizontal line in front of the car.

在一些實施例中,深度感應器可為雷射感應器。更具體來說,深度感應器可為例如光學雷達(light detection and ranging,LiDAR)感應器或其他雷射掃描儀。這種雷射掃描儀可以配置成發射脈衝雷射光(pulsed laser light)以照射表面(例如地面或架高樓板平台)。返回的反射脈衝和射出的照射脈衝的返回時間和波長之間的差異可用於確定與表面的距離。在一些實施例中,深度感應器可以配置成經由二維深度感應器(例如二維光學雷達或雷射掃描儀)沿著跨過表面的一維線段(line)確定垂直障礙物。此二維深度感應器可以確定沿著整個表面的線段(例如具有長度的一維空間,而非具有長度和寬度的二維空間)上的垂直異常。二維深度感應器可以與可以利用一維深度感應器在表面上的一個點(例如隨著時間遠離深度感應器的相對位置的點)確定垂直障礙物的其他實施例形成對比,或與可以利用三維深度感應器確定整個表面區域(例如具有長度和寬度的二維區域,而非僅具有長度的空間)上的垂直障礙物的其他實施例形成對比。有利地,沿著自動感應車前方的水平線(例如一維空間)並跨過自動感應車所經過的表面的深度變化可能會是更可偵測(例如產生更明顯和可區分的感應器數據),並且和在自動感應車前方的區域(例如二維區域)並跨過自動感應車所經過的表面的深度變化相比,僅需要較少的處理。In some embodiments, the depth sensor may be a laser sensor. More specifically, the depth sensor may be, for example, a light detection and ranging (LiDAR) sensor or other laser scanners. Such a laser scanner can be configured to emit pulsed laser light to illuminate a surface (for example, the ground or an elevated floor platform). The difference between the return time and wavelength of the returned reflected pulse and the emitted illumination pulse can be used to determine the distance to the surface. In some embodiments, the depth sensor may be configured to determine vertical obstacles along a one-dimensional line across the surface via a two-dimensional depth sensor (such as a two-dimensional optical radar or a laser scanner). This two-dimensional depth sensor can determine vertical anomalies on line segments along the entire surface (for example, a one-dimensional space with length instead of a two-dimensional space with length and width). The two-dimensional depth sensor can be in contrast to other embodiments that can use a point on the surface of the one-dimensional depth sensor (for example, a point that moves away from the relative position of the depth sensor over time) to determine vertical obstacles, or can use In contrast to other embodiments where the three-dimensional depth sensor determines the vertical obstacles on the entire surface area (for example, a two-dimensional area having a length and a width, rather than a space having only a length). Advantageously, the changes in depth along the horizontal line in front of the auto-sensing car (for example, one-dimensional space) and across the surface the auto-sensing car passes through may be more detectable (for example, producing more obvious and distinguishable sensor data) , And compared with the area in front of the auto-sensing car (such as a two-dimensional area) and across the surface of the auto-sensing car's depth changes, only less processing is required.

在一些實施例中,深度感應器可以包括與自動感應車的表面傾斜大約30度至大約50度的角度的線性雷射。在一些實施例中,深度感應器可以包括與正交於架高樓板平台的表面的線傾斜大約30度到大約50度的角度 (例如自動感應車正在行駛的架高樓板平台的表面)的線性雷射。在一些實施例中,線性雷射可以在架高樓板平台上方約700毫米、或約100毫米至約1000毫米處。在一些實施例中,深度感應器可以配置成偵測自動車輛前方一或二個地板的垂直障礙物。此外,線性雷射可以定義沿著正交於自動感應車的運動方向(例如向前運動)的軸線延伸的一條水平線。In some embodiments, the depth sensor may include a linear laser that is inclined at an angle of about 30 degrees to about 50 degrees with the surface of the automatic sensing vehicle. In some embodiments, the depth sensor may include a linear angle of about 30 to about 50 degrees from a line orthogonal to the surface of the elevated floor platform (for example, the surface of the elevated floor platform on which an automatic sensing vehicle is running). Laser. In some embodiments, the linear laser may be about 700 mm above the elevated floor platform, or about 100 mm to about 1000 mm. In some embodiments, the depth sensor may be configured to detect vertical obstacles on one or two floors in front of the automated vehicle. In addition, a linear laser can define a horizontal line extending along an axis that is orthogonal to the direction of movement of the automatic induction vehicle (for example, forward movement).

自動感應車可以配置成沿著一預定路線橫越架高樓板平台。此預定路線可以例如在兩個不同的晶圓儲存器(store)之間的路線(例如在兩個不同的半導體處理站點或工具之間)。因此,自動感應車可以將半導體工件從一個晶圓儲存器(例如一個半導體處理站點)運送到另一個晶圓儲存器(例如另一個半導體處理站點)。在一些實施例中,用於運輸物體(例如半導體工件(如晶粒或晶圓)或包括這種半導體工件的晶圓載具)的機械手臂或有效負載(payload)區域可以位於自動感應車的頂部。在一些實施例中,自動感應車配置成以每秒約0.8公尺、或每秒約0.5公尺到每秒約1公尺的速度跨過架高樓板平台。構成架高樓板平台的架高地板可為多孔的及/或在下方的樓板上方的一定距離處。The automatic induction vehicle can be configured to traverse the elevated floor platform along a predetermined route. This predetermined route may be, for example, a route between two different wafer stores (e.g., between two different semiconductor processing sites or tools). Therefore, the automated induction vehicle can transport semiconductor workpieces from one wafer storage (for example, a semiconductor processing site) to another wafer storage (for example, another semiconductor processing site). In some embodiments, the robotic arm or payload area used to transport objects (for example, semiconductor workpieces (such as dies or wafers) or wafer carriers including such semiconductor workpieces) may be located on the top of the automated induction vehicle . In some embodiments, the automatic induction vehicle is configured to cross the elevated floor platform at a speed of about 0.8 meters per second, or about 0.5 meters per second to about 1 meter per second. The raised floor constituting the raised floor platform may be porous and/or at a certain distance above the floor below.

如上所述,半導體處理站點和自動感應車可以被支撐在架高樓板平台(例如架高地板的集合或平台)上。這些地板可具有例如矩形、三角形、八邊形或其他幾何的形狀。所述架高樓板平台可以配置成例如減少從架高樓板平台的一側(例如面向地面的下表面)傳遞到架高樓板平台的第二側(例如面向自動感應車或半導體加工站點的上表面)的震動。As described above, the semiconductor processing station and the automatic induction vehicle can be supported on an elevated floor platform (for example, a raised floor assembly or platform). These floors can have, for example, rectangular, triangular, octagonal or other geometric shapes. The elevated floor platform may be configured, for example, to reduce transmission from one side of the elevated floor platform (for example, the lower surface facing the ground) to the second side of the elevated floor platform (for example, the upper surface facing the automatic induction vehicle or the semiconductor processing site). Surface) vibration.

在一些實施例中,可以從架高樓板平台上去除一或多片獨立的地板片(例如構成地板的地板片),從而沿著架高樓板平台會呈現具有深度或垂直的障礙物。藉由使用深度感應器,自動感應車可以藉由在自動感應車前方進行偵測並重新定義自動感應車的路徑(例如路線)來避開具有這些垂直障礙物的區域(例如與架高樓板平台的標準表面相比在垂直方向上的不一致處),以避開在垂直方向上的不一致。在一些實施例中,自動感應車可以配置成響應於在自動感應車前方(例如沿著自動感應車移動的方向在自動感應車前方)偵測到的垂直障礙物而立即停止。In some embodiments, one or more independent floor pieces (for example, floor pieces that make up the floor) can be removed from the elevated floor platform, so that there are deep or vertical obstacles along the elevated floor platform. By using the depth sensor, the automatic sensor car can avoid the area with these vertical obstacles (for example, with the elevated floor platform) by detecting and redefining the path (such as the route) of the automatic sensor car in front of the automatic sensor car. The standard surface is compared with the inconsistencies in the vertical direction) to avoid the inconsistencies in the vertical direction. In some embodiments, the auto-sensing car may be configured to immediately stop in response to a vertical obstacle detected in front of the auto-sensing car (for example, in front of the auto-sensing car in the direction of movement of the auto-sensing car).

第1圖是根據一些實施例的自動感應車102的概念圖。自動感應車102可為具有至少一個深度感應器104的自動引導車輛。自動感應車102可以配置成橫越架高樓板平台106。自動感應車102可以利用深度感應器104,以沿著自動感應車102橫越的架高樓板平台106偵測垂直障礙物108,例如丟失的地板或其他孔或開口。然後自動感應車102可以將越過架高樓板平台106的路徑重新定向,以避開垂直障礙物108。Figure 1 is a conceptual diagram of an automatic induction vehicle 102 according to some embodiments. The automatic induction vehicle 102 may be an automatic guided vehicle having at least one depth sensor 104. The automatic induction vehicle 102 may be configured to traverse the elevated floor platform 106. The automatic sensor vehicle 102 can use the depth sensor 104 to detect vertical obstacles 108 such as a missing floor or other holes or openings along the elevated floor platform 106 that the automatic sensor vehicle 102 traverses. Then the automatic sensor vehicle 102 can redirect the path across the elevated floor platform 106 to avoid the vertical obstacle 108.

自動感應車102可以配置成沿向前方向(以箭號110A示出)移動。深度感應器104可以藉由偵測沿著在自動感應車102前方(例如在箭號110A指示的向前方向的前面)並越過自動感應車102所橫越的架高樓板平台106的水平線112(圖示為虛線)的深度變化而偵測垂直障礙物108。The autonomous vehicle 102 may be configured to move in a forward direction (shown by arrow 110A). The depth sensor 104 can detect the horizontal line 112 (for example, in front of the forward direction indicated by the arrow 110A) in front of the automatic sensor vehicle 102 and across the elevated floor platform 106 that the automatic sensor vehicle 102 traverses. The figure is a dotted line) to detect the vertical obstacle 108 by changing the depth.

在一些實施例中,深度感應器104可為雷射感應器。更具體而言,深度感應器可為例如光學雷達(LiDAR)感應器或其他雷射掃描儀,其配置成用脈衝雷射照射目標或表面(例如地面或高架地板的平台)並測量反射的脈衝。返回的反射脈衝和射出的照射脈衝的返回時間和波長之間的差異可用於確定與表面的距離。在一些實施例中,深度感應器104可配置成藉由具有二維的視野114的二維深度感應器(例如二維光學雷達或雷射掃描儀)沿著跨越架高樓板平台106的一維水平線112確定垂直障礙物108。因此,如果架高樓板平台106在垂直方向上是一致的(例如沿著架高樓板平台106不具有遺失的平板或其他開口),則二維的視野114將止於架高樓板平台106並形成水平線112。然而,如果架高樓板平台106在垂直方向上具有不一致處,則二維的視野114將沿著水平線112確定垂直方向上的不一致處(例如沿著架高樓板平台106具有缺少的面板或具有其他開口)。有利地,可以更輕易偵測到沿著自動感應車102前方的水平線112(例如一維區域)並且在自動感應車102行進的表面(例如架高樓板平台106)上的深度變化(例如產生更明顯和可區分的傳感器數據),並且跟自動感應車102前方的區域(例如二維區域)且自動感應車102正在穿越的表面(例如架高樓板平台106)的深度變化相比時,僅需要較少的處理。In some embodiments, the depth sensor 104 may be a laser sensor. More specifically, the depth sensor may be, for example, an optical radar (LiDAR) sensor or other laser scanner, which is configured to illuminate a target or surface (such as a platform on the ground or a raised floor) with a pulsed laser and measure the reflected pulse . The difference between the return time and wavelength of the returned reflected pulse and the emitted illumination pulse can be used to determine the distance to the surface. In some embodiments, the depth sensor 104 can be configured to move along a one-dimensional cross-over elevated floor platform 106 by a two-dimensional depth sensor (such as a two-dimensional optical radar or a laser scanner) having a two-dimensional field of view 114 The horizontal line 112 defines the vertical obstacle 108. Therefore, if the elevated floor platform 106 is consistent in the vertical direction (for example, there are no missing slabs or other openings along the elevated floor platform 106), the two-dimensional view 114 will stop at the elevated floor platform 106 and form Horizontal line 112. However, if the elevated floor platform 106 has inconsistencies in the vertical direction, the two-dimensional field of view 114 will determine the inconsistencies in the vertical direction along the horizontal line 112 (for example, the elevated floor platform 106 has missing panels or has other Opening). Advantageously, it is easier to detect changes in depth along the horizontal line 112 (such as a one-dimensional area) in front of the automatic sensing vehicle 102 and on the surface (such as the elevated floor platform 106) on which the automatic sensing vehicle 102 travels (such as generating more Obvious and distinguishable sensor data), and when compared with the depth change of the area in front of the automatic sensing vehicle 102 (such as a two-dimensional area) and the surface (such as the elevated floor platform 106) that the automatic sensing vehicle 102 is passing through, only need Less processing.

