TW202037330A - 非接觸式相位鎖定暨自我注入鎖定生理信號感測器 - Google Patents

非接觸式相位鎖定暨自我注入鎖定生理信號感測器 Download PDF

Info

Publication number
TW202037330A
TW202037330A TW108111482A TW108111482A TW202037330A TW 202037330 A TW202037330 A TW 202037330A TW 108111482 A TW108111482 A TW 108111482A TW 108111482 A TW108111482 A TW 108111482A TW 202037330 A TW202037330 A TW 202037330A
Authority
TW
Taiwan
Prior art keywords
signal
self
phase
frequency
physiological
Prior art date
Application number
TW108111482A
Other languages
English (en)
Other versions
TWI705795B (zh
Inventor
曾昭雄
游立得
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW108111482A priority Critical patent/TWI705795B/zh
Priority to US16/402,301 priority patent/US11368160B2/en
Application granted granted Critical
Publication of TWI705795B publication Critical patent/TWI705795B/zh
Publication of TW202037330A publication Critical patent/TW202037330A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/40Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein the frequency of transmitted signal is adjusted to give a predetermined phase relationship
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • H04L27/152Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using controlled oscillators, e.g. PLL arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0331Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop with a digital phase-locked loop [PLL] processing binary samples, e.g. add/subtract logic for correction of receiver clock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一種非接觸式相位鎖定暨自我注入鎖定生理信號感測器,其包含一自我振盪壓控輻射元件以及一鎖相迴路。由鎖相迴路將自我振盪壓控輻射元件輸出之除頻後之振盪信號與一參考信號進行比對,根據比對結果產生一調控電壓,用以將自我振盪壓控輻射元件之振盪頻率調回設定值,使振盪信號與參考信號保持相同相位關係,該調控電壓即為生理信號。自我振盪壓控輻射元件則因使用鎖相迴路鎖住振盪頻率,而使頻率穩定,並提高感測靈敏度。

