TW202034692A - Multi-range hdr video coding - Google Patents

Multi-range hdr video coding Download PDF

Info

Publication number
TW202034692A
TW202034692A TW108131502A TW108131502A TW202034692A TW 202034692 A TW202034692 A TW 202034692A TW 108131502 A TW108131502 A TW 108131502A TW 108131502 A TW108131502 A TW 108131502A TW 202034692 A TW202034692 A TW 202034692A
Authority
TW
Taiwan
Prior art keywords
brightness
image
dynamic range
hdr
idr
Prior art date
Application number
TW108131502A
Other languages
Chinese (zh)
Other versions
TWI843747B (en
Inventor
德 福祿登 李納特斯 約瑟夫斯 凡
魯特格 尼蘭得
约翰尼斯 伊茲布蘭德 提切拉
Original Assignee
荷蘭商皇家飛利浦有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18192636.1A external-priority patent/EP3621307A1/en
Application filed by 荷蘭商皇家飛利浦有限公司 filed Critical 荷蘭商皇家飛利浦有限公司
Publication of TW202034692A publication Critical patent/TW202034692A/en
Application granted granted Critical
Publication of TWI843747B publication Critical patent/TWI843747B/en

Links

Images

Landscapes

  • Picture Signal Circuits (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Image Processing (AREA)

Abstract

Although recently high dynamic range video codec technologies have been invented, at least some applications in the total HDR video market desire some more sophisticated methods, which can work defined around more than two different dynamic range re-graded images of a same original HDR scene. Thereto the inventors developed a number of technical ways to realize a high dynamic range video encoder (900), arranged to receive via an image input (920) an input high dynamic range image (MsterHDR) which has a first maximum pixel luminance (PB_C_H50) for which the encoder has a first metadata input (922), and arranged to receive via a second metadata input (921) a master luma mapping function (FL_50t1), which luma mapping function defines the relationship between normalized lumas of the input high dynamic range image and normalized lumas of a corresponding standard dynamic range image (Im_LDR) having a maximum pixel luminance of preferably 100 nit, characterized in that the encoder further comprises a third metadata input (923) to receive a second maximum pixel luminance (PB_CH), and the encoder further being characterized in that it comprises: - a HDR function generation unit (901) arranged to apply a standardized algorithm to transform the master luma mapping function (FL_50t1) into a adapted luma mapping function (F_H2hCI), which relates normalized lumas of the input high dynamic range image to normalized luminances of an intermediate dynamic range image (IDR) which is characterized by having a maximum possible luminance being equal to the second maximum pixel luminance (PB_CH); - an IDR image calculation unit (902) arranged to apply the adapted luma mapping function (F_H2hCI) to lumas of pixels of the input high dynamic range image (MsterHDR) to obtain lumas of pixels of the intermediate dynamic range image (IDR) which is output of this unit; and- an IDR mapping function generator (903) arranged to derive on the basis of the master luma mapping function (FL_50t1) and the adapted luma mapping function (F_H2hCI) a channel luma mapping function (F_I2sCI), which defines as output the respective normalized lumas of the standard dynamic range image (Im_LDR) when given as input the respective normalized lumas of the intermediate dynamic range image (IDR), which in turn correspond to respective lumas of the input high dynamic range image (MsterHDR); the encoder being further characterized to have: - an image output (930) to output the intermediate dynamic range image (IDR); - a first metadata output (932) to output the second maximum pixel luminance (PB_CH); - a second metadata output (931) to output the channel luma mapping function (F_I2sCI); and - a third metadata output (933) to output the first maximum pixel luminance (PB_C_H50), and a corresponding HDR video decoder.

Description

多範圍HDR視訊編碼Multi-range HDR video encoding

本發明係關於用於編碼高動態範圍影像,且特別用於可根據像MPEG-HEVC(例如,電視廣播)之壓縮技術壓縮之係影像之時間序列的視訊,特別係藉由使用第二動態範圍的(多個)影像(用於傳達至解碼器)以表示第一動態範圍之(多個)(主)影像的方法及設備,該動態範圍變化涉及藉由施加一般作為後設資料與(多個)第二動態範圍影像共同傳達的函數改變影像像素輝度(例如,從正規化至1.0值的第一者至正規化至1.0值的第二者)。The present invention relates to a video that is used to encode high dynamic range images, and is particularly used for time series of images that can be compressed according to compression techniques like MPEG-HEVC (for example, television broadcasting), especially by using a second dynamic range (Multiple) images (used to be communicated to the decoder) to represent the first dynamic range (multiple) (main) image method and equipment, the dynamic range change involves the application of general data and (multiple) (A) The second dynamic range image collectively conveys the function to change the image pixel brightness (for example, from the first normalized to a value of 1.0 to the second normalized to a value of 1.0).

約5年前,高動態範圍視訊編碼的新穎技術被引入世界(例如,導致待於1000尼特(nit)的高階超高畫質(UltraHD Premium) tv上觀看的特殊HDR藍光光碟)。About 5 years ago, novel technologies for high dynamic range video coding were introduced into the world (for example, special HDR Blu-ray discs that were watched on UltraHD Premium TVs that were 1000 nits).

