TW202040611A - LC composite component - Google Patents
LC composite component Download PDFInfo
- Publication number
- TW202040611A TW202040611A TW108147923A TW108147923A TW202040611A TW 202040611 A TW202040611 A TW 202040611A TW 108147923 A TW108147923 A TW 108147923A TW 108147923 A TW108147923 A TW 108147923A TW 202040611 A TW202040611 A TW 202040611A
- Authority
- TW
- Taiwan
- Prior art keywords
- conductor
- magnetic
- inductor
- metal particles
- magnetic layer
- Prior art date
Links
Images
Landscapes
- Coils Or Transformers For Communication (AREA)
- Filters And Equalizers (AREA)
Abstract
Description
本發明係關於一種LC複合零件。The present invention relates to an LC composite part.
近年來,進一步要求於移動電話機、無線LAN通信設備等無線通信設備中所使用之電子零件之小型化、高性能化。於專利文獻1中,揭示了一種LC複合零件,其具備電感器、電容器、磁性層及基板,該基板、該磁性層及該電感器以特定之位置關係配置,該基板具有規定之厚度及複磁導率。 先前技術文獻 專利文獻In recent years, there has been a further demand for miniaturization and high performance of electronic components used in wireless communication devices such as mobile phones and wireless LAN communication devices. In Patent Document 1, an LC composite part is disclosed, which includes an inductor, a capacitor, a magnetic layer, and a substrate. The substrate, the magnetic layer, and the inductor are arranged in a specific positional relationship, and the substrate has a predetermined thickness and complex Permeability. Prior art literature Patent literature
專利文獻1 日本專利特開第2016-006847號公報Patent Document 1 Japanese Patent Laid-Open No. 2016-006847
[發明所欲解決之問題][The problem to be solved by the invention]
然而,專利文獻1中揭示之LC複合零件於LC複合零件之插入損耗特性方面有進一步改善之餘地。However, the LC composite component disclosed in Patent Document 1 has room for further improvement in the insertion loss characteristics of the LC composite component.
因此,本發明之目的在於,提供一種插入損耗特性進一步提高之LC複合零件。 [解決問題之技術手段]Therefore, the object of the present invention is to provide an LC composite component with further improved insertion loss characteristics. [Technical means to solve the problem]
本發明之一態樣係關於一種LC複合零件,其具備:非磁性基板、具有磁性之磁性層、1個以上之電容器、1個以上之電感器、及具有磁性之1個以上之芯部,上述非磁性基板具有第1面及與上述第1面為相反側之第2面,上述磁性層以與上述非磁性基板之第1面對向之方式配置,上述1個以上之電感器及上述1個以上之電容器配置於上述非磁性基板之第1面與上述磁性層之間,上述芯部配置於上述非磁性基板之第1面與上述磁性層之間並且連接於上述磁性層,在垂直於上述非磁性基板之第1面之方向,上述芯部之厚度相對於上述磁性層之厚度為1.0倍以上,上述磁性層及上述芯部包含磁性金屬粒子及樹脂。One aspect of the present invention relates to an LC composite component, which includes: a non-magnetic substrate, a magnetic layer with magnetism, one or more capacitors, one or more inductors, and one or more cores with magnetism, The non-magnetic substrate has a first surface and a second surface opposite to the first surface, the magnetic layer is arranged to face the first surface of the non-magnetic substrate, the one or more inductors and the second surface One or more capacitors are arranged between the first surface of the non-magnetic substrate and the magnetic layer, and the core is arranged between the first surface of the non-magnetic substrate and the magnetic layer and connected to the magnetic layer. In the direction of the first surface of the non-magnetic substrate, the thickness of the core is 1.0 times or more relative to the thickness of the magnetic layer, and the magnetic layer and the core include magnetic metal particles and resin.
於一態樣中,磁性金屬粒子之平均長軸徑可為120 nm以下。In one aspect, the average major axis diameter of the magnetic metal particles may be 120 nm or less.
於一態樣中,磁性金屬粒子之平均縱橫比可為1.2~6。In one aspect, the average aspect ratio of the magnetic metal particles may be 1.2-6.
於一態樣中,磁性層及芯部之飽和磁化可為90 emu/g以上。In one aspect, the saturation magnetization of the magnetic layer and the core may be 90 emu/g or more.
於一態樣中,磁性金屬粒子可包含選自由Fe、Co及Ni所組成之群中之至少1種作為主成分。In one aspect, the magnetic metal particles may include at least one selected from the group consisting of Fe, Co, and Ni as a main component.
於一態樣中,磁性金屬粒子之縱橫比之CV值可為0.4以下。 [發明之效果]In one aspect, the CV value of the aspect ratio of the magnetic metal particles may be 0.4 or less. [Effects of Invention]
根據本發明,提供一種插入損耗特性進一步提高之LC複合零件。According to the present invention, an LC composite component with further improved insertion loss characteristics is provided.
以下,對本發明之較佳之實施形態進行說明。但,本發明不限定於以下之實施形態。Hereinafter, a preferred embodiment of the present invention will be described. However, the present invention is not limited to the following embodiments.
(LC複合零件) 參照圖1及圖2,對本發明之本實施形態之LC複合零件進行說明。圖1係示出本實施形態之LC複合零件1之構成之立體圖。圖2係示出本實施形態之LC複合零件之構成之剖視圖。(LC composite parts) 1 and 2, the LC composite component of the present embodiment of the present invention will be described. Fig. 1 is a perspective view showing the structure of the LC composite component 1 of this embodiment. Fig. 2 is a cross-sectional view showing the structure of the LC composite part of the present embodiment.
LC複合零件1具備:非磁性基板21、具有磁性之磁性層22、電感器11、12、17、電容器13~16、具有磁性之芯部23、24、及介電積層體37。The LC composite component 1 includes a
如圖1及圖2所示,非磁性基板21係具有第1面21a及與第1面為相反側之第2面21b之平板。非磁性基板21之材料之例為樹脂、陶瓷、玻璃、非磁性鐵氧體。在垂直於非磁性基板21之第1面21a之方向上之厚度可設為20~200 μm。As shown in FIGS. 1 and 2, the
磁性層22係具有第1面22a及第2面22b之平板,並且以第2面22b與非磁性基板21之第1面21a對向之方式配置。再者,於本說明書中,磁性係指鐵磁性或亞鐵磁性(ferrimagnetism)。關於磁性層22之材料將於下文敍述。The
介電積層體37配置於非磁性基板21之第1面21a與磁性層22(第2面22b)之間。介電積層體37具有如圖2所示地積層之複數層介電層31~36。各介電層31~36包含介電材料。介電材料之例為樹脂、陶瓷。樹脂之例為聚醯亞胺樹脂、苯并環丁烯樹脂、雙馬來醯亞胺三嗪樹脂(BT樹脂)、環氧樹脂、丙烯酸系樹脂,陶瓷之例為氮化矽、氧化鋁。The
LC複合零件1呈長方體形狀,並且具有上表面1t、底面1b及4個側面1s。於本實施形態中,LC複合零件1之上表面1t由非磁性基板21之第2面21b構成。又,LC複合零件1之底面1b由磁性層22之第1面22a構成。LC複合零件1例如以LC複合零件1之底面1b即磁性層22之第1面22a與安裝基板之上表面對向之方式安裝於安裝基板。The LC composite part 1 has a rectangular parallelepiped shape, and has an
電感器11、12、17、電容器13~16、及芯部23、24配置於非磁性基板21之第1面21a與磁性層22之第2面22b之間,即介電積層體37內。於本實施形態中,各電容器13~16配置於當從垂直於第1面21a之方向觀察時不與其他電感器11、12、17重疊之位置。電感器及電容器用之導體部之材料之例為Cu、Al、Ag。關於電感器及電容器之細節將於下文敍述。The
芯部23、24分別具有柱形狀,分別配置於電感器11、12之線圈構造之軸。芯部23、24連接於磁性層22。於本說明書中,「芯部23、24連接於磁性層22」係指芯部23、24與磁性層22直接連接(接觸)之態樣、及芯部23、24與磁性層22雖不直接連接(接觸)但例如經由大約0.1~10 μm之厚度之非磁性(介電體等)層磁性連接之態樣。於圖2中,芯部23、24與磁性層22接觸。關於芯部之材料將於下文敍述。於圖2中,於芯部23、24與非磁性基板21之間介存有非磁性(介電體等)層,但芯部23、24與非磁性基板21亦可接觸。The
如圖2所示,當將垂直於非磁性基板21之第1面21a之方向上之芯部23、24之厚度設為T1,並且將垂直於非磁性基板21之第1面21a之方向上之磁性層22之厚度設為T2時,芯部23、24之厚度T1相對於磁性層22之厚度T2,為1.0倍以上,較佳為2.0倍以上,更佳為3.0倍以上。芯部23、24之厚度T1相對於磁性層22之厚度T2可為10倍以下。
藉此,能夠降低LC複合零件中之未達截止頻率時之插入損耗,又,能夠使超過截止頻率之插入損耗增加。作為其理由,認為係藉由抑制電感器芯之損耗並且將電感器之電感變大,從而降低了電感器中之損耗。As shown in Figure 2, when the thickness of the
芯部23及24之厚度並無特別限制,例如,為了使所得之LC複合零件之形狀實用,又容易製造,可為30~200 μm,較佳為100~150 μm。再者,芯部23及24之厚度較佳為設為電感器11及12之線圈構造之軸向長度以上。The thickness of the
藉由LC複合零件1之電感器11、12分別具備芯部23、24,與LC複合零件1之電感器11、12不具備芯部之情形相比,能夠使該電感器之電感變大。Since the
(磁性層及芯部之材料)
磁性層22以及芯部23及24包含樹脂及具有磁性之磁性金屬粒子。(Material of magnetic layer and core)
The
於本實施形態中,磁性金屬粒子之粒徑並無特別限定。磁性金屬粒子之平均長軸徑較佳為120 nm以下。In this embodiment, the particle diameter of the magnetic metal particles is not particularly limited. The average major axis diameter of the magnetic metal particles is preferably 120 nm or less.