在一些實施例中,深度感應器104的視野114可以與自動感應車102的表面116間具有大約30度至大約50度的角度。在一些實施例中,深度感應器104的視野114可以與正交於架高樓板平台106的虛擬線段117(圖中的虛線)間具有大約30度至大約50度的角度。在一些實施例中,深度感應器104的視野114可以在架高樓板平台106上方約700毫米處、或介於約100毫米至約1000毫米處。在一些實施例中,深度感應器104可以實現為投射出可以沿水平線112照射架高樓板平台106的往外開的(outbound)照射脈衝的線性(linear)或線(line)雷射。在一些實施例中,深度感應器可以被配置成偵測自動車輛之前的一或兩片地板的垂直障礙物。在一些實施例中,深度感應器104可以實現為配置成不斷地掃描視野114(例如在視野114中移動或旋轉)的點雷射。In some embodiments, the field of view 114 of the depth sensor 104 may have an angle of about 30 degrees to about 50 degrees with the surface 116 of the automated vehicle 102. In some embodiments, the field of view 114 of the depth sensor 104 may have an angle of about 30 degrees to about 50 degrees with the virtual line segment 117 (the dashed line in the figure) orthogonal to the elevated floor platform 106. In some embodiments, the field of view 114 of the depth sensor 104 may be about 700 mm above the elevated floor platform 106, or between about 100 mm and about 1000 mm. In some embodiments, the depth sensor 104 may be implemented as a linear or line laser that can project outbound radiation pulses that can illuminate the elevated floor platform 106 along the horizontal line 112. In some embodiments, the depth sensor may be configured to detect vertical obstacles on one or two floors before the automated vehicle. In some embodiments, the depth sensor 104 may be implemented as a point laser configured to continuously scan the field of view 114 (eg, move or rotate in the field of view 114).

自動感應車102可以配置成沿著預定路線橫越架高樓板平台106。預定路線可為例如在晶圓儲存器之間(例如兩個不同的半導體處理站點或工具之間)的路線。在一些實施例中,此預定路線可為端點到端點的路線,使得沿著此預定路線的所有運動也都被預定。在一些實施例中,此預定路線可為目前的運動方向,而非端點到端點的路線,並且沿著預定路線的所有運動也都被預定。舉例來說,目前的運動方向可以沿著前進方向(以箭號110A繪示)。The autonomous vehicle 102 may be configured to traverse the elevated floor platform 106 along a predetermined route. The predetermined route may be, for example, a route between wafer storages (e.g., between two different semiconductor processing sites or tools). In some embodiments, the predetermined route may be an end-to-end route, so that all movements along the predetermined route are also predetermined. In some embodiments, the predetermined route may be the current direction of movement, rather than the end-to-end route, and all movements along the predetermined route are also predetermined. For example, the current movement direction can be along the forward direction (shown by arrow 110A).

因此,自動感應車102可以將半導體工件從一個晶圓儲存器運送到另一個晶圓儲存器(例如從一個半導體處理站點運送到另一個半導體處理站點)。在一些實施例中,在自動感應車頂部的負載區118可包括機械手臂或包括被運輸的物體(例如用來承載如晶粒或晶圓的半導體工件的晶圓載具)。在一些實施例中,自動感應車配置成以每秒約0.8米、或每秒約0.5米到每秒約1米的速度跨過架高樓板平台106。Therefore, the automatic induction vehicle 102 can transport semiconductor workpieces from one wafer storage to another wafer storage (for example, from one semiconductor processing site to another semiconductor processing site). In some embodiments, the loading area 118 on the top of the automated induction vehicle may include a robotic arm or an object to be transported (for example, a wafer carrier used to carry semiconductor workpieces such as dies or wafers). In some embodiments, the autonomous vehicle is configured to traverse the elevated floor platform 106 at a speed of about 0.8 meters per second, or about 0.5 meters per second to about 1 meter per second.

在一些實施例中,架高樓板平台106的各個地板可為多孔的及/或位在下方樓板的一定距離上方。架高樓板平台106的單一片地板可具有例如矩形、三角形、八邊形或其他幾何形狀。所述架高樓板平台106可以配置成例如減少從架高樓板平台106的一側(例如面朝地面的下表面)通過架高樓板平台106而到達架高樓板平台106的第二側的震動(例如面朝自動感應車102的上表面)。In some embodiments, each floor of the elevated floor platform 106 may be porous and/or located a certain distance above the floor below. The single floor of the elevated floor platform 106 may have, for example, a rectangular, triangular, octagonal or other geometric shape. The elevated floor platform 106 can be configured, for example, to reduce vibration from one side of the elevated floor platform 106 (for example, the lower surface facing the ground) through the elevated floor platform 106 to the second side of the elevated floor platform 106 ( For example, it faces the upper surface of the automatic sensor car 102).

在一些實施例中,自動感應車102可包括多個深度感應器104。舉例來說,自動感應車102在前方(例如面朝以箭號110A示出的向前方向,或繪示成最接近垂直障礙物108處)可包括深度感應器104。前方(例如面朝箭號110A的方向)的深度感應器104可以配置成在箭號110A所示的向前方向上偵測垂直障礙物108。類似地,自動感應車102可包括在後方(例如面朝箭頭110B所示的相反方向)的深度感應器104。面朝箭頭110B的方向的背面處的深度感應器104可以配置成沿箭頭110B所示的相反方向偵測垂直障礙物。除了面朝不同的方向以外,後方的深度感應器的特徵可以與前方的深度感應器的特徵相似或相同,而且為了簡潔起見,於此不再贅述。In some embodiments, the autonomous vehicle 102 may include a plurality of depth sensors 104. For example, the autonomous vehicle 102 may include a depth sensor 104 in the front (for example, facing the forward direction shown by the arrow 110A, or shown as being closest to the vertical obstacle 108). The front depth sensor 104 (for example, facing the direction of the arrow 110A) may be configured to detect the vertical obstacle 108 in the forward direction indicated by the arrow 110A. Similarly, the autonomous vehicle 102 may include a depth sensor 104 at the rear (for example, facing the opposite direction as shown by the arrow 110B). The depth sensor 104 at the back facing the direction of arrow 110B can be configured to detect vertical obstacles in the opposite direction shown by arrow 110B. Except for facing different directions, the features of the depth sensor at the rear can be similar or the same as those of the depth sensor at the front, and for the sake of brevity, it will not be repeated here.

在一些實施例中,自動感應車102可以包括前輪124A,配置成在自動感應車移動時對自動感應車102進行引導或轉向。自動感應車102還可包括後輪124B(由於透視圖概念圖100的限制,僅示出一個後輪124B),配置成在自動感應車移動時旋轉(rotate)而不轉向(turn)自動感應車。這些前輪124A以及後輪124B可以配置成藉由前輪124A以及後輪124B的旋轉運動以使自動感應車102移動。因此,自動感應車102可配置成在兩個前輪124A的引導下沿向前或向後方向移動。在一些實施例中,所有車輪皆可配置成在自動感應車藉由車輪的旋轉運動而移動時進行引導或轉向。In some embodiments, the autonomous vehicle 102 may include front wheels 124A, configured to guide or steer the autonomous vehicle 102 when the autonomous vehicle is moving. The auto-sensing car 102 may also include a rear wheel 124B (due to the limitation of the conceptual diagram 100 in the perspective view, only one rear wheel 124B is shown), which is configured to rotate without turning when the auto-sensing car is moving. . The front wheels 124A and the rear wheels 124B may be configured to move the auto-sensing vehicle 102 through the rotation of the front wheels 124A and the rear wheels 124B. Therefore, the automatic induction vehicle 102 may be configured to move in a forward or backward direction under the guidance of the two front wheels 124A. In some embodiments, all wheels can be configured to guide or steer when the auto-sensing vehicle moves by the rotation of the wheels.

在一些實施例中,可以從架高樓板平台106去除一或多片獨立的地板片120,從而呈現出沿著架高樓板平台106的垂直障礙物108(例如開口、孔或深度)。藉由採用深度感應器104,自動感應車102可以藉由在自動感應車102前方偵測到這些垂直障礙物108並重新定向自動感應車102的路徑來避開垂直障礙物108,從而避開具有這些垂直障礙物108的區域。在一些實施例中,自動感應車102可以配置成響應於在自動感應車102前方(例如沿著自動感應車102正在移動的方向上移動的自動感應車102前方)偵測到垂直障礙物108而立即停止。In some embodiments, one or more individual floor panels 120 may be removed from the elevated floor platform 106, thereby presenting vertical obstacles 108 (eg, openings, holes, or depth) along the elevated floor platform 106. By using the depth sensor 104, the automatic sensor car 102 can avoid the vertical obstacle 108 by detecting these vertical obstacles 108 in front of the automatic sensor car 102 and redirecting the path of the automatic sensor car 102, thereby avoiding These vertical obstacles 108 area. In some embodiments, the automatic sensor car 102 may be configured to respond to the detection of a vertical obstacle 108 in front of the automatic sensor car 102 (for example, in front of the automatic sensor car 102 moving in the direction in which the automatic sensor car 102 is moving). Stop immediately.

第2圖是根據一些實施例的在架高樓板平台204上的自動感應車202的示意圖。如上所述,自動感應車202可為具有至少一個深度感應器206的自動引導車輛。自動感應車202可以配置成橫越架高樓板平台204。自動感應車202可以利用深度感應器206,以沿著自動感應車202正在橫越的架高樓板平台204偵測垂直障礙物208,例如遺失的地板、其他孔、或開口。然後自動感應車202可以重新定向跨過架高樓板平台204的路徑,以避開垂直障礙物208。FIG. 2 is a schematic diagram of the automatic induction vehicle 202 on the elevated floor platform 204 according to some embodiments. As described above, the automatic induction vehicle 202 may be an automatic guided vehicle having at least one depth sensor 206. The automatic induction vehicle 202 may be configured to traverse the elevated floor platform 204. The automatic sensor vehicle 202 can use the depth sensor 206 to detect vertical obstacles 208, such as a missing floor, other holes, or openings, along the elevated floor platform 204 that the automatic sensor vehicle 202 is crossing. The automatic sensor vehicle 202 can then redirect the path across the elevated floor platform 204 to avoid the vertical obstacle 208.

在各種實施例中,自動感應車202可以利用其他感應器(未示出)以進行導引,而避開在架高樓板平台204上的其他物體210。舉例來說,自動感應車202可以包括圖像感應器、光學雷達感應器、磁感應器或其他類型的感應器以偵測其他物體210,從而可以在橫越架高樓板平台204時避開其他物體210。在一些實施例中,其他物體210的位置可為預定的或被傳達給自動感應車202,使得自動感應車202可以計劃(plot)越過架高樓板平台204且避開其他物體210的預定位置的路徑。In various embodiments, the automatic induction vehicle 202 may use other sensors (not shown) for guidance, and avoid other objects 210 on the elevated floor platform 204. For example, the automatic sensor car 202 may include image sensors, optical radar sensors, magnetic sensors or other types of sensors to detect other objects 210, so as to avoid other objects when crossing the elevated floor platform 204 210. In some embodiments, the position of other objects 210 may be predetermined or communicated to the automatic sensor car 202, so that the automatic sensor car 202 can plot to cross the elevated floor platform 204 and avoid the predetermined position of other objects 210. path.

