TW202035986A - Small molecular biomarkers for nephropathy and applications thereof - Google Patents

Small molecular biomarkers for nephropathy and applications thereof Download PDF

Info

Publication number
TW202035986A
TW202035986A TW108121863A TW108121863A TW202035986A TW 202035986 A TW202035986 A TW 202035986A TW 108121863 A TW108121863 A TW 108121863A TW 108121863 A TW108121863 A TW 108121863A TW 202035986 A TW202035986 A TW 202035986A
Authority
TW
Taiwan
Prior art keywords
nephropathy
biomarker
content
group
patients
Prior art date
Application number
TW108121863A
Other languages
Chinese (zh)
Other versions
TWI839361B (en
Inventor
陳朝榮
蔡輔仁
Original Assignee
中國醫藥大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國醫藥大學 filed Critical 中國醫藥大學
Publication of TW202035986A publication Critical patent/TW202035986A/en
Application granted granted Critical
Publication of TWI839361B publication Critical patent/TWI839361B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/34Genitourinary disorders
    • G01N2800/347Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7057(Intracellular) signaling and trafficking pathways
    • G01N2800/7066Metabolic pathways
    • G01N2800/7076Amino acid metabolism

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a biomarker, method and assay kit for identifying and screening nephropathy and monitoring nephropathy treatment.

Description

腎病變小分子生物標記及其應用Small molecular biomarkers for nephropathy and their applications

相關申請案。本申請案主張根據美國專利法第119條(35U.S.C. §119)於2018年6月21日提出申請的美國臨時申請案第USSN 62/688,147之權益,其全部內容透過引用併入本文。Related applications. This application claims the rights and interests of U.S. Provisional Application No. USSN 62/688,147 filed on June 21, 2018 in accordance with Article 119 of the U.S. Patent Law (35U.S.C. §119), the entire contents of which are incorporated herein by reference.

本發明涉及生物標記、方法,以及分析套組,係用於鑑定及篩選腎病變並且監控腎病變的進展。The invention relates to biomarkers, methods, and analysis kits for identifying and screening nephropathy and monitoring the progression of nephropathy.

腎損傷,也稱為腎病變,可由例如藥物毒性、發炎反應、高血壓,以及糖尿病所引起。腎臟疾病通常是一種進行性疾病,這表示腎臟的損害往往是永久性而無法回復的。因此,在損害發生前儘早發現腎臟疾病非常重要。如果在早期階段發現腎臟疾病,可以很有效地進行治療。慢性腎病變的治療著重於減緩腎臟損害的進展,通常是透過控制潛在的原因。慢性腎病變可發展為末期腎衰竭,若沒有人工過濾(透析,洗腎)或腎移植的話就會致命。特定而言,成人群體中糖尿病(diabetes mellitus,DM)的罹患率正在增加1,2 ,糖尿病腎病變(diabetic nephropathy,DN)仍是末期腎病變的主要原因3,4 。大約30-40%的洗腎患者罹患糖尿病(DM)以及相關的心血管合併症4 。這類患者的存活率低於罹患糖尿病的非洗腎患者或非糖尿病的洗腎患者的存活率5 。目前管理糖尿病(DM)的共識為認識到早期糖尿病腎病變(DN)檢測的重要性,因為它能夠早期啟動糖尿病腎病變患者的特定治療以及飲食限制,以阻止腎功能衰退進展為慢性腎病變(chronic kidney disease,CKD)甚至是末期腎衰竭6Kidney damage, also called nephropathy, can be caused by, for example, drug toxicity, inflammatory reactions, high blood pressure, and diabetes. Kidney disease is usually a progressive disease, which means that kidney damage is often permanent and irreversible. Therefore, it is very important to detect kidney disease as early as possible before damage occurs. If kidney disease is found at an early stage, it can be treated very effectively. The treatment of chronic kidney disease focuses on slowing the progression of kidney damage, usually by controlling the underlying cause. Chronic kidney disease can develop into end-stage renal failure, which can be fatal without artificial filtration (dialysis, dialysis) or kidney transplantation. In particular, the prevalence of diabetes (diabetes mellitus, DM) in the adult population is increasing1,2 , and diabetic nephropathy (DN) is still the main cause of end-stage renal disease3,4 . About 30-40% of dialysis patients suffering from diabetes mellitus (DM) and related cardiovascular complications 4. The survival rate of such patients is lower than the non-dialysis patients with diabetes or diabetic dialysis patient survival 5. The current consensus in the management of diabetes mellitus (DM) is to recognize the importance of early diabetic nephropathy (DN) detection, because it can initiate specific treatment and dietary restrictions for patients with diabetic nephropathy early to prevent the progression of renal function decline to chronic kidney disease ( chronic kidney disease, CKD) and even stage renal failure 6.

通常,透過分析蛋白尿含量(例如,尿白蛋白的含量)或透過檢查腎小球濾過率(glomerular filtration rate,GFR)來診斷腎病變。其他相關參數包括例如收縮壓(systolic blood pressure,SBP)、舒張壓(diastolic blood pressure,DBP),空腹血糖(fasting blood glucose,FBG)、血紅素A1c (hemoglobin A1c,HbA1c)。然而,這些方法缺乏足夠的靈敏度及/或選擇性,尤其是在沒有明顯症狀發生時檢測早期腎病變。雖然腎病變也可透過腎活體組織切片來檢測,但是這種侵入性手術並不是理想的方法,因為大多數患者不願意這樣做,因此可能導致晚期診斷,直到臨床特徵外顯或已經發展疾病惡化。腎臟活體組織切片也可能導致嚴重出血併發症之風險。Usually, nephropathy is diagnosed by analyzing proteinuria content (for example, urine albumin content) or by checking glomerular filtration rate (GFR). Other related parameters include, for example, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), and hemoglobin A1c (HbA1c). However, these methods lack sufficient sensitivity and/or selectivity, especially to detect early nephropathy when no obvious symptoms occur. Although nephropathy can also be detected by renal biopsy, this invasive procedure is not an ideal method because most patients are unwilling to do so, which may lead to late diagnosis until clinical features are apparent or the disease has progressed. . Kidney biopsies may also lead to the risk of serious bleeding complications.

需要開發一種用於檢測腎病變之方法,特別是用於一般篩檢、早期檢測,以及非侵入性之方法。There is a need to develop a method for detecting nephropathy, especially for general screening, early detection, and non-invasive methods.

本發明出乎意料地發現,相較於對照(健康)無腎病變之個體的正常含量,在腎病變患者中,可以在個體的尿液中檢測到某些代謝物的含量的降低,包括N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸,或纈胺酸這種胺基酸的含量增加。因此,包括N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸,以及纈胺酸這種胺基酸在內的代謝產物可作為診斷腎病變的特異性生物標記,特別是用於早期診斷,也可用於在罹患腎病變的患者中監測腎病變的進展。The present invention unexpectedly found that compared with the normal content of control (healthy) individuals without nephropathy, in patients with nephropathy, the decrease in the content of certain metabolites, including N1, can be detected in the urine of individuals. -Methylguanosine, 7-methyluric acid, xanthine nucleoside, and histidine, or valine, the amino acid content increased. Therefore, metabolites including N1-methylguanosine, 7-methyluric acid, xanthine nucleoside, histidine, and amino acid valine can be used as specific biomarkers for the diagnosis of nephropathy , Especially for early diagnosis, can also be used to monitor the progress of nephropathy in patients suffering from nephropathy.

於一方面,本發明提供了一種用於檢測在個體中的腎病變之方法,該方法包括: (i) 提供從該待測個體中獲得之生物樣品; (ii) 進行第一檢測,其包括在該生物樣品中確定第一生物標記之含量以獲得第一檢測含量,將該第一檢測含量與該第一生物標記的第一參考含量進行比較以獲得第一比較結果,以及基於該第一比較結果評估該個體是否罹患腎病變或具有發展腎病變之風險,其中該第一生物標記係選自由N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷、組胺酸,以及其任何組合之群組,且相較於該第一參考含量,該第一檢測含量的降低表示該個體罹患腎病變或具有發展腎病變之風險;及/或 (iii) 進行第二檢測,其包括在該生物樣品中確定第二生物標記的含量以獲得第二檢測含量,將該第二檢測含量與該第二生物標記的第二參考含量進行比較以獲得第二比較結果,以及基於該第二比較結果評估該個體是否罹患腎病變或具有發展腎病變之風險,其中該第二生物標記為纈胺酸,且相較於該第二參考含量,該第二檢測含量的增加表示該個體罹患腎病變或具有發展腎病變之風險。In one aspect, the present invention provides a method for detecting nephropathy in an individual, the method comprising: (i) Provide a biological sample obtained from the individual to be tested; (ii) Performing a first test, which includes determining the content of the first biomarker in the biological sample to obtain the first detection content, and comparing the first detection content with the first reference content of the first biomarker to obtain A first comparison result, and based on the first comparison result to assess whether the individual suffers from nephropathy or is at risk of developing nephropathy, wherein the first biomarker is selected from N1-methylguanosine, 7-methyluric acid, yellow A group of purine nucleosides, histidine, and any combination thereof, and compared to the first reference level, a decrease in the first detected level indicates that the individual suffers from nephropathy or is at risk of developing nephropathy; and/or (iii) Performing a second test, which includes determining the content of a second biomarker in the biological sample to obtain a second detection content, and comparing the second detection content with a second reference content of the second biomarker to obtain A second comparison result, and based on the second comparison result to assess whether the individual suffers from nephropathy or is at risk of developing nephropathy, wherein the second biomarker is valine, and compared to the second reference content, the first 2. An increase in the detected content indicates that the individual suffers from nephropathy or is at risk of developing nephropathy.

於另一方面,本發明提供一種用於在罹患腎病變的患者中監測腎病變進展之方法,該方法包括: (a) 於早期時間點從該患者提供早期生物樣品; (b) 於較晚時間點從該患者提供較晚生物樣品,其中該較晚時間點晚於該早期時間點; (c) 進行第一檢測,其包括分別在該早期生物樣品中以及該較晚生物樣品中確定第一生物標記的含量,以分別獲得該第一生物標記的早期檢測含量以及較晚檢測含量,比較該第一生物標記的該早期檢測含量與該較晚檢測含量以獲得第一比較結果,以及基於該第一比較結果評估該患者的腎病變進展,其中該第一生物標記選自由N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷、組胺酸,以及其任何組合所組成之群組,且相較於該第一生物標記的該早期檢測含量,該第一生物標記的該較晚檢測含量的下降表示該患者的腎病變進展;及/或 (d) 進行第二檢測,其包括分別在該早期生物樣品中以及該較晚生物樣品中確定第二生物標記的含量,以分別獲得該第二生物標記的早期檢測含量以及較晚檢測含量,比較該第二生物標記的該早期檢測含量與該較晚檢測含量以獲得第二比較結果,以及基於該第二比較結果評估該患者的腎病變進展,其中該第二生物標記為纈胺酸,且相較於該第二生物標記的該早期檢測含量,該第二生物標記的該較晚檢測含量的增加表示該患者的腎病變進展。In another aspect, the present invention provides a method for monitoring the progression of nephropathy in a patient suffering from nephropathy, the method comprising: (a) Provide early biological samples from the patient at an early time point; (b) Provide a later biological sample from the patient at a later time point, wherein the later time point is later than the early time point; (c) Performing the first test, which includes determining the content of the first biomarker in the early biological sample and the later biological sample respectively, to obtain the early detection content and the later detection content of the first biomarker, respectively, The early detection content of the first biomarker is compared with the later detection content to obtain a first comparison result, and the patient’s nephropathy progression is evaluated based on the first comparison result, wherein the first biomarker is selected from N1-A Guanosine, 7-methyluric acid, xanthine, histidine, and any combination thereof, and compared with the early detection content of the first biomarker, the first biomarker The decrease in the later detection level indicates the progression of nephropathy in the patient; and/or (d) Performing a second test, which includes determining the content of the second biomarker in the early biological sample and the later biological sample to obtain the early detection content and the later detection content of the second biomarker respectively, Comparing the early detection content of the second biomarker with the later detection content to obtain a second comparison result, and assessing the patient’s nephropathy progression based on the second comparison result, wherein the second biomarker is valine, And compared with the early detection content of the second biomarker, the increase of the later detection content of the second biomarker indicates the progression of nephropathy in the patient.

於一些具體實施例中,透過質譜法進行該檢測。In some embodiments, the detection is performed by mass spectrometry.

於一些具體實施例中,該生物樣品為尿液樣品。In some specific embodiments, the biological sample is a urine sample.

於一些具體實施例中,如本文所述之方法進一步包括在該生物樣品中確定至少一種生理參數。該生理參數之實例包括,但不限於,年齡、性別、收縮壓(systolic blood pressure,SBP)、舒張壓(diastolic blood pressure,DBP)、空腹血糖(fasting blood glucose,FBG)、血紅素A1c (hemoglobin A1c,HbA1c)、糖尿病持續時間、肌酸酐、預估的腎小球濾過率(estimated glomerular filtration rate,eGFR)、白蛋白尿、尿白蛋白與肌酸酐比(albumin to creatinine ratio,ACR)及其任何組合。In some embodiments, the method as described herein further includes determining at least one physiological parameter in the biological sample. Examples of the physiological parameters include, but are not limited to, age, gender, systolic blood pressure (systolic blood pressure, SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), heme A1c (hemoglobin A1c, HbA1c), duration of diabetes, creatinine, estimated glomerular filtration rate (eGFR), albuminuria, urine albumin to creatinine ratio (albumin to creatinine ratio, ACR), and Any combination.

於一些具體實施例中,該待測個體為糖尿病患者。In some embodiments, the subject to be tested is a diabetic patient.

於本發明之一些具體實施例中,該腎病變為慢性腎病變(CKD)。In some embodiments of the present invention, the nephropathy is chronic nephropathy (CKD).

於本發明之一些具體實施例中,該慢性腎病變(CKD)為早期慢性腎病變(CKD),具體而言是第一階段或第二階段,或者該慢性腎病變(CKD)為第三階段或第四階段慢性腎病變(CKD)。In some specific embodiments of the present invention, the chronic kidney disease (CKD) is early chronic kidney disease (CKD), specifically the first stage or the second stage, or the chronic kidney disease (CKD) is the third stage Or the fourth stage of chronic kidney disease (CKD).

於一些具體實施例中,若確定該個體罹患腎病變,則對該個體進行治療腎病變之治療方法。In some specific embodiments, if it is determined that the individual suffers from nephropathy, then the individual is treated with a treatment method for nephropathy.

於另一方面,本發明提供一種用於實施如本文所述之方法之套組,以及使用該套組檢測如本文所述之生物標記的存在或含量之說明書。In another aspect, the present invention provides a kit for implementing the method as described herein, and instructions for using the kit to detect the presence or content of a biomarker as described herein.

還提供了特異性識別如本文所述之生物標記的試劑用於診斷腎病變或監測腎病變進展,或用於製備用於診斷腎病變或監測腎病變進展的套組或組合物的試劑之用途。Also provided is the use of a reagent that specifically recognizes a biomarker as described herein for diagnosing nephropathy or monitoring the progress of nephropathy, or for preparing a reagent for diagnosing nephropathy or monitoring the progress of nephropathy or a reagent composition .

於以下之描述中闡述了本發明之一個或多個具體實施例之細節。從以下幾個具體實施例之詳細描述以及所附申請專利範圍,本發明之其他特徵或優點將變得顯而易見。The details of one or more specific embodiments of the present invention are set forth in the following description. Other features or advantages of the present invention will become apparent from the detailed description of the following specific embodiments and the scope of the attached patent application.

為了提供對本發明之清楚並快速的理解,首先定義某些術語。在整個詳細描述中闡述了額外的定義。除非另有定義,否則本文所用之所有技術及科學術語具有與本發明所屬領域之技術人員通常理解的含義相同之含義。In order to provide a clear and quick understanding of the present invention, first define certain terms. Additional definitions are set forth throughout the detailed description. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which the present invention belongs.

如本文所用,冠詞「一」以及「一個」係指該冠詞的一個或多於一個(即,至少一個)語法對象。舉例來說,「一元素」表示一個元素或多於一個元素。As used herein, the articles "a" and "a" refer to one or more than one (ie, at least one) grammatical objects of the article. For example, "an element" means one element or more than one element.

如本文所用,「約」或「近似」等詞係指本領域普通技術人員將理解的可接受偏差程度,這可能會有所不同,具體取決於使用它的環境。通常,「約」或「近似」可表示在引用值附近具有±10%範圍之數值。As used herein, words such as "about" or "approximately" refer to the acceptable degree of deviation as understood by those of ordinary skill in the art, which may vary depending on the environment in which it is used. Generally, "about" or "approximately" can mean a value within a ±10% range around the quoted value.

如本文所用,「包含(動詞)」或「包含(動名詞)」等詞通常以包括(動詞)/包括(動名詞)的含義使用,其代表允許存在一種或多種特徵、成分或組成分。「包含(動詞)」或「包含(動名詞)」等詞包括「由......組成(動詞)」或「由......組成(動名詞)」等詞。As used herein, words such as "contain (verb)" or "contain (gerund)" are usually used in the meaning of including (verb)/including (gerund), which means that one or more features, ingredients or components are allowed. Words such as "contain (verb)" or "contain (gerund)" include words such as "consisting of (verb)" or "consisting of (gerund)".

如本文所用,「受試者」、「個體」以及「患者」等詞係指需要診斷、預後、處理,或治療的任何哺乳動物個體,特別是人類。其他個體可包括牛、狗、貓、天竺鼠、兔、大鼠、小鼠、馬等。As used herein, the terms "subject", "individual" and "patient" refer to any mammalian individual that requires diagnosis, prognosis, treatment, or treatment, especially humans. Other individuals may include cows, dogs, cats, guinea pigs, rabbits, rats, mice, horses, etc.

如本文所用,本文使用之「診斷」乙詞通常包括確定一個體是否可能受目標疾病、病症,或功能障礙之影響。本領域技術人員通常基於一種或多種診斷指標(即,標記)進行診斷,診斷該標記的存在、不存在,或其指示疾病、病症或功能障礙的存在或不存在的含量。本領域技術人員將理解,診斷並不表示以100%的準確度確定特定疾病的存在或不存在,而是在一個體中存在某種疾病的可能性增加。As used herein, the term "diagnosis" as used herein generally includes determining whether an individual may be affected by the target disease, disorder, or dysfunction. Those skilled in the art usually make a diagnosis based on one or more diagnostic indicators (ie, markers), and diagnose the presence or absence of the marker, or the content indicating the presence or absence of a disease, disorder or dysfunction. Those skilled in the art will understand that diagnosis does not mean determining the presence or absence of a specific disease with 100% accuracy, but an increase in the possibility of a certain disease in an individual.

如本文所用,「治療」乙詞係指將一種或多種活性劑應用或施用於一個體,該個體受一疾病、該疾病之一症狀或病症,或該疾病之進展的影響,目的在於治療、治癒、緩解、減輕、改變、補救、改善,促進,或影響該疾病、該疾病之症狀或病症,由該疾病引起之殘疾,或該疾病之進展或傾向。As used herein, the term "treatment" refers to the application or administration of one or more active agents to an individual affected by a disease, a symptom or disorder of the disease, or the progression of the disease, for the purpose of treating, Cure, alleviate, alleviate, change, remedy, improve, promote, or affect the disease, the symptoms or conditions of the disease, the disability caused by the disease, or the progress or tendency of the disease.

如本文所用,「正常個體」可用於指一基本上處於健康狀態而沒有特定疾病(例如,腎病變)之個體,並且可以指單個正常個體或一群正常的個體。As used herein, "normal individual" can be used to refer to an individual who is basically in a healthy state without a specific disease (eg, nephropathy), and can refer to a single normal individual or a group of normal individuals.

