TW202036634A - 對離子束進行處理的裝置、系統及方法 - Google Patents

對離子束進行處理的裝置、系統及方法 Download PDF

Info

Publication number
TW202036634A
TW202036634A TW109105703A TW109105703A TW202036634A TW 202036634 A TW202036634 A TW 202036634A TW 109105703 A TW109105703 A TW 109105703A TW 109105703 A TW109105703 A TW 109105703A TW 202036634 A TW202036634 A TW 202036634A
Authority
TW
Taiwan
Prior art keywords
electrode assembly
ion
main
axis
assembly
Prior art date
Application number
TW109105703A
Other languages
English (en)
Inventor
法蘭克 辛克萊
科斯特爾 拜洛
約瑟 C 歐爾森
亞歷山大 利坎斯奇
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202036634A publication Critical patent/TW202036634A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

一種裝置可包括殼體,殼體包括入口開孔以接收離子束。裝置可包括設置在殼體中且位於入口開孔的下游的出口開孔,入口開孔及出口開孔界定在入口開孔與出口開孔之間延伸的束軸線。裝置可包括電動式質量分析總成,電動式質量分析總成設置在殼體中且包括設置在束軸線上方的上部電極總成以及設置在束軸線下方的下部電極總成。裝置可包括電耦合到上部電極總成及下部電極總成的交流電壓總成,其中上部電極總成被配置成以第一相位角從交流電壓總成接收交流訊號,且其中下部電極總成被配置成以第二相位角接收所述交流訊號,第二相位角相對於第一相位角偏移180度。