Description

非接觸式相位鎖定暨自我注入鎖定生理信號感測器
本發明有關於一種非接觸式相位鎖定暨自我注入鎖定生理信號感測器,尤指一種體積輕巧且成本低,可鎖住頻率使頻率穩定且頻率可調、感測靈敏度高之非接觸式相位鎖定暨自我注入鎖定生理信號感測器。
穿戴式生理信號感測器為最近年來極具發展潛力的個人電子產品之一,可用於偵測人體之呼吸、心跳、脈搏等生理信號。目前穿戴式生理信號感測器多以光電感測法進行生理信號之偵測,光電感測法是將一光線照射於人體皮膚上,並透過光電元件擷取並觀察光線的強度變化,若光線強度產生變化,則判定通過皮膚之血液容積改變,也就代表著心臟進行了一次收縮,藉此測得心跳的次數。
但由於光電感測法容易受到環境光的影響,因此必須將感測器緊貼於人體皮膚上才能夠獲得正確的生理信號數據,不僅造成生理信號感測器的設計受到限制,例如多為腕錶的型態,此外,因為生理信號感測器須緊貼皮膚的緣故,長時間地配戴生理信號感測器亦可能導致使用者產生不適。
再者,當所偵測的生理信號由人體反射回感測器時,人體持續之呼吸、心跳、脈搏所引起的震動會導致反射信號頻率的改變,而即使是極其細微的改變,都會導致生理信號偵測產生誤差並且使得感測靈敏度降低。
其次,就習知與生理信號感測器有關的專利而言,例如一種使用自我注入鎖定雷達架構,其係使用鑑頻器(frequency discriminator)解調,該解調架構需由一個混波器(mixer)、延遲線(delay line)及功率分配器所構成,然而該延遲線需使用數公尺長的同軸纜線構成,電路體積龐大,且電路元件價格昂貴。至於其他習知與生理信號感測器有關的專利則為傳統同調雷達(homodyne radar)架構,需要使用較多元件實現感測器,因此價格昂貴,且感測器效能明顯較自我注入鎖定雷達架構差,關於此點在許多公開文獻上都已經被討論比對過。
其次,再就另一習知中華民國專利「非接觸式擾動感測裝置」而言,該習知專利的技術手段包括利用兩個天線(一為發送天線、一為接收天線)搭配一振盪器,由發送天線發送一無線信號至人體,再由接收天線接收人體的反射信號,並將反射信號傳送至振盪器以產生一振盪信號,再由一鎖相迴路根據振盪信號產生一控制電壓。
同樣的,上述習知專利的主要缺失包括,二個天線搭配一個振盪器及一個鎖相迴路的架構非常龐大,而且線路複雜、成本高,極不適於裝置小型化發展。
據此,如何能有一種體積輕巧且成本低、可鎖住頻率使頻率穩定且頻率可調、感測靈敏度高之『非接觸式相位鎖定暨自我注入鎖定生理信號感測器』,是相關技術領域人士亟待解決之課題。
於一實施例中,本發明提出一種非接觸式相位鎖定暨自我注入鎖定生理信號感測器,包含: 一自我振盪壓控輻射元件,用以將一振盪信號傳送至一生物體,並接收生物體反射之一反射信號,使自我振盪壓控輻射元件處於一自我注入鎖定狀態,且振盪信號被生物體之一生理徵象調變為一頻率調變信號;以及 一鎖相迴路,用以對頻率調變信號解調而得到生物體的一生理信號,並將自我振盪輻射元件輸出之除頻後之振盪信號與一參考信號比對,根據比對結果來改變除頻後之振盪信號的相位,以與參考信號保持相同相位。
於另一實施例中,本發明提出一種具有非接觸式相位鎖定暨自我注入鎖定生理信號感測器之系統,包含: 一基頻帶放大器,電性連接鎖相迴路之一輸出端,用以接收並放大生理信號; 一類比數位轉換器,電性連接基頻帶放大器,用以接收經放大之生理信號並將類比形式之生理信號轉換為數位形式之生理信號;以及 一信號處理裝置,電性連接類比數位轉換器,用以接收並處理數位形式之生理信號。
請參閱圖1所示,本發明所提供之一種非接觸式相位鎖定暨自我注入鎖定生理信號感測器1,包含一自我振盪壓控輻射元件10及一鎖相迴路20。
請參閱圖1所示,自我振盪壓控輻射元件10是用以將一振盪信號S1傳送至一生物體2(生物體2例如可為一人體),並接收生物體S反射之一反射信號S2,使自我振盪壓控輻射元件10處於一自我注入鎖定狀態,且振盪信號S1被生物體2之一生理徵象調變為一頻率調變信號S3。自我振盪壓控輻射元件10的型態不限,例如可為自振式主動天線或主動近場感測器其中之一,可應用於遠場(例如自我振盪壓控輻射元件10與生物體2距離1公尺以上)或近場(例如自我振盪壓控輻射元件10與生物體2距離1公分以下)量測。
請參閱圖1所示,為達到上述作用,自我振盪壓控輻射元件10的架構並無一定限制,於本實施例中,自我振盪壓控輻射元件10包括:一天線11、一主動放大元件12及一可變電容器13。 天線11用以進行選頻並將振盪信號S1傳送至生物體2,生物體2反射之反射信號S2被天線11接收,使自我振盪壓控輻射元件10處於一自我注入鎖定狀態,且振盪信號1被生物體2之一生理徵象調變為一頻率調變信號S3。 主動放大元件12電性連接天線11,天線11與主動放大元件12參與振盪而產生振盪信號S1。主動放大元件12的型態不限,例如可為固態元件放大器、雙極性接面電晶體放大器、場效電晶體放大器、放大器積體電路或是電晶體放大器其中之一。 可變電容器13電性連接天線11,用以施加不同電壓,以改變天線操作頻率供天線11進行選頻。