如圖所示,垂直障礙物208可能是由於遺失或以其他方式從架高樓板平台204中被去除的或不存在的獨立的地板片220。此外,如隨後所進一步討論的,架高樓板平台204可以包括一種結構,其中獨立的地板片220擱置在所述結構上,且所述結構與架高樓板平台204下方的地面226物理地分離。As shown in the figure, the vertical obstacle 208 may be a separate floor piece 220 that is missing or otherwise removed from the elevated floor platform 204 or does not exist. In addition, as discussed further below, the elevated floor platform 204 may include a structure in which an independent floor piece 220 rests on the structure, and the structure is physically separated from the ground 226 below the elevated floor platform 204.

在各種實施例中,由於對製造環境和污染控制的更加嚴格的要求,可以在半導體製造設施(FAB)中實施所述架高樓板平台。舉例來說,當特徵尺寸在2微米(μm)範圍內時,100~1000清潔度等級(cleanliness class,例如每立方英尺尺寸大於0.5μm的顆粒數目)是足夠的。但是,當特徵尺寸減小到0.25μm時,需要0.1的清潔度等級。已得知當進一步降低裝置尺寸時,惰性的微型環境可能是未來製造技術的解決方案。為了消除微污染並減少矽表面天然氧化物的生長,可以將半導體製造設施(FAB)的晶圓製程和裝卸程序封閉在一個非常高清潔度的微型環境中,並以不含氧氣和水分的超純氮氣不斷地對晶圓進行沖洗。In various embodiments, due to more stringent requirements for manufacturing environment and pollution control, the elevated floor platform may be implemented in a semiconductor manufacturing facility (FAB). For example, when the feature size is in the range of 2 microns (μm), a cleanliness class of 100 to 1000 (cleanliness class, for example, the number of particles with a size greater than 0.5 μm per cubic foot) is sufficient. However, when the feature size is reduced to 0.25 μm, a cleanliness level of 0.1 is required. It has been known that when the device size is further reduced, an inert micro environment may be a solution for future manufacturing technology. In order to eliminate micro-pollution and reduce the growth of natural oxides on the silicon surface, the wafer processing and loading and unloading procedures of the semiconductor manufacturing facility (FAB) can be enclosed in a very high-cleanliness micro-environment, and the Pure nitrogen continuously flushes the wafers.

因此,現今無塵室設施中的其中一種設計是實施架高樓板平台。第3A圖是根據一些實施例的架高樓板平台302的側視圖。在一些實施例中,架高樓板平台302安裝在地面304(例如表面處理過的水泥華夫餅板(waffle slab))上方約45公分(cm)至約60cm間之處。架高樓板平台302通常覆蓋整個無塵室的生產區域。在一些實施例中,架高樓板平台302的格子306(例如獨立的地板片308或瓷磚所在的區域)可以基於60×60公分(cm)的系統並且可以對準傳統天花板格子的中心線。一些獨立的地板片308上具有穿孔,以循環無塵室的空氣。藉由選擇具有適當穿孔的獨立的地板片308,可以實現無塵室中氣壓的調節和氣流的平衡。Therefore, one of the designs in today's clean room facilities is to implement elevated floor platforms. Figure 3A is a side view of an elevated floor platform 302 according to some embodiments. In some embodiments, the elevated floor platform 302 is installed between about 45 centimeters (cm) and about 60 cm above the ground 304 (such as a surface-treated cement waffle slab). The elevated floor platform 302 usually covers the entire production area of the clean room. In some embodiments, the lattice 306 of the elevated floor platform 302 (for example, the area where the independent floor slab 308 or the tile is located) may be based on a 60×60 centimeter (cm) system and may be aligned with the centerline of a traditional ceiling lattice. Some independent floor panels 308 have perforations to circulate the air in the clean room. By selecting an independent floor sheet 308 with appropriate perforations, the air pressure adjustment and air flow balance in the clean room can be achieved.

在第3A圖所示的架高樓板平台302中,獨立的地板片308可為靜電消散的(static-dissipative),並且由不可燃材料製成,且亦具有抗化學磨損性。舉例來說,獨立的地板片308可以由耐衝擊且滿足無塵室環境的抗靜電放電絕緣要求的乙烯基類材料(vinyl)製成。In the elevated floor platform 302 shown in FIG. 3A, the independent floor sheet 308 can be static-dissipative, made of non-combustible materials, and is also resistant to chemical abrasion. For example, the independent floor sheet 308 may be made of a vinyl material (vinyl) that is impact resistant and meets the anti-static discharge insulation requirements of a clean room environment.

在各種實施例中,無論具不具有獨立的地板片308,架高樓板平台302都可以在所有方向上橫向穩定。可以藉由將支座310錨固到地面304(例如水泥地板或其他表面)中,並進一步使用鋼撐臂312以實現此橫向穩定。獨立的地板片308由鋼撐臂312支撐,而鋼撐臂312又在每個拐角處由可調高度的支座310支撐。如第3A圖所示,錨固的支座310係使用螺栓而固定到地面304(例如水泥樓板或其他表面)上。可以在每個支座310的頂部上放置絕緣板316,以降低腳步聲並提供更好的電性隔離。鋼撐臂312用於進一步提高架高樓板平台302和支座310支撐件的剛性(rigidity)。In various embodiments, the elevated floor slab platform 302 can be laterally stable in all directions with or without a separate floor sheet 308. This lateral stability can be achieved by anchoring the support 310 to the ground 304 (such as a concrete floor or other surface), and further using a steel brace 312. The independent floor piece 308 is supported by steel brace arms 312, and the steel brace arms 312 are supported by height-adjustable supports 310 at each corner. As shown in FIG. 3A, the anchored support 310 is fixed to the ground 304 (such as a cement floor or other surface) using bolts. An insulating plate 316 can be placed on the top of each support 310 to reduce footsteps and provide better electrical isolation. The steel brace 312 is used to further improve the rigidity of the elevated floor platform 302 and the support of the support 310.

在各種實施例中,自動感應車322可以配置成橫越一組架高樓板平台302。自動感應車322可以利用深度感應器324以偵測垂直障礙物,如沿著被自動感應車322橫越的架高樓板平台302上缺少的地板或其他孔或開口。然後,自動感應車322可以重新定向越過架高樓板平台302的路徑,以避開垂直障礙物。In various embodiments, the autonomous vehicle 322 may be configured to traverse a set of elevated floor platforms 302. The automatic sensor vehicle 322 can use the depth sensor 324 to detect vertical obstacles, such as missing floors or other holes or openings along the elevated floor platform 302 traversed by the automatic sensor vehicle 322. Then, the automatic sensor vehicle 322 can redirect the path across the elevated floor platform 302 to avoid vertical obstacles.

如上所述,在一些實施例中,深度感應器324可為雷射感應器。更具體而言,深度感應器324可為例如光學雷達(LiDAR)感應器或其他雷射掃描儀,配置成以脈衝雷射的方式照射目標或表面(例如地面或架高樓板平台),並測量反射的脈衝。返回的反射脈衝和射出的照射脈衝的返回時間和波長之間的差異可用於確定與表面的距離。在一些實施例中,深度感應器324可以配置成藉由具有二維的視野326的二維深度感應器(例如二維光學雷達或雷射掃描儀)沿著跨過表面(例如架高樓板平台302)的一維水平線確定垂直障礙物。因此,如果表面(例如架高樓板平台302)是垂直一致的(例如沿架高樓板平台302沒有遺失的面板或不具有其他開口),二維的視野326將終止於表面(例如架高樓板平台302)並形成水平線。然而,如果表面(例如架高樓板平台302)是垂直不一致的(例如沿架高樓板平台302有遺失的面板或具有其他開口),則二維的視野326將確定沿著水平線的垂直不連續性。As mentioned above, in some embodiments, the depth sensor 324 may be a laser sensor. More specifically, the depth sensor 324 may be, for example, an optical radar (LiDAR) sensor or other laser scanner, configured to illuminate a target or surface (such as the ground or an elevated floor platform) in a pulsed laser manner, and measure Reflected pulse. The difference between the return time and wavelength of the returned reflected pulse and the emitted illumination pulse can be used to determine the distance to the surface. In some embodiments, the depth sensor 324 may be configured to move along a cross-surface (such as an elevated floor platform) by a two-dimensional depth sensor (such as a two-dimensional optical radar or a laser scanner) having a two-dimensional field of view 326. The one-dimensional horizontal line of 302) determines the vertical obstacle. Therefore, if the surface (e.g., elevated floor platform 302) is vertically consistent (e.g., there are no missing panels or no other openings along the elevated floor platform 302), the two-dimensional view 326 will end at the surface (e.g., elevated floor platform 302) and form a horizontal line. However, if the surface (e.g., elevated floor platform 302) is vertically inconsistent (e.g., there are missing panels or other openings along the elevated floor platform 302), the two-dimensional view 326 will determine the vertical discontinuity along the horizontal line .

在一些實施例中,深度感應器324處的視野326可以與自動感應車332的表面330成約30度至約50度的角度328。在一些實施例中,表面330也可以大致正交(orthogonal)於架高樓板平台302面朝上方的表面331。在一些實施例中,深度感應器324的視野326可以在架高樓板平台302上方約700毫米處、或在約100毫米至約1000毫米處。在一些實施例中,深度感應器324可以實現為投射出可以沿水平線照射的往外開的照射脈衝的線性或線雷射。In some embodiments, the field of view 326 at the depth sensor 324 may form an angle 328 of about 30 degrees to about 50 degrees with the surface 330 of the autonomous vehicle 332. In some embodiments, the surface 330 may also be substantially orthogonal to the surface 331 of the elevated floor platform 302 facing upward. In some embodiments, the field of view 326 of the depth sensor 324 may be about 700 mm above the elevated floor platform 302, or about 100 mm to about 1000 mm. In some embodiments, the depth sensor 324 may be implemented as a linear or linear laser projecting outwardly directed irradiation pulses that can be irradiated along a horizontal line.

第3B圖是根據一些實施例的具有垂直障礙物350的架高樓板平台302的側視圖。如圖所示,垂直障礙物350可為由於在架高樓板平台302不具有獨立的地板片308或以其他方式去除獨立的地板片308所造成的開口。此垂直障礙物350可以在架高樓板平台302的格子306內(例如獨立的地板片308或地磚被放置在其中的區域)可以基於60×60公分(cm)的系統及/或對準傳統的天花板濾網格子(filter ceiling grid)的中心線。因此,第3B圖的垂直障礙物可以被偵測為在深度感應器324的視野內,從深度感應器324到地面304(例如水泥樓板或其他表面)的第一深度356(以虛線示出)。第一深度356大於在深度感應器324的視野內的從深度感應器324到架高樓板平台302的獨立的地板片308的第二深度358(以實線示出)。Figure 3B is a side view of an elevated floor platform 302 with a vertical obstacle 350 according to some embodiments. As shown in the figure, the vertical obstacle 350 may be an opening caused by the fact that the elevated floor platform 302 does not have an independent floor sheet 308 or the independent floor sheet 308 is removed in other ways. This vertical obstacle 350 can be in the grid 306 of the elevated floor platform 302 (for example, the area where the independent floor 308 or floor tiles are placed) can be based on a 60×60 centimeter (cm) system and/or aligned with traditional The center line of the filter ceiling grid. Therefore, the vertical obstacle in Figure 3B can be detected as a first depth 356 (shown in dashed lines) from the depth sensor 324 to the ground 304 (such as a concrete floor or other surface) in the field of view of the depth sensor 324 . The first depth 356 is greater than the second depth 358 (shown in solid lines) of the independent floor piece 308 from the depth sensor 324 to the elevated floor platform 302 in the field of view of the depth sensor 324.