藉由滿足此條件,未達截止頻率時之LC複合零件之插入損耗容易被抑制,另一方面,容易提高超過截止頻率時之插入損耗。
作為其理由,認為一種原因在於,例如當磁性金屬粒子之平均長軸徑為120 nm以下時,磁性層22以及芯部23及芯部24中之磁性金屬粒子之填充性提高,獲得高導磁率,藉此能夠使電感器之電感變大,同時能夠抑制電感器芯之渦電流。
於磁性金屬粒子之平均長軸徑超過120 nm之情形時,認為由磁性金屬粒子之多磁區化引起磁壁共振之損耗增加,並且電感器芯之渦電流損耗增加。By satisfying this condition, the insertion loss of LC composite parts when the cut-off frequency is not reached is easily suppressed, and on the other hand, it is easy to increase the insertion loss when the cut-off frequency is exceeded.
As the reason, one reason is considered to be that, for example, when the average major axis diameter of the magnetic metal particles is 120 nm or less, the filling properties of the magnetic metal particles in the
從同樣之觀點出發,磁性金屬粒子之平均長軸徑更佳為100 nm以下,進而較佳為80 nm以下。於本實施形態中,磁性金屬粒子之平均長軸徑可為30 nm以上。從同樣之觀點出發,磁性金屬粒子之平均長軸徑較佳為40 nm以上。又,磁性金屬粒子4之平均短軸徑例如可為大約5~50 nm,可為7~30 nm。From the same viewpoint, the average major axis diameter of the magnetic metal particles is more preferably 100 nm or less, and still more preferably 80 nm or less. In this embodiment, the average major axis diameter of the magnetic metal particles may be 30 nm or more. From the same viewpoint, the average major axis diameter of the magnetic metal particles is preferably 40 nm or more. In addition, the average minor axis diameter of the magnetic metal particles 4 may be, for example, about 5-50 nm, and may be 7-30 nm.
磁性金屬粒子之平均縱橫比較佳為1.2~6。於本實施形態中,平均縱橫比係磁性金屬粒子之長軸徑相對於短軸徑之比(縱橫比)之平均值。 當平均縱橫比未達1.2時,則形狀各向異性變得過小,自然共振頻率變得相當小,可能會導致因自然共振引起之電感器芯中之損耗變大。又,當縱橫比超過6時,由於形狀各向異性變得過大及因填充性惡化導致之密度降低,故而亦可能導致導磁率變小,難以增大電感器之電感。The average aspect ratio of the magnetic metal particles is preferably 1.2-6. In the present embodiment, the average aspect ratio is the average value of the ratio (aspect ratio) of the major axis diameter to the minor axis diameter of the magnetic metal particles. When the average aspect ratio is less than 1.2, the shape anisotropy becomes too small and the natural resonance frequency becomes quite small, which may cause the loss in the inductor core due to natural resonance to increase. In addition, when the aspect ratio exceeds 6, the shape anisotropy becomes too large and the density decreases due to the deterioration of the filling property, which may also cause the permeability to decrease, making it difficult to increase the inductance of the inductor.
從同樣之觀點出發,磁性金屬粒子之平均縱橫比較佳為1.3以上,4以下,亦較佳為1.5以上,3以下。進而,縱橫比較佳為2以上。From the same viewpoint, the average aspect ratio of the magnetic metal particles is preferably 1.3 or more and 4 or less, and more preferably 1.5 or more and 3 or less. Furthermore, the aspect ratio is preferably 2 or more.
於本實施形態中,磁性金屬粒子之縱橫比之CV值可為0.4以下。CV表示變異係數,可從以下之式中求得。 變異係數(CV)=標準偏差值/平均值In this embodiment, the CV value of the aspect ratio of the magnetic metal particles may be 0.4 or less. CV represents the coefficient of variation and can be obtained from the following formula. Coefficient of Variation (CV) = standard deviation value/average value
由於磁性金屬粒子之縱橫比之CV值為0.4以下,因此能夠抑制反磁場係數之偏差。由於自然共振頻率與反磁場係數之差(短軸-長軸)成比例,因此結果能夠抑制自然共振頻率之偏差,使自然共振峰之線寬變窄。因此,能夠降低因自然共振導致之電感器芯中之損耗,並且增大電感器之電感,能夠降低LC複合零件之未達截止頻率時之插入損耗,並且提高超過截止頻率時之插入損耗。從同樣之觀點出發,磁性金屬粒子之縱橫比之CV值較佳為0.3以下。磁性金屬粒子之縱橫比之CV值可為0.10以上。Since the CV value of the aspect ratio of the magnetic metal particles is 0.4 or less, the deviation of the diamagnetic field coefficient can be suppressed. Since the natural resonance frequency is proportional to the difference (short axis-long axis) of the diamagnetic field coefficient, as a result, the deviation of the natural resonance frequency can be suppressed, and the line width of the natural resonance peak can be narrowed. Therefore, the loss in the inductor core caused by natural resonance can be reduced, and the inductance of the inductor can be increased. The insertion loss of the LC composite part before the cutoff frequency can be reduced, and the insertion loss when the cutoff frequency is exceeded can be increased. From the same viewpoint, the CV value of the aspect ratio of the magnetic metal particles is preferably 0.3 or less. The CV value of the aspect ratio of the magnetic metal particles can be 0.10 or more.