Description

用於質量分析離子束之裝置、系統及技術
本發明是有關於一種離子束裝置,且特別是有關於一種能進行質量分析的離子注入機。
離子注入是經由轟擊將摻雜物或雜質引入到基板中的製程。離子注入系統(「離子注入機」)可包括離子源及基板平臺或處理腔室,所述基板平臺或處理腔室容納將接受注入的基板。所述離子源可包括產生離子的腔室。束線離子注入機可包括一系列束線組件,例如質量分析儀、准直器以及使離子束加速或減速的各種組件。
離子注入機束線的有用功能是對具有不同質量的離子進行分離,以使得離子束可形成為具有處置工件或基板所需的離子,而不需要的離子在束線組件中被攔截而不會到達基板。在已知系統中,此質量分析功能是由分析磁體來提供,此組件將全部具有相同能量的離子的束彎曲成曲線,從而達成所需的分離,所述曲線的半徑取決於離子質量。然而,此種磁體龐大、昂貴且笨重,而且佔據離子注入機的一大部分成本及功耗。
為了注入相對較低能量(例如,低於大約50 keV的能量)的離子,已開發出緊湊的離子束系統。這些離子束系統可包括等離子體腔室,所述等離子體腔室用作離子源且鄰近容納將接受注入的基板的處理腔室放置。可使用提取柵或其他提取光學器件從等離子體腔室提取離子束以將離子束以所期望的束形狀(例如,帶狀束)提供到基板。在後者的這些系統中,由於對於安裝磁性分析儀(如上文所述地)的大小/空間考量以及成本,可省略質量分析。因此,此類緊湊的離子束系統的使用可能僅限於對注入物質的純度無嚴格要求的應用。
鑒於這些及其他的考量而提供本發明。
在一個實施例中,一種裝置可包括:殼體,包括入口開孔,以接收離子束;以及出口開孔,設置在所述殼體中且位於所述入口開孔的下游,其中所述入口開孔及所述出口開孔界定在所述入口開孔與所述出口開孔之間延伸的束軸線。所述裝置可包括電動式質量分析(electrodynamic mass analysis)總成,所述電動式質量分析總成設置在所述殼體中且包括:上部電極總成,設置在所述束軸線上方;以及下部電極總成,設置在所述束軸線下方。所述裝置可包括電耦合到所述上部電極總成及所述下部電極總成的交流(alternating current,AC)電壓總成。所述上部電極總成可被配置以第一相位角從所述AC電壓總成接收AC訊號,且所述下部電極總成可被配置成以第二相位角接收所述AC訊號,所述第二相位角相對於所述第一相位角偏移180度。
在另一實施例中,一種系統可包括:離子源,被設置成產生離子束;以及電動式質量分析器件。所述電動式質量分析器件可包括:入口開孔,被設置成接收所述離子束;及出口開孔,設置在所述入口開孔下游,其中所述入口開孔及所述出口開孔界定在所述入口開孔與所述出口開孔之間延伸的束軸線。所述電動式質量分析器件還可包括上部電極總成,設置在第一軸線上方;及下部電極總成,設置在所述第一軸線下方。所述系統還可包括:處理腔室,設置在所述出口開孔的下游,所述處理腔室包括基板平臺;以及AC電壓總成,電耦合到所述上部電極總成及所述下部電極總成。
在又一實施例中,一種對離子束進行處理的方法可包括:產生呈連續離子束形式的離子束;及將所述連續離子束沿束軸線引導到電動式質量分析(electrodynamic mass analysis,EDMA)器件中。所述EDMA器件可包括:上部電極總成,設置在所述束軸線上方;及下部電極總成,設置在所述束軸線下方。所述方法可包括在對所述上部電極總成及所述下部電極總成施加具有目標頻率及目標電壓振幅的AC電壓訊號的同時,使所述連續離子束傳輸穿過所述EDMA器件。如此,具有第一質量的目標離子物質可沿所述第一軸線離開所述EDMA器件,其中具有與所述第一質量不同的第二質量的雜質離子物質不沿所述第一軸線離開所述EDMA器件,且其中受到質量分析的離子束離開所述EDMA器件。
圖式不一定按比例繪製。所述圖式僅是示意圖,並不旨在描繪本發明的具體參數。所述圖式旨在繪示本發明的示例性實施例,且因此不應被視為對範圍加以限制。在圖式中,相似編號表示相似元件。
現在,將在後文中參考附圖更充分地闡述根據本發明的裝置、系統及方法,在附圖中示出系統及方法的實施例。系統及方法可體現為諸多不同的形式,且不應被解釋為限於本文中所述的實施例。而是,提供這些實施例以使本發明變得透徹且完整,且這些實施例將向所屬領域的技術人員充分傳達系統及方法的範圍。
如本文中所使用,以單數形式列舉且前面帶有詞語「一(a或an)」的元件或操作被理解為還可包括多個元件或多個操作。此外,不旨在將所提及的本發明的「一個實施例」闡釋為排除也包括所列舉的特徵的附加實施例的存在。
本文中提供用於受到質量分析的離子的注入系統的方法,所述注入系統使用新型質量分析器件。在各種實施例中,可將所述質量分析器件實施在束線離子注入機中或緊湊的離子束系統中。
圖1A繪示根據本發明的各種實施例的裝置100。裝置100通常可用作質量過濾器,在本文中被稱為電動式質量分析(EDMA)器件。根據各種實施例,裝置100可部署在緊湊的離子束系統中,或者作為另外一種選擇部署在束線離子注入系統(離子注入機)中。為清晰起見,可以略理想化的形式示出裝置100的結構,其中裝置100的各個部分或零件的相對尺寸可按比例或可不按比例繪製。