第3C圖是根據一些實施例的被自動感應車372橫越的架高樓板平台370的一部分的俯視圖。自動感應車372可以包括多個感應器,每個感應器具有各自的二維視野374A、374B、374C、374D。各個二維視野374A、374B、374C、374D的一端終止於自動感應車372的各個感應器處。此外,如果表面(例如架高樓板平台370)在垂直方向上是一致的(例如在架高樓板平台370上沒有遺失的面板或其他開口),二維視野374A、374B、374C、374D將沿著相應的水平線376A、376B、376C、376D而終止於地面(例如架高樓板平台370)。換句話說,在一些實施例中,感應器可以包括發射可見光譜的雷射光的線雷射,所述雷射光將照射沿著各個水平線376A、376B、376C、376D的線。Figure 3C is a top view of a portion of the elevated floor platform 370 traversed by the automatic induction vehicle 372 according to some embodiments. The automatic sensor vehicle 372 may include a plurality of sensors, and each sensor has its own two-dimensional field of view 374A, 374B, 374C, and 374D. One end of each two-dimensional field of view 374A, 374B, 374C, 374D terminates at each sensor of the automatic induction vehicle 372. In addition, if the surface (e.g. elevated floor platform 370) is consistent in the vertical direction (e.g., there are no missing panels or other openings on the elevated floor platform 370), the two-dimensional view 374A, 374B, 374C, 374D will follow along The corresponding horizontal lines 376A, 376B, 376C, and 376D terminate at the ground (for example, the elevated floor platform 370). In other words, in some embodiments, the sensor may include a line laser emitting laser light in the visible spectrum, and the laser light will illuminate the lines along the respective horizontal lines 376A, 376B, 376C, and 376D.

在一些實施例中,自動感應車372可以包括多個深度感應器,但是一次僅使用(例如啟動)多個深度感應器之一。舉例來說,在特定時間點僅使用或啟動一個面朝運動的前進方向的深度感應器。此向前運動可以隨著自動感應車372的移動而改變,例如自動感應車372可以在第一方向380A上向前移動並且因此僅利用具有第一二維視野374A的深度感應器。或者,自動感應車372可以在第二方向380B上向前移動並且因此僅利用具有第二二維視野374B的深度感應器。或者,自動感應車372可以在第三方向380C上向前移動並且因此僅利用具有第三二維視野374C的深度感應器。或者,自動感應車372可以在第四方向380D上向前移動並且因此僅利用具有第四二維視野374D的深度感應器。在一些實施例中,自動感應車可以沿特定方向移動,但是不止一個或甚至所有其深度感應器處於活動狀態(例如監視一個以上的二維視野374A、374B、374C、374D或監視所有二維視野374A、374B、374C、374D)。In some embodiments, the autonomous vehicle 372 may include multiple depth sensors, but only one of the multiple depth sensors is used (eg, activated) at a time. For example, only one depth sensor facing in the forward direction of motion is used or activated at a specific point in time. This forward movement may change with the movement of the auto-sensing car 372, for example, the auto-sensing car 372 can move forward in the first direction 380A and therefore only utilize the depth sensor with the first two-dimensional field of view 374A. Alternatively, the autonomous vehicle 372 may move forward in the second direction 380B and thus only utilize the depth sensor with the second two-dimensional field of view 374B. Alternatively, the auto-sensing car 372 may move forward in the third direction 380C and therefore only utilize the depth sensor with the third two-dimensional field of view 374C. Alternatively, the autonomous vehicle 372 may move forward in the fourth direction 380D and thus only utilize the depth sensor with the fourth two-dimensional field of view 374D. In some embodiments, the auto-sensing car can move in a specific direction, but more than one or even all its depth sensors are active (for example, monitoring more than one two-dimensional field of view 374A, 374B, 374C, 374D or monitoring all two-dimensional fields of view 374A, 374B, 374C, 374D).

第4A圖是根據一些實施例的具有機械手臂404的自動感應車402的概念圖。機械手臂404可以在自動感應車402上方的有效負載區域406上。在一些實施例中,具有機械手臂404的自動感應車402可以被稱為第一類型的自動感應車。FIG. 4A is a conceptual diagram of an automatic induction vehicle 402 with a robotic arm 404 according to some embodiments. The robotic arm 404 may be on the payload area 406 above the automatic induction vehicle 402. In some embodiments, the automatic induction car 402 with the robotic arm 404 may be referred to as the first type of automatic induction car.

第4B圖是根據一些實施例的具有晶圓載具414的自動感應車412的概念圖。晶圓載具414可以位在自動感應車412頂部的有效負載區域406上。晶圓載具414可為例如可以容納多個晶圓的標準機械化界面(SMIF)盒,或者可以容納較大晶圓的前開式晶圓傳送盒(FOUPs)。晶圓載具414也可為配置成保持多個晶粒(例如單粒化的晶圓)的晶粒容器,例如晶舟(boat)或托盤(tray)。在一些實施例中,具有晶圓載具414的自動感應車412可以被稱為第二類型的自動感應車。FIG. 4B is a conceptual diagram of an automatic induction vehicle 412 with a wafer carrier 414 according to some embodiments. The wafer carrier 414 may be located on the payload area 406 on the top of the automatic induction vehicle 412. The wafer carrier 414 may be, for example, a standard mechanical interface (SMIF) box that can hold multiple wafers, or a front opening wafer transfer box (FOUPs) that can hold larger wafers. The wafer carrier 414 may also be a die container, such as a boat or a tray, configured to hold a plurality of die (for example, singulated wafers). In some embodiments, the automatic induction vehicle 412 with the wafer carrier 414 may be referred to as the second type of automatic induction vehicle.

第4C圖是根據一些實施例的自動晶圓搬運系統450的概念圖。如上所述,自動晶圓搬運系統450可以在使用架高樓板平台進行操作的無塵室或其他類型的半導體製造設施內。自動晶圓搬運系統450可以包括兩個晶圓搬運區452A和452B。每個晶圓搬運區可以分別包括一晶圓儲存器454A或454B,所述晶圓儲存器454A或454B分別是用於晶圓載具456A、456B的料架(rack)。每個晶圓載具可以包括一或多個晶圓或晶粒。自動晶圓搬運系統450可以包括在每個晶圓儲存器454A、454B附近(例如鄰接)的第一類型的自動感應車458A、458B。每個第一類型的自動感應車458A、458B可以包括一機械手臂459A、459B。此外,自動晶圓搬運系統450可以包括能配置成在第一晶圓搬運區452A和第二晶圓搬運區452B之間傳送晶圓的第二類型的自動感應車460。如上所述,每個第一類型的自動感應車458A、458B和第二類型的自動感應車460可包括一深度感應器。FIG. 4C is a conceptual diagram of an automatic wafer handling system 450 according to some embodiments. As described above, the automatic wafer handling system 450 may be in a clean room or other type of semiconductor manufacturing facility that uses an elevated floor platform for operation. The automatic wafer handling system 450 may include two wafer handling areas 452A and 452B. Each wafer handling area may include a wafer storage 454A or 454B, respectively, and the wafer storage 454A or 454B is a rack for the wafer carriers 456A and 456B, respectively. Each wafer carrier may include one or more wafers or dies. The automatic wafer handling system 450 may include a first type of automatic induction vehicle 458A, 458B in the vicinity (eg, adjacent to) each wafer storage 454A, 454B. Each first type of automatic induction vehicle 458A, 458B may include a robot arm 459A, 459B. In addition, the automatic wafer handling system 450 may include a second type of automatic induction cart 460 that can be configured to transfer wafers between the first wafer handling area 452A and the second wafer handling area 452B. As described above, each of the first type of automatic induction vehicle 458A, 458B and the second type of automatic induction vehicle 460 may include a depth sensor.

儘管晶圓儲存器454A、454B係繪示為料架,但是根據各種實施例,任何類型的固定儲存或保持晶圓的方式都可用在不同應用的晶圓儲存器。舉例來說,晶圓儲存器可為用於被動儲存晶圓的平台,例如可以放置晶圓承載器的料架、架子(shelf)或桌面。或者晶圓儲存器可為用於主動儲存晶圓的平台,例如半導體加工站點或工具或儲料器。更具體而言,當晶圓儲存器454A、454B是半導體加工站點或工具時,晶圓儲存器454A、454B可以具體地是半導體加工站點或工具的一部分,此部分是半導體加工站點或工具的配置成接收或排除由半導體處理站點或工具處理的晶圓載具和組成的晶圓或晶粒的裝載端口。Although the wafer storages 454A and 454B are shown as racks, according to various embodiments, any type of fixed storage or holding of wafers can be used in wafer storages for different applications. For example, the wafer storage may be a platform for passive storage of wafers, such as a shelf, a shelf, or a table where the wafer carrier can be placed. Or the wafer storage may be a platform for actively storing wafers, such as a semiconductor processing site or a tool or stocker. More specifically, when the wafer storage 454A, 454B is a semiconductor processing site or tool, the wafer storage 454A, 454B may specifically be a part of the semiconductor processing site or tool, and this part is a semiconductor processing site or The tool is configured to receive or exclude a wafer carrier processed by a semiconductor processing site or tool and a load port for the formed wafer or die.

第一類型的自動感應車458A、458B可包括操縱及/或處理單個晶圓、晶粒及/或晶圓載具的能力。舉例來說,機械手臂459A、459B可以表示具有抓持器(gripper)、或具有其他將晶圓、晶粒及/或晶圓載具從一個平台移至另一個平台的操縱或搬運方式的機械手臂。用語「平台(platform)」能代表可在其上儲存及/或運輸晶圓的任何地方,例如晶圓載具及/或第二類型的自動感應車460。機械手臂459A、459B可藉由傳統的方式使用傳統的機械手臂結構及技術操縱及/或搬運晶圓、晶粒及/或晶圓載具,因此為了簡潔起見,於此不進行詳細討論。舉例來說,機械手臂459A、459B可以從一個平台拾取、移動晶圓、晶粒及/或晶圓載具並放到另一個平台。此外,第一類型的自動感應車458A、458B可以配置成進行與軌道或其他物理導軌無關的自動運動。舉例來說,第一類型的自動感應車458A、458B可以包括一組輪子,可由滾動(例如旋轉)運動的自由度來移動第一類型的自動感應車458A、458B。The first type of automatic induction vehicles 458A, 458B may include the ability to manipulate and/or handle individual wafers, dies, and/or wafer carriers. For example, the robotic arms 459A and 459B can represent robotic arms with grippers, or other manipulation or handling methods for moving wafers, dies and/or wafer carriers from one platform to another. . The term “platform” can refer to any place on which wafers can be stored and/or transported, such as wafer carriers and/or second-type automatic induction vehicles 460. The robotic arms 459A and 459B can manipulate and/or transport wafers, dies and/or wafer carriers by using traditional robotic arm structures and technologies in a traditional manner. Therefore, for the sake of brevity, detailed discussion is not provided here. For example, the robotic arms 459A and 459B can pick up and move wafers, dies and/or wafer carriers from one platform and place them on another platform. In addition, the first type of automatic induction vehicles 458A, 458B can be configured to perform automatic movement independent of tracks or other physical rails. For example, the first type of automatic induction vehicles 458A, 458B may include a set of wheels, and the first type of automatic induction vehicles 458A, 458B can be moved by the degree of freedom of rolling (for example, rotating) motion.

第二種類型的自動感應車460可以被配置或構造成保持晶圓、晶粒及/或晶圓載具。在一些實施例中,第二類型的自動感應車460可以包括用於承載多個晶圓、晶粒及/或晶圓載具的結構(例如在運輸過程中,可以將晶圓、晶粒及/或晶圓載具固定在第二種類型的自動感應車460上的架子或其他結構)。用於承載多個晶圓、晶粒及/或晶圓載具的結構可以包括謹慎識別的位置,使得位於自動推車上的晶圓、晶粒及/或晶圓載具可以與第二類型的自動感應車460的位置相對應,並據此進行辨識。The second type of automatic induction cart 460 may be configured or constructed to hold wafers, dies, and/or wafer carriers. In some embodiments, the second type of automatic induction vehicle 460 may include a structure for carrying multiple wafers, dies, and/or wafer carriers (for example, during transportation, wafers, dies, and/or Or the wafer carrier is fixed on the shelf or other structure of the second type of automatic induction vehicle 460). The structure for carrying multiple wafers, dies, and/or wafer carriers may include carefully identified locations so that the wafers, dies, and/or wafer carriers on the automatic cart can be compatible with the second type of automatic The position of the sensor car 460 corresponds to it, and identification is performed accordingly.

