TW202037735A - System and method for hot-dip galvanization - Google Patents

System and method for hot-dip galvanization Download PDF

Info

Publication number
TW202037735A
TW202037735A TW108111758A TW108111758A TW202037735A TW 202037735 A TW202037735 A TW 202037735A TW 108111758 A TW108111758 A TW 108111758A TW 108111758 A TW108111758 A TW 108111758A TW 202037735 A TW202037735 A TW 202037735A
Authority
TW
Taiwan
Prior art keywords
air knife
thickness
steel strip
module
hot
Prior art date
Application number
TW108111758A
Other languages
Chinese (zh)
Other versions
TWI695089B (en
Inventor
羅凱帆
黃俊奎
羅萬福
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW108111758A priority Critical patent/TWI695089B/en
Application granted granted Critical
Publication of TWI695089B publication Critical patent/TWI695089B/en
Publication of TW202037735A publication Critical patent/TW202037735A/en

Links

Images

Abstract

A system for hot dip galvanizing is provided. The system includes an air knife module, a zinc liquid tank and a calculation module. The zinc liquid tank stores zinc liquid, and the steel strip passes through the air knife module after being immersed in the zinc liquid tank. The calculation module is used to obtain process parameters, and predict the thickness of a zinc layer on the steel strip according to the process parameters.

Description

熱浸鍍鋅系統與方法 Hot dip galvanizing system and method

本發明是有關於一種熱浸鍍鋅系統與方法。 The invention relates to a hot-dip galvanizing system and method.

熱浸鍍鋅(Hot-dip galvanization,HDG)是常見的鋼鐵防蝕方法,鋼帶在浸入鍍鋅槽以後會通過氣刀來移除多餘的鋅液。鍍鋅鋼板耐蝕性主要取決於鋅層厚度,鋅層厚度通常以鍍鋅重量(coating weight,CW)為依據,由於鋅層在高溫時無法量測其厚度,習知作法是在後端設置感測器來量測鋅層冷膜厚度,但由於感測器的位置不同於氣刀位置(兩者可能相差超過一百公尺以上),因此在調整氣刀參數以後並無法馬上得知鋅層厚度。如何解決此問題,為此領域技術人員所關心的議題。 Hot-dip galvanization (HDG) is a common anti-corrosion method for steel. After the steel strip is immersed in the galvanizing tank, an air knife is used to remove excess zinc liquid. The corrosion resistance of galvanized steel sheet mainly depends on the thickness of the zinc layer. The thickness of the zinc layer is usually based on the coating weight (CW). Since the thickness of the zinc layer cannot be measured at high temperatures, the conventional method is to install the sensor at the back end. The sensor is used to measure the cold film thickness of the zinc layer, but because the position of the sensor is different from the position of the air knife (the two may differ by more than 100 meters), the zinc layer cannot be immediately known after adjusting the air knife parameters thickness. How to solve this problem is a topic of concern to those skilled in the art.

本發明的實施例提出一種熱浸鍍鋅系統,包括氣刀模組、鋅液槽與計算模組。鋅液槽儲存有鋅液,鋼帶浸入鋅液槽以後會通過氣刀模組。計算模組用以取得製程參數,並根據製程參數預測出鋼帶上鋅層的厚度。 The embodiment of the present invention provides a hot-dip galvanizing system, which includes an air knife module, a zinc bath and a calculation module. The zinc liquid tank stores zinc liquid, and the steel strip will pass through the air knife module after being immersed in the zinc liquid tank. The calculation module is used to obtain the process parameters and predict the thickness of the zinc layer on the steel strip according to the process parameters.

在一些實施例中,製程參數包括產線速度、相關於鋼帶的鋼帶參數、相關於鋅液槽的鋅液槽參數與相關於氣刀模組的氣刀參數。 In some embodiments, the process parameters include production line speed, steel strip parameters related to the steel strip, zinc liquid tank parameters related to the zinc liquid tank, and air knife parameters related to the air knife module.

在一些實施例中,鋅液槽包括沉浸輥、校正輥與穩定輥。上述的鋅液槽參數包括沉浸輥、校正輥以及穩定輥的輥徑與輥位置。 In some embodiments, the zinc bath includes an immersion roller, a correction roller, and a stabilization roller. The above-mentioned zinc bath parameters include the roller diameter and roller position of the immersion roller, correction roller, and stabilizer roller.

在一些實施例中,上述的鋼帶參數包括鋼帶的鋼種、寬度與厚度。 In some embodiments, the aforementioned steel strip parameters include the steel type, width and thickness of the steel strip.