如圖1A中所示,裝置100可包括罩殼103,罩殼103包括:入口開孔106,以接收離子束;以及出口開孔108,設置在入口開孔106的下游。入口開孔106及出口開孔108可界定在入口開孔106與出口開孔108之間延伸的束軸線101。在圖1A的實例中,束軸線101平行於所示笛卡兒坐標系(Cartesian coordinate system)的Z軸。如參照以下各圖所詳述,可以如下方式對裝置100進行操作:使具有所需質量的所選離子以與束軸線101大致平行的軌跡穿過入口開孔106進入,並與束軸線101大致平行地穿過出口開孔離開,同時所選離子在裝置100的內部沿不同的軌跡偏轉。
為了執行質量分析,裝置100可包括電動式質量分析總成,所述電動式質量分析總成包括:上部電極總成102,設置在束軸線101上方;及下部電極總成104,設置在束軸線101下方。
在一些實施例中,上部電極總成102及下部電極總成104可包括多個電極,其中所述多個電極沿電極軸線(由X軸表示)伸長,其中電極軸線垂直於束軸線延伸。此佈置可尤其適合於處置帶狀束,其中所述帶狀束的特徵在於在沿X軸延伸的剖面上具有長軸線。然而,在其他實施例中,裝置100的電極可處置具有更等軸的剖面形狀的點狀束或筆狀束。
上部電極總成102可包括:上部入口電極112,設置在入口腔室110中;主上部電極總成122,設置在主腔室120中且位於上部入口電極112的下游;及上部出口電極132,設置在主上部電極總成122的下游。
下部電極總成104可包括:下部入口電極114,設置在入口腔室110中;主下部電極總成124,設置在主腔室120中;及下部出口電極134,設置在主下部電極總成124的下游。
根據各種實施例,主上部電極總成122及主下部電極總成124可界定喇叭口形關係,其中主上部電極總成與主下部電極總成之間的間隔在主腔室的上游位置與主腔室的下游位置之間增大。此喇叭口形關係可有助於減弱來自行進穿過罩殼103的離子束的離子衝擊。
如圖1A中所示,裝置100也可包括束阻擋件109,束阻擋件109設置在主腔室120中且延伸跨越束軸線101。束阻擋件109可被設定為接地電位,其中下文進一步詳述束阻擋件109的操作。
裝置100可包括接地隧道,所述接地隧道位於入口腔室110中且設置在上部入口電極112的下游及下部入口電極114的下游。如圖1A中所示,所述接地隧道可包括設置在束軸線101上方的上部部分116及設置在束軸線101下方的下部部分118。在各種實施例中,接地隧道的特徵也可在於在Y-Z平面中呈喇叭口形狀,如圖1中所示。
裝置100可包括電耦合到上部電極總成102及下部電極總成104的AC電壓總成160。如下文更詳細地闡述,上部電極總成102可被配置成以第一相位角從AC電壓總成160接收AC訊號,而下部電極總成104被配置成以第二相位角接收AC訊號,所述第二相位角相對於所述第一相位角偏移180度。
簡言之,將AC電壓訊號(參見圖1的AC電壓總成160)提供到裝置100的電極會促進離子根據其質量及到達入口開孔106中的時間沿不同的軌跡偏轉。在各種非限制性實施例中,AC訊號可具有200 kHz到100 MHz的頻率。此外,在一些實施例中,AC訊號可具有最大電壓振幅介於1 kV到100 kV之間的電壓。如下文所詳述,在此種能量範圍及頻率範圍內,在具有不同質量的離子行進穿過電動式質量分析器件(例如,裝置100)時可方便地進行過濾。
圖1B圖示說明由圖1A所示裝置執行的質量過濾的大致特徵,圖1B示出罩殼103內的各種組件以及離子束150。離子束150可從左側穿過入口開孔106(參見圖1A)進入罩殼103。離子束150可包括處理離子154,舉例來說,處理離子154以曲線軌跡示出且表示用於注入的具有目標質量的離子。在離子束150進入罩殼103之前,離子束150中可能存在其他雜質物質。這些雜質由離子152表示。通過施加具有適當頻率以及電壓振幅的AC電壓訊號,使處理離子154以實線曲線所示的軌跡偏轉,並經由出口開孔108(參見圖1A)離開罩殼103,如所示,與束軸線101大致平行且足夠貼近束軸線101而穿過出口開孔108離開。在沿束軸線離開之後,則可將這些離子向下游輸送到待接受處理的基板。
離子152具有與處理離子154的質量不同的質量。此外,通過適當選擇各種參數,可使離子152沿使得離子152被捕獲在罩殼103內的軌跡偏轉,或者可使得離子152沿不與束軸線101平行的軌跡穿過出口開孔108離開,且因此不會擊打到待接受處理的基板。這些各種參數可包括所施加AC電壓的頻率、電壓振幅以及罩殼103內的各種組件的幾何配置。