第一類型的自動感應車458A、458B及/或第二類型的自動感應車460都可以配置成在半導體製造設施(FAB)內的架高樓板平台之上的位置之間自動移動。在一些實施例中,第一類型的自動感應車458A、458B及/或第二類型的自動感應車460可以配置有路徑模組,路徑模組可以使第一類型的自動感應車458A、458B及/或第二類型的自動感應車460,以自動且無外部手動引導(例如無需由作業員即時手動驅動及/或引導)的方式確定不同晶圓搬運區(例如晶圓搬運區452A、452B)之間的各種路徑(例如確定各種預定路徑、或在出發之前就確定的路徑)。舉例來說,路徑模組可以配置成接收並執行沿著不同晶圓搬運區之間的已知路徑的移動。在其他範例中,路徑模組可以自動分析半導體製造設施(例如半導體製造設施的佈局),以決定不同晶圓搬運區之間的不同路徑,以避開固定的障礙物。路徑模組的其他範例可以包括可以執行尋路(pathing)或路徑搜尋(path finding)應用程式的模組,例如Dijkstra演算法或角度路徑規劃演算法的應用程式。The first type of automatic induction vehicles 458A, 458B, and/or the second type of automatic induction vehicles 460 may all be configured to automatically move between positions on an elevated floor platform in a semiconductor manufacturing facility (FAB). In some embodiments, the first type of automatic induction vehicles 458A, 458B and/or the second type of automatic induction vehicle 460 may be equipped with a path module, and the path module may enable the first type of automatic induction vehicles 458A, 458B and / Or the second type of automatic induction vehicle 460, which determines different wafer handling areas (e.g. wafer handling areas 452A, 452B) automatically and without external manual guidance (for example, no need to be manually driven and/or guided by the operator in real time) Various paths between (for example, various predetermined paths are determined, or paths determined before departure). For example, the path module can be configured to receive and execute movement along a known path between different wafer handling areas. In other examples, the path module can automatically analyze semiconductor manufacturing facilities (for example, the layout of semiconductor manufacturing facilities) to determine different paths between different wafer handling areas to avoid fixed obstacles. Other examples of path modules may include modules that can execute pathing or path finding applications, such as Dijkstra algorithm or angular path planning algorithm applications.

有利地,在一些實施例中,由於第一類型的自動感應車458A、458B及/或第二類型的自動感應車460是可動的,因此它們可以在高架地板上的半導體製造設施(FAB)周圍以預期的方式移動,而不需要以更穩定的自動化材料搬運系統使用的導軌及/或其他運輸工具(例如通過懸掛在高架導軌上的車輛將晶圓搬運器移至高處的自動化材料搬運系統)來自動化地實現所需的功能。此外,第一類型的自動感應車458A、458B及/或第二類型的自動感應車460可以包括通訊界面,以在不需要人工干預的情況下協調晶圓的運輸和搬運,而傳統系統則需要依靠人工在半導體製造設施周圍運輸晶圓及/或晶圓載具。在一些實施例中,可以藉由將每個單獨的晶圓儲存器、第一類型的自動感應車458A、458B及/或第二類型的自動感應車460配置成進行自動運作且不須個別的指示,而對自動晶圓搬運系統450進行集中控制。舉例來說,可以基於簡單地注意自動晶圓搬運系統450將在其間輸送晶圓、晶粒及/或晶圓載具的晶圓儲存器的位置和類型,以選擇和執行各種預定的例程。Advantageously, in some embodiments, since the first type of automatic induction vehicles 458A, 458B and/or the second type of automatic induction vehicles 460 are movable, they can be located around a semiconductor manufacturing facility (FAB) on a raised floor Move in an expected manner without the need for rails and/or other means of transportation used by a more stable automated material handling system (for example, an automated material handling system that moves the wafer carrier to a height by a vehicle suspended on an elevated rail) To achieve the required functions automatically. In addition, the first type of automatic induction vehicle 458A, 458B and/or the second type of automatic induction vehicle 460 may include a communication interface to coordinate the transportation and handling of wafers without manual intervention, while traditional systems require Rely on manual transportation of wafers and/or wafer carriers around semiconductor manufacturing facilities. In some embodiments, each individual wafer storage, the first type of automatic induction car 458A, 458B, and/or the second type of automatic induction car 460 can be configured to operate automatically without requiring separate Instructions, and centrally control the automatic wafer handling system 450. For example, it is possible to select and execute various predetermined routines based on simply paying attention to the location and type of wafer storage in which the automatic wafer handling system 450 will transport wafers, dies, and/or wafer carriers.

第5圖是根據一些實施例的自動感應車的主動模組502的方塊圖。主動模組502可以包括處理器504。在一些實施例中,處理器504可以為一或多個處理器。處理器504可以可操作地連接到電腦可讀取儲存模組506(例如記憶體及/或資料庫) 、網路連接模組508和使用者界面模組510。FIG. 5 is a block diagram of the active module 502 of the automatic induction vehicle according to some embodiments. The active module 502 may include a processor 504. In some embodiments, the processor 504 may be one or more processors. The processor 504 may be operably connected to a computer-readable storage module 506 (such as a memory and/or a database), a network connection module 508, and a user interface module 510.

處理器504可以配置成控制各種物理設備以促進自動感應車的通訊和控制。舉例來說,處理器504可以配置成控制輪子、機械手臂、網路連接模組508、電腦可讀取儲存模組506、使用者界面模組510、控制器512、感應器514、或其他自動感應車的其他具有主動模組的可控方面之至少一者的運動或功能。舉例來說,處理器504可以控制能使輪子及/或機械手臂中的至少一者運動的馬達。The processor 504 may be configured to control various physical devices to facilitate communication and control of the automatic induction vehicle. For example, the processor 504 can be configured to control wheels, robotic arms, network connection module 508, computer readable storage module 506, user interface module 510, controller 512, sensor 514, or other automatic The other motions or functions of the induction car have at least one of the controllable aspects of the active module. For example, the processor 504 may control a motor capable of moving at least one of a wheel and/or a robot arm.

在一些實施例中,電腦可讀取儲存模組506可以包括可以配置處理器504以執行本文所討論的各種過程的自動感應車邏輯(logic)。電腦可讀取儲存模組還可儲存資料,例如可以用於執行本文所討論的各種過程的任何其他參數或資訊。In some embodiments, the computer-readable storage module 506 may include auto-sensing car logic that can configure the processor 504 to perform the various processes discussed herein. The computer-readable storage module can also store data, such as any other parameters or information that can be used to perform the various processes discussed in this article.

網路連接模組508可以促進自動感應車與自動感應車內部或外部的各種設備及/或元件的網路連接。在一些實施例中,網路連接模組508可以促進物理連接,例如線路或匯流排(bus)。在一些實施例中,網路連接模組508可以例如在無線區域網路(wireless local area network,WLAN)上藉由使用發射器、接收器及/或收發器來促進無線連接。舉例來說,網路連接模組508可以促進與其他自動感應車的無線或有線連接。The network connection module 508 can facilitate the network connection of various devices and/or components inside or outside the automatic induction car and the automatic induction car. In some embodiments, the network connection module 508 can facilitate physical connections, such as wires or buses. In some embodiments, the network connection module 508 can facilitate wireless connection by using a transmitter, a receiver, and/or a transceiver, for example, on a wireless local area network (WLAN). For example, the network connection module 508 can facilitate wireless or wired connection with other automatic induction vehicles.

主動模組502還可以包括使用者界面模組510。使用者界面模組510可以包括供使用者對自動感應車進行輸入及/或輸出給的任何類型的界面,所述界面包括但不限於顯示器、筆記型電腦、平板電腦或行動裝置等。The active module 502 may also include a user interface module 510. The user interface module 510 may include any type of interface for the user to input and/or output to the auto-sensing car. The interface includes, but is not limited to, a display, a notebook computer, a tablet computer, or a mobile device.

主動模組502可以包括感應器。所述感應器可為例如深度感應器。在一些實施例中,深度感應器可為雷射感應器。更具體而言,深度感應器可為例如配置成用脈衝雷射照射一表面(例如地面或架高樓板平台)並測量反射的脈衝的光學雷達(LiDAR)感應器或其他雷射掃描儀。返回的反射脈衝和射出的照射脈衝的返回時間和波長之間的差異可用於確定與表面的距離。在一些實施例中,所述深度感應器可以配置成經由二維深度感應器(例如二維光學雷達或雷射掃描儀)沿著表面上的一維線確定垂直障礙物。所述二維深度感應器可以確定沿著跨過整個表面的線(例如具有長度的一維空間,而非具有長度和寬度的區域)的垂直異常。二維深度感應器可以與可以利用一維深度感應器在表面上的一個點(例如隨著時間遠離深度感應器的相對位置的點)確定垂直障礙物的其他實施例形成對比,或與可以利用三維深度感應器確定整個表面區域(例如具有長度和寬度的二維區域,而非僅具有長度的空間)上的垂直障礙物的其他實施例形成對比。有利地,沿著自動感應車前方的水平線(例如一維空間)並跨過自動感應車所經過的表面的深度變化可能會更可偵測(例如產生更明顯和可區分的感應器數據),並且和在自動感應車前方的區域(例如二維區域)並跨過自動感應車所經過的表面的深度變化相比,僅需要較少的處理。The active module 502 may include a sensor. The sensor may be, for example, a depth sensor. In some embodiments, the depth sensor may be a laser sensor. More specifically, the depth sensor may be, for example, an optical radar (LiDAR) sensor or other laser scanner configured to illuminate a surface (such as the ground or an elevated floor platform) with a pulsed laser and measure the reflected pulse. The difference between the return time and wavelength of the returned reflected pulse and the emitted illumination pulse can be used to determine the distance to the surface. In some embodiments, the depth sensor may be configured to determine vertical obstacles along a one-dimensional line on the surface via a two-dimensional depth sensor (for example, a two-dimensional optical radar or a laser scanner). The two-dimensional depth sensor can determine vertical anomalies along a line that spans the entire surface (for example, a one-dimensional space with a length instead of an area with a length and a width). The two-dimensional depth sensor can be in contrast to other embodiments that can use a point on the surface of the one-dimensional depth sensor (for example, a point that moves away from the relative position of the depth sensor over time) to determine vertical obstacles, or can use In contrast to other embodiments where the three-dimensional depth sensor determines the vertical obstacles on the entire surface area (for example, a two-dimensional area having a length and a width, rather than a space having only a length). Advantageously, changes in depth along the horizontal line in front of the auto-sensing car (for example, one-dimensional space) and across the surface the auto-sensing car passes through may be more detectable (for example, producing more obvious and distinguishable sensor data), And compared with the area in front of the auto-sensing vehicle (for example, a two-dimensional area) and crossing the depth change of the surface that the auto-sensing vehicle passes, only less processing is required.

第6圖是根據一些實施例的自動感應車的過程600的流程圖。可以由至少一個自動感應車執行晶圓自動搬運的過程。應注意的是,過程600僅是示例,並且不旨在限制本揭露。因此應理解的是可以在第6圖的過程600之前、之中、和之後提供額外的操作。可以省略某些操作,可以與其他操作同時執行某些操作,並且於此可以僅簡單描述一些操作。Figure 6 is a flowchart of a process 600 of an automatic induction car according to some embodiments. The process of automatic wafer handling can be performed by at least one automatic induction vehicle. It should be noted that the process 600 is only an example and is not intended to limit the present disclosure. It should therefore be understood that additional operations may be provided before, during, and after the process 600 in FIG. 6. Some operations can be omitted, some operations can be performed simultaneously with other operations, and only some operations can be briefly described here.