磁性金屬粒子較佳為包含選自由Fe、Co及Ni所組成之群中之至少1種作為主成分,更佳為包含選自由Fe及Co所組成之群中之至少1種作為主成分。於本說明書中,主成分係指佔有50質量%以上之成分。藉由磁性金屬粒子含有選自由具有高飽和磁化之Fe、Co及Ni所組成之群中之至少1種作為主成分,磁性層22以及芯部23及24能夠具有高導磁率。磁性金屬粒子較佳為含有Fe、Fe及Co或Fe及Ni作為主成分,更佳為含有Fe或Fe及Co作為主成分,特佳為含有Fe及Co作為主成分。藉由磁性金屬粒子含有選自由具有高飽和磁化之Fe、Fe及Co或Fe及Ni作為主成分,磁性層22及芯部23及24能夠具有高磁導率。磁性層22以及芯部23及24可含有各不相同之磁性金屬粒子,亦可含有相同之磁性金屬粒子。主成分係指具有最大重量比之成分。藉由此種組成,亦能夠實現自然共振頻率之高頻化。The magnetic metal particles preferably include at least one selected from the group consisting of Fe, Co, and Ni as a main component, and more preferably include at least one selected from the group consisting of Fe and Co as a main component. In this specification, the main ingredient refers to an ingredient that occupies more than 50% by mass. Since the magnetic metal particles contain at least one selected from the group consisting of Fe, Co, and Ni having high saturation magnetization as a main component, the
磁性金屬粒子可具備金屬中心部及被覆金屬中心部之氧化金屬膜。金屬中心部具有導電性,但氧化金屬膜具有絕緣性。藉由磁性金屬粒子具有氧化金屬膜,能夠獲得磁性金屬粒子間之絕緣性,並且能夠降低伴隨著粒子間之渦電流產生之磁損耗。The magnetic metal particles may have a metal center and a metal oxide film covering the metal center. The metal center has conductivity, but the oxide metal film has insulation. Since the magnetic metal particles have a metal oxide film, the insulation between the magnetic metal particles can be obtained, and the magnetic loss caused by the eddy current between the particles can be reduced.
於磁性金屬粒子中,金屬中心部含有磁性金屬粒子中所包含之上述之元素作為金屬(0價)。由於金屬中心部被氧化金屬膜被覆,因此即便於大氣中亦可不氧化而存在。金屬中心部較佳為Fe、Fe-Ni合金或Fe-Co合金,更佳為Fe或Fe-Co合金,進而較佳為Fe-Co合金。於金屬中心部為Fe、Fe-Ni合金或Fe-Co合金之情形時,由於磁性金屬粒子之飽和磁化提高,從而成為高磁導率。於磁性金屬粒子中,氧化金屬膜含有磁性金屬粒子中所包含之元素作為氧化物。In the magnetic metal particles, the metal center part contains the above-mentioned elements contained in the magnetic metal particles as a metal (zero valence). Since the center of the metal is covered with an oxide metal film, it can exist without being oxidized even in the atmosphere. The metal center is preferably Fe, Fe-Ni alloy or Fe-Co alloy, more preferably Fe or Fe-Co alloy, and even more preferably Fe-Co alloy. When the metal center is Fe, Fe-Ni alloy, or Fe-Co alloy, the saturation magnetization of the magnetic metal particles increases, resulting in high magnetic permeability. In the magnetic metal particles, the metal oxide film contains the elements contained in the magnetic metal particles as oxides.
於本實施形態中,磁性層22以及芯部23及24中之磁性金屬粒子之體積比率分別例如可為30~60體積%,較佳為40~50體積%。當磁性金屬粒子之體積比率為30體積%以上時,於磁性層22以及芯部23及24中容易獲得期望之磁特性。當磁性金屬粒子之比例為60體積%以下時,加工時之處理變得容易。再者,於本說明書中,磁性層22以及芯部23及24中之體積比率係在除了空隙之外之磁性層22以及芯部23及24中所占之比率。In this embodiment, the volume ratio of the magnetic metal particles in the
樹脂係具有電絕緣性之樹脂(絕緣性樹脂),並且係於磁性層22以及芯部23及24中存在於磁性金屬粒子間並將其等結合,能夠進一步使磁性金屬粒子間之絕緣性提高之材料。作為絕緣性樹脂,例如可列舉矽酮樹脂、酚樹脂、丙烯酸系樹脂、環氧樹脂及其等之固化物等。其等可單獨地使用1種,亦可組合2種以上使用。又,根據需要,亦可使用偶合劑、分散劑等表面處理劑、熱穩定劑、可塑劑等添加劑等。The resin is an electrically insulating resin (insulating resin), and it is present between the magnetic metal particles in the
於本實施形態中,磁性層22以及芯部23及24中之樹脂之體積比率分別可為例如40~70體積%,較佳為50~60體積%。當樹脂之體積比率為40體積%以上時,變得容易獲得磁性金屬粒子間之絕緣性及結合力。當樹脂之體積比率為70體積%以下時,使基於磁性金屬粒子之特性於磁性層22以及芯部23及24中亦變得容易發揮。In this embodiment, the volume ratio of the resin in the
磁性層22以及芯部23及24之飽和磁化並無特別限定,例如可為90 emu/g以上。藉由飽和磁化為90 emu/g以上,能夠使磁性層22以及芯部23及24之導磁率提高。又,能夠實現自然共振頻率之高頻化。從同樣之觀點出發,飽和磁化較佳為100 emu/g以上,更佳為110 emu/g以上。飽和磁化可為200 emu/g以下。The saturation magnetization of the
參照圖3A~3C及圖4A~4C,對介電積層體37、電容器13~16及電感器11、12、17之詳細構成進行說明。於本實施形態中,LC複合零件1之介電積層體37具備6個介電層31、32、33、34、35及36。介電層31~36配置於非磁性基板21與磁性層22之間,從非磁性基板21之第1面21a側起依序配置。介電層31~36分別具有朝向與非磁性基板21之第1面21a相同之方向之第1面及朝向與非磁性基板21之第2面21b相同之方向之第2面。再者,於圖3A~3C及圖4A~4C中,省略芯部23及24。3A to 3C and FIGS. 4A to 4C, the detailed configuration of the
圖3A示出了介電層31之第1面。於介電層31之第1面,形成有電感器11用之導體部311及電感器12用之導體部312、電容器13、14用之導體部313、電容器15用之導體部315及電容器16用之導體部316、以及端子用導體部31T1、31T2、31T3及31T4。再者,圖3A表示從介電層31之第2面側觀察上述複數個導體部所得之狀態。上述複數個導體部之圖3A中之配置如下。電感器11用之導體部311配置於左右方向之較中心更左側之區域。電感器12用之導體部312配置於左右方向之較中心更右側之區域。電容器16用之導體部316配置於電感器11用之導體部311與電感器12用之導體部312之間。電容器13、14用之導體部313配置於電感器11用之導體部311及電感器12用之導體部312、以及電容器16用之導體部316之下側之位置。電容器15用之導體部315配置於電容器13、14用之導體部313之下側之位置。端子用導體部31T1配置於左下之角部之附近。端子用導體部31T2配置於右下之角部之附近。端子用導體部31T3配置於左上之角部之附近。端子用導體部31T4配置於右上之角部之附近。FIG. 3A shows the first side of the
電容器13、14用之導體部313連接於電感器11用之導體部311及電感器12用之導體部312、以及電容器16用之導體部316之各一端。於圖3A中,將2個導體部之邊界由虛線表示。於以下之說明中使用之與圖3A同樣之圖中,亦由與圖3A同樣之表示方法來表示。電感器11之用導體部311及電感器12用之導體部312均為從其一端朝向另一端環狀地延伸之線狀之導體部。The
圖3B示出了介電層32之第1面。於介電層32之第1面,形成電容器13用之導體部323、電容器14用之導體部324、電容器15用之導體部325A、325B及電容器16用之導體部326。再者,圖3B示出了從介電層32之第2面側觀察上述複數個導體部所得之狀態。上述複數個導體部之圖3B中之配置如下。即,電容器16用之導體部326配置於左右方向之大致中央之位置。電容器13用之導體部323及電容器14用之導體部324於電容器16用之導體部326之下側之位置處,從左側起依序配置。電容器15用之導體部325A、325B於電容器13用之導體部323及電容器14用之導體部324之下側之位置處,從左側起依序配置。FIG. 3B shows the first side of the