如本文所用,「對照個體」乙詞可用於指未患有目標疾病(例如,腎病變)之個體,並且可以指單個對照個體或一群對照個體。於一些具體實施例中,一對照個體可以指正常/健康個體。於一些具體實施例中,一對照個體可以指未罹患腎病變之個體(或糖尿病患者)。As used herein, the term "control individual" can be used to refer to individuals who do not have the target disease (eg, nephropathy), and can refer to a single control individual or a group of control individuals. In some embodiments, a control individual may refer to a normal/healthy individual. In some embodiments, a control individual may refer to an individual (or diabetic) who does not suffer from nephropathy.

如本文所用,「異常量」係指相較於未患有目標疾病(例如,腎病變)的個體或參考量或對照量,增加或減少的指示劑的量。特定而言,例如,異常量可以比參考或對照量高出5%、10%、20%、30%、40%、50%、60%、70%、80%、90%,或100%或更多;或異常量可以比參考或對照量低5%、10%、20%、30%、40%、50%、60%、70%、80%、90%,或100%或更多。參考或對照量可指在正常個體或對照樣品(例如,不含目標疾病的組織或細胞或任何生物學樣品)中測量的量。於本領域中,透過使用常規檢測以及統計方法分析來自正常個體群體的樣品中標記的檢測量,可以獲得一範圍的正常量值。As used herein, "abnormal amount" refers to the amount of the indicator that is increased or decreased compared to an individual or a reference amount or a control amount not suffering from the target disease (eg, nephropathy). Specifically, for example, the abnormal amount can be 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% higher than the reference or control amount. More; or the abnormal amount can be 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% or more lower than the reference or control amount. A reference or control amount can refer to an amount measured in a normal individual or a control sample (e.g., tissue or cells free of the target disease or any biological sample). In the art, a range of normal values can be obtained by using conventional detection and statistical methods to analyze the detected amount of markers in samples from normal individual populations.

如本文所用,如本文所用之生物標記的「低表現」以及「高表現」係指相對於樣品中發現的生物標記含量的相對術語。於一些具體實施例中,可透過比較對照組、未患病樣品中的生物標記表現含量,以確定低表現及高表現,其中低表現可指相對於對照、未患病樣品的表現含量的較低表現含量者,而高表現可指對相對於對照、未患病樣品中的表現含量的較高表現含量者。As used herein, "low performance" and "high performance" of a biomarker as used herein refer to relative terms relative to the amount of biomarker found in a sample. In some specific embodiments, the biomarker performance content in the control group and the non-diseased samples can be compared to determine the low performance and the high performance. The low performance can refer to the comparison of the performance content of the control and non-diseased samples. Low performance content, and high performance can refer to the higher performance content relative to the performance content in the control, unaffected samples.

如本文所用,生物學標記(生物標記)為客觀測量並評價的特徵(例如,蛋白質、胺基酸、代謝物、基因或遺傳表現),作為正常或異常生物過程、疾病、致病過程,或對治療或治療干預的反應之指標。生物標記可包括存在或不存在指示特定生物過程的特徵或模式或特徵之集合。生物標記測量可增加或減少以指示某種生物事件或過程。標記主要用於診斷及預後目的。然而,其可用於本文所述之治療、監測、藥物篩選以及其他目的,包括評估治療劑之有效性。As used herein, biological markers (biomarkers) are features that are objectively measured and evaluated (for example, proteins, amino acids, metabolites, genes, or genetic manifestations), as normal or abnormal biological processes, diseases, pathogenic processes, or An indicator of response to treatment or therapeutic intervention. Biomarkers can include the presence or absence of features or patterns or collections of features that indicate a particular biological process. Biomarker measurements can be increased or decreased to indicate a certain biological event or process. Markers are mainly used for diagnostic and prognostic purposes. However, it can be used for the treatment, monitoring, drug screening, and other purposes described herein, including evaluating the effectiveness of therapeutic agents.

如本文所用,待透過本文所述之任何方法分析的生物樣品可為從待診斷的個體獲得的任何類型之樣品。於一些具體實施例中,生物樣品可為體液樣品,例如血液樣品、尿液樣品,或腹水樣品。通常,生物樣品為尿液樣品。在其他具體實施例中,血液樣品可為全血或其部分,例如血清或血漿,進行肝素化或EDTA處理,以避免血液凝固。或者,該生物樣品可為組織樣品或從腎取得的活體組織切片樣品。As used herein, the biological sample to be analyzed by any of the methods described herein can be any type of sample obtained from the individual to be diagnosed. In some embodiments, the biological sample may be a body fluid sample, such as a blood sample, a urine sample, or an ascites sample. Generally, the biological sample is a urine sample. In other specific embodiments, the blood sample may be whole blood or a part thereof, such as serum or plasma, which is subjected to heparinization or EDTA treatment to avoid blood clotting. Alternatively, the biological sample may be a tissue sample or a biopsy sample obtained from the kidney.

如本文所用,如本文所用之「生理參數」乙詞通常係指可被監測以確定與患者相關的一種或多種定量生理含量及/或活性的任何參數。生理參數之實例包括,但不限於,年齡、性別、收縮壓(SBP)、舒張壓(DBP)、空腹血糖(FBG)、血紅素A1c (HbA1c)、糖尿病持續時間,肌酸酐、預估的腎小球濾過率(estimated glomerular filtration rate,eGFR)、白蛋白尿、尿白蛋白與肌酸酐比(ACR)及其任何組合。於某些特定具體實施例中,該生理參數包括空腹血糖(FBG)及/或舒張壓(DBP)。As used herein, the term "physiological parameter" as used herein generally refers to any parameter that can be monitored to determine one or more quantitative physiological content and/or activity related to the patient. Examples of physiological parameters include, but are not limited to, age, gender, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), heme A1c (HbA1c), duration of diabetes, creatinine, estimated renal Estimated glomerular filtration rate (eGFR), albuminuria, urine albumin to creatinine ratio (ACR), and any combination thereof. In some specific embodiments, the physiological parameter includes fasting blood glucose (FBG) and/or diastolic blood pressure (DBP).

如本文所用,「腎病變」乙詞係指其中發生腎損傷的生理狀況,其特異性地破壞其適當調節血液與尿液中溶質濃度的能力。腎病變可透過一種或多種病理學變化來描述特徵:腎小球大小、簇狀纖維化、鮑氏囊纖維化、擴張、微血管變窄、基底膜增厚、細胞增多(腎小球環間膜或內皮)、白血球浸潤、微血管血栓、腎小管萎縮、壞死、液泡及透明液滴變化、基底膜增厚、擴張、發炎細胞與管腔內的鑄型、間質纖維化、水腫、急性與慢性白血球浸潤、小動脈纖維化、血栓形成、透明變化及變窄。一般而言,在腎病變的早期階段,腎臟仍能很好地過濾掉血液中的廢棄物;在中期階段,腎臟可能需要更加努力地擺脫廢棄物;在晚期階段,腎臟可能會停止工作。通常且常規地,可以透過尿蛋白濃度來評估腎病變。腎病變的早期臨床特徵為尿液中白蛋白濃度低但異常 (白蛋白排泄率(albumin excretion rate,AER):30-300 mg/24小時;或白蛋白對肌酸酐比(ACR):30-300 mg/g),稱為微量白蛋白尿,該患者患有初始腎病變(初期腎病變)。若未經過適當的治療,這樣的患者會發展為持續的微量白蛋白尿並轉變為嚴重的腎病變(明顯的腎病變),也稱為大量白蛋白尿(白蛋白排泄率(AER) > 300 mg/24小時或白蛋白與肌酸酐比(ACR) > 300 mg/g),最後進展為末期腎病變(end stage renal disease,ERSD)。預估的腎小球濾過率(eGFR)亦為腎病變之一指標。慢性腎病變(CKD)定義為:在帶有或沒有蛋白尿的患者中具有預估的腎小球濾過率(eGFR)低於60 ml/分鐘超過3個月。不論患者所具有的預估的腎小球濾過率(eGFR)含量低或高,只要該患者的蛋白尿超過3個月,還是會被認為是慢性腎病變(CKD)患者。還可以基於例如血清肌酸酐濃度、尿蛋白濃度、尿蛋白與肌酸酐比,或透過使用追蹤劑化合物如鄰苯二甲酸酯來評估腎病變。As used herein, the term "nephropathy" refers to the physiological condition in which kidney damage occurs, which specifically destroys its ability to properly regulate the concentration of solutes in blood and urine. Nephropathy can be characterized by one or more pathological changes: glomerular size, clustered fibrosis, Bowman’s bursa fibrosis, dilation, narrowing of microvessels, thickening of basement membrane, increased cells (interglomerular membrane (Or endothelium), leukocyte infiltration, microvascular thrombosis, renal tubular atrophy, necrosis, vacuoles and hyaline droplet changes, basement membrane thickening, dilation, inflammatory cells and casts in the lumen, interstitial fibrosis, edema, acute and chronic Leukocyte infiltration, arteriolar fibrosis, thrombosis, transparent changes and narrowing. Generally speaking, in the early stages of nephropathy, the kidneys can still filter out waste products in the blood well; in the intermediate stages, the kidneys may need to work harder to get rid of waste products; in the late stages, the kidneys may stop working. Usually and routinely, renal disease can be assessed by urine protein concentration. The early clinical features of nephropathy are low but abnormal urine albumin concentration (albumin excretion rate (AER): 30-300 mg/24 hours; or albumin to creatinine ratio (ACR): 30- 300 mg/g), called microalbuminuria, the patient has initial nephropathy (initial nephropathy). Without proper treatment, such patients will develop persistent microalbuminuria and turn into severe nephropathy (obvious nephropathy), also known as macroalbuminuria (albumin excretion rate (AER)> 300 mg/24 hours or albumin to creatinine ratio (ACR)> 300 mg/g), and finally progressed to end stage renal disease (ERSD). The estimated glomerular filtration rate (eGFR) is also an indicator of nephropathy. Chronic kidney disease (CKD) is defined as having an estimated glomerular filtration rate (eGFR) of less than 60 ml/min for more than 3 months in patients with or without proteinuria. Regardless of whether the patient has a low or high estimated glomerular filtration rate (eGFR) level, as long as the patient has proteinuria for more than 3 months, he will still be considered a chronic kidney disease (CKD) patient. Nephropathy can also be assessed based on, for example, serum creatinine concentration, urine protein concentration, urine protein to creatinine ratio, or by using tracer compounds such as phthalates.

於一些具體實施例中,慢性腎病變(CKD)可被認為包括五(5)個腎損傷階段,從階段1中的非常輕微的損傷到階段5中的完全腎衰竭。參見表A。In some embodiments, Chronic Kidney Disease (CKD) can be considered to include five (5) stages of kidney damage, from very slight damage in stage 1 to complete renal failure in stage 5. See Table A.

表A. 慢性腎病變(CKD)的不同階段。 慢性腎病變(CKD)的階段 特徵 階段1 預估的腎小球濾過率(eGFR)大於(且等於) 90 ml/分鐘。 腎臟的功能仍然良好。 通常,未發現任何症狀。 觀察到腎損傷的其他跡象(例如,蛋白尿)。 階段2 預估的腎小球濾過率(eGFR)介於60及89 ml/分鐘。 腎臟的功能仍然良好。 通常,未發現症狀。 觀察到腎損傷的其他跡象(例如,蛋白尿)。 階段3 預估的腎小球濾過率(eGFR) 介於30及59 ml/分鐘。 腎臟受到中度損傷,且未達到應有的功能。 大多數患者仍然沒有任何症狀,但有時會發現常見症狀,例如,手腳腫脹、背部疼痛,以及排尿多於或少於正常。 階段4 預估的腎小球濾過率(eGFR)介於15及29 ml/分鐘。 腎臟受到中度或嚴重的損傷,且未達到應有的功能。 更多患者具有症狀,例如,手腳腫脹、背部疼痛,以及排尿多於或少於正常。 階段5 預估的腎小球濾過率(eGFR)小於15 ml/分鐘。 腎臟嚴重受損,非常接近衰竭或完全衰竭。 患者具有更嚴重的症狀,例如,瘙癢、噁心、嘔吐、呼吸困難,由於腎功能衰竭及血液中毒素及廢棄物的積累所造成。 Table A. Different stages of chronic kidney disease (CKD). Stages of chronic kidney disease (CKD) feature Stage 1 The estimated glomerular filtration rate (eGFR) is greater than (and equal to) 90 ml/min. The function of the kidneys is still good. Usually, no symptoms are found. Other signs of kidney damage are observed (eg, proteinuria). Stage 2 The estimated glomerular filtration rate (eGFR) is between 60 and 89 ml/min. The function of the kidneys is still good. Usually, no symptoms are found. Other signs of kidney damage are observed (eg, proteinuria). Stage 3 The estimated glomerular filtration rate (eGFR) is between 30 and 59 ml/min. The kidney is moderately damaged and does not function as expected. Most patients still have no symptoms, but sometimes common symptoms are found, such as swelling of hands and feet, back pain, and more or less than normal urination. Stage 4 The estimated glomerular filtration rate (eGFR) is between 15 and 29 ml/min. The kidneys are moderately or severely damaged and fail to function as they should. More patients have symptoms, such as swelling of hands and feet, back pain, and more or less than normal urination. Stage 5 The estimated glomerular filtration rate (eGFR) is less than 15 ml/min. The kidney is severely damaged, very close to failure or complete failure. Patients have more severe symptoms, such as itching, nausea, vomiting, and difficulty breathing, caused by kidney failure and the accumulation of toxins and waste products in the blood.

特定而言,如本文所述之慢性腎病變(CKD)的早期階段可包括如上所示的階段1與階段2,這些患者可具有相對較高(正常)的預估的腎小球濾過率(eGFR)但具有至少一個腎損傷跡象,例如微量白蛋白。In particular, the early stages of chronic kidney disease (CKD) as described herein may include stage 1 and stage 2 as shown above, and these patients may have a relatively high (normal) estimated glomerular filtration rate ( eGFR) but with at least one sign of kidney damage, such as microalbumin.

如本文所用,「糖尿病性腎病變」乙詞係指由糖尿病引起的腎病變。於某些具體實施例中,該糖尿病為第二型糖尿病。As used herein, the term "diabetic nephropathy" refers to nephropathy caused by diabetes. In some embodiments, the diabetes is type 2 diabetes.

本公開內容(至少部分地)基於一種或多種新穎可靠的腎病變生物標記之鑑定,亦即,該代謝物包括N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸,以及纈胺酸這種胺基酸。如以下實施例中所證明的,在罹患腎病變的個體的尿液樣品中發現某些代謝物的含量降低,包括N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸,或纈胺酸這種胺基酸的增加含量。因此,本文描述之腎病變檢測方法可鑑定個體是否患有、懷疑患有,或具有發展腎病變之風險。本文描述之檢測方法可應用於任何個體,尤其是作為初始、常規,以及經常性篩選的方法,以鑑定罹患腎病變或具有進展性腎病變風險的那些患者。The present disclosure is based (at least in part) on the identification of one or more novel and reliable biomarkers of nephropathy, that is, the metabolites include N1-methylguanosine, 7-methyluric acid, xanthine, and histamine Acid, and the amino acid valine. As demonstrated in the following examples, the urine samples of individuals suffering from nephropathy found reduced levels of certain metabolites, including N1-methylguanosine, 7-methyluric acid, xanthine, and group Amino acid, or valine, the increased content of this amino acid. Therefore, the nephropathy detection method described herein can identify whether an individual has, is suspected of having, or is at risk of developing nephropathy. The detection method described herein can be applied to any individual, especially as an initial, routine, and frequent screening method to identify those patients who suffer from nephropathy or are at risk of progressive nephropathy.

如本文所述之腎病變之生物標記如下: 表B 名稱 結構 N1-甲基鳥苷 2-胺基-9-[(2R,3R,4S,5R)-3,4-二羥基-5-(羥甲基)氧戊環-2-基]-1-甲基嘌呤-6-酮 C11 H15 N5 O5 分子量297.27 g/mol

Figure 02_image001
7-甲基尿酸 7,9-二氫-7-甲基-1H-嘌呤-2,6,8(3H)-三酮 C6 H6 N4 O3 分子量182.14 g/mol
Figure 02_image002
黃嘌呤核苷 9-[(2R ,3R ,4S ,5R )-3,4-二羥基-5-(羥甲基)氧戊環-2-基]-3H -嘌呤-2,6-二酮 C10 H12 N4 O6 分子量284.228 g/mol  
Figure 02_image004
組胺酸 2-胺基-3-(1H -咪唑-4-基)丙酸 C6 H9 N3 O2 分子量155.1546 g/mol
Figure 02_image006
纈胺酸 2-胺基-3-甲基丁酸 C5 H11 NO2 分子量117.148 g·mol−1
Figure 02_image008
The biomarkers of nephropathy as described herein are as follows: Table B name structure N1-methylguanosine 2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolane-2-yl]-1-methan Purin-6-one C 11 H 15 N 5 O 5 Molecular weight 297.27 g/mol
Figure 02_image001
7-Methyluric acid 7,9-dihydro-7-methyl-1H-purine-2,6,8(3H)-trione C 6 H 6 N 4 O 3 Molecular weight 182.14 g/mol
Figure 02_image002
Xanthine nucleoside 9-[(2 R ,3 R ,4 S ,5 R )-3,4-dihydroxy-5-(hydroxymethyl)oxolane-2-yl]-3 H -purine-2 ,6-Diketone C 10 H 12 N 4 O 6 Molecular weight 284.228 g/mol
Figure 02_image004
Histidine 2-amino-3-(1 H -imidazol-4-yl) propionic acid C 6 H 9 N 3 O 2 Molecular weight 155.1546 g/mol
Figure 02_image006
Valine 2-amino-3-methylbutyric acid C 5 H 11 NO 2 Molecular weight 117.148 g·mol −1
Figure 02_image008

可透過常規技術確定生物樣品中如本文所述之代謝或胺基酸生物標記的存在以及含量。於一些具體實施例中,如本文所述之生物標記的存在及/或含量可透過質譜分析確定,其允許以高靈敏度以及具有再現性直接測量分析物。有許多質譜分析方法可供選擇。質譜分析的實例包括,但不限於,基質輔助雷射脫附電離/飛行時間質譜儀(matrix-assisted laser desorption ionization/time of flight,MALDI-TOF)、表面增強雷射解吸電離/飛行時間質譜儀(surface-enhanced laser desorption ionisation/time of flight,SELDI-TOF)、液相色層分析-質譜儀(liquid chromatography-mass spectrometry,LC-MS)、液相色層分析串聯質譜儀(liquid chromatography tandem mass spectrometry,LC-MS-MS),以及電噴霧電離質譜儀(electrospray ionization mass spectrometry,ESI-MS)。這種方法的一個特定實例為串聯質譜儀(tandem mass spectrometry,MS/MS),其涉及質量選擇或分析的多個步驟,通常透過某種形式的碎片分開。The presence and content of metabolic or amino acid biomarkers as described herein in biological samples can be determined by conventional techniques. In some embodiments, the presence and/or content of biomarkers as described herein can be determined by mass spectrometry, which allows direct measurement of analytes with high sensitivity and reproducibility. There are many mass spectrometry methods to choose from. Examples of mass spectrometry include, but are not limited to, matrix-assisted laser desorption ionization/time of flight (MALDI-TOF), surface enhanced laser desorption ionization/time of flight mass spectrometer (surface-enhanced laser desorption ionisation/time of flight, SELDI-TOF), liquid chromatography-mass spectrometry (LC-MS), liquid chromatography tandem mass spectrometer (liquid chromatography tandem mass spectrometry) spectrometry, LC-MS-MS), and electrospray ionization mass spectrometry (ESI-MS). A specific example of this method is tandem mass spectrometry (MS/MS), which involves multiple steps of mass selection or analysis, usually separated by some form of fragmentation.