圖2A示出根據本發明的其他實施例的操作圖1A所示裝置100的一種情景。在此情景中,20 keV11 B+ 離子束從左側進入裝置100。硼離子表示將以最低的過濾損耗被輸送穿過裝置100的目標離子。離子束202是由以由個別離子的能量及質量確定的速度行進的所述個別離子構成,離子束202在進入到罩殼103中期間大致沿束軸線101行進。圖2A的情景表示在不同的情況下對進入罩殼的各種不同的離子的軌跡的模擬。施加AC訊號以在垂直方向(Y軸)上產生最大振幅為2E5V/m的2 MHz正弦變化時變場(time-dependent field)。施加AC訊號以使得在任何給定情況下,通過與下部電極總成104處的第二電壓訊號呈180度反相的第一電壓訊號來驅動上部電極總成102的電極。此相移沿Y軸建立時變電場。在罩殼103的接地部分中(例如,在接地隧道的上部部分116與下部部分118之間)且也在上部出口電極132的上游及下部出口電極134的上游的區中屏蔽所述電場。如表示不同的到達時間且對應於AC訊號的不同相位的各種軌跡所示,無論不同離子的相位(到達時間)如何,離子束202皆會返回到沿束軸線101定向的最初遷移線(line of flight)及最初角度。在圖2A的實例中,尺寸(以米為單位示出)使得離子束202中的離子在大約一個循環(360度)內橫穿過罩殼103。
當離子進入罩殼103時,電場在上部入口電極112及下部入口電極114鄰近處以大約65°出現。電場在接地隧道鄰近處以大約65°消失,在主腔室120的左側部分中以大約175°出現,朝向主腔室120的右側及出口腔室130的左側以大約65°消失且然後以大約65°出現。此配置使得任何給定離子的軌跡首先在入口腔室110中彎曲,在鄰近接地隧道處以直線漂移,在主腔室120的初始部分中再次彎曲,在離開主腔室120時以直線漂移,並在出口腔室130中再次彎曲。
圖2B示出根據操作圖2A所示裝置100的情景的質量為1 amu的雜質離子的軌跡。因此,在使用AC電壓訊號使離子202偏轉時,施加同一AC電壓訊號來使離子204偏轉。由於離子204的質量遠比離子202的質量輕,因此離子204更快地行進穿過罩殼103,且由於電場不會迅速切換以使初始偏轉反向,因此離子204在初始方向上發生偏轉之後,偏離束軸線101而被收集在內壁中。
圖2C示出根據操作圖2A所示裝置100的情景的質量為40 amu的雜質離子的軌跡。在此實例中,更重的離子(離子206)行進得比離子202慢得多,將經歷沿Y軸的較小橫向偏轉,且可在行進穿過罩殼103時在多個循環內發生偏轉。因此,離子206往往沿總體上更趨線性的軌跡(如所示)行進,而一些離子根據其到達裝置100中的時間而可傾向於沿束軸線101或貼近束軸線101行進。為了確保恰當篩除這些更重的離子,可設置束阻擋件109以使其延伸跨越束軸線101且攔截沿束軸線101行進的任何離子。注意,傾向於穿過出口開孔108離開的任何離子206將展現出不與束軸線101平行的軌跡,且可在擊打基板之前在不同的下游組件處被攔截。
圖2D示出針對圖1A所示裝置基於對在10 amu到11 amu範圍內的質量(硼)的過濾計算的過濾輪廓。
根據本發明的各種實施例,可對裝置100的尺寸及操作進行工程設計以適應各種各樣的離子束大小、離子能量、離子質量及AC頻率。這些參數通過以下簡易方程式相關聯:
Figure 02_image002
…方程式1
其中L是從罩殼103的入口到出口的長度,n是頻率為f的AC電壓的循環數,E是離子能量,且m是離子質量。參數n根據所選的詳細軌跡而定,且通常可為整數值或非整數值。在圖2A的配置中,將n選為1。表1示出可用於過濾不同的離子的可能的質量、能量、頻率及長度的樣本。最小長度可受入射離子束的幾何形狀限制:為了達成良好的分離,長度必須超過離子束沿Y軸的高度的大約10倍。如果入射離子束具有寬的角度範圍,則所述長度應足夠短以使得初始角展度不會妨礙質量分離。罩殼103大約數釐米到小於1米的尺寸可適應使用在數百kHz到小於10 MHz範圍內的頻率來對諸多熟知的注入物質進行質量過濾。實施例並不僅限於此情境。鑒於上文,根據一些實施例,可針對給定注入物質來將罩殼103構造成具有目標長度。因此,考慮到在2 MHz下操作的AC電壓總成,就10 KeV能量來說,長度為0.21 M的罩殼103可構造出適於傳輸硼離子的EDMA器件,而使用長度為0.12 m的罩殼103的EDMA器件可適於傳輸10 keV磷離子。
表I
離子 H B P As
質量(amu) 1 1 1 11 11 11 31 31 31 75 75 75
能量(keV) 1 5 10 10 10 20 10 10 30 10 30 30
頻率(kHz) 6780 6780 2000 2000 6780 2000 1200 2000 2000 800 1200 2000
長度(m) 0.06 0.14 0.69 0.21 0.06 0.30 0.21 0.12 0.22 0.20 0.23 0.14
注意,在其他實施例中,可使用具有給定的罩殼103長度(沿Z軸)的給定EDMA器件通過視情況改變施加到電極的頻率或改變入射束的能量來傳輸不同的離子物質。表II提供氫(amu=1)、硼(amu=11)、磷(amu=31)及砷(amu=75)的一組離子能量,所述離子能量與0.3 m的罩殼103長度L對應(參見方程式1)且隨AC電壓頻率而變化。
