TW202042472A - System and method for impedance testing dc power sources - Google Patents

System and method for impedance testing dc power sources Download PDF

Info

Publication number
TW202042472A
TW202042472A TW108147076A TW108147076A TW202042472A TW 202042472 A TW202042472 A TW 202042472A TW 108147076 A TW108147076 A TW 108147076A TW 108147076 A TW108147076 A TW 108147076A TW 202042472 A TW202042472 A TW 202042472A
Authority
TW
Taiwan
Prior art keywords
battery
converter
power source
ripple
inverter
Prior art date
Application number
TW108147076A
Other languages
Chinese (zh)
Other versions
TWI821488B (en
Inventor
艾恩 波勒汀
雷加納森 古納森
安尼庫瑪 維夏華賈拉
奇卡林格 卡盧波亞
Original Assignee
美商博隆能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/233,323 external-priority patent/US10809308B2/en
Priority claimed from US16/233,303 external-priority patent/US10989760B2/en
Application filed by 美商博隆能源股份有限公司 filed Critical 美商博隆能源股份有限公司
Publication of TW202042472A publication Critical patent/TW202042472A/en
Application granted granted Critical
Publication of TWI821488B publication Critical patent/TWI821488B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04949Electric variables other electric variables, e.g. resistance or impedance
    • H01M8/04951Electric variables other electric variables, e.g. resistance or impedance of the individual fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuel Cell (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A method includes selecting a test waveform to inject from a first DC converter to at least one first DC power source other than a fuel cell, determining a first resulting ripple that will be generated in response to injecting the test waveform onto the battery, determining at least one offset waveform to inject from at least one second DC converter to at least one second DC power source to generate one or more second ripples which cancel the first resulting ripple, injecting the test waveform from the first DC converter to the at least one first DC power source, injecting the at least one offset waveform from the at least one second DC converter to the at least one second DC power source, and determining a characteristic of the first DC power source based at least in part on the impedance response of the first DC power source.

Description

用於阻抗測試直流電源之系統及方法System and method for impedance testing DC power supply

資訊技術(「IT」)負載通常部署於在大多數市場中現在平均每機架4 KW至6 KW之機架或機櫃中。技術隨著機架超過每機架40 KW而變得更密集且對高效能運算應用而言甚至更高。8 KW至35 KW之範圍內之應用隨著刀片、大容量儲存及網路由於行動性原因被整合而變得越來越流行。Information technology ("IT") loads are usually deployed in racks or cabinets with an average of 4 KW to 6 KW per rack in most markets. Technology becomes denser as racks exceed 40 kW per rack and even higher for high-performance computing applications. Applications in the range of 8 KW to 35 KW are becoming more and more popular as blades, mass storage and networks are integrated due to mobility reasons.

雲端運算允許利用更多分佈式組態及更佳利用既有資料中心、公共雲端及依藉由允許雲端消費者之「一切即服務(Everything as a Service)」利用方式來允許(例如)企業或中小企業(「SMB」)市場之最佳操作之一方式產生之新私有雲端。「基礎設施即服務(Infrastructure as a Service)」模型較佳地與企業之要求同步化,因此,市場中需要構建將允許以最佳成本總體更快上市之此基礎設施之區塊。Cloud computing allows the use of more distributed configurations and better use of existing data centers, public clouds, and allows (for example) enterprises or companies to use the "Everything as a Service" approach that allows cloud consumers A new private cloud created by one of the best practices in the small and medium-sized enterprise ("SMB") market. The "Infrastructure as a Service" model is better synchronized with the requirements of enterprises. Therefore, the market needs to build blocks of this infrastructure that will allow faster overall listing at the best cost.

根據本發明之一態樣,一種系統含有:一直流(「DC」)匯流排;除一燃料電池之外的一第一DC電源,其經由一第一輸入連接電連接至一第一DC轉換器,其中該第一DC轉換器經由一第一輸出連接連接至該DC匯流排;除一燃料電池之外的至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二DC轉換器,其中該至少一第二DC轉換器經由至少第二輸出連接連接至該DC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一DC轉換器及該至少一第二DC轉換器並行連接至該DC匯流排;及一處理器,其連接至該第一DC轉換器及該至少一第二DC轉換器。該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入至自該第一DC轉換器至除一燃料電池之外的該第一DC電源之該第一輸入連接上;判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波;判定至少一偏移波形以注入至自該至少一第二DC轉換器至除一燃料電池之外的該至少一第二DC電源之該至少一第二輸入連接上,使得將提供至該至少一第二輸出連接之一或多個第二漣波抵消該第一所得漣波;控制該第一DC轉換器將該測試波形注入至該第一輸入連接上;及控制該至少一第二DC轉換器將該至少一偏移波形注入至該至少一第二輸入連接上。According to an aspect of the present invention, a system includes: a direct current ("DC") bus; a first DC power source other than a fuel cell, which is electrically connected to a first DC converter via a first input connection Wherein the first DC converter is connected to the DC busbar via a first output connection; at least one second DC power source other than a fuel cell is electrically connected to at least one second input connection via at least one second input connection Two DC converters, wherein the at least one second DC converter is connected to the DC bus through at least a second output connection and wherein the first output connection and the at least one second output connection are the first DC converter and the At least one second DC converter is connected to the DC bus in parallel; and a processor is connected to the first DC converter and the at least one second DC converter. The processor is configured with processor-executable instructions to perform operations including: selecting a test waveform to inject into the first DC power source from the first DC converter to the first DC power source other than a fuel cell The first input connection; determine that a first resultant ripple on the first output connection will be generated in response to injecting the test waveform into the first input connection; determine at least one offset waveform to inject from the At least one second DC converter is connected to the at least one second input connection of the at least one second DC power source other than a fuel cell, so that one or more second input connections will be provided to the at least one second output connection Ripple cancels the first obtained ripple; controlling the first DC converter to inject the test waveform into the first input connection; and controlling the at least one second DC converter to inject the at least one offset waveform into the At least one second input is connected.

根據本發明之另一態樣,一種系統含有:一交流(「AC」)匯流排;一第一直流(「DC」)電源,其經由一第一輸入連接電連接至一第一反相器,其中該第一反相器經由一第一輸出連接連接至該AC匯流排;至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二反相器,其中該至少一第二反相器經由至少第二輸出連接連接至該AC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一反相器及該至少一第二反相器並行連接至該AC匯流排;及一處理器,其連接至該第一反相器及該至少一第二反相器。該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入至自該第一反相器至該第一DC電源之該第一輸入連接上;判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波;判定至少一偏移波形以注入至自該至少一第二反相器至該至少一第二DC電源之該至少一第二輸入連接上,使得將提供至該至少一第二輸出連接之一或多個第二漣波抵消該第一所得漣波;控制該第一反相器將該測試波形注入至該第一輸入連接上;及控制該至少一第二反相器將該至少一偏移波形注入至該至少一第二輸入連接上。According to another aspect of the present invention, a system includes: an alternating current ("AC") bus; a first direct current ("DC") power supply electrically connected to a first inverter via a first input connection Wherein the first inverter is connected to the AC bus through a first output connection; at least one second DC power source is electrically connected to at least one second inverter through at least one second input connection, wherein the At least one second inverter is connected to the AC bus via at least a second output connection and wherein the first output connection and the at least one second output connection are the first inverter and the at least one second inverter Connected to the AC bus in parallel; and a processor connected to the first inverter and the at least one second inverter. The processor is configured with processor-executable instructions to perform operations including: selecting a test waveform to inject into the first input connection from the first inverter to the first DC power source; determining A first resultant ripple on the first output connection generated in response to injecting the test waveform into the first input connection; determining at least one offset waveform to inject into the at least one second inverter To the at least one second input connection of the at least one second DC power source, so that one or more second ripples to be provided to the at least one second output connection cancel the first resulting ripple; control the first The inverter injects the test waveform into the first input connection; and controls the at least one second inverter to inject the at least one offset waveform into the at least one second input connection.

根據本發明之另一態樣,一種系統含有:一交流(「AC」)匯流排;一第一直流(「DC」)電源,其經由一第一DC電源輸入連接電連接至一第一DC轉換器;一第一反相器,其經由一第一DC轉換器輸出連接連接至該第一DC轉換器且經由一第一反相器輸出連接連接至該AC匯流排;及一處理器,其連接至該第一DC轉換器。該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入至自該第一DC轉換器至該第一反相器之該第一DC轉換器輸出連接上;控制該第一DC轉換器將該測試波形注入至該第一DC轉換器輸出連接上;及自該反相器量測對該測試波形之一回應。According to another aspect of the present invention, a system includes: an alternating current ("AC") bus; a first direct current ("DC") power source electrically connected to a first power source via a first DC power input connection DC converter; a first inverter connected to the first DC converter via a first DC converter output connection and connected to the AC bus via a first inverter output connection; and a processor , Which is connected to the first DC converter. The processor is configured with processor-executable instructions to perform operations including: selecting a test waveform to inject into the first DC converter output from the first DC converter to the first inverter Connected; control the first DC converter to inject the test waveform into the output connection of the first DC converter; and measure a response to the test waveform from the inverter.

根據本發明之另一態樣,一種方法包含:選擇一測試波形來自一第一DC轉換器注入至除一燃料電池之外的至少一第一DC電源;判定將回應於將該測試波形注入至該電池上而產生之一第一所得漣波;判定至少一偏移波形以自至少一第二DC轉換器注入至至少一第二DC電源以產生抵消該第一所得漣波之一或多個第二漣波;將該測試波形自該第一DC轉換器注入至該至少一第一DC電源;將該至少一偏移波形自該至少一第二DC轉換器注入至該至少一第二DC電源;及至少部分基於該第一DC電源之阻抗回應來判定該第一DC電源之一特性。According to another aspect of the present invention, a method includes: selecting a test waveform from a first DC converter to inject into at least one first DC power source other than a fuel cell; determining that it will respond to injecting the test waveform into A first obtained ripple is generated on the battery; at least one offset waveform is determined to be injected from at least one second DC converter to at least one second DC power source to generate one or more of the first obtained ripples Second ripple; inject the test waveform from the first DC converter into the at least one first DC power source; inject the at least one offset waveform from the at least one second DC converter into the at least one second DC Power source; and determining a characteristic of the first DC power source based at least in part on the impedance response of the first DC power source.

根據本發明之另一態樣,一種系統包含:一直流(「DC」)匯流排;一電池,其經由一第一輸入連接電連接至一第一DC轉換器,其中該第一DC轉換器經由一第一輸出連接連接至該DC匯流排;至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二DC轉換器,其中該至少一第二DC轉換器經由至少一第二輸出連接連接至該DC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一DC轉換器及該至少一第二DC轉換器並行連接至該DC匯流排;及一處理器,其連接至該第一DC轉換器及該至少一第二DC轉換器。該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入至自該第一DC轉換器至該電池之該第一輸入連接上;判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波;判定至少一偏移波形以注入至自該至少一第二DC轉換器至該至少一第二DC電源之該至少一第二輸入連接上,使得若該電池係在充電,則將提供至該至少一第二輸出連接之一或多個第二漣波將抵消該第一所得漣波;控制該第一DC轉換器將該測試波形注入至該第一輸入連接上;控制該至少一第二DC轉換器將該至少一偏移波形注入至該至少一第二輸入連接上;量測該第一DC轉換器輸出連接上之一輸出;及基於該量測輸出來判定該電池係在充電或放電。According to another aspect of the present invention, a system includes: a direct current ("DC") bus; a battery electrically connected to a first DC converter via a first input connection, wherein the first DC converter Is connected to the DC bus through a first output connection; at least one second DC power source is electrically connected to at least one second DC converter through at least one second input connection, wherein the at least one second DC converter is connected through at least A second output connection is connected to the DC bus bar, and the first output connection and the at least one second output connection are connected to the DC bus bar in parallel with the first DC converter and the at least one second DC converter; And a processor connected to the first DC converter and the at least one second DC converter. The processor is configured with processor-executable instructions to perform operations including: selecting a test waveform to inject into the first input connection from the first DC converter to the battery; the determination will respond to Injecting the test waveform into the first input connection to generate a first resultant ripple on the first output connection; determining at least one offset waveform to inject from the at least one second DC converter to the at least The at least one second input connection of a second DC power source is connected so that if the battery is charging, one or more second ripples that will be provided to the at least one second output connection will cancel the first resulting ripple Control the first DC converter to inject the test waveform into the first input connection; control the at least one second DC converter to inject the at least one offset waveform into the at least one second input connection; Measuring the output of the first DC converter connected to an output; and determining that the battery is charging or discharging based on the measured output.

根據本發明之另一態樣,一種方法包含:選擇一測試波形來自一第一DC轉換器注入至一電池;判定將回應於注入該測試波形而產生之一第一所得漣波;判定至少一偏移波形以自至少一第二DC轉換器注入至至少一第二DC電源,使得若該電池係在充電,則將提供將抵消該第一所得漣波之一或多個第二漣波;將該測試波形注入至該電池;將該至少一偏移波形注入至該至少一第二DC電源;判定是否已抵消該第一所得漣波;及基於判定是否已抵消該第一所得漣波之步驟來判定該電池係在充電或放電。According to another aspect of the present invention, a method includes: selecting a test waveform from a first DC converter to inject into a battery; determining that a first resultant ripple will be generated in response to the injection of the test waveform; determining at least one The offset waveform is injected from at least one second DC converter to at least one second DC power source, so that if the battery is being charged, one or more second ripples will be provided that will cancel the first obtained ripple; Injecting the test waveform into the battery; injecting the at least one offset waveform into the at least one second DC power source; determining whether the first obtained ripple has been canceled; and based on determining whether the first obtained ripple has been canceled Steps to determine whether the battery is charging or discharging.

相關專利申請案之交叉參考 本申請案主張2018年12月27日申請之美國專利申請案第16/233,303號及2018年12月27日申請之美國專利申請案第16/233,323號之權利,該等案之全部內容以引用的方式併入本文中。Cross reference of related patent applications This application claims the rights of U.S. Patent Application No. 16/233,303 filed on December 27, 2018 and U.S. Patent Application No. 16/233,323 filed on December 27, 2018. The entire contents of these cases are incorporated by reference The method is incorporated into this article.

參考圖1,一例示性燃料電池系統100包含一DC負載102 (諸如一資訊技術(IT)負載(即,在可包含(若干)電腦、(若干)伺服器、(若干)數據機、(若干)路由器、(若干)機架、電源供應器連接及一資料中心環境中所見之其他組件之一或多者之一IT系統中操作之裝置))、一輸入/輸出模組(IOM) 104及一或多個電源模組106,如其全部內容以引用的方式併入本文中之美國申請案第13/937,312號中所描述。如圖1中所展示,DC負載102可包含連接至電網114之一或多個備用電源供應器102a。1, an exemplary fuel cell system 100 includes a DC load 102 (such as an information technology (IT) load (ie, may include (s) computers, (s) servers, (s) modems, (s)) ) Routers, (several) racks, power supply connections, and one or more of the other components seen in a data center environment. One or more of the IT system devices)), an input/output module (IOM) 104, and One or more power modules 106, as described in US Application No. 13/937,312, the entire contents of which are incorporated herein by reference. As shown in Figure 1, the DC load 102 may include one or more backup power supplies 102a connected to the grid 114.

IOM 104可包括一或多個電源調節組件104a,其輸入連接至一DC匯流排112a且其(若干)輸出經由一主AC匯流排112b連接至負載102且視情況經由含有一開關113S之輔AC匯流排113連接至電網114。一或多個電源調節組件104a可包含用於將DC電力轉換為AC電力之組件,諸如一DC/AC反相器104a (例如其全部內容以引用的方式併入本文中之美國專利第7,705,490號中所描述之一DC/AC反相器)、用於AC電力輸出至電網之電連接器、用於管理電暫態之電路、一系統控制器(例如一電腦或專用控制邏輯裝置或電路)等等。電源調節組件104a可經設計以將來自燃料電池模組之DC電力轉換為不同AC電壓及頻率。可提供用於208V、60Hz;480V、60Hz;415V、50Hz及其他常見電壓及頻率之設計。The IOM 104 may include one or more power conditioning components 104a, the input of which is connected to a DC bus 112a and its output(s) are connected to the load 102 via a main AC bus 112b and optionally via an auxiliary AC containing a switch 113S. The bus bar 113 is connected to the grid 114. One or more power conditioning components 104a may include components for converting DC power to AC power, such as a DC/AC inverter 104a (for example, US Patent No. 7,705,490, the entire content of which is incorporated herein by reference) One of the DC/AC inverters described in), electrical connectors for AC power output to the grid, circuits for managing electrical transients, and a system controller (such as a computer or dedicated control logic device or circuit) and many more. The power conditioning component 104a can be designed to convert the DC power from the fuel cell module into different AC voltages and frequencies. Can provide design for 208V, 60Hz; 480V, 60Hz; 415V, 50Hz and other common voltages and frequencies.

各電源模組106機櫃經組態以收容一DC電源106a。DC電源106a可包含(例如)一電池。DC電源106a可代以或另外包含一光伏打電池、一超級電容器或一燃料電池。一適合DC電源之一實例係一組固體氧化物燃料電池(SOFC)。The cabinet of each power module 106 is configured to house a DC power supply 106a. The DC power source 106a may include, for example, a battery. The DC power supply 106a may instead or additionally include a photovoltaic cell, a super capacitor or a fuel cell. An example of a suitable DC power source is a set of solid oxide fuel cells (SOFC).

例如,DC電源106a可為包含一或多個反應盒之一燃料電池DC電源。一反應盒含有一或多個堆疊或一或多行燃料電池(統稱為「分段」),諸如具有由導電互連板分離之一陶瓷氧化物電解質之一或多個堆疊或一或多行固體氧化物燃料電池。亦可使用其他燃料電池類型,諸如聚合物電解質膜(「PEM」)、熔融碳酸鹽、磷酸等等。For example, the DC power source 106a may be a fuel cell DC power source including one or more reaction cartridges. A reaction cartridge contains one or more stacks or one or more rows of fuel cells (collectively referred to as "segments"), such as having one or more stacks or one or more rows separated by a conductive interconnecting plate with a ceramic oxide electrolyte Solid oxide fuel cell. Other fuel cell types such as polymer electrolyte membrane ("PEM"), molten carbonate, phosphoric acid, etc. can also be used.

燃料電池通常組合成稱為「堆疊」之單元,其中燃料電池串聯電連接且由導電互連件(諸如充當互連件之氣體分離器板)分離。一燃料電池堆疊可含有其端上之導電端板。一燃料電池堆疊泛指所謂之燃料電池分段或行,其可含有串聯連接之一或多個燃料電池堆疊(例如其中一堆疊之端板電連接至下一堆疊之一端板)。一燃料電池分段或行可含有自分段或行輸出直流電至一電源調節系統之電引線。一燃料電池系統可包含一或多個燃料電池行,其等之各者可含有一或多個燃料電池堆疊,諸如固體氧化物燃料電池堆疊。Fuel cells are often combined into units called "stacks", where the fuel cells are electrically connected in series and separated by conductive interconnects, such as gas separator plates that act as interconnects. A fuel cell stack may contain conductive end plates on its ends. A fuel cell stack generally refers to a so-called fuel cell segment or row, which may include one or more fuel cell stacks connected in series (for example, the end plates of one stack are electrically connected to the end plates of the next stack). A fuel cell section or row may contain electrical leads that output direct current from the section or row to a power conditioning system. A fuel cell system may include one or more fuel cell rows, each of which may include one or more fuel cell stacks, such as solid oxide fuel cell stacks.

燃料電池堆疊可向內部歧管供應燃料且向外部歧管供應空氣,其中僅燃料入口及排氣立管延伸穿過燃料電池層中及/或燃料電池之間的互連板中之開口,如美國專利第7,713,649號所描述,該專利之全部內容以引用的方式併入本文中。燃料電池可具有一交叉流(其中空氣及燃料流在各燃料電池中之電解質之對置側上大致彼此垂直流動)、對流平行(其中空氣及燃料在各燃料電池中之電解質之對置側上大致彼此平行但在相反方向上流動)或協流平行(其中空氣及燃料在各燃料電池中之電解質之對置側上在相同方向上大致彼此平行流動)組態。The fuel cell stack can supply fuel to the inner manifold and air to the outer manifold, where only the fuel inlet and exhaust risers extend through openings in the fuel cell layers and/or interconnect plates between fuel cells, such as It is described in US Patent No. 7,713,649, the entire content of which is incorporated herein by reference. The fuel cell can have a cross flow (in which the air and fuel flows approximately perpendicular to each other on the opposite sides of the electrolyte in each fuel cell), and convection parallel (where the air and fuel flow on the opposite sides of the electrolyte in each fuel cell). Generally parallel to each other but flow in opposite directions) or co-flow parallel (in which air and fuel flow roughly parallel to each other in the same direction on opposite sides of the electrolyte in each fuel cell) configuration.

DC電源106a可藉由位於模組106中之一或多個DC/DC轉換器106b連接至一或多個DC匯流排112a,諸如一分流DC匯流排。DC/DC轉換器106b可位於燃料電池系統中之任何位置處,例如在IOM 104而非電源模組106中。The DC power supply 106a can be connected to one or more DC bus bars 112a, such as a shunt DC bus bar, through one or more DC/DC converters 106b located in the module 106. The DC/DC converter 106b can be located anywhere in the fuel cell system, such as in the IOM 104 instead of the power module 106.

系統100亦可視情況包含一能量儲存模組108,其包含一儲存裝置108a,諸如一排超級電容器、電池、飛輪等等。儲存裝置108a亦可使用一或多個DC/DC轉換器108b連接至DC匯流排112a,如圖1中所展示。替代地,儲存裝置108a可位於電源模組106中及/或與IT負載102定位在一起。The system 100 may optionally include an energy storage module 108, which includes a storage device 108a, such as a row of super capacitors, batteries, flywheels, and so on. The storage device 108a can also be connected to the DC bus 112a using one or more DC/DC converters 108b, as shown in FIG. 1. Alternatively, the storage device 108a may be located in the power module 106 and/or located with the IT load 102.

圖2及圖5繪示美國專利第8,440,362號中所描述之一例示性模組化燃料電池系統,該專利之全部內容以引用的方式併入本文中。Figures 2 and 5 show an exemplary modular fuel cell system described in US Patent No. 8,440,362, the entire content of which is incorporated herein by reference.

模組化系統可含有上文及名稱為「Modular Fuel Cell System」之美國專利第9,190,693號中所描述之模組及組件,該專利之全部內容以引用的方式併入本文中。燃料電池系統殼體10之模組化設計提供靈活系統安裝及操作。模組允許標定安裝發電量、可靠發電、靈活燃料處理及組成一單一設計組之靈活電源輸出電壓及頻率。模組化設計導致具有非常高可用性及可靠性之一「常開」單元。此設計亦提供一容易擴大方式且滿足顧客之安裝之具體要求。模組化設計亦允許使用可用燃料及可隨顧客及/或地理區域變動之所需電壓及頻率。The modular system may contain the modules and components described above and in US Patent No. 9,190,693 entitled "Modular Fuel Cell System", the entire content of which is incorporated herein by reference. The modular design of the fuel cell system housing 10 provides flexible system installation and operation. The module allows calibration of installed power generation, reliable power generation, flexible fuel processing, and flexible power output voltage and frequency that form a single design group. Modular design leads to a "normally open" unit with very high availability and reliability. This design also provides an easy way to expand and meet the specific requirements of customers for installation. The modular design also allows the use of available fuel and the required voltage and frequency that can vary with customers and/or geographic areas.

燃料電池系統殼體10包含複數個電源模組外殼12 (含有一燃料電池電源模組組件70,其中外殼12及其組件70在圖1中共同標記為100)、一或多個燃料輸入(即,燃料處理)模組外殼16及一或多個電源調節(即,電輸出)模組外殼18 (其中外殼及其內容物在圖1中標記為104且指稱「IOM」)。例如,系統殼體可包含任何所要數目個模組,諸如2個至30個電源模組,例如6個至12個電源模組。圖2繪示含有位於一共同基座20上之6個電源模組(並排堆疊之一列6個模組)、1個燃料處理模組及1個電源調節模組之一系統殼體10。各模組自身可包括機櫃或外殼。替代地,如下文將更詳細描述,電源調節(即,IOM)及燃料處理模組可組合成位於一個機櫃或外殼14中之一單一輸入/輸出模組。為簡潔起見,各外殼12、14、16、18在下文將指稱「模組」。The fuel cell system housing 10 includes a plurality of power module housings 12 (including a fuel cell power module assembly 70, wherein the housing 12 and its components 70 are collectively marked as 100 in FIG. 1), one or more fuel inputs (ie , Fuel processing) module housing 16 and one or more power conditioning (ie, electrical output) module housings 18 (wherein the housing and its contents are marked as 104 in FIG. 1 and referred to as "IOM"). For example, the system housing may include any desired number of modules, such as 2 to 30 power modules, for example, 6 to 12 power modules. 2 shows a system housing 10 containing 6 power modules (6 modules stacked side by side in a row), 1 fuel processing module, and 1 power conditioning module on a common base 20. Each module itself may include a cabinet or housing. Alternatively, as will be described in more detail below, the power conditioning (ie, IOM) and fuel processing modules can be combined into a single input/output module located in a cabinet or housing 14. For the sake of brevity, each housing 12, 14, 16, 18 will be referred to as a "module" below.

儘管圖中展示一列電源模組12,但系統可包括一列以上模組12。例如,系統可包括背靠背堆疊之兩列電源模組。Although one row of power modules 12 is shown in the figure, the system may include more than one row of modules 12. For example, the system may include two rows of power modules stacked back to back.

各電源模組12經組態以收容一或多個反應盒13。各反應盒含有燃料電池之一或多個堆疊或行(為清楚起見,圖中未展示),諸如具有由導電互連板分離之一陶瓷氧化物電解質之固體氧化物燃料電池之一或多個堆疊或行。亦可使用其他燃料電池類型,諸如PEM、熔融碳酸鹽、磷酸等等。Each power module 12 is configured to accommodate one or more reaction boxes 13. Each reaction cartridge contains one or more stacks or rows of fuel cells (for clarity, not shown in the figure), such as one or more solid oxide fuel cells with a ceramic oxide electrolyte separated by conductive interconnect plates. Stacks or rows. Other fuel cell types such as PEM, molten carbonate, phosphoric acid, etc. can also be used.

模組化燃料電池系統殼體10亦含有一或多個輸入或燃料處理模組16。此模組16包含一機櫃,其含有用於預處理燃料(諸如脫硫劑床)之組件。燃料處理模組16可經設計以處理不同類型之燃料。例如,一柴油燃料處理模組、一天然氣燃料處理模組及乙醇燃料處理模組可提供於相同或單獨機櫃中。適合於一特定燃料之一不同床組合物可提供於各模組中。(若干)處理模組16可處理選自以下各者之至少一燃料:自一管線提供之天然氣、壓縮天然氣、甲烷、丙烷、液化石油氣、汽油、柴油、家用取暖油、煤油、JP-5、JP-8、航空燃料、氫氣、氨氣、乙醇、甲醇、合成氣體、生物氣體、生物柴油及其他適合含烴或氫燃料。一轉化爐17可視期望定位於燃料處理模組16中。替代地,若期望將轉化爐17與(若干)燃料電池堆疊熱整合,則一單獨轉化爐17可位於一各自電源模組12中之各反應盒13中。另外,若使用內部轉化燃料電池,則可完全省略一外部轉化爐17。The modular fuel cell system housing 10 also contains one or more input or fuel processing modules 16. The module 16 includes a cabinet containing components for pre-processing fuel (such as a bed of desulfurizer). The fuel processing module 16 can be designed to process different types of fuel. For example, a diesel fuel processing module, a natural gas fuel processing module, and an ethanol fuel processing module can be provided in the same or separate cabinets. A different bed composition suitable for a particular fuel can be provided in each module. (Several) The processing module 16 can process at least one fuel selected from the following: natural gas, compressed natural gas, methane, propane, liquefied petroleum gas, gasoline, diesel, household heating oil, kerosene, JP-5 provided from a pipeline , JP-8, aviation fuel, hydrogen, ammonia, ethanol, methanol, synthetic gas, biogas, biodiesel and other suitable hydrocarbon or hydrogen fuels. A reformer 17 can be positioned in the fuel processing module 16 as desired. Alternatively, if it is desired to thermally integrate the reformer 17 with the fuel cell stack(s), a separate reformer 17 may be located in each reaction box 13 in a respective power module 12. In addition, if an internal reforming fuel cell is used, an external reforming furnace 17 can be completely omitted.