關於天線11及主動放大元件12之其他變化態樣及詳細操作原理,請參考本發明申請人於中華民國106年12月12日提出申請之中華民國發明專利申請案號第106143627號申請案並於中華民國107年12月1日獲准發明專利公告號I642406的「非接觸式自我注入鎖定感測器」發明專利。申請人於本發明將可變電容器13電性連接天線11,使本發明的自我振盪壓控輻射元件10具有壓控頻率可調之特性。然必須說明的是,欲達到壓控頻率可調,並不限於利用可變電容器13。
請參閱圖1所示,鎖相迴路20是用以接收頻率調變信號S3,用以對頻率調變信號S3解調而得到生物體2的一生理信號。鎖相迴路20用以將除頻後之振盪信號S4與一參考信號S5比對,根據比對結果來產生一調控電壓,將振盪頻率調回設定值,用以迴授控制自我振盪壓控輻射元件10,以使振盪信號與參考信號S5保持相同相位。
請參閱圖1所示,為達到上述作用,鎖相迴路20的架構並無一定限制,於本實施例中,鎖相迴路20包括一除頻器21、一相位檢測器22、一電荷幫浦23及一迴路濾波器24。 除頻器21用以接收頻率調變信號S3,用以對頻率調變信號S3除頻而得到除頻後之振盪信號S4。 相位檢測器22用以接收除頻後之振盪信號S4以及參考信號S5,並將除頻後之振盪信號S4與參考信號S5比對,根據比對結果來產生一調控電壓,將振盪頻率調回設定值,用以迴授控制自我振盪壓控輻射元件10,以使振盪信號與參考信號S5保持相同相位。 電荷幫浦23用以接收相位檢測器輸出信號S41,並將相位檢測器輸出信號S41轉換為一電流信號S42。 迴路濾波器24用以接收電流信號S42並將電流信號S42轉換為一類比電壓信號S6,且濾除高頻雜訊,將類比電壓信號S6分別傳送至一信號處理裝置50以及自我振盪壓控輻射元件10。 藉由信號處理裝置50對該調控電壓進行處理,即可得到生物體2的生理信號,換言之,該調控電壓即為生物體2的生理信號。
必須強調的是,雖然近幾年來鎖相迴路20的應用越來越普遍,但是應用於生理信號感測領域並不普遍,至於應用於生理信號感測領域的習知專利則因受限於架構,例如必須採用二個天線搭配一個振盪器,導致存在結構龐大、複雜且成本高的缺失。本發明提出將自我振盪壓控輻射元件10及鎖相迴路20相互結合之架構,其中,自我振盪壓控輻射元件10即採用了本發明申請人於中華民國106年12月12日提出申請之中華民國發明專利申請案號第106143627號申請案並於中華民國107年12月1日獲准發明專利公告號I642406的「非接觸式自我注入鎖定感測器」發明專利中所揭露的自我注入鎖定集成振盪天線,該自我注入鎖定集成振盪天線同時具備振盪、發射信號及接收信號的功效,可在自我注入鎖定的狀態下同時取得生理徵象對信號之振幅調變及頻率調變的成份,於進行生理信號感測時更為靈敏、精準,更重要的是,相較於習知專利,本發明可大幅精簡結構、降低成本。換言之,本發明申請人鑑於習知專利的缺失,同時基於對本案發明人上述「非接觸式自我注入鎖定感測器」發明專利的精益求精,因此提出本案「非接觸式相位鎖定暨自我注入鎖定生理信號感測器」,由於可鎖住頻率,因此可降低雜訊,生理信號不會被雜訊蓋掉。而由於改善靈敏度,因此可本發明除了量測心跳、呼吸等生理信號之外,更可量測脈搏或指尖等較為微弱的生理信號。
請參閱圖2所示,非接觸式相位鎖定暨自我注入鎖定生理信號感測器1A包含一自我振盪壓控輻射元件10A及一鎖相迴路20。本實施例是以圖1架構為基礎,主要差異在於,鎖相迴路20與自我振盪壓控輻射元件10A之間設有一開關14,開關14與一信號處理裝置50電性連接。開關14接收一控制信號S7(可由信號處理裝置50送出,或另設一信號處理裝置)並用以切換,以產生一低中頻(low intermedium frequency, IF)信號S71送入信號處理裝置50,經信號處理後可獲得同相位I(In-Phase)信號通道和正交相位Q(Quardrature)信號通道之生理信號。
自我振盪壓控輻射元件10A包括一天線11、一主動放大元件12及一可變電容器13。天線11將振盪信號S1傳送至生物體2,生物體2反射之反射信號S2被天線11接收,使自我振盪壓控輻射元件10A處於一自我注入鎖定狀態,且振盪信號S1被生物體2之一生理徵象調變為一頻率調變信號S3。可變電容器13用以接收不同電壓以改變頻率供天線11進行選頻。