電容器13用之導體部323及電容器14用之導體部324介隔介電層32與圖3A所示之電容器13、14用之導體部313對向。圖5中之電容器13由電容器13、14用之導體部313及電容器13用之導體部323、與位於其等之間之介電層32之一部分構成。圖5中之電容器14由電容器13、14用之導體部313及電容器14用之導體部324、與位於其等之間之介電層32之一部分構成。又,電容器15用之導體部325A及325B介隔介電層32與圖3A所示之電容器15用之導體部315對向。圖5中之電容器15由電容器15用之導體部315、325A及325B以及位於其等之間之介電層32之一部分構成。又,電容器16用之導體部326介隔介電層32與圖3A所示之電容器16用之導體部316對向。圖5中之電容器16由電容器16用之導體部316及326、與位於其等之間之介電層32之一部分構成。The
LC複合零件1包含貫通介電層32及33之導體部33V1、33V2、33V3、33V4、33V5及33V6。於圖3B中,對導體部33V1~33V6標附陰影。於圖3A中示出之端子用導體部31T1~31T4以及電感器11用之導體部311及電感器12用之導體部312,分別連接有導體部33V1~33V6之一端。The LC composite component 1 includes conductor portions 33V1, 33V2, 33V3, 33V4, 33V5, and 33V6 penetrating through the
圖3C示出了介電層33之第1面。於介電層33之第1面,形成有電感器11用之導體部331、電感器12用之導體部332及電感器17用之導體部337、連接用導體部333、334、335A、335B及336、以及端子用導體部33T1、33T2、33T3及33T4。圖3C示出了從介電層33之第2面側觀察上述複數個導體部所得之狀態。圖3C中之上述複數個導體部之配置如下。電感器11用之導體部331配置於左右方向之較中心更左側之區域。連接用導體部336配置於電感器11用之導體部331及電感器12用之導體部332之間。連接用導體部333及334於電感器11用之導體部331及電感器12用之導體部332、以及連接用導體部336之下側之位置處,從左側起依序配置。連接用導體部335A、335B於連接用導體部333及334之下側之位置處,從左側起依序配置。電感器17用之導體部337配置於電感器11用之導體部331及電感器12用之導體部332、以及連接用導體部336之上側之位置。端子用導體部33T1配置於左下之角部之附近。端子用導體部33T2配置於右下之角部之附近。端子用導體部33T3配置於左上之可動部之附近。端子用導體部33T4配置於右上之角部之附近。FIG. 3C shows the first side of the
端子用導體部33T1連接於連接用導體部333及335A之各一端。端子用導體部33T2連接於連接用導體部334及335B之各一端。電感器17用之導體部337連接於連接用導體部336之一端。電感器11用之導體部331及電感器12用之導體部332均係從一端朝向多端環狀地延伸之線狀之導體部。The terminal conductor portion 33T1 is connected to each end of the
電感器11用之導體部331及電感器12用之導體部332、以及端子用導體部33T1~33T4分別當從垂直於非磁性基板21之第1面21a之方向(與垂直於介電層33之第1面之方向相同)觀察時,配置於與圖3A中示出之電感器11用之導體部311及電感器12用之導體部312以及端子用導體部31T1~31T4重合之位置。連接用導體部333、334、335A、335B及336分別係當從垂直於非磁性基板21之第1面21a之方向觀察時,配置於與圖3B中示出之電容器13用之導體部323、電容器14用之導體部324、電容器15用之導體部325A、325B及電容器16用之導體部326重合之位置。The
LC複合零件1包含貫通介電層33之導體部33V7、33V8、33V9、33V10及33V11。於圖3C中,導體部33V1~33V11由兩點鏈線表示。於端子用導體部33T1~33T4、以及電感器11用之導體部331及電感器11用之導體部332,分別連接有導體部33V1~33V6之另一端。於圖3B中示出之電容器13用之導體部323、電容器14用之導體部324、電容器15用之導體部325A、325B及電容器16用之導體部326,分別連接有導體部33V7~33V11之一端。於連接用導體部333、334、335A、335B及336,分別連接有導體部33V7~33V11之另一端。The LC composite component 1 includes conductor portions 33V7, 33V8, 33V9, 33V10, and 33V11 penetrating through the
圖4A示出了介電層34之第1面。於介電層34之第1面,形成有電感器11用之導體部341、電感器12用之導體部342及電感器17用之導體部347、以及端子用導體部34T1、34T2、34T3及34T4。圖4A示出了從介電層34之第2面側觀察上述複數個導體部所得之狀態。圖4A中之上述複數個導體部之配置如下。電感器11用之導體部341配置於左右方向之較中心更左側之區域。電感器12用之導體部342配置於左右方向之較中心更右側之區域。電感器17用之導體部347配置於電感器11用之導體部341及電感器12用之導體部342之上側之位置。端子用導體部34T1配置於左下之角部之附近。端子用導體部34T2配置於右下之角部之附近。端子用導體部34T3配置於左上之角部之附近。端子用導體部34T4配置於右上之角部之附近。FIG. 4A shows the first side of the
電感器11用之導體部341及電感器12用之導體部342均係從其一端朝向另一端環狀地延伸之線狀之導體部。電感器11用之導體部341、電感器12用之導體部342及電感器17用之導體部347、以及端子用導體部34T1~34T4分別從垂直於非磁性基板21之第1面21a之方向(與垂直於介電層34之第1面之方向相同)觀察時,配置於與圖3C所示之電感器11用之導體部331、電感器12用之導體部332及電感器17用之導體部337、以及端子用導體部33T1~33T4重合之位置。The
LC複合零件1包含貫通介電層34之導體部34V1、34V2、34V3、34V4、34V5、34V6及34V7。於圖4A中,導體部34V1~34V7由兩點鏈線表示。於圖3C所示之端子用導體部33T1~33T4、以及電感器11用之導體部331、電感器12用之導體部332及電感器17用之導體部337,分別連接有導體部34V1~34V7之一端。於端子用導體部34T1~34T4、以及電感器11用之導體部341、電感器12用之導體部342及電感器17用之導體部347,分別連接有導體部34V1~34V7之另一端。The LC composite component 1 includes conductor portions 34V1, 34V2, 34V3, 34V4, 34V5, 34V6, and 34V7 penetrating through the
圖4B示出了介電層35之第1面。於介電層35之第1面,形成有電感器11用之導體部351、電感器12用之導體部352、電感器17用之導體部357A及357B、以及端子用導體部35T1、35T2、35T3及35T4。再者,圖4B示出了從介電層35之第2面側觀察上述複數個導體部所得之狀態。上述複數個導體部之圖4B中之配置如下。電感器11用之導體部351配置於左右方向之較中心更左側之區域。電感器12用之導體部352配置於左右方向之較中心更右側之區域。電感器17用之導體部357A及357B於電感器11用之導體部351及電感器12用之導體部352之上側之位置處,從左側起依序配置。端子用導體35T1配置於左下之角部之附近。端子用導體35T2配置於右下之角部之附近。端子用導體35T3配置於左上之角部之附近。端子用導體35T4配置於右上之角部之附近。FIG. 4B shows the first side of the
端子用導體部35T1~35T4分別連接於電感器11用之導體部351、電感器12用之導體部352及電感器17用之導體部357A及357B之一端。電感器11用之導體部351及電感器12用之導體部352均係從其一端朝向另一端環狀地延伸之線狀之導體部。The terminal conductor portions 35T1 to 35T4 are respectively connected to one ends of the
電感器11用之導體部351及電感器12用之導體部352、以及端子用導體部35T1~35T4分別當從垂直於非磁性基板21之第1面21a之方向(與垂直於介電層35之第1面之方向相同)觀察時,配置於與圖4A中示出之電感器11用之導體部341及電感器12用之導體部342、以及端子用導體部34T1~34T4重合之位置。電感器17用之導體部357A及357B從垂直於非磁性基板21之第1面21a之方向觀察時,配置於與圖4A中示出之電感器17用之導體部347重合之位置。The
LC複合零件1包含貫通介電層35之導體部35V1、35V2、35V3、35V4、35V5、35V6、35V7及35V8。於圖4B中,導體部35V1~35V8由兩點鏈線表示。於圖4A中示出之端子用導體部34T1~34T4、以及電感器11用之導體部341及電感器12用之導體部342,分別連接有導體部35V1~35V6之一端。於圖4A中示出之電感器17用之導體部347,連接有導體部35V7及35V8之各一端。於端子用導體部35T1~35T4、以及電感器用導體部351、352、357A及357B,分別連接有導體部35V1~35V8之另一端。The LC composite component 1 includes conductor portions 35V1, 35V2, 35V3, 35V4, 35V5, 35V6, 35V7, and 35V8 penetrating through the
圖4C示出了貫通磁性層22及介電層36、以及磁性層22及介電層36之端子用導體部41、42、43及44。LC複合零件1包含貫通磁性層22及介電層36之端子用導體部41、42、43及44。於圖4C中,對端子用導體部41~44標附陰影。於圖4B中示出之端子用導體部35T1~35T4,分別連接有端子用導體部41~44之一端。4C shows the