模組化燃料電池系統殼體10亦含有一或多個電源調節模組18。電源調節模組18包含一機櫃,其含有用於將燃料電池堆疊產生之DC電力轉換為AC電力之組件(例如美國專利第7,705,490號中所描述之DC/DC及DC/AC轉換器,該專利之全部內容以引用的方式併入本文中)、使AC電力輸出至電網之電連接器、用於管理電暫態之電路、一系統控制器(例如一電腦或專用控制邏輯裝置或電路)。電源調節模組18可經設計以將來自燃料電池模組之DC電力轉換為不同AC電壓及頻率。可提供用於208V、60Hz;480V、60Hz;415V、50Hz及其他常見電壓及頻率之設計。The modular fuel cell system housing 10 also contains one or more power conditioning modules 18. The power conditioning module 18 includes a cabinet that contains components for converting DC power generated by the fuel cell stack into AC power (for example, the DC/DC and DC/AC converters described in US Patent No. 7,705,490, which The entire contents are incorporated herein by reference), electrical connectors for outputting AC power to the grid, circuits for managing electrical transients, and a system controller (such as a computer or dedicated control logic device or circuit). The power conditioning module 18 can be designed to convert the DC power from the fuel cell module into different AC voltages and frequencies. Can provide design for 208V, 60Hz; 480V, 60Hz; 415V, 50Hz and other common voltages and frequencies.

燃料處理模組16及電源調節模組18可收容於一輸入/輸出機櫃14中。若提供一單一輸入/輸出機櫃14,則模組16及18可垂直(例如,電源調節模組18組件位於燃料處理模組16脫硫劑罐/床上方)或並排定位於機櫃14中。The fuel processing module 16 and the power adjustment module 18 can be housed in an input/output cabinet 14. If a single input/output cabinet 14 is provided, the modules 16 and 18 can be positioned vertically (for example, the components of the power conditioning module 18 are located above the desulfurizer tank/bed of the fuel processing module 16) or side by side in the cabinet 14.

如圖2中之一例示性實施例中所展示,給一輸入/輸出機櫃14提供一列6個電源模組12,電源模組12線性並排配置於輸入/輸出模組14之一側上。模組列可定位成(例如)鄰近於系統向其提供電力之一建築(例如其中模組之機櫃之背面面向建築牆壁)。儘管圖中展示一列電源模組12,但系統可包括一列以上模組12。例如,如上文所提及,系統可包括背靠背堆疊之兩列電源模組。As shown in an exemplary embodiment in FIG. 2, an input/output cabinet 14 is provided with a row of six power modules 12, and the power modules 12 are linearly arranged side by side on one side of the input/output modules 14. The module row can be positioned, for example, adjacent to a building to which the system provides power (for example, where the back of the cabinet of the module faces the building wall). Although one row of power modules 12 is shown in the figure, the system may include more than one row of modules 12. For example, as mentioned above, the system may include two rows of power modules stacked back to back.

電源模組12之線性陣列易於縮放。例如,可取決於建築或由燃料電池系統10服務之其他設施之電力需求而提供更多或更少電源模組12。電源模組12及輸入/輸出模組14亦可依其他比率提供。例如,在其他例示性實施例中,可鄰近於輸入/輸出模組14提供更多或更少電源模組12。此外,支援功能可由一個以上輸入/輸出模組14提供(例如使用一單獨燃料處理模組16及電源調節模組18機櫃)。另外,儘管在一實施例中,輸入/輸出模組14位於電源模組列12之端處,但其亦可位於一列電源模組12之中心中。The linear array of the power module 12 is easy to scale. For example, more or fewer power modules 12 may be provided depending on the power demand of the building or other facilities served by the fuel cell system 10. The power module 12 and the input/output module 14 can also be provided in other ratios. For example, in other exemplary embodiments, more or fewer power modules 12 may be provided adjacent to the input/output module 14. In addition, support functions can be provided by more than one input/output module 14 (for example, using a single fuel processing module 16 and power conditioning module 18 cabinet). In addition, although the input/output module 14 is located at the end of the power module row 12 in an embodiment, it can also be located in the center of the power module row 12.

模組化燃料電池系統殼體10可依易於服務系統之一方式組態。所有常規或高檢修組件(諸如易耗組件)可放置於一單一模組中以減少服務人員所需之時間量。例如,用於一天然氣燃料系統之脫硫劑材料可放置於一單一模組(例如一燃料處理模組16或一組合輸入/輸出模組14機櫃)中。此將為例行維修期間所接取之唯一模組機櫃。因此,可在無需打開其他模組機櫃且無需服務、修復或移除其他模組之情況下服務、修復或自系統移除各模組12、14、16及18。The modular fuel cell system housing 10 can be configured in a way that is easy to service the system. All conventional or high-maintenance components (such as consumable components) can be placed in a single module to reduce the amount of time required by service personnel. For example, the desulfurizer material used in a natural gas fuel system can be placed in a single module (such as a fuel processing module 16 or a combined input/output module 14 cabinet). This will be the only modular cabinet taken during routine maintenance. Therefore, each module 12, 14, 16 and 18 can be serviced, repaired, or removed from the system without opening other module cabinets and without servicing, repairing or removing other modules.

例如,如上文所描述,殼體10可包含多個電源模組12。當至少一電源模組12下線(即,離線模組12中之反應盒13中之堆疊不產生電力)時,剩餘電源模組12、燃料處理模組16及電源調節模組18 (或組合輸入/輸出模組14)不下線。另外,燃料電池殼體10可含有各類型之模組12、14、16或18之一者以上。當一特定類型之至少一模組下線時,相同類型之剩餘模組不下線。For example, as described above, the housing 10 may include a plurality of power modules 12. When at least one power module 12 goes offline (ie, the stack in the reaction box 13 in the offline module 12 does not generate power), the remaining power module 12, fuel processing module 16, and power conditioning module 18 (or a combination input /Output module 14) is not offline. In addition, the fuel cell casing 10 may contain more than one of various types of modules 12, 14, 16, or 18. When at least one module of a specific type goes offline, the remaining modules of the same type do not go offline.

因此,在包括複數個模組之一系統中,模組12、14、16或18之各者可電斷接、自燃料電池殼體10移除及/或在不停止系統中之其他模組之一操作之情況下檢修或修復以允許燃料電池系統繼續發電。不必在一反應盒13中之一燃料電池堆疊出故障或下線檢修時關停整個燃料電池系統。Therefore, in a system including a plurality of modules, each of the modules 12, 14, 16 or 18 can be electrically disconnected, removed from the fuel cell housing 10 and/or other modules in the system are not stopped Under one operation, overhaul or repair to allow the fuel cell system to continue to generate electricity. It is not necessary to shut down the entire fuel cell system when one of the fuel cell stacks in a reaction box 13 fails or is offline for maintenance.

電源模組12及輸入/輸出模組14之各者包含一門30 (例如出入口、檢查口等等)以允許接取模組之內部組件(例如為了維修、修復、替換等等)。根據一實施例,模組12及14配置成僅在各機櫃之一個表面上具有門30之一線性陣列以允許彼此端部鄰接安裝一列連續系統。依此方式,可使用額外模組12或14及基座20來調整燃料電池殼體10之大小及容量,其中既有模組12及14及基座20僅需最低限度重新配置。模組14之門可視期望位於除機櫃之前面之外的側上。Each of the power module 12 and the input/output module 14 includes a door 30 (for example, an entrance, an inspection port, etc.) to allow access to the internal components of the module (for example, for maintenance, repair, replacement, etc.). According to an embodiment, the modules 12 and 14 are configured to have a linear array of doors 30 on only one surface of each cabinet to allow a row of continuous systems to be installed adjacent to each other's ends. In this way, the additional module 12 or 14 and the base 20 can be used to adjust the size and capacity of the fuel cell housing 10, and the existing modules 12 and 14 and the base 20 only need to be reconfigured at a minimum. The door of the module 14 can be located on the side other than the front of the cabinet as desired.

門30可藉由一實質上垂直及接著實質上水平擺動(例如「鷗翼」式樣)打開。換言之,門30藉由向上移動且接著在一實質上水平方向上在殼體10之頂部上至少部分移動來打開。此實施例之術語「實質上垂直」及「實質上水平」包含0度至30度之一偏差,諸如分別與完全垂直及水平方向偏差0度至10度。The door 30 can be opened by a substantially vertical and then a substantially horizontal swing (such as a "gull wing" pattern). In other words, the door 30 is opened by moving upward and then moving at least partially on the top of the housing 10 in a substantially horizontal direction. The terms "substantially vertical" and "substantially horizontal" in this embodiment include a deviation of 0 to 30 degrees, such as a deviation of 0 to 10 degrees from the completely vertical and horizontal directions, respectively.

門30使用複數個獨立機械臂來安裝至模組12或14之殼體或機櫃10之壁上。在打開位置中,門30之上部分可位於殼體或機櫃10上且門之下部分可視情況使開口外伸至殼體10。在此組態中,門30在打開時對一使用者提供雨雪防護,因為門之下部分自燃料電池系統殼體10外伸。替代地,整個門30可在打開位置中位於殼體10上。The door 30 uses a plurality of independent mechanical arms to be installed on the housing of the module 12 or 14 or the wall of the cabinet 10. In the open position, the upper part of the door 30 may be located on the housing or cabinet 10 and the lower part of the door may extend the opening to the housing 10 as appropriate. In this configuration, the door 30 provides rain and snow protection for a user when it is opened, because the lower part of the door extends from the fuel cell system housing 10. Alternatively, the entire door 30 may be located on the housing 10 in the open position.

圖3係展示通過組件之各種流的模組12及反應盒31組件之一示意性程序流程圖表示,如美國專利第9,461,320號中所更詳細描述,該專利之全部內容以引用的方式併入本文中。在圖3所繪示之組態中,可無燃料及空氣輸入至ATO 310。外部天然氣或另一外部燃料無法供給至ATO 310。相反地,來自(若干)燃料電池堆疊39之熱燃料(陽極)排氣流作為ATO燃料入口流部分再循環至ATO中。同樣地,無外部空氣輸入至ATO中。相反地,來自(若干)燃料電池堆疊39之熱空氣(陰極)排氣流作為ATO進氣口流提供至ATO中。Figure 3 shows a schematic flow chart of one of the modules 12 and the reaction box 31 components showing various flows through the components, as described in more detail in US Patent No. 9,461,320, the entire content of which is incorporated by reference In this article. In the configuration shown in Figure 3, no fuel and air can be input to the ATO 310. External natural gas or another external fuel cannot be supplied to the ATO 310. Conversely, the hot fuel (anode) exhaust stream from the fuel cell stack(s) 39 is partially recycled into the ATO as the ATO fuel inlet stream. Likewise, no outside air is input into the ATO. Conversely, the hot air (cathode) exhaust stream from the fuel cell stack(s) 39 is provided into the ATO as an ATO inlet stream.

另外,燃料排氣流在位於反應盒31中之一分流器3107中分流。分流器3107位於陽極復熱器(例如燃料換熱器) 3137之燃料排氣出口與陽極冷卻器3100 (例如空氣預熱器換熱器)之燃料排氣入口之間。因此,燃料排氣流在進入陽極冷卻器3100之前在混合器3105與ATO 310之間分流。此允許將溫度比先前技術高之燃料排氣流提供至ATO中,因為燃料排氣流未與陽極冷卻器3100中之進氣口流換熱。例如,自分流器3107提供至ATO 310中之燃料排氣流可具有高於350℃之一溫度,諸如350℃至500℃,例如375℃至425℃,諸如390℃至410℃。另外,由於較少量燃料排氣提供至陽極冷卻器3100中(例如,歸因於分流器3107中分流陽極排氣,非100%之陽極排氣提供至陽極冷卻器中),所以可減小陽極冷卻器3100之換熱面積。In addition, the fuel exhaust flow is split in a splitter 3107 located in the reaction box 31. The flow divider 3107 is located between the fuel exhaust outlet of the anode recuperator (e.g., fuel heat exchanger) 3137 and the fuel exhaust inlet of the anode cooler 3100 (e.g., air preheater heat exchanger). Therefore, the fuel exhaust flow is split between the mixer 3105 and the ATO 310 before entering the anode cooler 3100. This allows a fuel exhaust stream with a higher temperature than the prior art to be provided to the ATO because the fuel exhaust stream does not exchange heat with the intake port stream in the anode cooler 3100. For example, the fuel exhaust stream provided from the splitter 3107 into the ATO 310 may have a temperature higher than 350°C, such as 350°C to 500°C, for example 375°C to 425°C, such as 390°C to 410°C. In addition, since a smaller amount of fuel exhaust is provided to the anode cooler 3100 (for example, due to the split anode exhaust in the splitter 3107, not 100% of the anode exhaust is provided to the anode cooler), it can be reduced The heat exchange area of the anode cooler 3100.

反應盒31含有複數個燃料電池堆疊39,諸如一固體氧化物燃料電池堆疊(其中堆疊之一固體氧化物燃料電池含有一陶瓷電解質(諸如釔穩定氧化鋯(YSZ)或氧化鈧穩定氧化鋯(SSZ))、一陽極電極(諸如鎳-YSZ或Ni-SSZ金屬陶瓷)及一陰極電極(諸如錳酸鑭鍶(LSM))。堆疊39可在複數個行或分段中彼此上下配置。The reaction box 31 contains a plurality of fuel cell stacks 39, such as a solid oxide fuel cell stack (one of the solid oxide fuel cells of the stack contains a ceramic electrolyte such as Yttrium Stabilized Zirconia (YSZ) or Scandium Stabilized Zirconia (SSZ) )), an anode electrode (such as nickel-YSZ or Ni-SSZ cermet), and a cathode electrode (such as lanthanum strontium manganate (LSM)). The stack 39 can be arranged on top of each other in a plurality of rows or segments.

反應盒31亦含有一蒸汽發生器3103。自一水源3104 (諸如一水箱或一水管(即,一連續供水系統)透過導管330a向蒸汽發生器3103供水,且蒸汽發生器3103將水轉換為蒸汽。蒸汽自發生器3103透過導管330B提供至混合器3105且與混合器3105中之堆疊陽極(燃料)再循環流混合。混合器3105可位於反應盒31之反應盒內部或外部。較佳地,濕潤陽極排氣流與混合器3105下游之燃料入口管路或導管329中之燃料入口流組合,如圖3中所示意性展示。替代地,燃料入口流亦可視期望直接提供至混合器3105中,或蒸汽可直接提供至燃料入口流中及/或陽極排氣流可直接提供至燃料入口流中且接著濕潤組合燃料流。The reaction box 31 also contains a steam generator 3103. Water is supplied to the steam generator 3103 from a water source 3104 (such as a water tank or a water pipe (ie, a continuous water supply system) through the conduit 330a, and the steam generator 3103 converts the water into steam. The steam is supplied from the generator 3103 through the conduit 330B to The mixer 3105 is mixed with the stacked anode (fuel) recirculation flow in the mixer 3105. The mixer 3105 can be located inside or outside the reaction box of the reaction box 31. Preferably, the wet anode exhaust gas flow and the downstream of the mixer 3105 The combination of fuel inlet flow in the fuel inlet pipe or conduit 329 is schematically shown in Figure 3. Alternatively, the fuel inlet flow may be directly provided to the mixer 3105 as desired, or steam may be directly provided to the fuel inlet flow And/or the anode exhaust stream can be provided directly into the fuel inlet stream and then wet the combined fuel stream.

蒸汽發生器3103由熱ATO 310排氣流加熱,熱ATO 310排氣流在導管3119中藉由與蒸汽發生器3103之換熱關係來傳遞。The steam generator 3103 is heated by the hot ATO 310 exhaust flow, and the hot ATO 310 exhaust flow is transferred in the duct 3119 by the heat exchange relationship with the steam generator 3103.

系統操作如下。將燃料入口流(諸如烴流,例如天然氣)提供至燃料入口導管329中且通過位於反應盒外部之一催化分壓氧化(CPOx)反應器3111。在系統起動期間,亦透過CPOx進氣口導管3113將空氣提供至CPOx反應器3111中以部分催化氧化燃料入口流。可由一CPOx鼓風機3114將空氣吹過進氣口導管3113而至CPOx反應器3111。CPOx鼓風機3114可僅在起動期間操作。在穩態系統操作期間,切斷氣流(例如藉由使CPOx鼓風機3114斷電)且CPOx反應器充當其中燃料未部分氧化之一燃料通道。因此,反應盒31可包括在起動模式及穩態模式兩者中透過CPOx反應器3111提供燃料之唯一燃料入口導管。因此,無需在穩態操作期間繞過CPOx反應器之一單獨燃料入口導管。The system operation is as follows. A fuel inlet stream (such as a hydrocarbon stream, such as natural gas) is provided into the fuel inlet conduit 329 and passed through a catalytic partial pressure oxidation (CPOx) reactor 3111 located outside the reaction box. During system startup, air is also supplied to the CPOx reactor 3111 through the CPOx air inlet duct 3113 to partially catalyze and oxidize the fuel inlet flow. A CPOx blower 3114 can blow air through the air inlet duct 3113 to the CPOx reactor 3111. The CPOx blower 3114 may only operate during start-up. During steady-state system operation, the gas flow is cut off (for example by de-energizing the CPOx blower 3114) and the CPOx reactor serves as a fuel channel in which the fuel is not partially oxidized. Therefore, the reaction cartridge 31 may include a single fuel inlet conduit for supplying fuel through the CPOx reactor 3111 in both the startup mode and the steady state mode. Therefore, there is no need to bypass a separate fuel inlet conduit for one of the CPOx reactors during steady state operation.

將燃料入口流提供至燃料換熱器(陽極復熱器)/預轉化爐3137,其中藉由與堆疊39陽極(燃料)排氣流換熱來升高燃料入口流之溫度。在換熱器3137之預轉化爐區段中預轉化燃料入口流且透過(若干)燃料入口導管321將經轉化燃料入口流(其包含氫氣、一氧化碳、水蒸汽及未經轉化甲烷)提供至堆疊39中。燃料入口流透過堆疊、透過堆疊39中之燃料入口立管向上行進且在發電期間在堆疊39中氧化。氧化燃料(即,陽極或燃料排氣流)沿堆疊39行進通過燃料排氣立管且接著自堆疊透過燃料排氣導管323a排放至燃料換熱器3137中。The fuel inlet flow is provided to a fuel heat exchanger (anode recuperator)/pre-reformer 3137, where the temperature of the fuel inlet flow is raised by exchanging heat with the stack 39 anode (fuel) exhaust flow. The fuel inlet stream is pre-reformed in the pre-reformer section of the heat exchanger 3137 and the reformed fuel inlet stream (which includes hydrogen, carbon monoxide, water vapor, and unreformed methane) is provided to the stack through the fuel inlet conduit(s) 321 39 in. The fuel inlet flow passes through the stack, travels upward through the fuel inlet riser in the stack 39 and is oxidized in the stack 39 during power generation. The oxidized fuel (ie, anode or fuel exhaust flow) travels along the stack 39 through the fuel exhaust riser and is then discharged from the stack through the fuel exhaust conduit 323a into the fuel heat exchanger 3137.

在燃料換熱器3137中,陽極排氣流經由換熱加熱燃料入口流。接著,經由燃料排氣導管323b將陽極排氣流提供至一分流器3107中。陽極排氣流之一第一部分自分流器3107經由導管(例如狹縫) 3133提供至ATO 310中。In the fuel heat exchanger 3137, the anode exhaust stream heats the fuel inlet stream via heat exchange. Next, the anode exhaust gas flow is provided to a diverter 3107 via the fuel exhaust duct 323b. A first part of the anode exhaust stream is provided from the splitter 3107 to the ATO 310 via a duct (for example, a slit) 3133.

陽極排氣流之一第二部分自分流器3107再循環至陽極冷卻器3100中且接著再循環至燃料入口流中。例如,陽極排氣流之第二部分透過導管331再循環至陽極冷卻器(即,空氣預熱器換熱器)中,其中陽極排氣流預加熱來自導管333之進氣口流。接著,由陽極再循環鼓風機3123將陽極排氣流提供至混合器3105中。陽極排氣流藉由與自蒸汽發生器3103提供之蒸汽混合來在混合器3105中濕潤。接著,濕潤陽極排氣流自混合器3105經由濕潤陽極排氣流導管3121提供至燃料入口導管329中,在燃料入口導管329中,濕潤陽極排氣流與燃料入口流混合。A second portion of the anode exhaust stream is recycled from the splitter 3107 into the anode cooler 3100 and then into the fuel inlet stream. For example, the second portion of the anode exhaust stream is recirculated through the conduit 331 to the anode cooler (ie, air preheater heat exchanger), where the anode exhaust stream preheats the inlet flow from the conduit 333. Next, the anode recirculation blower 3123 provides the anode exhaust flow to the mixer 3105. The anode exhaust stream is humidified in the mixer 3105 by mixing with steam provided from the steam generator 3103. Next, the wet anode exhaust flow is provided from the mixer 3105 to the fuel inlet duct 329 via the wet anode exhaust flow duct 3121, where the wet anode exhaust flow is mixed with the fuel inlet flow.

進氣口流由一主鼓風機3125自進氣口導管333提供至陽極冷卻器換熱器3100中。鼓風機3125可包括整個系統之單一氣流控制器,如上文所描述。在陽極冷卻器換熱器3100中,進氣口流由陽極排氣流經由換熱加熱。接著,經加熱進氣口流經由導管3314提供至空氣換熱器(陰極復熱器3200)中。經加熱進氣口流自換熱器3200經由進氣口導管及/或歧管325提供至(若干)堆疊39中。The air inlet flow is provided from the air inlet duct 333 to the anode cooler heat exchanger 3100 by a main blower 3125. The blower 3125 may include a single air flow controller for the entire system, as described above. In the anode cooler heat exchanger 3100, the inlet flow is heated by the anode exhaust flow via heat exchange. Then, the heated air inlet flow is provided to the air heat exchanger (cathode recuperator 3200) via the duct 3314. The heated air inlet flow is provided from the heat exchanger 3200 to the stack(s) 39 via the air inlet duct and/or manifold 325.

空氣通過堆疊39而至陰極排氣導管324中且通過導管324及混合器3801而至ATO 310中。在ATO 310中,排氣流氧化來自導管3133之陽極排氣流之分流第一部分以產生一ATO排氣流。ATO排氣流透過ATO排氣導管327排放至空氣換熱器3200中。ATO排氣流經由換熱加熱空氣換熱器3200中之進氣口流。接著,ATO排氣流(其仍高於室溫)自空氣換熱器3200經由導管3119提供至蒸汽發生器3103。來自ATO排氣流之熱用於在蒸汽發生器3103中經由換熱將水轉換為蒸汽。接著,ATO排氣流自系統經由排氣導管335移除。因此,可藉由控制進氣口鼓風機輸出(即,電力或速度)來控制引入至系統中之空氣之量值(即,體積、壓力、速度等等)。陰極(空氣)及陽極(燃料)排氣流用作為各自ATO空氣及燃料入口流,因此無需一單獨ATO空氣及燃料入口控制器/鼓風機。另外,由於ATO排氣流用於加熱進氣口流,所以由鼓風機3125控制導管333中之單一進氣口流之速率可用於控制堆疊39及ATO 310之溫度。The air passes through the stack 39 into the cathode exhaust duct 324 and passes through the duct 324 and the mixer 3801 into the ATO 310. In the ATO 310, the exhaust stream oxidizes the split first portion of the anode exhaust stream from the conduit 3133 to produce an ATO exhaust stream. The ATO exhaust stream is discharged into the air heat exchanger 3200 through the ATO exhaust duct 327. The ATO exhaust gas flows through the air inlet in the heat exchange heating air heat exchanger 3200. Then, the ATO exhaust stream (which is still higher than room temperature) is provided from the air heat exchanger 3200 to the steam generator 3103 via the conduit 3119. The heat from the ATO exhaust stream is used in the steam generator 3103 to convert water into steam via heat exchange. Then, the ATO exhaust flow is removed from the system via the exhaust duct 335. Therefore, the amount of air (ie, volume, pressure, speed, etc.) introduced into the system can be controlled by controlling the output of the air inlet blower (ie, power or speed). The cathode (air) and anode (fuel) exhaust streams are used as respective ATO air and fuel inlet streams, so there is no need for a separate ATO air and fuel inlet controller/blower. In addition, since the ATO exhaust flow is used to heat the inlet flow, the blower 3125 controlling the rate of a single inlet flow in the duct 333 can be used to control the temperature of the stack 39 and the ATO 310.

因此,如上文所描述,使用一可變速度鼓風機3125及/或一控制閥來變動導管333中之主氣流以維持堆疊39溫度及/或ATO 310溫度。在此情況中,經由鼓風機3125或閥之主氣流速率控制充當一主系統溫度控制器。另外,可藉由變動燃料利用率(例如由(若干)堆疊39產生之電流與提供至(若干)堆疊39之燃料入口流量之比率)來控制ATO 310溫度。最後,導管331及117中之陽極再循環流可由一可變速度陽極再循環鼓風機3123及/或一控制閥控制以控制至ATO 310之陽極排氣與用於陽極再循環至混合器3105及燃料入口導管329中之陽極排氣之間的分流。Therefore, as described above, a variable speed blower 3125 and/or a control valve are used to vary the main airflow in the duct 333 to maintain the stack 39 temperature and/or the ATO 310 temperature. In this case, the main air flow rate control via the blower 3125 or valve acts as a main system temperature controller. In addition, the ATO 310 temperature can be controlled by varying the fuel utilization rate (for example, the ratio of the current generated by the stack(s) 39 to the fuel inlet flow rate provided to the stack(s) 39). Finally, the anode recirculation flow in ducts 331 and 117 can be controlled by a variable speed anode recirculation blower 3123 and/or a control valve to control anode exhaust to ATO 310 and for anode recirculation to mixer 3105 and fuel Split flow between anode exhaust in inlet duct 329.

如圖4中所展示,場可替換電源模組組件(PMC) 70包含反應盒子系統13,諸如圖2中所展示之圓柱形反應盒13。反應盒13含有燃料電池堆疊及換熱器總成。PMC 70亦包含支撐包含鼓風機、閥及控制板等等(為清楚起見,圖中未展示)之核電廠配套設施(BOP)子系統之一框架71及支撐反應盒及框架之一可移除支撐件72,諸如叉式升降軌。支撐件72允許PMC 70作為一單一單元或總成自電源模組12機櫃移除。亦可使用其他組態。例如,反應盒13可具有除圓柱形之外的一形狀,諸如多邊形等等。支撐件72可包括一平台而非軌道。框架可具有一不同組態或其可被完全省略,且代以將BOP組件安裝至反應盒13及/或支撐件72上。PMC 70在尺寸上小於電源模組12中之開口(例如由門30關閉之開口)。另外,PMC 70可包含用於自PMC及模組12內排氣及/或通氣(諸如空氣)至外部環境之一或多個通氣孔81。PMC 70亦可包含一或多個通風機或鼓風機80,諸如可迫使氣體(諸如空氣及/或ATO排氣)自PMC 70排出(諸如自一或多個通氣孔81排出)之由一交流馬達驅動之一通風機。As shown in FIG. 4, the field replaceable power module assembly (PMC) 70 includes a reaction box system 13, such as the cylindrical reaction box 13 shown in FIG. The reaction box 13 contains a fuel cell stack and a heat exchanger assembly. PMC 70 also includes a frame 71 that supports nuclear power plant supporting facilities (BOP) subsystems including blowers, valves, control panels, etc. (for clarity, not shown in the figure), and one of the supporting reaction boxes and frames can be removed The support 72, such as a fork lift rail. The support 72 allows the PMC 70 to be removed from the cabinet of the power module 12 as a single unit or assembly. Other configurations can also be used. For example, the reaction box 13 may have a shape other than a cylindrical shape, such as a polygon or the like. The support 72 may include a platform instead of a track. The frame may have a different configuration or it may be omitted altogether, and the BOP assembly is installed on the reaction box 13 and/or the support 72 instead. The PMC 70 is smaller in size than the opening in the power module 12 (for example, the opening closed by the door 30). In addition, the PMC 70 may include one or more vent holes 81 for exhaust and/or ventilation (such as air) from the PMC and the module 12 to the external environment. The PMC 70 may also include one or more fans or blowers 80, such as an AC motor that can force gas (such as air and/or ATO exhaust) to be discharged from the PMC 70 (such as from one or more vent holes 81) Drive one of the ventilators.

為最大化燃料電池堆疊(諸如上文所討論之電源模組12內之燃料堆疊)之效率及/或壽命,必須維持適當操作條件。例如,若太多或太少燃料由燃料系統使用或若一燃料電池堆疊之個別燃料電池之溫度偏離一較佳溫度範圍,則會導致低效率操作。為維持適當操作條件,可期望連續監測及調整燃料電池系統、其支援設備(例如諸如鼓風機、泵、閥等等之支援設備)及連接至燃料電池系統之周邊裝置。In order to maximize the efficiency and/or lifetime of the fuel cell stack (such as the fuel stack within the power module 12 discussed above), proper operating conditions must be maintained. For example, if too much or too little fuel is used by the fuel system or if the temperature of the individual fuel cells of a fuel cell stack deviates from a preferred temperature range, inefficient operation will result. To maintain proper operating conditions, it may be desirable to continuously monitor and adjust the fuel cell system, its supporting equipment (for example, supporting equipment such as blowers, pumps, valves, etc.), and peripheral devices connected to the fuel cell system.

