TW202038846A - Method and apparatus for measuring vision function - Google Patents
Method and apparatus for measuring vision function Download PDFInfo
- Publication number
- TW202038846A TW202038846A TW109106238A TW109106238A TW202038846A TW 202038846 A TW202038846 A TW 202038846A TW 109106238 A TW109106238 A TW 109106238A TW 109106238 A TW109106238 A TW 109106238A TW 202038846 A TW202038846 A TW 202038846A
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- test
- optical
- visual
- depicts
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/022—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing contrast sensitivity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0091—Fixation targets for viewing direction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/024—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/028—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/028—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
- A61B3/0285—Phoropters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/028—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
- A61B3/032—Devices for presenting test symbols or characters, e.g. test chart projectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/06—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing light sensitivity, e.g. adaptation; for testing colour vision
- A61B3/066—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing light sensitivity, e.g. adaptation; for testing colour vision for testing colour vision
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/08—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing binocular or stereoscopic vision, e.g. strabismus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/34—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
- G02B30/36—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Eye Examination Apparatus (AREA)
- Eyeglasses (AREA)
Abstract
Description
本申請要求2019年2月27日提交的美國申請62811492的權益和優先權,其內容合併於此。This application claims the rights and priority of U.S. application 62811492 filed on February 27, 2019, the content of which is incorporated herein.
本發明專利申請是2018年10月31日提交的美國申請16/176,631Smart Phone Based Virtual Visual Charts for Measuring Visual Acuity的部分延續(CIP)案,其要求2017年10月31日提交的臨時專利申請62/579,558的權益和優先權日。The patent application for this invention is a partial continuation (CIP) case of US
該發明專利申請是2019年2月14日提交的專利申請16/276,302的部分延續(CIP)案,該申請是2017年4月19日提交的申請15/491,557的CIP,現在是2019年2月19日發佈的專利10206566,其要求2016年10月17日提交的臨時專利申請62/409,276的權益。This invention patent application is a partial continuation (CIP) case of
如果本發明中的發明公開與相關申請中的公開之間發生任何衝突,則以本發明中的公開為准。此外,發明人通過引用將本申請中引用或提及的任何和所有專利、專利申請和其他文檔的拷貝或電子文檔併入本文。If there is any conflict between the invention disclosure in the present invention and the disclosure in the related application, the disclosure in the present invention shall prevail. In addition, the inventor incorporates by reference any and all copies or electronic files of any and all patents, patent applications and other documents cited or mentioned in this application.
本申請包括受版權和/或商標保護的材料。版權和商標所有者不反對任何在專利商標局檔或記錄中出現的專利公開的拓制,但在其他方面保留所有版權和商標權。商標可能包括“VA101”和“Visual Acuity Tracker”、“Visual Acuity Screener”、“Insight”和/或“EyeQue Insight”。This application includes material protected by copyright and/or trademark. The copyright and trademark owners do not object to any patent disclosure extensions that appear in the files or records of the Patent and Trademark Office, but retain all copyright and trademark rights in other respects. Trademarks may include "VA101" and "Visual Acuity Tracker", "Visual Acuity Screener", "Insight" and/or "EyeQue Insight".
本發明總體上涉及視力測量系統。更具體地,本發明涉及透鏡系統的使用以及接近使用者光源以在雙目觀察器的範圍內光學複製標準視覺測試。公開的實施例包括高解析度智慧手機、通信系統、資料檢索系統和其他元件的集成。The present invention relates generally to vision measurement systems. More specifically, the present invention relates to the use of lens systems and access to a user's light source to optically replicate standard vision tests within the scope of a binocular viewer. The disclosed embodiments include the integration of high-resolution smartphones, communication systems, data retrieval systems, and other components.
在相關技術中,標準化的視力測試是眾所周知的,並且通常要求測試受試者與視力表之間的距離為20英尺。這樣的測試在專門的測試空間(例如眼科醫生辦公室或政府機動車輛設施)中效果很好。隨著智慧手機和其他電子設備的出現,以及待在戶外花費的時間越來越少,兒童近視的發展速度驚人。現有技術的不足之處在於父母、老師或看護者希望能快速且具有經濟效益地測試孩子的視力,但既沒有現有技術的超大紙做的視力表,也沒有清澈的、適當照明的20英尺空間。此外,兒童不太可能照常規測試所要求的20英尺距離會保持站立不動。In the related art, standardized vision tests are well known, and usually require a distance of 20 feet between the test subject and the eye chart. Such tests work well in dedicated testing spaces (such as ophthalmologist offices or government motor vehicle facilities). With the advent of smart phones and other electronic devices, and less time spent outdoors, children’s nearsightedness develops at an alarming rate. The disadvantage of the existing technology is that parents, teachers or caregivers want to test their children’s vision quickly and cost-effectively, but there is neither an oversized paper eye chart of the prior art nor a clear and properly illuminated 20-foot space. . In addition, children are unlikely to stand still at the 20-foot distance required for routine testing.
現有技術也充斥著成年人的視覺健康和測試方面的不足。由於眼科高昂的檢查費用以及當前需要親自前往去看眼科護理專家,許多成年人無法獲得他們所需的眼科檢查。近視是一個日益嚴重的問題,在低收入人群中尤為尖銳,在中低收入國家更加嚴重。Existing technology is also flooded with deficiencies in adult vision health and testing. Due to the high cost of ophthalmology examinations and the current need to go to see an eye care professional in person, many adults cannot get the eye examinations they need. Myopia is a growing problem, particularly acute among low-income people, and even more serious in low- and middle-income countries.
現有技術的確包括使用虛擬影像進行眼科檢查,其中一種系統有時被Welch Allyn稱為SPOT Vision Screener。Welch Allyn的設備非常昂貴,以及不適合消費者使用。Welch Allyn設備無法利用當今智慧手機的高解析度螢幕,該設備也要求與受試者之間的測試距離為三英尺,使得該設備不適合進行自我測試。因此,對於當前公開的實施例,相關技術和本領域存在嚴重的不足。Existing technology does include the use of virtual images for eye examinations, one of which is sometimes called SPOT Vision Screener by Welch Allyn. Welch Allyn's equipment is very expensive and not suitable for consumers. The Welch Allyn device cannot use the high-resolution screens of today’s smartphones. The device also requires a test distance of three feet from the subject, making the device unsuitable for self-testing. Therefore, for the currently disclosed embodiments, there are serious deficiencies in the related technology and this field.
最近,有大量免費的移動應用程式(App)宣稱可以測量視力,但需要複製20’Snellen測試,手機螢幕也必須遠離使用者,使得測試非常不便,並且在測試孩子的情況下幾乎是不可能的。而且,考慮到在這些免費的應用程式中測試者到智慧手機的距離沒有限制的,與當前公開實施例的強制地限制遠距離相比,測試結果是非常不準確的。Recently, there are a large number of free mobile apps (Apps) claiming that they can measure vision, but they need to replicate the 20'Snellen test. The screen of the mobile phone must also be far away from the user, making the test very inconvenient and almost impossible in the case of a child. . Moreover, considering that there is no limitation on the distance between the tester and the smartphone in these free applications, the test result is very inaccurate compared with the mandatory long-distance limitation of the currently disclosed embodiment.
本發明之主要目的,在提供一種公開的元件的不明顯和獨特的組合、構造克服了現有技術的不足,所述元件包括具有光學特性的兩組透鏡,非常適合在雙目觀察者的相對短的範圍內光學地產生常規的視力測試。術語“視力”可以被定義為眼睛在預定距離處檢視其細節的能力。本發明公開的實施例通過對高解析度智慧手機螢幕提供了微調的光源,並巧妙使用和集成來克服本領域技術的不足。高解析度智慧手機螢幕的集成還提供了用於視覺測試的視力表或符號顯示的無限可能。此外,智慧手機的集成有助於測試結果的即時分析以及測試結果的即時通信和電子儲存。The main purpose of the present invention is to provide an unobvious and unique combination and structure of the disclosed element, which overcomes the shortcomings of the prior art. The element includes two sets of lenses with optical characteristics, which is very suitable for relatively short binocular observers. Optically produce conventional vision tests within the range. The term "sight" can be defined as the ability of the eye to inspect its details at a predetermined distance. The disclosed embodiments of the present invention overcome the deficiencies of the technology in the art by providing a fine-tuned light source for the high-resolution smartphone screen, and clever use and integration. The integration of high-resolution smartphone screens also provides infinite possibilities for visual acuity chart or symbol display for visual testing. In addition, the integration of smart phones facilitates the instant analysis of test results and the instant communication and electronic storage of test results.
本發明提供了一套自我管理的視覺測試解決方案,其產生的結果與在醫生辦公室中進行的現有技術的視覺測試相似。通過公開的雙目觀察器與運行特定應用程式的智慧手機協同工作,用戶無需額外幫助即可執行自我管理的遠距離(或近距離)視覺測試。此外,由雙目觀察器和智慧手機組成的系統還可以用於進行其他視覺測試,包括對比靈敏度、顏色靈敏度和屈光不正。本發明還提供了用於用戶通過向眼睛保健專業人員提供推薦來管理其眼睛健康的方法。本發明還提供了用於用戶和/或眼睛保健專業人員之間的電子通信的裝置。The present invention provides a set of self-management vision test solutions, which produces results similar to the prior art vision tests performed in a doctor's office. Through the open binocular viewer and a smartphone running a specific application, users can perform self-managed long-range (or close-range) vision tests without additional assistance. In addition, the system consisting of binocular viewers and smartphones can also be used for other visual tests, including contrast sensitivity, color sensitivity, and refractive errors. The present invention also provides methods for users to manage their eye health by providing recommendations to eye health professionals. The invention also provides means for electronic communication between users and/or eye care professionals.