其次,參照圖5之電路圖,對本實施形態之LC複合零件1之電路構成進行說明。於本實施形態中,LC複合零件1具有低通濾波器之功能。如圖5所示,LC複合零件1具備供輸入信號之輸入端子2、輸出信號之輸出端子3、3個電感器11、12及17、以及4個電容器13、14、15及16。Next, referring to the circuit diagram of FIG. 5, the circuit configuration of the LC composite component 1 of this embodiment will be described. In this embodiment, the LC composite component 1 has the function of a low-pass filter. As shown in FIG. 5, the LC composite component 1 includes an
電感器11之一端、電容器13之一端及電容器15之一端電性連接於輸入端子2。電感器12之一端、電容器14之一端及電容器16之一端電性連接於電感器11之另一端及電容器13之另一端。電感器12之另一端、電容器14之另一端及電容器15之另一端電性連接於輸出端子3。電感器17之一端電性連接於電容器16之另一端。電感器17之另一端接地。One end of the
以下,對圖1、圖2、圖3A~3C及圖4A~4C中所示之LC複合零件1之具體構成與圖5中所示之電路構成之關係進行進一步說明。圖5中之輸入端子2由圖4C中之端子用導體部41之另一端構成。圖5中之輸出端子3由圖4C中之端子用導體42之另一端構成。圖4C中之端子用導體部43及44之各另一端構成圖5中接地之接地端子。Hereinafter, the relationship between the specific configuration of the LC composite part 1 shown in FIGS. 1, 2 and 3A to 3C and FIGS. 4A to 4C and the circuit configuration shown in FIG. 5 will be further described. The
圖5中之電感器11由圖3A~3C及圖4A~4C中之電感器11用之導體部311、331、341及351、以及導體部33V5、34V5及35V5構成,且具有線圈構造。如圖2所示,芯部23貫通介電層32~36,並且位於電感器11用之導體部311、331、341及351、以及導體部33V5、34V5及35V5形成之線圈構造之內周部之內側。電感器11用之導體部311、331、341及351均係沿芯部23之外周延伸之線狀之導體部。The
圖5中之電感器12由圖3A~3C及圖4A~4C中之電感器12用之導體部312、332、342及352、以及導體部33V6、34V6及35V6構成,並且具有線圈構造。如圖2所示,芯部24貫通介電層32~36,並且位於電感器12用之導體部312、332、342及352、以及導體部33V6、34V6及35V6形成之線圈構造之內周部之內側。電感器12用之導體部312、332、342及352均係沿芯部24之外周延伸之線狀之導體部。The
圖5中之電感器17由圖3A~3C及圖4A~4C中之電感器17用之導體部337、347、357A及357B、以及導體部34V7、35V7及35V8構成,並且具有線圈構造。The
(作用效果) 根據本實施形態之LC複合零件,能夠降低未達截止頻率之低頻信號之插入損耗,並且能夠提高超過截止頻率之高頻信號之插入損耗。因此,作為低通濾波器之特性優異。特別是,適合於截止頻率為1.1~1.6 GHz之低通濾波器。截止頻率可定義為-3dB點。該LC複合零件除了作為低通濾波器使用之外,還可作為高通濾波器、帶通濾波器等使用。(Effect) According to the LC composite component of this embodiment, the insertion loss of low-frequency signals that do not reach the cutoff frequency can be reduced, and the insertion loss of high-frequency signals that exceed the cutoff frequency can be improved. Therefore, it has excellent characteristics as a low-pass filter. In particular, it is suitable for low-pass filters with a cutoff frequency of 1.1 to 1.6 GHz. The cut-off frequency can be defined as the -3dB point. In addition to being used as a low-pass filter, this LC composite part can also be used as a high-pass filter, band-pass filter, etc.
(製造方法之一例)
接下來,參照圖1,對本實施形態之LC複合零件1之製造方法進行說明。於本實施形態之LC複合零件1中,於包含成為複數個LC複合零件1之非磁性基板21之部分之晶圓上,形成LC複合零件1之除了非磁性基板21以外之複數個構成要素。藉此,製作LC複合零件1之零件本體20排列成複數行之基礎構造物。並且,藉由切斷該基礎構造物而將複數個零件本體20互相分離。藉此,製造出複數個LC複合零件1。(An example of manufacturing method)
Next, referring to Fig. 1, a method of manufacturing the LC composite component 1 of this embodiment will be described. In the LC composite component 1 of the present embodiment, a plurality of constituent elements of the LC composite component 1 other than the
以下,參照圖2、圖3A~3C及圖4A~4C,關注於1個LC複合零件1,對本實施形態之LC複合零件1之製造方法更詳細地進行說明。再者,於以下之說明中,為了方便起見,稱成為晶圓中之非磁性基板21之部分為非磁性基板21。於本實施形態之製造方法中,首先,於非磁性基板21之上,使用薄膜形成技術,形成複數個介電層及複數個導體部。具體而言,首先,於非磁性基板21之第1面21a之上形成介電層31。其次,於介電層31之上形成圖3A中所示之複數個導體部31T1~31T4、311~316。複數個導體部之形成方法可為於形成了未圖案化之導體層之後,藉由使用遮罩之蝕刻將導體層圖案化之方法,亦可為使用遮罩來形成經圖案化之導體層之方法。作為導體層之形成方法,可使用濺鍍法及鍍覆法等各種薄膜形成法。以下說明之其他複數個導體部之形成方法亦與此相同。Hereinafter, referring to FIGS. 2, 3A to 3C and FIGS. 4A to 4C, focusing on one LC composite component 1, the manufacturing method of the LC composite component 1 of this embodiment will be described in more detail. Furthermore, in the following description, for convenience, the part that becomes the
其次,藉由例如濺鍍法等,於介電層31及導體部31T1~31T4、311~316之上形成介電層32。其次,於介電層32之上,形成圖3B中所示之電容器用之導體部323、324、325A、325B及326。其次,形成介電層33。其次,於介電層32、33形成導體部33V1~33V6用之6個孔,並且於介電層33形成導體部33V7~33V11用之5個孔。其次,形成圖3B及C中所示之複數個導體部33V1~33V6、331、332、337、333、334、335A、335B、336、33T1、33T2、33T3及33T4。Next, the
其次,於介電層33及導體部上形成介電層34。其次,於介電層34形成導體部34V1~34V7用之7個孔。其次,形成圖4A中所示之複數個導體部341、342、347、34T1、34T2、34T3及34T4。其次,於介電層34形成介電層35。其次,於介電層35形成導體部35V1~35V8用之8個孔。其次,形成圖4B中所示之複數個導體部351、352、357A、357B,35T1、35T2、35T3及35T4。其次,於介電層35及導體部上形成介電層36。Next, a
其次,於介電層36形成端子導體部41~44用之4個孔。其次,藉由例如鍍覆法形成圖4C中所示之端子導體部41~44。Next, four holes for the
其次,於介電層32~36形成芯部23及24用之2個孔。其次,以埋入上述之2個孔內並且覆蓋端子導體部41~44之方式,形成之後成為磁性層22、芯部23及24之預備磁性層。其次,研磨預備磁性層,直到端子用導體部41~44露出為止。藉此,於預備磁性層中,殘留於芯部23及24用之2個孔內之部分成為芯部23及24,其餘部分成為磁性層22。藉由形成磁性層22、芯部23及24,完成基礎構造物。其次,以切出複數個零件本體20之方式,切斷基礎構造物。
再者,為了形成芯部23、24及磁性層(預備磁性層)22,塗佈包含上述之磁性金屬粒子及樹脂之固化性組成物並使之固化即可。Next, two holes for the
本發明不限定於上述實施形態,可採用各種變化方式。
例如,LC複合零件中之電容器、電感器及芯部之數量分別為1個以上即可。又,電容器、電感器及芯部之形態亦可根據用途適當地變更。又,電感器及電容器之配置亦可任意地變更。例如,當從垂直於第1面21a之方向觀察時,電容器可與其他電感器重疊。The present invention is not limited to the above-mentioned embodiment, and various modifications can be adopted.