表II
    M(amu)
L(m)= 0.3 1 11 31 75
    能量(keV)
頻率(kHz) 800 0.3 3.3 9.3 23
1200 0.7 7.4 21 50.7
2000 1.9 21 58 141
6780 22 237 669 1619
如表II中所示,若離子能量(例如22 keV+/- 1 eV)是給定的,AC電壓的頻率隨質量的增大而減小(表現出平方根依賴性),但完全處於市售射頻(radio frequency,RF)供應器的範圍內。因此,可視情況使用不同的AC電壓(在此種情形中為RF電壓)供應器來驅動具有給定長度L的同一罩殼,以在給定離子能量下傳輸不同質量的離子。
更籠統來說,可調整漂移區的尺寸、偏轉區的尺寸及不同區的數目以優化EDMA器件的性能。
圖2E說明針對操作根據本發明實施例的裝置240模擬的11 amu目標離子軌跡。在此實例中,所述離子軌跡是在最大振幅為2E5V/m的在Y軸方向上的2 MHz正弦變化時變場的情況下20 keV11 B+ 離子束的模擬軌跡。所述裝置通常被配置為裝置100,但不存在束阻擋件。此外,離子250從左到右行進,其中不同的軌跡表示不同的離子到達時間。根據是否存在偏轉電場將所述裝置劃分為不同的區段,所述區段包括偏轉區252、漂移區254、偏轉區256、漂移區258及偏轉區260。與圖2A一樣,離子軌跡全部發散且然後重新合攏在束軸線上(在Z方向上為0.00)。因此,硼離子將傾向於前進穿過裝置240。
圖2F說明針對在圖2E所示條件下操作模擬的3 amu雜質離子軌跡。在此實例中,較輕離子(離子270)也偏離束軸線而被收集起來且未完成一個循環,離子270朝裝置240的右側表現出發散的路徑。
圖2G說明針對在圖2E所示條件下操作模擬的19 amu雜質離子軌跡。在此情形中,較重離子(離子280)偏轉超過一個循環,但並未再次沿束軸線合攏。
圖3A、圖3B及圖3C分別說明針對操作根據本發明實施例的另一裝置模擬的11 amu離子軌跡、3 amu離子軌跡及19 amu離子軌跡。在此實例中,裝置300配置有第一偏轉區304、漂移區306及第二偏轉區308。因此,裝置300中的被供電電極(未示出)可被配置為朝向罩殼的入口及朝向罩殼的出口,而接地區設置在罩殼的中間。
在圖3A中,示出在最大振幅為2E5V/m的在垂直方向上的2MHz正弦變化時變場的情況下20keV11 B+ 離子束的橫向偏轉。以極具示意性的形式示出裝置300,其中各個區沿Z軸的尺寸被設定成在AC場的給定頻率下在2.5個AC循環(n=5/2)內對離子束進行處置。所述場在標記為「漂移」的區中被屏蔽。各種曲線表示離子束中在不同的時間進入裝置300的不同的離子的軌跡。無論離子束中的特定離子以何種相位進入系統,離子束中不同離子的軌跡皆會返回到最初遷移線(束軸線)及最初角度。在區第一偏轉區304中,所述場接通一個完整循環,然後在漂移區306中被屏蔽半個循環,且然後在第二偏轉區308中再次接通一個完整循環。離子302發散且然後沿束軸線合攏,如所示。
在圖3B中,3 amu離子(離子312)更迅速地行進穿過裝置300且未偏轉達一個完整循環,離子312具有發散的軌跡,如所示。在圖3C中,19 amu離子(離子322)在裝置300中偏轉超過一個循環,同時通常遠離束軸線發散,或者在一些情況下沿非平行方向離開。因此,只有20keV11 B+ 離子傳播穿過裝置300並在適當位置且沿適當方向離開。
如所指出,可使用根據本發明實施例配置的EDMA器件來取代用於束線離子注入機中的磁性質量分析儀(例如,已知磁性質量分析儀)。此外,本發明實施例的EDMA器件可用於構造具有質量分析能力的新型緊湊的離子注入裝置。圖4繪示新型離子注入系統,所述新型離子注入系統以系統400的形式示出。在此實施例中,裝置100包括離子源402。根據一些變化形式,離子源402可包括通過任何適合的方法進行激發以產生給定離子物質的等離子體腔室。系統400可包括提取光學器件404,所述提取光學器件404耦合到抑制作用供應器420及提取作用供應器422以提取離子束430A,例如帶狀束(沿X軸具有長軸線)。
裝置100設置在提取光學器件404的下游,裝置100包括裡面設置有電極總成的罩殼103且通常按照上文參照圖1所述地佈置。罩殼103被耦合成接收離子束430A,其中離子束430A包含未受分析的離子,其中用於注入的目標離子可與雜質離子混合在一起。罩殼103被耦合成從AC電壓總成160接收AC電壓訊號以執行質量分析,如上文所述。注意,AC電壓總成可包括已知組件,所述已知組件包括發電機、共振器、以及在施加到上部電極總成102的電壓訊號與施加到下部電極總成104的電壓訊號之間設置相位延遲的電路系統。因此,將受到質量分析的離子束430B引導到罩殼103之外。