本發明公開的實施例通過使用包括凹面的第一透鏡的背面上發生的縮小來克服現有技術中的缺點。The disclosed embodiments of the present invention overcome the shortcomings in the prior art by using the reduction that occurs on the back surface of the first lens including the concave surface.
本發明公開的實施例通過提供許多人有限手段相稱的經濟、嚴謹和自我管理的視力測試來克服了本領域的缺點。常規的現場測試通常在20英尺(或6米)處進行,以複製現實生活中的視覺需求,其中20英尺處的物件具有實際意義。具有“正常”視覺的人可具有20/20視覺,這意味著測試受試者在20英尺的距離處可以看到視標的20/20線(字母、數位、翻滾的E等)。視覺“好於正常”的測試受試者將在20英尺的距離處看到視標的20/15線(尺寸小於20/20視線),認為它們具有20/15視覺。相反,視覺明顯 “低於正常”(例如20/200)的測試受試者的視覺是正常視覺的人的1/10,或者需要物件近十倍才能看到視覺正常的人在20英尺處看到的相同的20/20線。基於現實世界中需要在20英尺處清晰地看到物件,許多視力標準都是基於20英尺的基準。因此,虛擬複製20英尺基準測試非常有用,只要這種虛擬或光學複製測試出觀察者分辨出20英尺角度範圍的相對的物件的能力。當前公開的實施例不僅模擬20英尺測試的角度視線,而且通過使用隨機旋轉的視標、靜態照明、即時測試結果報告、測試分析和電子儲存來改進常規的20英尺測試。The disclosed embodiments of the present invention overcome the shortcomings of the field by providing economical, rigorous and self-managed vision tests that are commensurate with the limited means of many people. Conventional field tests are usually carried out at 20 feet (or 6 meters) to replicate the visual needs in real life, in which objects at 20 feet have practical significance. People with "normal" vision can have 20/20 vision, which means that the test subject can see the 20/20 line of the optotype (letters, numbers, rolled E, etc.) at a distance of 20 feet. Test subjects whose vision is "better than normal" will see the 20/15 line of the optotype (smaller than 20/20 line of sight) at a distance of 20 feet, and consider them to have 20/15 vision. On the contrary, test subjects whose vision is significantly "lower than normal" (for example, 20/200) have a vision that is 1/10 of that of a person with normal vision, or need objects nearly ten times to see a person with normal vision at 20 feet To the same 20/20 line. Based on the need to see objects clearly at 20 feet in the real world, many vision standards are based on the 20-foot benchmark. Therefore, a virtual copy of the 20-foot benchmark test is very useful, as long as the virtual or optical copy test shows the observer’s ability to distinguish between relative objects within a 20-foot angle range. The currently disclosed embodiments not only simulate the angle of sight of the 20-foot test, but also improve the conventional 20-foot test by using randomly rotating optotypes, static lighting, real-time test result reporting, test analysis, and electronic storage.
此外,複製標準的20英尺測試可用於檢測多種情況,例如屈光不正、散光、近視、遠視、色盲、青光眼和黃斑變性。In addition, the standard 20-foot test can be used to detect various conditions, such as refractive errors, astigmatism, myopia, hyperopia, color blindness, glaucoma and macular degeneration.
通過在透鏡(360)和用戶之間插入可調透鏡系統,該設備還可以用作可擕式驗光儀,用戶調整透鏡的屈光度以達到最佳視力,由於從代表螢幕的透鏡(360)發出的光幾乎平行,因此調整透鏡系統將有助於將光聚焦在眼睛的視網膜上。By inserting an adjustable lens system between the lens (360) and the user, the device can also be used as a portable refractometer. The user adjusts the refractive power of the lens to achieve the best vision, due to the light emitted from the lens (360) representing the screen The light is almost parallel, so adjusting the lens system will help focus the light on the retina of the eye.
通過使用可調式stokes柱面透鏡對和可調球面透鏡來抵消可調透鏡系統的散光和球面誤差,可以實現準確的屈光值。屈光值確定是由設備提供的屈光矯正諸如處方眼鏡之類的。By using an adjustable stokes cylindrical lens pair and an adjustable spherical lens to offset the astigmatism and spherical error of the adjustable lens system, accurate refractive values can be achieved. The refractive value is determined by the refractive correction provided by the device such as prescription glasses.
特別是,近視是常見的視覺疾病的醫學術語,稱為近視眼,其中近處視覺清晰,但遠處的對象卻顯得模糊。在過去的30年中,全球近視患病率迅速上升,與高度近視相關的視覺損害存在著很大風險,包括視網膜損害、白內障和青光眼。據估計,2010年近視會影響世界上27%(19億)的人口。根據世界衛生組織(WHO)有關近視眼的報告,預計到2020年近視將影響世界33%(26億)的人口,到2050年將影響世界50%(50億)的人口。In particular, myopia is a common medical term for visual diseases, called myopia, in which near vision is clear, but distant objects appear blurred. In the past 30 years, the global prevalence of myopia has increased rapidly, and there is a great risk of visual damage related to high myopia, including retinal damage, cataracts and glaucoma. It is estimated that myopia will affect 27% (1.9 billion) of the world’s population in 2010. According to the World Health Organization (WHO) report on myopia, it is estimated that myopia will affect 33% (2.6 billion) of the world's population by 2020 and 50% (5 billion) of the world's population by 2050.
本發明所公開的實施例非常適合測試兒童的視覺,因為所公開的雙目觀察器可以在較小的房間或擁擠的環境中使用,在這些環境中,將視力表固定在距測試受試者20英尺的地方且適當的照明是不切實際的。The disclosed embodiments of the present invention are very suitable for testing children’s vision, because the disclosed binocular viewer can be used in small rooms or crowded environments. In these environments, the eye chart is fixed at a distance from the test subject. Proper lighting at 20 feet is impractical.
目前,視覺問題影響了美國四分之一的學齡兒童,該比率甚至比韓國和中國等其他國家更高。兒童視覺受損會導致終身學習、情緒和行為問題。美國驗光協會建議每1-2年進行一次全面眼科檢查,然而由於兒童的眼球發展迅速,在這段時間內,近視情況可能要進展到明顯程度後才能被發現。研究證明兒童近視的發展可以減慢或停止,從而改善生活上的視覺。早期發現和干預能減緩學齡兒童近視發展是至關重要,因此,當前公開的實施例對於提供方便、低成本的自我管理的並且易於無障礙的方法以監視視覺變化,例如近視發作。所公開的實施例具有全球實用性,在不發達的國家缺乏眼睛保健專業人員,使得許多人無法進行視覺篩查。因此,作為朝向治療的第一步,本發明所公開的實施例對於提供、允許自我管理和簡易無障礙的視覺篩查工具,以測試視力為至關重要。Currently, vision problems affect a quarter of school-age children in the United States, which is even higher than other countries such as South Korea and China. Visual impairment in children can lead to lifelong learning, emotional and behavioral problems. The American Optometric Association recommends a comprehensive eye examination every 1-2 years. However, due to the rapid development of children’s eyeballs, during this time, myopia may not be detected until it has progressed to a significant degree. Studies have shown that the development of myopia in children can be slowed down or stopped, thereby improving vision in life. Early detection and intervention can slow down the development of myopia in school-age children. Therefore, the currently disclosed embodiments provide a convenient, low-cost self-management and easily accessible method to monitor visual changes, such as myopia onset. The disclosed embodiments have global applicability, and the lack of eye care professionals in underdeveloped countries makes it impossible for many people to perform visual screening. Therefore, as the first step towards treatment, the disclosed embodiments of the present invention are essential for providing, allowing self-management and simple and accessible visual screening tools to test vision.
目前,遠距離視覺測試通常在醫生辦公室進行,作為評估視力的全面眼科檢查的第一步。在現有技術中,測試受試者通常與視覺目標相距很大的距離,通常為20ft(或6米),視覺目標包含不同大小的不同字母(Snellen表),或不同朝向的大小的字母“E”(翻滾的E表)或不同朝向的不同大小的字母“C”(Landolt C表),檢查者要求測試受試者識別測試表上與給定線相對應的字母或字母的方向,每一條下降的表線包含較小尺寸的字母。Currently, distance vision testing is usually performed in the doctor's office as the first step in a comprehensive eye exam to assess vision. In the prior art, the test subject is usually at a large distance from the visual target, usually 20ft (or 6 meters). The visual target contains different letters of different sizes (Snellen table), or letters of different orientations and sizes "E" "(Rolling E table) or different sizes of letters "C" in different orientations (Landolt C table), the examiner asks the test subject to identify the letter or the direction of the letter corresponding to the given line on the test table, each The descending table line contains letters of smaller size.
本發明包括用於自我管理的視覺篩查的方法,該方法包括以下步驟:請求使用者資訊、在遠距離或近距離進行視力測試、報告視力結果以及跟蹤視力變化。測試後,結果會立即顯示在智慧手機上,並儲存在安全的雲端伺服器上。The present invention includes a method for self-management visual screening, which includes the following steps: requesting user information, performing a vision test at a distance or a short distance, reporting vision results, and tracking vision changes. After the test, the results will be immediately displayed on the smartphone and stored on a secure cloud server.