此在技術上處理影像的新穎方式在技術上與直到當時的過去50年所有視訊均根據其編碼的傳統(legacy)視訊編碼的許多方式形成對比,該傳統視訊編碼如今稱為標準動態範圍(Standard Dynamic Range, SDR)視訊編碼(亦稱為低動態範圍(low dynamic range)視訊編碼;LDR)。為表示影像,像素顏色的經數位編碼表示係必要的,且Rec. 709之SDR明亮度(luma)碼定義(亦稱為光電轉移函數(Opto-electrical transfer function) OETF)因為其近似平方根函數形狀(square root function shape)(明亮度:Y=sqrt(輝度L))而能夠編碼(使用8或10位元的明亮度字組)僅約1000:1的輝度動態範圍。然而,此完美地適於編碼待於該等時代具有大約在0.1及100尼特之間的(當時的所有顯示器之)一般輝度演現能力之顯示器上顯示的影像,後值係所謂的峰亮度(peak brightness, PB),亦稱為最大輝度。This novel way of technically processing images is technically in contrast to the many ways in which all videos were coded according to the traditional (legacy) video coding in the past 50 years until then. This traditional video coding is now called Standard Dynamic Range (Standard). Dynamic Range, SDR) video coding (also known as low dynamic range (low dynamic range) video coding; LDR). In order to represent the image, the digitally coded representation of the pixel color is necessary, and the definition of the SDR luma code of Rec. 709 (also known as the Opto-electrical transfer function (OETF)) is because of its approximate square root function shape (square root function shape) (brightness: Y=sqrt (brightness L)) and can encode (using 8 or 10-bit brightness blocks) only about 1000:1 brightness dynamic range. However, this is perfectly suitable for encoding images to be displayed on displays with general brightness rendering capabilities (of all displays at the time) between 0.1 and 100 nits in these times, and the latter value is the so-called peak brightness (peak brightness, PB), also known as maximum brightness.

見Rec. 709明亮度碼定義函數無法數學地表示HDR場景影像輝度的巨大範圍(例如,在0.001尼特與10,000尼特的期望影像編碼峰亮度PB_C之間),HDR研究者最初藉由設計新的HDR碼分配解決此問題,該新的HDR碼分配在形狀上係更加對數的,使得可編碼更加多輝度(因為視覺系統需要較低的準確度,亦即,較亮區域的碼值比暗區域小,因此可理解到各十進位輝度分配2^8=256(其中^代表冪函數)中的50個碼,可已編碼100,000:1的動態範圍)。此係藉由使用SMPTE 2084-標準化(所謂的感知量化器(perceptual quantizer, PQ))函數來編碼HDR影像顏色的簡單「自然」方式。See Rec. 709 brightness code definition function can not mathematically represent the huge range of HDR scene image brightness (for example, between 0.001 nits and 10,000 nits expected image coding peak brightness PB_C), HDR researchers initially designed new The HDR code allocation solves this problem. The new HDR code allocation is more logarithmic in shape, making it possible to encode more brightness (because the visual system requires lower accuracy, that is, the code value of the brighter area is less than the darker The area is small, so it can be understood that each decimal brightness is allocated with 50 codes in 2^8=256 (where ^ represents the power function), and the dynamic range of 100,000:1 can be encoded). This is a simple "natural" way of encoding HDR image colors by using the SMPTE 2084-standardized (so-called perceptual quantizer (PQ)) function.

可天真地認為編碼及解碼HDR影像就是全部,但事情並非如此簡單,因此額外編碼方法出現,特別係對本申請人之HDR視訊編碼及處理的先前發展方法。It is naive to think that encoding and decoding HDR images is all, but things are not so simple. Therefore, additional encoding methods have emerged, especially the previous development methods of the applicant's HDR video encoding and processing.

為得到在HDR視訊編碼中所涉及或需要之事物的合宜理解,圖1總結一些重要態樣。To get a proper understanding of what is involved or needed in HDR video coding, Figure 1 summarizes some important aspects.

假設左側上具有所有可能(經PQ解碼)的HDR輝度的輝度範圍,至多PB_C=5000尼特。暫且假設為使此影像看起來如期望般完美,將稱為主HDR影像之此者的所有物體像素係在電腦上建立(於下文以圖2說明如何從,例如,廣播攝影機開始)。使用固有HDR編解碼器(其僅提供編碼至多10,000尼特之輝度的技術,亦即,在此實例中亦如期望地至多5000尼特)的問題係若消費者亦具有昂貴的5000尼特顯示峰亮度(PB_D)的顯示器(且若他在標準化觀看環境條件下觀看影像),他可完美地觀看創作者(例如,電影導演)所意欲的影像,但若他具有不同的顯示器(例如,PB_D=750尼特,或PB_D=100尼特),有尚未解決且亦不簡單的問題:如何在750尼特PB_D的顯示器上顯示5000尼特PB_C的影像?此似乎沒有優雅的簡單解決方案。施加準確輝度顯示將以至多750尼特的輝度完美地顯示所有物體,但將所有更明亮的物體像素修剪至相同的PB_D=750尼特,使許多影像物體消失在白色斑點區域中,其當然係不好看的。可認為內容的線性按比例調整係解決方案(將所有HDR輝度除以5000/750,其係所謂的內容白色映射至顯示器白色方法(map content-white-on-display-white approach)),但較暗物體(像實例場景影像ImSCN3中在洞穴的暗區域中具有HDR輝度(0.05尼特)的人,其對較小動態範圍顯示器可能已經太低)於是在750尼特顯示器上得到不可感知的暗輝度(0.05*750/5000= 0.0075尼特)。Assuming that there are all possible (PQ decoded) HDR luminance ranges on the left, at most PB_C=5000 nits. For the time being, suppose that in order to make this image look perfect as expected, all the object pixels called the main HDR image are created on the computer (see Figure 2 below to illustrate how to start from, for example, a broadcast camera). The problem with using the inherent HDR codec (which only provides technology that encodes brightness up to 10,000 nits, that is, as expected up to 5000 nits in this example) is that if the consumer also has an expensive 5000 nit display Peak brightness (PB_D) display (and if he views the image under standardized viewing environment conditions), he can perfectly watch the image intended by the creator (for example, a film director), but if he has a different display (for example, PB_D) =750 nits, or PB_D=100 nits), there is an unsolved and not simple problem: how to display 5000 nits of PB_C images on a 750 nits PB_D display? There seems to be no elegant simple solution. Applying accurate brightness display will perfectly display all objects with a brightness of up to 750 nits, but trim all brighter object pixels to the same PB_D=750 nits, so that many image objects disappear in the white spot area, which of course is not good looking. It can be considered that the linear scaling of content is a solution (divide all HDR brightness by 5000/750, which is the so-called map content-white-on-display-white approach), but it is more Dark objects (such as people with HDR brightness (0.05 nits) in the dark area of the cave in the example scene image ImSCN3, which may have been too low for a smaller dynamic range display), so you get imperceptible darkness on the 750 nit display Brightness (0.05*750/5000= 0.0075 nits).