鎖相迴路20包括一除頻器21、一相位檢測器22、一電荷幫浦23及一迴路濾波器24。除頻器21用以接收頻率調變信號S3,用以對頻率調變信號S3除頻而得到除頻後之振盪信號S4。相位檢測器22用以接收除頻後之振盪信號S4以及參考信號S5,並將除頻後之振盪信號S4與參考信號S5比對,根據比對結果來產生一調控電壓,用以迴授控制自我振盪壓控輻射元件10A,以與參考信號S5保持相同相位。電荷幫浦23用以接收相位檢測器輸出信號S41,並將相位檢測器輸出信號S41轉換為一電流信號S42。迴路濾波器24用以將電流信號S42轉換為一類比電壓信號S6,且濾除高頻雜訊,類比電壓信號S6分別被傳送至開關30與自我振盪壓控輻射元件10A。亦即,類比電壓信號S6先經過開關14,才被傳送至信號處理裝置50。如前所述,開關14的作用為產生一低中頻(low intermedium frequency, IF)信號,以送入信號處理裝置50以解調辨識同相位I(In-Phase)通道信號和正交相位Q(Quadrature)通道信號,藉此解決感測器的量測零點問題,而不僅限於特定位置才能進行量測。
請參閱圖3所示,一種具有非接觸式相位鎖定暨自我注入鎖定生理信號感測器之系統3。本系統可採用圖1所示之非接觸式相位鎖定暨自我注入鎖定生理信號感測器1或圖2所示之非接觸式相位鎖定暨自我注入鎖定生理信號感測器1A。圖3以圖1所示之非接觸式相位鎖定暨自我注入鎖定生理信號感測器1為說明例。
請參閱圖1及圖3所示,具有非接觸式相位鎖定暨自我注入鎖定生理信號感測器之系統3包含一非接觸式相位鎖定暨自我注入鎖定生理信號感測器1、一基頻帶放大器30、一類比數位轉換器40及一信號處理裝置50。 基頻帶放大器30電性連接鎖相迴路20之一輸出端,用以接收並放大生理信號S6。 類比數位轉換器40電性連接基頻帶放大器30,用以接收經放大之生理信號S61並將類比形式之生理信號S61轉換為數位形式之生理信號S62。 信號處理裝置50電性連接類比數位轉換器40,用以接收並處理數位形式之生理信號S62。信號處理裝置50例如可為電腦或微控制器。 除頻器21、相位檢測器22與電荷幫浦23整合為一積體電路,該積體電路具有複數腳位與信號處理裝置50電性連接,由信號處理裝置50透過一傳輸介面60控制積體電路。
綜上所述,本發明所提供之非接觸式相位鎖定暨自我注入鎖定生理信號感測器,其包含一自我振盪壓控輻射元件及一鎖相迴路,其中,自我振盪壓控輻射元件中之輻射元件同時扮演兩種角色,即「信號收發」與「頻率選擇」,與習知生理信號感測器之天線僅用於「信號收發」不同;以及,鎖相迴路亦同時扮演兩種角色,即「自振式主動天線的信號穩定功能(可降低相位雜訊)」與「生命徵象信號的解調功能」,習知生理信號感測器極少具有鎖相迴路之架構,即使應用於生理信號感測領域者,其架構也很龐大且複雜;由於上述本發明的重要元件都同時扮演多種角色,因此,相較於習知生理信號感測器,本發明可鎖住頻率使頻率穩定、感測靈敏度高,且由於元件使用數量降低、價格下降,電路複雜度下降,因此體積輕巧且成本低。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
1:非接觸式相位鎖定暨自我注入鎖定生理信號感測器 2:生物體 3:具有非接觸式相位鎖定暨自我注入鎖定生理信號感測器之系統 10、10A:自我振盪壓控輻射元件 11:天線 12:主動放大元件 13:可變電容器 14:開關 20:鎖相迴路 21:除頻器 22:相位檢測器 23:電荷幫浦 24:迴路濾波器 30:基頻帶放大器 40:類比數位轉換器 50:信號處理裝置 S1:振盪信號 S2:反射信號 S3:頻率調變信號 S4:除頻後之振盪信號 S41:相位檢測器輸出信號 S42:電流信號 S5:參考信號 S6:類比電壓信號 S61:經放大之生理信號 S62:數位形式之生理信號 S7:控制信號 S71:低中頻信號
圖1為本發明之非接觸式相位鎖定暨自我注入鎖定生理信號感測器之一實施例之架構示意圖。 圖2為本發明之具非接觸式相位鎖定暨自我注入鎖定生理信號感測器另一實施例之架構示意圖。 圖3為具有圖1之非接觸式相位鎖定暨自我注入鎖定生理信號感測器之系統之架構示意圖。
1:非接觸式相位鎖定暨自我注入鎖定生理信號感測器
2:生物體
10:自我振盪壓控輻射元件
11:天線
12:主動放大元件
13:可變電容器
20:鎖相迴路
21:除頻器
22:相位檢測器
23:電荷幫浦
24:迴路濾波器
50:信號處理裝置
S1:振盪信號
S2:反射信號
S3:頻率調變信號
S4:除頻後之振盪信號
S41:相位檢測器輸出信號
S42:電流信號
S5:參考信號
S6:類比電壓信號