智慧手機用作顯示器以創建視覺目標。在其中一個實施例,將視覺目標選擇為翻滾的E表,其中顯示具有包括上、下、左和右的隨機朝向的字母“E”。智慧手機以與智慧手機連接到虛擬實境頭戴式耳機相似的方式連接到光學設備。該光學設備包括一個獨特的透鏡系統,該系統將智慧手機上顯示的E表投影到20英尺(6米)的虛擬距離(用於遠距離視覺)和14英寸(35釐米)的虛擬距離(用於近距離視覺)。The smartphone is used as a display to create visual goals. In one of the embodiments, the visual target is selected as the rolled E-list, in which the letter "E" with random orientations including up, down, left, and right is displayed. A smart phone is connected to an optical device in a similar way as a smart phone is connected to a virtual reality headset. The optical device includes a unique lens system that projects the E meter displayed on the smartphone to a virtual distance of 20 feet (6 meters) (for long-distance vision) and a virtual distance of 14 inches (35 cm). For near vision).
智慧手機會生成帶有白色背景和黑色字母的視覺目標,外觀類似於常規的實體視力表。然而,與現有技術測試列印的、靜態的和可預測翻滾的E表不同,在本實施例中,字母E及其朝向是由智慧手機在測試期間隨機生成的。因此,每個測試的字母E朝向的順序都不同,從而減少了可能使測試結果歪曲的記憶效應。The smartphone will generate a visual target with a white background and black letters, which looks similar to a regular physical eye chart. However, unlike the test-printed, static and predictable roll E table of the prior art, in this embodiment, the letter E and its orientation are randomly generated by the smartphone during the test. Therefore, the order of the letter E orientation for each test is different, thereby reducing the memory effect that may distort the test results.
在一種預期的使用方法中,用戶通過附接了智慧手機的雙目觀察器進行觀察,並且使用手指在智慧手機的觸控式螢幕上滑動以與IOS或Android應用程式交互。使用向上、下、左和右的滑動手勢,智慧手機應用程式會根據使用者所感知的在智慧手機上顯示的當前E朝向來接收用戶輸入。測試後,智慧手機應用程式計算視力值並將結果顯示在螢幕上,創建的視覺記錄與時間戳記一起儲存在安全的雲端伺服器上,隨著時間的流逝,將創建視覺測試的歷史記錄可以用作監控視覺變化的參考。In an expected usage method, the user observes through a binocular viewer attached to a smart phone, and uses a finger to slide on the touch screen of the smart phone to interact with IOS or Android applications. Using the up, down, left and right swipe gestures, the smart phone application will receive user input based on the current E orientation displayed on the smart phone as perceived by the user. After the test, the smart phone application calculates the vision value and displays the result on the screen. The created visual record is stored on a secure cloud server together with a time stamp. As time goes by, a historical record of the visual test will be created. Used as a reference for monitoring visual changes.
對於已經是中度近視或遠視的用戶,不進行矯正而測量視力不適用於測量用戶當前矯正的功效。因此,所公開的實施例允許測試者配戴隱形眼鏡或框架眼鏡,以驗證其當前的矯正眼鏡處方是否合適,或者換句話說,由隱形眼鏡或眼鏡提供的矯正是否有助於改善視覺,20/20視覺是基準。For users who are already moderately short-sighted or far-sighted, measuring vision without correction is not suitable for measuring the effectiveness of the user's current correction. Therefore, the disclosed embodiments allow testers to wear contact lenses or glasses to verify whether their current prescriptions for corrective glasses are appropriate, or in other words, whether the correction provided by the contact lenses or glasses can help improve vision, 20 /20 Vision is the benchmark.
在公開的資料庫系統中,可以通過電子郵件或警報以無線方式與父母或眼睛保健專業人員共用記錄的視覺測試結果的歷史記錄,從而使通信成本和時間最小化。In the public database system, the history of visual test results recorded can be shared wirelessly with parents or eye care professionals via emails or alarms, thereby minimizing communication costs and time.
公開的實施例包括使用智慧手機應用程式確定測試受試者的瞳距或PD的裝置和方法。The disclosed embodiments include devices and methods for determining the interpupillary distance or PD of a test subject using a smartphone application.
公開的實施例可以測量老花眼和/或充當驗光儀,具有可調的球鏡和柱鏡值。The disclosed embodiments can measure presbyopia and/or act as a refractometer, with adjustable spherical and cylindrical values.
以下詳細描述針對本發明的某些特定實施例。然而,本發明可以以權利範圍書及其等同物所定義和覆蓋的多種不同方式來體現。在該描述中,參考附圖,其中,相同的部件始終用相同的標號表示。The following detailed description is directed to certain specific embodiments of the present invention. However, the present invention can be embodied in many different ways defined and covered by the scope of rights and its equivalents. In this description, reference is made to the drawings, in which the same parts are always denoted by the same reference numerals.
除非在本說明書或權利範圍書中另有說明,否則說明書和權利範圍書中使用的所有術語將具有本領域技術人員通常賦予這些術語的含義。Unless otherwise stated in this specification or the scope of rights, all terms used in the specification and the scope of rights shall have the meanings usually assigned to these terms by those skilled in the art.
除非上下文另外明確要求,否則在整個說明書和權利範圍書中,詞語“包括”、“包含”等應理解為包含性含義,而不是排他性或窮舉性含義;也就是說,在某種意義上“包括但不限於”。使用單數或複數的詞也分別包括複數或單數。另外,當在本申請中使用時,詞語“本文”、“上文”、“下文”和類似含義的詞語應指本申請整體,而不是本申請的任何特定部分。Unless the context clearly requires otherwise, throughout the specification and the scope of rights, the words "including", "including", etc. should be understood as inclusive rather than exclusive or exhaustive meanings; that is, in a certain sense "including but not limited to". Words using the singular or plural number also include the plural or singular number respectively. In addition, when used in this application, the words "herein", "above", "below" and words of similar meaning shall refer to this application as a whole, rather than any specific part of this application.
圖1描繪了所公開的實施例100,有時被稱為EyeQue InsightTM、光學設備或雙目觀察器。通常,所公開的實施例提供了緊湊、便攜和經濟的方式來複製標準視覺測試。在標準視覺測試中,測試受試者位於距離視力表20英尺的位置。使用所公開的實施例,通過使用雙目觀察器和智慧手機來複製相同的體驗和測試結果。與現有技術不同,本公開的實施例與諸如雲端系統的電子儲存介質無縫集成。通常,所公開的元件被封裝在外殼200中。Figure 1 depicts the disclosed
圖2描繪了透視圖,其示出了前景中的泡沫墊210的條。Figure 2 depicts a perspective view showing the strips of
圖3描繪了俯視圖,其示出了PD旋鈕242,其用於設置用戶的估算的瞳距或PD。通過查看顯示在智慧手機上的標記,所公開的實施例允許用戶旋轉PD旋鈕242,以將鏡筒之間的間隔對準用戶的PD。測得的PD顯示在PD輪240上。Figure 3 depicts a top view showing the
圖4描繪了所公開的實施例的仰視圖。Figure 4 depicts a bottom view of the disclosed embodiment.
圖5描繪了右側視圖,且6描繪了左側視圖。Figure 5 depicts a right side view, and 6 depicts a left side view.
圖7描繪了正視圖,且圖8示出了後視圖。Fig. 7 depicts a front view, and Fig. 8 shows a rear view.
圖9描繪了將智慧手機400或其他個人電子設備附接到該設備的背側的前側透視圖。帶410或其他緊固件可用於將手機固定到外殼。Figure 9 depicts a front perspective view of a
圖10描繪了所公開的實施例的爆炸圖,其可以包括透鏡系統300,該透鏡系統300包括第一透鏡320或第一組透鏡以及第二透鏡360或第二組透鏡。通常,透鏡系統通過使用需小於11英寸左右的系統來光學類比需要20英尺空間的現有技術視覺測試。第一和第二組透鏡固定在透鏡筒250內,並且透鏡筒沿水平面移動,以與用戶的PD或估算的PD相稱。用戶的PD是通過在智慧手機上呈現圖像而獲得的,並且筒之間的距離已根據使用者的PD進行了調整。用戶可以調節PD旋鈕242,並且可以通過觀看PD輪來觀察匯出的PD值或估算的PD值。Figure 10 depicts an exploded view of the disclosed embodiment, which may include a lens system 300 including a
從使用者的眼睛或在鄰近位置開始,視窗205可以包括透明的平坦表面,該平坦表面將碎屑排除在系統之外。緊固件220可以將面插入件222附接在外殼200上。視窗205可以佈置在面插入物之上或之內,並且視窗可以與面筒225對中或對準,其中面筒與相應的透鏡筒250對準。Starting from the user's eyes or at an adjacent location, the
銷導向件227可以設置在面插入件222上,銷導向件通過PD輪240和PD旋鈕242軸向連接。面筒的外端可以在筒蓋245限定的空隙內對準,由筒蓋245限定的空隙可以與第一組透鏡對準或可以幫助保持第一組透鏡,第二組透鏡360可被保持在透鏡筒250的近端中或與之對準,透鏡筒的遠端可保持第一組透鏡320或與第一組透鏡320對準。孔片255可以限定孔空隙,其中孔空隙對準第一組透鏡320,齒輪蓋257可以固定到筒的遠端,並且前蓋260可以固定在齒輪蓋上以及外殼200內或外殼200上,微吸帶(Micro suction tape)265或其他類型的緊固件可以施加到前蓋260的遠側,前蓋的遠側具有平坦的精加工表面,以與智慧手機或其他電子設備的螢幕的平坦表面相稱。The
圖11描繪了面插入件222和相關組件的放大圖。Figure 11 depicts an enlarged view of the
圖12描繪了外殼、泡沫墊210的條、PD旋鈕242和PD輪240的放大圖。PD輪可包括標誌或標記,其指示相應於用戶對PD旋鈕242的調整而獲得的PD或估算的PD。FIG. 12 depicts an enlarged view of the housing, the strip of
圖13描繪了所公開的實施例的更遠側組件的放大圖。Figure 13 depicts an enlarged view of the more distal assembly of the disclosed embodiment.