For example, the number of capacitors, inductors, and cores in the LC composite part may be one or more. In addition, the shapes of capacitors, inductors, and cores can also be appropriately changed according to applications. In addition, the arrangement of inductors and capacitors can also be changed arbitrarily. For example, when viewed from a direction perpendicular to the
又,於磁性層之厚度不均勻之情形時,作為磁性層之厚度採用平均之厚度即可。於芯部之厚度不均勻之情形時,作為芯部之厚度採用平均之厚度即可。於LC複合零件具有複數個芯部時,至少一個芯部之厚度與磁性層之厚度滿足上述之關係即可。In addition, when the thickness of the magnetic layer is not uniform, the average thickness may be used as the thickness of the magnetic layer. When the thickness of the core is not uniform, the average thickness may be used as the thickness of the core. When the LC composite part has a plurality of cores, the thickness of at least one core and the thickness of the magnetic layer may satisfy the above relationship.
又,本實施形態之LC複合零件1之製造方法不限於上述方法。例如,於LC複合零件1中,至少非磁性基板21與磁性層22之間之複數個介電層及複數個導體部例如可藉由低溫同時焙燒法等形成。
實施例In addition, the manufacturing method of the LC composite component 1 of this embodiment is not limited to the above-mentioned method. For example, in the LC composite component 1, at least the plurality of dielectric layers and the plurality of conductor portions between the
以下,根據實施例對本發明更詳細地進行說明,但本發明不限定於以下之實施例。Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the following examples.
(實施例1) 藉由以下所示之方法,調整了用於形成磁性層及芯部之固化性之樹脂組合物。即,將硫酸亞鐵及硫酸鈷之水溶液以磁性金屬粒子中之Fe及Co之質量比為7:3之方式調配,並且用鹼性水溶液將其等之一部分中和。在中和後之水溶液中進行起泡而通氣,攪拌上述水溶液,藉此獲得了含有Co之針狀之針鐵礦粒子。於將過濾水溶液而獲得之含有Co之針鐵礦粒子用離子交換水清洗並乾燥之後,進而於空氣中加熱,藉此獲得了含有Co之赤鐵礦粒子。(Example 1) The curable resin composition used to form the magnetic layer and the core was adjusted by the method shown below. That is, an aqueous solution of ferrous sulfate and cobalt sulfate is formulated such that the mass ratio of Fe and Co in the magnetic metal particles is 7:3, and a part of them is neutralized with an alkaline aqueous solution. The neutralized aqueous solution was bubbled and ventilated, and the aqueous solution was stirred, thereby obtaining needle-shaped goethite particles containing Co. The Co-containing goethite particles obtained by filtering the aqueous solution were washed with ion-exchanged water and dried, and then heated in the air, thereby obtaining Co-containing hematite particles.
將所得之含Co之赤鐵礦粒子於氫氣環境中之爐內以550℃之溫度加熱。其後,將爐內氣體切換為氬氣,並冷卻至大約200℃。進而,藉由花費24小時將氧分壓增加至21%,並冷卻至室溫,而獲得了具備金屬芯部及氧化金屬膜並且以Fe及Co為主成分之磁性金屬粒子。The obtained Co-containing hematite particles are heated at a temperature of 550°C in a furnace in a hydrogen atmosphere. After that, the gas in the furnace was switched to argon and cooled to about 200°C. Furthermore, it took 24 hours to increase the oxygen partial pressure to 21% and cool to room temperature to obtain magnetic metal particles with a metal core and a metal oxide film and containing Fe and Co as the main components.
於所得之磁性金屬粒子中,以樹脂組合物之固化物中之磁性金屬粒子之體積比率為40體積%之方式添加環氧樹脂及固化劑,並且藉由使用混合輥於室溫進行混練,將樹脂組合物製成漿料狀,而獲得了磁性層及芯部形成用之固化性之樹脂組合物。
其次,應用公知之薄膜形成方法,製作了圖1~圖5所示之LC複合零件1。此處,使用了非磁性鐵氧體作為非磁性基板21之材料,使用了上述之樹脂組合物之固化物作為磁性層22及芯部23、24之材料,使用了Cu作為電感器11、12、17及電容器13~16之導電材料,使用了聚醯亞胺樹脂作為介電層31及33~36之材料,及使用了氮化矽作為介電層32之材料。芯部之厚度為100 μm,磁性層之厚度為50 μm,從厚度方向觀察LC複合零件所得之尺寸為650 μm×500 μm。LC複合零件之截止頻率設為了1.2 GHz。In the obtained magnetic metal particles, epoxy resin and curing agent are added in such a way that the volume ratio of the magnetic metal particles in the cured resin composition is 40% by volume, and the mixture is kneaded at room temperature using a mixing roller. The resin composition was made into a slurry form, and a curable resin composition for forming the magnetic layer and core was obtained.
Next, using a known thin film forming method, the LC composite part 1 shown in FIGS. 1 to 5 was produced. Here, non-magnetic ferrite is used as the material of the
(實施例2~5)
除了如表1所示地變更芯部之厚度、磁性層之厚度以外,其餘與實施例1同樣地製造了實施例2~5之LC複合零件。再者,於實施例2中,對應於使芯部之厚度變小,維持電感器11、12之線圈構造之匝數,並且縮短導體部33V5、34V5及35V5、以及導體部33V6、34V6及35V6之長度,縮小了線圈構造之軸向長度。又,於實施例4、5中,對應於使芯部之厚度變大,維持電感器11、12之線圈構造之匝數,並且增長導體部33V5、34V5及35V5、以及導體部33V6、34V6及35V6之長度,加大了線圈構造之軸向長度。於任一實施例中,芯部23及24之厚度均設為電感器11及12之線圈構造之軸向長度以上。(Examples 2~5)
Except that the thickness of the core and the thickness of the magnetic layer were changed as shown in Table 1, the LC composite parts of Examples 2 to 5 were produced in the same manner as in Example 1. Furthermore, in the second embodiment, corresponding to reducing the thickness of the core, the number of turns of the coil structure of the
(實施例6) 除了於中和工序中,降低了基於鹼性水溶液之中和率,降低了於氧化工序中供給之中和後之金屬(Fe及Co)離子濃度,如表1所示地變更了磁性金屬粒子之平均長軸徑、縱橫比值及CV值以外,其餘與實施例1同樣地,獲得了實施例6之LC複合零件。(Example 6) In addition to the neutralization process, the neutralization rate based on the alkaline aqueous solution was reduced, and the metal (Fe and Co) ion concentration after neutralization during the oxidation process was reduced. The magnetic metal particles were changed as shown in Table 1. Except for the average major axis diameter, aspect ratio value, and CV value, the rest was the same as in Example 1, and the LC composite part of Example 6 was obtained.
(實施例7) 除了在中和工序中,提高了基於鹼性水溶液之中和率,提高了於氧化工序中供給之中和後之金屬(Fe及Co)離子濃度,如表1所示地變更了磁性金屬粒子之平均長軸徑、縱橫比值及CV值以外,其餘與實施例1同樣地,獲得了實施例7之LC複合零件。(Example 7) In addition to the neutralization process, the neutralization rate based on the alkaline aqueous solution was increased, and the metal (Fe and Co) ion concentration after the neutralization during the oxidation process was increased. The magnetic metal particles were changed as shown in Table 1. Except for the average major axis diameter, aspect ratio value, and CV value, the rest was the same as in Example 1, and the LC composite part of Example 7 was obtained.