在一些實施例中,上述的氣刀模組包括下刀唇、上刀唇與多個馬達。這些馬達對應至多個氣刀位置,用以調整氣刀模組在氣刀位置上的開度。上述的氣刀參數包括開度、氣進口壓力與多個氣刀至鋼帶距離。 In some embodiments, the aforementioned air knife module includes a lower knife lip, an upper knife lip and a plurality of motors. These motors correspond to multiple air knife positions to adjust the opening of the air knife module at the air knife position. The aforementioned air knife parameters include opening degree, air inlet pressure, and distances from multiple air knives to the steel belt.

在一些實施例中,計算模組用以對於每一個氣刀位置訓練出一迴歸模型,並根據迴歸模型預測鋅層在對應的氣刀位置上的厚度。 In some embodiments, the calculation module is used to train a regression model for each air knife position, and predict the thickness of the zinc layer at the corresponding air knife position based on the regression model.

在一些實施例中,上述的迴歸模型包括多個弱分類器,迴歸模型表示為以下方程式(1)。 In some embodiments, the aforementioned regression model includes a plurality of weak classifiers, and the regression model is expressed as the following equation (1).

F(x)=h 1(x)+h 2(x)+…h i (x)+…+h n (x)...(1) F(x)= h 1 ( x )+ h 2 ( x )+… h i ( x )+…+ h n ( x )...(1)

其中x為製程參數,hi(x)為對應的弱分類器所預測出的厚度,n為弱分類器的個數,F(x)為迴歸模型所預測出的厚度。 Where x is a process parameter, h i ( x ) is the thickness predicted by the corresponding weak classifier, n is the number of weak classifiers, and F(x) is the thickness predicted by the regression model.

在一些實施例中,每一個弱分類器可以表示為以下方程式(2),其中w與b為訓練後的參數。 In some embodiments, each weak classifier can be expressed as the following equation (2), where w and b are parameters after training.

hi(x)=w.x+b...(2) h i (x)=w. x+b...(2)

在一些實施例中,其中計算模組控制馬達以根據鋅層的厚度調整氣刀模組在對應的氣刀位置上的開度。 In some embodiments, the calculation module controls the motor to adjust the opening of the air knife module at the corresponding air knife position according to the thickness of the zinc layer.

以另外一個角度來說,本發明的實施例提出一種熱浸鍍鋅方法,包括:將鋼帶浸入鋅液槽後使鋼帶通過氣刀模組;取得製程參數,並根據製程參數預測出鋼帶上鋅層的厚度;以及根據厚度調整氣刀模組的開度。 From another perspective, the embodiment of the present invention proposes a hot-dip galvanizing method, which includes: immersing a steel strip in a zinc bath and passing the steel strip through an air knife module; obtaining process parameters, and predicting the tapping according to the process parameters Take the thickness of the zinc layer; and adjust the opening of the air knife module according to the thickness.

在上述的系統與方法中,可以即時的預測出鋅層的厚度,藉此可及時的調整氣刀模組,避免長度方向上的延遲與寬度上的鋅層厚度不均問題。 In the above system and method, the thickness of the zinc layer can be predicted in real time, so that the air knife module can be adjusted in time to avoid the delay in the length direction and the uneven thickness of the zinc layer in the width.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

100‧‧‧熱浸鍍鋅系統 100‧‧‧Hot Dip Galvanizing System

110‧‧‧鋅液槽 110‧‧‧Zinc bath

111‧‧‧沉浸輥 111‧‧‧ Immersion Roll

112‧‧‧校正輥 112‧‧‧Correction roller

113‧‧‧穩定輥 113‧‧‧Stabilizing roller

120‧‧‧氣刀模組 120‧‧‧Air Knife Module

121‧‧‧下刀唇 121‧‧‧Lower Lip

122‧‧‧上刀唇 122‧‧‧Upper Sword Lip

123‧‧‧馬達 123‧‧‧Motor

130‧‧‧計算模組 130‧‧‧Calculation Module

140‧‧‧X射線鍍鋅厚度測量儀 140‧‧‧X-ray galvanized thickness measuring instrument

150‧‧‧鋼帶 150‧‧‧Steel belt

401~403、501~503‧‧‧步驟 401~403、501~503‧‧‧Step

[圖1]是根據一實施例繪示熱浸鍍鋅系統的示意圖。 [Figure 1] is a schematic diagram showing a hot dip galvanizing system according to an embodiment.

[圖2]是根據一實施例繪示氣刀模組的示意圖。 [Fig. 2] is a schematic diagram showing the air knife module according to an embodiment.

[圖3]是根據一實施例繪示氣刀至鋼帶距離的示意圖。 [Fig. 3] is a schematic diagram showing the distance between the air knife and the steel belt according to an embodiment.

[圖4]是根據一實施例繪示訓練多個弱分類器的示意圖。 [Fig. 4] is a schematic diagram of training multiple weak classifiers according to an embodiment.