圖14描繪了由公開的透鏡系統獲得的視線或視射線。視射線可以在智慧手機的螢幕表面405上開始或由其生成,視線或智慧手機圖像可以進入第一透鏡320的非球面325,然後,光將進入第一透鏡的凹面330。由於第一透鏡的作用,發生了縮小,從而能夠生產光學呈現的視標,該視標與在20英尺處以實物紙形式呈現的視標具有相同的視線。Figure 14 depicts the line of sight or line of sight obtained by the disclosed lens system. The line of sight can start on or be generated by the
最後,圖像或光進入第二透鏡360,第二透鏡包括球面凸透鏡。然後,圖像或光進入眼透鏡620,然後進入視網膜640。Finally, the image or light enters the
圖15描繪了典型遠距離視力測試,其中受試者和視力表距離20英尺。Figure 15 depicts a typical distance vision test in which the subject is 20 feet away from the eye chart.
圖16描繪了在20英尺處的傳統眼睛測試與所公開的實施例的光學器件的比較。第一透鏡320與第二透鏡360的巧妙組合產生了緊湊且便攜的視力測試系統,其實現了與現有技術的20英尺測試相同的結果。因此,從公開的實施例觀看的圖像具有與在現有技術20英尺視覺測試中觀看的圖像相同的光學品質。Figure 16 depicts a comparison of a traditional eye test at 20 feet with the optical device of the disclosed embodiment. The clever combination of the
圖17描繪了第一透鏡320或靠近智慧手機螢幕的透鏡,其中第一透鏡具有包括非球面的第一側或前側325。第一透鏡320可以具有包括凹面的背側。第二透鏡360可以包括球面凸透鏡。Figure 17 depicts a
圖18描繪了現有技術的桶形畸變。公開使用第一透鏡的前非球面有助於減少現有技術的桶形畸變。Figure 18 depicts the barrel distortion of the prior art. Disclosure of the use of the front aspheric surface of the first lens helps to reduce the barrel distortion of the prior art.
圖19描繪了通過使用公開的實施例匯出更清晰的視圖。Figure 19 depicts the export of a clearer view by using the disclosed embodiment.
在公開的實施例中,第一透鏡320具有包括非球面的前表面325,該非球面用於減少受試者使用公開的實施例100觀察到的光學畸變,例如桶形效應(barrel effect)。光學畸變可以被認為是使視線變形和/或彎曲的光學像差,從而導致如圖18例示的彎曲或模糊的圖像。通過使用具有球面的透鏡獲得圖18的圖像,其中沿著圖像的四個外部邊緣特別明顯地看到桶形畸變,四個外部筆直邊緣看起來是彎曲的,好像被在桶中壓縮一樣。這種現象有時稱為“桶形畸變(barrel distortion)”。所公開的實施例通過使用所公開的透鏡系統300克服了現有技術的桶形畸變,其中獲得了優異的結果,如圖19例示。In the disclosed embodiment, the
通過使用所公開的實施例,克服了現有技術中的不足,例如,桶形畸變的不足和測試受試者與視力表之間需要20英尺距離的不足。如圖19所示的公開的實施例的優異結果包括顯著減少的桶形畸變,其中四個外部邊緣看起來是筆直的或幾乎是筆直的。By using the disclosed embodiments, the deficiencies in the prior art are overcome, for example, the lack of barrel distortion and the lack of a distance of 20 feet between the test subject and the eye chart. The excellent results of the disclosed embodiment as shown in FIG. 19 include significantly reduced barrel distortion, where the four outer edges appear to be straight or almost straight.
在現有技術中,傳統的透鏡被製成具有球面。已知球面透鏡會引入光學像差,例如桶形畸變。與使用複雜的球面透鏡組相比,非球面輪廓的單個表面可以大大減少像差。在一些當前公開的實施例中,第一透鏡320的第一表面325被製成具有非球面輪廓,這意味著曲率半徑在整個直徑上不是恒定的。非球面的物質功能是減少光學畸變並再現如以20英尺的距離觀看現有技術的視力表時相同的清晰圖像。第一透鏡320的第二表面330具有凹球形輪廓,第一透鏡320提供縮小的光焦度以產生比在智慧手機的螢幕上顯示的圖像小約三倍的虛擬影像。In the prior art, the conventional lens is made to have a spherical surface. It is known that spherical lenses can introduce optical aberrations, such as barrel distortion. Compared with the use of a complex spherical lens group, a single surface with an aspheric profile can greatly reduce aberrations. In some currently disclosed embodiments, the
第二透鏡360可以包括球面凸透鏡。第二透鏡360從由第一透鏡320創建的第一虛擬影像或光學圖像創建另一虛擬影像或光學圖像,其在距眼睛20英尺的距離處。第二透鏡360可以具有約100的放大光焦度。The
總體而言,公開的光學系統可以具有約30的放大倍率。因此,與用於20英尺視覺測試的現有技術紙視力表的字母大小相比,在所附接的智能手機上和由其顯示的字母大小約小30倍。In general, the disclosed optical system may have a magnification of about 30. Therefore, compared to the letter size of the prior art paper eye chart used for the 20-foot vision test, the letter size displayed on and by the attached smartphone is about 30 times smaller.
圖20公開了迄今為止已知的用於實現第一透鏡320的非球面325的最佳模式。曲線326描繪了非球面即第一表面325的曲率值,水準直線331描繪了第一透鏡的球面或第二表面330的曲率值。水準x軸以毫米為單位測量距透鏡中心的距離,而垂直y軸以毫米為單位測量透鏡的曲率。FIG. 20 discloses the best mode for realizing the
圖21A描繪了第一透鏡的正視圖。第一透鏡可具有14 mm的外徑和12 mm的內徑。Figure 21A depicts a front view of the first lens. The first lens may have an outer diameter of 14 mm and an inner diameter of 12 mm.
圖21B描繪了圖21A的截面圖。圖21B示出了第一透鏡的非球面325,並且還示出了第一透鏡的凹背面330,外部距離可以是4.71 mm,內部距離可以是2 mm。Figure 21B depicts a cross-sectional view of Figure 21A. FIG. 21B shows the
圖21C描繪了第一透鏡的透視圖。Figure 21C depicts a perspective view of the first lens.
圖22A描繪了第二透鏡360的正視圖,其可以具有12 mm的外徑和11mm的內徑。Figure 22A depicts a front view of the
圖22B描繪了第二透鏡的側視圖,其中第二透鏡可以具有2.8 mm的寬度。Figure 22B depicts a side view of the second lens, where the second lens may have a width of 2.8 mm.
圖22C描繪了第二透鏡360的透視圖。FIG. 22C depicts a perspective view of the
圖23描繪了在智慧手機螢幕上顯示的諸如“E”的圖像。Figure 23 depicts an image such as "E" displayed on the screen of a smartphone.
圖24描繪了從所公開的實施例100流到雲端儲存700或通訊系統的資訊的流程圖,其中所收集的資料由多個資料庫系統或外部系統儲存或使用,該多個資料庫系統或外部系統可以包括使用者測量資料庫720、眼睛保健專業人員資料庫740和眼鏡生產設施資料庫740。Figure 24 depicts a flow chart of information flowing from the disclosed
圖25描繪了透鏡和視線,其中增加了用於屈光矯正和其他功能的可調節透鏡系統800。Figure 25 depicts the lens and line of sight, with an
參考圖26,公開的實施例基於雙目觀察器設備,該雙目觀察器設備允許將測試圖像投影到受試者的眼睛中。它可以將單一甚至可能不同的圖像投影到受試者的每隻眼睛,用於生成圖像的顯示器可以是附接設備的智慧手機顯示器,或者是設備內置的螢幕,例如,可以將液晶顯示器(LCD)內置到在光學系統的物件平面中的設備中。可替代地,OLED、空間光調製器(SLM)或LED陣列可以用於投影圖像。Referring to Figure 26, the disclosed embodiment is based on a binocular viewer device that allows the test image to be projected into the subject's eyes. It can project a single or possibly different image to each eye of the subject. The display used to generate the image can be a smartphone display attached to the device, or a built-in screen in the device, for example, a liquid crystal display (LCD) is built into the device in the object plane of the optical system. Alternatively, OLEDs, spatial light modulators (SLM) or LED arrays can be used to project images.
在本發明的一個實施例中,該設備由如圖26所示的兩個光學器具構成,每隻眼睛一個。In one embodiment of the present invention, the device is composed of two optical devices as shown in FIG. 26, one for each eye.