各種實施例之系統、方法及裝置能夠藉由將電化學裝置並行連接至一共同負載及/或匯流排之電力電子器件來對電化學裝置執行電化學阻抗譜法(「EIS」)(亦稱為AC阻抗譜法)。電化學裝置可包含燃料電池堆疊分段、電池組電池、電解電池、電化學抽運電池(例如氫分離器)或可由EIS監測之任何其他裝置。The systems, methods, and devices of various embodiments can perform electrochemical impedance spectroscopy ("EIS") (also known as the "EIS") on the electrochemical device by connecting the electrochemical device in parallel to a common load and/or power electronic device of the bus. It is AC impedance spectroscopy method). The electrochemical device may include a fuel cell stack segment, a battery cell, an electrolysis cell, an electrochemical pump cell (such as a hydrogen separator), or any other device that can be monitored by EIS.

EIS能夠藉由依變化取樣頻率量測跨一電化學裝置之一電壓或電流來判定電化學裝置之總阻抗。經選擇以達成變化取樣頻率之一測試波形(諸如具有約1 Hz之振盪之一波形)可藉由(例如)快速切換連接至電化學裝置之一線以負載及卸載電化學裝置來產生於線上以藉此將測試波形注入至電化學裝置中。測試波形可為一正弦波或經選擇以達成所要取樣頻率之其他類型波。電化學裝置之一電壓或電流及所得相角可依取樣頻率之各者判定且使用EIS來轉換為阻抗。EIS can determine the total impedance of an electrochemical device by measuring a voltage or current across an electrochemical device according to a varying sampling frequency. A test waveform selected to achieve a varying sampling frequency (such as a waveform having an oscillation of about 1 Hz) can be generated online by, for example, quickly switching a line connected to the electrochemical device to load and unload the electrochemical device This injects the test waveform into the electrochemical device. The test waveform can be a sine wave or other types of waves selected to achieve the desired sampling frequency. The voltage or current of an electrochemical device and the resulting phase angle can be determined according to each of the sampling frequencies and converted to impedance using EIS.

可使用一奈奎斯特(Nyquist)圖或波特(Bode)圖來以圖形表示EIS程序之結果(例如變化頻率處之阻抗)且可基於電化學裝置之阻抗回應來判定電化學裝置之特性。可藉由比較所量測之電化學裝置之阻抗回應與具有已知特性之電化學裝置之阻抗回應之已知特徵來識別所量測之裝置之特性。可至少部分基於阻抗回應來判定之電化學裝置之特性包含燃料條件(例如燃料利用率)、空氣條件(例如一空氣利用率)、觸媒條件(例如陽極觸媒塗層中之裂紋)及水條件(例如PEM燃料電池膜注水)。可基於電化學裝置之特性來調整電化學裝置之一設定。例如,可基於燃料利用率及/或水流率來調整提供至電化學裝置之燃料之進入燃料入口流之一燃料流量及/或水流量設定。另外,電化學裝置之判定特性可與一失效臨限值比較,且當特性超過失效臨限值時,可指示電化學裝置之一失效模式,諸如一燃料不足狀態、一觸媒中毒狀態或一注水狀態。A Nyquist chart or Bode chart can be used to graphically represent the results of the EIS process (such as impedance at varying frequencies) and the characteristics of the electrochemical device can be determined based on the impedance response of the electrochemical device . The characteristics of the measured device can be identified by comparing the impedance response of the measured electrochemical device with the known characteristics of the impedance response of an electrochemical device with known characteristics. The characteristics of electrochemical devices that can be determined based at least in part on the impedance response include fuel conditions (e.g., fuel utilization), air conditions (e.g., an air utilization rate), catalyst conditions (e.g., cracks in the anode catalyst coating), and water. Conditions (eg PEM fuel cell membrane water injection). One of the settings of the electrochemical device can be adjusted based on the characteristics of the electrochemical device. For example, one of the fuel flow rate and/or water flow rate setting of the fuel inlet flow provided to the electrochemical device may be adjusted based on the fuel utilization rate and/or the water flow rate. In addition, the determination characteristics of the electrochemical device can be compared with a failure threshold, and when the characteristics exceed the failure threshold, it can indicate a failure mode of the electrochemical device, such as a fuel shortage state, a catalyst poisoning state or a Water filling state.

圖6係根據一實施例之一系統600之一方塊圖。系統600可包含四個電化學裝置602、604、606及608。例如,電化學裝置602、604、606及608可各為一電池或可構成電源模組106之一部分106a之燃料電池之一燃料電池堆疊分段。任何適合電池可用作為一電化學裝置,如本文所描述。實例包含鋰離子電池、鋁離子電池、鎳鎘電池、鎳鋅電池、鋅離子電池、聚合物基電池及鹼性電池。適合於一電力系統(特定言之,一不間斷電力系統或電力備用系統)之任何電池可用於本文所揭示之實施例中。FIG. 6 is a block diagram of a system 600 according to an embodiment. The system 600 may include four electrochemical devices 602, 604, 606, and 608. For example, the electrochemical devices 602, 604, 606, and 608 may each be a battery or a fuel cell stack section of a fuel cell that may constitute a part 106a of the power module 106. Any suitable battery can be used as an electrochemical device, as described herein. Examples include lithium ion batteries, aluminum ion batteries, nickel cadmium batteries, nickel zinc batteries, zinc ion batteries, polymer-based batteries, and alkaline batteries. Any battery suitable for a power system (in particular, an uninterruptible power system or a power backup system) can be used in the embodiments disclosed herein.

各電化學裝置602、604、606及608可經由一各自輸入連接640、642、644及646電連接至電力電子器件610、612、614及616之一各自者。各輸入連接640、642、644及646可包括一各自正輸入連接640a、642a、644a及646a及一各自負輸入連接640b、642b、644b及646b、在操作中,電化學裝置602、604、606及608可經由其各自輸入連接640、642、644及646將DC電壓輸出至其各自電力電子器件610、612、614及616。Each electrochemical device 602, 604, 606, and 608 can be electrically connected to each of the power electronic devices 610, 612, 614, and 616 via a respective input connection 640, 642, 644, and 646. Each input connection 640, 642, 644, and 646 may include a respective positive input connection 640a, 642a, 644a, and 646a and a respective negative input connection 640b, 642b, 644b, and 646b. In operation, the electrochemical device 602, 604, 606 And 608 can output DC voltage to their respective power electronic devices 610, 612, 614, and 616 via their respective input connections 640, 642, 644, and 646.

電力電子器件610、612、614及616可為DC轉DC轉換器,例如380伏特23安培DC轉DC轉換器。電力電子器件610、612、614及616可各分別包含控制器630、632、634及636,其等各有線或無線連接至一中央控制器638。控制器630、632、634及636可包含經組態有處理器可執行指令以執行操作來控制其各自電力電子器件610、612、614及616之處理器,且控制器638可為經組態有處理器可執行指令以執行操作來與電力電子器件610、612、614及616交換資料及控制電力電子器件610、612、614及616之操作的一處理器。經由連接至電力電子器件610、612、614及616之控制器630、632、634、636與控制器638之間的連接A、B、C及D,控制器638可有效連接至電力電子器件610、612、614及616且控制電力電子器件610、612、614及616之操作。The power electronic devices 610, 612, 614, and 616 may be DC-to-DC converters, such as 380 volts and 23-amp DC-to-DC converters. The power electronic devices 610, 612, 614, and 616 may each include controllers 630, 632, 634, and 636, respectively, which are each wired or wirelessly connected to a central controller 638. The controllers 630, 632, 634, and 636 may include processors configured with processor executable instructions to perform operations to control their respective power electronic devices 610, 612, 614, and 616, and the controller 638 may be configured A processor that has processor-executable instructions to perform operations to exchange data with the power electronic devices 610, 612, 614, and 616 and to control the operations of the power electronic devices 610, 612, 614, and 616. Through the connections A, B, C and D between the controllers 630, 632, 634, 636 and the controller 638 connected to the power electronic devices 610, 612, 614 and 616, the controller 638 can be effectively connected to the power electronic device 610 , 612, 614 and 616 and control the operation of power electronic devices 610, 612, 614 and 616.

電力電子器件610、612、614及616可藉由其各自輸出連接620、622、624及626並行連接至一DC匯流排618。在一實施例中,DC匯流排618可為包括一正線618a、一中性線618b及一負線618c之三相匯流排,且各自輸出連接620、622、624及626可包含各自正輸出連接620a、622a、624a及626a、各自中性輸出連接620b、622b、624b及626b及各自負輸出連接620c、622c、624c及626c。在操作中,電力電子器件610、612、614及616可經由其各自輸出連接620、622、624及626將DC電壓輸出至匯流排618。在一實施例中,電力電子器件610、612、614及616可為三相轉換器,其經組態以自其各自電化學裝置602、604、606及608接收正及負DC輸入且經由其各自正輸出連接620a、622a、624a及626a、各自中性輸出連接620b、622b、624b及626b及各自負輸出連接620c、622c、624c及626c將正DC輸出、負DC輸出及中性輸出輸出至匯流排618。在一替代實施例中,電力電子器件610、612、614及616可各包括雙二相轉換器。二相轉換器之第一者之正輸出可連接至匯流排618之正線618a且二相轉換器之第二者之負輸出可連接至匯流排618之負線618c。二相轉換器之第一者之負輸出及二相轉換器之第二者之正輸出可一起連接至匯流排618之中性線618b。The power electronic devices 610, 612, 614, and 616 can be connected in parallel to a DC bus 618 via their respective output connections 620, 622, 624, and 626. In an embodiment, the DC bus 618 may be a three-phase bus including a positive line 618a, a neutral line 618b, and a negative line 618c, and the respective output connections 620, 622, 624, and 626 may include respective positive outputs Connections 620a, 622a, 624a, and 626a, respective neutral output connections 620b, 622b, 624b, and 626b, and respective negative output connections 620c, 622c, 624c, and 626c. In operation, the power electronics 610, 612, 614, and 616 can output DC voltage to the bus 618 via their respective output connections 620, 622, 624, and 626. In an embodiment, the power electronic devices 610, 612, 614, and 616 may be three-phase converters that are configured to receive positive and negative DC inputs from their respective electrochemical devices 602, 604, 606, and 608 and pass through them The respective positive output connections 620a, 622a, 624a, and 626a, the respective neutral output connections 620b, 622b, 624b, and 626b, and the respective negative output connections 620c, 622c, 624c, and 626c output the positive DC output, negative DC output, and neutral output to Bus 618. In an alternative embodiment, the power electronic devices 610, 612, 614, and 616 may each include a dual two-phase converter. The positive output of the first one of the two-phase converter can be connected to the positive line 618a of the bus 618 and the negative output of the second one of the two-phase converter can be connected to the negative line 618c of the bus 618. The negative output of the first one of the two-phase converter and the positive output of the second one of the two-phase converter can be connected to the neutral line 618b of the bus 618 together.

在一實施例中,電力電子器件610、612、614及616可各經組態以執行其各自電化學裝置602、604、606及608之EIS監測。控制器638可選擇一測試波形用於電化學裝置602、604、606或608之一者之EIS監測中,且可控制該電化學裝置602、604、606或608之該電力電子器件610、612、614或616將選定測試波形注入至各自輸入連接640、642、644或646上。例如,控制器638可將選定測試波形之一指示發送至電力電子器件610之控制器630以引起電力電子器件610處之一開關打開及閉合以經由連接至電化學裝置602之輸入連接640上之脈寬調變來產生選定測試波形。注入測試波形之電力電子器件610、612、614或616可經組態以監測其各自電化學裝置602、604、606或608之所得阻抗回應且可經由其各自控制器630、632、634或636將監測阻抗回應之一指示輸出至控制器638。繼續上述實例,電力電子器件610可監測至電化學裝置602之輸入連接640上之阻抗回應且控制器630可向控制器638指示電化學裝置602之阻抗回應。In an embodiment, the power electronic devices 610, 612, 614, and 616 can each be configured to perform EIS monitoring of their respective electrochemical devices 602, 604, 606, and 608. The controller 638 can select a test waveform for EIS monitoring of one of the electrochemical devices 602, 604, 606, or 608, and can control the power electronic devices 610, 612 of the electrochemical device 602, 604, 606, or 608 , 614 or 616 injects the selected test waveform into the respective input connection 640, 642, 644 or 646. For example, the controller 638 may send an indication of the selected test waveform to the controller 630 of the power electronic device 610 to cause a switch at the power electronic device 610 to open and close to pass through the input connection 640 connected to the electrochemical device 602 Pulse width modulation to generate selected test waveforms. The power electronic device 610, 612, 614, or 616 injected with the test waveform can be configured to monitor the resulting impedance response of its respective electrochemical device 602, 604, 606, or 608 and can pass through its respective controller 630, 632, 634, or 636 An indication of the monitored impedance response is output to the controller 638. Continuing the above example, the power electronic device 610 can monitor the impedance response of the input connection 640 to the electrochemical device 602 and the controller 630 can indicate the impedance response of the electrochemical device 602 to the controller 638.

控制器638可使用由一電化學裝置602、604、606、608之EIS監測判定之阻抗回應來判定該電化學裝置602、604、606、608之一特性且可基於判定特性來調整系統600之一設定。控制器638可比較由一電化學裝置602、604、606、608之EIS監測判定之阻抗回應(諸如阻抗回應及/或所儲存之阻抗值之一作圖)與與已知特性相關之類似電化學裝置之儲存於一記憶體中之阻抗回應(諸如阻抗回應及/或所儲存之阻抗值之儲存繪圖)。控制器638可依任何方式比較由一電化學裝置602、604、606、608之EIS監測判定之阻抗回應與所儲存之阻抗回應以識別由一電化學裝置602、604、606、608之EIS監測判定之阻抗回應與所儲存之阻抗回應之間的匹配。The controller 638 can use the impedance response determined by the EIS monitoring of an electrochemical device 602, 604, 606, 608 to determine one of the characteristics of the electrochemical device 602, 604, 606, 608, and can adjust the system 600 based on the determined characteristics. One setting. The controller 638 can compare the impedance response determined by the EIS monitoring of an electrochemical device 602, 604, 606, 608 (such as the impedance response and/or the mapping of one of the stored impedance values) with similar electrochemical properties related to known characteristics. The impedance response of the device stored in a memory (such as the impedance response and/or the stored drawing of the stored impedance value). The controller 638 can compare the impedance response determined by the EIS monitoring of an electrochemical device 602, 604, 606, 608 with the stored impedance response in any way to identify the EIS monitoring of an electrochemical device 602, 604, 606, 608 The match between the determined impedance response and the stored impedance response.

當控制器638判定由一電化學裝置602、604、606、608之EIS監測判定之阻抗回應與一所儲存之阻抗回應之間匹配(例如相同或在某一預定方差值內)時,控制器638可將與所儲存之阻抗回應相關之特性判定為各自電化學裝置602、604、606、608之特性。When the controller 638 determines that the impedance response determined by the EIS monitoring of an electrochemical device 602, 604, 606, 608 matches a stored impedance response (for example, the same or within a predetermined variance value), it controls The device 638 can determine the characteristics related to the stored impedance response as the characteristics of the respective electrochemical devices 602, 604, 606, and 608.

例如,控制器638可依一電池之頻率判定一阻抗方差。特定言之,較低頻率中之較高電池阻抗可預兆較低容量及/或較高內部電阻。控制器638亦可使用EIS來量測一電池之其他性質,包含其電量狀態(SoC)、健康狀態(SoH)、總電池壽命及電池包含故障或表現不佳電池時之診斷。For example, the controller 638 can determine an impedance variance based on the frequency of a battery. In particular, a higher battery impedance at a lower frequency may indicate a lower capacity and/or higher internal resistance. The controller 638 can also use EIS to measure other properties of a battery, including its state of charge (SoC), state of health (SoH), total battery life, and diagnosis when the battery contains a faulty or poorly performing battery.

為存取電池之SoH,控制器638可在電池係新的或呈正常運轉狀態時比較由電池之EIS量測之阻抗行為與電池之一已知阻抗分佈。比較經由EIS所量測之阻抗行為與電池之已知阻抗分佈可揭露問題,諸如減少容量及窄電壓輸出窗、降級額定電流、增大內部阻抗(其可指示電池之進一步問題,諸如降級電連接、洩漏、電解質降級等等)。阻抗量測亦可藉由(例如)展示跨所有頻率之一相對較高阻抗來表明電池到達其循環壽命之末期。To access the SoH of the battery, the controller 638 can compare the impedance behavior measured by the EIS of the battery with a known impedance distribution of the battery when the battery is new or in a normal operating state. Comparing the impedance behavior measured by EIS with the known impedance distribution of the battery can reveal problems, such as reduced capacity and narrow voltage output window, degraded rated current, increased internal impedance (which can indicate further problems with the battery, such as degraded electrical connections , Leakage, electrolyte degradation, etc.). Impedance measurements can also indicate that the battery has reached the end of its cycle life by, for example, showing a relatively high impedance across all frequencies.

當由一各自電力電子器件610、612、614或616將一測試波形注入一輸入連接640、642、644或646上以執行EIS監測時,各自輸出連接620、622、624或626上可發生一漣波。若不予處理,則由電力電子器件610、612、614或616執行EIS監測所致之漣波會引起DC匯流排618上之一非所要漣波。為防止DC匯流排618上之一漣波,來自執行EIS監測之電力電子器件610、612、614或616之漣波可偏移或由注入至DC匯流排618中之其他漣波抵消。在一實施例中,其他漣波可由未執行EIS監測之其他電力電子器件610、612、614或616之一或多者產生。When a test waveform is injected by a respective power electronic device 610, 612, 614, or 616 to an input connection 640, 642, 644, or 646 to perform EIS monitoring, a test waveform may occur on the respective output connection 620, 622, 624, or 626. Ripple. If not processed, the ripple caused by the EIS monitoring performed by the power electronic device 610, 612, 614, or 616 will cause an undesired ripple on the DC bus 618. In order to prevent one of the ripples on the DC bus 618, the ripples from the power electronic devices 610, 612, 614, or 616 performing EIS monitoring can be offset or cancelled by other ripples injected into the DC bus 618. In one embodiment, other ripples may be generated by one or more of other power electronic devices 610, 612, 614, or 616 that have not performed EIS monitoring.

可藉由控制未執行EIS監測之其他電力電子器件610、612、614或616之一或多者將一偏移波形注入至其各自輸入連接640、642、644或646之其各自輸入連接中來產生來自未執行EIS監測之其他電力電子器件610、612、614或616之一或多者之漣波。一或若干偏移波形可由控制器638選擇,使得當在DC匯流排618處加總波形時,回應於注入一或若干偏移波形而產生之各自輸出連接620、622、624或626上之漣波抵消由電力電子器件610、612、614或616執行EIS監測引起之漣波。在另一實施例中,漣波可自除電力電子器件610、612、614或616之外的裝置注入至輸出連接620、622、624或626中以在DC匯流排618處加總波形時抵消由電力電子器件610、612、614及616執行EIS監測引起之漣波。例如,一波形產生器可連接至輸出連接620、622、624或626以回應於EIS監測而注入抵消漣波。By controlling one or more of other power electronic devices 610, 612, 614, or 616 that are not performing EIS monitoring, an offset waveform can be injected into their respective input connections of their respective input connections 640, 642, 644, or 646. Generate ripples from one or more of other power electronic devices 610, 612, 614, or 616 that have not performed EIS monitoring. One or more offset waveforms can be selected by the controller 638 so that when the waveforms are summed at the DC bus 618, the ripples on the respective output connections 620, 622, 624, or 626 generated in response to the injection of one or more offset waveforms The wave cancels the ripple caused by the power electronic device 610, 612, 614 or 616 performing EIS monitoring. In another embodiment, ripples can be injected from devices other than the power electronics 610, 612, 614, or 616 into the output connection 620, 622, 624, or 626 to cancel out when the waveform is summed at the DC bus 618 Ripple caused by EIS monitoring performed by power electronic devices 610, 612, 614, and 616. For example, a waveform generator can be connected to the output connection 620, 622, 624, or 626 to inject cancellation ripples in response to EIS monitoring.

圖7A係繪示隨時間之一DC匯流排上之抵消漣波的一曲線圖。由一電力電子器件注入至一電化學裝置之一輸入連接上之一測試波形可導致自注入測試波形之電力電子器件朝向一DC匯流排發送之一漣波702。由另一電力電子器件注入至另一電化學裝置之一輸入連接上之一偏移波形可導致自注入偏移波形之該電力電子器件朝向DC匯流排發送之一漣波704。偏移波形可經選擇使得漣波704與漣波702異相180度。電力電子器件可並行連接至DC匯流排且漣波702及漣波704之總和可彼此抵消,使得波形之總和係DC匯流排上之所要DC電壓706。Figure 7A is a graph showing the cancellation ripple on a DC bus over time. A test waveform injected by a power electronic device onto an input connection of an electrochemical device can cause a ripple 702 to be sent from the power electronic device injected with the test waveform toward a DC bus. An offset waveform injected by another power electronic device onto an input connection of another electrochemical device may cause a ripple 704 to be sent from the power electronic device that injected the offset waveform toward the DC bus. The offset waveform can be selected so that ripple 704 and ripple 702 are 180 degrees out of phase. The power electronics can be connected to the DC bus in parallel and the sum of the ripple 702 and the ripple 704 can cancel each other, so that the sum of the waveforms is the desired DC voltage 706 on the DC bus.

圖7B係繪示使用一個以上偏移波形之隨時間之一DC匯流排上之抵消漣波的另一曲線圖。如上文所討論,由一電力電子器件注入至一電化學裝置之一輸入連接上之一測試波形可導致自注入測試波形之電力電子器件朝向一DC匯流排發送之一漣波702。FIG. 7B is another graph showing the offset ripple on one of the DC bus bars over time using more than one offset waveform. As discussed above, a test waveform injected by a power electronic device onto an input connection of an electrochemical device can cause a ripple 702 to be sent from the power electronic device injected with the test waveform toward a DC bus.

三個其他電力電子器件可用於產生注入至三個其他電化學裝置之輸入連接上之偏移波形。由第一其他電力電子器件注入至一第一其他電化學裝置之一輸入連接上之第一偏移波形可導致自注入偏移波形之該第一其他電力電子器件朝向DC匯流排發送之一漣波708。由第二其他電力電子器件注入至一第二其他電化學裝置之一輸入連接上之第二偏移波形可導致自注入偏移波形之該第二其他電力電子器件朝向DC匯流排發送之一漣波710。由第三其他電力電子器件注入至一第三其他電化學裝置之一輸入連接上之第三偏移波形可導致自注入偏移波形之該第三其他電力電子器件朝向DC匯流排發送之一漣波712。三個偏移波形可經選擇使得漣波708、710及712之總和可抵消漣波702,使得波形之總和係DC匯流排上之所要DC電壓706。儘管圖7A及圖7B中繪示為具有相同於漣波702之頻率之一個所產生之偏移漣波704或三個偏移漣波708、710、712,可產生具有不同波形、不同頻率、相位、振幅等等之更多或更少偏移漣波且使其朝向DC匯流排注入,只要任何偏移漣波之總和加上自注入測試波形之電力電子器件朝向DC匯流排發送之漣波702導致不具有漣波之DC匯流排上之所要DC電壓706。Three other power electronic devices can be used to generate offset waveforms injected into the input connections of three other electrochemical devices. The first offset waveform injected by the first other power electronic device into the input connection of a first other electrochemical device can cause the first other power electronic device to send a ripple toward the DC bus from the injected offset waveform Wave 708. The second offset waveform injected by the second other power electronic device into the input connection of a second other electrochemical device can cause the second other power electronic device to self-inject the offset waveform to send a ripple toward the DC bus Wave 710. The third offset waveform injected by the third other power electronic device into the input connection of a third other electrochemical device can cause the third other power electronic device to send a ripple toward the DC bus from the injected offset waveform Wave 712. The three offset waveforms can be selected so that the sum of the ripples 708, 710, and 712 can cancel the ripple 702, so that the sum of the waveforms is the desired DC voltage 706 on the DC bus. Although FIG. 7A and FIG. 7B show an offset ripple 704 or three offset ripples 708, 710, and 712 generated by one of the same frequencies as the ripple 702, they can be generated with different waveforms, different frequencies, More or less offset ripples of phase, amplitude, etc. and make them injected towards the DC bus, as long as the sum of any offset ripples plus the ripples sent from the power electronic device of the self-injected test waveform towards the DC bus 702 results in the desired DC voltage 706 on the DC bus with no ripple.

圖8繪示使用系統600來抵消由一測試波形引起之至一DC匯流排之漣波之一實施例方法800。在一實施例中,方法800之操作可由一控制器(諸如控制器638)執行。從電池、燃料電池堆疊分段及DC轉換器方面討論方法800之操作,但電池、燃料電池堆疊分段及轉換器僅用作為實例。其他電化學裝置及/或其他電力電子器件可用於方法800之各種操作中。FIG. 8 illustrates an embodiment method 800 of using the system 600 to cancel the ripple to a DC bus caused by a test waveform. In one embodiment, the operations of the method 800 may be performed by a controller (such as the controller 638). The operation of the method 800 is discussed in terms of batteries, fuel cell stack segments, and DC converters, but batteries, fuel cell stack segments, and converters are only used as examples. Other electrochemical devices and/or other power electronic devices can be used in various operations of method 800.

在區塊802中,控制器638可自複數個電化學裝置選擇一電化學裝置(諸如一電池)用於阻抗測試。例如,可基於管控可何時及依何種順序測試電化學裝置之一測試協定來選擇電化學裝置。在區塊804中,控制器638可選擇一測試波形。測試波形可經選擇以產生EIS監測所需之振盪,諸如約1 Hz之振盪。In block 802, the controller 638 may select an electrochemical device (such as a battery) from a plurality of electrochemical devices for impedance testing. For example, the electrochemical device can be selected based on a test protocol that controls when and in which order the electrochemical device can be tested. In block 804, the controller 638 can select a test waveform. The test waveform can be selected to generate the oscillation required for EIS monitoring, such as an oscillation of about 1 Hz.

在區塊806中,控制器638可判定由選定測試波形引起之一所得漣波。如上文所討論,所得漣波可為自注入測試波形之DC轉換器輸出至DC匯流排之漣波。在區塊808中,控制器638可識別剩餘電化學裝置。剩餘電化學裝置可包含電池、燃料電池堆疊分段、超級電容器等等。替代地,可識別其他剩餘DC電源,諸如光伏打電池或熱電式發電機。剩餘電化學裝置可為未被選擇用於阻抗測試之電化學裝置。在區塊809中,控制器638可選擇經識別之剩餘DC電源之一部分。在一實施例中,選定部分可為所有經識別之剩餘電池及燃料電池堆疊分段。在另一實施例中,選定部分可少於所有經識別之剩餘電池及燃料電池堆疊分段,諸如僅一單一經識別之剩餘燃料電池堆疊分段。In block 806, the controller 638 may determine that one of the resulting ripples is caused by the selected test waveform. As discussed above, the resulting ripple can be the ripple from the DC converter output to the DC bus that injected the test waveform. In block 808, the controller 638 may identify the remaining electrochemical devices. The remaining electrochemical devices may include batteries, fuel cell stack segments, supercapacitors, and so on. Alternatively, other remaining DC power sources can be identified, such as photovoltaic cells or thermoelectric generators. The remaining electrochemical devices may be electrochemical devices that have not been selected for impedance testing. In block 809, the controller 638 may select a portion of the identified remaining DC power source. In an embodiment, the selected portion may be all identified remaining cells and fuel cell stack segments. In another embodiment, the selected portion may be less than all identified remaining cells and fuel cell stack sections, such as only a single identified remaining fuel cell stack section.

在區塊810中,控制器638可判定各選定剩餘燃料電池堆疊分段之一偏移波形,使得由各選定剩餘電化學裝置之各自判定偏移波形引起之各所得漣波之一總和抵消由選定測試波形引起之判定所得漣波。在一實施例中,各偏移波形可經產生使得所得漣波相同,諸如一起抵消來自測試波形之漣波之一個、兩個、三個或更多個相等漣波。在另一實施例中,各偏移波形可經產生使得所得漣波不同,諸如一起抵消來自測試波形之漣波之兩個、三個或更多個不同漣波。In block 810, the controller 638 may determine an offset waveform of each selected remaining fuel cell stack segment, so that the sum of each resulting ripple caused by the respective determined offset waveform of each selected remaining electrochemical device cancels out by The judged ripple caused by the selected test waveform. In an embodiment, each offset waveform can be generated so that the resulting ripples are the same, such as canceling one, two, three, or more equal ripples of the ripples from the test waveform together. In another embodiment, each offset waveform may be generated so that the resulting ripples are different, such as canceling together two, three or more different ripples from the ripples from the test waveform.