在操作602,自動感應車可以決定在架高樓板平台上橫越的路徑。舉例來說,自動感應車可以配置成沿著預定路線橫越架高樓板平台。預定路徑可為例如在兩個不同的用於靜態儲存、處理或保持晶圓的晶圓儲存器(例如半導體處理站點或工具)之間的路徑。舉例來說,晶圓儲存器可為用於被動儲存晶圓的平台,例如可以放置晶圓承載器的料架、架子或桌面。或者晶圓儲存器可為用於主動儲存晶圓的平台,例如半導體加工站點或工具或儲料器。當晶圓儲存器是半導體加工站點或工具時,晶圓儲存器可以具體地是半導體加工站點或工具的一部分,此部分是半導體加工站點或工具的配置成接收或排除由半導體處理站點或工具處理的晶圓載具和組成的晶圓或晶粒的裝載端口。In operation 602, the automatic induction vehicle may determine the path to traverse on the elevated floor platform. For example, the automatic induction vehicle can be configured to traverse the elevated floor platform along a predetermined route. The predetermined path may be, for example, a path between two different wafer storages (eg, semiconductor processing sites or tools) for static storage, processing, or holding of wafers. For example, the wafer storage may be a platform for passive storage of wafers, such as a rack, a shelf or a table where the wafer carrier can be placed. Or the wafer storage may be a platform for actively storing wafers, such as a semiconductor processing site or a tool or stocker. When the wafer storage is a semiconductor processing site or tool, the wafer storage may specifically be a part of the semiconductor processing site or tool, and this part is the semiconductor processing site or tool configured to receive or exclude from the semiconductor processing station Point or tool handles the wafer carrier and the load port of the composed wafer or die.

因此,自動感應車可以經由跨越架高樓板平台的預定路徑將半導體工件從一個半導體處理站點運送到另一個半導體處理站點。在一些實施例中,自動感應車配置成以每秒約0.8公尺、或每秒約0.5公尺到每秒約1公尺的速度跨過架高樓板平台。架高樓板平台可為多孔的及/或在下方樓板的一定距離上方。Therefore, the automatic induction vehicle can transport semiconductor workpieces from one semiconductor processing site to another semiconductor processing site via a predetermined path across the elevated floor platform. In some embodiments, the automatic induction vehicle is configured to cross the elevated floor platform at a speed of about 0.8 meters per second, or about 0.5 meters per second to about 1 meter per second. The elevated floor platform may be porous and/or above a certain distance from the floor below.

在一些實施例中,自動感應車可以配置有路徑模組,可配置自動感應車以確定不同晶圓搬運區之間的各種路徑(例如,確定各種預定路徑或在出發之前確定的位置之間的路徑)自動運行,而無需外部手動指導(例如,無需由操作員即時手動驅動及/或引導)。在某些實施例中,自動傳感器車輛可以配置有路徑模塊,路徑模塊可以配置自動傳感器車輛以自動且無外部手動引導(例如無需由作業員即時手動驅動及/或引導)的方式確定不同晶圓搬運區之間的各種路徑(例如確定各種預定路徑、或在出發之前就確定的路徑)。舉例來說,路徑模組可以配置成接收並執行沿著不同晶圓搬運區之間的已知路徑的移動。在其他範例中,路徑模組可以自動分析半導體製造設施(例如半導體製造設施的佈局),以決定不同晶圓搬運區之間的不同路徑,以避開固定的障礙物。路徑模組的其他範例可以包括可以執行尋路或路徑搜尋應用程式的模組,例如Dijkstra演算法或角度路徑規劃演算法的應用程式。In some embodiments, the automatic induction vehicle may be equipped with a path module, and the automatic induction vehicle may be configured to determine various paths between different wafer handling areas (for example, to determine various predetermined paths or positions determined before departure). The path) runs automatically without external manual guidance (e.g., without immediate manual driving and/or guidance by the operator). In some embodiments, the automatic sensor vehicle may be equipped with a routing module, and the automatic sensor vehicle may be configured with the automatic sensor vehicle to determine different wafers automatically and without external manual guidance (for example, without being manually driven and/or guided by the operator immediately). Various routes between the transfer areas (for example, various predetermined routes are determined, or routes determined before departure). For example, the path module can be configured to receive and execute movement along a known path between different wafer handling areas. In other examples, the path module can automatically analyze semiconductor manufacturing facilities (for example, the layout of semiconductor manufacturing facilities) to determine different paths between different wafer handling areas to avoid fixed obstacles. Other examples of path modules may include modules that can execute pathfinding or path searching applications, such as Dijkstra algorithm or angular path planning algorithm applications.

在操作604,可以啟動深度感應器。如上所述,自動感應車可為具有至少一個深度感應器的自動引導車輛。舉例來說,自動感應車可以配置成向前移動,從而深度感應器可以將垂直障礙物偵測為沿著自動感應車前方並跨過自動感應車正在行駛的架高樓板平台的水平線的深度變化。In operation 604, the depth sensor may be activated. As described above, the automatic induction vehicle may be an automatic guided vehicle having at least one depth sensor. For example, the auto-sensing car can be configured to move forward, so that the depth sensor can detect vertical obstacles as a depth change along the horizontal line in front of the auto-sensing car and across the elevated floor platform where the auto-sensing car is driving .

在一些實施例中,自動感應車可以包括多個深度感應器,但是一次僅使用(例如啟動)一個深度感應器。舉例來說,當自動感應車沿向前運動方向移動時,僅使用或啟動一個朝向向前運動方向的深度感應器。但是,當自動感應車倒退(例如沿反向運動方向移動)時,只使用或啟動一個面向反向運動的深度感應器。換句話說,自動感應車可以僅使用可以收集代表自動感應車進行移動的前方區域的深度感應器數據的一個深度感應器。在一些實施例中,自動感應車可以沿特定方向運動,但是啟動多個深度感應器(例如從所有深度感應器或多個深度感應器監視所有二維的視野)。In some embodiments, the autonomous vehicle may include multiple depth sensors, but only one depth sensor is used (eg, activated) at a time. For example, when the auto-sensing car moves in the forward direction, only one depth sensor facing the forward direction is used or activated. However, when the auto-sensing car reverses (for example, moving in the reverse direction of movement), only a depth sensor facing the reverse movement is used or activated. In other words, the automatic induction car can only use one depth sensor that can collect depth sensor data representing the area in front of the automatic induction car moving. In some embodiments, the autonomous vehicle can move in a specific direction, but activate multiple depth sensors (for example, monitor all two-dimensional views from all depth sensors or multiple depth sensors).

在操作606,可以使用啟動的深度感應器來收集深度感應器數據。在一些實施例中,深度感應器可為雷射感應器。更具體來說,深度感應器可為例如光學雷達(LiDAR)感應器或其他雷射掃描儀。這種雷射掃描儀可以配置成發射脈衝雷射光以照射表面(例如地面或架高樓板平台)。返回的反射脈衝和射出的照射脈衝的返回時間和波長之間的差異可用於確定與表面的距離。這些距離(及/或從中推斷出距離差)可以被稱為深度感應器數據。In operation 606, the activated depth sensor may be used to collect depth sensor data. In some embodiments, the depth sensor may be a laser sensor. More specifically, the depth sensor may be, for example, an optical radar (LiDAR) sensor or other laser scanners. Such laser scanners can be configured to emit pulsed laser light to illuminate surfaces (such as the ground or elevated floor platforms). The difference between the return time and wavelength of the returned reflected pulse and the emitted illumination pulse can be used to determine the distance to the surface. These distances (and/or distance differences inferred from them) can be referred to as depth sensor data.

在一些實施例中,可以沿著整個表面(例如架高樓板平台)的一維水平線收集所述深度感應器數據。可以藉由具有二維視野的二維深度感應器(例如二維光學雷達或雷射掃描儀)來收集沿著此一維水平線的深度感應器數據。因此如果此表面(例如架高樓板平台)是垂直一致的(例如沿架高樓板平台沒有遺失的面板或其他開口),二維視野將終止於表面(例如架高樓板平台)並形成水平線。In some embodiments, the depth sensor data may be collected along a one-dimensional horizontal line of the entire surface (for example, an elevated floor platform). A two-dimensional depth sensor with a two-dimensional field of view (such as a two-dimensional optical radar or a laser scanner) can be used to collect the depth sensor data along the one-dimensional horizontal line. Therefore, if the surface (e.g. elevated floor platform) is vertically consistent (e.g. there are no missing panels or other openings along the elevated floor platform), the two-dimensional view will end at the surface (e.g. elevated floor platform) and form a horizontal line.

在操作608,可以基於深度感應器數據來偵測垂直障礙物。在一些實施例中,垂直障礙物可為大於一閾值量(例如表示一維水平線上的深度感應器數據發生異常值或非標準差(non-nominal difference)的閾值量)的跨過一維水平線上的深度感應器數據中的階躍變化(step change)。在一些實施例中,當跨過一維水平線的深度感應器數據中的差異大於大約1公分(cm)、大於大約10cm、大於大約20cm、大於大約30cm、大於約40cm、大於約50cm、或大於約60cm時可以偵測到垂直障礙物。因此,深度感應器可以配置成基於深度感應器數據,而沿跨過整個表面(例如架高樓板平台)的一維水平線來確定垂直障礙物。In operation 608, a vertical obstacle may be detected based on the depth sensor data. In some embodiments, the vertical obstacle may be greater than a threshold amount (for example, a threshold amount indicating that the depth sensor data on the one-dimensional horizontal line has an abnormal value or a non-nominal difference) crossing a one-dimensional level. A step change in the depth sensor data on the line. In some embodiments, when the difference in the depth sensor data across a one-dimensional horizontal line is greater than about 1 centimeter (cm), greater than about 10 cm, greater than about 20 cm, greater than about 30 cm, greater than about 40 cm, greater than about 50 cm, or greater than Vertical obstacles can be detected at about 60cm. Therefore, the depth sensor can be configured to determine vertical obstacles along a one-dimensional horizontal line that spans the entire surface (such as an elevated floor platform) based on the depth sensor data.

如上所述,可藉由具有二維視野的二維深度感應器(例如二維雷射雷達或雷射掃描儀)來偵測或收集沿著所述一維水平線的深度感應器數據。因此如果此表面(例如架高樓板平台)是垂直一致的(例如沿架高樓板平台沒有遺失的面板或其他開口),二維視野將終止於表面(例如架高樓板平台)並形成水平線。As described above, a two-dimensional depth sensor (such as a two-dimensional laser radar or a laser scanner) with a two-dimensional field of view can be used to detect or collect the depth sensor data along the one-dimensional horizontal line. Therefore, if the surface (e.g. elevated floor platform) is vertically consistent (e.g. there are no missing panels or other openings along the elevated floor platform), the two-dimensional view will end at the surface (e.g. elevated floor platform) and form a horizontal line.

然而,如果此表面(例如架高樓板平台)是垂直不一致的(例如沿著架高樓板平台缺少面板或具有其他開口),則來自二維視野的深度感應器數據將指示沿著水平線的垂直不一致性。有利地,沿著自動感應車前方的水平線(例如一維空間)並跨過自動感應車所經過的表面(例如抬高的地板)的深度變化可能會是更可偵測(例如產生更明顯和可區分的感應器數據),並且和在自動感應車前方的區域(例如二維區域)並跨過表面(例如自動感應車正在越過的表面)的深度變化相比,僅需要較少的處理。However, if this surface (e.g. an elevated floor platform) is vertically inconsistent (e.g. lacks panels or has other openings along the elevated floor platform), the depth sensor data from the two-dimensional field of view will indicate vertical inconsistencies along the horizontal line Sex. Advantageously, the depth changes along the horizontal line (such as one-dimensional space) in front of the auto-sensing car and across the surface (e.g. raised floor) the auto-sensing car passes through may be more detectable (e.g., produce more obvious and Differentiable sensor data), and requires less processing than the depth changes in the area in front of the auto-sensing car (for example, a two-dimensional area) and across the surface (for example, the surface the auto-sensing car is crossing).

在操作610,可以響應於偵測到垂直障礙物的偵測而執行補救。此補救措施可能包括讓自動感應車將其在架高樓板平台上的路徑重新定向,以避開偵測到的垂直障礙物。在一些實施例中,所述重新定向的路徑可以具有與原始路徑相同的起點和終點,但是設計為避開偵測到的垂直障礙物。In operation 610, remediation may be performed in response to the detection of a vertical obstacle. This remedy may include allowing the automatic sensor car to redirect its path on the elevated floor platform to avoid detected vertical obstacles. In some embodiments, the redirected path may have the same start and end points as the original path, but is designed to avoid detected vertical obstacles.