[圖5]是根據一實施例繪示熱浸鍍鋅方法的流程圖。 [Fig. 5] is a flowchart of a hot-dip galvanizing method according to an embodiment.

圖1是根據一實施例繪示熱浸鍍鋅系統的示意圖。請參照圖1,熱浸鍍鋅系統100包括鋅液槽110、氣刀模 組120、計算模組130,在一些實施例中還包括X射線鍍鋅厚度測量儀(X-ray coating weight gauge)140,但在一些實施例中X射線鍍鋅厚度測量儀140也可以省略。鋅液槽110中還設置有沉浸輥111、校正輥112與穩定輥113。鋅液槽110中儲存有鋅液,鋼帶150會浸入鋅液槽110以在鋼帶150上形成一鋅層。校正輥112與穩定輥113可用來在鋼帶150上形成一張力,藉由改變校正輥112的位置可以調整張力的大小。當鋼帶150由鋅液槽110穿出以後,鋼帶150表面帶有尚未凝固的鋅液,接下來鋼帶150會通過氣刀模組120,氣刀模組120會吹出氣體來移除多餘的鋅液。 Fig. 1 is a schematic diagram illustrating a hot-dip galvanizing system according to an embodiment. Please refer to Figure 1, the hot-dip galvanizing system 100 includes a zinc bath 110, an air knife die The group 120 and the calculation module 130 also include an X-ray coating weight gauge 140 in some embodiments, but in some embodiments, the X-ray coating weight gauge 140 may also be omitted. The zinc bath 110 is also provided with an immersion roller 111, a correction roller 112, and a stabilization roller 113. The zinc liquid tank 110 stores zinc liquid, and the steel strip 150 is immersed in the zinc liquid tank 110 to form a zinc layer on the steel strip 150. The correction roller 112 and the stabilizer roller 113 can be used to form a force on the steel belt 150, and the tension can be adjusted by changing the position of the correction roller 112. After the steel strip 150 passes through the zinc liquid tank 110, the surface of the steel strip 150 has unsolidified zinc liquid. Then the steel strip 150 will pass through the air knife module 120, and the air knife module 120 will blow out gas to remove the excess Zinc liquid.

計算模組130可為任意的電腦、伺服器或控制器,用以取得至少一個製程參數,並根據製程參數來預測出鋼帶150上鋅層的厚度。計算模組130可以根據預測出的厚度來控制氣刀模組120以調整氣刀出口的壓力,進而調整鋅層的厚度。在習知技術中,鋅層的厚度是由X射線鍍鋅厚度測量儀140來量測,但從圖1可以得知,X射線鍍鋅厚度測量儀140的位置不同於氣刀模組120的位置,因此即使根據量測的厚度來調整氣刀模組120,也無法及時的改變鋅層的厚度,此現象稱為長度方向的量測延遲。因此,本實施例相較於習知技術來說,至少具有即時控制氣刀模組120的功效,可以解決上述長度方向量測延遲的問題。 The calculation module 130 can be any computer, server, or controller for obtaining at least one process parameter and predicting the thickness of the zinc layer on the steel strip 150 according to the process parameter. The calculation module 130 can control the air knife module 120 according to the predicted thickness to adjust the pressure at the outlet of the air knife, thereby adjusting the thickness of the zinc layer. In the prior art, the thickness of the zinc layer is measured by the X-ray galvanizing thickness gauge 140, but it can be seen from FIG. 1 that the position of the X-ray galvanizing thickness gauge 140 is different from that of the air knife module 120. Therefore, even if the air knife module 120 is adjusted according to the measured thickness, the thickness of the zinc layer cannot be changed in time. This phenomenon is called a measurement delay in the length direction. Therefore, compared with the prior art, this embodiment has at least the effect of real-time control of the air knife module 120, and can solve the above-mentioned problem of the measurement delay in the length direction.

更具體來說,計算模組130會建立一個迴歸模型,此迴歸模型的輸入為上述的製程參數,回歸模型的輸出則是鋅層的厚度。在訓練階段,鋅層的厚度是透過X射線鍍 鋅厚度測量儀140來量測,所量測的資料是時間序列,但由於產線速度隨時會改變,無法準確計算所需時間,因此可改以鋼帶位置作為依據,做法是將產線速度對時間做積分,計算出對應的鋼帶位置,如以下方程式(1)所示。 More specifically, the calculation module 130 establishes a regression model. The input of the regression model is the aforementioned process parameters, and the output of the regression model is the thickness of the zinc layer. During the training phase, the thickness of the zinc layer is measured through X-ray plating Zinc thickness gauge 140 is used to measure. The measured data is time series. However, because the production line speed can change at any time, it is impossible to accurately calculate the required time, so the steel strip position can be used as the basis. The method is to change the production line speed Integrate the time to calculate the corresponding strip position, as shown in the following equation (1).