在區塊812中,控制器638可控制經選擇用於阻抗測試之電化學裝置之DC轉換器將測試波形注入至選定電化學裝置中。例如,控制器638可將控制信號發送至DC轉換器之一控制器(例如630、632、634或636)以引起轉換器執行脈寬調變以在至電化學裝置之一輸入連接上產生測試波形。在區塊814中,控制器638可控制各選定剩餘電化學裝置之DC轉換器將各選定剩餘電化學裝置之偏移波形注入至每個各自電化學裝置中。例如,控制器638可將控制信號發送至DC轉換器之控制器(例如630、632、634及/或636)以引起轉換器執行脈寬調變以在至其各自電化學裝置之一輸入連接上產生偏移波形。區塊812及814中所執行之方法800之操作可同時發生,使得測試波形及偏移波形同時注入以導致自各種DC轉換器輸出彼此抵消之漣波以導致DC匯流排上之所要DC電壓。In block 812, the controller 638 may control the DC converter of the electrochemical device selected for impedance testing to inject the test waveform into the selected electrochemical device. For example, the controller 638 may send a control signal to a controller of the DC converter (for example, 630, 632, 634, or 636) to cause the converter to perform pulse width modulation to generate a test on an input connection to the electrochemical device Waveform. In block 814, the controller 638 may control the DC converter of each selected remaining electrochemical device to inject the offset waveform of each selected remaining electrochemical device into each respective electrochemical device. For example, the controller 638 may send a control signal to the controller of the DC converter (for example, 630, 632, 634, and/or 636) to cause the converter to perform pulse width modulation to connect to one of its respective electrochemical devices. Offset waveform is generated on. The operations of the method 800 performed in blocks 812 and 814 can occur simultaneously, so that the test waveform and the offset waveform are injected at the same time to cause ripples from the various DC converter outputs to cancel each other to cause the desired DC voltage on the DC bus.

在區塊816中,控制器638可控制經選擇用於阻抗測試之DC電源之DC轉換器回應於所注入之測試波形而監測DC電源之阻抗回應。In block 816, the controller 638 may control the DC converter of the DC power source selected for impedance testing to monitor the impedance response of the DC power source in response to the injected test waveform.

在區塊818中,控制器638可至少部分基於阻抗回應來判定經選擇用於阻抗測試之電化學裝置之一特性。如上文所討論,控制器可使用EIS監測來繪製源自注入測試波形之量測阻抗之實部及虛部且比較所繪製之阻抗與具有已知特性之電化學裝置之阻抗回應之已知特徵。具有已知特性之電化學裝置之阻抗回應之已知特徵可儲存於可用於控制器之一記憶體中。具有已知特性之電化學裝置之阻抗回應之所儲存之已知特徵可為源自測試良好(即,未受損/未降級)電化學裝置及具有各種形式之損壞(例如燃料電池之陽極裂紋)及/或降級(例如一燃料電池之電解質降級)之受損/降級電化學裝置之良好燃料電化學裝置及受損/降級電化學裝置之量測阻抗之實部及虛部之作圖。已知特性可與儲存於記憶體中之量測阻抗之實部及虛部之作圖相關。可藉由匹配量測阻抗與阻抗回應之已知特徵來將電化學裝置之當前特性或狀態判定為與阻抗回應之匹配已知特徵相關之特性。In block 818, the controller 638 may determine a characteristic of the electrochemical device selected for impedance testing based at least in part on the impedance response. As discussed above, the controller can use EIS monitoring to plot the real and imaginary parts of the measured impedance derived from the injected test waveform and compare the plotted impedance with the known characteristics of the impedance response of an electrochemical device with known characteristics . The known characteristics of the impedance response of electrochemical devices with known characteristics can be stored in a memory that can be used in the controller. The stored known characteristics of the impedance response of an electrochemical device with known characteristics can be derived from well-tested (ie, undamaged/not degraded) electrochemical devices and various forms of damage (such as anode cracks in fuel cells) ) And/or degraded (for example, the electrolyte of a fuel cell is degraded). The real part and imaginary part of the measured impedance of the damaged/degraded electrochemical device of the good fuel electrochemical device and the damaged/degraded electrochemical device. The known characteristics can be related to the mapping of the real and imaginary parts of the measured impedance stored in the memory. The current characteristic or state of the electrochemical device can be determined as the characteristic related to the matched known characteristic of the impedance response by matching the measured impedance with the known characteristic of the impedance response.

在選用區塊820中,控制器638可基於判定特性超過一失效臨限值來指示一失效模式。例如,若判定特性超過一失效臨限值,則可指示一失效模式。例如,針對一燃料電池,一失效模式可為一燃料不足狀態、觸媒損壞及/或中毒狀態或一注水。在選用區塊822中,控制器638可基於判定特性來調整電化學裝置系統之一設定。例如,控制器638可基於判定特性來調整(例如增大或減小)自電化學裝置汲取之電流或切斷電化學裝置。依此方式,阻抗測試(諸如EIS監測)可用於一燃料電池系統中以基於電化學裝置之當前特性來調整電化學裝置系統之操作。In the optional block 820, the controller 638 may indicate a failure mode based on the determination that the characteristic exceeds a failure threshold. For example, if it is determined that the characteristic exceeds a failure threshold, a failure mode can be indicated. For example, for a fuel cell, a failure mode can be a fuel shortage state, a catalyst damage and/or poisoning state, or a water injection. In the optional block 822, the controller 638 can adjust a setting of the electrochemical device system based on the determination characteristic. For example, the controller 638 may adjust (for example, increase or decrease) the current drawn from the electrochemical device or cut off the electrochemical device based on the determination characteristic. In this way, impedance testing (such as EIS monitoring) can be used in a fuel cell system to adjust the operation of the electrochemical device system based on the current characteristics of the electrochemical device.

圖9A係根據一實施例之上文參考圖6所描述之系統600之一方塊圖,其繪示注入波形902、906、910及914及所得抵消漣波904、908、912及916。應注意,圖9A假定若任何DC電源602至608係電池,則電池呈一放電狀態而非一充電狀態。下文將在圖9C及圖9D之背景中處理其中一電化學裝置係在充電之情況。FIG. 9A is a block diagram of the system 600 described above with reference to FIG. 6 according to an embodiment, which shows injected waveforms 902, 906, 910, and 914 and the resulting cancellation ripples 904, 908, 912, and 916. It should be noted that FIG. 9A assumes that if any of the DC power sources 602 to 608 are batteries, the batteries are in a discharged state rather than a charged state. The following will deal with the case where one of the electrochemical devices is charging in the background of FIGS. 9C and 9D.

一測試波形902可注入至輸入連接640中以導致至DC匯流排618之輸出連接620上之一測試漣波904a。一偏移波形906可注入至輸入連接642中以導致至DC匯流排618之輸出連接622上之一偏移漣波908。一偏移波形910可注入至輸入連接644中以導致至DC匯流排618之輸出連接624上之一偏移漣波912。一偏移波形914可注入至輸入連接646中以導致至DC匯流排618之輸出連接626上之一偏移漣波916。漣波904、908、912及916之總和可使得無一漣波之穩定DC電壓918a發生於DC匯流排618上,儘管AC漣波發生於輸出連接620、622、624及626上。儘管漣波904、908、912及916之總和可使得無一漣波之穩定DC電壓918a產生於DC匯流排618上,但偏移波形906、910及914及測試波形902之總和無需等於零。偏移漣波908、912及916可全部相同或可不同。例如,偏移漣波908可為大於偏移漣波912及916之一漣波。另外,無論偏移漣波908、912及916相同或不同,偏移波形906、910及914可不相同。儘管圖中繪示三個偏移波形906、910及914及其所得偏移漣波908、912及916,但可產生更少偏移波形及偏移漣波(諸如僅兩個偏移波形及所得偏移漣波或僅一個偏移波形及一個所得偏移漣波)來偏移測試漣波904a。替代地,DC電源602、604、606及608亦可包括非電化學DC電源,諸如太陽能電池或熱電裝置。各DC電源602至608具有將一波形注入至各自DC電源602至608中之一單獨、各自、專用電力電子裝置610至616。A test waveform 902 can be injected into the input connection 640 to cause a test ripple 904a on the output connection 620 to the DC bus 618. An offset waveform 906 can be injected into the input connection 642 to cause an offset ripple 908 on the output connection 622 of the DC bus 618. An offset waveform 910 can be injected into the input connection 644 to cause an offset ripple 912 on the output connection 624 of the DC bus 618. An offset waveform 914 can be injected into the input connection 646 to cause an offset ripple 916 on the output connection 626 to the DC bus 618. The sum of the ripples 904, 908, 912, and 916 can cause a stable DC voltage 918a without a ripple to occur on the DC bus 618, even though AC ripples occur on the output connections 620, 622, 624, and 626. Although the sum of the ripples 904, 908, 912, and 916 can cause a stable DC voltage 918a without a ripple to be generated on the DC bus 618, the sum of the offset waveforms 906, 910, and 914 and the test waveform 902 need not be equal to zero. The offset ripples 908, 912, and 916 may all be the same or may be different. For example, the offset ripple 908 may be a ripple larger than the offset ripples 912 and 916. In addition, regardless of whether the offset ripples 908, 912, and 916 are the same or different, the offset waveforms 906, 910, and 914 may be different. Although three offset waveforms 906, 910, and 914 and the resulting offset ripples 908, 912, and 916 are shown in the figure, fewer offset waveforms and offset ripples (such as only two offset waveforms and The resultant offset ripple or only one offset waveform and one resultant offset ripple) offset the test ripple 904a. Alternatively, the DC power sources 602, 604, 606, and 608 may also include non-electrochemical DC power sources, such as solar cells or thermoelectric devices. Each of the DC power sources 602 to 608 has a single, individual, dedicated power electronic device 610 to 616 that injects a waveform into one of the respective DC power sources 602 to 608.

在一實施例中,除一基於燃料電池之電源之外的各DC電源含有將一測試波形或一偏移波形注入至DC電源中之一專用、單獨、各自DC/DC轉換器。在此實施例中,DC電源可為一電池、超級電容器、光伏打電池或熱電裝置。測試波形引起來自發送測試波形之DC/DC轉換器之輸出連接上之一測試漣波。(若干)偏移波形引起來自發送(若干)偏移波形之(若干) DC/DC轉換器之輸出連接上之一偏移或補充漣波。偏移漣波偏移及抵消測試漣波,而(若干)補充漣波疊加於測試漣波上且增大測試漣波之振幅,如下文將更詳細描述。In one embodiment, each DC power source other than a fuel cell-based power source contains a dedicated, separate, individual DC/DC converter that injects a test waveform or an offset waveform into the DC power source. In this embodiment, the DC power source may be a battery, super capacitor, photovoltaic cell or thermoelectric device. The test waveform causes a test ripple from the output connection of the DC/DC converter that sends the test waveform. The (several) offset waveform causes an offset or supplemental ripple from one of the output connections of the DC/DC converter(s) that sends the offset waveform(s). The offset ripple offsets and cancels the test ripple, and (several) supplementary ripples are superimposed on the test ripple and increase the amplitude of the test ripple, as will be described in more detail below.

在一替代實施例中,偏移漣波908、912及/或916可由連接至輸出連接622、624及626且由控制器638控制之其他裝置(諸如波形產生器)而非電力電子器件612、614及/或616產生。偏移漣波908、912及/或916可由其他裝置產生,使得漣波904a、908、912及916之總和可為DC匯流排618上無一漣波之穩定DC電壓918a。另外,由電力電子器件612、614及/或616及其他裝置(諸如額外波形產生器)產生之漣波之組合可用於抵消漣波904a以導致DC匯流排618上無一漣波之穩定DC電壓918a。In an alternative embodiment, the offset ripples 908, 912, and/or 916 may be connected to the output connections 622, 624, and 626 and controlled by other devices (such as a waveform generator) instead of the power electronics 612, 614 and/or 616 are generated. The offset ripples 908, 912, and/or 916 can be generated by other devices, so that the sum of the ripples 904a, 908, 912, and 916 can be a stable DC voltage 918a without a ripple on the DC bus 618. In addition, the combination of ripples generated by the power electronic devices 612, 614 and/or 616 and other devices (such as additional waveform generators) can be used to cancel the ripple 904a to result in a stable DC voltage without a ripple on the DC bus 618 918a.

圖9B係繪示在DC電源(諸如一電化學裝置602)處於放電或發電模式中時使用圖9A中所展示之波形之隨時間之一DC匯流排上之抵消漣波的一曲線圖。如上文所討論,測試波形902由電力電子器件(例如DC/DC轉換器) 610注入至DC電源602之一輸入連接640a上以導致朝向DC匯流排618之測試漣波904a。9B is a graph showing the cancellation ripple on a DC bus with time using the waveform shown in FIG. 9A when a DC power source (such as an electrochemical device 602) is in a discharge or power generation mode. As discussed above, the test waveform 902 is injected by the power electronic device (eg, DC/DC converter) 610 onto one of the input connections 640a of the DC power supply 602 to cause a test ripple 904a toward the DC bus 618.

三個其他電力電子器件(例如DC/DC轉換器) 612、614及616分別產生注入至三個其他DC電源(諸如電化學裝置604、606及608)之輸入連接942a、644a及646a上之偏移波形906、910及914。第一偏移波形906可導致朝向DC匯流排發送之一漣波908。第二偏移波形910及第三偏移波形914可分別導致朝向DC匯流排618發送之漣波912及916。三個偏移波形906、910及914可經選擇使得漣波908、912及916之總和可抵消漣波904a,使得波形之總和係DC匯流排上無漣波之所要DC電壓918a。Three other power electronic devices (such as DC/DC converters) 612, 614, and 616 respectively generate biases injected into the input connections 942a, 644a, and 646a of three other DC power sources (such as electrochemical devices 604, 606, and 608). Shift waveforms 906, 910, and 914. The first offset waveform 906 may cause a ripple 908 to be sent toward the DC bus. The second offset waveform 910 and the third offset waveform 914 may cause ripples 912 and 916 sent toward the DC bus 618, respectively. The three offset waveforms 906, 910, and 914 can be selected so that the sum of the ripples 908, 912, and 916 can cancel the ripple 904a, so that the sum of the waveforms is the desired DC voltage 918a without ripples on the DC bus.

圖9C展示EIS用於偵測一電池之一充電狀態時之系統600。更具體而言,在圖9C中,DC電源602係一電化學能量儲存裝置,諸如可呈一充電狀態或一放電狀態之一電池。當電化學能量儲存裝置602呈充電狀態時,電流自DC/DC轉換器610沿方向950a經由輸入連接640a流動至電化學裝置602。相反地,當電化學能量儲存裝置602呈放電狀態時,電流在相反方向950b上流動。如上文所討論,圖9A及圖9B展示電化學能量儲存裝置602呈放電狀態時之結果。FIG. 9C shows the system 600 when EIS is used to detect the state of charge of a battery. More specifically, in FIG. 9C, the DC power source 602 is an electrochemical energy storage device, such as a battery that can be in a charged state or a discharged state. When the electrochemical energy storage device 602 is in a charged state, current flows from the DC/DC converter 610 to the electrochemical device 602 via the input connection 640a in the direction 950a. Conversely, when the electrochemical energy storage device 602 is in a discharged state, current flows in the opposite direction 950b. As discussed above, FIGS. 9A and 9B show the results when the electrochemical energy storage device 602 is in a discharged state.

電化學能量儲存裝置602呈充電狀態時之系統600之運轉描述類似於電化學能量儲存裝置602呈放電狀態時之情形(即,圖9A之背景中之描述)。因此,僅描述差異。具體而言,與藉由在放電時將相同測試波形施加於602所產生之漣波904a (圖9A)相比,藉由在呈充電狀態時將測試波形902提供至電化學能量儲存裝置602所產生之圖9C中所展示之漣波904b係在相反方向上(即,異相180度)。The description of the operation of the system 600 when the electrochemical energy storage device 602 is in a charged state is similar to that when the electrochemical energy storage device 602 is in a discharged state (ie, the description in the background of FIG. 9A). Therefore, only the differences are described. Specifically, compared with the ripple 904a (FIG. 9A) generated by applying the same test waveform to 602 when discharging, by providing the test waveform 902 to the electrochemical energy storage device 602 when in a charged state The resulting ripple 904b shown in Figure 9C is in the opposite direction (ie, 180 degrees out of phase).

儘管電化學能量儲存裝置602處於充電模式中,但控制器638控制電化學裝置604、606及608產生補償漣波908、912及916來抵消在電化學能量儲存裝置602處於充電模式中時基於測試信號902所產生之一漣波904b。因此,如圖9C中所展示,充電模式中之補償漣波908、912及916相同於放電模式(圖9A)中之偏移補償漣波908、912及916。當電化學能量儲存裝置602處於充電模式中時,此等補償漣波908、912及916無法抵消漣波904b。因此,偵測到DC匯流排618上之一(未抵消)電壓漣波918b可用作為電化學能量儲存裝置602處於充電模式中之一指示。圖9D更詳細闡釋一未抵消電壓漣波918b可如何指示受測試電化學能量儲存裝置602中之充電模式。Although the electrochemical energy storage device 602 is in the charging mode, the controller 638 controls the electrochemical devices 604, 606, and 608 to generate compensation ripples 908, 912, and 916 to offset the test based on the test when the electrochemical energy storage device 602 is in the charging mode. The signal 902 generates a ripple 904b. Therefore, as shown in FIG. 9C, the compensation ripples 908, 912, and 916 in the charging mode are the same as the offset compensation ripples 908, 912, and 916 in the discharge mode (FIG. 9A). When the electrochemical energy storage device 602 is in the charging mode, these compensation ripples 908, 912, and 916 cannot cancel the ripple 904b. Therefore, a voltage ripple 918b detected on the DC bus 618 (not canceled) can be used as an indication that the electrochemical energy storage device 602 is in the charging mode. FIG. 9D illustrates in more detail how an uncancelled voltage ripple 918b can indicate the charging mode in the electrochemical energy storage device 602 under test.

圖9D係繪示在電化學能量儲存裝置602處於充電模式中時使用圖9C中所展示之波形之隨時間之一DC匯流排上之未抵消漣波的一曲線圖。如上文所討論,測試波形902由電力電子器件610注入至電化學能量儲存裝置602之一輸入連接640a上。此導致朝向DC匯流排618之漣波904b。FIG. 9D is a graph showing uncancelled ripples on a DC bus over time using the waveform shown in FIG. 9C when the electrochemical energy storage device 602 is in the charging mode. As discussed above, the test waveform 902 is injected by the power electronics 610 onto one of the input connections 640a of the electrochemical energy storage device 602. This results in a ripple 904b towards the DC bus 618.

三個其他電力電子器件612、614及616分別產生注入至三個其他電化學裝置604、606及608 (例如燃料電池分段或其他電池)之輸入連接642a、644a及646a上之偏移波形906、910及914。第一偏移波形906可導致朝向DC匯流排發送之一漣波908。第二偏移波形910及第三偏移波形914可分別導致朝向DC匯流排618發送之漣波912及916。此等三個偏移波形906、910及914可經選擇使得當電化學能量儲存裝置602處於放電模式中時,漣波908、912及916之總和將抵消由測試波形902產生之漣波。然而,當電化學能量儲存裝置602處於充電模式中時,此等補償漣波908、912及916不會抵消漣波904b。相反地,當漣波同相(如圖9D中所展示)時,補償漣波908、912及916將添加至漣波904b (即,疊加於漣波904b上)以導致DC匯流排上之DC電壓漣波918b之振幅增大。DC匯流排上之DC電壓漣波918b之增大振幅可被視為受測試電化學能量儲存裝置602在一充電模式中操作之一指示。Three other power electronic devices 612, 614, and 616 generate offset waveforms 906 that are injected into the input connections 642a, 644a, and 646a of three other electrochemical devices 604, 606, and 608 (e.g., fuel cell segments or other batteries), respectively , 910 and 914. The first offset waveform 906 may cause a ripple 908 to be sent toward the DC bus. The second offset waveform 910 and the third offset waveform 914 may cause ripples 912 and 916 sent toward the DC bus 618, respectively. These three offset waveforms 906, 910, and 914 can be selected so that when the electrochemical energy storage device 602 is in the discharge mode, the sum of the ripples 908, 912, and 916 will cancel the ripple generated by the test waveform 902. However, when the electrochemical energy storage device 602 is in the charging mode, these compensation ripples 908, 912, and 916 will not cancel the ripple 904b. Conversely, when the ripples are in phase (as shown in Figure 9D), the compensation ripples 908, 912, and 916 will be added to the ripple 904b (ie, superimposed on the ripple 904b) to cause a DC voltage on the DC bus The amplitude of ripple 918b increases. The increased amplitude of the DC voltage ripple 918b on the DC bus can be regarded as an indication that the electrochemical energy storage device 602 under test is operating in a charging mode.

圖9E比較電化學能量儲存裝置602係在放電時之DC匯流排上之電壓漣波918a與其中電化學能量儲存裝置602係在充電之電壓漣波918b。如圖9E中所展示,漣波918b之存在易於與輸出電壓918a區分,輸出電壓918a缺少一漣波且發生於補償漣波908、912及916抵消電化學能量儲存裝置602處於充電模式中時所產生之一漣波904a時。因此,DC匯流排618處之漣波之存在可用作為區分受測試電化學能量儲存裝置602係在充電或放電時之狀態的一方式。9E compares the voltage ripple 918a on the DC bus when the electrochemical energy storage device 602 is discharged and the voltage ripple 918b where the electrochemical energy storage device 602 is charging. As shown in FIG. 9E, the existence of ripple 918b is easy to distinguish from the output voltage 918a. The output voltage 918a lacks a ripple and occurs when the compensation ripples 908, 912, and 916 cancel out when the electrochemical energy storage device 602 is in the charging mode. When a ripple 904a is generated. Therefore, the existence of ripples at the DC bus 618 can be used as a way to distinguish the state of the electrochemical energy storage device 602 under test when it is charged or discharged.

圖10係根據一實施例之一系統1000之一方塊圖。圖10展示包含兩個DC電源(諸如電化學裝置602及604)作為「n」個DC電源之一陣列之部分的系統1000。在以下僅供說明之描述中,僅討論兩個DC電源602及604。然而,應瞭解,系統1000可包含任何適合數目個DC電源(例如四個電化學裝置602、604、606及608及/或其他DC電源,例如圖6中所展示之太陽能電池或熱電裝置)。應進一步瞭解,由兩個DC電源產生之下文將討論之各種輸出漣波可根據DC電源之數目變動。FIG. 10 is a block diagram of a system 1000 according to an embodiment. Figure 10 shows a system 1000 that includes two DC power supplies (such as electrochemical devices 602 and 604) as part of an array of "n" DC power supplies. In the following description for illustration only, only two DC power sources 602 and 604 are discussed. However, it should be understood that the system 1000 may include any suitable number of DC power sources (eg, four electrochemical devices 602, 604, 606, and 608 and/or other DC power sources, such as the solar cell or thermoelectric device shown in FIG. 6). It should be further understood that the various output ripples discussed below, which are generated by the two DC power sources, can vary according to the number of DC power sources.

如同系統600,系統1000中之DC電源602、604...n可各為一電池、超級電容器、燃料電池之一燃料電池堆疊分段、光伏打電池或可構成電源模組106之一部分106a之熱電裝置。然而,系統1000對各DC電源602、604...n提供單獨專用反相器1010及1012。另外,DC匯流排618由AC匯流排1018替換。在此實施例中,DC/DC轉換器610及612可省略或存在。Like the system 600, the DC power supplies 602, 604...n in the system 1000 can each be a battery, a super capacitor, a fuel cell stack segment, a photovoltaic cell, or can form part of the power supply module 106. Thermoelectric device. However, the system 1000 provides separate dedicated inverters 1010 and 1012 for each DC power source 602, 604...n. In addition, the DC bus 618 is replaced by an AC bus 1018. In this embodiment, the DC/DC converters 610 and 612 may be omitted or present.

系統1000中之DC電源602及604可經由一各自輸入連接640及642電連接至反相器1010及1012之一各自者。各輸入連接640及642可包括一各自正輸入連接640a及642a及一各自負輸入連接640b及642b。在操作中,DC電源602及604可經由其各自輸入連接640及642將DC電壓輸出至其各自反相器1010及1012。接著,反相器1010及1012可將DC輸出電壓轉換為AC輸出且將AC輸出提供至AC匯流排1018。The DC power sources 602 and 604 in the system 1000 can be electrically connected to each of the inverters 1010 and 1012 via a respective input connection 640 and 642. Each input connection 640 and 642 may include a respective positive input connection 640a and 642a and a respective negative input connection 640b and 642b. In operation, the DC power supplies 602 and 604 can output DC voltages to their respective inverters 1010 and 1012 via their respective input connections 640 and 642. Then, the inverters 1010 and 1012 can convert the DC output voltage to an AC output and provide the AC output to the AC bus 1018.

反相器1010及1012可各包含有線或無線連接至中央控制器1038之控制器1030及1032。控制器1030及1032可包含經組態有處理器可執行指令以執行操作來控制其各自反相器1010及1012之處理器,且控制器1038可為一處理器,其經組態有處理器可執行指令以執行操作來經由其各自控制器1030及1032與反相器1010及1012交換資料及控制反相器1010及1012之操作。經由連接至反相器1010及1012之控制器1030及1032與控制器1038之間的連接A及B,控制器1038可有效連接至反相器1010及1012且控制反相器1010及1012之操作。反相器1010及1012可藉由其各自輸出連接620及622 (例如AC匯流排)並行連接至AC匯流排1018。The inverters 1010 and 1012 may each include controllers 1030 and 1032 connected to the central controller 1038 by wire or wirelessly. The controllers 1030 and 1032 may include processors configured with processor-executable instructions to perform operations to control their respective inverters 1010 and 1012, and the controller 1038 may be a processor configured with a processor Instructions can be executed to perform operations to exchange data with inverters 1010 and 1012 and control the operations of inverters 1010 and 1012 via their respective controllers 1030 and 1032. Through connections A and B between the controllers 1030 and 1032 connected to the inverters 1010 and 1012 and the controller 1038, the controller 1038 can be effectively connected to the inverters 1010 and 1012 and control the operation of the inverters 1010 and 1012 . The inverters 1010 and 1012 can be connected to the AC bus 1018 in parallel through their respective output connections 620 and 622 (for example, an AC bus).

在一實施例中,AC匯流排1018可為包括一正線1018a、一中性線1018b及一負線1018c之三相匯流排,且各自輸出連接620及622可包含各自正輸出連接620a及622a、各自中性輸出連接620b及622b及各自負輸出連接620c及622c。替代地,AC匯流排1018可為單相、二相或四相匯流排。在一實施例中,反相器1010及1012可為三相反相器,其經組態以自其各自DC電源602及604接收正及負DC輸入且經由其各自正輸出連接620a及622a、各自中性輸出連接620b及622b及各自負輸出連接620c及622c將正AC、負AC及中性輸出輸出至匯流排1018。在一替代實施例中,反相器1010及1012可各包括雙二相反相器。二相反相器之第一者之正輸出可連接至匯流排1018之正線1018a且二相轉換器之第二者之負輸出可連接至匯流排1018之負線1018c。二相反相器之第一者之負輸出及二相反相器之第二者之正輸出可一起連接至匯流排1018之中性線1018b。In an embodiment, the AC bus 1018 may be a three-phase bus including a positive line 1018a, a neutral line 1018b, and a negative line 1018c, and the respective output connections 620 and 622 may include respective positive output connections 620a and 622a , Respective neutral output connections 620b and 622b and respective negative output connections 620c and 622c. Alternatively, the AC bus 1018 may be a single-phase, two-phase, or four-phase bus. In one embodiment, inverters 1010 and 1012 may be three-phase inverters that are configured to receive positive and negative DC inputs from their respective DC power sources 602 and 604 and connect 620a and 622a via their respective positive outputs, respectively The neutral output connections 620b and 622b and the respective negative output connections 620c and 622c output positive AC, negative AC, and neutral outputs to the bus 1018. In an alternative embodiment, inverters 1010 and 1012 may each include dual-two inverters. The positive output of the first of the two-phase inverter can be connected to the positive line 1018a of the bus 1018 and the negative output of the second of the two-phase inverter can be connected to the negative line 1018c of the bus 1018. The negative output of the first of the two inverters and the positive output of the second of the two inverters can be connected to the neutral line 1018b of the bus 1018 together.