圖1亦教示(不同典型HDR場景的)不同HDR影像可具有相當不同的需求,該等需求有關於如何將各種(可能在沿著HDR輝度範圍DR_2的「任意」輝度位置)HDR輝度擠壓成更小者,例如,LDR輝度動態範圍DR_1。Figure 1 also teaches that different HDR images (for different typical HDR scenes) can have quite different requirements. These requirements are about how to squeeze various (possibly at an "arbitrary" brightness position along the HDR brightness range DR_2) HDR brightness into The smaller one, for example, LDR luminance dynamic range DR_1.

真實世界輝度的範圍可在,例如,當室內及室外的物體二者同時透過illumination_contrast*object_reflection_contrast =(1:100)*(1:100)觀看時,且雖然在表示場景之影像中的輝度一般不必或不會等同於原始場景輝度,對於好的HDR表示影像,將預期像素輝度的範圍可能至多至少1000尼特,並以至少0.1尼特或更小的最小值開始(因此DR_im >= 10,000:1)。此外,好的HDR影像可比有關於實體動態範圍本身更加有關於各種物體輝度沿著輝度範圍的智慧分配(更別說誤解其正在導引的位元量,其對非線性明亮度碼定義不為真,且10位元明亮度影像可僅係一些HDR影像以及SDR影像)。The real-world brightness range can be, for example, when both indoor and outdoor objects are viewed through illumination_contrast*object_reflection_contrast =(1:100)*(1:100), and although the brightness in the image representing the scene is generally not necessary Or it will not be equal to the original scene brightness. For a good HDR representation image, the range of expected pixel brightness may be at least 1000 nits, and start with a minimum value of at least 0.1 nits or less (so DR_im >= 10,000:1 ). In addition, a good HDR image is more about the intelligent distribution of the brightness of various objects along the brightness range than it is about the dynamic range of the entity itself (not to mention misunderstanding the amount of bits it is guiding, and its definition of non-linear brightness code is not True, and 10-bit brightness images can only be some HDR images and SDR images).

圖1顯示許多可能HDR場景的數個典型說明性實例,未來的HDR系統(例如,連接至1000尼特PB_D顯示器)可能需要能夠正確地處理,亦即,藉由顯示影像中的所有物體/像素的適當輝度。Figure 1 shows several typical illustrative examples of many possible HDR scenarios. Future HDR systems (for example, connected to a 1000-nit PB_D display) may need to be able to process correctly, that is, by displaying all objects/pixels in the image The appropriate brightness.

例如,ImSCN1係來自西方電影的晴朗室外影像(其具有大部分明亮的區域,比陰天影像的平均更明亮,該等區域理想上應演現得比100尼特顯示器上更明亮,以提供比雨天模樣更晴朗的模樣,例如,具有比如說400尼特的平均輝度)。另一方面,ImSCN2係非常不同類型的影像,亦即,由暗區域(及,例如其等的良好可見度)主導的夜間影像,然而使此係HDR影像而非簡單的暗SDR影像的原因係亦有亮像素在街燈下方的地點中,且可能在房屋的發光窗戶中,且甚至有非常亮的像素(例如,3000尼特)在街燈的燈表面上。For example, ImSCN1 is a sunny outdoor image from Western movies (it has most of the bright areas, which are brighter than the average of cloudy images. Ideally, these areas should appear brighter than on a 100 nit monitor to provide a better A more sunny appearance on a rainy day, for example, with an average brightness of, say, 400 nits). On the other hand, ImSCN2 is a very different type of image, that is, a night image dominated by dark areas (and, for example, good visibility). However, the reason why this is an HDR image rather than a simple dark SDR image is also There are bright pixels in the spot under the street light, and possibly in the light-emitting windows of the house, and there are even very bright pixels (for example, 3000 nits) on the surface of the street light.