Local=∫ v S Δt…(1) Local= ∫ v S Δ t …(1)

其中Local表示鋼帶位置,v s 為產線速度(鋼帶150的速度)。換言之,透過上述方程式(1)可以將每一筆量測到的厚度都對應至鋼帶上的一個特定位置。鋼帶上每一個位置都有對應的製程參數。這些製程參數可包括產線速度、相關於鋼帶的鋼帶參數、相關於鋅液槽110的鋅液槽參數與相關於氣刀模組120的氣刀參數。 Where Local represents the position of the steel strip, and v s is the production line speed (speed of the steel strip 150). In other words, through the above equation (1), each measured thickness can correspond to a specific position on the steel strip. Each position on the steel strip has corresponding process parameters. These process parameters may include the production line speed, the steel strip parameters related to the steel strip, the zinc liquid tank parameters related to the zinc liquid tank 110, and the air knife parameters related to the air knife module 120.

鋼帶參數可包括鋼帶150的鋼種、寬度與厚度,在一些實施例中鋼帶150的厚度並不均勻,因此也會取得鋼帶在各個位置上的厚度,後續在考慮氣刀參數時會用到,以下再詳細說明。在一些實施例中,鋼帶參數還可包括訂單編號、母鋼捲編號、以及上游相關參數(如退火溫度、退火時間)等。另外,鋅液槽參數可包括沉浸輥111、校正輥112以及穩定輥113的輥徑與輥位置。 The steel strip parameters may include the steel type, width and thickness of the steel strip 150. In some embodiments, the thickness of the steel strip 150 is not uniform. Therefore, the thickness of the steel strip at various positions will also be obtained. Later, when considering the air knife parameters, Used, the following detailed description. In some embodiments, the steel strip parameters may also include the order number, the parent steel coil number, and upstream related parameters (such as annealing temperature, annealing time). In addition, the parameters of the zinc bath may include the roller diameter and roller position of the immersion roller 111, the correction roller 112, and the stabilizer roller 113.

氣刀參數說明如下,圖2是根據一實施例繪示氣刀模組的示意圖。請參照圖2,氣刀模組120包括下刀唇121、上刀唇122與多個馬達123,氣體是由氣刀模組120的進口(未繪示)輸入,最後從上刀唇122與下刀唇121之間的出口噴射至鋼帶150。這些馬達123是設置在不同的氣刀位置,用以調整在對應位置上的開度(即上刀唇122與下刀 唇121之間的距離),改變刀唇的開度可以改變氣刀出口的壓力分佈,上述的氣刀參數便包括了這些開度以及氣刀的氣進口壓力。此外,圖3是根據一實施例繪示氣刀至鋼帶距離的示意圖,請參照圖2與圖3,氣刀是從圖2的紙面噴出,在圖3中射向鋼帶150。由於鋼帶150的厚度可能不平均,因此在不同的位置上氣刀120至鋼帶150的距離也會不同,舉例來說,距離Z0會比距離Z1大,而距離Z1會比距離Z2大。在一些實施例中,當鋼帶150經過軋延以後便可以得知鋼帶的厚度,並不需要額外設置感測器來量測鋼帶厚度,而根據氣刀模組120的設置位置便可以得到氣刀120至鋼帶150的距離。上述的氣刀參數還包括了每個氣刀位置上的氣刀至鋼帶距離(即距離Z0、Z1、Z2等)。 The air knife parameters are described as follows. FIG. 2 is a schematic diagram illustrating the air knife module according to an embodiment. 2, the air knife module 120 includes a lower knife lip 121, an upper knife lip 122 and a plurality of motors 123. The air is input from the inlet (not shown) of the air knife module 120, and finally from the upper knife lip 122 and The outlet between the lower knife lips 121 is sprayed to the steel belt 150. These motors 123 are set at different air knife positions to adjust the opening at the corresponding position (that is, the distance between the upper knife lip 122 and the lower knife lip 121). Changing the opening of the knife lip can change the outlet of the air knife. The above-mentioned air knife parameters include these openings and the air inlet pressure of the air knife. In addition, FIG. 3 is a schematic diagram showing the distance between the air knife and the steel belt according to an embodiment. Please refer to FIGS. 2 and 3. The air knife is sprayed from the paper surface of FIG. 2 and shoots toward the steel belt 150 in FIG. 3. Since the thickness of the steel strip 150 may be uneven, the distance between the air knife 120 and the steel strip 150 will be different at different positions. For example, the distance Z 0 will be greater than the distance Z 1 , and the distance Z 1 will be greater than the distance Z 2 is large. In some embodiments, the thickness of the steel strip can be obtained after the steel strip 150 is rolled, and there is no need to provide an additional sensor to measure the thickness of the steel strip, and it can be determined according to the installation position of the air knife module 120 The distance from the air knife 120 to the steel belt 150 is obtained. The aforementioned air knife parameters also include the distance from the air knife to the steel belt at each air knife position (ie, the distances Z 0 , Z 1 , Z 2, etc.).