於其他具體實施例中,一生物標記的存在及/或含量可透過免疫分析來確定。免疫分析之實例包括,但不限於,西方墨點分析法、酵素聯結免疫吸附分析(enzyme-linked immunosorbent assay,ELISA)、放射免疫分析(radioimmunoassay,RIA)、放射免疫沉澱分析(radioimmunoprecipitation assay,RIPA)、免疫螢光分析(immunofluorescence assay,IFA)、酵素聯結螢光免疫分析(enzyme-linked fluorescent immunoassay,ELFA)、電化學發光(electrochemiluminescence,ECL),以及毛細管凝膠電泳(capillary gel electrophoresis,CGE)。於一些實施例中,可使用特異性識別該生物標記的試劑來確定該生物標記的存在及/或含量,例如特異性結合該生物標記之抗體。In other specific embodiments, the presence and/or content of a biomarker can be determined by immunoassay. Examples of immunoassays include, but are not limited to, Western blot analysis, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunoprecipitation assay (RIPA) , Immunofluorescence assay (IFA), enzyme-linked fluorescent immunoassay (ELFA), electrochemiluminescence (ECL), and capillary gel electrophoresis (CGE). In some embodiments, a reagent that specifically recognizes the biomarker can be used to determine the presence and/or content of the biomarker, such as an antibody that specifically binds to the biomarker.

如本文所述,發現某些代謝物(包括N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸)的含量降低,或纈胺酸這種胺基酸的含量增加與腎病變的出現及進展相關。因此,本文所述之用於篩選腎病變患者以及監測腎病變進展之方法可以使用這些分子作為可靠的生物標記來進行。如上所述,本文所述之檢測方法可作為任何個體的早期篩選方法,以檢測其是否可能罹患腎病變(尤其是早期腎病變)。As described in this article, it was found that the content of certain metabolites (including N1-methylguanosine, 7-methyluric acid, xanthine nucleoside, and histidine) was reduced, or the content of the amino acid valine The increase is related to the appearance and progression of nephropathy. Therefore, the methods described herein for screening patients with nephropathy and monitoring the progression of nephropathy can be performed using these molecules as reliable biomarkers. As mentioned above, the detection method described herein can be used as an early screening method for any individual to detect whether it may suffer from nephropathy (especially early nephropathy).

為了進行本文所述之方法,於生物樣品中檢測或測量本文所述之生物標記的含量,該生物樣品取自有此需要的個體(例如,沒有任何腎病變症狀的人類患者,或患有、懷疑罹患腎病變或具有罹患腎病變風險的人類患者)透過本領域已知的任何方法進行,例如本文所述之那些方法,如質譜儀。通常,該生物樣品為尿液樣品。In order to carry out the method described herein, the content of the biomarkers described herein is detected or measured in a biological sample taken from an individual in need (for example, a human patient without any symptoms of nephropathy, or suffering from, Human patients suspected of suffering from nephropathy or at risk of suffering from nephropathy) are performed by any method known in the art, such as those described herein, such as a mass spectrometer. Usually, the biological sample is a urine sample.

於一些具體實施例中,可以將源自候選個體的樣品中的生物標記的含量與標準值進行比較以確定該候選個體是否患有或具有罹患腎病變之風險。標準值表示在該對照樣品中如本文所述之生物標記的含量。該對照樣品可取自未罹患腎病變的個體。另外,該對照樣品可取自一群這樣的個體的樣品之混合物。或者,該對照個體在例如年齡、性別及/或種族背景中與候選個體匹配。較佳地,該對照樣品與候選個體的生物樣品為相同物種之樣品。In some embodiments, the content of the biomarker in the sample derived from the candidate individual can be compared with the standard value to determine whether the candidate individual has or is at risk of suffering from nephropathy. The standard value represents the content of the biomarker as described herein in the control sample. The control sample can be taken from individuals who do not suffer from nephropathy. In addition, the control sample can be taken from a mixture of samples from a group of such individuals. Alternatively, the control individual is matched with the candidate individual in, for example, age, gender, and/or ethnic background. Preferably, the control sample and the biological sample of the candidate individual are samples of the same species.

於一些具體實施例中,如果第一組生物標記,亦即N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷、組胺酸被測量到具有低於標準值的量(例如,低於標準值約10%或更低),則候選個體可被診斷為罹患、懷疑罹患或具有罹患腎病變之風險。於一些具體實施例中,如果一第二組生物標記,亦即纈胺酸被測量到具有高於標準值的量(例如,高於標準值約10%或更多),則候選個體可被診斷為罹患、懷疑罹患或具有罹患腎病變之風險。In some embodiments, if the first set of biomarkers, namely N1-methylguanosine, 7-methyluric acid, xanthine nucleoside, and histidine are measured to have an amount lower than the standard value (for example, (About 10% or less below the standard value), the candidate individual can be diagnosed as suffering from, suspected of suffering from, or at risk of suffering from nephropathy. In some embodiments, if a second set of biomarkers, that is, valine acid is measured to have an amount higher than the standard value (for example, about 10% or more higher than the standard value), the candidate individual can be Diagnosed as suffering from, suspected of suffering from, or at risk of suffering from nephropathy.

於一些具體實施例中,可測量源自該候選個體(例如,腎病變患者)的多個樣品中如本文所述之生物標記的含量以確定該疾病之進展。例如,至少兩種生物樣品,例如可以在不同時間點從該候選個體獲得尿液樣品。於某些具體實施例中,如果觀察到第一組生物標記,亦即N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸的趨勢隨時間降低(例如,N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸的量在較晚獲得的樣品中低於較早獲得的樣品中的量),則該個體被診斷為罹患、懷疑罹患或具有罹患腎病變之風險。若該個體為一腎病變患者,則N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸的量的減少趨勢表示腎病變的進展(惡化)。於某些具體實施例中,若觀察到胺基酸生物標記纈胺酸的趨勢隨時間增加(例如,在較晚獲得的樣品中的纈胺酸的量高於較早獲得的樣品中的量),則該個體被診斷為罹患、懷疑罹患或具有罹患腎病變之風險。若該個體為一腎病變患者,則纈胺酸量的增加趨勢表示腎病變的進展(惡化)。In some embodiments, the content of the biomarkers as described herein in multiple samples derived from the candidate individual (eg, patients with renal disease) can be measured to determine the progression of the disease. For example, at least two biological samples, for example, urine samples can be obtained from the candidate individual at different time points. In some embodiments, if the first set of biomarkers is observed, namely N1-methylguanosine, 7-methyluric acid, xanthine nucleoside, and histidine, the trend decreases over time (for example, N1 -The amount of methylguanosine, 7-methyluric acid, xanthine nucleoside, and histidine in the sample obtained later is lower than the amount in the sample obtained earlier), the individual is diagnosed as suffering from, Suspected of suffering from or risk of suffering from nephropathy. If the individual is a patient with nephropathy, the decreasing trend of the amount of N1-methylguanosine, 7-methyluric acid, xanthine, and histidine indicates the progression (worsening) of the nephropathy. In certain embodiments, if the trend of amino acid biomarker valine is observed to increase over time (for example, the amount of valine in a sample obtained later is higher than the amount in a sample obtained earlier ), the individual is diagnosed as suffering from, suspected of suffering from, or at risk of suffering from nephropathy. If the individual is a patient with nephropathy, the increasing trend of the amount of valine indicates the progression (worsening) of nephropathy.

當個體,例如人類患者,被診斷為患有、懷疑患有或具有罹患腎病變之風險時,該個體可進行進一步的測試(例如,常規物理測試,包括手術活體組織切片或成像方法,例如X-射線成像、核磁共振成像(magnetic resonance imaging,MRI)或超音波)以確認疾病的發生及/或確定腎病變的階段與類型。When an individual, such as a human patient, is diagnosed with, suspected of having, or at risk of developing nephropathy, the individual may undergo further tests (e.g., routine physical tests, including surgical biopsies or imaging methods, such as X- Radiography, magnetic resonance imaging (MRI) or ultrasound) to confirm the occurrence of the disease and/or determine the stage and type of nephropathy.

於一些具體實施例中,本文所述之方法可進一步包括治療該腎病變患者以至少緩解與該疾病相關之症狀。可以透過給予腎病變的常規藥物進行治療。此類藥物之實例包括,但不限於,(i) 用於減少白蛋白尿的藥物,例如磷酸二酯酶抑制劑,例如,雙嘧達莫以及己酮可可鹼;(ii) 抗高血壓藥物,如血管緊縮素轉換酶(angiotensin converting enzyme,ACE)抑制劑,例如,咪達普利,以及血管緊縮素受體阻斷劑(angiotension receptor blocker,ARB),例如,氯沙坦;(iii) 磷酸鹽結合劑,例如司維拉姆碳酸鹽,碳酸鑭,以及Al(OH)3 己糖醇錯合物;(iv) 鈣補充劑,如碳酸鈣、檸檬酸鈣,以及維生素D;(v) 抗貧血藥物,例如,促紅血球形成素(erythropoietin,EPO)以及鐵補充劑;(vi) 用於降低血脂的藥物,例如他汀類藥物,例如辛伐他汀、普伐他汀,以及阿托伐他汀;(vii) 降低尿酸的藥物,例如,異嘌呤醇、非布索坦,以及苯溴馬隆;(viii) 其他藥物,例如,皮質類固醇,如潑尼松龍、非甾體抗炎藥(non-steriodal anti-inflammatory drugs,NSAIDs),以及N-乙醯半胱胺酸(用於預防造影劑引起的腎病變(contrast-induced nephropathy,CIN))。這些藥物可以一有效量給予一有需要的個體。腎病變的治療還可包括具有低蛋白質及/或低鹽飲食的食物療法。In some embodiments, the methods described herein may further include treating the patient with nephropathy to at least relieve symptoms related to the disease. It can be treated with conventional drugs for nephropathy. Examples of such drugs include, but are not limited to, (i) drugs for reducing albuminuria, such as phosphodiesterase inhibitors, for example, dipyridamole and pentoxifylline; (ii) antihypertensive drugs , Such as angiotensin converting enzyme (ACE) inhibitors, for example, imidapril, and angiotensin receptor blockers (angiotension receptor blocker, ARB), for example, losartan; (iii) Phosphate binders, such as sevelamer carbonate, lanthanum carbonate, and Al(OH) 3 hexitol complex; (iv) calcium supplements, such as calcium carbonate, calcium citrate, and vitamin D; (v ) Anti-anemia drugs, such as erythropoietin (EPO) and iron supplements; (vi) drugs used to lower blood lipids, such as statins, such as simvastatin, pravastatin, and atorvastatin ; (Vii) drugs that lower uric acid, such as isopurinol, febuxostat, and benzbromarone; (viii) other drugs, such as corticosteroids, such as prednisolone, non-steroidal anti-inflammatory drugs ( non-steriodal anti-inflammatory drugs (NSAIDs), and N-acetylcysteine (used to prevent contrast-induced nephropathy (CIN)). These drugs can be administered to an individual in need in an effective amount. Treatment of nephropathy may also include food therapy with a low protein and/or low salt diet.

如本文所用,「有效量」係指可以單獨或與一種或多種其他活性物質組合施用於該個體的每種活性物質的量,以賦予該個體治療效果。可變動該有效量且必須由本領域技術人員確定,這取決於給藥時的具體情況、病症的嚴重程度、患者的各個參數,包括年齡、性別、體重、身高、身體狀況、治療方案、平行治療的性質(如果有的話)、特定的給藥途徑,以及由醫務人員的知識和專業判斷的其他可能因素。這些因素為本領域普通技術人員所熟知的,並且無需進一步的常規實驗即可引入。As used herein, "effective amount" refers to the amount of each active substance that can be administered to the individual alone or in combination with one or more other active substances to impart a therapeutic effect to the individual. The effective amount can be varied and must be determined by those skilled in the art, which depends on the specific conditions at the time of administration, the severity of the disease, and various parameters of the patient, including age, sex, weight, height, physical condition, treatment plan, parallel treatment The nature of the drug (if any), the specific route of administration, and other possible factors based on the knowledge and professional judgment of the medical staff. These factors are well known to those of ordinary skill in the art and can be introduced without further routine experimentation.

本發明還提供用於實施該方法之套組或組合物,其包括特異性識別如本文所述之生物標記的試劑(例如,抗體或標記試劑)。該套組可進一步包括使用該套組檢測本文所述之生物標記的存在或含量的說明書,進而檢測腎病變,並且還可以用於監測腎病變的進展。還提供了這樣的試劑用於在有需要的個體中進行腎病變的檢測之方法或者用於監測腎病變患者的腎病變進展之方法,或者用於製備用於實施所述方法的套組或組合物之方法。這種試劑包括特異性識別該第一生物標記的第一試劑及/或特異性識別該第二生物標記的第二試劑。於一些具體實施例中,此類試劑包括選自由下列所組成之群組的第一試劑:(i)特異性識別N1-甲基鳥苷的分子,(ii)特異性識別7-甲基尿酸的分子,(iii)特異性識別黃嘌呤核苷的分子,(iv)特異性識別組胺酸的分子,以及(v) (i)至(iv)的任何組合。於某些具體實施例中,此類試劑包括特異性識別纈胺酸的第二試劑。該試劑的實例可為抗體或含有可檢測標記(例如螢光標記)的標記試劑,其可特異性識別生物標記。該試劑可以與載體混合,例如醫藥上可接受之載體,以形成用於檢測或診斷目的之組合物。這種載體的實例包括可注射鹽水、可注射蒸餾水、可注射緩衝溶液及其類似物。The present invention also provides a kit or composition for implementing the method, which includes a reagent (for example, an antibody or a labeling reagent) that specifically recognizes a biomarker as described herein. The kit may further include instructions for using the kit to detect the presence or content of the biomarkers described herein, thereby detecting nephropathy, and can also be used to monitor the progress of the nephropathy. Also provided are such reagents for use in a method for detecting nephropathy in an individual in need or a method for monitoring the progression of nephropathy in a patient with nephropathy, or for preparing a kit or combination for implementing the method The method of things. Such reagents include a first reagent that specifically recognizes the first biomarker and/or a second reagent that specifically recognizes the second biomarker. In some embodiments, such reagents include a first reagent selected from the group consisting of (i) molecules that specifically recognize N1-methylguanosine, (ii) specifically recognize 7-methyluric acid (Iii) a molecule that specifically recognizes xanthine, (iv) a molecule that specifically recognizes histidine, and (v) any combination of (i) to (iv). In some specific embodiments, such reagents include a second reagent that specifically recognizes valine. An example of the reagent may be an antibody or a labeling reagent containing a detectable label (such as a fluorescent label), which can specifically recognize a biomarker. The reagent can be mixed with a carrier, such as a pharmaceutically acceptable carrier, to form a composition for testing or diagnostic purposes. Examples of such carriers include injectable saline, injectable distilled water, injectable buffer solutions and the like.

無需進一步詳細說明,相信本領域技術人員將能夠基於以上描述最大程度地應用本發明。因此,以下特定實施例的目的在於說明,而非以任何方式限制本發明之適用範圍。本文引用之所有文獻均透過引用併入本文。Without further elaboration, it is believed that those skilled in the art will be able to apply the present invention to the greatest extent based on the above description. Therefore, the purpose of the following specific embodiments is to illustrate, not to limit the scope of application of the present invention in any way. All documents cited in this article are incorporated into this article by reference.

實施例Example

代謝組學為一種系統生物學方法,用於鑑定及定量生物樣品中的總體代謝物。由於尿液為一種非侵入性樣品的來源,含有大部分身體的代謝終產物,因此尿液代謝組學被用於發現疾病的代謝物標記14,15Metabolomics is a systems biology method used to identify and quantify total metabolites in biological samples. Since the source of the urine sample of a non-invasive, containing most of the body metabolic end products, so urine metabonomics be used to find a disease marker metabolites 14,15.

基於氣相色層分析-質譜(gas chromatography-mass spectrometry,GC-MS)以及液相色層分析-質譜(LC-MS)的代謝組學方法已應用於尿液研究,以尋找早期檢測糖尿病(DM)16,17 以及糖尿病腎病變(DN)18-21 的標記。然而,這些研究中的大多數使用氣相色層分析-質譜儀(GC-MS)進行非標靶/標靶代謝組學分析,並使用液相色層分析-質譜儀(LC-MS)進行標靶代謝物檢測。由於液相色層分析-質譜(LC-MS)可以檢測到比氣相色層分析-質譜儀(GC-MS)更多樣化的代謝物,因此其為一種有前景的非標靶代謝組學方法,可能揭示糖尿病腎病變(DN)的新代謝標記。然而,據我們所知,尚無報導使用液相色層分析-質譜儀(LC-MS)非標靶代謝組學方法發現尿液中的第二型糖尿病腎病變(type 2 diabetic nephropathy,T2DN)標記。Metabolomics methods based on gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) have been applied to urine research to find early detection of diabetes ( DM) 16, 17 and diabetic nephropathy (DN) 18-21 markers. However, most of these studies used gas chromatography-mass spectrometry (GC-MS) for non-target/target metabolomics analysis, and liquid chromatography-mass spectrometry (LC-MS) for Target metabolite detection. Since liquid chromatography-mass spectrometry (LC-MS) can detect more diverse metabolites than gas chromatography-mass spectrometry (GC-MS), it is a promising non-target metabolome The study method may reveal the new metabolic markers of diabetic nephropathy (DN). However, as far as we know, there is no report using liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolomics to find type 2 diabetic nephropathy (T2DN) in urine. mark.

於本文中,為了揭示新穎第二型糖尿病腎病變(T2DN)代謝標記,我們使用UPLC-MS對來自多個醫療中心的大量健康個體以及具有大量白蛋白尿的個體(macro組)、沒有微量白蛋白尿的第二型糖尿病患者(T2DM組),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的尿液樣品進行非標靶代謝組學研究。鑑定並量化不同次群組之間具有顯著倍數變化的代謝物,並評估它們用於早期檢測第二型糖尿病腎病變(T2DN)之功效。In this article, in order to reveal the novel type 2 diabetic nephropathy (T2DN) metabolic markers, we used UPLC-MS to analyze a large number of healthy individuals from multiple medical centers and individuals with large amounts of albuminuria (macro group), without trace white Urine samples of type 2 diabetes patients with proteinuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) were subjected to non-target metabonomics studies. Identify and quantify metabolites with significant fold changes between different subgroups, and evaluate their efficacy for early detection of type 2 diabetic nephropathy (T2DN).

1.1. 材料與方法Materials and Methods

1.11.1 化學品Chemicals

所有化學品及溶劑均購自Sigma-Aldrich公司(聖路易斯市,密蘇里州,美國)。所有化學品均為分析等級。含有0.1%甲酸的水、乙腈,以及含有0.1%甲酸的水為Chromasolv等級。All chemicals and solvents were purchased from Sigma-Aldrich Company (St. Louis, Missouri, USA). All chemicals are of analytical grade. Water containing 0.1% formic acid, acetonitrile, and water containing 0.1% formic acid are Chromasolv grades.

1.21.2 研究人口及樣品Research population and samples

描述樣品採集、製備,以及分析的研究方案經中國醫藥大學附屬醫學院(台中,台灣)當地倫理委員會批准。所有個體在研究前都已給出了知情同意書。所有尿液樣品均來自台灣生物銀行(台灣台北中央研究院領導的全國樣品招募計劃)、中國醫藥大學附屬醫學院,以及台中榮民總醫院(台中,台灣),自2012年1月至2017年12月止。根據臨床病程以及尿白蛋白排泄含量定義以下四組:具有微量白蛋白尿的第二型糖尿病患者(T2DM +micro,30 >白蛋白與肌酸酐比(ACR) > 300 mg/g),不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM;白蛋白與肌酸酐比(ACR) > 30 mg/g),由非糖尿病引起的微量或大量白蛋白尿患者(macro;白蛋白與肌酸酐比(ACR) > 30 mg/g),以及健康對照(白蛋白與肌酸酐比(ACR) > 30 mg/g)。The research protocol describing sample collection, preparation, and analysis was approved by the local ethics committee of the School of Medicine Affiliated to China Medical University (Taichung, Taiwan). All individuals had given informed consent before the study. All urine samples came from Taiwan Biobank (National Sample Recruitment Program led by Academia Sinica, Taiwan), the School of Medicine Affiliated to China Medical University, and Taichung Veterans General Hospital (Taichung, Taiwan), from January 2012 to 2017 Ended in December. The following four groups are defined according to the clinical course and urinary albumin excretion content: Type 2 diabetes patients with microalbuminuria (T2DM +micro, 30> albumin to creatinine ratio (ACR)> 300 mg/g), without Patients with type 2 diabetes with minimal or large albuminuria (T2DM; albumin to creatinine ratio (ACR)> 30 mg/g), patients with micro or large albuminuria (macro; albumin and muscle Acid inine ratio (ACR)> 30 mg/g), and healthy controls (albumin to creatinine ratio (ACR)> 30 mg/g).