相對於ImSCN2的暗,什麼使此ImSCN1晴朗?不必然係相對輝度,至少在SDR範型中不是(將有遍布在0.1與100尼特之間的範圍上的像素輝度對二者影像係可能的,雖然此類輝度的空間分布,且特別係直方圖可係不同的)。使HDR影像演現與在僅於數年前終止的SDR時代中如何總是如此的演現不同的事物在於SDR具有此一有限動態範圍(約PB=100尼特,且最小黑色位準MB約0.1至1尼特),僅有物體的大部分固有反射率可在SDR中顯示(其將落於用於良好白色的90%及用於良好黑色的1%之間)。在經技術控制的均勻照明下,對於辨識物體(具有來自其等反射之某些量的亮度及當然來自其等色度)將係良好的,但對自然場景中可具有之照明本身中的美麗變化上,及可在觀看者上具有的何種衝擊性上(出自窗戶的陽光,或巫師輻射出的電漿)沒有那麼好。若顯示器允許其(且因此影像編碼及處理技術應如此),在森林中漫步真的看到陽光通過樹,亦即,而不係像SDR顯示器上僅有些更淡黃的印象,當人從陰影走入艷陽下時,想要看到明亮且鮮豔的陽光照射的衣服。且至少在PB_D允許時,火及爆炸也應具有最佳的視覺衝擊。Relative to the darkness of ImSCN2, what makes this ImSCN1 clear? It is not necessarily the relative brightness, at least not in the SDR paradigm (there will be pixel brightness spreading over the range between 0.1 and 100 nits for both images. , Although the spatial distribution of this kind of brightness, and especially the histogram can be different). What makes HDR image presentation different from how it always did in the SDR era, which ended only a few years ago, is that SDR has this limited dynamic range (approximately PB=100 nits, and the minimum black level is approximately MB). 0.1 to 1 nit), only most of the intrinsic reflectivity of the object can be displayed in SDR (it will fall between 90% for good white and 1% for good black). Under technically controlled uniform lighting, it will be good for recognizing objects (having a certain amount of brightness from their equivalent reflections and of course from their equivalent chromaticity), but for the beauty of the lighting itself that can be possessed in natural scenes In terms of change, and what kind of impact it can have on the viewer (sunlight from a window, or plasma radiated by a wizard) is not so good. If the display allows it (and therefore the image coding and processing technology should be), walking in the forest really sees the sunlight passing through the trees, that is, instead of the slightly more yellowish impression on the SDR display, when people walk from the shadows When you step into the sun, you want to see bright and vivid clothes shining in the sun. And at least when PB_D allows, fire and explosion should also have the best visual impact.

在SDR中,可使夜間影像比正常照明影像更暗些,如可在明亮度直方圖中所感知者,但不會太暗,否則其將僅演現成太暗及醜(甚至可能大部分不可見)的影像(此係引入使夜間影像仍係相對明亮(但係藍色)之習知作法的原因)。而且,在100尼特TV或在100尼特的編碼中,正好沒有可用於過於明亮之任何者的空間。所以必須獨立於其等照明顯示物體,且無法同時如實地顯示場景之有時可發生的所有高對比照明。實務上,意謂著高度明亮的晴朗場景必須使用與陰暗雨天場景且甚至夜間場景幾乎相同的顯示器輝度(0至100尼特)演現。In SDR, the night image can be made darker than the normal lighting image. For example, it can be perceived in the brightness histogram, but it will not be too dark, otherwise it will only be too dark and ugly (maybe most of them are not See) (this is the reason for introducing the conventional method of making night images still relatively bright (but blue)). Moreover, in 100-nit TV or in 100-nit encoding, there is just no room for anyone who is too bright. Therefore, the object must be displayed independently of its lighting, and all the high-contrast lighting that can sometimes occur in the scene cannot be faithfully displayed at the same time. In practice, it means that a highly bright sunny scene must be displayed with almost the same display brightness (0 to 100 nits) as a dark rainy scene and even a night scene.

在現實生活中,人類視力也將適應可用光量,但沒有那麼多(大多數人在現實生活中確實認知到逐漸變暗,或他們在較暗或相當明亮的環境中)。且不應忘記顯示影像的電視不係對適應性眼睛的模擬,而係對現實生活環境的模擬,如其鑑於觀看環境及其他技術限制所得到的良好者。所以,想要以可藝術地設計至影像中的所有壯觀的局部亦且時間的照明效果顯示影像,以得到更逼真的演現影像(至少若終端觀看者具有可用的HDR顯示器)。精確地什麼是合適的輝度,比方說暗室中的光劍,將留給建立(多個)主分級(grading)的顏色分級者決定(為了此專利中之教示的簡單性起見,假設各種動態範圍影像,至少二個最極端不同的動態範圍係由人類分級者建立,但影像可類似地由自動軟體建立),且此申請案將聚焦在針對具有潛在不同需求的各種市場播放器建立及處理此類影像的所需技術成分上。In real life, human vision will also adapt to the amount of light available, but not so much (most people do recognize gradual dimming in real life, or they are in a darker or fairly bright environment). And it should not be forgotten that the television that displays images is not a simulation of adaptive eyes, but a simulation of real life environments, such as those that are good in view of the viewing environment and other technical limitations. Therefore, it is desired to display the image with a lighting effect that can be artistically designed to all the spectacular parts of the image and time, so as to obtain a more realistic rendering of the image (at least if the end viewer has an available HDR display). Exactly what is the appropriate brightness, such as a lightsaber in a dark room, will be left to the color grader who establishes (multiple) master grading (for the simplicity of the teaching in this patent, assuming various dynamics) Range images, at least two of the most extreme different dynamic ranges are created by human graders, but images can be similarly created by automatic software), and this application will focus on the creation and processing of various market players with potentially different needs The required technical components of such images.

在圖1的左軸上係當想要以(例如)5000尼特PB_C主HDR分級看到其等時可在5000尼特PB_D(參考)顯示器上直接顯示的物體輝度(亦即,影像分級者產生假設家中的一般高品質HDR TV將具有5000尼特PB_D的影像,且他可實際坐在此一家庭觀看室及在此一分級顯示器上之分級的表示中)。若想要不僅輸送已擷取之原始HDR場景的大約幻象,以及係在明亮的陽光照射環境中之牛仔的實際場景,必須將此等像素輝度指定且演現成足夠明亮,約例如平均500尼特。On the left axis of Figure 1 is the brightness of the object that can be directly displayed on the 5000-nit PB_D (reference) monitor when you want to see it with (for example) 5000 nits PB_C master HDR classification (that is, the image grader It is assumed that the general high-quality HDR TV in the home will have an image of 5000 nits PB_D, and he can actually sit in this family viewing room and the hierarchical representation on this hierarchical display). If you want to deliver not only the approximate phantom of the captured original HDR scene, but also the actual scene of a cowboy in a bright sunlight environment, the brightness of these pixels must be specified and the performance must be bright enough, for example, an average of 500 nits .