在一些實施例中,由於每個馬達123都是獨立控制的,因此對於每一個氣刀位置(即馬達123所在位置)都可獨立訓練出一個迴歸模型,在一些實施例中共有14組馬達123,因此共會訓練出14個迴歸模型。上述的產線速度、鋼帶參數、鋅液槽參數對所有的氣刀位置來說都相同,因此都會作為上述14組迴歸模型的輸入。然而,刀唇開度、氣刀至鋼帶距離等參數則會根據氣刀位置被分組,分別輸入至對應的迴歸模型。 In some embodiments, since each motor 123 is independently controlled, a regression model can be independently trained for each air knife position (that is, the position of the motor 123). In some embodiments, there are 14 groups of motors 123. , So a total of 14 regression models will be trained. The above production line speed, steel strip parameters, and zinc bath parameters are the same for all air knife positions, so they will all be used as the input of the above 14 sets of regression models. However, parameters such as the opening of the knife lip and the distance from the air knife to the steel belt will be grouped according to the position of the air knife and input into the corresponding regression model.

在一些實施例中,每個迴歸模型都包括多個弱分類器,可表示為以下方程式(2)。 In some embodiments, each regression model includes multiple weak classifiers, which can be expressed as the following equation (2).

F(x)=h 1(x)+h 2(x)+…h i (x)+…+h n (x)...(2) F(x)= h 1 ( x )+ h 2 ( x )+… h i ( x )+…+ h n ( x )...(2)

其中x為上述的製程參數所形成的向量,換言 之,向量x可包括產線速度、鋼帶參數、鋅液槽參數與對應位置上的氣刀參數。hi(x)為對應的弱分類器所預測出的厚度,n為弱分類器的個數,F(x)為迴歸模型所預測出的該厚度。在一些實施例中,每一個弱分類器為支持向量迴歸(support vector regression,SVR),表示為以下方程式(3)。 Where x is the vector formed by the above-mentioned process parameters. In other words, the vector x may include the production line speed, the steel strip parameters, the zinc bath parameters, and the air knife parameters at the corresponding positions. h i ( x ) is the thickness predicted by the corresponding weak classifier, n is the number of weak classifiers, and F(x) is the thickness predicted by the regression model. In some embodiments, each weak classifier is support vector regression (SVR), expressed as the following equation (3).

hi(x)=w.x+b…(3) h i (x)=w. x+b…(3)

其中w與b為訓練後的參數,然而本領域具有通常知識者當可理解支持向量迴歸,在此並不再贅述。 Among them, w and b are the parameters after training. However, those with ordinary knowledge in the field should understand the support vector regression, which will not be repeated here.

上述訓練多個弱分類器的做法,是要讓這些弱分類器彼此互補,使得結合出一個較強的分類器,因此在每次訓練完一個弱分類器以後,下一個弱分類器會根據預測錯誤的資料來訓練。具體來說,圖4是根據一實施例繪示訓練多個弱分類器的示意圖。請參照圖4,在訓練階段時量測到的鋅層厚度為基本事實(ground truth),以下標記為y,在步驟401中,根據收集的製程參數x與量測到的厚度y來訓練出一個弱分類器h 1(x)。接下來將厚度y減去第一個弱分類器的預測結果h 1(x),並在步驟402中根據製程參數x與y-h 1(x)來訓練出第二個弱分類器h 2(x)。類似的,在步驟403中根據製程參數x與y-h 1(x)-h 2(x)來訓練出第三個弱分類器h 3(x)。這樣的訓練會持續下去,直到預測出的厚度與實際的厚度之間的誤差在一預設範圍之內,由於訓練資料有很多筆,在一些實施例中上述的誤差可為方均根(mean square error,MSE),但本發明並不在此限。 The above method of training multiple weak classifiers is to make these weak classifiers complementary to each other, so that a stronger classifier is combined. Therefore, after training a weak classifier each time, the next weak classifier will be based on the prediction Wrong information to train. Specifically, FIG. 4 is a schematic diagram of training multiple weak classifiers according to an embodiment. Please refer to Figure 4, the thickness of the zinc layer measured during the training phase is ground truth, which is marked as y below. In step 401, training is performed based on the collected process parameters x and the measured thickness y A weak classifier h 1 ( x ). Next, subtract the prediction result h 1 ( x ) of the first weak classifier from the thickness y, and train the second weak classifier h 2 according to the process parameters x and y - h 1 ( x ) in step 402 ( x ). Similarly, in step 403 the process parameters x and y - h 1 (x) - h 2 (x) to train a third weak classifiers h 3 (x). Such training will continue until the error between the predicted thickness and the actual thickness is within a preset range. Since there are many training data, in some embodiments the above error may be the root mean square error. , MSE), but the present invention is not limited to this.