Claims (9)

  1. 一種非接觸式相位鎖定暨自我注入鎖定生理信號感測器,包含: 一自我振盪壓控輻射元件,用以將一振盪信號傳送至一生物體,並接收該生物體反射之一反射信號,使該自我振盪壓控輻射元件處於一自我注入鎖定狀態,且該振盪信號被該生物體之一生理徵象調變為一頻率調變信號;以及 一鎖相迴路,用以對該頻率調變信號解調而得到該生物體的一生理信號,並將該自我振盪壓控輻射元件輸出之除頻後之振盪信號與一參考信號比對,根據比對結果來改變該除頻後之振盪信號的相位,以與該參考信號保持相同相位。
  2. 如申請專利範圍第1項所述之非接觸式相位鎖定暨自我注入鎖定生理信號感測器,其中該自我振盪壓控輻射元件包括: 一天線,用以進行選頻並將該振盪信號傳送至該生物體,該生物體反射之一反射信號被該天線接收,使該自我振盪壓控輻射元件處於一自我注入鎖定狀態,且該振盪信號被該生物體之一生理徵象調變為一頻率調變信號; 一主動放大元件,電性連接該天線,該天線與該主動放大元件參與振盪而產生該振盪信號;以及 一可變電容器,電性連接該天線,用以施加不同電壓以改變天線操作頻率。
  3. 如申請專利範圍第1項所述之非接觸式相位鎖定暨自我注入鎖定生理信號感測器,其中該主動放大元件為固態元件放大器、雙極性接面電晶體放大器、場效電晶體放大器、放大器積體電路或是電晶體放大器其中之一。
  4. 如申請專利範圍第1項所述之非接觸式相位鎖定暨自我注入鎖定生理信號感測器,其中該鎖相迴路包括: 一除頻器,用以接收頻率調變信號,用以對頻率調變信號除頻而得到該除頻後之振盪信號; 一相位檢測器,用以接收該除頻後之振盪信號以及該參考信號,並將該除頻後之振盪信號與該參考信號比對,根據比對結果來產生一調控電壓,用以迴授控制該自我振盪壓控輻射元件,以與該參考信號保持相同相位; 一電荷幫浦,用以接收該相位檢測器輸出信號,並將該相位檢測器輸出信號轉換為一電流信號;以及 一迴路濾波器,用以接收電流信號並將電流信號轉換為一類比電壓信號,且濾除高頻雜訊 將類比電壓信號,分別傳送至一信號處理裝置,以及該自我振盪壓控輻射元件。
  5. 如申請專利範圍第1項所述之非接觸式相位鎖定暨自我注入鎖定生理信號感測器,其中該鎖相迴路與該自我振盪壓控輻射元件之間設有一開關,該開關接收一控制信號並用以切換,經信號處理後可獲得同相位I(In-Phase)信號通道和正交相位Q(Quardrature)信號通道之生理信號。
  6. 如申請專利範圍第1項所述之非接觸式相位鎖定暨自我注入鎖定生理信號感測器,其中該自我振盪壓控輻射元件為自振式主動天線或主動近場感測器其中之一。
  7. 一種具有申請專利範圍第1至6項任意一項所述之非接觸式相位鎖定暨自我注入鎖定生理信號感測器之系統,包含: 一基頻帶放大器,電性連接該鎖相迴路之一輸出端,用以接收並放大該生理信號; 一類比數位轉換器,電性連接該基頻帶放大器,用以接收經放大之該生理信號並將該類比形式之生理信號轉換為數位形式之生理信號;以及 一信號處理裝置,電性連接該類比數位轉換器,用以接收並處理該數位形式之生理信號。
  8. 如申請專利範圍第7項所述之系統,其中該信號處理裝置為電腦或微控制器。
  9. 如申請專利範圍第7項所述之系統,其中該除頻器、該相位檢測器與該電荷幫浦整合為一積體電路,該積體電路具有複數腳位,該複數腳位與該信號處理裝置電性連接,由該信號處理裝置透過傳輸介面控制該積體電路。
TW108111482A 2019-04-01 2019-04-01 非接觸式相位鎖定暨自我注入鎖定生理信號感測器 TWI705795B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108111482A TWI705795B (zh) 2019-04-01 2019-04-01 非接觸式相位鎖定暨自我注入鎖定生理信號感測器
US16/402,301 US11368160B2 (en) 2019-04-01 2019-05-03 Non-contact phase-locked and self-injection-locked vital sign sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108111482A TWI705795B (zh) 2019-04-01 2019-04-01 非接觸式相位鎖定暨自我注入鎖定生理信號感測器