1.31.3 樣品製備Sample Preparation

收集尿液樣品並透過離心(5,000 g,在4o C下30分鐘)除去細胞碎片。然後將樣品保持在-80o C下長期儲存。在質譜儀(MS)分析之前,將樣品於4o C下解凍24小時。排除患有腫瘤、發熱、心衰竭、尿路感染、血尿,或血壓調節失調的個體。And urine samples were collected through centrifugation (5,000 g, 30 min at 4 o C) to remove cell debris. Then keep the sample at -80 o C for long-term storage. Before the mass spectrometer (MS) analysis, samples were thawed at 4 o C 24 h. Exclude individuals with tumors, fever, heart failure, urinary tract infections, hematuria, or blood pressure disorders.

1.41.4 尿液代謝組學分析Urine metabolomics analysis

來自健康個體(n = 14)以及非糖尿病引起的微量或大量白蛋白尿患者(macro組) (n = 22)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組) (n = 22)或具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)(n = 14)的個體的隨機與年齡配對的尿液樣品用於透過超性能液相色層分析四極桿飛行時間質譜儀(ultra-performance liquid chromatography quadrupole time of flight mass spectrometry,UPLC-qTOF-MS)進行代謝組學分析,以發現潛在的代謝標記。在所有個體中測量肌酸酐,並獲得來自每個個體的一定體積的尿液以獲得50 µg肌酸酐。將尿液樣品真空乾燥並以500 µL的0.1%甲酸重新溶解,並將5 µL上述肌酸酐調節的尿液注入液相色層分析-質譜(LC-MS)裝置中。配備有一C18管柱(2.1 x 150 mm,3 µm,T3;Waters,Milford,麻州,美國)的UHPLC系統(Ultimate 3000;Dionex公司,蓋莫靈市,德國)與混合Q-TOF質譜儀結合(maXis影響,Bruker Daltonics公司,布萊梅市,德國),具有正交電噴霧電離(electrospray ionization,ESI)源。對於代謝組學分析,LC流速為0.25 mL/分鐘,使用溶劑A (5%乙腈與0.1%甲酸)以及溶劑B (乙腈與0.1%甲酸)。注入5 µL樣品體積後,將溶劑B保持在1% 4分鐘,然後在18分鐘內增加至45%,最後在2分鐘內增加至99%。保持2分鐘後,將溶劑B還原至1%並保持該濃度2.5分鐘。全掃描質量範圍在m/z 50-1000,1 Hz下以正離子或負離子模式操作。離子源的毛細管電壓設定為+3,600 V (正模式)以及-3,000 V (負模式),端板偏移為500 V。噴霧器氣流為1 bar,乾燥氣體流量為8 L/分鐘。乾燥溫度設定為200o C。在分析之前,注射10個連續運行的品質控制(quality control,QC)樣品(從4組中隨機選擇的40個尿液樣品的合併樣品)以調節LC管柱。在每10次尿液樣品分析後,注入QC樣品以檢查整個分析過程中系統的穩定性。From healthy individuals (n = 14) and non-diabetic patients with micro or large albuminuria (macro group) (n = 22), type 2 diabetes patients without micro or large albuminuria (T2DM group) (n = 22) or individuals with type 2 diabetes with microalbuminuria (T2DM+micro group) (n = 14), randomized and age-matched urine samples used to analyze quadrupole flight by ultra performance liquid chromatography Ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) performs metabolomics analysis to discover potential metabolic markers. Measure creatinine in all individuals, and obtain a certain volume of urine from each individual to obtain 50 µg of creatinine. The urine sample was vacuum dried and re-dissolved with 500 µL of 0.1% formic acid, and 5 µL of the urine adjusted with creatinine was injected into a liquid chromatography-mass spectrometry (LC-MS) device. Equipped with a C18 column (2.1 x 150 mm, 3 µm, T3; Waters, Milford, Massachusetts, USA) UHPLC system (Ultimate 3000; Dionex, Gemmoling, Germany) combined with a hybrid Q-TOF mass spectrometer (affected by maXis, Bruker Daltonics, Bremen, Germany), with orthogonal electrospray ionization (ESI) source. For metabolomics analysis, the LC flow rate is 0.25 mL/min, using solvent A (5% acetonitrile and 0.1% formic acid) and solvent B (acetonitrile and 0.1% formic acid). After injecting 5 µL of sample volume, keep solvent B at 1% for 4 minutes, then increase to 45% in 18 minutes, and finally increase to 99% in 2 minutes. After holding for 2 minutes, reduce solvent B to 1% and maintain the concentration for 2.5 minutes. The full scan mass range is m/z 50-1000, operating in positive or negative ion mode at 1 Hz. The capillary voltage of the ion source is set to +3,600 V (positive mode) and -3,000 V (negative mode), and the end plate offset is 500 V. The sprayer air flow is 1 bar, and the drying gas flow is 8 L/min. The drying temperature is set to 200 o C. Before analysis, 10 continuous quality control (QC) samples (combined samples of 40 urine samples randomly selected from 4 groups) were injected to adjust the LC column. After every 10 analysis of urine samples, QC samples were injected to check the stability of the system throughout the analysis.

對於進一步的數據探勘,使用ProfileAnalysis的生物資訊軟體(第2.1版)來計算LC流洗時間的分子特徵,從0.5到24分鐘,質量範圍從50 m/z到1000 m/z。化合物檢測參數設定如下:S/N > 3,相關係數閾值:0.7,最小化合物長度:7 光譜,光滑寬度:1。在儲存區生成中,使用高級儲存區,保留時間公差為0.5分鐘,質量公差為30 ppm。沒有使用訊號正常化。在儲存區過濾器中,儲存區的值計數以及儲存區內組屬性的值計數必須大於6。允許空組屬性,並為缺失值替換選擇「無」。對於主成分分析(PCA)(在95%信賴程度下沒有縮放演算法)以及火山圖分析,分別以正模式以及負模式呈現了總共1714以及4261個分子特徵。For further data exploration, use ProfileAnalysis's bioinformatics software (version 2.1) to calculate the molecular characteristics of the LC flow wash time from 0.5 to 24 minutes, and the mass range from 50 m/z to 1000 m/z. The compound detection parameters are set as follows: S/N> 3, correlation coefficient threshold: 0.7, minimum compound length: 7 spectra, smooth width: 1. In the storage area generation, the advanced storage area is used, with a retention time tolerance of 0.5 minutes and a mass tolerance of 30 ppm. No signal normalization is used. In the storage area filter, the value count of the storage area and the value count of the group attribute in the storage area must be greater than 6. Allow empty group attributes, and select "None" for missing value replacement. For principal component analysis (PCA) (no scaling algorithm at 95% confidence level) and volcano map analysis, a total of 1714 and 4261 molecular features are presented in positive and negative modes, respectively.

1.51.5 透過Through LC-ESI-Q-TOF-MSLC-ESI-Q-TOF-MS 定量代謝物標記Quantitative metabolite labeling

為了量化纈胺酸、7-甲基尿酸、N1-甲基鳥苷,以及黃嘌呤核苷,使用具有多反應監測功能的LC-ESI-Q-TOF系統。分析來自52位健康個體、53位非糖尿病引起的微量或大量白蛋白尿患者(macro組)、86位不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及76位具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)個體的尿液樣品。以16 µL含有內部標準品的0.1%甲酸來稀釋4 µL尿液的等分試樣。In order to quantify valine, 7-methyluric acid, N1-methylguanosine, and xanthine nucleosides, the LC-ESI-Q-TOF system with multiple reaction monitoring functions is used. Analysis of 52 healthy individuals, 53 non-diabetic patients with micro or macroalbuminuria (macro group), 86 patients with type 2 diabetes who did not have micro or macroalbuminuria (T2DM group), and 76 patients with Urine samples of type 2 diabetes patients (T2DM+micro group) with microalbuminuria. Dilute an aliquot of 4 µL of urine with 16 µL of 0.1% formic acid containing an internal standard.

對於液相色層分析-質譜儀(LC-MS)分析,使用C18管柱(1.0 x 150 mm,3 µm,T3;Waters,Milford,麻州,美國),流速為0.08 mL/分鐘,溶劑A (0.1%甲酸)以及溶劑B (含0.1%甲酸的乙腈) 的流動相。注入5 µL樣品體積後,溶劑B維持在0.5% 3分鐘,然後於2分鐘的時間內增加至95%,最後於2分鐘內增加至95%。保持2分鐘後,將溶劑B還原至0.5%並保持該濃度2分鐘。質譜儀以正模式操作,並以3 Hz掃描50-300的m/z範圍;在負模式下操作並在2 Hz下掃描50-500的m/z範圍。其他質譜儀(MS)設定與代謝組學分析方法中描述的相同。For liquid chromatography-mass spectrometry (LC-MS) analysis, use a C18 column (1.0 x 150 mm, 3 µm, T3; Waters, Milford, Massachusetts, USA) with a flow rate of 0.08 mL/min, solvent A (0.1% formic acid) and solvent B (acetonitrile with 0.1% formic acid). After injecting 5 µL sample volume, solvent B was maintained at 0.5% for 3 minutes, then increased to 95% in 2 minutes, and finally increased to 95% in 2 minutes. After holding for 2 minutes, reduce solvent B to 0.5% and maintain the concentration for 2 minutes. The mass spectrometer was operated in positive mode and scanned the 50-300 m/z range at 3 Hz; operated in negative mode and scanned the 50-500 m/z range at 2 Hz. Other mass spectrometer (MS) settings are the same as described in the metabolomics analysis method.

為了測量組胺酸與纈胺酸,透過使用以下校準物繪製分析物以及內部標準品(internal standard,IS)(d3 -組胺酸)與對照尿液樣品中製備的標稱分析物濃度的峰面積比,在正交電噴霧電離(ESI)模式下構建校正曲線:0.125、0.25、0.5、1、2、4,以及8 ppm。In order to measure histidine and valine acid, the analyte and the internal standard (IS) (d 3 -histidine) are compared with the nominal analyte concentration prepared in a control urine sample by using the following calibrators. The peak area ratio, the calibration curve was constructed in orthogonal electrospray ionization (ESI) mode: 0.125, 0.25, 0.5, 1, 2, 4, and 8 ppm.

為了測量7-甲基尿酸、N1-甲基鳥苷,以及黃嘌呤核苷,濃度校正曲線以負交電噴霧電離(ESI)模式構建,且加入1-萘磺酸作為內部標準品(IS)。為了計算每種代謝物,從尿液樣品的分析物面積/內部標準品(IS)面積的比率中減去內源性峰面積除以空白尿液樣品的內部標準品(IS)峰面積的比率。纈胺酸、7-甲基尿酸、N1-甲基鳥苷,以及黃嘌呤核苷的前體離子/碎片離子(碰撞能)值分別為118.07/72.08 (10eV)、181.03/123.00 (30eV)、296.06/164.05 (20eV),以及283.07/151.03 (20 eV)。To measure 7-methyluric acid, N1-methylguanosine, and xanthosine, the concentration calibration curve was constructed in negative alternating electrospray ionization (ESI) mode, and 1-naphthalenesulfonic acid was added as an internal standard (IS) . To calculate each metabolite, subtract the endogenous peak area divided by the ratio of the internal standard (IS) peak area of the blank urine sample from the ratio of the analyte area/internal standard (IS) area of the urine sample . The precursor ion/fragment ion (collision energy) values of valine, 7-methyluric acid, N1-methylguanosine, and xanthine are 118.07/72.08 (10eV), 181.03/123.00 (30eV), 296.06/164.05 (20eV), and 283.07/151.03 (20 eV).

1.61.6 統計分析Statistical Analysis

臨床特徵的數值變量顯示為括號中的四分位數值(25%,75%)的中間值。無母數Mann-Whitney法(SigmaPlot,第11.0版)用於檢測兩組之間透過液相色層分析-質譜儀(LC-MS)定量的標記濃度的顯著差異。透過使用邏輯回歸分別評估生物標記以及每種結果之間的關聯。如果透過後向選擇方法顯著,那麼潛在的混雜因素(包括人口統計學以及臨床變量)將被包括在多變量模型中。在模型中使用自然對數(natural logarithm,LN)轉化或代謝物生物標記的中間值。生成接收者操作特徵(Receiver operating characteristic,ROC)曲線以量化模型的預測準確度,並且使用接收者操作特徵曲線下面積(area under the Receiver Operating Characteristic curve,AUC)來評估模型的辨別能力。計算代謝物生物標記以及具有臨床變量的代謝物生物標記的曲線下面積(AUC)值。所有統計分析均使用SPSS軟體,微軟Windows專用第21.0版(IBM公司,Armonk,紐約州,美國)進行。The numerical variables of clinical characteristics are shown as the median value of the quartile values (25%, 75%) in parentheses. The parentless Mann-Whitney method (SigmaPlot, version 11.0) was used to detect the significant difference in the concentration of the label quantified by liquid chromatography-mass spectrometry (LC-MS) between the two groups. Use logistic regression to evaluate the biomarkers and the association between each result separately. If it is significant through the backward selection method, then potential confounding factors (including demographic and clinical variables) will be included in the multivariate model. Use the natural logarithm (LN) transformation or metabolite biomarker intermediate value in the model. A receiver operating characteristic (ROC) curve is generated to quantify the prediction accuracy of the model, and the area under the receiver operating characteristic curve (AUC) is used to evaluate the discriminative ability of the model. Calculate the area under the curve (AUC) values of metabolite biomarkers and metabolite biomarkers with clinical variables. All statistical analyses were performed using SPSS software, version 21.0 for Microsoft Windows (IBM Corporation, Armonk, New York, USA).

2.2. 結果result

2.12.1 患者特徵描述Patient characteristics

相較於來自健康個體、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組),非糖尿病引起的微量或大量白蛋白尿患者(macro組)個體具有更高的血清肌酸酐,更低的預估的腎小球濾過率(eGFR),更高的白蛋白尿,以及更高的尿白蛋白與肌酸酐比(ACR)。此外,來自不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的個體比健康個體組以及非糖尿病引起的微量或大量白蛋白尿患者(macro組)的個體具有更高的空腹血糖以及糖化血紅素。具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)個體的白蛋白與肌酸酐比(ACR)值高於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及健康個體組的個體(表1)。 1. 健康個體、非糖尿病引起的微量或大量白蛋白尿患者(macro組)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的臨床及生化參數。數據表示為中位數(25%/75%四分位數)。   健康個體 (n=52) 大量 (n=53) T2DM (n=86) T2DM+micro (n=76) P 1 P 2 P 3 性別(M/F) 26/26 20/33 46/40 40/36 - - - 年齡(歲) 61.00 (53.00/66.00) 58.00 (52.00/77.00) 60.50 (56.00/66.00) 65.00 (53.50/74.00) 0.974 0.928 0.111 SBP (mmHg) 118.00 (110.00/130.00) 130.00 (118.50/142.00) 126.00 (117.50/133.00) 124.00 (103.00/132.00) 0.001 0.002 0.021 DBP (mmHg) 72.00 (60.00/79.50) 80.00 (72.00/85.50) 76.50 (71.75/82.00) 80.00 (73.00/91.00) >0.01 0.001 0.004 FBG (mg/dL) 84.00 (75.50/91.00) 100.00 (94.25/104.00) 128.00 (110.00/142.00) 133.00 (115.00/158.75) >0.001 >0.001 0.037 血紅素A1c (%) 5.40 (5.23/5.60) 5.80 (5.50/6.15) 6.70 (6.30/6.90) 6.90 (7.35/7.55) >0.001 >0.001 0.005 血紅素A1c (mmol/mol) 35.30 (33.59/37.69) 39.88 (36.60/43.70) 49.72 (45.34/51.90) 51.90 (45.89/59.01) >0.001 >0.001 0.005 罹患糖尿病時間(年) - - 6.00 (3.75/11.00) 8.00 (2.00/14.00) - - 0.452 肌酸酐(mg/dL) 0.80 (0.70/1.00) 1.07 (0.80/1.25) 0.80 (0.61/1.00) 0.90 (0.70/1.04) 0.001 0.214 0.082 預估的腎小球濾過率(ml/分鐘) 82.47 (71.51/95.42) 64.00 (50.75/85.50) 90.29 (74.75/107.00) 81.93 (64.25/103.50) >0.001 0.160 0.035 白蛋白尿(mg/L) 1.30 (0.43/7.55) 49.70 (21.80/124.20) 0.60 (0.30/1.20) 8.55 (5.63/16.15) >0.001 0.004 >0.001 尿ACR (mg/g) 4.81 (3.21/7.21) 292.71 (89.60/1639.52) 5.24 (3.25/8.69) 91.95 (55.37/130.79) >0.001 0.613 >0.001 M:男性;F:女性;SBP:收縮壓;DBP:舒張壓;FBG:空腹血糖;eGFR:預估的腎小球濾過率;ACR:白蛋白與肌酸酐比。Macro:非糖尿病引起的微量或大量白蛋白尿患者。T2DM:不具有微量或大量白蛋白尿的第二型糖尿病患者。T2DM+micro:具有微量白蛋白尿的第二型糖尿病患者。1 p 值為健康個體與macro組比較時Mann-Whitney U測試結果。2 p 值為健康個體與T2DM組比較時Mann-Whitney U測試結果。3 p 值為T2DM組與T2DM+micro組比較時Mann-Whitney U測試結果。Compared with type 2 diabetes patients (T2DM group) with microalbuminuria (T2DM group) from healthy individuals, and type 2 diabetes patients with microalbuminuria (T2DM+micro group), non-diabetic-induced micro Or patients with large albuminuria (macro group) individuals have higher serum creatinine, lower estimated glomerular filtration rate (eGFR), higher albuminuria, and higher urine albumin and muscle Anhydride ratio (ACR). In addition, individuals from type 2 diabetes patients (T2DM group) without microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) were more likely than healthy individuals and non-diabetic patients. Individuals with micro or large albuminuria (macro group) have higher fasting blood glucose and glycosylated hemoglobin. Type 2 diabetes patients with microalbuminuria (T2DM+micro group) have a higher albumin to creatinine ratio (ACR) value than type 2 diabetes patients who do not have microalbuminuria (T2DM group) and Individuals in the healthy individual group (Table 1). Table 1. Healthy individuals, patients with microalbuminuria or macroalbuminuria not caused by diabetes (macro group), type 2 diabetic patients without microalbuminuria or macroalbuminuria (T2DM group), and second diabetic patients with microalbuminuria Clinical and biochemical parameters of type 2 diabetes patients (T2DM+micro group). The data is expressed as the median (25%/75% quartile). Healthy individuals (n=52) Large amount (n=53) T2DM (n=86) T2DM+micro (n=76) P 1 P 2 P 3 Sex (M/F) 26/26 20/33 46/40 40/36 - - - age) 61.00 (53.00/66.00) 58.00 (52.00/77.00) 60.50 (56.00/66.00) 65.00 (53.50/74.00) 0.974 0.928 0.111 SBP (mmHg) 118.00 (110.00/130.00) 130.00 (118.50/142.00) 126.00 (117.50/133.00) 124.00 (103.00/132.00) 0.001 0.002 0.021 DBP (mmHg) 72.00 (60.00/79.50) 80.00 (72.00/85.50) 76.50 (71.75/82.00) 80.00 (73.00/91.00) >0.01 0.001 0.004 FBG (mg/dL) 84.00 (75.50/91.00) 100.00 (94.25/104.00) 128.00 (110.00/142.00) 133.00 (115.00/158.75) >0.001 >0.001 0.037 Heme A1c (%) 5.40 (5.23/5.60) 5.80 (5.50/6.15) 6.70 (6.30/6.90) 6.90 (7.35/7.55) >0.001 >0.001 0.005 Heme A1c (mmol/mol) 35.30 (33.59/37.69) 39.88 (36.60/43.70) 49.72 (45.34/51.90) 51.90 (45.89/59.01) >0.001 >0.001 0.005 Time to suffer from diabetes (years) - - 6.00 (3.75/11.00) 8.00 (2.00/14.00) - - 0.452 Creatinine (mg/dL) 0.80 (0.70/1.00) 1.07 (0.80/1.25) 0.80 (0.61/1.00) 0.90 (0.70/1.04) 0.001 0.214 0.082 Estimated glomerular filtration rate (ml/min) 82.47 (71.51/95.42) 64.00 (50.75/85.50) 90.29 (74.75/107.00) 81.93 (64.25/103.50) >0.001 0.160 0.035 Albuminuria (mg/L) 1.30 (0.43/7.55) 49.70 (21.80/124.20) 0.60 (0.30/1.20) 8.55 (5.63/16.15) >0.001 0.004 >0.001 Urine ACR (mg/g) 4.81 (3.21/7.21) 292.71 (89.60/1639.52) 5.24 (3.25/8.69) 91.95 (55.37/130.79) >0.001 0.613 >0.001 M: male; F: female; SBP: systolic blood pressure; DBP: diastolic blood pressure; FBG: fasting blood glucose; eGFR: estimated glomerular filtration rate; ACR: albumin to creatinine ratio. Macro: Patients with micro or large albuminuria not caused by diabetes. T2DM: Patients with type 2 diabetes who do not have trace or large albuminuria. T2DM+micro: Type 2 diabetes patients with microalbuminuria. 1 The p- value is the result of the Mann-Whitney U test when comparing healthy individuals with the macro group. 2 The p value is the result of Mann-Whitney U test when comparing healthy individuals with T2DM group. 3 The p value is the result of Mann-Whitney U test when the T2DM group is compared with the T2DM+micro group.