對於夜晚場景,想要主要係暗輝度,但機車上的主要角色應係可良好辨識的,亦即不會太暗(例如,約5尼特),且同時可有,例如街燈之相當高輝度的像素,例如在5000尼特顯示器上的3000尼特左右,或在任何其他HDR顯示器(例如,1000尼特PB_D)上的峰亮度左右。第三實例ImSCN3顯示何者現在也可能在HDR顯示器上:可同時演現許多(在語義上更相關於不僅燈,亦即,相關於許多區域內細節,像是陽光照射的樹)非常明亮及許多重要而非常暗的像素二者。ImSCN3顯示何者可被視為係典型且相對難以處理的HDR場景影像,具有通過其可看見晴朗外側之開口的黑暗洞穴。針對此場景,可能想要產生比想要演現僅有明亮晴朗風景之印象的場景更不亮一些的陽光照射物體(像是樹),例如,400尼特左右,其應與洞穴內側之基本上黑暗的角色更協調。顏色分級者可能想要最佳地協調所有物體的輝度(已在PB_HDR=5000尼特主HDR影像中),使得沒有東西看起來不適當地暗或亮且對比良好,例如站在此洞穴中之暗處中的人可以0.05尼特左右編碼在主HDR經分級影像中。For night scenes, you want to focus on the dark brightness, but the main characters on the motorcycle should be well-recognizable, that is, not too dark (for example, about 5 nits), and at the same time, such as street lights have a fairly high brightness Pixels, such as around 3000 nits on a 5000-nit display, or around the peak brightness on any other HDR display (for example, 1000-nit PB_D). The third example, ImSCN3, shows which is also possible on the HDR display: it can show many at the same time (more semantically related to not only lights, that is, related to details in many areas, such as sunlit trees) very bright and many Both important and very dark pixels. ImSCN3 shows what can be regarded as a typical and relatively difficult HDR scene image, with a dark cave with an opening on the outside of which can be seen through it. For this scene, you may want to produce a sunlit object (such as a tree) that is less bright than a scene where you only want to show the impression of a bright and sunny landscape. For example, about 400 nits, it should be the same as the inside of the cave. The characters on the dark are more coordinated. Color graders may want to optimally coordinate the brightness of all objects (already in the main HDR image of PB_HDR=5000 nits) so that nothing looks inappropriately dark or bright with good contrast, such as standing in this cave People in the dark can be encoded in the main HDR graded image at about 0.05 nits.

此主HDR影像已建立的情況下,藝術問題(甚至在將其以實現技術公式化之前)係之後應如何將此影像重新分級至不同的動態範圍,例如至少100尼特PB_C傳統SDR影像。With this master HDR image already established, the art issue (even before it is formulated in a technical way) is how to reclassify this image to a different dynamic range, such as at least 100 nits PB_C traditional SDR image.

其有助於當給定輝度之間的關係時的清晰度,因此在方便時將於此專利中如此做。實際上技術方面,輝度將經由明亮度碼分配函數(亦稱為光電轉移函數(OETF))編碼為明亮度,且因此亦可將輝度間的所有關係公式化,例如,從輸入L_in計算輸出輝度L_out的函數,等效明亮度之間的關係亦如此。It contributes to clarity when the relationship between brightness is given, so it will be done in this patent when it is convenient. In fact, in terms of technology, the brightness will be coded as brightness by the brightness code distribution function (also known as the photoelectric transfer function (OETF)), and therefore all the relationships between the brightness can be formulated, for example, the output brightness L_out can be calculated from the input L_in The relationship between the function and the equivalent brightness is also true.

或許有些令人混淆,亦可以正規化(例如,使用等於1.0的最大正規化輝度)方式將輝度公式化,並定義此類經正規化輝度上的所有動作。此具有經正規化HDR色域精確重疊LDR色域的優點(條件係二者的影像像素顏色均定義在相同的RGB原色組中),並因此可以此單一經正規化色域顯示輝度變化。明顯地,應以與定義在具有PB_C=5000之HDR輝度輝度範圍中的HDR輝度完全相同的絕對輝度顯示的經正規化LDR輝度的相對位置將具有不同的相對高度(亦即,然後可以此一色域表示顯示用於當隨此經正規化色域中之高度的相對/經正規化變化而建立對應的LDR影像像素輝度時所需的特定HDR像素輝度的輝度映射)。絕對與相對輝度之間的關係係簡單的:L_norm=L_abs/PB_C,其中PB_C係編碼的任何最大輝度,例如HDR編碼的5000尼特,及按照標準協議之用於SDR的100尼特。It may be a little confusing. You can also formulate the brightness in a normalized (for example, using a maximum normalized brightness equal to 1.0) and define all actions on such normalized brightness. This has the advantage that the normalized HDR color gamut accurately overlaps the LDR color gamut (the condition is that the image pixel colors of the two images are defined in the same RGB primary color group), and therefore, the single normalized color gamut can display brightness changes. Obviously, the relative position of the normalized LDR brightness that should be displayed with the absolute brightness that is exactly the same as the HDR brightness defined in the HDR brightness brightness range with PB_C=5000 will have a different relative height (that is, the same color can then be displayed). The domain representation displays the brightness mapping of the specific HDR pixel brightness required when establishing the corresponding LDR image pixel brightness according to the relative/normalized change of the height in the normalized color gamut. The relationship between absolute and relative brightness is simple: L_norm=L_abs/PB_C, where PB_C is any maximum brightness coded, such as 5000 nits for HDR coding, and 100 nits for SDR according to the standard protocol.