在一實施例中,反相器1010及1012可各經組態以執行其各自DC電源602及604之EIS監測。控制器1038可選擇一測試波形用於電化學裝置602及604之一者之EIS監測中,且可控制該DC電源602及604之各自反相器1010及1012將選定測試波形注入至各自輸入連接640及642上。例如,控制器1038可將選定測試波形之一指示發送至反相器1010之控制器1030以經由連接至DC電源602之輸入連接640上之脈寬調變來產生選定測試波形1002。反相器1012將偏移波形1006發送至DC電源604。注入測試波形之反相器1010及1012可經組態以監測其各自DC電源602及604之所得阻抗回應,且可經由其各自控制器1030及1032將監測阻抗回應之一指示輸出至控制器1038。繼續上述實例,反相器1010可監測至DC電源602之輸入連接640上之阻抗回應且控制器1030可向控制器1038指示DC電源602之阻抗回應。In one embodiment, inverters 1010 and 1012 can each be configured to perform EIS monitoring of their respective DC power supplies 602 and 604. The controller 1038 can select a test waveform to be used in the EIS monitoring of one of the electrochemical devices 602 and 604, and can control the respective inverters 1010 and 1012 of the DC power supplies 602 and 604 to inject the selected test waveform into the respective input connections On 640 and 642. For example, the controller 1038 can send an indication of the selected test waveform to the controller 1030 of the inverter 1010 to generate the selected test waveform 1002 via pulse width modulation on the input connection 640 connected to the DC power supply 602. The inverter 1012 sends the offset waveform 1006 to the DC power source 604. The inverters 1010 and 1012 that inject the test waveform can be configured to monitor the impedance responses of their respective DC power sources 602 and 604, and can output an indication of the monitored impedance response to the controller 1038 through their respective controllers 1030 and 1032 . Continuing the above example, the inverter 1010 can monitor the impedance response of the input connection 640 to the DC power source 602 and the controller 1030 can indicate the impedance response of the DC power source 602 to the controller 1038.

控制器1038可使用由一DC電源602或604之EIS監測判定之阻抗回應來判定該DC電源602或604之一特性且可基於判定特性來調整系統1000之一設定。控制器1038可比較由一DC電源602或604之EIS監測判定之阻抗回應(諸如阻抗回應及/或所儲存之阻抗值之一作圖)與與已知特性相關之類似電化學裝置之儲存於一記憶體中之阻抗回應(諸如阻抗回應及/或所儲存之阻抗值之儲存作圖)。控制器1038可依任何方式比較由一DC電源602或604之EIS監測判定之阻抗回應與所儲存之阻抗回應以識別由一DC電源602或604之EIS監測判定之阻抗回應與所儲存之阻抗回應之間的匹配。The controller 1038 can use the impedance response determined by the EIS monitoring of a DC power source 602 or 604 to determine a characteristic of the DC power source 602 or 604 and can adjust a setting of the system 1000 based on the determined characteristic. The controller 1038 can compare the impedance response determined by the EIS monitoring of a DC power supply 602 or 604 (such as the impedance response and/or the mapping of one of the stored impedance values) with the stored in a similar electrochemical device with known characteristics. The impedance response in the memory (such as the impedance response and/or the stored drawing of the stored impedance value). The controller 1038 can compare the impedance response determined by the EIS monitoring of a DC power source 602 or 604 with the stored impedance response in any way to identify the impedance response determined by the EIS monitoring of a DC power source 602 or 604 and the stored impedance response Match between.

當控制器1038判定由一DC電源602或604之EIS監測判定之阻抗回應與一所儲存之阻抗回應之間匹配(例如相同或在某一預定方差值內)時,控制器1038可將與所儲存之阻抗回應相關之特性判定為各自DC電源602或604之特性。上文在圖6之背景中概述若干實例。When the controller 1038 determines that the impedance response determined by the EIS monitoring of a DC power supply 602 or 604 matches with a stored impedance response (for example, the same or within a predetermined variance value), the controller 1038 can compare the The stored impedance response-related characteristics are determined as the characteristics of the respective DC power supply 602 or 604. Several examples are outlined above in the context of FIG. 6.

當由一各自反相器1010或1012將一測試波形注入至一輸入連接640或642上以執行EIS監測時,可在各自輸出連接620或622上發生一漣波。若不予處理,則由電力電子器件1010或1012執行EIS監測所致之漣波會引起AC匯流排1018上之一非所要漣波。為防止AC匯流排1018上之一漣波,來自執行EIS監測之反相器1010或1012之漣波可偏移或由注入至AC匯流排1018中之其他漣波抵消。在一實施例中,其他漣波可由未執行EIS監測之反相器1010或1012產生。可藉由控制未執行EIS監測之反相器1010或1012將一偏移波形注入至其各自輸入連接640或642之其各自輸入連接中來產生來自未執行EIS監測之其他反相器1010或1012之一或多者之漣波。一或若干偏移波形可由控制器1038選擇,使得當在AC匯流排1018處加總波形時,回應於注入一或若干偏移波形而產生之各自輸出連接620或622上之漣波抵消由執行EIS監測之反相器1010或1012引起之漣波。在另一實施例中,漣波可自除反相器1010或1012之外的裝置注入至輸出連接620或622中以在AC匯流排1018處加總波形時抵消由執行EIS監測之反相器1010或1012引起之漣波。例如,一波形產生器可連接至輸出連接620或622以回應於EIS監測而注入抵消漣波。When a test waveform is injected into an input connection 640 or 642 by a respective inverter 1010 or 1012 to perform EIS monitoring, a ripple can occur on the respective output connection 620 or 622. If it is not processed, the ripple caused by the EIS monitoring performed by the power electronic device 1010 or 1012 will cause an unwanted ripple on the AC bus 1018. To prevent one of the ripples on the AC bus 1018, the ripple from the inverter 1010 or 1012 performing EIS monitoring can be offset or cancelled by other ripples injected into the AC bus 1018. In one embodiment, other ripples can be generated by inverters 1010 or 1012 that do not perform EIS monitoring. The inverter 1010 or 1012 that does not perform EIS monitoring can be controlled to inject an offset waveform into its respective input connection 640 or 642 to generate another inverter 1010 or 1012 that does not perform EIS monitoring. One or more ripples. One or several offset waveforms can be selected by the controller 1038, so that when the waveforms are summed at the AC bus 1018, the ripple cancellation on the respective output connections 620 or 622 generated in response to the injection of one or several offset waveforms is performed by Ripple caused by inverter 1010 or 1012 monitored by EIS. In another embodiment, the ripple can be injected from a device other than the inverter 1010 or 1012 into the output connection 620 or 622 to cancel the inverter monitored by the EIS when the waveform is summed at the AC bus 1018 Ripple caused by 1010 or 1012. For example, a waveform generator can be connected to the output connection 620 or 622 to inject cancellation ripples in response to EIS monitoring.

圖10展示可注入至輸入連接640中以導致至AC匯流排1018之輸出連接620上之一漣波1004的一例示性測試波形1002。一偏移波形1006可由未執行EIS監測之反相器1012注入至輸入連接642中以導致至AC匯流排1018之輸出連接622上之一偏移漣波1008。漣波1004及1008之總和可使得無一漣波之一AC電壓1020發生於AC匯流排1018上,儘管AC漣波1004及1008分別發生於輸出連接620及622上。10 shows an exemplary test waveform 1002 that can be injected into the input connection 640 to cause a ripple 1004 on the output connection 620 of the AC bus 1018. An offset waveform 1006 can be injected into the input connection 642 by the inverter 1012 without EIS monitoring to cause an offset ripple 1008 on the output connection 622 of the AC bus 1018. The sum of the ripples 1004 and 1008 can cause the AC voltage 1020 without a single ripple to occur on the AC bus 1018, although the AC ripples 1004 and 1008 occur on the output connections 620 and 622, respectively.

儘管圖10展示提供一單一偏移(即,補償)漣波1008以引起無一漣波之一淨AC電壓1020之反相器1012,但應瞭解,系統1000中之反相器之任何組合可用於補償漣波1004。例如,若系統1000具有總計四個DC電源(例如類似於圖9A中所展示之系統600),則四個反相器之三者可用於補償漣波1004。使用系統中之反相器之任何其他適合組合來產生偏移漣波係在實施例之範疇內。Although FIG. 10 shows an inverter 1012 that provides a single offset (ie, compensated) ripple 1008 to cause a net AC voltage 1020 without a ripple, it should be understood that any combination of inverters in the system 1000 can be used To compensate for ripple 1004. For example, if the system 1000 has a total of four DC power supplies (such as similar to the system 600 shown in FIG. 9A), three of the four inverters can be used to compensate for the ripple 1004. It is within the scope of the embodiment to use any other suitable combination of inverters in the system to generate the offset ripple.

圖11繪示使用系統1000來抵消由一測試波形引起之至一AC匯流排之漣波之一實施例方法1100。在一實施例中,方法1100之操作可由一控制器(諸如控制器1038)執行。FIG. 11 shows an embodiment method 1100 of using the system 1000 to cancel the ripple to an AC bus caused by a test waveform. In one embodiment, the operations of the method 1100 may be performed by a controller (such as the controller 1038).

在區塊1102中,控制器1038可自複數個DC電源選擇裝置DC電源(諸如一電池或燃料電池分段)用於阻抗測試。例如,可基於管控可何時及依何種順序測試DC電源之一測試協定來選擇DC電源。在區塊1104中,控制器1038可選擇一測試波形。可選擇測試波形來產生EIS監測所需之振盪,諸如約1 Hz之振盪。In block 1102, the controller 1038 can use a plurality of DC power supply selection devices (such as a battery or fuel cell section) for impedance testing. For example, the DC power supply can be selected based on a test protocol that controls when and in which order the DC power supply can be tested. In block 1104, the controller 1038 can select a test waveform. The test waveform can be selected to generate the oscillation required for EIS monitoring, such as about 1 Hz oscillation.

在區塊1106中,控制器1038可判定由選定測試波形引起之一所得漣波。如上文所討論,所得漣波可為自注入測試波形之反相器輸出至AC匯流排之漣波。在區塊1108中,控制器1038可識別剩餘DC電源。剩餘DC電源可包含電池、燃料電池堆疊分段、光伏打電池、熱電式發電機等等。剩餘DC電源可為未經選擇用於阻抗測試之DC電源。在區塊1109中,控制器1038可選擇經識別之剩餘電化學裝置之一部分。在一實施例中,選定部分可為所有經識別之剩餘DC電源。在另一實施例中,選定部分可少於所有經識別之剩餘DC電源,諸如僅一單一經識別之剩餘DC電源。In block 1106, the controller 1038 can determine that one of the resulting ripples is caused by the selected test waveform. As discussed above, the resulting ripple can be the ripple output from the inverter of the injected test waveform to the AC bus. In block 1108, the controller 1038 can identify the remaining DC power. The remaining DC power source may include batteries, fuel cell stack segments, photovoltaic cells, thermoelectric generators, and so on. The remaining DC power source may be a DC power source that has not been selected for impedance testing. In block 1109, the controller 1038 may select a part of the identified remaining electrochemical device. In one embodiment, the selected portion may be all the remaining DC power sources identified. In another embodiment, the selected portion may be less than all identified remaining DC power sources, such as only a single identified remaining DC power source.

在區塊1110中,控制器1038可判定各選定剩餘DC電源之一偏移波形,使得由各選定剩餘DC電源之各自判定偏移波形引起之各所得漣波之一總和抵消由選定測試波形引起之判定所得漣波。在一實施例中,各偏移波形可經產生使得所得漣波相同,諸如一起抵消來自測試波形之漣波之一個、兩個、三個或更多個相等漣波。在另一實施例中,各偏移波形可經產生使得所得漣波不同,諸如一起抵消來自測試波形之漣波之兩個、三個或更多個不同漣波。In block 1110, the controller 1038 can determine the offset waveform of each selected residual DC power source, so that the sum of each of the resulting ripples caused by the respective determined offset waveform of each selected residual DC power source cancels out the selected test waveform The ripple obtained from the judgment. In an embodiment, each offset waveform can be generated so that the resulting ripples are the same, such as canceling one, two, three, or more equal ripples of the ripples from the test waveform together. In another embodiment, each offset waveform may be generated so that the resulting ripples are different, such as canceling together two, three or more different ripples from the ripples from the test waveform.

在區塊1112中,控制器1038可控制經選擇用於阻抗測試之DC電源之反相器將測試波形注入至選定DC電源中。例如,控制器1038可將控制信號發送至反相器之一控制器(例如1030)以引起反相器執行脈寬調變以在至其各自DC電源602之一輸入連接上產生測試波形。在區塊1114中,控制器1038可控制各選定剩餘DC電源604之反相器將偏移波形(例如1006)注入至每個各自剩餘DC電源604中。例如,控制器1038可將控制信號發送至反相器之控制器(例如1030或1032)以引起反相器1010、1012執行脈寬調變以在至其各自DC電源之一輸入連接上產生偏移波形。區塊1112及1114中所執行之方法1100之操作可同時發生,使得測試波形1002及偏移波形1006同時注入以導致自各種反相器輸出彼此抵消之漣波1004、1008以導致AC匯流排1018上之所要AC電壓1020。In block 1112, the controller 1038 may control the inverter of the DC power source selected for impedance testing to inject the test waveform into the selected DC power source. For example, the controller 1038 may send a control signal to one of the inverters (such as 1030) to cause the inverter to perform pulse width modulation to generate a test waveform on one of its input connections to the respective DC power source 602. In block 1114, the controller 1038 may control the inverter of each selected remaining DC power source 604 to inject an offset waveform (such as 1006) into each respective remaining DC power source 604. For example, the controller 1038 may send a control signal to the controller of the inverter (such as 1030 or 1032) to cause the inverters 1010, 1012 to perform pulse width modulation to produce a bias on one of the input connections to their respective DC power sources. Shift the waveform. The operations of the method 1100 performed in the blocks 1112 and 1114 can occur simultaneously, so that the test waveform 1002 and the offset waveform 1006 are injected at the same time to cause the ripples 1004, 1008 from the output of various inverters to cancel each other to cause the AC bus 1018 The required AC voltage is 1020.

在區塊1118中,控制器1038可至少部分基於阻抗回應來判定經選擇用於阻抗測試之DC電源602之一特性。如上文所討論,控制器可使用EIS監測來繪製源自注入測試波形之量測阻抗之實部及虛部且比較所繪製之阻抗與具有已知特性之電化學裝置之阻抗回應之已知特徵。具有已知特性之電化學裝置之阻抗回應之已知特徵可儲存於可用於控制器之一記憶體中。具有已知特性之DC電源之阻抗回應之所儲存之已知特徵可為源自測試良好(即,未受損/未降級)及具有各種形式之損壞(例如燃料電池系統之陽極裂紋)及/或降級(例如燃料電池系統之電解質降級)之受損/降級DC電源之良好DC電源及受損/降級DC電源之量測阻抗之實部及虛部之作圖。已知特性可與儲存於記憶體中之量測阻抗之實部及虛部之作圖相關。可藉由匹配量測阻抗與阻抗回應之已知特徵來將DC電源之當前特性或狀態判定為與阻抗回應之匹配已知特徵相關之特性。In block 1118, the controller 1038 may determine a characteristic of the DC power source 602 selected for impedance testing based at least in part on the impedance response. As discussed above, the controller can use EIS monitoring to plot the real and imaginary parts of the measured impedance derived from the injected test waveform and compare the plotted impedance with the known characteristics of the impedance response of an electrochemical device with known characteristics . The known characteristics of the impedance response of electrochemical devices with known characteristics can be stored in a memory that can be used in the controller. The stored known characteristics of the impedance response of a DC power supply with known characteristics can be derived from good tests (ie, undamaged/not degraded) and various forms of damage (such as anode cracks in fuel cell systems) and/ Or the real and imaginary parts of the measured impedance of the damaged/degraded DC power source of the degraded (such as the electrolyte degradation of the fuel cell system) and the good DC power source of the damaged/degraded DC power source. The known characteristics can be related to the mapping of the real and imaginary parts of the measured impedance stored in the memory. The current characteristic or state of the DC power supply can be determined as the characteristic related to the matching known characteristic of the impedance response by matching the measured impedance and the known characteristic of the impedance response.

在選用區塊1120中,控制器1038可基於判定特性超過可指示一失效模式之DC電源之一失效臨限值來指示一失效模式。在選用區塊1122中,控制器1038可基於判定特性來調整DC電源系統之一設定。例如,控制器1038可基於判定特性來調整(例如增大或減小)自DC電源汲取之電流或切斷DC電源。依此方式,阻抗測試(諸如EIS監測)可用於使用各DC電源之專用反相器基於DC電源之當前特性來調整DC電源系統之操作。In the optional block 1120, the controller 1038 can indicate a failure mode based on determining that the characteristic exceeds a failure threshold of a DC power source that can indicate a failure mode. In the optional block 1122, the controller 1038 can adjust a setting of the DC power system based on the determination characteristic. For example, the controller 1038 may adjust (for example, increase or decrease) the current drawn from the DC power source or cut off the DC power source based on the determination characteristic. In this way, impedance testing (such as EIS monitoring) can be used to adjust the operation of the DC power supply system based on the current characteristics of the DC power supply using a dedicated inverter of each DC power supply.

圖12係根據一實施例之一系統1200之一方塊圖。圖12展示包含兩個DC電源(諸如電化學裝置602及604)作為「n」個DC電源之一陣列之部分的系統1200。在以下僅供說明之描述中,僅討論DC電源602及604。然而,應瞭解,系統1200可包含任何適合數目個DC電源(例如圖6中所展示之四個DC電源602、604、606及608)。應進一步瞭解,由電裝置(例如DC/DC轉換器)產生之下文將討論之各種輸出漣波可根據DC電源之數目變動。FIG. 12 is a block diagram of a system 1200 according to an embodiment. Figure 12 shows a system 1200 that includes two DC power supplies (such as electrochemical devices 602 and 604) as part of an array of "n" DC power supplies. In the following description only for illustration, only DC power supplies 602 and 604 are discussed. However, it should be understood that the system 1200 may include any suitable number of DC power supplies (such as the four DC power supplies 602, 604, 606, and 608 shown in FIG. 6). It should be further understood that various output ripples, which will be discussed below, generated by electrical devices (such as DC/DC converters) can vary according to the number of DC power supplies.

系統1200中之DC電源602及604可經由一各自輸入連接640及642電連接至DC/DC轉換器1210及1212之一各自者。各輸入連接640及642可包括一各自正輸入連接640a及642a及一各自負輸入連接640b及642b。在操作中,DC電源602及604可經由其各自輸入連接640及642將DC電壓輸出至其各自DC/DC轉換器1210及1212。DC/DC轉換器1210及1212可經由連接1240及1242連接至反相器1214及1216。各連接1240及1242可包括一各自正輸入連接1240a及1242a及一各自負輸入連接1240b及1242b。在操作中,DC/DC轉換器1210及1212可經由其各自連接1240及1242將DC電壓輸出至其各自反相器1214及1216。The DC power sources 602 and 604 in the system 1200 can be electrically connected to each of the DC/DC converters 1210 and 1212 via a respective input connection 640 and 642. Each input connection 640 and 642 may include a respective positive input connection 640a and 642a and a respective negative input connection 640b and 642b. In operation, the DC power supplies 602 and 604 can output DC voltage to their respective DC/DC converters 1210 and 1212 via their respective input connections 640 and 642. DC/DC converters 1210 and 1212 can be connected to inverters 1214 and 1216 via connections 1240 and 1242. Each connection 1240 and 1242 may include a respective positive input connection 1240a and 1242a and a respective negative input connection 1240b and 1242b. In operation, DC/DC converters 1210 and 1212 can output DC voltages to their respective inverters 1214 and 1216 via their respective connections 1240 and 1242.

應注意,儘管圖12展示個別連接至不同反相器1214及1216之各DC/DC轉換器1210及1212,但應瞭解,此組態僅供例示。其他組態係在實施例之範疇內。例如,系統1200可僅包含一單一反相器1214且各DC/DC轉換器連接至單一反相器1214。可為諸多其他適合組態,其包含(例如)其中DC/DC轉換器群組共用相同反相器之一組態。It should be noted that although FIG. 12 shows each DC/DC converter 1210 and 1212 connected to different inverters 1214 and 1216 individually, it should be understood that this configuration is for illustration only. Other configurations are within the scope of the embodiment. For example, the system 1200 may only include a single inverter 1214 and each DC/DC converter is connected to the single inverter 1214. Many other suitable configurations are possible, including, for example, a configuration in which a group of DC/DC converters share the same inverter.

反相器1214及1216可藉由其各自輸出連接1220及1222並行連接至AC匯流排1218。在一實施例中,AC匯流排1218可為包括一正線1218a、一中性線1218b及一負線1218c之三相匯流排,且各自輸出連接1220及1222可包含各自正輸出連接1220a及1222a、各自中性輸出連接1220b及1222b及各自負輸出連接1220c及1222c。在一實施例中,反相器1214及1216可為三相反相器,其經組態以自其各自DC/DC轉換器1210及1212接收正及負DC輸入且經由其各自正輸出連接1220a及1222a、各自中性輸出連接1220b及1222b及各自負輸出連接1220c及1222c將正AC、負AC及中性輸出輸出至匯流排1218。在一替代實施例中,反相器1214及1216可各包括雙二相反相器。二相轉換器之第一者之正輸出可連接至匯流排1218之正線1218a且二相轉換器之第二者之負輸出可連接至匯流排1218之負線1218c。二相反相器之第一者之負輸出及二相反相器之第二者之正輸出可一起連接至匯流排1218之中性線1218b。亦可使用單相或多相反相器。The inverters 1214 and 1216 can be connected to the AC bus 1218 in parallel via their respective output connections 1220 and 1222. In an embodiment, the AC bus 1218 may be a three-phase bus including a positive line 1218a, a neutral line 1218b, and a negative line 1218c, and the respective output connections 1220 and 1222 may include respective positive output connections 1220a and 1222a , Respective neutral output connections 1220b and 1222b and respective negative output connections 1220c and 1222c. In one embodiment, inverters 1214 and 1216 may be three-phase inverters that are configured to receive positive and negative DC inputs from their respective DC/DC converters 1210 and 1212 and connect 1220a and 1220a via their respective positive outputs. 1222a, respective neutral output connections 1220b and 1222b, and respective negative output connections 1220c and 1222c output the positive AC, negative AC, and neutral output to the bus 1218. In an alternative embodiment, inverters 1214 and 1216 may each include dual-two inverters. The positive output of the first one of the two-phase converter can be connected to the positive line 1218a of the bus 1218 and the negative output of the second one of the two-phase converter can be connected to the negative line 1218c of the bus 1218. The negative output of the first of the two inverters and the positive output of the second of the two inverters can be connected to the neutral line 1218b of the bus 1218 together. Single-phase or multiple phase inverters can also be used.

DC/DC轉換器1210及1212可各包含控制器1230及1232,各控制器有線或無線連接至中央控制器1238。類似地,反相器1214及1216可各包含亦有線或無線連接至中央控制器1238之控制器1234及1236。控制器1230、1232、1234及1236可包含經組態有處理器可執行指令以執行操作來控制其各自DC/DC轉換器1210及1212及反相器1214及1216之處理器,且控制器1238可為一處理器,其經組態有處理器可執行指令以執行操作來經由其各自控制器1230、1232、1234及1236與DC/DC轉換器1210及1212及反相器1214及1216交換資料及控制DC/DC轉換器1210及1212及反相器1214及1216之操作。經由連接至DC/DC轉換器1210及1212之控制器1230及1232與控制器1238之間的連接A及B,控制器1238可有效連接至DC/DC轉換器1210及1212且控制DC/DC轉換器1210及1212之操作。類似地,經由連接至反相器1214及1216之控制器1234及1236與控制器1238之間的連接C及D,控制器1238可有效連接至反相器1214及1216且控制反相器1214及1216之操作。The DC/DC converters 1210 and 1212 may each include controllers 1230 and 1232, and each controller is wired or wirelessly connected to the central controller 1238. Similarly, inverters 1214 and 1216 may each include controllers 1234 and 1236 that are also wired or wirelessly connected to central controller 1238. The controllers 1230, 1232, 1234, and 1236 may include processors configured with processor executable instructions to perform operations to control their respective DC/DC converters 1210 and 1212 and inverters 1214 and 1216, and the controller 1238 Can be a processor configured with processor-executable instructions to perform operations to exchange data with DC/DC converters 1210 and 1212 and inverters 1214 and 1216 via their respective controllers 1230, 1232, 1234, and 1236 And control the operation of DC/DC converters 1210 and 1212 and inverters 1214 and 1216. Through connections A and B between the controllers 1230 and 1232 connected to the DC/DC converters 1210 and 1212 and the controller 1238, the controller 1238 can be effectively connected to the DC/DC converters 1210 and 1212 and control the DC/DC conversion Operation of the devices 1210 and 1212. Similarly, via connections C and D between controllers 1234 and 1236 connected to inverters 1214 and 1216 and controller 1238, controller 1238 can be effectively connected to inverters 1214 and 1216 and control inverters 1214 and 1214 and Operation of 1216.

在一實施例中,DC/DC轉換器1210及1212可各經組態以執行其各自反相器1214及1216之EIS監測。特定言之,DC/DC轉換器1210及1212可使用EIS來執行分別包含於反相器1214及1216中且在圖12中展示於插圖中之電容器1214a及1216a之阻抗測試。電容器1214a及1216a可分別表示反相器1214及1216中之多個組件之有效電容而非單一組件電容器。In one embodiment, DC/DC converters 1210 and 1212 can each be configured to perform EIS monitoring of their respective inverters 1214 and 1216. In particular, the DC/DC converters 1210 and 1212 can use EIS to perform impedance testing of the capacitors 1214a and 1216a included in the inverters 1214 and 1216, respectively, and shown in the inset in FIG. 12. The capacitors 1214a and 1216a may respectively represent the effective capacitances of multiple components in the inverters 1214 and 1216 instead of a single component capacitor.

控制器1238可選擇一測試波形用於反相器1214及1216之一者之EIS監測中,且可控制DC/DC轉換器1210及1212將選定測試波形注入至各自反相器1214及1216上以尤其用於測試電容器1214a或1216a之至少一者。例如,控制器1238可將選定測試波形之一指示發送至DC/DC轉換器1210之控制器1230以引起DC/DC轉換器1210處之一開關打開及閉合以經由連接至反相器1214之輸入連接1240上之脈寬調變來產生選定測試波形。注入測試波形之DC/DC轉換器1210及1212可經組態以監測其各自反相器1214及1216之所得阻抗回應,且可經由其各自控制器1230或1232將監測阻抗回應之一指示輸出至控制器1238。繼續上述實例,DC/DC轉換器1210可監測至反相器1214之輸入連接1240上之阻抗回應且控制器1230可向控制器1238指示反相器1214之阻抗回應。特定言之,阻抗回應可指示電容器1214a及/或1216a之一操作狀態。此一操作狀態可包含(例如)與各自反相器1214或1216之總體運轉有關之一電容範圍。The controller 1238 can select a test waveform for EIS monitoring of one of the inverters 1214 and 1216, and can control the DC/DC converters 1210 and 1212 to inject the selected test waveform into the respective inverters 1214 and 1216. Especially for testing at least one of capacitor 1214a or 1216a. For example, the controller 1238 may send an indication of the selected test waveform to the controller 1230 of the DC/DC converter 1210 to cause a switch at the DC/DC converter 1210 to open and close to pass through the input connected to the inverter 1214 Connect the pulse width modulation on the 1240 to generate the selected test waveform. The DC/DC converters 1210 and 1212 injected with test waveforms can be configured to monitor the impedance responses of their respective inverters 1214 and 1216, and can output an indication of the monitored impedance responses to their respective controllers 1230 or 1232 Controller 1238. Continuing the above example, the DC/DC converter 1210 can monitor the impedance response of the input connection 1240 to the inverter 1214 and the controller 1230 can indicate the impedance response of the inverter 1214 to the controller 1238. In particular, the impedance response may indicate an operating state of the capacitor 1214a and/or 1216a. This operating state may include, for example, a capacitance range related to the overall operation of the respective inverter 1214 or 1216.