2.22.2 質量訊號的穩定性與準確性Stability and accuracy of quality signal

透過QC樣品評估液相色層分析-質譜儀(LC-MS)訊號穩定性。選擇質量範圍為50-1000 m/z的S/N > 3的正峰值訊號,以在QC樣品中產生1706個特徵。其中約24%的相對標準偏差(relative standard deviation,RSD)值小於10%,其中13%的相對標準偏差(RSD)在10-20%之間,21%的相對標準偏差(RSD)為20-40%,表示長期連續液相色層分析-質譜儀(LC-MS)運行後MS訊號穩定性良好。Evaluate the signal stability of liquid chromatography-mass spectrometer (LC-MS) through QC samples. A positive peak signal with S/N> 3 with a mass range of 50-1000 m/z was selected to generate 1706 features in the QC sample. Among them, about 24% of the relative standard deviation (RSD) value is less than 10%, of which 13% of the relative standard deviation (RSD) is between 10-20%, and 21% of the relative standard deviation (RSD) is 20- 40% means that MS signal stability is good after long-term continuous liquid chromatography-mass spectrometry (LC-MS) operation.

2.32.3 透過液相色層分析Through liquid chromatography -- 質譜儀Mass spectrometer (LC-MS)(LC-MS) 分析進行代謝組學分析Analyze for metabonomic analysis

對健康個體(n = 14)、非糖尿病引起的微量或大量白蛋白尿患者(macro組)(n = 22)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組) (n = 22),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的年齡配對的尿液樣品進行分析,以透過使用非標靶液相色層分析-質譜儀(LC-MS)代謝組學分析方法發現潛在的代謝物標記。For healthy individuals (n = 14), non-diabetic patients with micro or large albuminuria (macro group) (n = 22), type 2 diabetes patients without micro or large albuminuria (T2DM group) (n = 22), and age-matched urine samples of type 2 diabetes patients with microalbuminuria (T2DM+micro group) for analysis by using non-target liquid chromatography-mass spectrometry (LC-MS) ) Metabolomics analysis methods discover potential metabolite markers.

以正模式以及負模式獲得尿液的典型基峰色層分析圖。在正模式以及負模式中檢測到~17,000個分子特徵。以主成分分析(PCA)分析液相色層分析-質譜儀(LC-MS)分析結果,並顯示於圖1A(正模式)以及圖1B(負模式)中。在正交電噴霧電離(ESI)模式中,難以區分的不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的組別可以與難以區分的健康個體組以及非糖尿病引起的微量或大量白蛋白尿患者(macro組)的個體完全分離。然而,我們發現代謝組學譜分離主要透過在不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)中施用抗糖尿病藥物二甲雙胍來確定(圖1C)。除去二甲雙胍後,這四組在主成分分析(PCA)評分散點圖中是不可區分的(圖1D)。因為主成分分析(PCA)被設計為在組中找到最大方差並且適合於在不同組中找到最有影響的變量(強液相色層分析-質譜儀(LC-MS)訊號),所以缺乏主成分分析(PCA)鑑別表示在這四組中主要的尿代謝物訊號是相似的。Obtain the typical base peak chromatogram of urine in positive mode and negative mode. ~17,000 molecular features were detected in positive and negative modes. The analysis results of liquid chromatography-mass spectrometer (LC-MS) were analyzed by principal component analysis (PCA) and shown in Figure 1A (positive mode) and Figure 1B (negative mode). In the orthogonal electrospray ionization (ESI) mode, it is difficult to distinguish between type 2 diabetes patients without trace or large albuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) The group of) can be completely separated from the group of healthy individuals, which is difficult to distinguish, and individuals with micro or large albuminuria (macro group) caused by non-diabetics. However, we found that metabolomics profile separation is mainly applied in type 2 diabetes patients (T2DM group) without microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) The anti-diabetic drug metformin was determined (Figure 1C). After excluding metformin, these four groups were indistinguishable in the principal component analysis (PCA) score scatter plot (Figure 1D). Because Principal Component Analysis (PCA) is designed to find the largest variance in a group and is suitable for finding the most influential variable (strong liquid chromatography-mass spectrometer (LC-MS) signal) in different groups, it lacks principal Component analysis (PCA) identification indicated that the major urinary metabolite signals in the four groups were similar.

為了發現可能較少但可能導致群體區分的可能峰值標記,火山圖是基於t -檢驗結果以及倍數變化值製作的。圖2A-2B所示為不同組的六個火山圖,其透過繪製y軸(基線10)上的P -值的對數以及兩個條件之間的倍數變化值的對數來構建。當使用倍數變化的對數時,兩個方向(向上以及向下)的變化與中心等距。在健康個體與非糖尿病引起的微量或大量白蛋白尿患者(macro組),健康個體與不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)與具有微量白蛋白尿的第二型糖尿病患者(T2DM+微量組)比較中分別發現85/232 (正離子/負離子數)、30/95,以及44/98峰候選物。在對這些潛在候選物進行人工檢查後,基於其可用的碎片離子以及更強的訊號選擇43個分子特徵離子。對於健康與非糖尿病引起的微量或大量白蛋白尿患者(macro組)的比較,3個正離子以及6個負離子的差異超過兩倍(P > 0.05)。對於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)與具有微量白蛋白尿的第二型糖尿病患者(T2DM+微量組)比較,3個正離子的差異超過兩倍(P > 0.05),2個負離子的差異超過兩倍(P > 0.05)。對於健康與不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)的比較,11個正離子(p > 0.01)以及18個負離子(P > 0.001)的差異超過兩倍。在搜索HMDB以及MassBank資料庫後,可以鑑定出43種候選物中的5種,二甲雙胍、纈胺酸、黃嘌呤核苷、N1-甲基鳥苷,以及7-甲基尿酸。透過比較它們與化學標準品的LC流洗時間、質譜(MS)、MS/MS譜的特徵進一步鑑定這些代謝物。In order to find possible peak markers that may be less but may lead to group differentiation, the volcano map is made based on the t -test results and the fold change value. Figures 2A-2B show six volcano graphs of different groups, which are constructed by plotting the logarithm of the P -value on the y-axis (baseline 10) and the logarithm of the multiple change value between the two conditions. When using the logarithm of the multiple change, the changes in the two directions (upward and downward) are equidistant from the center. In healthy individuals and non-diabetic patients with micro or large albuminuria (macro group), healthy individuals and patients with type 2 diabetes who do not have micro or large albuminuria (T2DM group), and without micro or large albumin Comparing urine type 2 diabetes patients (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+ trace group), 85/232 (positive/negative ion number), 30/95, and 44/ 98 peak candidates. After manual inspection of these potential candidates, 43 molecular characteristic ions were selected based on their available fragment ions and stronger signals. For the comparison between healthy and non-diabetic patients with micro or large albuminuria (macro group), the difference between 3 positive ions and 6 negative ions was more than twice ( P > 0.05). Comparing type 2 diabetes patients without microalbuminuria (T2DM group) with microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+microgroup), the difference of the three positive ions is more than two times ( P > 0.05), the difference between the two negative ions is more than two times ( P > 0.05). Comparing healthy patients with type 2 diabetes (T2DM group) who do not have trace or large amounts of albuminuria, the difference between 11 positive ions ( p >0.01) and 18 negative ions ( p >0.001) is more than double. After searching the HMDB and MassBank databases, five of the 43 candidates can be identified, metformin, valine, xanthine, N1-methylguanosine, and 7-methyluric acid. These metabolites were further identified by comparing them with the characteristics of the LC flow wash time, mass spectrometry (MS), and MS/MS spectra of chemical standards.

2.42.4 潛在標記之驗證Potential mark verification

發現的代謝物標記纈胺酸、黃嘌呤核苷、N1-甲基鳥苷、7-甲基尿酸,並在更大量的健康個體(n = 52)、非糖尿病引起的微量或大量白蛋白尿患者(macro組)(n = 53)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組) (n = 86),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+微量組)(n = 76)樣品中進一步量化。 (表1)The found metabolites are labeled valine, xanthine, N1-methylguanosine, 7-methyluric acid, and are found in a larger number of healthy individuals (n = 52), and micro or large albuminuria caused by non-diabetics Patients (macro group) (n = 53), type 2 diabetic patients without microalbuminuria (T2DM group) (n = 86), and type 2 diabetic patients with microalbuminuria (T2DM + microalbuminuria) Group) (n=76) samples were further quantified. (Table 1)

這些分析的結果顯示於表2以及圖3A-3D。 2. 健康個體、非糖尿病引起的微量或大量白蛋白尿患者(macro組)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的尿液樣品中四種代謝物的定量。數據表示為中位數(µg/mg肌酸酐)以及四分位範圍(第25至第75百分比)。   健康個體 (n=52) macro (n=53) T2DM (n=86) T2DM+micro (n=76) P 1 P 2 P 3 纈胺酸 2.37 (1.84/3.81) 3.64 (2.59/6.07) 6.79 (4.25/9.40) 6.05 (3.32/8.77) 0.002 >0.001 0.093 N1-甲基鳥苷 1.74 (0.67/2.74) 0.13 (0.00/0.69) 1.22 (0.26/2.47) 0.35 (0.00/1.27) >0.001 0.130 0.001 7-甲基尿酸 1.27 (0.79/2.30) 0.57 (0.00/1.34) 0.91 (0.37/1.83) 0.62 (0.12/1.37) >0.01 0.008 0.062 黃嘌呤核苷 1.59 (0.49/2.24) 0.58 (0.02/1.16) 1.39 (0.58/2.66) 0.75 (0.10/1.76) 0.001 0.583 0.004 1 p 值為健康個體與WDM-NP比較時Mann-Whitney U測試結果。2 p 值為健康個體與DM-WNP比較時Mann-Whitney U測試結果。3 p 值為DM-WNP與DM-NP比較時Mann-Whitney U測試結果。The results of these analyses are shown in Table 2 and Figures 3A-3D. Table 2. Healthy individuals, non-diabetic patients with microalbuminuria or macroalbuminuria (macro group), type 2 diabetic patients without microalbuminuria or macroalbuminuria (T2DM group), and second diabetic patients with microalbuminuria Quantification of four metabolites in urine samples of patients with type 2 diabetes (T2DM+micro group). Data are expressed as median (µg/mg creatinine) and interquartile range (25th to 75th percentile). Healthy individuals (n=52) macro (n=53) T2DM (n=86) T2DM+micro (n=76) P 1 P 2 P 3 Valine 2.37 (1.84/3.81) 3.64 (2.59/6.07) 6.79 (4.25/9.40) 6.05 (3.32/8.77) 0.002 >0.001 0.093 N1-methylguanosine 1.74 (0.67/2.74) 0.13 (0.00/0.69) 1.22 (0.26/2.47) 0.35 (0.00/1.27) >0.001 0.130 0.001 7-methyluric acid 1.27 (0.79/2.30) 0.57 (0.00/1.34) 0.91 (0.37/1.83) 0.62 (0.12/1.37) >0.01 0.008 0.062 Xanthosine 1.59 (0.49/2.24) 0.58 (0.02/1.16) 1.39 (0.58/2.66) 0.75 (0.10/1.76) 0.001 0.583 0.004 1 The p value is the result of the Mann-Whitney U test when comparing healthy individuals with WDM-NP. 2 The p value is the result of the Mann-Whitney U test when comparing healthy individuals with DM-WNP. 3 The p value is the result of Mann-Whitney U test when DM-WNP is compared with DM-NP.

纈胺酸含量在非糖尿病引起的微量或大量白蛋白尿患者(macro組)以及不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)中顯著高於健康個體組(p 值分別為0.002以及 > 0.001)。與健康個體組以及不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)的含量相比,非糖尿病引起的微量或大量白蛋白尿患者(macro組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的N1-甲基鳥苷含量較低(p 值分別 > 0.001以及0.001)。7-甲基尿酸在非糖尿病引起的微量或大量白蛋白尿患者(macro組)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)中均低於健康個體組。相較於健康個體組中的黃嘌呤核苷含量,在非糖尿病引起的微量或大量白蛋白尿患者(macro組)中黃嘌呤核苷含量顯著降低(p 值= 0.001)。相較於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)中黃嘌呤核苷的含量也顯著降低(p 值= 0.004)。The content of valine acid in non-diabetic patients with micro or large albuminuria (macro group) and type 2 diabetic patients without micro or large albuminuria (T2DM group) was significantly higher than that in healthy individuals ( p value, respectively) 0.002 and> 0.001). Compared with the content of healthy individuals and type 2 diabetic patients (T2DM group) without trace or large albuminuria, patients with trace or large albuminuria (macro group) not caused by diabetes and those with microalbuminuria Patients with type 2 diabetes (T2DM+micro group) had lower levels of N1-methylguanosine ( p values> 0.001 and 0.001, respectively). 7-Methyluric acid is used in patients with microalbuminuria (macro group) caused by non-diabetics, type 2 diabetic patients with no microalbuminuria (T2DM group), and second diabetic patients with microalbuminuria Type diabetes patients (T2DM+micro group) were lower than those in healthy individuals. Compared with the xanthine content in the healthy individual group, the xanthine content was significantly lower in patients with non-diabetic-induced micro or large albuminuria (macro group) ( p value = 0.001). Compared with type 2 diabetes patients (T2DM group) without microalbuminuria (T2DM group), the content of xanthine nucleoside in type 2 diabetes patients with microalbuminuria (T2DM+micro group) also significantly decreased ( p value = 0.004).

2.52.5 胺基酸分析Amino acid analysis

因為胺基酸被認為是潛在的糖尿病腎病變(DN)標記,所以在本研究中測量了樣品群組的16個胺基酸含量(表1)。在不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)個體的尿液樣品中,發現大多數胺基酸(白胺酸、異白胺酸、色胺酸、酪胺酸、脯胺酸、天門冬胺酸、精胺酸、天門冬醯胺、蘇胺酸)的排泄含量顯著高於健康個體組的尿液樣品。甲硫胺酸、酪胺酸、脯胺酸,以及蘇胺酸在非糖尿病引起的微量或大量白蛋白尿患者(macro組)中的排泄量高於健康個體組。Because amino acids are considered as potential diabetic nephropathy (DN) markers, the 16 amino acid content of the sample group was measured in this study (Table 1). Most of the amino acids (leucine, isoleucine, tryptophan, tyrosine, etc.) were found in the urine samples of individuals with type 2 diabetes (T2DM group) who did not have trace or large albuminuria. The excretion content of proline, aspartic acid, arginine, aspartame, threonine) was significantly higher than that of urine samples from healthy individuals. The excretion of methionine, tyrosine, proline, and threonine in non-diabetic patients with micro or large albuminuria (macro group) was higher than that of healthy individuals.

相較於健康個體組的組胺酸含量,非糖尿病引起的微量或大量白蛋白尿患者(macro組)中的組胺酸含量顯著較低,但不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)中的組胺酸含量顯著較高(p 值分別為0.036以及> 0.001)。組胺酸在具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)中也明顯低於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)(p 值= 0.021)。 (圖3E)(表3)天門冬胺酸在不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)顯著高於健康個體組(p 值= 0.003),但在具有微量白蛋白尿的第二型糖尿病患者(T2DM+微量組)中低於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)(p 值= 0.012) (圖3F)(表3)。 3 . 健康個體、非糖尿病引起的微量或大量白蛋白尿患者(macro組)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的尿液樣品中天門冬胺酸以及組胺酸的量化。   健康個體 非糖尿病引起的微量或大量白蛋白尿患者(macro組) P 值 (健康個體與非糖尿病引起的微量或大量白蛋白尿患者(macro組)比較) 不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組) P 值 (健康個體與不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)比較) 具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組) P 值 (不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)與具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)比較) 天門冬胺酸 2.05 (1.35/3.13) 2.09 (0.94/3.36) 0.822 4.15 (1.9/7.6) 0.004 2.57 (1.209/4.01) 0.015 組胺酸 29.8 (21.7/50.0) 25.0 (13.6/39.0) 0.037 55.4 (31.2/105.5) >0.001 43.0 (20.1/76.1) 0.021 Compared with the histidine content of the healthy individual group, the histidine content in patients with micro or macroalbuminuria caused by non-diabetics (macro group) was significantly lower, but they did not have the second type of micro or macroalbuminuria Diabetic patients (T2DM group) had significantly higher histidine levels ( p values were 0.036 and> 0.001). Histidine in type 2 diabetes patients with microalbuminuria (T2DM+micro group) was also significantly lower than that in type 2 diabetes patients without microalbuminuria (T2DM group) ( p value = 0.021) . (Figure 3E) (Table 3) Aspartic acid was significantly higher in type 2 diabetic patients (T2DM group) without trace or large albuminuria than healthy individuals ( p value = 0.003), but in patients with microalbuminuria Urinary type 2 diabetes patients (T2DM+micro group) were lower than type 2 diabetes patients who did not have micro or large albuminuria (T2DM group) ( p value = 0.012) (Figure 3F) (Table 3). Table 3. Healthy individuals, patients with microalbuminuria or macroalbuminuria not caused by diabetes (macro group), type 2 diabetic patients with no microalbuminuria or macroalbuminuria (T2DM group), and second type diabetic patients with microalbuminuria Quantification of aspartic acid and histidine in urine samples of patients with type 2 diabetes (T2DM+micro group). Healthy individuals Patients with micro or large albuminuria not caused by diabetes (macro group) P value (comparison between healthy individuals and non-diabetic patients with micro or large albuminuria (macro group)) Patients with type 2 diabetes who do not have minimal or large albuminuria (T2DM group) P value (comparison between healthy individuals and patients with type 2 diabetes (T2DM group) who do not have trace or large albuminuria) Type 2 diabetes patients with microalbuminuria (T2DM+micro group) P value (comparison between type 2 diabetes patients without microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group)) Aspartic acid 2.05 (1.35/3.13) 2.09 (0.94/3.36) 0.822 4.15 (1.9/7.6) 0.004 2.57 (1.209/4.01) 0.015 Histidine 29.8 (21.7/50.0) 25.0 (13.6/39.0) 0.037 55.4 (31.2/105.5) >0.001 43.0 (20.1/76.1) 0.021

2.62.6 嘌呤分解代謝Purine Catabolism

由於N1-甲基鳥苷、7-甲基尿酸,以及黃嘌呤核苷參與嘌呤分解代謝,其樣品組(表1)中的五種主要代謝物 - 次黃嘌呤、黃嘌呤、鳥糞嘌呤核苷、鳥糞嘌呤,以及尿酸也被量化。結果表明,非糖尿病引起的微量或大量白蛋白尿患者(macro組)中鳥糞嘌呤含量顯著低於健康個體組。不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)的次黃嘌呤以及鳥糞嘌呤核苷含量明顯高於健康個體組。然而,這5種代謝物的含量在不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)之間沒有顯著差異。Since N1-methylguanosine, 7-methyluric acid, and xanthosine are involved in purine catabolism, the five main metabolites in the sample group (Table 1)-hypoxanthine, xanthine, and guanine nucleus Glycosides, guanine, and uric acid were also quantified. The results showed that the levels of guanine in patients with non-diabetic-induced micro or large albuminuria (macro group) were significantly lower than those in healthy individuals. The levels of hypoxanthine and guanosine nucleoside in type 2 diabetic patients (T2DM group) without trace or large albuminuria were significantly higher than those in healthy individuals. However, the content of these 5 metabolites was not significant between type 2 diabetes patients who do not have trace or large albuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) difference.