(實施例8) 除了於中和工序中,提高了基於鹼性水溶液之中和率,提高了於氧化工序中供給之中和後之金屬(Fe及Co)離子濃度,如表1所示地變更了磁性金屬粒子之平均長軸徑、縱橫比值及CV值以外,其餘與實施例1同樣地,獲得了實施例8之LC複合零件。(Example 8) In addition to the neutralization process, the neutralization rate based on the alkaline aqueous solution was increased, and the metal (Fe and Co) ion concentration after neutralization during the oxidation process was increased. The magnetic metal particles were changed as shown in Table 1. Except for the average major axis diameter, aspect ratio value, and CV value, the rest was the same as in Example 1, and the LC composite part of Example 8 was obtained.
(實施例9、10) 除了以樹脂組合物之固化物中之磁性金屬粒子之體積比率分別為30體積%及50體積%之方式製備了固化性之樹脂組合物以外,其餘與實施例1同樣地,獲得了實施例9、10之LC複合零件。(Example 9, 10) Except that the curable resin composition was prepared so that the volume ratio of the magnetic metal particles in the cured resin composition was 30% by volume and 50% by volume, respectively, in the same manner as in Example 1, Example 9 was obtained. , 10 LC composite parts.
(實施例11) 除了於磁性金屬粒子之製造中未添加Co以外,其餘與實施例1同樣地,獲得了實施例11之LC複合零件。(Example 11) The LC composite part of Example 11 was obtained in the same manner as Example 1, except that Co was not added in the manufacture of the magnetic metal particles.
(實施例12) 除了於磁性金屬粒子之製造中添加Ni以取代Co,並且以樹脂組合物之固化物中之磁性金屬粒子之體積比率為50體積%之方式製備了固化性之樹脂組合物以外,其餘與實施例1同樣地,獲得了實施例12之LC複合零件。(Example 12) Except that Ni was added to replace Co in the manufacture of magnetic metal particles, and the curable resin composition was prepared with the volume ratio of the magnetic metal particles in the cured resin composition being 50% by volume, the rest is the same as the examples 1 Similarly, the LC composite part of Example 12 was obtained.
(比較例1)
除了將芯部之厚度設為30 μm以外,其餘與實施例1同樣地,獲得了比較例1之LC複合零件。再者,對應於使芯部之厚度變小,維持電感器11、12之線圈構造之匝數,並且縮短導體部33V5、34V5及35V5、以及導體部33V6、34V6及35V6之長度,縮小了線圈構造之軸向長度。即,芯部23及24之厚度為電感器11及12之線圈構造之軸向長度以上。(Comparative example 1)
The LC composite part of Comparative Example 1 was obtained in the same manner as in Example 1, except that the thickness of the core was 30 μm. Furthermore, corresponding to the reduction of the thickness of the core, the number of turns of the coil structure of the
[磁性金屬粒子之評價方法] (磁性金屬之尺寸及縱橫比) 藉由透過型電子顯微鏡(TEM)以倍率50萬倍觀察各實施例及比較例中所得之LC複合零件之磁性層之剖面中之磁性金屬粒子,測定磁性金屬粒子之長軸及短軸方向之尺寸(長軸徑及短軸徑)(nm),求得了縱橫比。同樣地,觀察200~500個磁性金屬粒子,計算了長軸徑、短軸徑及縱橫比之平均值。磁性金屬粒子之縱橫比之平均值及CV值、以及磁性金屬粒子之長軸徑之平均值於表1中示出。[Evaluation method of magnetic metal particles] (Size and aspect ratio of magnetic metal) Observe the magnetic metal particles in the cross section of the magnetic layer of the LC composite parts obtained in each of the Examples and Comparative Examples with a transmission electron microscope (TEM) at a magnification of 500,000 times, and measure the long axis and short axis directions of the magnetic metal particles Dimensions (major axis diameter and minor axis diameter) (nm), and the aspect ratio was obtained. Similarly, 200 to 500 magnetic metal particles were observed, and the average values of the major axis diameter, minor axis diameter, and aspect ratio were calculated. The average value of the aspect ratio and the CV value of the magnetic metal particles, and the average value of the major axis diameter of the magnetic metal particles are shown in Table 1.
(飽和磁化) 將實施例及比較例所得之樹脂組合物之固化物加工成1 mm×1 mm×3 mm,並且使用振動試樣型磁力計(VSM,玉川製作所股份有限公司製造),測定了加工後之複合磁性體之飽和磁化(emu/g)。結果示於表1。(Saturation magnetization) The cured product of the resin composition obtained in the Examples and Comparative Examples was processed into 1 mm×1 mm×3 mm, and the composite after processing was measured using a vibration sample magnetometer (VSM, manufactured by Tamagawa Manufacturing Co., Ltd.) The saturation magnetization of the magnetic body (emu/g). The results are shown in Table 1.
(LC複合零件之插入損耗之最大值及最小值) 使用網路分析儀(N5230A,Keysight Technologies),求得於各實施例及比較例中所得之LC複合零件中插入損耗之頻率特性。並且,求得了0.824-0.960 GHz中之插入損耗之最大值、及1.648-1.920 GHz中之插入損耗之最小值。結果示於表1。又,示出實施例1、實施例5及比較例1之插入損耗之頻率特性之特性圖分別於圖6~圖8中示出。(Maximum and minimum insertion loss of LC composite parts) A network analyzer (N5230A, Keysight Technologies) was used to obtain the frequency characteristics of insertion loss in the LC composite parts obtained in each embodiment and comparative example. In addition, the maximum value of insertion loss in 0.824-0.960 GHz and the minimum value of insertion loss in 1.648-1.920 GHz are obtained. The results are shown in Table 1. In addition, characteristic diagrams showing the frequency characteristics of the insertion loss of Example 1, Example 5, and Comparative Example 1 are shown in FIGS. 6 to 8 respectively.