控制器1238可使用由一反相器1214或1216之EIS監測判定之阻抗回應來判定反相器1214或1216或位於各自反相器中之電容器1214a或1216a之一特性,且可基於判定特性來調整系統1200之一設定。控制器1238可比較由一反相器1214或1216之EIS監測判定之阻抗回應(諸如阻抗回應及/或所儲存之阻抗值之一作圖)與與已知特性相關之類似電化學裝置之儲存於一記憶體中之阻抗回應(諸如阻抗回應及/或所儲存之阻抗值之儲存作圖)。控制器1238可依任何方式比較由一反相器1214或1216或位於各自反相器中之電容器1214a或1216a之EIS監測判定之阻抗回應與所儲存之阻抗回應以識別由一反相器1214或1216之EIS監測判定之阻抗回應與所儲存之阻抗回應之間的匹配。用於比較之一儲存回應之一實例將為比較量測回應與一正常運轉反相器中之一電容器之一儲存回應。The controller 1238 can use the impedance response determined by the EIS monitoring of an inverter 1214 or 1216 to determine one of the characteristics of the inverter 1214 or 1216 or the capacitor 1214a or 1216a in the respective inverter, and can be based on the determination characteristics. Adjust one of the settings of the system 1200. The controller 1238 can compare the impedance response determined by the EIS monitoring of an inverter 1214 or 1216 (such as the impedance response and/or the mapping of one of the stored impedance values) with those of similar electrochemical devices related to known characteristics. The impedance response in a memory (such as the impedance response and/or the stored drawing of the stored impedance value). The controller 1238 can compare the impedance response determined by the EIS monitoring of an inverter 1214 or 1216 or the capacitor 1214a or 1216a in the respective inverter with the stored impedance response in any way to identify the The matching between the impedance response determined by the EIS monitoring of 1216 and the stored impedance response. An example of a storage response for comparison is to compare the measurement response with one of the storage responses of a capacitor in a normal operation inverter.

當控制器1238判定由一反相器1214或1216或位於各自反相器中之電容器1214a或1216a之EIS監測判定之阻抗回應與一所儲存之阻抗回應之間匹配(例如相同或在某一預定方差值內)時,控制器1238可將與所儲存之阻抗回應相關之特性判定為各自反相器1214或1216或位於各自反相器中之電容器1214a或1216a之特性。特定EIS量測係已知的。上文在圖6之背景中概述若干實例。When the controller 1238 determines that the impedance response determined by the EIS monitoring of an inverter 1214 or 1216 or a capacitor 1214a or 1216a located in the respective inverter matches a stored impedance response (for example, the same or in a predetermined When the variance value is within), the controller 1238 can determine the characteristic related to the stored impedance response as the characteristic of the respective inverter 1214 or 1216 or the capacitor 1214a or 1216a located in the respective inverter. The specific EIS measurement system is known. Several examples are outlined above in the context of FIG. 6.

當由一各自DC/DC轉換器1210或1212將一測試波形注入至一輸入連接1240或1242上以執行EIS監測時,各自輸出連接1220或1222上可發生一漣波。若不予處理,則由DC/DC轉換器1210或1212執行EIS監測所致之漣波可引起AC匯流排1218上之一非所要漣波。為防止AC匯流排1218上之一漣波,來自執行EIS監測之DC/DC轉換器1210或1212之漣波可偏移或由注入至AC匯流排1218中之其他漣波抵消。在一實施例中,其他漣波可由未執行EIS監測之DC/DC轉換器1210或1212產生。可藉由控制未執行EIS監測之DC/DC轉換器1210及1212將一偏移波形注入至其各自輸入連接1240或1242之其各自輸入連接中來產生來自未執行EIS監測之其他DC/DC轉換器1210或1212之一或多者之漣波。一或若干偏移波形可由控制器1238選擇,使得當在AC匯流排1218處加總波形時,回應於注入一或若干偏移波形而產生之各自輸出連接1220或1222上之漣波抵消由執行EIS監測之DC/DC轉換器1210或1212引起之漣波。在另一實施例中,漣波可自除DC/DC轉換器1210或1212之外的裝置注入至輸出連接1220或1222中以在AC匯流排1218處加總波形時抵消由執行EIS監測之DC/DC轉換器1210或1212引起之漣波。例如,一波形產生器可連接至輸出連接1220或1222以回應於EIS監測而注入抵消漣波。When a respective DC/DC converter 1210 or 1212 injects a test waveform onto an input connection 1240 or 1242 to perform EIS monitoring, a ripple may occur on the respective output connection 1220 or 1222. If not processed, the ripple caused by the EIS monitoring performed by the DC/DC converter 1210 or 1212 can cause an unwanted ripple on the AC bus 1218. To prevent one of the ripples on the AC bus 1218, the ripple from the DC/DC converter 1210 or 1212 performing EIS monitoring can be offset or cancelled by other ripples injected into the AC bus 1218. In one embodiment, other ripples can be generated by the DC/DC converter 1210 or 1212 that does not perform EIS monitoring. The DC/DC converters 1210 and 1212 that do not perform EIS monitoring can be controlled to inject an offset waveform into their respective input connections 1240 or 1242 to generate other DC/DC conversions from which EIS monitoring is not performed. Ripple of one or more of devices 1210 or 1212. One or several offset waveforms can be selected by the controller 1238, so that when the waveforms are summed at the AC bus 1218, the ripple cancellation on the respective output connection 1220 or 1222 generated in response to the injection of one or several offset waveforms is performed by Ripple caused by DC/DC converter 1210 or 1212 monitored by EIS. In another embodiment, ripples can be injected from a device other than the DC/DC converter 1210 or 1212 into the output connection 1220 or 1222 to cancel the DC monitored by the implementation of EIS when the waveform is summed at the AC bus 1218 /DC converter 1210 or 1212 causes ripples. For example, a waveform generator can be connected to the output connection 1220 or 1222 to inject cancellation ripples in response to EIS monitoring.

圖12展示可注入至輸入連接1240中以導致至AC匯流排1218之輸出連接1220上之一漣波1204的一例示性測試波形1202。一偏移波形1206可注入至輸入連接1242中以導致至AC匯流排1218之輸出連接1222上之一偏移漣波1208。漣波1204及1208之總和可使得無一漣波之一AC電壓1225發生於AC匯流排1218上,儘管AC漣波1204及1208分別發生於輸出連接1220及1222上。FIG. 12 shows an exemplary test waveform 1202 that can be injected into the input connection 1240 to cause a ripple 1204 on the output connection 1220 of the AC bus 1218. An offset waveform 1206 can be injected into the input connection 1242 to cause an offset ripple 1208 on the output connection 1222 to the AC bus 1218. The sum of the ripples 1204 and 1208 can cause the AC voltage 1225 without a single ripple to occur on the AC bus 1218, although the AC ripples 1204 and 1208 occur on the output connections 1220 and 1222, respectively.

儘管圖12展示提供一單一偏移波形1206以引起無一漣波之一淨AC電壓1225的DC/DC轉換器1212,但應瞭解,系統1200中之DC/DC轉換器之任何組合可用於補償漣波1204。例如,若系統1200具有總計四個DC電源(例如類似於圖9A中所展示之系統600),則四個DC/DC轉換器之三者可用於補償漣波1204。使用系統中之反相器之任何其他適合組合來產生偏移漣波係在實施例之範疇內。Although FIG. 12 shows a DC/DC converter 1212 that provides a single offset waveform 1206 to cause a net AC voltage 1225 without a ripple, it should be understood that any combination of DC/DC converters in the system 1200 can be used for compensation Ripple 1204. For example, if the system 1200 has a total of four DC power supplies (such as similar to the system 600 shown in FIG. 9A), three of the four DC/DC converters can be used to compensate for the ripple 1204. It is within the scope of the embodiment to use any other suitable combination of inverters in the system to generate the offset ripple.

圖13繪示使用系統1200來EIS測試一反相器中之一電容器且抵消由一測試波形引起之至一AC匯流排之漣波的一實施例方法1300。在一實施例中,方法1300之操作可由一控制器(諸如控制器1238)執行。從反相器、電容器、電池及燃料電池堆疊分段方面討論方法1300之操作,但反相器、電容器、電池及燃料電池堆疊分段僅用作為實例。其他電化學裝置及/或其他電力電子器件可用於方法1300之各種操作中。FIG. 13 shows an embodiment method 1300 of using the system 1200 to EIS test a capacitor in an inverter and cancel the ripple to an AC bus caused by a test waveform. In one embodiment, the operations of the method 1300 may be performed by a controller (such as the controller 1238). The operation of the method 1300 is discussed in terms of inverters, capacitors, batteries, and fuel cell stack segments, but inverters, capacitors, batteries, and fuel cell stack segments are only used as examples. Other electrochemical devices and/or other power electronic devices can be used in various operations of method 1300.

在區塊1302中,控制器1238可自複數個反相器選擇一反相器用於阻抗測試。例如,可基於管控可何時及依何種順序測試反相器之一測試協定來選擇反相器。亦可基於反相器內之電容器出故障或需要診斷(例如基於電容器之一預測壽命等等)指示來選擇用於測試之反相器。選擇反相器用於測試之其他方式包含獲得指示反相器出故障(例如輸出電壓或電流之非預期變動)之一量測回應。In block 1302, the controller 1238 can select an inverter from a plurality of inverters for impedance testing. For example, the inverter can be selected based on a test protocol that controls when and in which order the inverters can be tested. The inverter for testing can also be selected based on the indication that the capacitor in the inverter is faulty or requires diagnosis (for example, based on one of the capacitors to predict the life, etc.). Other ways to select an inverter for testing include obtaining a measurement response indicating that the inverter has failed (for example, an unexpected change in output voltage or current).

在區塊1304中,控制器1238可選擇一測試波形。測試波形可經選擇以產生EIS監測所需之振盪,諸如約1 Hz之振盪。測試波形將經由其各自DC/DC轉換器提供至反相器,例如經由其相鄰DC/DC轉換器1210提供至反相器1214,如圖12中所展示。In block 1304, the controller 1238 can select a test waveform. The test waveform can be selected to generate the oscillation required for EIS monitoring, such as an oscillation of about 1 Hz. The test waveform will be provided to the inverter via its respective DC/DC converter, for example via its neighboring DC/DC converter 1210 to the inverter 1214, as shown in FIG. 12.

在區塊1306中,控制器1238可判定由選定測試波形引起之一所得漣波。如上文所討論,所得漣波可為自其中注入測試波形之反相器輸出至AC匯流排之漣波。在區塊1308中,控制器1238可識別未經受測試之剩餘裝置。此等剩餘裝置可包含未經受EIS測試之反相器及DC/DC轉換器。剩餘裝置亦可包含其他裝置,例如電容器、超級電容器、電池及燃料電池堆疊分段。在區塊1309中,控制器1238可選擇經識別剩餘裝置之一部分。在一實施例中,選定部分可為(例如)所有經識別之剩餘DC/DC轉換器及反相器。在另一實施例中,選定部分可少於所有經識別之剩餘DC/DC轉換器及反相器,諸如僅一單一經識別之剩餘DC/DC轉換器及反相器。在又一實施例中,選定部分可包含DC/DC轉換器、反相器、超級電容器、電容器、電池及燃料電池堆疊分段之任何一或多者。In block 1306, the controller 1238 may determine that one of the resulting ripples is caused by the selected test waveform. As discussed above, the resulting ripple can be the ripple output from the inverter into which the test waveform is injected to the AC bus. In block 1308, the controller 1238 can identify the remaining devices that have not been tested. These remaining devices may include inverters and DC/DC converters that have not been tested by EIS. The remaining devices can also include other devices, such as capacitors, supercapacitors, batteries, and fuel cell stack segments. In block 1309, the controller 1238 may select a part of the identified remaining devices. In an embodiment, the selected portion may be, for example, all the remaining DC/DC converters and inverters identified. In another embodiment, the selected portion may be less than all the identified remaining DC/DC converters and inverters, such as only a single identified remaining DC/DC converter and inverter. In yet another embodiment, the selected portion may include any one or more of a DC/DC converter, inverter, super capacitor, capacitor, battery, and fuel cell stack segment.

在區塊1310中,控制器1238可判定各選定剩餘裝置之一偏移波形,使得由各選定剩餘裝置之各自判定偏移波形引起之各所得漣波之一總和抵消由選定測試波形引起之判定所得漣波。在一實施例中,各偏移波形可經產生使得所得漣波相同,諸如一起抵消來自測試波形之漣波之一個、兩個、三個或更多個相等漣波。在另一實施例中,各偏移波形可經產生使得所得漣波不同,諸如一起抵消來自測試波形之漣波之兩個、三個或更多個不同漣波。In block 1310, the controller 1238 can determine the offset waveform of each of the selected remaining devices, so that the sum of each resulting ripple caused by the respective determined offset waveforms of each selected remaining device cancels the determination caused by the selected test waveform The resulting ripple. In an embodiment, each offset waveform can be generated so that the resulting ripples are the same, such as canceling one, two, three, or more equal ripples of the ripples from the test waveform together. In another embodiment, each offset waveform may be generated so that the resulting ripples are different, such as canceling together two, three or more different ripples from the ripples from the test waveform.

在區塊1312中,控制器1238可控制經選擇用於阻抗測試之各自反相器之DC/DC轉換器將測試波形注入至選定反相器中。例如,控制器1238可將控制信號發送至反相器之一控制器(例如1230或1232)以引起轉換器執行脈寬調變以在至反相器之一輸入連接上產生測試波形。在區塊1314中,控制器1238可控制選定剩餘裝置將各選定剩餘反相器之偏移波形注入至每個各自反相器中。例如,控制器1238可將控制信號發送至DC/DC轉換器之控制器(例如1230或1232)以引起轉換器執行脈寬調變以在至其各自反相器之一輸入連接上產生偏移波形。區塊1312及1314中所執行之方法1300之操作可同時發生,使得測試波形及偏移波形同時注入以導致自各種反相器輸出彼此抵消之漣波以導致AC匯流排上之所要AC電壓。In block 1312, the controller 1238 may control the DC/DC converters of the respective inverters selected for impedance testing to inject test waveforms into the selected inverters. For example, the controller 1238 may send a control signal to one of the inverters (such as 1230 or 1232) to cause the converter to perform pulse width modulation to generate a test waveform on one of the input connections to the inverter. In block 1314, the controller 1238 may control the selected remaining devices to inject the offset waveform of each selected remaining inverter into each respective inverter. For example, the controller 1238 may send a control signal to the controller of the DC/DC converter (such as 1230 or 1232) to cause the converter to perform pulse width modulation to produce an offset on one of the input connections to its respective inverter Waveform. The operations of the method 1300 performed in blocks 1312 and 1314 can occur simultaneously, so that the test waveform and the offset waveform are injected at the same time to cause ripples from the various inverter outputs to cancel each other to cause the desired AC voltage on the AC bus.

在區塊1316中,控制器1238可至少部分基於阻抗回應來判定經選擇用於阻抗測試之反相器之一特性。如上文所討論,控制器可使用EIS監測來繪製源自注入測試波形之量測阻抗之實部及虛部且比較所繪製之阻抗與具有已知特性之反相器或電容器之阻抗回應之已知特徵。具有已知特性之反相器或電容器之阻抗回應之已知特徵可儲存於可用於控制器之一記憶體中。具有已知特性之反相器或電容器之阻抗回應之所儲存之已知特徵可為源自測試良好(即,未受損/未降級)反相器或電容器及具有各種形式之損壞(例如陽極裂紋)及/或電容降級之受損/降級反相器或電容器之良好反相器或電容器及受損/降級反相器或電容器之量測阻抗之實部及虛部之作圖。已知特性可與儲存於記憶體中之量測阻抗之實部及虛部之作圖相關。In block 1316, the controller 1238 may determine a characteristic of the inverter selected for impedance testing based at least in part on the impedance response. As discussed above, the controller can use EIS monitoring to plot the real and imaginary parts of the measured impedance derived from the injected test waveform and compare the plotted impedance with the impedance response of an inverter or capacitor with known characteristics. Know the characteristics. Known characteristics of the impedance response of an inverter or capacitor with known characteristics can be stored in a memory that can be used in the controller. The stored known characteristics of the impedance response of an inverter or capacitor with known characteristics can be derived from well-tested (ie, undamaged/undegraded) inverters or capacitors and have various forms of damage (such as anode (Crack) and/or capacitance degraded damaged/degraded inverter or capacitor good inverter or capacitor and damaged/degraded inverter or capacitor real part and imaginary part of the measured impedance. The known characteristics can be related to the mapping of the real and imaginary parts of the measured impedance stored in the memory.

可藉由匹配量測阻抗與阻抗回應之已知特徵來將反相器或其電容器之當前特性或狀態判定為與阻抗回應之匹配已知特徵相關之特性。在選用區塊1318中,控制器1238可基於判定特性超過一失效臨限值來指示一失效模式。例如,若判定特性超過一失效臨限值,則可指示一反相器或一電容器之一失效模式(一失效狀態)。在選用區塊1320中,控制器1238可基於判定特性來調整反相器或整個系統之一設定。例如,控制器1238可基於判定特性來調整(例如增大或減小)自DC/DC轉換器汲取至特定反相器之電流或切斷DC/DC轉換器及其對應反相器。依此方式,阻抗測試(諸如EIS監測)可用於基於反相器之當前特性來調整反相器之操作。The current characteristic or state of the inverter or its capacitor can be determined as the characteristic related to the matched known characteristic of the impedance response by matching the measured impedance with the known characteristic of the impedance response. In the optional block 1318, the controller 1238 can indicate a failure mode based on the determination that the characteristic exceeds a failure threshold. For example, if the determined characteristic exceeds a failure threshold, it can indicate a failure mode (a failure state) of an inverter or a capacitor. In the optional block 1320, the controller 1238 can adjust one of the settings of the inverter or the entire system based on the determination characteristics. For example, the controller 1238 may adjust (for example, increase or decrease) the current drawn from the DC/DC converter to the specific inverter or cut off the DC/DC converter and its corresponding inverter based on the determination characteristic. In this way, impedance testing (such as EIS monitoring) can be used to adjust the operation of the inverter based on the current characteristics of the inverter.

總言之,在上文相對於圖9A至圖9C所描述之一實施例中,一種系統包含:一直流(「DC」)匯流排;除一燃料電池之外的一第一DC電源,其經由一第一輸入連接電連接至一第一DC轉換器,其中該第一DC轉換器經由一第一輸出連接連接至該DC匯流排;除一燃料電池之外的至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二DC轉換器,其中該至少一第二DC轉換器經由至少第二輸出連接連接至該DC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一DC轉換器及該至少一第二DC轉換器並行連接至該DC匯流排;及一處理器,其連接至該第一DC轉換器及該至少一第二DC轉換器。In summary, in one of the embodiments described above with respect to FIGS. 9A to 9C, a system includes: a direct current ("DC") bus; a first DC power source other than a fuel cell, which Electrically connected to a first DC converter via a first input connection, wherein the first DC converter is connected to the DC bus via a first output connection; at least one second DC power source other than a fuel cell, It is electrically connected to at least one second DC converter via at least one second input connection, wherein the at least one second DC converter is connected to the DC bus via at least a second output connection, and wherein the first output connection and the at least A second output connection connects the first DC converter and the at least one second DC converter to the DC bus in parallel; and a processor connected to the first DC converter and the at least one second DC converter.

該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入至自該第一DC轉換器至除一燃料電池之外的該第一DC電源之該第一輸入連接上;判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波;判定至少一偏移波形以注入至自該至少一第二DC轉換器至除一燃料電池之外的該至少一第二DC電源之該至少一第二輸入連接上,使得將提供至該至少一第二輸出連接之一或多個第二漣波抵消該第一所得漣波;控制該第一DC轉換器將該測試波形注入至該第一輸入連接上;及控制該至少一第二DC轉換器將該至少一偏移波形注入至該至少一第二輸入連接上。The processor is configured with processor-executable instructions to perform operations including: selecting a test waveform to inject into the first DC power source from the first DC converter to the first DC power source other than a fuel cell The first input connection; determine that a first resultant ripple on the first output connection will be generated in response to injecting the test waveform into the first input connection; determine at least one offset waveform to inject from the At least one second DC converter is connected to the at least one second input connection of the at least one second DC power source other than a fuel cell, so that one or more second input connections will be provided to the at least one second output connection Ripple cancels the first obtained ripple; controlling the first DC converter to inject the test waveform into the first input connection; and controlling the at least one second DC converter to inject the at least one offset waveform into the At least one second input is connected.

在一實施例中,除一燃料電池之外的該第一DC電源及除一燃料電池之外的該至少一第二DC電源之至少一者各包括至少一電池。在另一實施例中,除一燃料電池之外的該至少一第二DC電源包括一電解電池或一電化學抽運電池。在又一實施例中,除一燃料電池之外的該至少一第二DC電源包括一超級電容器、一光伏打裝置或一熱電裝置。In an embodiment, at least one of the first DC power source other than a fuel cell and the at least one second DC power source other than a fuel cell each includes at least one battery. In another embodiment, the at least one second DC power source other than a fuel cell includes an electrolysis cell or an electrochemical pump cell. In another embodiment, the at least one second DC power source other than a fuel cell includes a super capacitor, a photovoltaic device, or a thermoelectric device.

在一實施例中,該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作:控制該第一DC轉換器回應於該注入測試波形而使用阻抗譜法(「EIS」)來監測除一燃料電池之外的該第一DC電源之一阻抗回應;及至少部分基於除一燃料電池之外的該第一DC電源之該阻抗回應來判定除一燃料電池之外的該第一DC電源之一特性。該處理器亦可經組態有處理器可執行指令以執行進一步包括基於該判定特性來調整除一燃料電池之外的該第一DC電源之一設定的操作。該判定特性可為一電池容量、一電池充電狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者。調整除一燃料電池之外的該第一DC電源之一設定可包括調整除一燃料電池之外的該第一DC電源之一充電狀態。In one embodiment, the processor is configured with processor-executable instructions to perform operations further including: controlling the first DC converter to respond to the injected test waveform using impedance spectroscopy ("EIS") ) To monitor an impedance response of the first DC power source other than a fuel cell; and determine the impedance response of the first DC power source other than a fuel cell based at least in part on the impedance response of the first DC power source other than a fuel cell One of the characteristics of the first DC power supply. The processor may also be configured with processor-executable instructions to perform operations that further include adjusting a setting of one of the first DC power sources other than a fuel cell based on the determination characteristic. The determination characteristic may be one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life. Adjusting a setting of the first DC power source other than a fuel cell may include adjusting a charge state of the first DC power source other than a fuel cell.

在另一實施例中,該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作:判定該判定特性是否超過一失效臨限值;及回應於判定該判定特性超過該失效臨限值而指示一失效模式。該失效臨限值可指示除一燃料電池之外的該第一DC電源之一減少電池容量且該失效模式包含減少自除一燃料電池之外的該第一DC電源汲取之電力。In another embodiment, the processor is configured with processor-executable instructions to perform operations further including: determining whether the determination characteristic exceeds a failure threshold; and in response to determining that the determination characteristic exceeds the The failure threshold indicates a failure mode. The failure threshold may indicate that one of the first DC power sources other than a fuel cell is reducing battery capacity and the failure mode includes reducing power drawn from the first DC power source other than a fuel cell.

另外,在上文相對於圖9A至圖9C所描述之實施例中,一種方法包括:選擇一測試波形來自一第一DC轉換器注入除一燃料電池之外的至少一第一DC電源;判定將回應於將該測試波形注入至該電池上而產生之一第一所得漣波;判定至少一偏移波形以自至少一第二DC轉換器注入至至少一第二DC電源以產生抵消該第一所得漣波之一或多個第二漣波;將該測試波形自該第一DC轉換器注入至該至少一第一DC電源;將該至少一偏移波形自該至少一第二DC轉換器注入至該至少一第二DC電源;及至少部分基於該第一DC電源之阻抗回應來判定該第一DC電源之一特性。In addition, in the embodiment described above with respect to FIGS. 9A to 9C, a method includes: selecting a test waveform from a first DC converter to inject at least one first DC power source other than a fuel cell; determining A first resultant ripple is generated in response to injecting the test waveform onto the battery; determining at least one offset waveform to inject from the at least one second DC converter to the at least one second DC power source to cancel the first One or more second ripples of one obtained ripple; inject the test waveform from the first DC converter into the at least one first DC power source; convert the at least one offset waveform from the at least one second DC The device is injected into the at least one second DC power source; and a characteristic of the first DC power source is determined based at least in part on the impedance response of the first DC power source.

在一實施例中,除一燃料電池之外的該至少一第一DC電源包括一電池。判定該第一DC電源之該特性可包括判定該電池係在充電或放電。判定該電池係在充電或放電可包括:若量測指示已抵消該第一所得漣波,則判定該電池係在充電;及若量測指示未抵消該第一所得漣波,則判定該電池係在放電。在一實施例中,判定該第一DC電源之該特性包括判定一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之至少一者。In an embodiment, the at least one first DC power source other than a fuel cell includes a battery. Determining the characteristic of the first DC power source may include determining that the battery is charging or discharging. Determining that the battery is charging or discharging may include: determining that the battery is charging if the measurement indication has cancelled the first obtained ripple; and if the measurement indication has not cancelled the first obtained ripple, determining the battery Tie in the discharge. In one embodiment, determining the characteristic of the first DC power source includes determining at least one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life.

在上文相對於圖10及圖11所描述之另一實施例中,一種系統包括:一交流(「AC」)匯流排;一第一直流(「DC」)電源,其經由一第一輸入連接電連接至一第一反相器,其中該第一反相器經由一第一輸出連接連接至該AC匯流排;至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二反相器,其中該至少一第二反相器經由至少第二輸出連接連接至該AC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一反相器及該至少一第二反相器並行連接至該AC匯流排;及一處理器,其連接至該第一反相器及該至少一第二反相器。In another embodiment described above with respect to FIG. 10 and FIG. 11, a system includes: an alternating current ("AC") bus; a first direct current ("DC") power supply through a first The input connection is electrically connected to a first inverter, wherein the first inverter is connected to the AC bus through a first output connection; at least one second DC power source is electrically connected to the at least one second input connection At least one second inverter, wherein the at least one second inverter is connected to the AC bus via at least a second output connection, and wherein the first output connection and the at least one second output connection are the first inverting The inverter and the at least one second inverter are connected in parallel to the AC bus; and a processor is connected to the first inverter and the at least one second inverter.

該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入自該第一反相器至該第一DC電源之該第一輸入連接上;判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波;判定至少一偏移波形以注入至自該至少一第二反相器至該至少一第二DC電源之該至少一第二輸入連接上,使得將提供至該至少一第二輸出連接之一或多個第二漣波抵消該第一所得漣波;控制該第一反相器將該測試波形注入至該第一輸入連接上;及控制該至少一第二反相器將該至少一偏移波形注入至該至少一第二輸入連接上。The processor is configured with processor executable instructions to perform operations including: selecting a test waveform to inject from the first inverter to the first input connection of the first DC power supply; In response to a first resultant ripple on the first output connection generated by injecting the test waveform into the first input connection; determine at least one offset waveform to inject from the at least one second inverter to The at least one second input connection of the at least one second DC power source is connected so that one or more second ripples to be provided to the at least one second output connection cancel the first obtained ripple; control the first inverter The phase converter injects the test waveform into the first input connection; and controls the at least one second inverter to inject the at least one offset waveform into the at least one second input connection.

在一實施例中,該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作:控制該第一反相器回應於該注入第一測試波形而使用阻抗譜法(「EIS」)來監測該第一DC電源之一第一阻抗回應;及至少部分基於該第一DC電源之該第一阻抗回應來判定該第一DC電源之一特性。該第一DC電源可包括一燃料電池堆疊、一電解電池、一電化學抽運電池、一電池、一超級電容器、一光伏打裝置或一熱電裝置之至少一者,且該處理器經組態有處理器可執行指令以執行進一步包括基於該判定特性來調整該第一DC電源之一設定的操作。在一實施例中,該第一DC電源包括該電池,該判定特性係一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者,且調整該第一DC電源之一設定包括調整該第一DC電源之一充電狀態。In one embodiment, the processor is configured with processor-executable instructions to perform operations further including: controlling the first inverter to use impedance spectroscopy in response to the injected first test waveform (" EIS") to monitor a first impedance response of the first DC power source; and determine a characteristic of the first DC power source based at least in part on the first impedance response of the first DC power source. The first DC power source may include at least one of a fuel cell stack, an electrolytic cell, an electrochemical pump cell, a battery, a super capacitor, a photovoltaic device, or a thermoelectric device, and the processor is configured There are processor-executable instructions to perform operations that further include adjusting a setting of the first DC power source based on the determined characteristic. In an embodiment, the first DC power source includes the battery, the determining characteristic is one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life, and the The setting of a first DC power source includes adjusting a charging state of the first DC power source.

在另一實施例中,該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作:判定該判定特性是否超過一失效臨限值;及回應於判定該判定特性超過該失效臨限值而指示一失效模式。In another embodiment, the processor is configured with processor-executable instructions to perform operations further including: determining whether the determination characteristic exceeds a failure threshold; and in response to determining that the determination characteristic exceeds the The failure threshold indicates a failure mode.