2.72.7 邏輯回歸以及接收者操作特徵Logistic regression and receiver operating characteristics (ROC)(ROC) 分析analysis

邏輯回歸模型用於進一步檢查這些標記與疾病結果之間的關聯。發現較高含量的纈胺酸以及較低含量的黃嘌呤核苷、N1-甲基鳥苷、7-甲基尿酸,以及組胺酸與非糖尿病引起的微量或大量白蛋白尿患者(macro組)顯著相關,優勢比(OR) (95%信賴區間)分別為3.04 (1.41-6.52)、4.00 (1.78- 9.01)、9.23 (3.81-22.40)、4.77 (2.09-10.87),以及0.42 (0.21-0.83)。還進行了接收者操作特徵(ROC)分析以研究這些代謝物的含量是否可以區分健康個體組以及非糖尿病引起的微量或大量白蛋白尿患者(macro組),或不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)。為了區分健康個體以及非糖尿病引起的微量或大量白蛋白尿患者(macro組),與纈胺酸(0.678)、黃嘌呤核苷(0.667)以及7-甲基尿酸(0.686)的曲線下面積(AUC)值相比,N1-甲基鳥苷的曲線下面積(AUC)值最高為0.752。在將N1-甲基鳥苷的含量與7-甲基尿酸或黃嘌呤核苷組合後,組合的曲線下面積(AUC)值分別為0.668以及0.667 (表4以及圖5)。相較於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),較低含量的N1-甲基鳥苷仍然與具有微量白蛋白尿的第二型糖尿病患者(T2DM+微量組)風險顯著相關(優勢比(OR) (95%信賴區間) = 2.75 (1.46-5.21),曲線下面積(AUC)值 = 0.624)。在將N1-甲基鳥苷的含量與7-甲基尿酸或黃嘌呤核苷組合後,組合的曲線下面積(AUC)值分別為0.640以及0.625 (表4以及圖5)。 4 . 在單變量邏輯回歸模型中以不同代謝物生物標記預測腎病變的95%信賴區間以及曲線下面積(AUC)值的優勢比(OR)。   健康個體比macro組 T2DM組比T2DM+micro組   優勢比 95%信賴區間 P 曲線下面積 優勢比 95%信賴區間 P 曲線下面積 纈胺酸                 自然對數_纈胺酸 3.04 1.41-6.52 0.004 0.678 0.65 0.40-1.06 0.087 0.578 黃嘌呤核苷       0.667       0.612 中位數+ 參考 參考     參考 參考     >中位數 4.00 1.78-9.01 0.001   2.48 1.32-4.67 0.005   N1- 甲基鳥苷       0.752       0.624 中位數+ 參考 參考     參考 參考     >中位數 9.23 3.81-22.40 8.88x10-7   2.75 1.46-5.21 0.02   7 - 甲基尿酸       0.686       0.578 中位數+ 參考 參考     參考 參考     >中位數 4.77 2.09-10.87 2.05x10-4   1.88 1.00-3.52 0.049   組胺酸                 自然對數_組胺酸 0.42 0.21-0.83 0.013 0.627 0.66 0.45-0.96 0.031 0.612 天門冬胺酸       0.518       0.604 中位數+ 參考 參考     參考 參考     >中位數 0.87 0.37-2.03 0.740   2.33 1.03-5.29 0.043   結合 N1- 甲基鳥苷與 7- 甲基尿酸 0.668       0.640 第2組 參考 參考     參考 參考     第1組 5.30 2.10-13.37 4.18x10-4   3.83 1.89-7.77 2.01x10-4   結合 N1- 甲基鳥苷與黃嘌呤核苷 0.667       0.625 第2組 參考 參考     參考 參考     第1組 4.23 1.84-9.72 0.001   2.85 1.50-5.43 0.001   健康個體組對上非糖尿病引起的微量或大量白蛋白尿患者 (macro ) :黃嘌呤核苷的中位數為0.8024;N1-甲基鳥苷的中位數為0.6778;7-甲基尿酸的中位數為1.0107;天門冬胺酸的中位數為2.0788。不具有微量或大量白蛋白尿的第二型糖尿病患者 (T2DM ) 對上具有微量白蛋白尿的第二型糖尿病患者 (T2DM+micro ) :黃嘌呤核苷的中位數為1.0102;N1-甲基鳥苷的中位數為0.7360;7-甲基尿酸的中位數為0.7993;天門冬胺酸的中位數為3.2213。結合 N1- 甲基鳥苷與 7- 甲基尿酸 第1組:N1-甲基鳥苷 > 中位數 且 7-甲基尿酸 > 中位數, 第2組:N1-甲基鳥苷 > 中位數 且 7-甲基尿酸 = 中位數+ , N1-甲基鳥苷 = 中位數+ 且 7-甲基尿酸 > 中位數, N1-甲基鳥苷 = 中位數+ 且 7-甲基尿酸 = 中位數+ 結合 N1- 甲基鳥苷與黃嘌呤核苷 第1組:N1-甲基鳥苷 > 中位數 且 黃嘌呤核苷 > 中位數, 第2組:N1-甲基鳥苷 > 中位數 且 黃嘌呤核苷 = 中位數+ , N1-甲基鳥苷 = 中位數+ 且 黃嘌呤核苷 > 中位數, N1-甲基鳥苷 = 中位數+ 且 黃嘌呤核苷酸 = 中位數+ Logistic regression models are used to further examine the association between these markers and disease outcomes. It was found that higher levels of valine and lower levels of xanthine, N1-methylguanosine, 7-methyluric acid, and histidine and non-diabetic-induced micro or large albuminuria (macro group ) Is significantly correlated with odds ratios (OR) (95% confidence interval) of 3.04 (1.41-6.52), 4.00 (1.78- 9.01), 9.23 (3.81-22.40), 4.77 (2.09-10.87), and 0.42 (0.21- 0.83). Receiver operating characteristics (ROC) analysis was also performed to investigate whether the content of these metabolites can distinguish between healthy individuals and patients with minimal or large albuminuria (macro group) caused by non-diabetics, or those without micro or large albuminuria Of type 2 diabetes patients (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group). In order to distinguish between healthy individuals and non-diabetic patients with micro or large albuminuria (macro group), the area under the curve with valine (0.678), xanthine (0.667) and 7-methyluric acid (0.686) ( Compared with the AUC value, the area under the curve (AUC) value of N1-methylguanosine is the highest 0.752. After combining the content of N1-methylguanosine with 7-methyluric acid or xanthine, the combined area under the curve (AUC) values were 0.668 and 0.667, respectively (Table 4 and Figure 5). Compared with patients with type 2 diabetes (T2DM group) who do not have microalbuminuria or large amounts of albuminuria, lower levels of N1-methylguanosine are still comparable to patients with type 2 diabetes who have microalbuminuria (T2DM+microgroup) The risk is significantly correlated (odds ratio (OR) (95% confidence interval) = 2.75 (1.46-5.21), area under the curve (AUC) value = 0.624). After combining the content of N1-methylguanosine with 7-methyluric acid or xanthine, the combined area under the curve (AUC) values were 0.640 and 0.625, respectively (Table 4 and Figure 5). Table 4. The 95% confidence interval and the odds ratio (OR) of the area under the curve (AUC) value for predicting nephropathy with different metabolite biomarkers in a univariate logistic regression model. Healthy individuals than macro group T2DM group is better than T2DM+micro group Odds ratio 95% confidence interval P value Area under the curve Odds ratio 95% confidence interval P value Area under the curve Valine Natural logarithm_valine 3.04 1.41-6.52 0.004 0.678 0.65 0.40-1.06 0.087 0.578 Xanthosine 0.667 0.612 Median + reference reference reference reference >Median 4.00 1.78-9.01 0.001 2.48 1.32-4.67 0.005 N1 -methylguanosine 0.752 0.624 Median + reference reference reference reference >Median 9.23 3.81-22.40 8.88x10 -7 2.75 1.46-5.21 0.02 7-- methyl uric acid 0.686 0.578 Median + reference reference reference reference >Median 4.77 2.09-10.87 2.05x10 -4 1.88 1.00-3.52 0.049 Histidine Natural logarithm_histidine 0.42 0.21-0.83 0.013 0.627 0.66 0.45-0.96 0.031 0.612 Aspartic acid 0.518 0.604 Median + reference reference reference reference >Median 0.87 0.37-2.03 0.740 2.33 1.03-5.29 0.043 Combine N1 -methylguanosine and 7 -methyluric acid 0.668 0.640 Group 2 reference reference reference reference Group 1 5.30 2.10-13.37 4.18x10 -4 3.83 1.89-7.77 2.01x10 -4 Combines N1 -methylguanosine and xanthine 0.667 0.625 Group 2 reference reference reference reference Group 1 4.23 1.84-9.72 0.001 2.85 1.50-5.43 0.001 Healthy individuals group for patients with minimal or large albuminuria caused by non-diabetics (macro group ) : the median of xanthosine is 0.8024; the median of N1-methylguanosine is 0.6778; 7-methyluric acid The median of aspartic acid is 1.0107; the median of aspartic acid is 2.0788. Type 2 diabetes patients without microalbuminuria (T2DM group ) with microalbuminuria (T2DM group ) versus type 2 diabetes patients with microalbuminuria (T2DM+micro group ) : The median of xanthine is 1.0102; N1 -The median of methylguanosine is 0.7360; the median of 7-methyluric acid is 0.7993; the median of aspartic acid is 3.2213. Combining N1 -methylguanosine and 7 -methyluric acid Group 1: N1-methylguanosine> median and 7-methyluric acid> median, Group 2: N1-methylguanosine> medium Digits and 7-methyluric acid = median + , N1-methylguanosine = median + and 7-methyluric acid> median, N1-methylguanosine = median + and 7- Methyluric acid = median + combined N1 -methylguanosine and xanthosine Group 1: N1-methylguanosine> median and xanthosine> median, Group 2: N1- Methylguanosine> median and xanthosine = median + , N1-methylguanosine = median + and xanthosine> median, N1-methylguanosine = median + And xanthine nucleotide = median +

2.82.8 與代謝物生物標記以及代謝物生物標記與臨床變量的模型比較Model comparison with metabolite biomarkers and metabolite biomarkers and clinical variables

透過調整多變量模型中的臨床變量(收縮壓與舒張壓)來區分健康個體以及非糖尿病引起的微量或大量白蛋白尿患者(macro組),針對黃嘌呤核苷、N1-甲基鳥苷、7-甲基尿酸,以及黃嘌呤核苷與N1-甲基鳥苷的組合的曲線下面積(AUC)值分別為0.983 (95%信賴區間 = 0.96-1.00)、0.987 (95%信賴區間 = 0.97-1.00)、0.940 (95%信賴區間 = 0.89-0.99),以及0.983 (95%信賴區間 = 0.97-1.00)(圖4)。對於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)之間的辨別能力,針對N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及黃嘌呤核苷與N1-甲基鳥苷的組合調整後的曲線下面積(AUC)值分別為0.723 (95%信賴區間 = 0.64-0.81)、0.719 (95%信賴區間 = 0.64-0.80)、0.716 (95%信賴區間 = 0.64-0.80),以及 0.734 (95%信賴區間 = 0.65-0.81)(圖5)。By adjusting the clinical variables (systolic blood pressure and diastolic blood pressure) in the multivariate model to distinguish between healthy individuals and non-diabetic patients with micro or large albuminuria (macro group), targeting xanthine, N1-methylguanosine, The area under the curve (AUC) values of 7-methyluric acid and the combination of xanthine and N1-methylguanosine are 0.983 (95% confidence interval = 0.96-1.00) and 0.987 (95% confidence interval = 0.97) -1.00), 0.940 (95% confidence interval = 0.89-0.99), and 0.983 (95% confidence interval = 0.97-1.00) (Figure 4). For the discrimination between type 2 diabetic patients without microalbuminuria (T2DM group) and microalbuminuria (T2DM+micro group), for N1-methylguanosine The adjusted area under the curve (AUC) values of 7-methyluric acid, xanthine, and the combination of xanthine and N1-methylguanosine were 0.723 (95% confidence interval = 0.64-0.81), 0.719 (95% confidence interval = 0.64-0.80), 0.716 (95% confidence interval = 0.64-0.80), and 0.734 (95% confidence interval = 0.65-0.81) (Figure 5).

3.3. 討論與結論Discussion and conclusion

在臨床實作中,預估的腎小球濾過率(eGFR)與蛋白尿仍然是腎病變以及慢性腎病變(CKD)進展的常見標記。微量白蛋白尿被認為是進展為蛋白尿的預測因子22 。在本研究中,為了發現敏感的代謝物生物標記,我們的個體被分為健康的個體、非糖尿病引起的微量或大量白蛋白尿患者(macro組)、不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組),以用於代謝物分析比較。據我們所知,我們目前的研究首次使用定量、非標靶液相色層分析-質譜儀(LC-MS)方法檢查第二型糖尿病患者(T2DM組)以及糖尿病腎病變(DN)患者的尿液代謝組。N1-甲基鳥苷、7-甲基尿酸,以及黃嘌呤核苷的含量分別具有0.752、0.686,以及0.667的較高曲線下面積(AUC)值,以區分健康個體以及來自非糖尿病引起的微量或大量白蛋白尿患者(macro組)(具有大量白蛋白尿/微量白蛋白尿)。對於區分不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組),N1-甲基鳥苷具有最高曲線下面積(AUC)值0.624,是所有標記中最適合的。我們的橫斷面研究顯示,尿液代謝組學可能是臨床上有用的平台,可為糖尿病以及糖尿病腎病變患者提供代謝特徵以及新的生物化學見解。具體而言,纈胺酸、天門冬胺酸,以及組胺酸可以是預測糖尿病(DM)的代謝標記,因為它們在不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)中的含量顯著更高。黃嘌呤核苷以及N1-甲基鳥苷可能是預測不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)引起的腎病變發展的有潛力的標記。In clinical practice, estimated glomerular filtration rate (eGFR) and proteinuria are still common markers of nephropathy and chronic kidney disease (CKD) progression. Microalbuminuria is considered a predictor of progression to proteinuria 22. In this study, in order to discover sensitive metabolite biomarkers, our individuals were divided into healthy individuals, patients with minimal or large albuminuria (macro group) caused by non-diabetics, and those with no micro or large albuminuria. Type 2 diabetes patients (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) for metabolite analysis and comparison. As far as we know, our current study uses quantitative, non-targeted liquid chromatography-mass spectrometry (LC-MS) for the first time to examine the urine of patients with type 2 diabetes (T2DM group) and diabetic nephropathy (DN) Liquid Metabolism Group. The contents of N1-methylguanosine, 7-methyluric acid, and xanthosine have higher area under the curve (AUC) values of 0.752, 0.686, and 0.667, respectively, to distinguish between healthy individuals and traces from non-diabetics Or patients with macroalbuminuria (macro group) (with macroalbuminuria/microalbuminuria). For distinguishing type 2 diabetes patients (T2DM group) without microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group), N1-methylguanosine has the highest area under the curve The (AUC) value is 0.624, which is the most suitable among all the markers. Our cross-sectional study shows that urine metabolomics may be a clinically useful platform that can provide metabolic characteristics and new biochemical insights for patients with diabetes and diabetic nephropathy. Specifically, valine, aspartic acid, and histidine can be metabolic markers predicting diabetes (DM) because they are used in type 2 diabetes patients (T2DM group) who do not have trace or large amounts of albuminuria and The content in type 2 diabetes patients with microalbuminuria (T2DM+micro group) was significantly higher. Xanthosine and N1-methylguanosine may be potential markers to predict the development of nephropathy caused by type 2 diabetic patients (T2DM group) who do not have micro or large albuminuria.

我們的結果顯示,非糖尿病引起的微量或大量白蛋白尿患者(macro組)的尿液中酪胺酸、脯胺酸,以及蘇胺酸的濃度高於健康個體。非糖尿病引起的微量或大量白蛋白尿患者(macro組)的甲硫胺酸含量低於健康個體組。相較於不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),發現天門冬胺酸在具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)中顯著降低。據報導,從微量白蛋白尿到大量白蛋白尿期間,無微量白蛋白尿的第二型糖尿病患者(T2DM組)血漿中組胺酸含量以及尿中麩醯胺酸/酪胺酸含量較低21 。在我們的研究中,且相較於健康個體組,不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)的尿液組胺酸含量較高,而相較於健康個體組及不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組),非糖尿病引起的微量或大量白蛋白尿患者(macro組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的尿液組胺酸含量則較低(P >0.05)。血漿組胺酸的下調與慢性腎病變(CKD)患者的蛋白質-能量消耗、發炎、氧化壓力,以及死亡率相關23 。胺基酸的交替可能表示患者具有慢性炎症、氧化壓力,以及進行性腎功能21Our results show that the urine levels of tyrosine, proline, and threonine in non-diabetic patients with micro or large albuminuria (macro group) are higher than healthy individuals. The level of methionine in non-diabetic patients with micro or large albuminuria (macro group) was lower than that of healthy individuals. Compared with type 2 diabetic patients (T2DM group) without microalbuminuria (T2DM group), aspartic acid was found to be significantly lower in type 2 diabetic patients with microalbuminuria (T2DM+micro group). According to reports, during the period from microalbuminuria to macroalbuminuria, patients with type 2 diabetes without microalbuminuria (T2DM group) have lower plasma histidine levels and urine glutamine/tyrosine levels 21 . In our study, and compared with healthy individuals, type 2 diabetes patients (T2DM group) who do not have trace or large albuminuria have higher urine histidine levels, and compared with healthy individuals and Type 2 diabetes patients without microalbuminuria (T2DM group), non-diabetic patients with microalbuminuria (macro group), and type 2 diabetes patients with microalbuminuria (T2DM+micro The urine histidine content in group) was lower ( P >0.05). The down-regulation of plasma histidine is associated with protein-energy expenditure, inflammation, oxidative stress, and mortality in patients with chronic kidney disease (CKD) 23 . Alternation of amino acids may indicate chronic inflammation, oxidative stress, and progressive renal function 21 .

已知嘌呤代謝增強在氧化壓力條件下,包括糖尿病,活化的線粒體防禦機制。最近,據報導黃嘌呤核苷在糖尿病個體的血漿中升高24 。在我們的研究結果中,糖尿病患者尿液中次黃嘌呤、黃嘌呤、鳥嘌呤核苷,以及黃嘌呤核苷的含量升高可能與線粒體抗氧化防禦過程有關。Purine metabolism is known to enhance mitochondrial defense mechanisms under oxidative stress conditions, including diabetes, activation. Recently, it was reported that inosine elevated in the plasma of 24 individuals in diabetes. In our findings, the increased levels of hypoxanthine, xanthine, guanosine, and xanthine nucleoside in the urine of diabetic patients may be related to the mitochondrial antioxidant defense process.