系統400還包括處理腔室410,處理腔室410設置在罩殼103的下游,用以接收受到質量分析的離子束並將基板412暴露於受到質量分析的離子束。在一些實施例中,處理腔室410中可設置有基板平臺414以使基板412例如沿Y方向接受掃描,其中受到質量分析的離子束可沿X方向伸長。如此一來,可將整個基板412暴露於受到質量分析的離子束430B。如圖4中所示且根據可選實施例,系統400可包括根據已知的靜電能量過濾器配置的能量過濾器406,能量過濾器406用以濾除離子,即不具有最終的目標離子能量的高能中子。為了實現此能量過濾,能量過濾器406可耦合到電壓源408,電壓源408被配置成使受到質量分析的離子束430B從第一軸線(例如,罩殼103中的束軸線)偏轉到處理軸線,此處理軸線可垂直於基板412的平面。所述能量過濾器還可包括控制束的最終能量的加速電壓或減速電壓。
因此,可將受到質量分析及能量過濾的離子束430C提供到基板412。注意,在罩殼103的尺寸大約是十分之幾米的實施例中,離子源402與處理腔室410之間的整個距離可大約是1米或小於1米。
圖5繪示根據本發明的一些實施例的示例性製程流程500。在方塊502處,產生呈連續離子束形式的離子束。可根據各種實施例通過任何方便的形式產生離子束。
在方塊504處,將連續離子束沿束軸線引導到電動式質量分析(EDMA)器件中。EDMA器件可包括上部電極總成及下部電極總成,其中上部電極總成設置在束軸線上方且下部電極總成設置在束軸線下方。
在方塊506處,在施加具有目標頻率及目標振幅的AC電壓的同時,使連續離子束傳輸穿過EDMA器件。可根據連續離子束的能量及將被傳輸穿過EDMA器件的目標離子物質來對目標頻率進行調諧。如此,具有第一質量及目標能量的目標離子物質沿束軸線離開EDMA器件,而具有與目標質量不同的第二質量的離子物質不沿束軸線離開EDMA器件。如此一來,可對雜質離子物質進行過濾以使其不會繼續沿束軸線朝向待接受注入的基板傳播。
鑒於以上內容,本文中所公開的實施例達成至少以下優點。第一優點是通過提供更緊湊的質量分析組件以用於對離子束進行質量分析來實現。第二優點是提供EDMA型系統進行質量分析來節省花費。所提供的第三優點是根據本發明實施例的用於執行質量分析的高頻AC場將可不輸送顆粒,且因此減少顆粒污染。另一優點是根據本發明實施例的質量分析儀具有相對較高的吞吐量,經模擬發現,所述吞吐量高於50%且在一些情形中高達70%。
雖然本文中已闡述了本發明的某些實施例,但本發明並不僅限於此,這是因為本發明的範圍具有所屬領域所允許的及本說明書所表明的最廣範圍。因此,上述說明不應被視為限制性的。所屬領域的技術人員將設想在所附權利要求書的範圍及精神內的其他修改。
100、240、300:裝置 101:束軸線 102:上部電極總成 103:罩殼 104:下部電極總成 106:入口開孔 108:出口開孔 109:束阻擋件 110:入口腔室 112:上部入口電極 114:下部入口電極 116:上部部分 118:下部部分 120:主腔室 122:主上部電極總成 124:主下部電極總成 130:出口腔室 132:上部出口電極 134:下部出口電極 150、430A:離子束 152、204、206、250、270、280、302、312、322:離子 154:處理離子 160:交流電壓總成 202:離子束/離子 252、256、260:偏轉區 254、258、306:漂移區 304:第一偏轉區 308:第二偏轉區 400:系統 402:離子源 404:提取光學器件 406:能量過濾器 408:電壓源 410:處理腔室 412:基板 414:基板平臺 420:抑制作用供應器 422:提取作用供應器 430B:受到質量分析的離子束 430C:受到質量分析及能量過濾的離子束 500:製程流程 502、504、506:方塊 L:長度 X、Y、Z:方向/軸
圖1A示出根據本發明實施例的示例性裝置。 圖1B繪示使用圖1A所示裝置對離子束進行質量分析的圖示。 圖2A示出根據本發明其他實施例的根據操作圖1A所示裝置的一種情景的目標離子物質的軌跡。 圖2B根據圖2A所示情景示出雜質離子物質的軌跡。 圖2C根據圖2A所示情景示出另一雜質離子物質的軌跡。 圖2D示出針對圖1A所示裝置計算的過濾輪廓。 圖2E說明針對操作根據本發明實施例的裝置模擬的11 amu目標離子軌跡。 圖2F說明針對在圖2E所示條件下操作模擬的3 amu雜質離子軌跡。 圖2G說明針對在圖2E所示條件下操作模擬的19 amu雜質離子軌跡。 圖3A、圖3B及圖3C分別說明針對操作根據本發明實施例的另一裝置模擬的11 amu離子軌跡、3 amu離子軌跡及19 amu離子軌跡。 圖4繪示根據本發明實施例配置的示例性系統。 圖5繪示根據本發明的一些實施例的示例性製程流程。
100:裝置
101:束軸線
102:上部電極總成
103:罩殼
104:下部電極總成
106:入口開孔
108:出口開孔
109:束阻擋件
110:入口腔室
112:上部入口電極
114:下部入口電極
116:上部部分
118:下部部分
120:主腔室
122:主上部電極總成
124:主下部電極總成
130:出口腔室
132:上部出口電極
134:下部出口電極
160:交流電壓總成
X、Y、Z:方向/軸