在上文相對於圖12及圖13所描述之另一實施例中,一種系統包括:一交流(「AC」)匯流排;一第一直流(「DC」)電源,其經由一第一DC電源輸入連接電連接至一第一DC轉換器;一第一反相器,其經由一第一DC轉換器輸出連接連接至該第一DC轉換器且經由一第一反相器輸出連接連接至該AC匯流排;及一處理器,其連接至該第一DC轉換器。該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入至自該第一DC轉換器至該第一反相器之該第一DC轉換器輸出連接上;控制該第一DC轉換器將該測試波形注入至該第一DC轉換器輸出連接上;及自該反相器量測對該測試波形之一回應。In another embodiment described above with respect to FIGS. 12 and 13, a system includes: an alternating current ("AC") bus; a first direct current ("DC") power source, which passes through a first The DC power input connection is electrically connected to a first DC converter; a first inverter is connected to the first DC converter via a first DC converter output connection and is connected via a first inverter output connection To the AC bus; and a processor connected to the first DC converter. The processor is configured with processor-executable instructions to perform operations including: selecting a test waveform to inject into the first DC converter output from the first DC converter to the first inverter Connected; control the first DC converter to inject the test waveform into the output connection of the first DC converter; and measure a response to the test waveform from the inverter.

在一實施例中,該處理器經進一步組態以執行包括使該量測回應與該第一反相器中之一或多個電容器之一操作狀態有關之操作。該操作狀態可包含與該反相器之總體運轉有關之一電容範圍、該電容器之一預測壽命或該電容器之一電容之至少一者。在一實施例中,使該量測回應與一或多個電容器之一操作狀態有關包括比較該量測回應與一正常運轉反相器中之一電容器之一儲存回應。In one embodiment, the processor is further configured to perform operations that include relating the measurement response to an operating state of one or more capacitors in the first inverter. The operating state may include at least one of a capacitance range related to the overall operation of the inverter, a predicted lifetime of the capacitor, or a capacitance of the capacitor. In one embodiment, relating the measurement response to an operating state of one or more capacitors includes comparing the measurement response with a stored response of one of the capacitors in a normal operation inverter.

根據上文相對於圖9A至圖9E所描述之另一實施例,一種系統包含:一直流(「DC」)匯流排;一電池,其經由一第一輸入連接電連接至一第一DC轉換器,其中該第一DC轉換器經由一第一輸出連接連接至該DC匯流排;至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二DC轉換器,其中該至少一第二DC轉換器經由至少第二輸出連接連接至該DC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一DC轉換器及該至少一第二DC轉換器並行連接至該DC匯流排;及一處理器,其連接至該第一DC轉換器及該至少一第二DC轉換器。該處理器經組態有處理器可執行指令以執行包括以下各者之操作:選擇一測試波形來注入至自該第一DC轉換器至該電池之該第一輸入連接上;判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波;判定至少一偏移波形以注入至自該至少一第二DC轉換器至該至少一第二DC電源之該至少一第二輸入連接上,使得若該電池係在充電,則將提供至該至少一第二輸出連接之一或多個第二漣波將抵消該第一所得漣波;控制該第一DC轉換器將該測試波形注入至該第一輸入連接上;控制該至少一第二DC轉換器將該至少一偏移波形注入至該至少一第二輸入連接上;量測該第一DC轉換器輸出連接上之一輸出;及基於該量測輸出來判定該電池係在充電或放電。According to another embodiment described above with respect to FIGS. 9A to 9E, a system includes: a direct current ("DC") bus; a battery that is electrically connected to a first DC converter via a first input connection Wherein the first DC converter is connected to the DC bus through a first output connection; at least one second DC power source is electrically connected to at least one second DC converter through at least one second input connection, wherein the At least one second DC converter is connected to the DC bus via at least a second output connection, and wherein the first output connection and the at least one second output connection are the first DC converter and the at least one second DC converter Connected to the DC bus in parallel; and a processor connected to the first DC converter and the at least one second DC converter. The processor is configured with processor-executable instructions to perform operations including: selecting a test waveform to inject into the first input connection from the first DC converter to the battery; the determination will respond to Injecting the test waveform into the first input connection to generate a first resultant ripple on the first output connection; determining at least one offset waveform to inject from the at least one second DC converter to the at least The at least one second input connection of a second DC power source is connected so that if the battery is charging, one or more second ripples that will be provided to the at least one second output connection will cancel the first resulting ripple Control the first DC converter to inject the test waveform into the first input connection; control the at least one second DC converter to inject the at least one offset waveform into the at least one second input connection; Measuring the output of the first DC converter connected to an output; and determining that the battery is charging or discharging based on the measured output.

在一實施例中,判定該電池係在充電或放電包括:若該量測指示已抵消該第一所得漣波,則判定該電池係在充電;及若該量測指示未抵消該第一所得漣波,則判定該電池係在放電。In one embodiment, determining that the battery is charging or discharging includes: determining that the battery is charging if the measurement indication has cancelled the first obtained ripple; and if the measurement indication has not canceled the first gain Ripple, it is determined that the battery is discharging.

在另一實施例中,操作進一步包括:回應於該注入測試波形而使用電化學阻抗譜法(「EIS」)來監測該電池之一阻抗回應;及至少部分基於該電池之該阻抗回應來判定該電池之一特性。操作可進一步包括基於該判定特性來調整該電池之一設定。該判定特性可為一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者,且操作可進一步包括調整該電池之一設定包括調整該電池之一充電狀態。In another embodiment, the operation further includes: monitoring an impedance response of the battery using electrochemical impedance spectroscopy ("EIS") in response to the injection test waveform; and determining based at least in part on the impedance response of the battery One of the characteristics of the battery. The operation may further include adjusting a setting of the battery based on the determination characteristic. The determination characteristic may be one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life, and the operation may further include adjusting a setting of the battery including adjusting one of the batteries charging.

在另一實施例中,操作進一步包括:判定該判定特性是否超過一失效臨限值;及回應於判定該判定特性超過該失效臨限值而指示一失效模式。該失效臨限值指示該電池之一減少電池容量,且操作可進一步包括回應於該失效模式之該指示而減少自該電池汲取之電力。該至少一第二DC電源可包括一電池、至少一燃料電池堆疊分段、電解電池或電化學抽運電池。In another embodiment, the operation further includes: determining whether the determined characteristic exceeds a failure threshold; and in response to determining that the determined characteristic exceeds the failure threshold, indicating a failure mode. The failure threshold instructs one of the batteries to reduce battery capacity, and the operation may further include reducing the power drawn from the battery in response to the indication of the failure mode. The at least one second DC power source may include a battery, at least one fuel cell stack segment, an electrolysis cell, or an electrochemical pump cell.

在上文相對於圖9A至圖9E所描述之實施例中,一種方法包含:選擇一測試波形來自一第一DC轉換器注入至一電池;判定將回應於注入該測試波形而產生之一第一所得漣波;判定至少一偏移波形以自至少一第二DC轉換器注入至至少一第二DC電源,使得若該電池係在充電,則將提供將抵消該第一所得漣波之一或多個第二漣波;將該測試波形注入至該電池;將該至少一偏移波形注入至該至少一第二DC電源;判定是否已抵消該第一所得漣波;及基於判定是否已抵消該第一所得漣波之步驟來判定該電池係在充電或放電。In the embodiment described above with respect to FIGS. 9A to 9E, a method includes: selecting a test waveform from a first DC converter to inject into a battery; determining that a second waveform will be generated in response to injecting the test waveform A resulting ripple; determining at least one offset waveform to inject from at least one second DC converter to at least one second DC power source, so that if the battery is charging, one of the first resulting ripples will be offset Or a plurality of second ripples; inject the test waveform into the battery; inject the at least one offset waveform into the at least one second DC power source; determine whether the first obtained ripple has been canceled; and determine whether it has been The step of canceling the first obtained ripple determines whether the battery is charging or discharging.

在一實施例中,判定是否已抵消該第一所得漣波包括:若已抵消該第一所得漣波,則判定該電池係在充電;及若未抵消該第一所得漣波,則判定該電池係在放電。In one embodiment, determining whether the first obtained ripple has been canceled includes: if the first obtained ripple has been canceled, determining that the battery is charging; and if the first obtained ripple has not been canceled, determining the The battery is discharging.

在一實施例中,該方法進一步包括:回應於該注入測試波形而使用電化學阻抗譜法(「EIS」)來監測該電池之一阻抗回應;及至少部分基於該電池之該阻抗回應來判定該電池之一特性。該方法可進一步包括基於該判定特性來調整該電池之一設定。該判定特性可為一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者,且調整該電池之一設定可包括調整該電池之一充電狀態。In one embodiment, the method further includes: monitoring an impedance response of the battery using electrochemical impedance spectroscopy ("EIS") in response to the injection test waveform; and determining based at least in part on the impedance response of the battery One of the characteristics of the battery. The method may further include adjusting a setting of the battery based on the determination characteristic. The determination characteristic may be one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life, and adjusting a setting of the battery may include adjusting a charging state of the battery.

在另一實施例中,該方法進一步包括:判定該判定特性是否超過一失效臨限值;及回應於判定該判定特性超過該失效臨限值而指示一失效模式。該失效臨限值可指示該電池之一減少電池容量,且該方法可進一步包括回應於該失效模式之該指示而減少自該電池汲取之電力。該至少一第二DC電源可包括一電池、至少一燃料電池堆疊分段、電解電池或電化學抽運電池。In another embodiment, the method further includes: determining whether the determined characteristic exceeds a failure threshold; and in response to determining that the determined characteristic exceeds the failure threshold, indicating a failure mode. The failure threshold may instruct one of the batteries to reduce battery capacity, and the method may further include reducing the power drawn from the battery in response to the indication of the failure mode. The at least one second DC power source may include a battery, at least one fuel cell stack segment, an electrolysis cell, or an electrochemical pump cell.

一或多個圖式已用於描述例示性實施例。使用圖式不意謂限制執行操作之順序。已為了說明及描述而呈現例示性實施例之以上描述。不意欲具窮舉性或限制所揭示之精確形式,而是可鑑於上述教示來進行修改及變動或可自實踐所揭示之實施例獲取修改及變動。意欲使本發明之範疇由隨附申請專利範圍及其等效物界定。One or more drawings have been used to describe the illustrative embodiments. The use of schemas does not mean to limit the order in which operations are performed. The foregoing description of the exemplary embodiment has been presented for illustration and description. It is not intended to be exhaustive or to limit the precise form disclosed, but can be modified and changed in view of the above teachings or can be obtained from the embodiments disclosed in practice. It is intended that the scope of the present invention is defined by the scope of the attached patent application and its equivalents.

控制元件可使用運算裝置(諸如電腦)(包括處理器、記憶體或已使用指令程式化以執行特定功能之其他組件)實施或可以經設計以執行指定功能之處理器實施。一處理器可為任何可程式化微處理器、微電腦或可由軟體指令(應用程式)組態以執行各種功能(包含本文所描述之各種實施例之功能)之一或若干多處理器晶片。在一些運算裝置中,可提供多個處理器。通常,軟硬應用程式可在其被存取及載入至處理器中之前儲存於內部記憶體中。在一些運算裝置中,處理器可包含足以儲存應用軟體指令之內部記憶體。The control element may be implemented using a computing device (such as a computer) (including a processor, memory, or other components that have been programmed with instructions to perform specific functions) or may be implemented by a processor designed to perform specific functions. A processor can be any programmable microprocessor, microcomputer, or can be configured by software instructions (application programs) to perform one of various functions (including the functions of the various embodiments described herein) or multiple multi-processor chips. In some computing devices, multiple processors may be provided. Generally, hardware and software applications can be stored in internal memory before they are accessed and loaded into the processor. In some computing devices, the processor may include internal memory sufficient to store application software instructions.

結合本文所揭示之實施例所描述之各種繪示性邏輯區塊、模組、電路及演算法步驟可實施為電子硬體、電腦軟體或兩者之組合。為清楚繪示硬體及軟體之此可互換性,上文已大體上從其功能性方面描述各種繪示性組件、區塊、模組、電路及步驟。此功能性實施為硬體或軟體取決於施加於總系統上之特定應用及設計約束。熟習技術者可針對各特定應用依不同方式實施所描述之功能性,但此實施決定不應被解譯為引起背離本發明之範疇。The various illustrative logic blocks, modules, circuits, and algorithm steps described in conjunction with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or a combination of both. In order to clearly illustrate the interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been generally described above in terms of their functionality. The implementation of this functionality as hardware or software depends on the specific application and design constraints imposed on the overall system. Those skilled in the art can implement the described functionality in different ways for each specific application, but this implementation decision should not be interpreted as causing a departure from the scope of the present invention.

用於實施結合本文所揭示之態樣所描述之各種繪示性邏輯、邏輯區塊、模組及電路之硬體可使用經設計以執行本文所描述之功能之一通用處理器、一數位信號處理器(DSP)、一專用積體電路(ASIC)、一場可程式化閘陣列(FPGA)或其他可程式化邏輯裝置、離散閘或電晶體邏輯、離散硬體組件或其等之任何組合實施或執行。一通用處理器可為一微處理器,但在替代方案中,處理器可為任何習知處理器、控制器、微控制器或狀態機。一處理器亦可實施為運算裝置之一組合(例如一DSP及一微處理器之一組合)、複數個微處理器、一或多個微處理器結合一DSP核心或任何其他此組態。替代地,一些區塊或方法可由專用於一給定功能之電路執行。The hardware used to implement the various illustrative logics, logic blocks, modules, and circuits described in combination with the aspects disclosed herein can use a general-purpose processor and a digital signal designed to perform the functions described herein Processor (DSP), a dedicated integrated circuit (ASIC), a programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components or any combination of implementations Or execute. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor can also be implemented as a combination of computing devices (such as a combination of a DSP and a microprocessor), a plurality of microprocessors, one or more microprocessors combined with a DSP core, or any other such configuration. Alternatively, some blocks or methods can be executed by circuits dedicated to a given function.

提供所揭示之實施例之以上描述來使熟習技術者能夠製造或使用所描述之實施例。熟習技術者將易於明白此等實施例之各種修改,且在不背離本發明之範疇之情況下,本文所界定之一般原理可應用於其他實施例。因此,本發明不意欲受限於本文所展示之實施例,而是應被給予與以下申請專利範圍及本文所揭示之原理及新穎特徵一致之最廣範疇。The above description of the disclosed embodiments is provided to enable those skilled in the art to make or use the described embodiments. Those skilled in the art will easily understand the various modifications of these embodiments, and the general principles defined herein can be applied to other embodiments without departing from the scope of the present invention. Therefore, the present invention is not intended to be limited to the embodiments shown in this document, but should be given the broadest scope consistent with the scope of the following patent applications and the principles and novel features disclosed in this document.

10:燃料電池系統殼體/機櫃 12:電源模組外殼/電源模組 13:反應盒/反應盒子系統 14:輸入/輸出機櫃/模組/外殼 16:燃料輸入模組外殼/燃料處理模組 17:轉化爐 18:電源調節模組外殼/電源調節模組 20:基座 30:門 31:反應盒 39:燃料電池堆疊 70:電源模組組件(PMC) 71:框架 72:支撐件 80:鼓風機 81:通氣孔 100:燃料電池系統 102:直流(DC)負載/資訊技術(IT)負載 102a:備用電源供應器 104:輸入/輸出模組(IOM) 104a:電源調節組件/直流(DC)/交流(AC)反相器 106:電源模組 106a:DC電源 106b:DC/DC轉換器 108:能量儲存模組 108a:儲存裝置 108b:DC/DC轉換器 112a:DC匯流排 112b:主AC匯流排 113:輔AC匯流排 113S:開關 114:電網 117:導管 310:陽極尾氣氧化器(ATO) 321:燃料入口導管 323a:燃料排氣導管 323b:燃料排氣導管 324:陰極排氣導管 325:歧管 327:ATO排氣導管 329:燃料入口導管 330a:導管 330B:導管 331:導管 333:進氣口導管 335:排氣導管 600:系統 602:電化學裝置/DC電源 604:電化學裝置/DC電源 606:電化學裝置/DC電源 608:電化學裝置/DC電源 610:電力電子器件 612:電力電子器件 614:電力電子器件 616:電力電子器件 618:DC匯流排 618a:正線 618b:中性線 618c:負線 620:輸出連接 620a:正輸出連接 620b:中性輸出連接 620c:負輸出連接 622:輸出連接 622a:正輸出連接 622b:中性輸出連接 622c:負輸出連接 624:輸出連接 624a:正輸出連接 624b:中性輸出連接 624c:負輸出連接 626:輸出連接 626a:正輸出連接 626b:中性輸出連接 626c:負輸出連接 630:控制器 632:控制器 634:控制器 636:控制器 638:中央控制器 640:輸入連接 640a:正輸入連接 640b:負輸入連接 642:輸入連接 642a:正輸入連接 642b:負輸入連接 644:輸入連接 644a:正輸入連接 644b:負輸入連接 646:輸入連接 646a:正輸入連接 646b:負輸入連接 702:漣波 704:漣波 706:DC電壓 708:漣波 710:漣波 712:漣波 800:方法 802:區塊 804:區塊 806:區塊 808:區塊 809:區塊 810:區塊 812:區塊 814:區塊 816:區塊 818:區塊 820:區塊 822:區塊 902:測試波形/測試信號 904:抵消漣波 904a:測試漣波 906:偏移波形 908:抵消漣波/偏移漣波 910:偏移波形 912:抵消漣波/偏移漣波 914:偏移波形 916:抵消漣波/偏移漣波 918a:DC電壓 918b:DC電壓漣波 950a:方向 950b:相反方向 1000:系統 1002:測試波形 1004:漣波 1006:偏移波形 1008:偏移漣波 1010:反相器 1012:反相器 1018:AC匯流排 1018a:正線 1018b:中性線 1018c:負線 1020:AC電壓 1030:控制器 1032:控制器 1038:中央控制器 1100:方法 1102:區塊 1104:區塊 1106:區塊 1108:區塊 1109:區塊 1110:區塊 1112:區塊 1114:區塊 1116:區塊 1118:區塊 1120:區塊 1122:區塊 1200:系統 1202:測試波形 1204:AC漣波 1206:偏移波形 1208:AC漣波 1210:DC/DC轉換器 1212:DC/DC轉換器 1214:反相器 1214a:電容器 1216:反相器 1216a:電容器 1218:AC匯流排 1218a:正線 1218b:中性線 1218c:負線 1220:輸出連接 1220a:正輸出連接 1220b:中性輸出連接 1220c:負輸出連接 1222:輸出連接 1222a:正輸出連接 1222b:中性輸出連接 1222c:負輸出連接 1225:AC電壓 1230:控制器 1232:控制器 1234:控制器 1236:控制器 1238:中央控制器 1240:輸入連接 1240a:正輸入連接 1240b:負輸入連接 1242:輸入連接 1242a:正輸入連接 1242b:負輸入連接 1300:方法 1302:區塊 1304:區塊 1306:區塊 1308:區塊 1309:區塊 1310:區塊 1312:區塊 1314:區塊 1316:區塊 1318:區塊 1320:區塊 3100:陽極冷卻器/陽極冷卻器換熱器 3103:蒸汽發生器 3104:水源 3105:混合器 3107:分流器 3111:催化分壓氧化(CPOx)反應器 3113:CPOx進氣口導管 3114:CPOx鼓風機 3117:導管 3119:導管 3121:濕潤陽極排氣流導管 3123:陽極再循環鼓風機 3125:主鼓風機 3133:導管 3137:陽極復熱器/燃料換熱器/預轉化爐 3200:陰極復熱器/空氣換熱器 3314:導管 3801:混合器 A:連接 B:連接 C:連接 D:連接10: Fuel cell system housing/cabinet 12: Power module shell/power module 13: Reaction Box/Reaction Box System 14: input/output cabinet/module/shell 16: Fuel input module housing/fuel processing module 17: Reformer 18: Power regulation module shell/power regulation module 20: Pedestal 30: door 31: reaction box 39: Fuel cell stack 70: Power Module Components (PMC) 71: Frame 72: Support 80: Blower 81: Vent 100: Fuel cell system 102: Direct Current (DC) Load/Information Technology (IT) Load 102a: Backup power supply 104: Input/Output Module (IOM) 104a: power conditioning components/direct current (DC)/alternating current (AC) inverter 106: Power Module 106a: DC power supply 106b: DC/DC converter 108: Energy Storage Module 108a: storage device 108b: DC/DC converter 112a: DC bus 112b: Main AC bus 113: auxiliary AC bus 113S: switch 114: Grid 117: Catheter 310: Anode exhaust oxidizer (ATO) 321: Fuel inlet duct 323a: Fuel exhaust duct 323b: Fuel exhaust duct 324: Cathode exhaust duct 325: Manifold 327: ATO exhaust duct 329: Fuel inlet duct 330a: Catheter 330B: Catheter 331: Catheter 333: Inlet duct 335: Exhaust duct 600: System 602: Electrochemical device/DC power supply 604: Electrochemical device/DC power supply 606: Electrochemical device/DC power supply 608: Electrochemical device/DC power supply 610: Power Electronics 612: Power Electronics 614: Power Electronics 616: Power Electronics 618: DC bus 618a: positive line 618b: Neutral 618c: negative line 620: output connection 620a: Positive output connection 620b: Neutral output connection 620c: negative output connection 622: output connection 622a: Positive output connection 622b: Neutral output connection 622c: negative output connection 624: output connection 624a: Positive output connection 624b: Neutral output connection 624c: negative output connection 626: output connection 626a: Positive output connection 626b: Neutral output connection 626c: negative output connection 630: Controller 632: Controller 634: Controller 636: Controller 638: Central Controller 640: Input connection 640a: Positive input connection 640b: Negative input connection 642: input connection 642a: Positive input connection 642b: negative input connection 644: input connection 644a: Positive input connection 644b: Negative input connection 646: input connection 646a: Positive input connection 646b: negative input connection 702: Ripple 704: Ripple 706: DC voltage 708: Ripple 710: Ripple 712: Ripple 800: method 802: block 804: block 806: block 808: block 809: block 810: block 812: block 814: block 816: block 818: block 820: block 822: block 902: Test waveform/test signal 904: offset ripple 904a: Test Ripple 906: Offset waveform 908: offset ripple/offset ripple 910: Offset waveform 912: offset ripple/offset ripple 914: Offset waveform 916: offset ripple/offset ripple 918a: DC voltage 918b: DC voltage ripple 950a: direction 950b: Opposite direction 1000: System 1002: Test waveform 1004: Ripple 1006: Offset waveform 1008: Offset ripple 1010: inverter 1012: inverter 1018: AC bus 1018a: positive line 1018b: Neutral 1018c: negative line 1020: AC voltage 1030: Controller 1032: Controller 1038: Central Controller 1100: Method 1102: block 1104: block 1106: block 1108: block 1109: block 1110: block 1112: block 1114: block 1116: block 1118: block 1120: block 1122: block 1200: System 1202: Test waveform 1204: AC ripple 1206: Offset waveform 1208: AC ripple 1210: DC/DC converter 1212: DC/DC converter 1214: inverter 1214a: Capacitor 1216: inverter 1216a: capacitor 1218: AC bus 1218a: positive line 1218b: Neutral 1218c: negative line 1220: output connection 1220a: Positive output connection 1220b: Neutral output connection 1220c: negative output connection 1222: output connection 1222a: Positive output connection 1222b: Neutral output connection 1222c: negative output connection 1225: AC voltage 1230: Controller 1232: Controller 1234: Controller 1236: Controller 1238: Central Controller 1240: Input connection 1240a: Positive input connection 1240b: Negative input connection 1242: Input connection 1242a: Positive input connection 1242b: negative input connection 1300: method 1302: block 1304: block 1306: block 1308: block 1309: block 1310: block 1312: block 1314: block 1316: block 1318: block 1320: block 3100: anode cooler / anode cooler heat exchanger 3103: Steam Generator 3104: water source 3105: mixer 3107: Shunt 3111: Catalytic partial pressure oxidation (CPOx) reactor 3113: CPOx air inlet duct 3114: CPOx blower 3117: Catheter 3119: Catheter 3121: Wet anode exhaust flow duct 3123: anode recirculation blower 3125: Main blower 3133: Catheter 3137: anode recuperator/fuel heat exchanger/pre-reformer 3200: Cathode recuperator/air heat exchanger 3314: Catheter 3801: mixer A: Connect B: Connect C: Connect D: Connect

圖1係繪示可與例示性實施例一起使用之一燃料電池系統的一方塊圖。FIG. 1 is a block diagram showing a fuel cell system that can be used with the exemplary embodiment.

圖2係可與例示性實施例一起使用之一模組化燃料電池系統殼體之一等角視圖。Figure 2 is an isometric view of a modular fuel cell system housing that can be used with the exemplary embodiment.

圖3係繪示可與例示性實施例一起使用之一反應盒的一示意性程序流程圖。Fig. 3 shows a schematic process flow diagram of a reaction cartridge that can be used with the exemplary embodiment.

圖4係圖2之模組化燃料電池系統之一反應盒之一等角視圖。Figure 4 is an isometric view of a reaction box of the modular fuel cell system of Figure 2;

圖5係圖2之模組化燃料電池系統之外殼之照片。Figure 5 is a photograph of the housing of the modular fuel cell system of Figure 2;

圖6係根據一實施例之一系統之一方塊圖。Fig. 6 is a block diagram of a system according to an embodiment.

圖7A及圖7B係繪示隨時間之一DC匯流排上之抵消漣波的曲線圖。Figures 7A and 7B are graphs showing the cancellation of ripples on a DC bus over time.

圖8係繪示用於抵消由一測試波形引起之至一DC匯流排之漣波之一實施例方法的一程序流程圖。FIG. 8 shows a flowchart of an embodiment method for canceling ripples to a DC bus caused by a test waveform.

圖9A係繪示根據一實施例之注入波形及所得抵消漣波的一系統之一方塊圖。FIG. 9A is a block diagram of a system for the injection waveform and the resulting cancellation ripple according to an embodiment.

圖9B係繪示根據一實施例之在一測試電化學裝置處於放電模式中時使用圖9A中所展示之波形之隨時間之一DC匯流排上之抵消漣波的一曲線圖。FIG. 9B is a graph showing the cancellation ripple on a DC bus with time using the waveform shown in FIG. 9A when a test electrochemical device is in the discharge mode according to an embodiment.

圖9C係根據一實施例之電化學阻抗譜法(「EIS」)用於偵測一電池之一充電狀態時之一系統。FIG. 9C is a system when electrochemical impedance spectroscopy ("EIS") is used to detect a state of charge of a battery according to an embodiment.

圖9D係繪示根據一實施例之在一電化學裝置處於充電模式中時使用圖9C中所展示之波形之隨時間之一DC匯流排上之非抵消漣波的一曲線圖。FIG. 9D is a graph showing a non-cancelling ripple on a DC bus over time using the waveform shown in FIG. 9C when an electrochemical device is in a charging mode according to an embodiment.

圖9E根據一實施例來比較電化學裝置係在放電時之DC匯流排上之一電壓漣波與電化學裝置係在充電時之電壓漣波。FIG. 9E compares the voltage ripple on the DC bus of the electrochemical device during discharging with the voltage ripple of the electrochemical device during charging according to an embodiment.

圖10係根據一實施例之一系統之一方塊圖。Fig. 10 is a block diagram of a system according to an embodiment.

圖11繪示根據一實施例之使用圖10中所展示之系統來抵消由一測試波形引起之至一AC匯流排之漣波之一實施例方法。FIG. 11 shows an embodiment method of using the system shown in FIG. 10 to cancel the ripple to an AC bus caused by a test waveform according to an embodiment.

圖12係根據一實施例之一系統之一方塊圖。Fig. 12 is a block diagram of a system according to an embodiment.

圖13繪示根據一實施例之使用圖12之系統來抵消由一測試波形引起之至一AC匯流排之漣波之一實施例方法1300。FIG. 13 illustrates an embodiment method 1300 of using the system of FIG. 12 to cancel the ripple to an AC bus caused by a test waveform according to an embodiment.