非糖尿病引起的微量或大量白蛋白尿患者(macro組)尿液中鳥糞嘌呤含量的降低,或非糖尿病引起的微量或大量白蛋白尿患者(macro組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)尿液中黃嘌呤核苷的降低可能歸因於線粒體功能的抑制,這已經由Sharma, K.等人所報導。20 Patients with micro or macro albuminuria (macro group) caused by non-diabetes decreased in urine guanine content, or patients with micro or macro albuminuria (macro group) caused by non-diabetics, and second patients with microalbuminuria The decrease of xanthine nucleosides in urine of type-type diabetes patients (T2DM+micro group) may be due to the inhibition of mitochondrial function, which has been reported by Sharma, K. et al. 20

相較於在健康個體以及不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)中的N1-甲基鳥苷含量,在非糖尿病引起的微量或大量白蛋白尿患者(macro組)(P >0.001)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)(P >0.001)中的N1-甲基鳥苷濃度顯著降低。然而,我們發現在具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)以及不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)中鳥嘌呤核苷含量沒有顯著差異。Compared with the N1-methylguanosine content in healthy individuals and patients with type 2 diabetes who do not have trace or large albuminuria (T2DM group), in non-diabetic patients with trace or large albuminuria (macro group) ) ( P >0.001) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) ( P >0.001), the concentration of N1-methylguanosine was significantly reduced. However, we found that there was no significant difference in guanosine content in type 2 diabetes patients with microalbuminuria (T2DM+micro group) and type 2 diabetes patients without micro or large albuminuria (T2DM group) .

因為這些修飾的核苷為RNA的終產物,其不重新摻入新合成的RNA分子中,它們通常排泄到尿液中。因為據報導甲基化核苷在血清中升高25 ,所以非糖尿病引起的微量或大量白蛋白尿患者(macro組)以及具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)的尿液中較低量的N1-甲基鳥苷可能是由於其腎清除率降低。Because these modified nucleosides are the end products of RNA, they are not re-incorporated into newly synthesized RNA molecules, they are usually excreted in urine. Because methylated nucleosides are reported to be elevated in serum by 25 , the patients with micro or large albuminuria (macro group) caused by non-diabetics and type 2 diabetes patients with microalbuminuria (T2DM+micro group) The lower amount of N1-methylguanosine in urine may be due to reduced renal clearance.

由黃嘌呤氧化酶催化甲基黃嘌呤形成甲基尿酸,並且存在四種甲基尿酸同種型:1-、3-、7-,以及9-甲基尿酸。在這項研究中,我們發現尿液中的7-甲基尿酸濃度在非糖尿病引起的微量或大量白蛋白尿患者(macro組)上顯著低於健康個體。非糖尿病引起的微量或大量白蛋白尿患者(macro組)尿液中7-甲基尿酸含量的降低也可能是由於腎清除率降低所致。Xanthine oxidase catalyzes methylxanthine to form methyluric acid, and there are four isoforms of methyluric acid: 1-, 3-, 7-, and 9-methyluric acid. In this study, we found that the concentration of 7-methyluric acid in urine was significantly lower in patients with non-diabetic-induced micro or macro albuminuria (macro group) than healthy individuals. The decrease of 7-methyluric acid in urine of non-diabetic patients with micro or large albuminuria (macro group) may also be due to decreased renal clearance.

我們發現大多數胺基酸的含量在不具有微量或大量白蛋白尿的第二型糖尿病患者(T2DM組)的尿液中顯著改變。尿液中的一組胺基酸標記可用於評估糖尿病(DM)發展之風險。由於它們的高曲線下面積(AUC)值可區分具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)與無微量白蛋白尿的第二型糖尿病患者(T2DM組),因此N1-甲基鳥苷以及黃嘌呤核苷可作為預測無微量白蛋白尿的第二型糖尿病患者(T2DM組)腎病變發展的標記。We found that the content of most amino acids was significantly changed in the urine of type 2 diabetic patients (T2DM group) who did not have trace or large albuminuria. A set of amino acid markers in urine can be used to assess the risk of developing diabetes (DM). Because their high area under the curve (AUC) value can distinguish type 2 diabetes patients with microalbuminuria (T2DM+micro group) and type 2 diabetes patients without microalbuminuria (T2DM group), N1- Methylguanosine and xanthine nucleosides can be used as markers to predict the development of nephropathy in type 2 diabetic patients (T2DM group) without microalbuminuria.

總之,我們發現至少包括N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸,纈胺酸這種胺基酸等代謝物可作為檢測腎病變的特異性生物標記。因此,本發明提供了一種腎病變篩檢技術,該技術可特異性地檢測罹患腎病變、疑似罹患腎病變,或有腎病變風險的患者,並且可以在早期(即在發生任何症狀之前)作為指示劑。本發明之技術可以開發用於檢測腎病變的套組或技術平台,使用包括N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷,以及組胺酸,以及纈胺酸這種胺基酸的代謝物作為篩選腎病變的生物標記。本發明之技術可以進一步組合本領域已知的生理參數的測量,以提高腎病變的檢出率以及準確性。本發明的技術可以識別包括早期(微量白蛋白尿,沒有明顯症狀)的不同階段的腎病變。它還可以作為監測腎病變進展的指標。可以定期且連續地追蹤患者的病情,從而可以及時調整治療計劃,以便患者避免或延緩惡化。參考資料 1.   Lipscombe, L. L.; Hux, J. E., Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995–2005: a population-based study.The Lancet 2007, 369, (9563), 750-756. 2.   Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H., Global prevalence of diabetes estimates for the year 2000 and projections for 2030.Diabetes care 2004, 27, (5), 1047-1053. 3.   Hallan, S. I.; Coresh, J.; Astor, B. C.; Åsberg, A.; Powe, N. R.; Romundstad, S.; Hallan, H. A.; Lydersen, S.; Holmen, J., International comparison of the relationship of chronic kidney disease prevalence and ESRD risk.Journal of the American Society of Nephrology 2006, 17, (8), 2275-2284. 4.   Collins, A. J.; Foley, R. N.; Chavers, B.; Gilbertson, D.; Herzog, C.; Johansen, K.; Kasiske, B.; Kutner, N.; Liu, J.; St Peter, W., 'United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States.American journal of kidney diseases: the official journal of the National Kidney Foundation 2012, 59, (1 Suppl 1), A7, e1. 5.   Hoffmann, F.; Haastert, B.; Koch, M.; Giani, G.; Glaeske, G.; Icks, A., The effect of diabetes on incidence and mortality in end-stage renal disease in Germany.Nephrology Dialysis Transplantation 2011, 26, (5), 1634-1640. 6.   Association, A. D., Standards of medical care in diabetes—2010.Diabetes care 2010, 33, (Supplement 1), S11-S61. 7.   Anderson, J.; Glynn, L. G., Definition of chronic kidney disease and measurement of kidney function in original research papers: a review of the literature.Nephrol Dial Transplant 2011, 26, (9), 2793-8. 8.   Gross, J. L.; de Azevedo, M. J.; Silveiro, S. P.; Canani, L. H.; Caramori, M. L.; Zelmanovitz, T., Diabetic nephropathy: diagnosis, prevention, and treatment.Diabetes Care 2005, 28, (1), 164-76. 9.   Dronavalli, S.; Duka, I.; Bakris, G. L., The pathogenesis of diabetic nephropathy.Nature clinical practice Endocrinology & metabolism 2008, 4, (8), 444-452. 10. Yamada, T.; Komatsu, M.; Komiya, I.; Miyahara, Y.; Shima, Y.; Matsuzaki, M.; Ishikawa, Y.; Mita, R.; Fujiwara, M.; Furusato, N.; Nishi, K.; Aizawa, T., Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study.Diabetes Care 2005, 28, (11), 2733-8. 11.  Bhensdadia, N. M.; Hunt, K. J.; Lopes-Virella, M. F.; Michael Tucker, J.; Mataria, M. R.; Alge, J. L.; Neely, B. A.; Janech, M. G.; Arthur, J. M.; Veterans Affairs Diabetes Trial study, g., Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes.Kidney Int 2013, 83, (6), 1136-43. 12. MacIsaac, R. J.; Tsalamandris, C.; Panagiotopoulos, S.; Smith, T. J.; McNeil, K. J.; Jerums, G., Nonalbuminuric renal insufficiency in type 2 diabetes.Diabetes Care 2004, 27, (1), 195-200. 13. Afghahi, H.; Cederholm, J.; Eliasson, B.; Zethelius, B.; Gudbjornsdottir, S.; Hadimeri, H.; Svensson, M. K., Risk factors for the development of albuminuria and renal impairment in type 2 diabetes--the Swedish National Diabetes Register (NDR).Nephrol Dial Transplant 2011, 26, (4), 1236-43. 14. Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.; Knox, C.; Bjorndahl, T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z. T.; Poelzer, J.; Huynh, J.; Yallou, F. S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D. S., The human urine metabolome.PLoS One 2013, 8, (9), e73076. 15. Luan, H.; Liu, L. F.; Tang, Z.; Zhang, M.; Chua, K. K.; Song, J. X.; Mok, V. C.; Li, M.; Cai, Z., Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson's disease.Sci Rep 2015, 5, 13888. 16. Wang, T. J.; Larson, M. G.; Vasan, R. S.; Cheng, S.; Rhee, E. P.; McCabe, E.; Lewis, G. D.; Fox, C. S.; Jacques, P. F.; Fernandez, C.; O'Donnell, C. J.; Carr, S. A.; Mootha, V. K.; Florez, J. C.; Souza, A.; Melander, O.; Clish, C. B.; Gerszten, R. E., Metabolite profiles and the risk of developing diabetes.Nature Medicine 2011, 17, (4), 448-U83. 17. Zhao, X. J.; Fritsche, J.; Wang, J. S.; Chen, J.; Rittig, K.; Schmitt-Kopplin, P.; Fritsche, A.; Haring, H. U.; Schleicher, E. D.; Xu, G. W.; Lehmann, R., Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits.Metabolomics 2010, 6, (3), 362-374. 18. Wei, T.; Zhao, L.; Jia, J.; Xia, H.; Du, Y.; Lin, Q.; Lin, X.; Ye, X.; Yan, Z.; Gao, H., Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice.Sci Rep 2015, 5, 11998. 19. Ng, D. P.; Salim, A.; Liu, Y.; Zou, L.; Xu, F. G.; Huang, S.; Leong, H.; Ong, C. N., A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus.Diabetologia 2012, 55, (2), 499-508. 20. Sharma, K.; Karl, B.; Mathew, A. V.; Gangoiti, J. A.; Wassel, C. L.; Saito, R.; Pu, M.; Sharma, S.; You, Y. H.; Wang, L.; Diamond-Stanic, M.; Lindenmeyer, M. T.; Forsblom, C.; Wu, W.; Ix, J. H.; Ideker, T.; Kopp, J. B.; Nigam, S. K.; Cohen, C. D.; Groop, P. H.; Barshop, B. A.; Natarajan, L.; Nyhan, W. L.; Naviaux, R. K., Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease.J Am Soc Nephrol 2013, 24, (11), 1901-12. 21. Pena, M. J.; Lambers Heerspink, H. J.; Hellemons, M. E.; Friedrich, T.; Dallmann, G.; Lajer, M.; Bakker, S. J.; Gansevoort, R. T.; Rossing, P.; de Zeeuw, D.; Roscioni, S. S., Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus.Diabet Med 2014, 31, (9), 1138-47. 22. Hojs, R.; Ekart, R.; Bevc, S.; Hojs, N., Biomarkers of Renal Disease and Progression in Patients with Diabetes.J Clin Med 2015, 4, (5), 1010-24. 23. Watanabe, M.; Suliman, M. E.; Qureshi, A. R.; Garcia-Lopez, E.; Barany, P.; Heimburger, O.; Stenvinkel, P.; Lindholm, B., Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality.Am J Clin Nutr 2008, 87, (6), 1860-6. 24. Kalim, S.; Clish, C. B.; Deferio, J. J.; Ortiz, G.; Moffet, A. S.; Gerszten, R. E.; Thadhani, R.; Rhee, E. P., Cross-sectional examination of metabolites and metabolic phenotypes in uremia.BMC Nephrol 2015, 16, 98. 25. Niwa, T.; Takeda, N.; Yoshizumi, H., RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note.Kidney Int 1998, 53, (6), 1801-6.In short, we found that at least N1-methylguanosine, 7-methyluric acid, xanthine nucleoside, and metabolites such as histidine, valine and other amino acids can be used as specific biomarkers for the detection of nephropathy. . Therefore, the present invention provides a nephropathy screening technology that can specifically detect patients suffering from nephropathy, suspected of suffering from nephropathy, or at risk of nephropathy, and can be used at an early stage (that is, before any symptoms occur) Indicator. The technology of the present invention can be used to develop kits or technology platforms for detecting nephropathy, using amines including N1-methylguanosine, 7-methyluric acid, xanthine nucleosides, and histidine, and valine The metabolites of base acids are used as biomarkers for screening nephropathy. The technology of the present invention can further combine the measurement of physiological parameters known in the art to improve the detection rate and accuracy of nephropathy. The technology of the present invention can identify different stages of nephropathy including early stage (microalbuminuria, no obvious symptoms). It can also be used as an indicator to monitor the progress of nephropathy. The patient's condition can be tracked regularly and continuously, so that the treatment plan can be adjusted in time so that the patient can avoid or delay the deterioration. Reference 1. Lipscombe, LL; Hux, JE, Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995–2005: a population-based study. The Lancet 2007, 369, (9563), 750-756. 2 . Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H., Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes care 2004, 27, (5), 1047-1053. 3. Hallan, SI; Coresh, J.; Astor, BC; Åsberg, A.; Powe, NR; Romundstad, S.; Hallan, HA; Lydersen, S.; Holmen, J., International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. Journal of the American Society of Nephrology 2006, 17, (8), 2275-2284. 4. Collins, AJ; Foley, RN; Chavers, B.; Gilbertson, D.; Herzog, C.; Johansen, K.; Kasiske, B.; Kutner, N.; Liu, J.; St Peter, W.,'United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end- stage renal disease in the United States. American journal of kidney diseases: the official journal of the National Kidney Foundation 2012, 59, (1 Suppl 1), A7, e1. 5. Hoffmann, F.; Haastert, B.; Koch, M.; Giani, G.; Glaeske, G.; Icks, A., The effect of diabetes on incidence and mortality in end-stage renal disease in Germany. Nephrology Dialysis Transplantation 2011, 26, (5), 1634-1640. 6. Association, AD, Standards of medical care in diabetes—2010. Diabetes care 2010, 33, (Supplement 1), S11-S61. 7. Anderson, J.; Glynn, LG, Definition of chronic kidney disease and measurement of kidney function in original research papers: a review of the literature. Nephrol Dial Transplant 2011, 26, (9 ), 2793-8. 8. Gross, JL; de Azevedo, MJ; Silveiro, SP; Canani, LH; Caramori, ML; Zelmanovitz, T., Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 2005, 28, (1), 164-76. 9. Dronavalli, S.; Duka, I.; Bakris, GL, The pathogenesis of diabetic nephropathy. Nature clinical practice Endocrinology & metabolism 2008, 4, (8), 444-452. 10. Yamada, T.; Komatsu, M.; Komiya, I.; Miyahara, Y.; Shima, Y.; Ma tsuzaki, M.; Ishikawa, Y.; Mita, R.; Fujiwara, M.; Furusato, N.; Nishi, K.; Aizawa, T., Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study. Diabetes Care 2005, 28, (11), 2733-8. 11. Bhensdadia, NM; Hunt, KJ; Lopes-Virella, MF; Michael Tucker, J.; Mataria, MR; Alge, JL; Neely, BA; Janech, MG; Arthur, JM; Veterans Affairs Diabetes Trial study, g., Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney Int 2013, 83, (6 ), 1136-43. 12. MacIsaac, RJ; Tsalamandris, C.; Panagiotopoulos, S.; Smith, TJ; McNeil, KJ; Jerums, G., Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 2004, 27, ( 1), 195-200. 13. Afghahi, H.; Cederholm, J.; Eliasson, B.; Zethelius, B.; Gudbjornsdottir, S.; Hadimeri, H.; Svensson, MK, Risk factors for the development of albuminuria and renal impairment in type 2 diabetes--the Swedish Nati onal Diabetes Register (NDR). Nephrol Dial Transplant 2011, 26, (4), 1236-43. 14. Bouatra, S.; Aziat, F.; Mandal, R.; Guo, AC; Wilson, MR; Knox, C .; Bjorndahl, TC; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, ZT; Poelzer, J.; Huynh, J.; Yallou, FS; Psychogios, N.; Dong, E.; Bogumil , R.; Roehring, C.; Wishart, DS, The human urine metabolome. PLoS One 2013, 8, (9), e73076. 15. Luan, H.; Liu, LF; Tang, Z.; Zhang, M. ; Chua, KK; Song, JX; Mok, VC; Li, M.; Cai, Z., Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson's disease. Sci Rep 2015, 5, 13888. 16. Wang, TJ; Larson, MG; Vasan, RS; Cheng, S.; Rhee, EP; McCabe, E.; Lewis, GD; Fox, CS; Jacques, PF; Fernandez, C.; O'Donnell, CJ; Carr, SA ; Mootha, VK; Florez, JC; Souza, A.; Melander, O.; Clish, CB; Gerszten, RE, Metabolite profiles and the risk of developing diabetes. Nature Medicine 2011, 17, (4), 448-U83. 17. Zhao, XJ; Fritsche, J.; Wang, JS; Chen, J.; Rittig, K.; Schmit t-Kopplin, P.; Fritsche, A.; Haring, HU; Schleicher, ED; Xu, GW; Lehmann, R., Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 2010, 6, (3), 362-374. 18. Wei, T.; Zhao, L.; Jia, J.; Xia, H.; Du, Y.; Lin, Q.; Lin, X.; Ye, X.; Yan, Z.; Gao, H., Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice. Sci Rep 2015, 5, 11998. 19. Ng, DP; Salim, A.; Liu, Y.; Zou, L.; Xu, FG; Huang, S.; Leong, H.; Ong, CN, A metabolomic study of low estimated GFR in non-proteinuric type 2 diabetes mellitus. Diabetologia 2012, 55, (2), 499-508. 20. Sharma, K.; Karl, B.; Mathew, AV; Gangoiti, JA; Wassel, CL; Saito, R.; Pu, M.; Sharma, S.; You, YH; Wang, L.; Diamond- Stanic, M.; Lindenmeyer, MT; Forsblom, C.; Wu, W.; Ix, JH; Ideker, T.; Kopp, JB; Nigam, SK; Cohen, CD; Groop, PH; Barshop, BA; Natarajan, L.; Nyhan, WL; Naviaux, RK, Metabolomics reveals signature of mitochondrial dysfunction in diabetic kid ney disease. J Am Soc Nephrol 2013, 24, (11), 1901-12. 21. Pena, MJ; Lambers Heerspink, HJ; Hellemons, ME; Friedrich, T.; Dallmann, G.; Lajer, M.; Bakker , SJ; Gansevoort, RT; Rossing, P.; de Zeeuw, D.; Roscioni, SS, Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med 2014, 31, (9), 1138-47. 22. Hojs, R.; Ekart, R.; Bevc, S.; Hojs, N., Biomarkers of Renal Disease and Progression in Patients with Diabetes. J Clin Med 2015, 4, (5), 1010- 24. 23. Watanabe, M.; Suliman, ME; Qureshi, AR; Garcia-Lopez, E.; Barany, P.; Heimburger, O.; Stenvinkel, P.; Lindholm, B., Consequences of low plasma histidine in chronic kidney disease patients: associations with inflammation, oxidative stress, and mortality. Am J Clin Nutr 2008, 87, (6), 1860-6. 24. Kalim, S.; Clish, CB; Deferio, JJ; Ortiz, G. ; Moffet, AS; Gerszten, RE; Thadhani, R.; Rhee, EP, Cross-sectional examination of metabolites and metabolic phenotypes in uremia. B MC Nephrol 2015, 16, 98. 25. Niwa, T.; Takeda, N.; Yoshizumi, H., RNA metabolism in uremic patients: accumulation of modified ribonucleosides in uremic serum. Technical note. Kidney Int 1998, 53, (6 ), 1801-6.

no

為了說明本發明,以下說明具體實施例。然而,應該理解的是,本發明不限於所示之較佳具體實施例。To illustrate the present invention, specific examples are described below. However, it should be understood that the present invention is not limited to the preferred embodiments shown.