Claims (19)

  1. 一種裝置,包括: 殼體,包括入口開孔,以接收離子束; 出口開孔,設置在所述殼體中且位於所述入口開孔的下游,所述入口開孔及所述出口開孔界定在所述入口開孔與所述出口開孔之間延伸的束軸線; 電動式質量分析總成,設置在所述殼體中且包括: 上部電極總成,設置在所述束軸線上方;以及 下部電極總成,設置在所述束軸線下方;以及 交流電壓總成,電耦合到所述上部電極總成及所述下部電極總成,其中所述上部電極總成被配置成以第一相位角從所述交流電壓總成接收交流訊號,且其中所述下部電極總成被配置成以第二相位角接收所述交流訊號,所述第二相位角相對於所述第一相位角偏移180度。
  2. 如請求項1所述的裝置,其中所述上部電極總成包括: 上部入口電極,設置在所述殼體的入口腔室中; 主上部電極總成,設置在所述殼體的主腔室中且位於所述上部入口電極的下游;以及 上部出口電極,設置在所述殼體的所述主腔室中且位於所述主上部電極總成的下游;且 其中所述下部電極總成包括: 下部入口電極,設置在所述入口腔室中; 主下部電極總成,設置在所述主腔室中且位於所述下部入口電極的下游;以及 下部出口電極,設置在所述主下部電極總成的下游。
  3. 如請求項2所述的裝置,其中所述主上部電極總成與所述主下部電極總成界定喇叭口形關係,其中所述喇叭口形關係為所述主上部電極總成與所述主下部電極總成之間的間隔在所述主腔室的上游位置與所述主腔室的下游位置之間增大。
  4. 如請求項2所述的裝置,還包括束阻擋件,所述束阻擋件設置在所述主腔室中且延伸跨越所述束軸線,所述束阻擋件被設定為接地電位。
  5. 如請求項2所述的裝置,其中所述入口腔室還包括設置在所述上部入口電極及所述下部入口電極的下游的接地隧道,所述接地隧道具有設置在所述束軸線上方的上部部分及設置在所述束軸線下方的下部部分。
  6. 如請求項1所述的裝置,其中所述交流訊號包括200 kHz到100 MHz的頻率。
  7. 如請求項1所述的裝置,其中所述電動式質量分析總成包括多個電極,所述多個電極沿電極軸線伸長,所述電極軸線垂直於所述束軸線延伸。
  8. 如請求項1所述的裝置,其中所述交流訊號包括1 kV到100 kV的最大電壓振幅。
  9. 一種系統,包括: 離子源,被設置成產生離子束; 電動式質量分析器件,包括: 入口開孔,被設置成接收所述離子束; 出口開孔,設置在所述入口開孔的下游,所述入口開孔及所述出口開孔界定在所述入口開孔與所述出口開孔之間延伸的束軸線; 上部電極總成,設置在所述束軸線上方;以及 下部電極總成,設置在所述束軸線下方;以及 處理腔室,設置在所述出口開孔的下游,所述處理腔室包括基板平臺;以及 交流電壓總成,電耦合到所述上部電極總成及所述下部電極總成。
  10. 如請求項9所述的系統,其中所述上部電極總成被配置成以第一相位角從所述交流電壓總成接收交流訊號,且其中所述下部電極總成被配置成以第二相位角接收所述交流訊號,所述第二相位角相對於所述第一相位角偏移180度。
  11. 如請求項9所述的系統,還包括設置在所述出口開孔與所述處理腔室之間的靜電能量過濾器,其中所述靜電能量過濾器被配置成將所述離子束在10度到60度的角度範圍內從所述束軸線偏轉到處理軸線。
  12. 如請求項10所述的系統,其中所述上部電極總成包括: 上部入口電極,設置在所述殼體的入口腔室中; 主上部電極總成,設置在所述殼體的主腔室中且位於所述上部入口電極的下游;以及 上部出口電極,設置在所述殼體的所述主腔室中且位於所述主上部電極總成的下游;且 其中所述下部電極總成包括: 下部入口電極,設置在所述入口腔室中; 主下部電極總成,設置在所述主腔室中且位於所述下部入口電極的下游;以及 下部出口電極,設置在所述主下部電極總成的下游。
  13. 如請求項12所述的系統,其中所述主上部電極總成與所述主下部電極總成界定喇叭口形關係,其中所述喇叭口形關係為所述主上部電極總成與所述主下部電極總成之間的間隔在所述主腔室的上游位置與所述主腔室的下游位置之間增大。
  14. 如請求項12所述的系統,還包括束阻擋件,所述束阻擋件設置在所述主腔室中且延伸跨越所述束軸線,所述束阻擋件被設定為接地電位。
  15. 如請求項12所述的系統,其中所述入口腔室還包括設置在所述上部入口電極及所述下部入口電極的下游的接地隧道,所述接地隧道具有設置在所述束軸線上方的上部部分及設置在所述束軸線下方的下部部分。
  16. 如請求項12所述的系統,其中所述交流訊號包括200 kHz到100 MHz的頻率及1 kV到100 kV的最大電壓振幅。
  17. 如請求項9所述的系統,其中所述電動式質量分析器件包括多個電極,所述多個電極沿電極軸線伸長,所述電極軸線垂直於所述束軸線延伸。
  18. 一種對離子束進行處理的方法,包括: 產生呈連續離子束形式的所述離子束; 將所述連續離子束沿束軸線引導到電動式質量分析器件中,所述電動式質量分析器件包括設置在所述束軸線上方的上部電極總成及設置在所述束軸線下方的下部電極總成;以及 在對所述上部電極總成及對所述下部電極總成施加具有目標頻率及目標電壓振幅的交流電壓訊號的同時,使所述連續離子束傳輸穿過所述電動式質量分析器件; 其中具有第一質量的目標離子物質沿所述束軸線離開所述電動式質量分析器件,其中具有與所述第一質量不同的第二質量的雜質離子物質不沿所述束軸線離開所述電動式質量分析器件,且其中受到質量分析的離子束離開所述電動式質量分析器件。
  19. 如請求項18所述的對離子束進行處理的方法,還包括: 引導所述受到質量分析的離子束穿過能量過濾器,其中產生受到質量分析及能量過濾的離子束;以及 將所述受到質量分析及能量過濾的離子束引導到基板。
TW109105703A 2019-03-15 2020-02-21 對離子束進行處理的裝置、系統及方法 TW202036634A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/354,638 US10763072B1 (en) 2019-03-15 2019-03-15 Apparatus, system and techniques for mass analyzed ion beam
US16/354,638 2019-03-15