圖27呈現了公開的光學器具。在本發明的該實施方式中,來自顯示器的圖像借助於雙透鏡組被投影到物件受試者視網膜上,透鏡構造成使得與物件眼睛的光學系統一起,視網膜圖像平面與用於生成測試圖像的顯示器結合。在本發明的一個示例實施例中,來自顯示器的光進一步通過第一透鏡發散,然後通過第二透鏡會聚,該設置在對應於顯示器上的不同場點的不同角度方向上產生平行光束。當這些光束入射到角膜上並穿過瞳孔時,它們會聚在視網膜上,從而在視網膜上形成顯示器的縮小圖像。Figure 27 presents the disclosed optical appliance. In this embodiment of the invention, the image from the display is projected onto the subject’s retina by means of a two-lens group, and the lens is configured such that together with the optical system of the subject’s eye, the retinal image plane is used to generate the test The image display is combined. In an exemplary embodiment of the present invention, the light from the display is further diverged through the first lens and then condensed by the second lens, which is arranged to generate parallel light beams in different angular directions corresponding to different field points on the display. When these light beams are incident on the cornea and pass through the pupil, they converge on the retina to form a reduced image of the display on the retina.
參見圖28,該設備的雙目構造能用於深度感知和3D視覺。這可以通過利用感知和立體視覺以及聚散度之間的關係來“觸發”人類視覺系統(大腦中的視覺皮層)以深度感知來實現。立體視覺(通過立體視覺獲得的深度感知)是基於兩隻眼睛的圖像之間在水準方向上的差異,當一個人聚焦在一個物件上時,眼睛會會聚以將該物件放置在視場的中心。因此,左眼和右眼上的圖像由於周圍物件的角度視差而不同,由於此水準角度視差導致的接收場不同,因此視覺皮層中的雙目細胞檢測到這種差異時,大腦會將其與深度相關聯。圖28顯示了每隻眼睛看到的焦點物件和前面的另一物件的圖像。See Figure 28, the binocular structure of the device can be used for depth perception and 3D vision. This can be achieved by using the relationship between perception and stereo vision and vergence to "trigger" the human visual system (the visual cortex in the brain) for depth perception. Stereo vision (the depth perception obtained through stereo vision) is based on the difference in the horizontal direction between the images of the two eyes. When a person focuses on an object, the eyes will converge to place the object in the center of the field of view . Therefore, the images on the left eye and the right eye are different due to the angular parallax of the surrounding objects. Due to the level of angular parallax, the receiving field is different. Therefore, when the binocular cells in the visual cortex detect this difference, the brain will recognize it. Associated with depth. Figure 28 shows the image of the focal object seen by each eye and another object in front of it.
可以由97.5%的人口檢測到的預期最小水準視差為2.3弧分,而80%的人口甚至可以檢測到低至30弧秒的視差。The expected minimum level of parallax that can be detected by 97.5% of the population is 2.3 arc minutes, and 80% of the population can even detect parallax as low as 30 arc seconds.
立體視覺可以分為兩個方面:粗略和精細。粗略的立體視覺通常與周圍的視覺有關,並導致人普遍沉浸在環境中,它主要關注動態和低空間頻率的物件。精細的立體視覺可以確定物件在中央視覺區域的深度。它可以實現兩隻眼睛的圖像之間的視覺皮層圖像融合,從而可以感知連貫的三維圖像。Stereo vision can be divided into two aspects: rough and fine. Rough stereo vision is usually related to the surrounding vision and causes people to be generally immersed in the environment. It mainly focuses on dynamic and low spatial frequency objects. Fine stereo vision can determine the depth of the object in the central visual area. It can realize the visual cortex image fusion between the images of the two eyes, so that a coherent three-dimensional image can be perceived.
參考圖29,為了防止複視,允許將大腦中每隻眼睛的單獨圖像作為單個圖像進行調和,並改善設備中的視覺品質;該設備可以對使用者的瞳距進行機械調整。該機構可以是手動的(例如,轉輪和齒輪、滑塊)或自動的(例如,使用電動機)。顯示器上的圖像還需要針對該距離進行調整,以使FoV的中心與用戶的瞳孔中心直接在一條直線上,如其光軸,到瞳距的輸入可以具有手動輸入的外部測量或通過應用程式的自動測量。Referring to Figure 29, in order to prevent double vision, it is allowed to reconcile the individual images of each eye in the brain as a single image and improve the visual quality in the device; the device can mechanically adjust the user's interpupillary distance. The mechanism can be manual (for example, wheels and gears, sliders) or automatic (for example, using electric motors). The image on the monitor also needs to be adjusted for this distance, so that the center of the FoV and the center of the user’s pupil are directly in a straight line, such as its optical axis. The input to the pupil distance can be manually input by external measurement or through the application Automatic measurement.
測試要求用戶以各種形式輸入。這可以通過使用智慧手機的觸控式螢幕、或使用設備本身的控制項或使用外部控制器來實現。The test requires user input in various forms. This can be achieved by using the touch screen of a smartphone, or by using the controls of the device itself, or by using an external controller.
該設備還可以結合可變透鏡系統以允許屈光矯正。在本發明的一個實施例中,該透鏡可以代替最接近用戶眼睛的透鏡。在另一種實施方式中,可以將可變透鏡添加到使用者眼睛與設備的第一透鏡之間的設備中;在該設備的另一種實施方式中,可以在設備中的空間允許的情況下將透鏡實施在另一位置。在這種情況下,光學設計和矯正將需要進行額外的校準或計算,以允許實際用戶眼鏡片數量或處方與可變透鏡的焦度之間的差異,焦度取決於透鏡位置。The device can also incorporate a variable lens system to allow refractive correction. In an embodiment of the present invention, the lens can replace the lens closest to the user's eye. In another embodiment, a variable lens can be added to the device between the user’s eye and the first lens of the device; in another embodiment of the device, it can be added if the space in the device allows The lens is implemented in another position. In this case, the optical design and correction will require additional calibration or calculations to allow for the difference between the number or prescription of the actual user's spectacle lenses and the power of the variable lens, which depends on the lens position.
可變透鏡可以以多種方式構造。在本發明的實施例中,透鏡可以是液體透鏡。在設備的其他實施例中,透鏡可以基於本文和已經通過引用併入本文的相關專利申請提出的可變透鏡。在本發明的實施例中的可變透鏡的另一實施方式可以是變焦透鏡與Stokes透鏡對的組合,以用於控制柱鏡和軸位(散光)。The variable lens can be constructed in many ways. In an embodiment of the present invention, the lens may be a liquid lens. In other embodiments of the device, the lens may be based on the variable lens proposed herein and related patent applications that have been incorporated herein by reference. Another implementation of the variable lens in the embodiment of the present invention may be a combination of a zoom lens and a Stokes lens pair for controlling the cylindrical lens and the axial position (astigmatism).
視覺測試和示例實施方式的描述:Description of visual test and example implementation:
視力vision
有多種可用於評估個人視力的VA測試。最普遍的是Snellen測試(圖30)。There are a variety of VA tests that can be used to assess personal vision. The most common is the Snellen test (Figure 30).
進一步參考圖30,每行字母對應於標準健康視網膜上的5弧分預期距離。每個字母的線寬設計為1弧分。預期健康人眼解析度在30 弧秒和1弧分之間。Snellen表通常使用20分數標記法(也稱為Snellen標記法),其中20/20是正常視力,即具有正常視力的人在20英尺將看到的東西。類似地,例如20/50是有視力問題的人在20英尺處看到的東西等同於正常視力人員在50英尺處看到的東西。在這種情況下,該行中字母的大小將對應於50英尺處5弧分的大小。另外,符號包括公制版本,它是6個基本分數,表示6米而不是20英尺;logMAR標記法是最小角度解析度(MAR)以10為底的對數,它對應於表上符號的實際角度實體。With further reference to Figure 30, each row of letters corresponds to an expected distance of 5 arc minutes on a standard healthy retina. The line width of each letter is designed to be 1 arc minute. The expected resolution of a healthy human eye is between 30 arc seconds and 1 arc minute. The Snellen table usually uses the 20 score notation (also known as the Snellen notation), where 20/20 is normal vision, that is, what a person with normal vision will see at 20 feet. Similarly, for example, 20/50 means that what a person with vision problems sees at 20 feet is equivalent to what a person with normal vision sees at 50 feet. In this case, the size of the letters in the row will correspond to the size of 5 arc minutes at 50 feet. In addition, the symbol includes the metric version, which is 6 basic fractions, which means 6 meters instead of 20 feet; logMAR notation is the logarithm of the minimum angle resolution (MAR) with the
Snellen表由於其固有的設計而具有明顯的缺點。Snellen table has obvious shortcomings due to its inherent design.
每行有不同數量的字母,使得計分不規範。Each line has a different number of letters, making the scoring irregular.
字母具有多種可讀性(例如,D、C、O比A、J、L更容易閱讀)。Letters have multiple readability (for example, D, C, O are easier to read than A, J, L).
字母之間的距離不是標準化的,並且可能導致擁擠(字母之間的輪廓相互作用使得其更難以閱讀)。The distance between letters is not standardized and can cause crowding (the interaction of contours between letters makes it harder to read).
缺乏字體標準化–不同的製造商可以為表使用不同的字體。Lack of font standardization-different manufacturers can use different fonts for the table.