在測試階段,計算模組130可以即時的預測出鋅層的厚度。此外,計算模組130也可控制馬達123以根據鋅層的厚度調整氣刀模組120在對應的氣刀位置上的開度。舉例來說,如果鋅層的厚度大於一臨界值,則可以減少對應位置上的開度,藉此增加氣刀壓力,移除多餘的鋅液,如此一來可以減少鋅液的消耗。然而,本發明並不限制如何控制氣刀的開度。 In the testing phase, the calculation module 130 can predict the thickness of the zinc layer in real time. In addition, the calculation module 130 can also control the motor 123 to adjust the opening of the air knife module 120 at the corresponding air knife position according to the thickness of the zinc layer. For example, if the thickness of the zinc layer is greater than a critical value, the opening of the corresponding position can be reduced, thereby increasing the air knife pressure and removing excess zinc liquid, which can reduce the consumption of zinc liquid. However, the present invention does not limit how to control the opening of the air knife.

在其他實施例中,上述的迴歸模型也可以是線性迴歸、最小絕對選擇收縮算子(Least Absolute Selection Shrinkage Operator,LASSO)演算法、邏輯迴歸(Logistic regression)等其他迴歸演算法,本發明並不在此限。 In other embodiments, the aforementioned regression model may also be linear regression, Least Absolute Selection Shrinkage Operator (LASSO) algorithm, logistic regression (Logistic regression) and other regression algorithms. The present invention is not This limit.

圖5是根據一實施例繪示熱浸鍍鋅方法的流程圖。請參照圖5,在步驟501中,將鋼帶浸入鋅液槽後使鋼帶通過氣刀模組。在步驟502中,取得製程參數,並根據製程參數預測出鋼帶上鋅層的厚度。在步驟503中,根據厚度調整氣刀模組的開度。然而,圖5中各步驟已經詳細說明如上,在此並不再贅述。此外,圖5的流程可以實作為程式碼,由電腦系統執行,或者也可實作為電路,本發明並不在此限。 Fig. 5 is a flowchart of a hot-dip galvanizing method according to an embodiment. Referring to FIG. 5, in step 501, the steel strip is immersed in the zinc bath and then the steel strip passes through the air knife module. In step 502, the process parameters are obtained, and the thickness of the zinc layer on the steel strip is predicted according to the process parameters. In step 503, the opening of the air knife module is adjusted according to the thickness. However, each step in FIG. 5 has been described in detail as above, and will not be repeated here. In addition, the process of FIG. 5 can be implemented as a program code, executed by a computer system, or can also be implemented as a circuit, and the present invention is not limited thereto.

在上述提出的熱浸鍍鋅系統與方法中,不需要等到鋅層降溫凝固便可以根據製程參數即時地預測出鋅層的厚度,如此一來可以解決長度方向量測延遲的問題。另外,由於氣刀模組中具有多組馬達,且每組馬達是獨立地控制,因此可以解決寬度上鋅層厚度不均的問題。 In the hot-dip galvanizing system and method proposed above, the thickness of the zinc layer can be predicted in real time according to the process parameters without waiting for the zinc layer to cool down and solidify, so that the problem of the measurement delay in the length direction can be solved. In addition, since the air knife module has multiple groups of motors, and each group of motors is independently controlled, the problem of uneven thickness of the zinc layer across the width can be solved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

100‧‧‧熱浸鍍鋅系統 100‧‧‧Hot Dip Galvanizing System

110‧‧‧鋅液槽 110‧‧‧Zinc bath

111‧‧‧沉浸輥 111‧‧‧ Immersion Roll

112‧‧‧校正輥 112‧‧‧Correction roller

113‧‧‧穩定輥 113‧‧‧Stabilizing roller

120‧‧‧氣刀模組 120‧‧‧Air Knife Module

130‧‧‧計算模組 130‧‧‧Calculation Module

140‧‧‧X射線鍍鋅厚度測量儀 140‧‧‧X-ray galvanized thickness measuring instrument

150‧‧‧鋼帶 150‧‧‧Steel belt

Claims (10)