Publications (1)

Publication Number Publication Date
TW202036634A true TW202036634A (zh) 2020-10-01

Family

ID=72241399

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109105703A TW202036634A (zh) 2019-03-15 2020-02-21 對離子束進行處理的裝置、系統及方法

Country Status (3)

Country Link
US (1) US10763072B1 (zh)
TW (1) TW202036634A (zh)
WO (1) WO2020190427A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11587778B2 (en) 2020-11-03 2023-02-21 Applied Materials, Inc. Electrodynamic mass analysis with RF biased ion source

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906322B2 (en) 2001-03-29 2005-06-14 Wisconsin Alumni Research Foundation Charged particle source with droplet control for mass spectrometry
US6730904B1 (en) 2003-04-30 2004-05-04 Varian, Inc. Asymmetric-field ion guiding devices
US8160819B2 (en) 2008-08-22 2012-04-17 The United States Of America, As Represented By The Secretary Of Agriculture Rapid identification of proteins and their corresponding source organisms by gas phase fragmentation and identification of protein biomarkers
US9570279B2 (en) * 2013-02-14 2017-02-14 Office Tandem L.L.C. Two rotating electric fields mass analyzer
US8796619B1 (en) 2013-06-11 2014-08-05 Science And Engineering Services, Llc Electrostatic orbital trap mass spectrometer
CN106373854B (zh) 2015-07-23 2018-12-21 株式会社岛津制作所 一种离子导引装置
US10068758B2 (en) 2017-01-27 2018-09-04 Varian Semiconductor Equipment Associates, Inc. Ion mass separation using RF extraction
US10192727B2 (en) * 2017-03-28 2019-01-29 Varian Semiconductor Equipment Associates, Inc. Electrodynamic mass analysis

Also Published As

Publication number Publication date
US20200294755A1 (en) 2020-09-17
WO2020190427A1 (en) 2020-09-24
US10763072B1 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
TWI327335B (en) Ion beam deflecting acceleration/deceleration/convergence structure and method
KR100977359B1 (ko) 이온 빔의 질량 분리 필터와 그 질량 분리 방법 및 이를사용하는 이온 소스
EP1082747B1 (en) Acceleration and analysis architecture for ion implanter
KR101236563B1 (ko) 하전된 빔 덤프 및 입자 어트랙터
TWI360141B (en) Plasma generator for space charge neutralization o
US20180218894A1 (en) Ion Mass Separation Using RF Extraction
KR20080094603A (ko) 빔처리장치
EP1662541A2 (en) Beam space-charge compensation device and ion implanation system having the same
KR20060060531A (ko) 빔 편향주사 방법, 빔 편향주사 장치, 이온주입 방법, 및이온주입 시스템
TWI450305B (zh) 離子植入設備以及其所使用之聚集/成形離子束之方法
TWI797680B (zh) 離子植入系統、操作其的方法以及線性加速器
KR20210036981A (ko) 집군된 이온 빔을 생성하기 위한 신규한 장치 및 기술들
US10192727B2 (en) Electrodynamic mass analysis
TWI386967B (zh) 離子佈植機、離子佈植機電極,以及用於將離子佈植到基材之方法
CN106575598A (zh) 质谱仪的等离子体清洁
US7579602B2 (en) Ion implantation with a collimator magnet and a neutral filter magnet
KR101702908B1 (ko) 조절 가능한 루버드된 플라즈마 일렉트론 플루드 외피
TW202036634A (zh) 對離子束進行處理的裝置、系統及方法
JPS62108438A (ja) 空間電荷レンズを使用した高電流質量分光計
JP4848528B2 (ja) イオン質量分離方法及び装置、並びにイオンドーピング装置
JP3235466B2 (ja) イオン注入装置
TWI612856B (zh) 用於減少能量污染之射束線設計
JP2005294090A (ja) イオン注入装置
JPH06302293A (ja) マイクロ波イオン源
JPH10261378A (ja) イオン照射装置