習自圖1的最後重要事項(因為所有技術均必須據此行為)係取決於在何種類型的HDR場景中處理何種種類的物體(亦即,其像素輝度),在如何重新分級該(多個)像素輝度上(亦即,輝度變換)可有不同的高階方法。The last important thing to learn from Figure 1 (because all technologies must behave accordingly) depends on what type of object (ie, its pixel brightness) is processed in what type of HDR scene, and how to reclassify the ( There can be different high-level methods on the brightness of a plurality of pixels (that is, brightness transformation).

例如,黑暗中的物體(像是機車騎士)可藉由使等同所有重新分級影像的絕對輝度(其涉及經正規化輝度的對應按比例調整變化)而演現,特別係在左方的起始主HDR影像、在右方的對應SDR影像、及在其間的任何中等動態範圍(medium dynamic range, MDR)影像,例如,以對在800尼特PB_D顯示器(例如,對於已購買此一顯示器並,例如從他的有線電視供應商、或經由衛星機上盒、或從網際網路等得到5000尼特PB_C HDR影像的消費者)上的直接顯示最佳化(具有正確的物體輝度)的PB_C=PB_MDR=800尼特顯示。此係合理的,因為內容的創作者想要輸送機車僅係可見的黑暗氣氛,且僅為了此一顯示器可如此作的原因(因為其具有在較高的PB_D結束以顯示場景中的所有物體輝度的較大輝度範圍),在較亮的顯示器上使其演現得更明亮將係不佳的。For example, objects in the dark (such as a motorcycle rider) can be rendered by equalizing the absolute brightness of all reclassified images (which involves the corresponding proportional adjustment changes in normalized brightness), especially at the beginning on the left The main HDR image, the corresponding SDR image on the right, and any medium dynamic range (MDR) images in between, for example, for a PB_D display at 800 nits (for example, for a monitor that has been purchased, For example, consumers who get 5000 nits of PB_C HDR images from his cable TV provider, or via satellite set-top boxes, or from the Internet) directly display optimization (with correct object brightness) PB_C= PB_MDR=800 nits display. This is reasonable, because the creator of the content wants the conveyor to be only a visible dark atmosphere, and only for the reason that this display can do so (because it has a higher PB_D end to display all the objects in the scene. The larger brightness range), it is not good to make it appear brighter on a brighter display.

物體(像是太陽)或許將遵循完全不同的原則,亦即,映射白色在白色上的方法(map white-on-white method),其中總是給定任何影像表示中的最高可能值,亦即PB_C。明顯地,其他類型的物體可遵循其他類型的規則,並可繼續下去(例如,牛仔將遵循經按比例調整中間灰色原則),但讀者理解必須具有允許所有像素輝度的幾乎「任意」分配之技術的一者係足夠的,而非例如固定者(像是簡單技術將指定的)。Objects (like the sun) may follow a completely different principle, namely, the map white-on-white method, where the highest possible value in any image representation is always given, that is PB_C. Obviously, other types of objects can follow other types of rules and can continue (for example, cowboys will follow the principle of proportionally adjusted intermediate gray), but readers understand that they must have technology that allows almost "arbitrary" distribution of all pixel brightness One of them is sufficient, not for example a fixed one (as simple techniques will specify).

而圖1簡單地總結多樣化HDR影像建立的需求(跨越此類受不同技術限制的應用,像是電影、即時運動廣播等),然後HDR技術開發者的問題仍係如何編碼HDR影像,及亦如何變換HDR影像以能夠將其等最佳地顯示在具有比經編碼PB_C(亦即,可能在視訊中發生至少一次的最亮像素)更小之PB_D的任何顯示器上。擷取HDR場景影像,且同樣重要的美術指導與照明HDR場景亦係技術技能,但本申請案不必聚焦在該態樣上。Figure 1 briefly summarizes the requirements for diversified HDR image creation (across such applications that are restricted by different technologies, such as movies, real-time sports broadcasting, etc.), and then the problem for HDR technology developers is how to encode HDR images, and also How to transform the HDR image so that it can be best displayed on any display with a smaller PB_D than the encoded PB_C (that is, the brightest pixel that may occur at least once in the video). Capturing HDR scene images, and equally important art direction and lighting HDR scenes are also technical skills, but this application need not focus on this aspect.

所設想的最簡單的事情係僅編碼HDR像素輝度(忽略顯示調適(display adaptation, DA)的複雜度,亦即,如何將PB_C1影像映射成用於能力較小之顯示器的影像)。問題係Rec. 709 OETF僅可編碼1000:1的輝度動態範圍,亦即,必須發明新的HDR OETF(或實際上其反式,EOTF)。稱為HDR10的第一HDR編解碼器已引入市場,其用以例如建立新的黑帶HDR藍光光碟,且其將在SMPTE 2084中標準化之稱為感知量化器(Perceptual Quantizer, PQ)函數的更對數地成形的函數使用為OETF,且其允許定義用於在1/10,000尼特與10,000尼特之間的輝度的明亮度(對實務的HDR視訊生產足夠的)。此外,其具有其所產生的明亮度碼適應人類視力如何運作的不錯性質(大腦用以特性化場景中之不同輝度的感知灰度值種類,其係用於有效率地重新分級某些灰度值物體,及用於有效率地表示輝度二者(如大腦所作的)的不錯性質)。在明亮度的計算之後,僅具有10位元的像素平面(或更確切地說,亦具有二個色度平面,Cb及Cr 3位元平面),其可進一步在該線下方受經典地處理,「彷彿」其等在數學上係SDR影像,例如,經MPEG壓縮(此係重要限制,因為其避免總視訊管線中的數個預先存在的技術的重新設計及重新部署)。The simplest thing envisaged is to encode only the HDR pixel brightness (ignoring the complexity of display adaptation (DA), that is, how to map the PB_C1 image to an image for a display with less capability). The problem is that Rec. 709 OETF can only encode a brightness dynamic range of 1000:1, that is, a new HDR OETF (or actually its trans, EOTF) must be invented. The first HDR codec called HDR10 has been introduced into the market, which is used for example to create a new black belt HDR Blu-ray disc, and it will be standardized in SMPTE 2084 called Perceptual Quantizer (PQ) function update The logarithmically shaped function is used as OETF, and it allows to define the brightness for the brightness between 1/10,000 nits and 10,000 nits (enough for practical HDR video production). In addition, it has a good property that the brightness code it generates adapts to how human vision works (the brain is used to characterize the perceptual gray value types of different brightness in the scene, which is used to efficiently reclassify certain grays Value objects, and good properties for efficiently representing both brightness (as the brain does). After the brightness calculation, there is only a 10-bit pixel plane (or more precisely, two chrominance planes, Cb and Cr 3-bit planes), which can be further processed classically below the line , "As if" they are mathematically SDR images, for example, compressed by MPEG (this is an important limitation because it avoids the redesign and redeployment of several pre-existing technologies in the overall video pipeline).