於圖式中:In the schema:

圖1A-1D所示為尿液代謝組的主成分分析(principal component analysis,PCA)。圖1A,正模式。圖1B,負模式。圖1C,正模式的加載圖。圖1D,去除二甲雙胍離子後的正模式主成分分析(PCA)。Figures 1A-1D show the principal component analysis (PCA) of the urine metabolome. Figure 1A, positive mode. Figure 1B, negative mode. Figure 1C, the loading diagram of the positive mode. Figure 1D, positive mode principal component analysis (PCA) after removing metformin ion.

圖2A-2B所示為兩群組之間峰值變化的統計顯著性的火山圖。圖2A,正模式:健康個體與非糖尿病引起的微量或大量白蛋白尿患者(macro組)之比較(P > 0.05;倍數變化 > 2);健康個體與無微量白蛋白尿的第二型糖尿病患者(T2DM組)之比較(P > 0.01;倍數變化 > 2);無微量白蛋白尿的第二型糖尿病患者(T2DM組)與具有微量白蛋白尿的第二型糖尿病患者(T2DM+微量組)之比較(P > 0.05;倍數變化 > 2)。圖2B,負模式:健康個體與非糖尿病引起的微量或大量白蛋白尿患者(macro組)之比較(P > 0.05;倍數變化 > 2);健康個體與無微量白蛋白尿的第二型糖尿病患者(T2DM組)之比較(P > 0.001;倍數變化 > 2);無微量白蛋白尿的第二型糖尿病患者(T2DM組)與具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)之比較(P > 0.05;倍數變化 > 2)。Figures 2A-2B show statistically significant volcano graphs of peak changes between the two groups. Figure 2A, positive pattern: comparison between healthy individuals and non-diabetic patients with microalbuminuria or macroalbuminuria (macro group) ( P >0.05; fold change>2); healthy individuals and type 2 diabetes without microalbuminuria Comparison of patients (T2DM group) ( P >0.01; fold change>2); Type 2 diabetes patients without microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) The comparison ( P >0.05; fold change>2). Figure 2B, negative pattern: comparison between healthy individuals and non-diabetic patients with microalbuminuria (macro group) ( P >0.05; fold change>2); healthy individuals and type 2 diabetes without microalbuminuria Comparison of patients (T2DM group) ( P >0.001; fold change>2); Type 2 diabetes patients without microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) ) Comparison ( P >0.05; fold change> 2).

圖3A-3F所示為尿液樣品中六種發現的生物標記的箱形圖。圖3A,黃嘌呤核苷;圖3B,纈胺酸;圖3C,7-甲基尿酸;圖3D,N1-甲基鳥糞嘌呤;圖3E,組胺酸;以及圖3F,天門冬胺酸(*P > 0.05;**P > 0.01;***P > 0.005;****P > 0.001)。Figures 3A-3F show box plots of the six biomarkers found in urine samples. Figure 3A, xanthine nucleosides; Figure 3B, valine; Figure 3C, 7-methyluric acid; Figure 3D, N1-methylguanine; Figure 3E, histidine; and Figure 3F, aspartic acid (* P >0.05; ** P >0.01; *** P >0.005; **** P > 0.001).

圖4A-4D所示為健康個體組以及非糖尿病引起的微量或大量白蛋白尿患者(macro組)之間的代謝生物標記的辨別能力以及包括代謝生物標記、空腹血糖,以及舒張壓(DBP)的完整模型。代謝生物標記包含在每個模型中,圖4A,N1-甲基鳥苷;圖4B,7-甲基尿酸;圖4C,黃嘌呤核苷;以及圖4D,N1-甲基鳥苷與黃嘌呤核苷之組合。Figures 4A-4D show the ability to distinguish metabolic biomarkers between healthy individuals and non-diabetic patients with minimal or large albuminuria (macro group), including metabolic biomarkers, fasting blood glucose, and diastolic blood pressure (DBP) The complete model. Metabolic biomarkers are included in each model, Figure 4A, N1-methylguanosine; Figure 4B, 7-methyluric acid; Figure 4C, xanthine nucleosides; and Figure 4D, N1-methylguanosine and xanthine A combination of nucleosides.

圖5A-5D所示為無微量白蛋白尿的第二型糖尿病患者(T2DM組)與具有微量白蛋白尿的第二型糖尿病患者(T2DM+micro組)之間的代謝生物標記的辨別能力以及包括代謝生物標記、空腹血糖,以及舒張壓(DBP)的完整模型。代謝生物標記包含在每個模型中,圖5A,N1-甲基鳥苷;圖5B,7-甲基尿酸;圖5C,黃嘌呤核苷;以及圖5D,N1-甲基鳥苷與黃嘌呤核苷之組合。Figures 5A-5D show the ability to distinguish metabolic biomarkers between type 2 diabetes patients without microalbuminuria (T2DM group) and type 2 diabetes patients with microalbuminuria (T2DM+micro group) and Complete models including metabolic biomarkers, fasting blood glucose, and diastolic blood pressure (DBP). Metabolic biomarkers are included in each model, Figure 5A, N1-methylguanosine; Figure 5B, 7-methyluric acid; Figure 5C, Xanthine nucleosides; and Figure 5D, N1-methylguanosine and xanthine A combination of nucleosides.

no

Claims (18)

一種用於檢測個體腎病變之方法,該方法包括: (i) 提供從該待測個體中獲得之生物樣品; (ii) 進行第一檢測,其包括在該生物樣品中確定第一生物標記之含量以獲得第一檢測含量,將該第一檢測含量與該第一生物標記的第一參考含量進行比較以獲得第一比較結果,以及基於該第一比較結果評估該個體是否罹患腎病變或具有發展腎病變之風險,其中該第一生物標記係選自由N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷、組胺酸,以及其任何組合之群組,且相較於該第一參考含量,該第一檢測含量的降低表示該個體罹患腎病變或具有發展腎病變之風險;及/或 (iii) 進行第二檢測,其包括在該生物樣品中確定第二生物標記的含量以獲得第二檢測含量,將該第二檢測含量與該第二生物標記的第二參考含量進行比較以獲得第二比較結果,以及基於該第二比較結果評估該個體是否罹患腎病變或具有發展腎病變之風險,其中該第二生物標記為纈胺酸,且相較於該第二參考含量,該第二檢測含量的增加表示該個體罹患腎病變或具有發展腎病變之風險。A method for detecting individual nephropathy, the method includes: (i) Provide a biological sample obtained from the individual to be tested; (ii) Performing a first test, which includes determining the content of the first biomarker in the biological sample to obtain the first detection content, and comparing the first detection content with the first reference content of the first biomarker to obtain A first comparison result, and based on the first comparison result to assess whether the individual suffers from nephropathy or is at risk of developing nephropathy, wherein the first biomarker is selected from N1-methylguanosine, 7-methyluric acid, yellow A group of purine nucleosides, histidine, and any combination thereof, and compared to the first reference level, a decrease in the first detected level indicates that the individual suffers from nephropathy or is at risk of developing nephropathy; and/or (iii) Performing a second test, which includes determining the content of a second biomarker in the biological sample to obtain a second detection content, and comparing the second detection content with a second reference content of the second biomarker to obtain A second comparison result, and based on the second comparison result to assess whether the individual suffers from nephropathy or is at risk of developing nephropathy, wherein the second biomarker is valine, and compared to the second reference content, the first 2. An increase in the detected content indicates that the individual suffers from nephropathy or is at risk of developing nephropathy. 如請求項1之方法,其中該檢測透過質譜法進行。The method of claim 1, wherein the detection is performed by mass spectrometry. 如請求項1之方法,其中該生物樣品為尿液樣品。The method of claim 1, wherein the biological sample is a urine sample. 如請求項1之方法,進一步包括在該生物樣品中確定至少一種生理參數。The method of claim 1, further comprising determining at least one physiological parameter in the biological sample. 如請求項4之方法,其中該生理參數選自由下列所組成之群組:年齡、性別、收縮壓(systolic blood pressure,SBP)、舒張壓(diastolic blood pressure,DBP)、空腹血糖(fasting blood glucose,FBG)、血紅素A1c (hemoglobin A1c,HbA1c)、糖尿病持續時間、肌酸酐、預估的腎小球濾過率(estimated glomerular filtration rate,eGFR)、白蛋白尿,尿白蛋白與肌酸酐比(albumin to creatinine ratio,ACR)、其他胺基酸,及其任何組合。Such as the method of claim 4, wherein the physiological parameter is selected from the group consisting of age, sex, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (fasting blood glucose) , FBG), hemoglobin A1c (hemoglobin A1c, HbA1c), duration of diabetes, creatinine, estimated glomerular filtration rate (eGFR), albuminuria, urine albumin to creatinine ratio ( albumin to creatinine ratio, ACR), other amino acids, and any combination thereof. 如請求項1之方法,其中該個體為糖尿病患者。The method of claim 1, wherein the individual is a diabetic patient. 如請求項1之方法,進一步包括進行治療腎病變之治療方法。The method of claim 1, further comprising a treatment method for treating nephropathy. 一種用於在罹患腎病變的患者中監測腎病變進展之方法,該方法包括: (a) 於早期時間點從該患者提供早期生物樣品; (b) 於較晚時間點從該患者提供較晚生物樣品,其中該較晚時間點晚於該早期時間點; (c) 進行第一檢測,其包括分別在該早期生物樣品中以及該較晚生物樣品中確定第一生物標記的含量,以分別獲得該第一生物標記的早期檢測含量以及較晚檢測含量,比較該第一生物標記的該早期檢測含量與該較晚檢測含量以獲得第一比較結果,以及基於該第一比較結果評估該患者的腎病變進展,其中該第一生物標記選自由N1-甲基鳥苷、7-甲基尿酸、黃嘌呤核苷、組胺酸,以及其任何組合所組成之群組,且相較於該第一生物標記的該早期檢測含量,該第一生物標記的該較晚檢測含量的下降表示該患者的腎病變進展;及/或 (d) 進行第二檢測,其包括分別在該早期生物樣品中以及該較晚生物樣品中確定第二生物標記的含量,以分別獲得該第二生物標記的早期檢測含量以及較晚檢測含量,比較該第二生物標記的該早期檢測含量與該較晚檢測含量以獲得第二比較結果,以及基於該第二比較結果評估該患者的腎病變進展,其中該第二生物標記為纈胺酸,且相較於該第二生物標記的該早期檢測含量,該第二生物標記的該較晚檢測含量的增加表示該患者的腎病變進展。A method for monitoring the progression of nephropathy in patients suffering from nephropathy, the method comprising: (a) Provide early biological samples from the patient at an early time point; (b) Provide a later biological sample from the patient at a later time point, wherein the later time point is later than the early time point; (c) Performing the first test, which includes determining the content of the first biomarker in the early biological sample and the later biological sample respectively, to obtain the early detection content and the later detection content of the first biomarker, respectively, The early detection content of the first biomarker is compared with the later detection content to obtain a first comparison result, and the patient’s nephropathy progression is evaluated based on the first comparison result, wherein the first biomarker is selected from N1-A Guanosine, 7-methyluric acid, xanthine, histidine, and any combination thereof, and compared with the early detection content of the first biomarker, the first biomarker The decrease in the later detection level indicates the progression of nephropathy in the patient; and/or (d) Performing a second test, which includes determining the content of the second biomarker in the early biological sample and the later biological sample to obtain the early detection content and the later detection content of the second biomarker respectively, Comparing the early detection content of the second biomarker with the later detection content to obtain a second comparison result, and assessing the patient’s nephropathy progression based on the second comparison result, wherein the second biomarker is valine, And compared with the early detection content of the second biomarker, the increase of the later detection content of the second biomarker indicates the progression of nephropathy in the patient. 如請求項8之方法,其中該檢測透過質譜法進行。The method of claim 8, wherein the detection is performed by mass spectrometry. 如請求項8之方法,其中該生物樣品為尿液樣品。The method of claim 8, wherein the biological sample is a urine sample. 如請求項8之方法,進一步包括在該生物樣品中確定至少一個生理參數。The method of claim 8, further comprising determining at least one physiological parameter in the biological sample. 如請求項11之方法,其中該生理參數選自由下列所組成之群組:年齡、性別、收縮壓(SBP)、舒張壓(DBP)、空腹血糖(FBG)、血紅素A1c (HbA1c)、糖尿病持續時間、肌酸酐、預估的腎小球濾過率(eGFR)、白蛋白尿、尿白蛋白與肌酸酐比(ACR)、其他胺基酸,及其任何組合。The method of claim 11, wherein the physiological parameter is selected from the group consisting of age, gender, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), heme A1c (HbA1c), diabetes Duration, creatinine, estimated glomerular filtration rate (eGFR), albuminuria, urine albumin to creatinine ratio (ACR), other amino acids, and any combination thereof. 如請求項8之方法,其中該個體為一糖尿病患者。The method of claim 8, wherein the individual is a diabetic patient. 如請求項8之方法,進一步包括進行治療腎病變之治療方法。The method of claim 8, further comprising a treatment method for treating nephropathy. 一種用於實施如請求項1至13中任一項之方法的套組,其包含特異性識別該第一生物標記的第一試劑,及/或特異性識別該第二生物標記的第二試劑,以及使用該套組檢測該第一生物標記及/或該第二生物標記的存在或含量之說明書。A kit for implementing the method of any one of claims 1 to 13, comprising a first reagent that specifically recognizes the first biomarker, and/or a second reagent that specifically recognizes the second biomarker , And instructions for using the kit to detect the presence or content of the first biomarker and/or the second biomarker. 如請求項15之套組,其中該試劑與可被檢測的標記連接。Such as the kit of claim 15, wherein the reagent is connected to a detectable label. 一種第一試劑之用途,該第一試劑係選自由下列所組成之群組:(i) 特異性識別N1-甲基鳥苷之分子,(ii) 特異性識別7-甲基尿酸之分子,(iii) 特異性識別黃嘌呤核苷之分子,(iv) 特異性識別組胺酸之分子,以及(v) (i)至(iv)的任何組合,以一方法用於進行如請求項1至7中任一項所定義之用於檢測在有需要的個體中的腎病變之方法,或如請求項8至14中任一項所定義之用於在罹患腎病變的患者中監測腎病變進展之方法,或用於製備套組或組合物,以用於進行如請求項1至7項任一項所定義之用於檢測在有需要的個體中的腎病變之方法,或如請求項8至14中任一項所定義之用於在一罹患腎病變的患者中監測腎病變進展之方法。A use of a first reagent, which is selected from the group consisting of (i) molecules that specifically recognize N1-methylguanosine, (ii) molecules that specifically recognize 7-methyluric acid, (iii) Molecules that specifically recognize xanthine nucleosides, (iv) Molecules that specifically recognize histidine, and (v) any combination of (i) to (iv), used in one method to perform as in claim 1 A method for detecting nephropathy in an individual in need as defined in any one of to 7 or for monitoring nephropathy in a patient suffering from nephropathy as defined in any one of claims 8 to 14 Progressive methods, or for the preparation of kits or compositions for use in the method for detecting nephropathy in individuals in need as defined in any one of claims 1 to 7, or as claimed The method defined in any one of 8 to 14 for monitoring the progression of nephropathy in a patient suffering from nephropathy. 一種第二試劑之用途,該第二試劑特異性識別纈胺酸,以一方法用於進行如請求項1至7中任一項所定義之用於檢測在有需要的個體中的腎病變之方法,或如請求項8至14中任一項所定義之用於在罹患腎病變的患者中監測腎病變進展之方法,或用於製備套組或組合物,以用於進行如請求項1至7中任一項所定義之用於檢測在有需要的個體中的腎病變之方法或如請求項8至14項中任一項所定義之用於在罹患腎病變的患者中監測腎病變進展之方法。Use of a second reagent, which specifically recognizes valine, and is used in a method for detecting nephropathy in an individual in need as defined in any one of claims 1 to 7 Method, or a method for monitoring the progression of nephropathy in patients suffering from nephropathy as defined in any one of claims 8 to 14, or for preparing a kit or composition for performing as claimed in claim 1. A method for detecting nephropathy in an individual in need as defined in any one of to 7 or for monitoring nephropathy in a patient suffering from nephropathy as defined in any one of claims 8 to 14 The method of progress.
TW108121863A 2018-06-21 2019-06-21 Small molecular biomarkers for nephropathy and applications thereof TWI839361B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862688147P 2018-06-21 2018-06-21
US62/688,147 2018-06-21

Publications (2)

Publication Number Publication Date
TW202035986A true TW202035986A (en) 2020-10-01
TWI839361B TWI839361B (en) 2024-04-21

Family

ID=

Also Published As

Publication number Publication date
WO2019242751A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US7662578B2 (en) Method and kit for the early detection of impaired renal status
US9176148B2 (en) Method for the early detection of renal disease using proteomics
Lin et al. Measuring serum total and free indoxyl sulfate and p-cresyl sulfate in chronic kidney disease using UPLC-MS/MS
ES2392629T3 (en) Methods of distinction of isomers by mass spectrometry
US20170003291A1 (en) Methods for detecting, diagnosing and treating endometrial cancer
US20150090010A1 (en) Method for diagnosing heart failure
Ferlizza et al. Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease
André et al. Two rapid, accurate liquid chromatography tandem mass spectrometry methods for the quantification of seven uremic toxins: an application for describing their accumulation kinetic profile in a context of acute kidney injury
Kovacevic et al. Cystatin C, Neutrophil gelatinase-associated lipocalin, and lysozyme C: urinary biomarkers for detection of early kidney dysfunction in children with urolithiasis
US20150011423A1 (en) Means and methods for assessing kidney toxicity
EP2059817B1 (en) Biomarkers for assessing liver function
TWI822802B (en) Protein biomarkers for nephropathy and applications thereof
Davidson et al. Metabolomic profiling demonstrates evidence for kidney and urine metabolic dysregulation in a piglet model of cardiac surgery-induced acute kidney injury
CA2794021C (en) Hbf and a1m as early stage markers for preeclampsia
WO2021232211A1 (en) Marker for diagnosing kidney disease and diagnostic method
WO2019242751A1 (en) Small molecular biomarkers for nephropathy and applications thereof
TWI839361B (en) Small molecular biomarkers for nephropathy and applications thereof
TWI735470B (en) Method for determining diabetic nephropathy and the use of biomarkers in this method
Li et al. Changes in urinary exosomal protein CALM1 may serve as an early noninvasive biomarker for diagnosing diabetic kidney disease
US20170176477A1 (en) Means and methods to diagnose liver toxicity using putrescine as biomarker
WO2013080917A1 (en) Objective evaluation method for schizophrenia
Lapolla et al. Urinary peptides as a diagnostic tool for renal failure detected by matrix-assisted laser desorption/ionisation mass spectrometry: an evaluation of their clinical significance
Leśnik et al. Measurement of serum levels of 5 amino acids and dimethylamine using Liquid Chromatography-Tandem Mass Spectrometry in Patients without Septic Associated Acute kidney Injury and with septic Associated Acute kidney Injury requiring continuous renal replacement therapy
Fathimah et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL): an early marker for diabetic nephropathy
WO2023079706A1 (en) Method for assessing diabetic nephropathy