參考圖31,開發了一些替代方法,包括ETDRS早期治療糖尿病性視網膜病變研究,目前已被FDA用作黃金標準(golden standard),並且在許多研究中顯示出更高準確性。但是,在比較ETDRS和Snellen結果時應格外小心,因為結果表明ETDRS將VA提高0.2 logMAR,對於視力更低下的甚至提高得更高。Referring to Figure 31, some alternative methods have been developed, including ETDRS early treatment of diabetic retinopathy, which has been used by the FDA as the gold standard (golden standard) and has shown higher accuracy in many studies. However, care should be taken when comparing the results of ETDRS and Snellen, as the results show that ETDRS increases VA by 0.2 logMAR, which is even higher for those with lower vision.
參考圖32A和32B,Landolt C(圖32A)測試和文盲/翻滾E(illiterate/tumbling E)(圖32B)測試形成為VA測試的標準化形式。Referring to Figures 32A and 32B, the Landolt C (Figure 32A) test and the illiterate/tumbling E (Figure 32B) test are formed as standardized forms of the VA test.
這些測試中的任何一種都可以在之前提出的用於VA測試的設備中使用。在本發明的實施例中,向用戶呈現減小的翻滾E的大小,並要求使用者指示字母的開口端朝向哪個方向,例如,可以通過在智慧手機螢幕上在該方向滑動或通過使用帶有適當按鈕的單獨控制器來進行指示。指示的另一種形式可以包括語音辨識,其中應用程式通過解密使用者的口頭回答來獲取輸入,在這種類型的輸入中,假設它足夠可靠,則可以在患者閱讀顯示器上顯示的字母時使用更常規的VA測試。Any of these tests can be used in the previously proposed equipment for VA testing. In the embodiment of the present invention, the user is presented with a reduced size of the roll E, and the user is required to indicate which direction the open end of the letter faces. Separate controller with appropriate buttons for instructions. Another form of instruction can include voice recognition, in which the application obtains input by decrypting the user’s verbal answer. In this type of input, provided it is reliable enough, it can be used more when the patient reads the letters displayed on the display. Routine VA test.
對比敏感度Contrast sensitivity
對比敏感度是個人區分淺色和深色的能力。對比敏感度是視覺功能的非常重要的度量,它表示在各種條件下(例如,低光、霧、眩光)一個人區分物件的能力,夜間駕駛是一個突出的例子,其中對比敏感度是一個重要的度量。即使一個人的視力為20/20,他們的眼睛或健康狀況也可能會降低其對比敏感度,並使你的視力感到不佳。低對比度敏感度暗示各種眼部疾病,例如與黃斑色素光密度(MPOD)相關的白內障和視網膜病變。Contrast sensitivity is the ability of an individual to distinguish between light and dark colors. Contrast sensitivity is a very important measure of visual function. It represents a person’s ability to distinguish objects under various conditions (for example, low light, fog, glare). Driving at night is a prominent example, in which contrast sensitivity is an important one. measure. Even if a person’s vision is 20/20, their eyes or health conditions may reduce their contrast sensitivity and make your vision feel poor. Low contrast sensitivity suggests various eye diseases, such as cataracts and retinopathy associated with macular pigment optical density (MPOD).
對比靈敏度測試測量您區分亮與暗(對比)的漸進增量的能力。所利用的最常見的對比敏感度測試是Pelli-Robson表(圖33)。與VA測試類似,要求受試者閱讀表中的字母,其中不同行對應於越來越低的對比度。The contrast sensitivity test measures your ability to distinguish between progressive increments of light and dark (contrast). The most common contrast sensitivity test used is the Pelli-Robson table (Figure 33). Similar to the VA test, the subject is asked to read the letters in the table, where different rows correspond to lower and lower contrast.
該測試也可以使用Landot C或翻滾 E來實施(圖34A和35B)The test can also be implemented using Landot C or Roll E (Figure 34A and 35B)
示例實施方式能向使用者呈現字母一次(左眼一次,右眼一次,兩隻眼睛一起一次),然後將要求使用者指示字母的開口端的方向。然後,將以降低字母的對比度顯示。本發明的實施方式因為這些條件由顯示器控制而具有最佳照明條件的優點,。The exemplary embodiment can present the letter to the user once (once for the left eye, once for the right eye, and once for both eyes), and then will ask the user to indicate the direction of the open end of the letter. Then, the letters will be displayed with reduced contrast. The embodiments of the present invention have the advantage of optimal lighting conditions because these conditions are controlled by the display.
參考圖35,對對比敏感度執行更嚴格測試還取決於所呈現的刺激空間頻率。這種測試的例子是正弦波光柵測試(sine-wave grating test),圖35中向受試者呈現了一組具有不同空間頻率和不同對比度的光柵。With reference to Figure 35, performing a more stringent test on contrast sensitivity also depends on the spatial frequency of the stimulus presented. An example of such a test is the sine-wave grating test. In Figure 35, a group of gratings with different spatial frequencies and different contrasts are presented to the subject.
參考圖36,然後例如要求受試者指示光柵的方向,可以結合空白圖像以做進一步指示,然後將測試結果繪製為對比頻率圖。Referring to FIG. 36, for example, the subject is asked to indicate the direction of the grating, and the blank image can be combined for further instructions, and then the test result is drawn as a comparison frequency map.
色覺Color vision
參考圖37A至37C,如名稱所示,色覺測試測量了個人看到和區分顏色的能力。最常用的色覺測試是Ishihara板測試。在該測試中,不同顏色的數位由圓圈組成,該圓圈繪製在背景顏色的其他圓圈中,圓圈的顏色不同以形成各種對比度(主要是紅綠色,但可用其他組合),而每次測試之間圓圈的亮度和對比度也有所不同,以便對測試進行微調。圖37A至C示出了Ishihara色覺測試的一些示例。Referring to Figures 37A to 37C, as the name suggests, the color vision test measures an individual's ability to see and distinguish colors. The most commonly used color vision test is the Ishihara board test. In this test, the digits of different colors are composed of circles, which are drawn in other circles in the background color. The colors of the circles are different to form various contrasts (mainly red and green, but other combinations can be used), and between each test The brightness and contrast of the circles are also different in order to fine-tune the test. Figures 37A to C show some examples of Ishihara color vision tests.
可以通過改變字母的顏色和背景的顏色來測試各種類型的色盲。更深入的分析還可以包括顏色飽和度和對比度。本發明的實施方式因為具有最佳照明條件和精確顏色限定的優點,並由顯示器控制。You can test various types of color blindness by changing the color of the letters and the color of the background. More in-depth analysis can also include color saturation and contrast. The embodiment of the present invention has the advantages of optimal lighting conditions and precise color definition, and is controlled by a display.
FoVFoV
參考圖38A和39B,FoV測試的示例基於自動視野檢查測試,該測試要求設備所用的FoV非常大(> 120deg,甚至> 180deg)。如圖38A和38B所述,該視場是基於對用戶視場的理解,。Referring to Figures 38A and 39B, an example of the FoV test is based on an automatic visual field inspection test, which requires the equipment to use a very large FoV (> 120deg, even> 180deg). As shown in Figures 38A and 38B, the field of view is based on the understanding of the user's field of view.
在圖39A中示出了本發明設計建議的實施例。An embodiment of the design proposal of the present invention is shown in FIG. 39A.
發明所提出的另一種實施方式是基於圖27的光學器具,其中在螢幕和第一透鏡之間或在眼睛和第二透鏡之間添加了一個透鏡(如圖39B和39C所示)。此示例最終視場可以是120度。Another embodiment proposed by the invention is based on the optical device of Fig. 27, in which a lens is added between the screen and the first lens or between the eye and the second lens (as shown in Figs. 39B and 39C). The final field of view for this example can be 120 degrees.
參考圖40,呈現了本發明測試程式的實施方式。測試本身非常簡單:在用戶的FoV中的不同位置呈現照明符號形式的刺激,並要求用戶指出是否可以看到該符號。該符號可以為不同的形狀、大小、顏色和亮度。測試特性應予以考慮,除了符號本身外,還包括與背景的對比、刺激頻率和持續時間。Referring to FIG. 40, an embodiment of the test program of the present invention is presented. The test itself is very simple: present stimuli in the form of illuminated symbols at different locations in the user's FoV and ask the user to indicate whether they can see the symbol. The symbol can be of different shapes, sizes, colors and brightness. The characteristics of the test should be considered, in addition to the symbol itself, it also includes contrast with the background, stimulation frequency and duration.
本發明提出的另一實施方式包括圖27的光學系統,其具有相對有限的視場。接著構造測試以對用戶的視場進行分段測試,通過對螢幕不同位置處的注視點執行圖40的程式來完成此操作,將使視場測量在任何方向上有效地增加三倍的效果。Another embodiment proposed by the present invention includes the optical system of FIG. 27, which has a relatively limited field of view. Next, construct a test to test the user's field of view in segments. This is accomplished by executing the program in Figure 40 on the gaze points at different positions on the screen, which will effectively triple the field of view measurement in any direction.
參考圖41,另一種實施方式的FoV測量中心的視場缺陷為Amsler網格(Amsler Grid)(如圖40所示)。在此測試中,用戶每隻眼睛分別單獨地聚焦在網格中間的點,並指出其周圍任何畸變、褪色或部分缺失的線。Referring to FIG. 41, the field of view defect of the FoV measurement center of another embodiment is an Amsler Grid (as shown in FIG. 40). In this test, each eye of the user is individually focused on a point in the middle of the grid and points out any distorted, faded, or partially missing lines around it.