一種熱浸鍍鋅系統,包括:一氣刀模組;一鋅液槽,儲存有鋅液,其中一鋼帶浸入該鋅液槽以後通過該氣刀模組;以及一計算模組,用以取得至少一製程參數,並根據該至少一製程參數預測出該鋼帶上一鋅層的至少一厚度。 A hot-dip galvanizing system includes: an air knife module; a zinc liquid tank storing zinc liquid, wherein a steel strip passes through the air knife module after being immersed in the zinc liquid tank; and a calculation module for obtaining At least one process parameter, and at least one thickness of a zinc layer on the steel strip is predicted according to the at least one process parameter. 如申請專利範圍第1項所述之熱浸鍍鋅系統,其中該至少一製程參數包括產線速度、相關於該鋼帶的至少一鋼帶參數、相關於該鋅液槽的至少一鋅液槽參數與相關於該氣刀模組的至少一氣刀參數。 The hot-dip galvanizing system described in item 1 of the scope of patent application, wherein the at least one process parameter includes production line speed, at least one steel strip parameter related to the steel strip, and at least one zinc bath related to the zinc bath The slot parameter and at least one air knife parameter related to the air knife module. 如申請專利範圍第2項所述之熱浸鍍鋅系統,其中該鋅液槽包括:一沉浸輥;一校正輥;以及一穩定輥,其中該至少一鋅液槽參數包括該沉浸輥、該校正輥以及該穩定輥的輥徑與輥位置。 The hot-dip galvanizing system described in item 2 of the scope of patent application, wherein the zinc bath includes: an immersion roller; a correction roller; and a stabilizer roller, wherein the at least one zinc bath parameter includes the immersion roller, the Correction roller and the roller diameter and roller position of the stabilizer roller. 如申請專利範圍第2項所述之熱浸鍍鋅系統,其中該至少一鋼帶參數包括該鋼帶的鋼種、寬度與厚度。 The hot-dip galvanizing system described in item 2 of the scope of patent application, wherein the parameters of the at least one steel strip include the steel type, width and thickness of the steel strip. 如申請專利範圍第2項所述之熱浸鍍鋅系統,其中該氣刀模組包括:下刀唇;上刀唇;以及多個馬達,對應至多個氣刀位置,用以調整該氣刀模組在該些氣刀位置上的多個開度,其中該至少一氣刀參數包括該些開度、一氣進口壓力與多個氣刀至鋼帶距離。 The hot-dip galvanizing system described in item 2 of the scope of patent application, wherein the air knife module includes: a lower knife lip; an upper knife lip; and a plurality of motors corresponding to a plurality of air knife positions for adjusting the air knife The openings of the module at the air knife positions, wherein the at least one air knife parameter includes the openings, an air inlet pressure, and the distances from the air knife to the steel belt. 如申請專利範圍第1項所述之熱浸鍍鋅系統,其中該氣刀模組包括一上刀唇、一下刀唇與多個馬達,該些馬達對應至多個氣刀位置,該計算模組用以對於每一該些氣刀位置訓練出一迴歸模型,並根據該迴歸模型預測該鋅層在對應的該氣刀位置上的厚度。 The hot-dip galvanizing system described in item 1 of the scope of patent application, wherein the air knife module includes an upper knife lip, a lower knife lip and a plurality of motors, the motors correspond to a plurality of air knife positions, and the calculation module It is used to train a regression model for each of the air knife positions, and predict the thickness of the zinc layer at the corresponding air knife position according to the regression model. 如申請專利範圍第6項所述之熱浸鍍鋅系統,其中該迴歸模型包括多個弱分類器,該迴歸模型表示為以下方程式(1),F(x)=h 1(x)+h 2(x)+…h i (x)+…+h n (x)...(1)其中x為該至少一製程參數,hi(x)為對應的該弱分類器所預測出的厚度,n為該些弱分類器的個數,F(x)為該迴歸模型所預測出的厚度。 The hot-dip galvanizing system described in item 6 of the scope of patent application, wherein the regression model includes a plurality of weak classifiers, and the regression model is expressed as the following equation (1), F(x) = h 1 ( x ) + h 2 ( x )+… h i ( x )+…+ h n ( x )...(1) where x is the at least one process parameter, and h i ( x ) is the prediction of the corresponding weak classifier Thickness, n is the number of the weak classifiers, and F(x) is the thickness predicted by the regression model. 如申請專利範圍第7項所述之熱浸鍍鋅系統,其中每一該些弱分類器可以表示為以下方程式(2),hi(x)=w.x+b...(2)其中w與b為訓練後的參數。 For the hot-dip galvanizing system described in item 7 of the scope of patent application, each of the weak classifiers can be expressed as the following equation (2), h i (x) = w. x+b...(2) where w and b are parameters after training. 如申請專利範圍第1項所述之熱浸鍍鋅系統,其中該氣刀模組包括一上刀唇、一下刀唇與多個馬達,該些馬達對應至多個氣刀位置,該鋅層的該至少一厚度分別對應至該些氣刀位置,其中該計算模組控制該些馬達以根據該鋅層的該些厚度調整該氣刀模組在對應的該氣刀位置上的開度。 The hot-dip galvanizing system described in item 1 of the scope of patent application, wherein the air knife module includes an upper knife lip, a lower knife lip and a plurality of motors, and the motors correspond to a plurality of air knife positions. The at least one thickness is respectively corresponding to the air knife positions, wherein the calculation module controls the motors to adjust the opening of the air knife module at the corresponding air knife positions according to the thickness of the zinc layer. 一種熱浸鍍鋅方法,包括:將一鋼帶浸入一鋅液槽後使該鋼帶通過一氣刀模組;取得至少一製程參數,並根據該至少一製程參數預測出該鋼帶上一鋅層的至少一厚度;以及根據該至少一厚度調整該氣刀模組的至少一開度。 A hot-dip galvanizing method includes: immersing a steel strip in a zinc bath and passing the steel strip through an air knife module; obtaining at least one process parameter, and predicting a zinc on the steel strip based on the at least one process parameter At least one thickness of the layer; and adjusting at least one opening of the air knife module according to the at least one thickness.
TW108111758A 2019-04-02 2019-04-02 System and method for hot-dip galvanization TWI695089B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108111758A TWI695089B (en) 2019-04-02 2019-04-02 System and method for hot-dip galvanization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108111758A TWI695089B (en) 2019-04-02 2019-04-02 System and method for hot-dip galvanization