使用HDR10影像的顯著技術困難仍係如何適當地將其等顯示在能力較小的顯示器上(例如,能力小於HDR內容針對其製造的2000 PB_C)。例如,若僅線性地映射白色在白色上(經編碼影像最大白色,亦稱為將峰亮度PB_C編碼至例如SDR顯示器峰亮度PB_D),具有PB_C=1000尼特之影像的最感興趣(較暗)部分一般將看起來10x太暗,其將意謂著夜間場景ImSCN2變得不可見。由於PQ OETF的對數本質,HDR10影像係可見的(當僅演現為明亮度時,亦即以錯誤的EOTF解碼),但具有醜陋的惡化對比,使其等除了其他事物之外看起來褪色且係亮度不正確的。The significant technical difficulty of using HDR10 images is still how to properly display them on displays with less capabilities (for example, the capabilities are less than 2000 PB_C for HDR content). For example, if only white is mapped linearly on white (the encoded image is the largest white, also known as encoding the peak brightness PB_C to, for example, the peak brightness PB_D of an SDR display), the image with PB_C=1000 nits is most interesting (darker The part will generally look too dark at 10x, which will mean that the night scene ImSCN2 becomes invisible. Due to the logarithmic nature of PQ OETF, HDR10 images are visible (when only the brightness is rendered, that is, decoded with the wrong EOTF), but with ugly deteriorating contrast, making it look faded and faded among other things. The brightness is incorrect.

2 解釋用於建立HDR視訊內容的簡單系統(例如,在廣播場景中)。再者,為保持說明簡單,仍不考慮非線性明亮度或R’G’B’像素顏色碼分配的細節(所謂的光-光學方法(Opto-optical approach):OOTF,在整個鏈中使用正常(絕對)輝度)。使用攝影機(201)曝光(EXP),可選擇如實地記錄哪個物體的輝度,及在其的相對值(因為攝影機的功能如同所有空間位置的相對輝度計,或產生RGB三元組(triplet)的相對色度計)。因為攝影機感測器及顏色分量的N-位元數學表示二者實際上均具有最終範圍(在最小值開始並在最大值結束),不暴露十億尼特之太陽的細節係合理的,但至少將該等輝度或RGB值修剪至其等最大值。在實質無限的範圍中,曝光選擇可藉由稍後的輝度重新映射「校正」,但在任何情形中,此事實對讀者說明沒有場景輝度至待顯示輝度的「自然」明顯映射(後者輝度的參考係已知為顯示器相關比色法,且其事實上係是最重要的該一者)。線性輝度影像LIN_HDR一般首先係經受OOTF映射(202)。此在SDR時代已某種程度地存在,並對觀看電視之晚上客廳的一般較暗的觀看環境中的人類視力對類似的視覺體驗需要較高之對比的事實進行校正,因此OOTF一般係軟伽瑪函數(soft gamma function)。然而,特別當將可觀的動態範圍的場景映射在較小動態範圍的一般顯示器(205)上時(甚至在其係高品質4000尼特的參考監視器時),各種物體像素輝度的某種藝術最佳化可藉由分級單元203施加可能任意的曲線(其在本文中將稱為分級)而就緖。特別係對於離線高品質生產,分級效果可能係可觀的,以將所謂的創意視覺或模樣置於主HDR影像MAST_HDR中(其根據本發明仍必須受進一步技術性處理,例如,經有利地編碼)。然後所得影像看起來最佳並可經由某個影像通訊連接204發送至顯示器205,在該顯示器上,人類分級者可檢查影像是否已如所期望的,或經由使用者介面控制單元206(例如,分級控制台)繼續微調至少一個輝度映射函數。此任意分級形成主模樣(不與任意重新分級(次模樣)混淆)以獲得,例如,盡可能最佳的對應SDR影像,其可稱為主SDR影像(例如,當如下文所述地形成視訊編碼原則的一部分時)。雖然僅為讀者說明一個更簡單的拓樸,讀者可理解實務上取決於,例如,是否有僅使用單一HDR攝影機或許多混合的SDR與HDR攝影機進行的現實生活廣播,或先前判定的HDR影像與對應的重新分級SDR主影像,其等現在需要根據編碼原理(例如,見於下文的ETSI1或ETSI2原理)共編碼等而可能有不同的實際實施例。Use Figure 2 to explain a simple system for creating HDR video content (for example, in a broadcast scene). Furthermore, in order to keep the description simple, the details of non-linear brightness or R'G'B' pixel color code allocation are still not considered (the so-called Opto-optical approach: OOTF, which is normally used throughout the chain). (Absolute) brightness). Using the camera (201) exposure (EXP), you can choose which object's brightness to be recorded faithfully and its relative value (because the camera functions as a relative brightness meter for all spatial positions, or generates RGB triplet (triplet) Relative colorimeter). Because the camera sensor and the N-bit mathematical representation of the color component actually have a final range (starting at the minimum and ending at the maximum), it is reasonable not to expose the details of the billion nits of the sun, but At least trim the brightness or RGB value to its maximum value. In a substantially infinite range, the exposure selection can be “corrected” by the brightness remapping later, but in any case, this fact shows the reader that there is no “natural” obvious mapping of the scene brightness to the brightness to be displayed (the latter brightness is The reference frame is known as the display-related colorimetry, and it is in fact the most important one). The linear luminance image LIN_HDR is generally first subjected to OOTF mapping (202). This has already existed to some extent in the SDR era, and corrected the fact that human vision in the generally darker viewing environment in the living room at night watching TV requires a higher contrast for similar visual experiences, so OOTF is generally soft. Soft gamma function. However, especially when a scene with a considerable dynamic range is mapped on a general monitor (205) with a smaller dynamic range (even when it is a high-quality 4000 nit reference monitor), a certain art of pixel brightness of various objects The optimization can be prepared by applying a possibly arbitrary curve (which will be referred to as a classification herein) by the classification unit 203. Especially for offline high-quality production, the grading effect may be considerable, so as to put the so-called creative vision or appearance in the main HDR image MAST_HDR (which still must be further technically processed according to the present invention, for example, advantageously encoded) . The resulting image then looks best and can be sent to the display 205 via an image communication connection 204, where the human grader can check whether the image is as expected, or via the user interface control unit 206 (for example, Hierarchical console) continue to fine-tune at least one brightness mapping function. This arbitrary grading forms the main pattern (not to be confused with any re-grading (secondary pattern)) to obtain, for example, the best possible corresponding SDR image, which can be called the primary SDR image (for example, when the video is formed as described below Part of the coding principle). Although only a simpler topology is explained for the reader, the reader can understand that the practicality depends on, for example, whether there is a real-life broadcast using only a single HDR camera or many mixed SDR and HDR cameras, or the previously determined HDR image and The corresponding reclassified SDR main image now needs to be co-coded according to the coding principle (for example, the principle of ETSI1 or ETSI2 below) and may have different practical embodiments.