深度感知(立體視覺)Depth perception (stereoscopic vision)
該測試的最簡單形式是以菱形配置的四個相似符號的呈現(如圖42所示)。The simplest form of this test is the presentation of four similar symbols in a diamond configuration (as shown in Figure 42).
其中一個圖像呈現為與其他三個圖像深度不同(使用上文針對3D視覺提出的方法)。然後,將要求使用者指示哪個圖像更近。將重複多組,各組的形狀之間的距離對比不同(例如,不同的角度視差在30 arcsec和1200 arcsec之間)。One of the images is presented with a different depth from the other three images (using the method proposed above for 3D vision). Then, the user will be asked to indicate which image is closer. Multiple groups will be repeated, and the distance contrast between the shapes of each group is different (for example, the parallax of different angles is between 30 arcsec and 1200 arcsec).
參考圖43,深度感知測試的另一形式是隨機點測試,其中將具有可以使用立體視覺檢測的特徵的隨機點的圖像呈現給使用者(在圖43中呈現H形的示例)。可以將測試設計為包括Landolt C或翻滾E,然後可以要求用戶指示給定提示的方向,還可以實施其他測試,包括例如Titmus立體視覺測試。Referring to FIG. 43, another form of the depth perception test is a random point test, in which an image of random points with features that can be detected using stereo vision is presented to the user (an H-shaped example is shown in FIG. 43). The test can be designed to include Landolt C or Roll E, then the user can be asked to indicate the direction of a given prompt, and other tests can be implemented, including, for example, the Titmus stereo vision test.
頻率測量Frequency measurement
該測試允許指示潛在的神經損傷(包括例如早期青光眼)和其他視覺障礙。This test allows indication of potential nerve damage (including, for example, early glaucoma) and other visual disturbances.
在該測試的實施例中,向用戶呈現兩條棒,這些以不同的頻率閃爍,並要求使用者指出他們看到多少條棒。在某些頻率下,有視覺和神經問題的使用者會看不到線條,或者看到的是四條而不是兩條。In this example of the test, the user is presented with two bars, these flashing at different frequencies, and the user is asked to indicate how many bars they see. At some frequencies, users with visual and neurological problems will not see the lines, or see four instead of two.
本發明的實施例的以上詳細描述並非旨在窮舉或將本發明限制為上文公開的形式。儘管上文出於目的性說明描述了本發明的特定實施例和示例,但如相關領域的技術人員所認識到的,在本發明的範圍內可以進行各種等效修改。例如,雖然步驟以給定順序呈現,但是替代實施例可以執行具有不同順序的步驟。本文提供的本發明可以應用於其他系統,而不僅是本文描述的系統。本文描述的各種實施例可以組合以提供進一步的實施例,根據本文詳細描述,可以對本發明進行這些和其他改變。The above detailed description of the embodiments of the present invention is not intended to be exhaustive or to limit the present invention to the form disclosed above. Although specific embodiments and examples of the present invention have been described above for purpose of illustration, as recognized by those skilled in the relevant art, various equivalent modifications can be made within the scope of the present invention. For example, although the steps are presented in a given order, alternative embodiments may perform the steps in a different order. The invention provided herein can be applied to other systems, not just the system described herein. The various embodiments described herein can be combined to provide further embodiments, and these and other changes can be made to the present invention based on the detailed description herein.
所有以上參考文獻以及美國專利和申請均通過引用併入本文。如有需要,可以修改本發明的各方面以採用上述各種專利和申請的系統、功能和概念,以提供本發明進一步的實施例。All of the above references and U.S. patents and applications are incorporated herein by reference. If necessary, various aspects of the present invention can be modified to adopt the systems, functions, and concepts of the above-mentioned various patents and applications to provide further embodiments of the present invention.
可以根據以上詳細描述對本發明進行這些和其他改變,一般而言,不應將以下權利範圍中使用的術語理解為將本發明限制為說明書中公開的特定實施例,除非以上描述明確定義了這些術語。因此,本發明的實際範圍涵蓋所公開的實施例以及在申請權利範圍書下實踐或實現本發明所有等效方式。These and other changes can be made to the present invention based on the above detailed description. Generally speaking, the terms used in the following scope of rights should not be construed as limiting the present invention to the specific embodiments disclosed in the specification, unless the above description clearly defines these terms . Therefore, the actual scope of the present invention covers the disclosed embodiments and all equivalent ways of practicing or implementing the present invention under the scope of the application.
雖然以下某些申請權利範圍的形式呈現了本發明某些方面,但是發明人以任何數量的申請權利範圍的形式構思了本發明各個方面。Although some aspects of the present invention are presented in the form of certain claims below, the inventors have conceived various aspects of the present invention in the form of any number of claims.
100:總體上公開的實施例
200:外殼
205:窗口
210:泡沫墊
220:緊固件
222:面插入件
225:面筒
227:銷導向件
240:PD輪
242:PD旋鈕
245:筒蓋
247:鉤
250:透鏡筒
253:小齒輪
254:PD傳動裝置
255:孔
257:齒輪蓋
260:前蓋
265:微吸帶
300:總體透鏡系統
310:視射線的近側或近眼點
320:第一透鏡
325:第一表面或前表面包括第一透鏡320的非球面
330:第二表面或背表面包括第一透鏡320的凹面
360:第二透鏡或球面凸透鏡
380:視射線的遠側或遠眼點
400:智慧手機或其它個人電子設備
405:智慧手機的顯示幕或螢幕表面
410:將智慧手機固定到外殼的帶
500:中央圖像系統,能用3D實施
600:人眼
620:眼透鏡
640:視網膜
700:雲端儲存/通訊系統
720:使用者資訊資料庫
740:眼睛保健專業人員資料庫
760:眼鏡生產資料庫
800:用於屈光矯正和其他功能的可調透鏡系統通過結合附圖閱讀以下詳細說明,本發明的這些和其他方面將變得顯而易見
100: embodiment disclosed in general
200: shell
205: Window
210: foam pad
220: Fastener
222: Face Insert
225: Noodle Tube
227: pin guide
240: PD wheel
242: PD knob
245: Cylinder cover
247: hook
250: lens barrel
253: Pinion
254: PD transmission
255: hole
257: Gear Cover
260: front cover
265: Micro suction belt
300: Overall lens system
310: Near or near eye point of visual ray
320: first lens
325: The first surface or front surface includes the aspheric surface of the
專利或申請檔包含至少一張以彩色著色附圖。專利局將根據要求和必要費用的支付來提供帶有彩色附圖的本專利或專利申請公開的副本。The patent or application file contains at least one drawing colored in color. The Patent Office will provide a copy of this patent or patent application publication with color drawings on request and payment of necessary fees.
圖1描繪了所公開的實施例雙目觀察器的前透視示意圖。Fig. 1 depicts a front perspective schematic view of the disclosed embodiment binocular viewer.
圖2描繪了所公開的實施例的後透視示意圖。Figure 2 depicts a schematic rear perspective view of the disclosed embodiment.
圖3描繪了所公開的實施例的俯視示意圖。Figure 3 depicts a schematic top view of the disclosed embodiment.
圖4描繪了所公開的實施例的仰視示意圖。Figure 4 depicts a schematic bottom view of the disclosed embodiment.
圖5描繪了所公開的實施例的左側視示意圖。Figure 5 depicts a schematic left side view of the disclosed embodiment.
圖6描繪了所公開的實施例的右側視示意圖。Figure 6 depicts a schematic right side view of the disclosed embodiment.
圖7描繪了所公開的實施例的後視示意圖。Figure 7 depicts a schematic rear view of the disclosed embodiment.
圖8描繪了所公開的實施例的正視示意圖。Figure 8 depicts a schematic front view of the disclosed embodiment.
圖9描繪了帶有附接智慧手機的公開實施例的後透視示意圖。Figure 9 depicts a schematic rear perspective view of the disclosed embodiment with an attached smartphone.
圖10描繪了所公開的實施例的爆炸示意圖。Figure 10 depicts an exploded schematic view of the disclosed embodiment.
圖11描繪了所公開的面板和其他組件示意圖。Figure 11 depicts a schematic diagram of the disclosed panel and other components.
圖12描繪了所公開的外殼和其他元件示意圖。Figure 12 depicts a schematic diagram of the disclosed housing and other components.
圖13描繪了設置在雙目觀察器中所公開的元件示意圖。Fig. 13 depicts a schematic diagram of the disclosed elements arranged in a binocular viewer.
圖14描繪了視射線的追蹤示意圖。Figure 14 depicts a schematic diagram of the tracing of apparent rays.
圖15描繪了典型遠距離測試示意圖。Figure 15 depicts a schematic diagram of a typical remote test.
圖16描繪了所公開的測試系統與傳統系統相比較示意圖。Figure 16 depicts a schematic diagram of the comparison between the disclosed test system and the conventional system.
圖17描繪了所公開的光學系統的剖視示意圖。Figure 17 depicts a schematic cross-sectional view of the disclosed optical system.
圖18描繪了現有技術的模糊圖像示意圖。FIG. 18 depicts a schematic diagram of a blurred image in the prior art.
圖19描繪了通過使用公開的實施例的清晰圖像示意圖。FIG. 19 depicts a clear image diagram by using the disclosed embodiment.
圖20描繪了透鏡表面性質的曲線示意圖。Figure 20 depicts a schematic diagram of the surface properties of the lens.
圖21A描繪了第一透鏡的正視示意圖。FIG. 21A depicts a schematic front view of the first lens.