[表1]
1:LC複合零件 1b:底面 1s:側面 1t:上表面 2:輸入端子 3:輸出端子 11:電感器 12:電感器 13:電容器 14:電容器 15:電容器 16:電容器 17:電感器 20:零件本體 21:非磁性基板 21a:第1面 21b:第2面 22:磁性層 22a:第1面 22b:第2面 23:芯部 24:芯部 31:介電層 31T1~31T4:端子用導體部 32:介電層 33:介電層 33T1~33T4:端子用導體部 33V1~33V11:導體部 34:介電層 34T1~34T4:端子用導體部 34V1~34V7:導體部 35:介電層 35T1~35T4:端子用導體部 35V1~35V8:導體部 36:介電層 37:介電積層體 41~44:端子用導體部 311:電感器用之導體部 312:電感器用之導體部 313:電容器用之導體部 315:電容器用之導體部 316:電容器用之導體部 323:電容器用之導體部 324:電容器用之導體部 325A:電容器用之導體部 325B:電容器用之導體部 326:電容器用之導體部 331:電感器用之導體部 332:電感器用之導體部 335A, 335B:連接用導體部 336:連接用導體部 337:電感器用之導體部 341:電感器用之導體部 342:電感器用之導體部 347:電感器用之導體部 351:電感器用之導體部 352:電感器用之導體部 357A:電感器用之導體部 357B:電感器用之導體部 T1:厚度 T2:厚度1: LC composite parts 1b: bottom surface 1s: side 1t: upper surface 2: Input terminal 3: output terminal 11: Inductor 12: Inductor 13: capacitor 14: capacitor 15: capacitor 16: capacitor 17: Inductor 20: Part body 21: Non-magnetic substrate 21a: side 1 21b: Side 2 22: Magnetic layer 22a: side 1 22b: Side 2 23: Core 24: core 31: Dielectric layer 31T1~31T4: Conductor part for terminal 32: Dielectric layer 33: Dielectric layer 33T1~33T4: Conductor part for terminal 33V1~33V11: Conductor part 34: Dielectric layer 34T1~34T4: Conductor part for terminal 34V1~34V7: Conductor part 35: Dielectric layer 35T1~35T4: Conductor part for terminal 35V1~35V8: Conductor part 36: Dielectric layer 37: Dielectric laminate 41~44: Conductor part for terminal 311: Conductor part for inductor 312: Conductor part for inductor 313: Conductor part for capacitor 315: Conductor part for capacitor 316: Conductor part for capacitor 323: Conductor part for capacitor 324: Conductor part for capacitor 325A: Conductor part for capacitor 325B: Conductor part for capacitor 326: Conductor part for capacitor 331: Conductor part for inductor 332: Conductor part for inductors 335A, 335B: connecting conductor 336: Connection conductor part 337: Conductor part for inductors 341: Conductor part for inductor 342: Conductor part for inductor 347: Conductor part for inductor 351: Conductor part for inductor 352: Conductor part for inductor 357A: Conductor part for inductor 357B: Conductor part for inductor T1: thickness T2: thickness
圖1係示出本發明之一實施形態之LC複合零件之構成之立體圖。 圖2係示出本發明之一實施形態之LC複合零件之構成之剖視圖。 圖3A係用於說明本發明之一實施形態之LC複合零件之介電層之構成之說明圖。 圖3B係用於說明本發明之一實施形態之LC複合零件之介電層之構成之說明圖。 圖3C係用於說明本發明之一實施形態之LC複合零件之介電層之構成之說明圖。 圖4A係用於說明本發明之一實施形態之LC複合零件之介電層之構成之說明圖。 圖4B係用於說明本發明之一實施形態之LC複合零件之介電層之構成之說明圖。 圖4C係用於說明本發明之一實施形態之LC複合零件之介電層之構成之說明圖。 圖5係示出本發明之一實施形態之LC複合零件之電路構成之電路圖。 圖6係示出第1實施例之LC複合零件中之插入損耗之頻率特性之特性圖。 圖7係示出第5實施例之LC複合零件中之插入損耗之頻率特性之特性圖。 圖8係示出第1比較例之LC複合零件中之插入損耗之頻率特性之特性圖。Fig. 1 is a perspective view showing the structure of an LC composite component in one embodiment of the present invention. Fig. 2 is a cross-sectional view showing the structure of an LC composite part according to an embodiment of the present invention. FIG. 3A is an explanatory diagram for explaining the structure of the dielectric layer of the LC composite component in one embodiment of the present invention. FIG. 3B is an explanatory diagram for explaining the structure of the dielectric layer of the LC composite component in one embodiment of the present invention. FIG. 3C is an explanatory diagram for explaining the structure of the dielectric layer of the LC composite component in one embodiment of the present invention. Fig. 4A is an explanatory diagram for explaining the structure of the dielectric layer of the LC composite component in one embodiment of the present invention. FIG. 4B is an explanatory diagram for explaining the structure of the dielectric layer of the LC composite component in one embodiment of the present invention. Fig. 4C is an explanatory diagram for explaining the structure of the dielectric layer of the LC composite component in one embodiment of the present invention. Fig. 5 is a circuit diagram showing the circuit configuration of an LC composite component according to an embodiment of the present invention. 6 is a characteristic diagram showing the frequency characteristics of insertion loss in the LC composite part of the first embodiment. Fig. 7 is a characteristic diagram showing the frequency characteristics of the insertion loss in the LC composite part of the fifth embodiment. Fig. 8 is a characteristic diagram showing the frequency characteristics of the insertion loss in the LC composite part of the first comparative example.
1:LC複合零件 1: LC composite parts
1b:底面 1b: bottom surface
1s:側面 1s: side
1t:上表面 1t: upper surface
11,12,17:電感器 11, 12, 17: inductor
13~16:電容器 13~16: capacitor
20:零件本體 20: Part body
21:非磁性基板 21: Non-magnetic substrate
21a:第1面 21a: side 1
21b:第2面
21b:
22:磁性層 22: Magnetic layer
22a:第1面 22a: side 1
22b:第2面
22b:
23,24:芯部 23, 24: Core
37:介電積層體 37: Dielectric laminate
41,42,44:端子用導體部 41, 42, 44: conductor part for terminal
Claims (6)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-245224 | 2018-12-27 | ||
JP2018245224 | 2018-12-27 | ||
JP2019-199964 | 2019-11-01 | ||
JP2019199964A JP7404788B2 (en) | 2018-12-27 | 2019-11-01 | LC composite parts |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202040611A true TW202040611A (en) | 2020-11-01 |
TWI717177B TWI717177B (en) | 2021-01-21 |
Family
ID=71449460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108147923A TWI717177B (en) | 2018-12-27 | 2019-12-26 | LC composite parts |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7404788B2 (en) |
TW (1) | TWI717177B (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001068318A (en) * | 1999-08-27 | 2001-03-16 | Fuji Photo Film Co Ltd | Ferromagnetic metal powder and magnetic record medium using the same |
JP5831498B2 (en) * | 2013-05-22 | 2015-12-09 | Tdk株式会社 | Coil component and manufacturing method thereof |
JP6460328B2 (en) * | 2014-05-28 | 2019-01-30 | Tdk株式会社 | LC composite parts |
US9613897B2 (en) * | 2014-11-11 | 2017-04-04 | Globalfoundries Singapore Pte. Ltd. | Integrated circuits including magnetic core inductors and methods for fabricating the same |
JP6423705B2 (en) * | 2014-12-16 | 2018-11-14 | Dowaエレクトロニクス株式会社 | Metal magnetic powder, method for producing the same, and device |
WO2018012458A1 (en) * | 2016-07-15 | 2018-01-18 | Dowaエレクトロニクス株式会社 | Iron powder, production method therefor, precursor production method, molded body for inductor, and inductor |
JP6919194B2 (en) * | 2016-12-27 | 2021-08-18 | Tdk株式会社 | Coil parts and circuit boards equipped with them |
JP6812886B2 (en) * | 2017-03-31 | 2021-01-13 | Tdk株式会社 | High frequency electronic components |
-
2019
- 2019-11-01 JP JP2019199964A patent/JP7404788B2/en active Active
- 2019-12-26 TW TW108147923A patent/TWI717177B/en active
Also Published As
Publication number | Publication date |
---|---|
JP2020107880A (en) | 2020-07-09 |
TWI717177B (en) | 2021-01-21 |
JP7404788B2 (en) | 2023-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101354946B (en) | Powder magnetic core and method for manufacturing the same | |
WO2009128427A1 (en) | Method for producing composite magnetic material and composite magnetic material | |
Ikeda et al. | Thin-film inductor for gigahertz band with CoFeSiO-SiO/sub 2/multilayer granular films and its application for power amplifier module | |
US8779884B2 (en) | Multilayered inductor and method of manufacturing the same | |
TWI717174B (en) | LC composite parts | |
US20130214889A1 (en) | Multilayer type inductor and method of manufacturing the same | |
US11328872B2 (en) | LC composite component | |
TWI717177B (en) | LC composite parts | |
JPH11273979A (en) | Method for manufacturing inductance element and inductance element | |
US11515854B2 (en) | LC composite component | |
US20200082964A1 (en) | Composite magnetic body, substrate including composite magnetic body, and high-frequency electronic component including same | |
JP2014192185A (en) | High frequency circuit board | |
JP6812886B2 (en) | High frequency electronic components | |
Bowen et al. | Fabrication and evaluation of PCB-embedded broadband signal transformers with custom machined racetrack-shaped ferrite cores for Ethernet applications | |
US20040191569A1 (en) | Magnetic component | |
KR20140017929A (en) | Ferrite powder, method for preparing the same, and common mode noise filter comprising the same for magnetic layer | |
JP3297429B2 (en) | Laminated chip beads | |
JP2003133136A5 (en) | ||
KR101046879B1 (en) | Ultra Thin Power Inductors | |
US7432792B2 (en) | High frequency thin film electrical circuit element | |
JPH08236354A (en) | Laminated inductor | |
JPH10294218A (en) | Common-mode chock coil element and manufacture thereof | |
JP2004342943A (en) | Compressed powder core incorporating coils, its manufacturing method, transformer and reactor for power sources using the core, and their manufacturing method | |
US20200273610A1 (en) | Composite magnetic material, magnetic core, and electronic component | |
CN210156233U (en) | Inductor |