在一些實施例中,所述補救操作可為響應於在自動感應車前方(例如沿著自動感應車正在移動的方向在自動感應車之前)偵測到的垂直障礙物而立即停止自動感應車。此立即停止可以觸發自動感應車的路徑模組來分析半導體製造設備的更新的佈局(例如現在具有新偵測到的垂直障礙物)。在分析過後,路徑模組可以提供經過重新定向的(例如新的)路徑給自動感應車,以橫越架高樓板平台。In some embodiments, the remedial operation may be to immediately stop the auto-sensing car in response to a vertical obstacle detected in front of the auto-sensing car (for example, before the auto-sensing car in the direction in which the auto-sensing car is moving). This immediate stop can trigger the path module of the automatic induction vehicle to analyze the updated layout of the semiconductor manufacturing equipment (for example, there is now a newly detected vertical obstacle). After the analysis, the path module can provide a redirected (for example, new) path to the automatic induction vehicle to traverse the elevated floor platform.

在一些實施例中,此立即停止可以觸發一指令(例如警報或經由通訊界面所進行的通訊)給具有自動感應車正在橫越的架高樓板平台的半導體製造設施的操作者,以對垂直障礙物進行補救(例如更換缺少的地板片及/或在架高樓板平台上去除意外的物品)。一旦補救了垂直障礙物,則警報操作員可以指示自動感應車(例如經由通訊界面)以恢復自動感應車跨過半導體製造設備的原始路徑。在一些實施例中,所述指令可為經由通訊界面發送給自動感應車的對垂直障礙物進行了補救的通知。In some embodiments, this immediate stop can trigger an instruction (for example, an alarm or communication via a communication interface) to an operator of a semiconductor manufacturing facility with an elevated floor platform that an automatic sensor vehicle is traversing to prevent vertical obstacles. Remedial items (such as replacing missing floor tiles and/or removing accidental items on elevated floor platforms). Once the vertical obstacle is remedied, the alert operator can instruct the automatic induction vehicle (for example, via a communication interface) to restore the automatic induction vehicle's original path across the semiconductor manufacturing equipment. In some embodiments, the instruction may be a notification that the vertical obstacle has been remedied sent to the automatic induction vehicle via a communication interface.

在一些實施例中提供一種運輸系統,包括:自動車,配置成橫越/通過第一預定路徑;以及感應器系統,位在自動車上,感應器系統配置成沿著第一預定路徑在自動車前方的一或兩個樓板上偵測垂直障礙物,其中自動車配置成響應於偵測到垂直障礙物而橫越第二預定路徑。In some embodiments, a transportation system is provided, including: an automatic vehicle configured to traverse/pass a first predetermined path; and a sensor system located on the automatic vehicle, the sensor system configured to be located in front of the automatic vehicle along the first predetermined path Vertical obstacles are detected on one or two floors, wherein the automatic vehicle is configured to traverse the second predetermined path in response to detecting the vertical obstacle.

在一些實施例中,感應器系統包括二維光學雷達感應器。在一些實施例中,二維光學雷達感應器是靜止的。在一些實施例中,感應器系統包括以線性雷射實現之二維光學雷達感應器。在一些實施例中,感應器系統包括複數個二維光學雷達感應器,配置成沿著彼此正交的線段偵測垂直不一致處。在一些實施例中,各條線段中的一者沿著與自動車的運動方向正交的軸線延伸。In some embodiments, the sensor system includes a two-dimensional optical radar sensor. In some embodiments, the two-dimensional optical radar sensor is stationary. In some embodiments, the sensor system includes a two-dimensional optical radar sensor implemented as a linear laser. In some embodiments, the sensor system includes a plurality of two-dimensional optical radar sensors configured to detect vertical inconsistencies along lines orthogonal to each other. In some embodiments, one of the various line segments extends along an axis orthogonal to the direction of movement of the automatic vehicle.

在一些實施例中提供一種運輸系統,包括:架高樓板平台,配置成減少從架高樓板平台的一側傳遞到架高樓板平台的第二側的震動;自動車,配置成沿著第一預定路徑橫越架高樓板平台;以及感應器系統,配置成沿著在自動車前方之地板沿著第一預定路徑偵測垂直障礙物,其中自動車配置成響應於偵測到垂直障礙物時,沿著第二預定路徑橫越架高樓板平台In some embodiments, a transportation system is provided, including: an elevated floor platform configured to reduce vibration transmitted from one side of the elevated floor platform to a second side of the elevated floor platform; an automatic vehicle configured to follow a first predetermined The path traverses the elevated floor platform; and the sensor system is configured to detect vertical obstacles along the first predetermined path along the floor in front of the automatic car, wherein the automatic car is configured to follow the vertical obstacle when the vertical obstacle is detected. The second predetermined path traverses the elevated floor platform

在一些實施例中,感應器系統包括線性雷射,與自動車之表面傾斜約30度至約50度之角度。在一些實施例中,線性雷射位在架高樓板平台上方約100mm至約1000mm處。在一些實施例中,自動車配置成以每秒約0.5公尺至每秒約1公尺的速度跨過架高樓板平台。在一些實施例中,感應器系統包括感應器部分以及處理器部分,其中感應器部分配置成產生感應器數據,感應器數據藉由處理器部分進行處理以沿著第一預定路徑偵測垂直障礙物。在一些實施例中,架高樓板平台位在下方樓板之一定距離上方。在一些實施例中,架高樓板平台是多孔的。在一些實施例中,機械手臂位在自動車之頂部。In some embodiments, the sensor system includes a linear laser that is inclined at an angle of about 30 degrees to about 50 degrees with the surface of the automobile. In some embodiments, the linear laser is located about 100 mm to about 1000 mm above the elevated floor platform. In some embodiments, the automated vehicle is configured to traverse the elevated floor platform at a speed of about 0.5 meters per second to about 1 meter per second. In some embodiments, the sensor system includes a sensor part and a processor part, wherein the sensor part is configured to generate sensor data, and the sensor data is processed by the processor part to detect vertical obstacles along a first predetermined path Things. In some embodiments, the elevated floor platform is located a certain distance above the lower floor. In some embodiments, the elevated floor platform is porous. In some embodiments, the robotic arm is located on the top of the automated vehicle.

在一些實施例中提供一種運輸方法,包括:當自動車沿著第一預定路徑行進時,沿著自動車前方之線段收集深度感應器數據;基於深度感應器數據偵測自動車前方之垂直障礙物;以及響應於偵測到垂直障礙物而重新定向自動車,以使自動車沿著第二預定路徑移動。In some embodiments, a transportation method is provided, including: when the automatic vehicle is traveling along a first predetermined path, collecting depth sensor data along a line segment in front of the automatic vehicle; detecting a vertical obstacle in front of the automatic vehicle based on the depth sensor data; and In response to detecting the vertical obstacle, the automatic vehicle is redirected to move the automatic vehicle along the second predetermined path.

在一些實施例中,運輸方法更包括響應於偵測到垂直障礙物而停止自動車。在一些實施例中,第一預定路徑係沿著架高樓板平台,從第一半導體處理站點到第二半導體處理站點的路徑。在一些實施例中,第二預定路徑係沿著架高樓板平台,從第一半導體處理站點到第二半導體處理站點的路徑,且第二預定路徑與第一預定路徑不同。在一些實施例中,運輸方法更包括在第一半導體處理站點以及第二半導體處理站點之間移動半導體工件,其中第一預定路徑以及第二預定路徑係介於第一半導體處理站點以及第二半導體處理站點之間。在一些實施例中,運輸方法更包括藉由自動車之機械手臂,將半導體工件從自動車移動到第二半導體處理站點。In some embodiments, the transportation method further includes stopping the automated vehicle in response to detecting a vertical obstacle. In some embodiments, the first predetermined path is a path along the elevated floor platform from the first semiconductor processing site to the second semiconductor processing site. In some embodiments, the second predetermined path is a path along the elevated floor platform from the first semiconductor processing site to the second semiconductor processing site, and the second predetermined path is different from the first predetermined path. In some embodiments, the transportation method further includes moving the semiconductor workpiece between the first semiconductor processing site and the second semiconductor processing site, wherein the first predetermined path and the second predetermined path are between the first semiconductor processing site and Between the second semiconductor processing site. In some embodiments, the transportation method further includes moving the semiconductor workpiece from the automated vehicle to the second semiconductor processing station by the robotic arm of the automated vehicle.

本領域通常知識者將進一步理解,結合本說明書所揭露的方面描述的各種說明性邏輯方塊、模組、處理器、裝置、電路、方法和功能中的任何一者可以藉由電子硬體(例如以數位的方式實現、以類比的方式實現或以兩者的組合實現)、韌體、各種形式的程式或包含指令的設計代碼(為了方便起見,此處可稱為「軟體」或「軟體模組」)或前述技術的任何組合而實現。為了清楚地說明硬體、韌體和軟體的這種可互換性,先前已經大致上描述了各種說明性的元件、方塊、模組、電路和步驟的功能。這種功能是否實現為硬體、韌體和軟體或這些技術的組合取決於特定應用和加在整個系統上的設計約束。本領域通常知識者可以針對每個特定應用以各種方式實現所描述的功能,而不會超出本揭露的範圍。Those skilled in the art will further understand that any of the various illustrative logical blocks, modules, processors, devices, circuits, methods, and functions described in conjunction with the aspects disclosed in this specification can be implemented by electronic hardware (such as Digitally, analogously, or a combination of the two), firmware, various forms of programs, or design code containing instructions (for convenience, this may be referred to as "software" or "software" Module") or any combination of the foregoing technologies. In order to clearly illustrate the interchangeability of hardware, firmware, and software, various illustrative elements, blocks, modules, circuits, and functions of steps have been generally described previously. Whether this function is implemented as hardware, firmware, and software or a combination of these technologies depends on the specific application and design constraints imposed on the entire system. Those skilled in the art can implement the described functions in various ways for each specific application without going beyond the scope of this disclosure.

此外,本領域通常知識者將理解本文描述的各種說明性邏輯方塊、模組、裝置、元件和電路可以在可以包括通用處理器(general purpose processor)、數位訊號處理器(digital signal processor,DSP)、特殊應用積體電路(application specific integrated circuit,ASIC)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)、其他可程式化邏輯裝置、或其任何組合的積體電路(integrated circuit,IC)內實現或執行。所述邏輯方塊、模組和電路還可以包括天線及/或收發器,以與網路內或裝置內的各種元件進行通訊。通用處理器可為微處理器,或者任何傳統的處理器、控制器或狀態機(state machine)。處理器還可以實現為計算裝置的組合,例如數位訊號處理器和微處理器的組合、多個微處理器、一或多個微處理器與數位訊號處理器核心結合、或者任何適合於執行所述功能的配置。In addition, those of ordinary skill in the art will understand that the various illustrative logic blocks, modules, devices, elements, and circuits described herein may include general purpose processors (general purpose processors) and digital signal processors (digital signal processors, DSP). , Application specific integrated circuit (application specific integrated circuit, ASIC), field programmable logic gate array (field programmable gate array, FPGA), other programmable logic device, or any combination of integrated circuit (integrated circuit, IC) implemented or executed. The logic blocks, modules, and circuits may also include antennas and/or transceivers to communicate with various components in a network or device. The general-purpose processor can be a microprocessor, or any traditional processor, controller, or state machine. The processor can also be implemented as a combination of computing devices, such as a combination of a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any combination suitable for executing The configuration of the described functions.

在本說明書中,本文所使用的術語「模組」係代表用於執行本說明書描述的相關功能的軟體、韌體、硬體和這些元件的任何組合。此外,為了方便討論,係將各種模組描述為離散的模組。然而,可將兩個或更多個模組組合成執行根據本揭露實施例的相關功能的單個模組,且對於本領域通常知識者來說是顯而易見的。In this specification, the term "module" used herein refers to software, firmware, hardware, and any combination of these components used to perform the related functions described in this specification. In addition, for the convenience of discussion, the various modules are described as discrete modules. However, two or more modules can be combined into a single module that performs related functions according to the embodiments of the present disclosure, and it is obvious to those skilled in the art.