106a:直流(DC)電源 106a: Direct current (DC) power supply

600:系統 600: System

602:電化學裝置/DC電源 602: Electrochemical device/DC power supply

604:電化學裝置/DC電源 604: Electrochemical device/DC power supply

606:電化學裝置/DC電源 606: Electrochemical device/DC power supply

608:電化學裝置/DC電源 608: Electrochemical device/DC power supply

610:電力電子器件 610: Power Electronics

612:電力電子器件 612: Power Electronics

614:電力電子器件 614: Power Electronics

616:電力電子器件 616: Power Electronics

618:DC匯流排 618: DC bus

618a:正線 618a: positive line

618b:中性線 618b: Neutral

618c:負線 618c: negative line

620:輸出連接 620: output connection

620a:正輸出連接 620a: Positive output connection

620b:中性輸出連接 620b: Neutral output connection

620c:負輸出連接 620c: negative output connection

622:輸出連接 622: output connection

622a:正輸出連接 622a: Positive output connection

622b:中性輸出連接 622b: Neutral output connection

622c:負輸出連接 622c: negative output connection

624:輸出連接 624: output connection

624a:正輸出連接 624a: Positive output connection

624b:中性輸出連接 624b: Neutral output connection

624c:負輸出連接 624c: negative output connection

626:輸出連接 626: output connection

626a:正輸出連接 626a: Positive output connection

626b:中性輸出連接 626b: Neutral output connection

626c:負輸出連接 626c: negative output connection

630:控制器 630: Controller

632:控制器 632: Controller

634:控制器 634: Controller

636:控制器 636: Controller

638:中央控制器 638: Central Controller

640:輸入連接 640: Input connection

640a:正輸入連接 640a: Positive input connection

640b:負輸入連接 640b: Negative input connection

642:輸入連接 642: input connection

642a:正輸入連接 642a: Positive input connection

642b:負輸入連接 642b: negative input connection

644:輸入連接 644: input connection

644a:正輸入連接 644a: Positive input connection

644b:負輸入連接 644b: Negative input connection

646:輸入連接 646: input connection

646a:正輸入連接 646a: Positive input connection

646b:負輸入連接 646b: negative input connection

902:測試波形 902: test waveform

904:抵消漣波 904: offset ripple

904a:測試漣波 904a: Test Ripple

906:偏移波形 906: Offset waveform

908:抵消漣波/偏移漣波 908: offset ripple/offset ripple

910:偏移波形 910: Offset waveform

912:抵消漣波/偏移漣波 912: offset ripple/offset ripple

914:偏移波形 914: Offset waveform

916:抵消漣波/偏移漣波 916: offset ripple/offset ripple

918a:DC電壓 918a: DC voltage

A:連接 A: Connect

B:連接 B: Connect

C:連接 C: Connect

D:連接 D: Connect

Claims (43)

一種系統,其包括: 一直流(「DC」)匯流排; 除一燃料電池之外的一第一DC電源,其經由一第一輸入連接電連接至一第一DC轉換器,其中該第一DC轉換器經由一第一輸出連接連接至該DC匯流排; 除一燃料電池之外的至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二DC轉換器,其中該至少一第二DC轉換器經由至少第二輸出連接連接至該DC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一DC轉換器及該至少一第二DC轉換器並行連接至該DC匯流排;及 一處理器,其連接至該第一DC轉換器及該至少一第二DC轉換器,其中該處理器經組態有處理器可執行指令以執行包括以下各者之操作: 選擇一測試波形來注入至自該第一DC轉換器至除一燃料電池之外的該第一DC電源之該第一輸入連接上; 判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波; 判定至少一偏移波形以注入至自該至少一第二DC轉換器至除一燃料電池之外的該至少一第二DC電源之該至少一第二輸入連接上,使得將提供至該至少一第二輸出連接之一或多個第二漣波抵消該第一所得漣波; 控制該第一DC轉換器將該測試波形注入至該第一輸入連接上;及 控制該至少一第二DC轉換器將該至少一偏移波形注入至該至少一第二輸入連接上。A system including: A direct current ("DC") bus; A first DC power source other than a fuel cell, which is electrically connected to a first DC converter via a first input connection, wherein the first DC converter is connected to the DC bus via a first output connection; At least one second DC power source other than a fuel cell is electrically connected to at least one second DC converter via at least one second input connection, wherein the at least one second DC converter is connected to at least one second output connection The DC bus bar and wherein the first output connection and the at least one second output connection connect the first DC converter and the at least one second DC converter to the DC bus bar in parallel; and A processor connected to the first DC converter and the at least one second DC converter, wherein the processor is configured with processor executable instructions to perform operations including: Selecting a test waveform to inject into the first input connection from the first DC converter to the first DC power source other than a fuel cell; Determining that it will respond to a first resultant ripple on the first output connection generated by injecting the test waveform onto the first input connection; Determine at least one offset waveform to be injected into the at least one second input connection from the at least one second DC converter to the at least one second DC power source other than a fuel cell, so that it will be provided to the at least one The second output is connected to one or more second ripples to cancel the first obtained ripples; Controlling the first DC converter to inject the test waveform into the first input connection; and The at least one second DC converter is controlled to inject the at least one offset waveform into the at least one second input connection. 如請求項1之系統,其中除一燃料電池之外的該第一DC電源及除一燃料電池之外的該至少一第二DC電源之至少一者各包括至少一電池。The system of claim 1, wherein at least one of the first DC power source other than a fuel cell and the at least one second DC power source other than a fuel cell each includes at least one battery. 如請求項2之系統,其中該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作: 控制該第一DC轉換器回應於該注入測試波形而使用阻抗譜法(「EIS」)來監測除一燃料電池之外的該第一DC電源之一阻抗回應;及 至少部分基於除一燃料電池之外的該第一DC電源之該阻抗回應來判定除一燃料電池之外的該第一DC電源之一特性。Such as the system of claim 2, wherein the processor is configured with processor-executable instructions to perform operations further including the following: Controlling the first DC converter to respond to the injection test waveform using impedance spectroscopy ("EIS") to monitor an impedance response of the first DC power source other than a fuel cell; and A characteristic of the first DC power source other than a fuel cell is determined based at least in part on the impedance response of the first DC power source other than a fuel cell. 如請求項3之系統,其中該處理器經組態有處理器可執行指令以執行進一步包括基於該判定特性來調整除一燃料電池之外的該第一DC電源之一設定的操作。Such as the system of claim 3, wherein the processor is configured with processor-executable instructions to perform operations that further include adjusting a setting of one of the first DC power sources other than a fuel cell based on the determination characteristic. 如請求項4之系統,其中: 該判定特性係一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者;且 調整除一燃料電池之外的該第一DC電源之一設定包括調整除一燃料電池之外的該第一DC電源之一充電狀態。Such as the system of claim 4, where: The determination characteristic is one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life; and Adjusting a setting of the first DC power source other than a fuel cell includes adjusting a charge state of the first DC power source other than a fuel cell. 如請求項3之系統,其中該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作: 判定該判定特性是否超過一失效臨限值;及 回應於判定該判定特性超過該失效臨限值而指示一失效模式。Such as the system of claim 3, wherein the processor is configured with processor-executable instructions to perform operations further including the following: Determine whether the determination characteristic exceeds a failure threshold; and In response to determining that the determination characteristic exceeds the failure threshold, a failure mode is indicated. 如請求項6之系統,其中該失效臨限值指示除一燃料電池之外的該第一DC電源之一減少電池容量且該失效模式包含減少自除一燃料電池之外的該第一DC電源汲取之電力。Such as the system of claim 6, wherein the failure threshold indicates that one of the first DC power sources other than a fuel cell reduces battery capacity and the failure mode includes reduction from the first DC power source other than a fuel cell Electricity drawn. 如請求項1之系統,其中除一燃料電池之外的該至少一第二DC電源包括一電解電池或一電化學抽運電池。Such as the system of claim 1, wherein the at least one second DC power source other than a fuel cell includes an electrolysis cell or an electrochemical pump cell. 如請求項1之系統,其中除一燃料電池之外的該至少一第二DC電源包括一超級電容器、一光伏打裝置或一熱電裝置。Such as the system of claim 1, wherein the at least one second DC power source other than a fuel cell includes a super capacitor, a photovoltaic device or a thermoelectric device. 一種系統,其包括: 一交流(「AC」)匯流排; 一第一直流(「DC」)電源,其經由一第一輸入連接電連接至一第一反相器,其中該第一反相器經由一第一輸出連接連接至該AC匯流排; 至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二反相器,其中該至少一第二反相器經由至少第二輸出連接連接至該AC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一反相器及該至少一第二反相器並行連接至該AC匯流排;及 一處理器,其連接至該第一反相器及該至少一第二反相器,其中該處理器經組態有處理器可執行指令以執行包括以下各者之操作: 選擇一測試波形來注入至自該第一反相器至該第一DC電源之該第一輸入連接上; 判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波; 判定至少一偏移波形以注入至自該至少一第二反相器至該至少一第二DC電源之該至少一第二輸入連接上,使得將提供至該至少一第二輸出連接之一或多個第二漣波抵消該第一所得漣波; 控制該第一反相器將該測試波形注入至該第一輸入連接上;及 控制該至少一第二反相器將該至少一偏移波形注入至該至少一第二輸入連接上。A system including: An alternating current ("AC") bus; A first direct current ("DC") power supply electrically connected to a first inverter via a first input connection, wherein the first inverter is connected to the AC bus via a first output connection; At least one second DC power supply electrically connected to at least one second inverter via at least one second input connection, wherein the at least one second inverter is connected to the AC bus via at least a second output connection and wherein the A first output connection and the at least one second output connection connect the first inverter and the at least one second inverter to the AC bus in parallel; and A processor connected to the first inverter and the at least one second inverter, wherein the processor is configured with processor executable instructions to perform operations including: Selecting a test waveform to inject into the first input connection from the first inverter to the first DC power supply; Determining that it will respond to a first resultant ripple on the first output connection generated by injecting the test waveform onto the first input connection; Determine at least one offset waveform to be injected into the at least one second input connection from the at least one second inverter to the at least one second DC power source so that it will be provided to one of the at least one second output connection or A plurality of second ripples cancel the first obtained ripple; Controlling the first inverter to inject the test waveform onto the first input connection; and The at least one second inverter is controlled to inject the at least one offset waveform into the at least one second input connection. 如請求項10之系統,其中該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作: 控制該第一反相器回應於該注入第一測試波形而使用阻抗譜法(「EIS」)來監測該第一DC電源之一第一阻抗回應;及 至少部分基於該第一DC電源之該第一阻抗回應來判定該第一DC電源之一特性。Such as the system of claim 10, wherein the processor is configured with processor-executable instructions to perform operations further including the following: Controlling the first inverter to use impedance spectroscopy ("EIS") in response to the injected first test waveform to monitor a first impedance response of the first DC power source; and A characteristic of the first DC power source is determined based at least in part on the first impedance response of the first DC power source. 如請求項11之系統,其中: 該第一DC電源包括一燃料電池堆疊、一電解電池、一電化學抽運電池、一電池、一超級電容器、一光伏打裝置或一熱電裝置之至少一者;且 該處理器經組態有處理器可執行指令以執行進一步包括基於該判定特性來調整該第一DC電源之一設定的操作。Such as the system of claim 11, where: The first DC power source includes at least one of a fuel cell stack, an electrolytic cell, an electrochemical pump cell, a battery, a super capacitor, a photovoltaic device, or a thermoelectric device; and The processor is configured with processor-executable instructions to perform operations that further include adjusting a setting of the first DC power source based on the determination characteristic. 如請求項12之系統,其中: 該第一DC電源包括該電池; 該判定特性係一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者;且 調整該第一DC電源之一設定包括調整該第一DC電源之一充電狀態。Such as the system of claim 12, where: The first DC power supply includes the battery; The determination characteristic is one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life; and Adjusting a setting of the first DC power source includes adjusting a charging state of the first DC power source. 如請求項11之系統,其中該處理器經組態有處理器可執行指令以執行進一步包括以下各者之操作: 判定該判定特性是否超過一失效臨限值;及 回應於判定該判定特性超過該失效臨限值而指示一失效模式。Such as the system of claim 11, wherein the processor is configured with processor-executable instructions to perform operations further including the following: Determine whether the determination characteristic exceeds a failure threshold; and In response to determining that the determination characteristic exceeds the failure threshold, a failure mode is indicated. 一種系統,其包括: 一交流(「AC」)匯流排; 一第一直流(「DC」)電源,其經由一第一DC電源輸入連接電連接至一第一DC轉換器; 一第一反相器,其經由一第一DC轉換器輸出連接連接至該第一DC轉換器且經由一第一反相器輸出連接連接至該AC匯流排;及 一處理器,其連接至該第一DC轉換器,其中該處理器經組態有處理器可執行指令以執行包括以下各者之操作: 選擇一測試波形來注入至自該第一DC轉換器至該第一反相器之該第一DC轉換器輸出連接上; 控制該第一DC轉換器將該測試波形注入至該第一DC轉換器輸出連接上;及 自該反相器量測對該測試波形之一回應。A system including: An alternating current ("AC") bus; A first direct current ("DC") power supply electrically connected to a first DC converter via a first DC power input connection; A first inverter connected to the first DC converter via a first DC converter output connection and connected to the AC bus via a first inverter output connection; and A processor connected to the first DC converter, wherein the processor is configured with processor-executable instructions to perform operations including: Selecting a test waveform to inject into the first DC converter output connection from the first DC converter to the first inverter; Controlling the first DC converter to inject the test waveform into the output connection of the first DC converter; and A response to the test waveform is measured from the inverter. 如請求項15之系統,其中該處理器經進一步組態以執行包括使該量測回應與該第一反相器中之一或多個電容器之一操作狀態有關之操作。Such as the system of claim 15, wherein the processor is further configured to perform operations including making the measurement response related to an operating state of one or more capacitors in the first inverter. 如請求項16之系統,其中該操作狀態包含與該反相器之總體運轉有關之一電容範圍、該電容器之一預測壽命或該電容器之一電容之至少一者。The system of claim 16, wherein the operating state includes at least one of a capacitance range related to the overall operation of the inverter, a predicted lifetime of the capacitor, or a capacitance of the capacitor. 如請求項16之系統,其中使該量測回應與一或多個電容器之一操作狀態有關包括比較該量測回應與一正常運轉反相器中之一電容器之一儲存回應。Such as the system of claim 16, wherein the measurement response is related to an operating state of one or more capacitors includes comparing the measurement response with a stored response of a capacitor in a normal operation inverter. 一種方法,其包括: 選擇一測試波形來自一第一DC轉換器注入至除一燃料電池之外的至少一第一DC電源; 判定將回應於將該測試波形注入至該電池上而產生之一第一所得漣波; 判定至少一偏移波形以自至少一第二DC轉換器注入至至少一第二DC電源以產生抵消該第一所得漣波之一或多個第二漣波; 將該測試波形自該第一DC轉換器注入至該至少一第一DC電源; 將該至少一偏移波形自該至少一第二DC轉換器注入至該至少一第二DC電源;及 至少部分基於該第一DC電源之阻抗回應來判定該第一DC電源之一特性。A method including: Selecting a test waveform from a first DC converter injected into at least one first DC power source other than a fuel cell; Determine that a first resultant ripple will be generated in response to injecting the test waveform onto the battery; Determining at least one offset waveform to inject from at least one second DC converter to at least one second DC power source to generate one or more second ripples that cancel the first obtained ripple; Injecting the test waveform from the first DC converter to the at least one first DC power source; Injecting the at least one offset waveform from the at least one second DC converter into the at least one second DC power source; and A characteristic of the first DC power source is determined based at least in part on the impedance response of the first DC power source. 如請求項19之方法,其中除一燃料電池之外的該至少一第一DC電源包括一電池。The method of claim 19, wherein the at least one first DC power source other than a fuel cell includes a battery. 如請求項20之方法,其中判定該第一DC電源之該特性包括判定該電池係在充電或放電。The method of claim 20, wherein determining the characteristic of the first DC power source includes determining that the battery is charging or discharging. 如請求項21之方法,其中判定該電池係在充電或放電包括: 若量測指示已抵消該第一所得漣波,則判定該電池係在充電;及 若量測指示未抵消該第一所得漣波,則判定該電池係在放電。Such as the method of claim 21, wherein determining that the battery is charging or discharging includes: If the measurement indicates that the first obtained ripple has been cancelled, it is determined that the battery is charging; and If the measurement indicates that the first obtained ripple is not cancelled, it is determined that the battery is discharging. 如請求項22之方法,其中判定該第一DC電源之該特性包括判定一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之至少一者。Such as the method of claim 22, wherein determining the characteristic of the first DC power source includes determining at least one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life. 一種系統,其包括: 一直流(「DC」)匯流排; 一電池,其經由一第一輸入連接電連接至一第一DC轉換器,其中該第一DC轉換器經由一第一輸出連接連接至該DC匯流排; 至少一第二DC電源,其經由至少一第二輸入連接電連接至至少一第二DC轉換器,其中該至少一第二DC轉換器經由至少第二輸出連接連接至該DC匯流排且其中該第一輸出連接及該至少一第二輸出連接將該第一DC轉換器及該至少一第二DC轉換器並行連接至該DC匯流排;及 一處理器,其連接至該第一DC轉換器及該至少一第二DC轉換器,其中該處理器經組態有處理器可執行指令以執行包括以下各者之操作: 選擇一測試波形來注入至自該第一DC轉換器至該電池之該第一輸入連接上; 判定將回應於將該測試波形注入至該第一輸入連接上而產生之該第一輸出連接上之一第一所得漣波; 判定至少一偏移波形以注入至自該至少一第二DC轉換器至該至少一第二DC電源之該至少一第二輸入連接上,使得若該電池係在充電,則將提供至該至少一第二輸出連接之一或多個第二漣波將抵消該第一所得漣波; 控制該第一DC轉換器將該測試波形注入至該第一輸入連接上; 控制該至少一第二DC轉換器將該至少一偏移波形注入至該至少一第二輸入連接上; 量測該第一DC轉換器輸出連接上之一輸出;及 基於該量測輸出來判定該電池係在充電或放電。A system including: A direct current ("DC") bus; A battery electrically connected to a first DC converter via a first input connection, wherein the first DC converter is connected to the DC bus via a first output connection; At least one second DC power source electrically connected to at least one second DC converter via at least one second input connection, wherein the at least one second DC converter is connected to the DC bus via at least a second output connection and wherein the A first output connection and the at least one second output connection connect the first DC converter and the at least one second DC converter to the DC bus in parallel; and A processor connected to the first DC converter and the at least one second DC converter, wherein the processor is configured with processor executable instructions to perform operations including: Selecting a test waveform to inject into the first input connection from the first DC converter to the battery; Determining that it will respond to a first resultant ripple on the first output connection generated by injecting the test waveform onto the first input connection; Determine at least one offset waveform to be injected into the at least one second input connection from the at least one second DC converter to the at least one second DC power source, so that if the battery is charging, it will be provided to the at least one One or more second ripples connected to a second output will cancel the first resulting ripple; Controlling the first DC converter to inject the test waveform into the first input connection; Controlling the at least one second DC converter to inject the at least one offset waveform into the at least one second input connection; Measuring the output of the first DC converter connected to an output; and Based on the measurement output, it is determined that the battery is charging or discharging. 如請求項24之系統,其中判定該電池係在充電或放電包括: 若該量測指示已抵消該第一所得漣波,則判定該電池係在充電;及 若該量測指示未抵消該第一所得漣波,則判定該電池係在放電。Such as the system of claim 24, where determining that the battery is charging or discharging includes: If the measurement indicates that the first obtained ripple has been cancelled, it is determined that the battery is charging; and If the measurement indicates that the first obtained ripple is not cancelled, it is determined that the battery is discharging. 如請求項24之系統,其中該等操作進一步包括: 回應於該注入測試波形而使用電化學阻抗譜法(「EIS」)來監測該電池之一阻抗回應;及 至少部分基於該電池之該阻抗回應來判定該電池之一特性。Such as the system of claim 24, where these operations further include: In response to the injection test waveform, electrochemical impedance spectroscopy ("EIS") is used to monitor an impedance response of the battery; and A characteristic of the battery is determined based at least in part on the impedance response of the battery. 如請求項26之系統,其中該等操作進一步包括基於該判定特性來調整該電池之一設定。Such as the system of claim 26, wherein the operations further include adjusting a setting of the battery based on the determination characteristic. 如請求項27之系統,其中: 該判定特性係一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者;且 其中該等操作進一步包括調整該電池之一設定包括調整該電池之一充電狀態。Such as the system of claim 27, where: The determination characteristic is one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life; and The operations further include adjusting a setting of the battery including adjusting a charging state of the battery. 如請求項26之系統,其中該等操作進一步包括: 判定該判定特性是否超過一失效臨限值;及 回應於判定該判定特性超過該失效臨限值而指示一失效模式。Such as the system of claim 26, where these operations further include: Determine whether the determination characteristic exceeds a failure threshold; and In response to determining that the determination characteristic exceeds the failure threshold, a failure mode is indicated. 如請求項29之系統,其中該失效臨限值指示該電池之一減少電池容量。Such as the system of claim 29, wherein the failure threshold instructs one of the batteries to reduce battery capacity. 如請求項30之系統,其中該等操作進一步包括回應於該失效模式之該指示而減少自該電池汲取之電力。Such as the system of claim 30, wherein the operations further include reducing the power drawn from the battery in response to the indication of the failure mode. 如請求項24之系統,其中該至少一第二DC電源包括一電池。Such as the system of claim 24, wherein the at least one second DC power source includes a battery. 如請求項24之系統,其中該至少一第二DC電源包括至少一燃料電池堆疊分段、電解電池或電化學抽運電池。The system of claim 24, wherein the at least one second DC power source includes at least one fuel cell stack segment, an electrolysis cell, or an electrochemical pump cell. 一種方法,其包括: 選擇一測試波形來自一第一DC轉換器注入至一電池; 判定將回應於注入該測試波形而產生之一第一所得漣波; 判定至少一偏移波形以自至少一第二DC轉換器注入至至少一第二DC電源,使得若該電池係在充電,則將提供將抵消該第一所得漣波之一或多個第二漣波; 將該測試波形注入至該電池; 將該至少一偏移波形注入至該至少一第二DC電源; 判定是否已抵消該第一所得漣波;及 基於判定是否已抵消該第一所得漣波之步驟來判定該電池係在充電或放電。A method including: Select a test waveform from a first DC converter to inject into a battery; Determine that a first resultant ripple will be generated in response to injecting the test waveform; Determine at least one offset waveform to inject from at least one second DC converter to at least one second DC power source, so that if the battery is charging, one or more second ripples that will cancel the first resulting ripple will be provided Ripple Inject the test waveform into the battery; Injecting the at least one offset waveform into the at least one second DC power source; Determine whether the first obtained ripple has been cancelled; and It is determined whether the battery is being charged or discharged based on the step of determining whether the first obtained ripple has been cancelled. 如請求項34之方法,其中判定是否已抵消該第一所得漣波包括: 若已抵消該第一所得漣波,則判定該電池係在充電;及 若未抵消該第一所得漣波,則判定該電池係在放電。Such as the method of claim 34, wherein determining whether the first obtained ripple has been cancelled includes: If the first obtained ripple has been cancelled, it is determined that the battery is charging; and If the first obtained ripple is not cancelled, it is determined that the battery is discharging. 如請求項34之方法,其進一步包括: 回應於該注入測試波形而使用電化學阻抗譜法(「EIS」)來監測該電池之一阻抗回應;及 至少部分基於該電池之該阻抗回應來判定該電池之一特性。Such as the method of claim 34, which further includes: In response to the injection test waveform, electrochemical impedance spectroscopy ("EIS") is used to monitor an impedance response of the battery; and A characteristic of the battery is determined based at least in part on the impedance response of the battery. 如請求項36之方法,其進一步包括基於該判定特性來調整該電池之一設定。Such as the method of claim 36, which further includes adjusting a setting of the battery based on the determination characteristic. 如請求項37之方法,其中: 該判定特性係一電池容量、一電池電量狀態(SoC)、一電池健康狀態(SoH)及一總電池壽命之一者;且 調整該電池之一設定包括調整該電池之一充電狀態。Such as the method of claim 37, where: The determination characteristic is one of a battery capacity, a battery state of charge (SoC), a battery state of health (SoH), and a total battery life; and Adjusting a setting of the battery includes adjusting a charging state of the battery. 如請求項37之方法,其進一步包括: 判定該判定特性是否超過一失效臨限值;及 回應於判定該判定特性超過該失效臨限值而指示一失效模式。Such as the method of claim 37, which further includes: Determine whether the determination characteristic exceeds a failure threshold; and In response to determining that the determination characteristic exceeds the failure threshold, a failure mode is indicated. 如請求項39之方法,其中該失效臨限值指示該電池之一減少電池容量。Such as the method of claim 39, wherein the failure threshold instructs one of the batteries to reduce battery capacity. 如請求項40之方法,其進一步包括回應於該失效模式之該指示而減少自該電池汲取之電力。Such as the method of claim 40, which further includes reducing the power drawn from the battery in response to the indication of the failure mode. 如請求項34之方法,其中該至少一第二DC電源包括一電池。The method of claim 34, wherein the at least one second DC power source includes a battery. 如請求項34之方法,其中該至少一第二DC電源包括至少一燃料電池堆疊分段、電解電池或電化學抽運電池。The method of claim 34, wherein the at least one second DC power source includes at least one fuel cell stack segment, an electrolysis cell, or an electrochemical pump cell.
TW108147076A 2018-12-27 2019-12-20 System and method for impedance testing dc power sources TWI821488B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/233,323 US10809308B2 (en) 2018-12-27 2018-12-27 System and method for impedance testing DC power sources
US16/233,323 2018-12-27
US16/233,303 US10989760B2 (en) 2018-12-27 2018-12-27 System and method for impedance testing DC power sources
US16/233,303 2018-12-27

Publications (2)

Publication Number Publication Date
TW202042472A true TW202042472A (en) 2020-11-16
TWI821488B TWI821488B (en) 2023-11-11

Family

ID=71127926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108147076A TWI821488B (en) 2018-12-27 2019-12-20 System and method for impedance testing dc power sources

Country Status (2)

Country Link
TW (1) TWI821488B (en)
WO (1) WO2020139747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471947A (en) * 2021-07-27 2021-10-01 中国电力工程顾问集团西北电力设计院有限公司 Active suppression method and system for very fast transient overvoltage of GIS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11982716B2 (en) 2020-09-04 2024-05-14 Analog Devices, Inc. Self-characterizing smart cells for battery lifecycle management

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535402B1 (en) * 2002-07-12 2003-03-18 Delta Electronics Inc. Adaptive compensation of dead time for inverter and converter
DE112004000227T5 (en) * 2003-02-04 2006-01-19 Hydrogenics Corp., Mississauga System and method for measuring internal resistance of electrochemical devices
US20050287402A1 (en) * 2004-06-23 2005-12-29 Maly Douglas K AC impedance monitoring of fuel cell stack
TW200713763A (en) * 2005-09-21 2007-04-01 Lin Hui Ching A bidirectional DC/DC converter for fuel cell electric vehicle driving system
US8284574B2 (en) * 2011-10-17 2012-10-09 Solarbridge Technologies, Inc. Method and apparatus for controlling an inverter using pulse mode control
KR102315684B1 (en) * 2014-02-12 2021-10-22 블룸 에너지 코퍼레이션 Structure and method for fuel cell system where multiple fuel cells and power electronics feed loads in parallel allowing for integrated electrochemical impedance spectroscopy(eis)
CN107076801B (en) * 2014-07-25 2020-10-02 锂平衡公司 Electrochemical impedance spectroscopy in battery management systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471947A (en) * 2021-07-27 2021-10-01 中国电力工程顾问集团西北电力设计院有限公司 Active suppression method and system for very fast transient overvoltage of GIS
CN113471947B (en) * 2021-07-27 2023-06-13 中国电力工程顾问集团西北电力设计院有限公司 Active suppression method and system for GIS (gas insulated switchgear) ultra-fast transient overvoltage

Also Published As

Publication number Publication date
TWI821488B (en) 2023-11-11
WO2020139747A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
TWI663771B (en) Structure and method for fuel cell system where multiple fuel cells and power electronics feed loads in parallel allowing for integrated electrochemical impedance spectroscopy ("eis")
KR102082291B1 (en) Electrochemical Impedance Spectroscopy Analyzer and How to Use It
US10809308B2 (en) System and method for impedance testing DC power sources
US9461319B2 (en) Electrochemical impedance spectroscopy (EIS) analyzer and method of using thereof
US9972852B2 (en) Fuel cell system with variable frequency drive for support equipment
US9059600B2 (en) Convergent energized IT apparatus for residential use
JP7354267B2 (en) Hybrid DC power equipment for data center loads
US20220149633A1 (en) Selective grounding of grid parallel inverter systems
TWI821488B (en) System and method for impedance testing dc power sources
US10989760B2 (en) System and method for impedance testing DC power sources
TW202213894A (en) Methods of fuel cell operation with bi-directional inverters
US11689049B2 (en) DC transfer switch for fuel cell systems with auxiliary storage module
US11791730B2 (en) Non-isolated single input dual-output bi-directional buck-boost DC-DC converter
US20230146728A1 (en) Hybrid fuel cell system for load following and backup in a microgrid and method of operating thereof
TW202345501A (en) Non-isolated single input dual-output bi-directional buck-boost dc-dc converter
CN117013841A (en) Non-isolated single-input double-output bidirectional buck-boost DC-DC converter