圖21B描繪了第一透鏡的側視示意圖。FIG. 21B depicts a schematic side view of the first lens.
圖21C描繪了第一透鏡的透視示意圖。FIG. 21C depicts a schematic perspective view of the first lens.
圖22A描繪了第二透鏡的正視示意圖。FIG. 22A depicts a schematic front view of the second lens.
圖22B描繪了第二透鏡的側視示意圖。Figure 22B depicts a schematic side view of the second lens.
圖22C描繪了第二透鏡的透視示意圖。Figure 22C depicts a schematic perspective view of the second lens.
圖23描繪了在智慧手機螢幕上生成的視力表圖像示意圖。Figure 23 depicts a schematic diagram of an eye chart image generated on the screen of a smartphone.
圖24描繪了從公開的實施例獲得的資訊流程示意圖。Figure 24 depicts a schematic diagram of the information flow obtained from the disclosed embodiment.
圖25描繪了用於屈光矯正的可調透鏡系統和其他元件示意圖。Figure 25 depicts a schematic diagram of the adjustable lens system and other components used for refractive correction.
圖26描繪了所公開的實施例示意圖。Figure 26 depicts a schematic diagram of the disclosed embodiment.
圖27描繪了所公開的透鏡系統示意圖。Figure 27 depicts a schematic diagram of the disclosed lens system.
圖28描繪了雙眼視覺的表示示意圖。Figure 28 depicts a schematic representation of binocular vision.
圖29描繪了視覺測量和記錄系統示意圖。Figure 29 depicts a schematic diagram of the vision measurement and recording system.
圖30描繪了視力表示意圖。Figure 30 depicts a schematic diagram of the eye chart.
圖31描繪了另一種視力表示意圖。Figure 31 depicts another schematic diagram of the eye chart.
圖32A至32B描繪了視力表符號示意圖。Figures 32A to 32B depict schematic diagrams of eye chart symbols.
圖33描繪了Pelli-Robson表示意圖。Figure 33 depicts a schematic diagram of the Pelli-Robson table.
圖34A和34B描繪了Landot C或翻滾的E圖示意圖。Figures 34A and 34B depict a schematic diagram of Landot C or Tumbling E diagram.
圖35描繪了正弦波光柵測試示意圖。Figure 35 depicts a schematic diagram of a sine wave grating test.
圖36描繪了對比靈敏度和空間頻率之間的比較示意圖。Figure 36 depicts a comparison diagram between contrast sensitivity and spatial frequency.
圖37A至37C描繪了Ishihara色覺測試示意圖。Figures 37A to 37C depict schematic diagrams of the Ishihara color vision test.
圖38A和38B描繪了視場示意圖。Figures 38A and 38B depict schematic views of the field of view.
圖39A至39C描繪了公開的透鏡系統示意圖。Figures 39A to 39C depict schematic diagrams of the disclosed lens system.
圖40描繪了所公開的方法步驟示意圖。Figure 40 depicts a schematic diagram of the disclosed method steps.
圖41描繪了Amsler網格示意圖。Figure 41 depicts a schematic diagram of the Amsler grid.
圖42描繪了立體視深度感知測試示意圖。Figure 42 depicts a schematic diagram of a stereoscopic depth perception test.
圖43描繪了另一種立體視覺深度感知測試示意圖。Figure 43 depicts a schematic diagram of another stereoscopic depth perception test.
245:筒蓋 245: Cylinder cover
247:鉤 247: hook
250:透鏡筒 250: lens barrel
255:孔 255: hole
260:前蓋 260: front cover
265:微吸帶 265: Micro suction belt
320:第一透鏡 320: first lens
360:第二透鏡或球面凸透鏡 360: second lens or spherical convex lens
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962811492P | 2019-02-27 | 2019-02-27 | |
US62/811,492 | 2019-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202038846A true TW202038846A (en) | 2020-11-01 |
TWI832976B TWI832976B (en) | 2024-02-21 |
Family
ID=72240047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109106238A TWI832976B (en) | 2019-02-27 | 2020-02-26 | Method and apparatus for measuring vision function |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111616672A (en) |
TW (1) | TWI832976B (en) |
WO (1) | WO2020176784A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI801174B (en) * | 2022-03-22 | 2023-05-01 | 葉豐銘 | Digital red, green and blue point light source sight mark and optometry device |
TWI801247B (en) * | 2022-05-24 | 2023-05-01 | 南臺學校財團法人南臺科技大學 | A visual field evaluation device based on a virtual reality wearable screen |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113413265A (en) * | 2021-06-24 | 2021-09-21 | 上海理湃光晶技术有限公司 | Visual aid method and system for visual dysfunction person and intelligent AR glasses |
EP4376697A1 (en) * | 2021-07-30 | 2024-06-05 | Essilor International | A device and a computer-implemented method for determining a parameter representative of a visual acuity |
TWI841948B (en) | 2022-04-14 | 2024-05-11 | 中強光電股份有限公司 | Method for operating near-eye display device, and near-eye display device |
EP4437938A1 (en) | 2023-03-27 | 2024-10-02 | Essilor International | Device and method for estimating a refractive error from measured visual acuity |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9226015D0 (en) * | 1992-12-14 | 1993-02-10 | Inst Of Ophthalmology | Visual acuity testing |
US6033076A (en) * | 1996-07-31 | 2000-03-07 | Virtual-Eye.Com, Inc. | Visual field testing via telemedicine |
US9130651B2 (en) * | 2010-08-07 | 2015-09-08 | Joseph Akwo Tabe | Mega communication and media apparatus configured to provide faster data transmission speed and to generate electrical energy |
ATE282984T1 (en) * | 2000-03-27 | 2004-12-15 | California Inst Of Techn | COMPUTER BASED THREE-DIMENSIONAL VISUAL FIELD TESTING SYSTEM AND ANALYSIS |
US8356900B2 (en) * | 2006-01-20 | 2013-01-22 | Clarity Medical Systems, Inc. | Large diopter range real time sequential wavefront sensor |
US8820931B2 (en) * | 2008-07-18 | 2014-09-02 | Doheny Eye Institute | Optical coherence tomography-based ophthalmic testing methods, devices and systems |
US20100277575A1 (en) * | 2009-04-30 | 2010-11-04 | Tetracam, Inc. | Method and apparatus for providing a 3d image via a media device |
EP2839771B1 (en) * | 2012-04-18 | 2021-09-15 | Kazuo Ichikawa | Color-viewing function measuring means and color-viewing function measurement system |
TWI579797B (en) * | 2012-08-31 | 2017-04-21 | 禾瑞亞科技股份有限公司 | Processor for image segmentation |
JP6028975B2 (en) * | 2012-12-05 | 2016-11-24 | Nltテクノロジー株式会社 | Stereoscopic image display device |
DE102014116665B4 (en) * | 2014-09-22 | 2024-07-25 | Carl Zeiss Ag | Methods and devices for determining eye refraction |
NZ773812A (en) * | 2015-03-16 | 2022-07-29 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
KR102520143B1 (en) * | 2016-07-25 | 2023-04-11 | 매직 립, 인코포레이티드 | Light field processor system |
-
2020
- 2020-02-26 TW TW109106238A patent/TWI832976B/en active
- 2020-02-27 WO PCT/US2020/020184 patent/WO2020176784A1/en active Application Filing
- 2020-02-27 CN CN202010124369.9A patent/CN111616672A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI801174B (en) * | 2022-03-22 | 2023-05-01 | 葉豐銘 | Digital red, green and blue point light source sight mark and optometry device |
TWI801247B (en) * | 2022-05-24 | 2023-05-01 | 南臺學校財團法人南臺科技大學 | A visual field evaluation device based on a virtual reality wearable screen |
Also Published As
Publication number | Publication date |
---|---|
WO2020176784A1 (en) | 2020-09-03 |
CN111616672A (en) | 2020-09-04 |
TWI832976B (en) | 2024-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11432718B2 (en) | Smart phone based virtual visual charts for measuring visual acuity | |
TWI832976B (en) | Method and apparatus for measuring vision function | |
CN110573061B (en) | Ophthalmologic examination method and apparatus | |
US20230320581A1 (en) | Computerized testing and determination of a visual field of a patient | |
US10548473B2 (en) | Optometry measuring scale | |
US9492074B1 (en) | Computerized refraction and astigmatism determination | |
CN109996483A (en) | For determining device, the method and computer program of ophthalmic refractive | |
US20220304570A1 (en) | Method and Apparatus for Measuring Vision Function | |
Pamplona | Interactive measurements and tailored displays for optical aberrations of the human eye | |
Wu | Clinical refraction | |
ES2652164B2 (en) | METHOD TO DETERMINE A PUPILAR DISTANCE OF A PERSON | |
EP4437935A1 (en) | Optometry device for testing the eyes of an individual, associated method and computer program product | |
EP4364642A1 (en) | Computer-implemented methods and devices for determining refractive errors | |
WO2022156826A1 (en) | Refraction test card and test method therefor | |
US20210015356A1 (en) | Optometer for Home Use | |
EP4364643A1 (en) | Computer-implemented methods and devices for determining refractive errors | |
Rijal | Optical and Visual Performance in Typically-sighted and Highly Aberrated Eyes | |
Lee | Visual Acuity Test | |
CN117320614A (en) | Eye examination device with camera and display screen | |
Moffitt et al. | Criteria for a State-of-the-art Vision Test System |