上述內容概述許多實施例的特徵,因此任何所屬技術領域中具有通常知識者,可更加理解本揭露之各面向。任何所屬技術領域中具有通常知識者,可能無困難地以本揭露為基礎,設計或修改其他製程及結構,以達到與本揭露實施例相同的目的及/或得到相同的優點。任何所屬技術領域中具有通常知識者也應了解,在不脫離本揭露之精神和範圍內做不同改變、代替及修改,如此等效的創造並沒有超出本揭露的精神及範圍。The above content summarizes the features of many embodiments, so anyone with ordinary knowledge in the relevant technical field can better understand the various aspects of this disclosure. Anyone with ordinary knowledge in the relevant technical field may design or modify other processes and structures based on this disclosure without difficulty to achieve the same purpose and/or obtain the same advantages as the embodiments of the disclosure. Anyone with ordinary knowledge in the relevant technical field should also understand that various changes, substitutions and modifications are made without departing from the spirit and scope of this disclosure. Such equivalent creations do not exceed the spirit and scope of this disclosure.

除非另外特別說明,否則如「可」、「可以」、「可能」、「能」之類的條件語言在內文中通常是理解為用於表達一些實施例包括而其他實施例不包括的特定特徵、元件及/或步驟。因此,這種條件語言通常不代表一或多個實施例需要某些特徵、元素及/或步驟,或不代表一或多個實施例必須包括在有或無使用者的狀況下在特定實施例中包括是否所述的特徵、元件、及/或步驟會被包括或進行的決定邏輯。Unless specifically stated otherwise, conditional language such as "may", "may", "may" and "can" are generally understood in the text to express specific features included in some embodiments but not included in other embodiments. , Components and/or steps. Therefore, this conditional language generally does not mean that one or more embodiments require certain features, elements, and/or steps, or that one or more embodiments must be included in a particular embodiment with or without users. It includes the decision logic whether the described features, elements, and/or steps will be included or performed.

另外,於閱讀完本揭露之後,本領域通常知識者將能夠配置功能實體以執行本文所述的操作。此處所使用的關於指定操作或功能的用語「配置」指的是物理地或虛擬地構建、程式化及/或佈置用以執行指定操作或功能的系統、裝置、元件、電路、結構、機器等。In addition, after reading this disclosure, those skilled in the art will be able to configure functional entities to perform the operations described herein. The term "configuration" used here with regard to designated operations or functions refers to the physical or virtual construction, programming, and/or arrangement of systems, devices, components, circuits, structures, machines, etc., to perform designated operations or functions .

除非另有明確說明,否則本文如「X、Y、或Z中的至少一者」的析取語言(disjunctive language)通常用於代表項目、用語等可為X、Y或Z、或其任何組合(例如、X、Y及/或Z)。因此,這種析取語言通常不代表且不應該暗示一些實施例需要存在至少一個X、至少一個Y或至少一個Z。Unless explicitly stated otherwise, the disjunctive language (disjunctive language) such as "at least one of X, Y, or Z" in this article is usually used to represent items, terms, etc., can be X, Y, or Z, or any combination thereof (For example, X, Y, and/or Z). Therefore, this disjunctive language generally does not represent and should not imply that some embodiments require the presence of at least one X, at least one Y, or at least one Z.

應強調的是,可以對上述實施例進行各種變化和修改,其中的元素應理解為其他可接受的範例。所有的修改和變化皆包括在本揭露的範圍內並且由所附的申請專利範圍所保護。It should be emphasized that various changes and modifications can be made to the above embodiments, and the elements therein should be understood as other acceptable examples. All modifications and changes are included in the scope of this disclosure and protected by the attached patent application.

102:自動感應車 104:深度感應器 106:架高樓板平台 108:垂直障礙物 110A、110B:箭號 112:水平線 114:視野 116:表面 117:虛擬線段 118:負載區 120:地板片 124A:前輪 124B:後輪 202:自動感應車 204:架高樓板平台 206:深度感應器 208:垂直障礙物 210:其他物體 220:地板片 226:地面 302:架高樓板平台 304:地面 306:格子 308:地板片 310:支座 312:鋼撐臂 316:絕緣板 322:自動感應車 324:深度感應器 326:視野 328:角度 330、331:表面 350:垂直障礙物 356:第一深度 358:第二深度 370:架高樓板平台 372:自動感應車 374A:第一二維視野 374B:第二二維視野 374C:第三二維視野 374D:第四二維視野 376A、376B、376C、376D:水平線 380A:第一方向 380B:第二方向 380C:第三方向 380D:第四方向 402:自動感應車 404:機械手臂 406:有效負載區域 412:自動感應車 414:晶圓載具 450:自動晶圓搬運系統 452A、452B:晶圓搬運區 454A、454B:晶圓儲存器 456A、456B:晶圓載具 458A、458B:第一類型的自動感應車 459A、459B:機械手臂 460:第二類型的自動感應車 502:主動模組 504:處理器 506:電腦可讀取儲存模組 508:網路連接模組 510:使用者界面模組 512:控制器 514:感應器 600:過程 602、604、606、608、610:操作102: Automatic induction car 104: Depth sensor 106: high floor platform 108: Vertical Obstacle 110A, 110B: Arrow 112: horizontal line 114: Vision 116: Surface 117: Virtual Line Segment 118: load zone 120: Floor Piece 124A: front wheel 124B: rear wheel 202: Automatic induction car 204: high floor platform 206: Depth Sensor 208: Vertical Obstacle 210: other objects 220: floor piece 226: Ground 302: Elevated Floor Platform 304: Ground 306: grid 308: Floor Piece 310: bearing 312: Steel brace 316: Insulation board 322: Automatic induction car 324: Depth Sensor 326: Vision 328: Angle 330, 331: Surface 350: Vertical Obstacle 356: first depth 358: second depth 370: high floor platform 372: Automatic induction car 374A: The first two-dimensional vision 374B: The second two-dimensional field of view 374C: The third two-dimensional vision 374D: The fourth two-dimensional field of view 376A, 376B, 376C, 376D: horizontal line 380A: First direction 380B: second direction 380C: Third party 380D: Fourth direction 402: Automatic induction car 404: Robotic Arm 406: payload area 412: Automatic induction car 414: Wafer Carrier 450: Automatic wafer handling system 452A, 452B: Wafer handling area 454A, 454B: wafer storage 456A, 456B: Wafer carrier 458A, 458B: the first type of automatic induction car 459A, 459B: robotic arm 460: The second type of automatic induction car 502: Active Module 504: processor 506: Computer readable storage module 508: network connection module 510: User Interface Module 512: Controller 514: Sensor 600: process 602, 604, 606, 608, 610: Operation

以下將配合所附圖式詳述本揭露之實施例。應注意的是,依據在業界的標準做法,多種特徵並未按照比例繪示且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本揭露的特徵。 第1圖是根據一些實施例的自動感應車的概念圖。 第2圖是根據一些實施例的在架高樓板平台上的自動感應車的示意圖。 第3A圖是根據一些實施例的架高樓板平台的側視圖。 第3B圖是根據一些實施例的具有垂直障礙物的架高樓板平台的側視圖。 第3C圖是根據一些實施例的被自動感應車橫越的架高樓板平台的一部分的俯視圖。 第4A圖是根據一些實施例的具有機械手臂的自動感應車的概念圖。 第4B圖是根據一些實施例的具有晶圓載具的自動感應車的概念圖。 第4C圖是根據一些實施例的自動晶圓搬運系統的概念圖。 第5圖是根據一些實施例的自動感應車的主動模組的方塊圖。 第6圖是根據一些實施例的自動感應車的過程的流程圖。The embodiments of the disclosure will be described in detail below in conjunction with the accompanying drawings. It should be noted that, according to standard practices in the industry, the various features are not drawn to scale and are only used for illustration. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly show the features of the present disclosure. Figure 1 is a conceptual diagram of an automatic induction vehicle according to some embodiments. Figure 2 is a schematic diagram of an automatic induction vehicle on an elevated floor platform according to some embodiments. Figure 3A is a side view of an elevated floor platform according to some embodiments. Figure 3B is a side view of an elevated floor platform with vertical obstacles according to some embodiments. Figure 3C is a top view of a portion of an elevated floor platform traversed by an automatic induction vehicle according to some embodiments. Figure 4A is a conceptual diagram of an automatic induction vehicle with a robotic arm according to some embodiments. FIG. 4B is a conceptual diagram of an automatic induction vehicle with a wafer carrier according to some embodiments. FIG. 4C is a conceptual diagram of an automatic wafer handling system according to some embodiments. FIG. 5 is a block diagram of an active module of an automatic induction vehicle according to some embodiments. Fig. 6 is a flowchart of the process of an automatic induction car according to some embodiments.

102:自動感應車 102: Automatic induction car

104:深度感應器 104: Depth sensor

106:架高樓板平台 106: high floor platform

108:垂直障礙物 108: Vertical Obstacle

110A、110B:箭號 110A, 110B: Arrow

112:水平線 112: horizontal line

114:視野 114: Vision

116:表面 116: Surface

117:虛擬線段 117: Virtual Line Segment

118:負載區 118: load zone

120:地板片 120: Floor Piece

124A:前輪 124A: front wheel

124B:後輪 124B: rear wheel

412:自動感應車 412: Automatic induction car

Claims (1)

一種運輸系統,包括: 一自動車,配置成橫越一第一預定路徑;以及 一感應器系統,位在該自動車上,該感應器系統配置成沿著該第一預定路徑上在該自動車前方的一或兩個樓板偵測一垂直障礙物,其中該自動車配置成響應於偵測到該垂直障礙物而橫越一第二預定路徑。A transportation system including: An automatic vehicle configured to traverse a first predetermined path; and A sensor system is located on the automatic vehicle, the sensor system is configured to detect a vertical obstacle along the first predetermined path on one or two floors in front of the automatic vehicle, wherein the automatic vehicle is configured to respond to detection The vertical obstacle is detected and a second predetermined path is traversed.
TW108135257A 2018-09-27 2019-09-27 Transport system TW202042986A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862737436P 2018-09-27 2018-09-27
US62/737,436 2018-09-27
US16/580,977 2019-09-24
US16/580,977 US11334080B2 (en) 2018-09-27 2019-09-24 Systems and methods for raised floor automated sensor vehicles

Publications (1)

Publication Number Publication Date
TW202042986A true TW202042986A (en) 2020-12-01

Family

ID=70051078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108135257A TW202042986A (en) 2018-09-27 2019-09-27 Transport system

Country Status (1)

Country Link
TW (1) TW202042986A (en)

Similar Documents

Publication Publication Date Title
TWI689456B (en) Temporary storage system
TWI729078B (en) Handling system
US9190304B2 (en) Dynamic storage and transfer system integrated with autonomous guided/roving vehicle
JP6202199B2 (en) Transport system and transport method
US20190185265A1 (en) Method and system for automated transport of items
ES2812568T3 (en) Autonomous mobile robot to execute work assignments in a physical environment in which there are stationary and non-stationary obstacles
US9901210B2 (en) Efficient transfer of materials in manufacturing
US20110245964A1 (en) Self Aligning Automated Material Handling System
JPWO2015174181A6 (en) Transport system and transport method
JP6048686B2 (en) Temporary storage device, transport system and temporary storage method
US20170194181A1 (en) Overhead traveling vehicle, transportation system with the same, and method of operating the same
US10910249B2 (en) Systems and methods for automated wafer handling
US11183409B2 (en) System for a semiconductor fabrication facility and method for operating the same
JP4470576B2 (en) Transport system
TW201810496A (en) Conveyance system
US10642165B2 (en) Automated mask storage and retrieval system
JP2019001655A (en) Automatic warehouse system
JP5698051B2 (en) Container terminal and its control method
JP2023508904A (en) A remotely operated vehicle with an array to provide advance warning and tracking of the vehicle's location
JP2019163138A (en) Conveying method of work-piece using moving body, computer program, and moving body
TW202042986A (en) Transport system
US11334080B2 (en) Systems and methods for raised floor automated sensor vehicles
JPH10289939A (en) Unmanned conveying truck
TW202346172A (en) Transport facility
JP2022165832A (en) Mobile body system, mobile body controlling method, and program