Publications (2)

Publication Number Publication Date
TWI705795B TWI705795B (zh) 2020-10-01
TW202037330A true TW202037330A (zh) 2020-10-16

Family

ID=72604629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111482A TWI705795B (zh) 2019-04-01 2019-04-01 非接觸式相位鎖定暨自我注入鎖定生理信號感測器

Country Status (2)

Country Link
US (1) US11368160B2 (zh)
TW (1) TWI705795B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113288080B (zh) * 2021-04-28 2022-04-08 郑州大学 一种基于相位比较的非接触式生命体征检测系统
CN116115186B (zh) * 2022-12-19 2023-08-29 广东普标技术研究有限公司 一种生物组织成分检测的方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200738214A (en) * 2006-04-13 2007-10-16 Rossmax Int Ltd Method with capability of determining irregular heartbeats
WO2010043992A1 (en) * 2008-10-13 2010-04-22 Koninklijke Philips Electronics N.V. Crystalless transceiver
US8754772B2 (en) * 2010-09-20 2014-06-17 Industrial Technology Research Institute Non-contact vital sign sensing system and sensing method using the same
US8665098B2 (en) * 2010-09-20 2014-03-04 Industrial Technology Research Institute Non-contact motion detection apparatus
US10200794B2 (en) * 2014-12-31 2019-02-05 Invensense, Inc. Ultrasonic operation of a digital microphone
TWI610657B (zh) * 2015-11-13 2018-01-11 慶旺科技股份有限公司 藉由心跳相關訊號評估個人心臟健康之穿戴式裝置及其訊號處理方法
TWM547951U (zh) * 2017-03-31 2017-09-01 Kuan-Jen Wang 生理訊號偵測裝置
TWI642406B (zh) 2017-12-12 2018-12-01 Sil Radar Technology Inc. 非接觸式自我注入鎖定感測器

Also Published As

Publication number Publication date
TWI705795B (zh) 2020-10-01
US20200313680A1 (en) 2020-10-01
US11368160B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
TWI642406B (zh) 非接觸式自我注入鎖定感測器
US9375153B2 (en) Motion/vibration sensor
Li et al. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring
Li et al. Radar remote monitoring of vital signs
Droitcour et al. 0.25/spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radars for remote sensing of vital signs
TWI493213B (zh) 動作/擾動訊號偵測系統及方法
EP1803396B1 (en) Monitoring apparatus for physical movements of a body organ and method for the same
TWI705795B (zh) 非接觸式相位鎖定暨自我注入鎖定生理信號感測器
TWI685205B (zh) 非接觸式自我注入鎖定生理信號感測器
Lie et al. A 2.4 GHz non-contact biosensor system for continuous monitoring of vital-signs
US20060094937A1 (en) Monitoring apparatus of arterial pulses and method for the same
Wen et al. PhysioChair: A dual-frequency radar system for noninvasive and continuous detection of physiological signatures
TWI495451B (zh) 非接觸式生理信號感測系統與其感測方法
TWI556797B (zh) 動作/擾動偵測器
TWI750889B (zh) 非接觸式血壓測量系統及其非接觸式血壓值計算之方法
Kiriazi et al. Radar cross section of human cardiopulmonary activity for recumbent subject
US20230117569A1 (en) Method for measuring physiological signal and physiological signal measurement device
Lee et al. A 14 GHz non-contact radar system for long range heart rate detection
Ganguly et al. Sensitive transmit receive architecture for body wearable RF plethysmography sensor
LU101014B1 (en) A double sideband doppler radar structure with phase shifter added at output of local oscillator
KR20060096837A (ko) 원형편파를 이용한 일체형 무선 생체 감지 시스템
Li et al. A portable 24GHz Doppler radar system for distant human vital sign monitoring
JP2020116276A (ja) 生体情報検出装置
Jiang et al. A compact digital low-IF dual-PLL Doppler radar for remote vital sign detection
US11439355B2 (en) Perturbation-injection-locked physiological signal sensor