Publications (2)

Publication Number Publication Date
TWI695089B TWI695089B (en) 2020-06-01
TW202037735A true TW202037735A (en) 2020-10-16

Family

ID=72176058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111758A TWI695089B (en) 2019-04-02 2019-04-02 System and method for hot-dip galvanization

Country Status (1)

Country Link
TW (1) TWI695089B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452141B (en) * 2011-02-10 2014-09-11 China Steel Corp And a method for producing a zinc-iron alloy steel material having a predetermined thickness of the Γ phase layer

Also Published As

Publication number Publication date
TWI695089B (en) 2020-06-01

Similar Documents

Publication Publication Date Title
US10415131B2 (en) Hot-dip galvanized layer thickness control system and method for continuous thickness-varying strip material
JP7269330B2 (en) Plating amount control device and plating amount control method
KR100847974B1 (en) Method of controlling material quality on rolling, forging or straightening line, and apparatus therefor
JP3726770B2 (en) Continuous pickling method and continuous pickling apparatus
US9056342B2 (en) Rolled material cooling control apparatus, rolled material cooling control method, and rolled material cooling control program
CN105316613B (en) A kind of zinc coating thickness control method and system based on time_varying delay offset correction technology
JP2020526667A (en) How to operate the continuous processing line
JP2008149354A (en) Device and method for controlling winding temperature
Guelton et al. Coating weight control on ArcelorMittal’s galvanizing line at Florange Works
CN110306144A (en) A kind of control method and control system of hot-dip aluminizing silicon strip coating
TWI695089B (en) System and method for hot-dip galvanization
JP6102650B2 (en) Plate temperature control method and plate temperature control device in continuous line
JP2007301603A (en) Method for controlling coiling temperature of rolled stock and rolling equipment
KR100393679B1 (en) Coating weight predictive control in continuous galvanizing line
CN113316747A (en) Method and electronic device for controlling the manufacture of a set of final metallic articles from a set of intermediate metallic articles, related computer program, manufacturing method and apparatus
JP2009233716A (en) Method of cooling rolled stock
KR102045651B1 (en) Estimating apparatus for heat flux coefficient of run-out table based artificial intelligence
JP2007283346A (en) Method for controlling cooling of rolled stock and rolling equipment
JP2020139175A (en) Time-series event prediction method, plating deposition amount control method, method of producing hot-dip coated steel strip, time-series event prediction device, plating deposition amount control device, and plating deposition amount control program
JP5824826B2 (en) Temperature distribution estimation device in plating bath, temperature distribution estimation method, and operation method of continuous molten metal plating process
JP2022000535A (en) Method for generating coating weight prediction model, method for predicting plating coating weight, method for controlling plating coating weight, method for manufacturing hot-dip metal coated steel sheet, device for performing them and method for generating quality prediction model
TWI725861B (en) The utility model relates to a virtual measuring device for the central position of a steel strip, and a measuring method thereof
JP4037569B2 (en) Method for controlling the coating amount of hot-dip metal strip
JP7318816B2 (en) Steel sheet unplated defect prediction method, steel sheet defect reduction method, hot dip galvanized steel sheet manufacturing method, and steel sheet unplated defect prediction model generation method
KR20190078394A (en) Determination apparatus for heat flux coefficient of run-out table based artificial intelligence