申請人理解到因為在從主HDR開始的各種可能的重新分級MDR影像之間有數學重新分級關係,倘若可技術務實地擷取該等函數,可事實上編碼不同動態範圍函數的整體頻譜(藉由發送其等之僅一者)及至少一個輝度映射函數以從已實際發送的該者建立另一影像(已以圖1說明)。此可能性及隨後的技術編碼概念的首次引入在WO2011107905中完成。The applicant understands that because there is a mathematical reclassification relationship between various possible reclassification MDR images starting from the main HDR, if these functions can be extracted technically and pragmatically, the overall spectrum of different dynamic range functions can be actually encoded (by By sending only one of them) and at least one luminance mapping function to create another image from the one that has actually been sent (illustrated in Figure 1). The first introduction of this possibility and the subsequent technical coding concept was completed in WO2011107905.

已發現定義用於將(例如,5000尼特PB_C)主HDR影像輝度變換成SDR影像輝度的輝度映射函數F_L係合理的,亦即,使分級者在最極端的影像表示之間定義所需的重新分級行為,且接著重新計算經顯示調適的輝度映射函數F_L_DA以用於計算對應於任何可能的5000尼特PB_C M_HDR影像輝度的其間MDR影像像素輝度。It has been found that it is reasonable to define the brightness mapping function F_L used to transform (for example, 5000 nits PB_C) the brightness of the main HDR image into the brightness of the SDR image, that is, to allow the classifier to define what is needed between the most extreme image representations Re-classification behavior, and then recalculate the display-adapted brightness mapping function F_L_DA for calculating the inter-MDR image pixel brightness corresponding to any possible 5000 nits PB_CM_HDR image brightness.

在申請人於隨後標準化時,之後有影像的二個邏輯選擇以實際傳輸(作為用於不同動態範圍之可重新分級影像的整體頻譜的單一影像,特別係PB_C端點,此係因為往往可假設下端點MB係大致固定的,例如0.01尼特)至任何接收器:主HDR影像或對應的SDR影像(應停止一秒以理解在該情況下,因為L_HDR_reconstructed=F_L_inverse[L_SDR],且事實上因為HDR影像仍亦傳達至F_L函數,所以傳輸實際普通的SDR影像而非HDR影像)。In the subsequent standardization by the applicant, there are two logical choices for the image to be actually transmitted (as a single image for the overall spectrum of the rescaleable image with different dynamic ranges, especially the PB_C endpoint, because it can often be assumed The lower endpoint MB is roughly fixed, such as 0.01 nits) to any receiver: the main HDR image or the corresponding SDR image (should stop for one second to understand that in this case, because L_HDR_reconstructed=F_L_inverse[L_SDR], and in fact because HDR images are still transmitted to the F_L function, so the actual ordinary SDR images are transmitted instead of HDR images).

第二編碼選項首先在ETSI TS 103 433-1下標準化(注意該-1 ;將其縮寫為 ETSI1 ),該第二編碼選項在技術限制係許多傳統顯示器需要以不受干擾的方式服務時係相當有用的(事實上舊的SDR顯示器僅得到SDR影像,且不需要知道此亦編碼HDR影像,其可直接顯示SDR影像並立即得到HDR場景的非常不錯的SDR演現,事實上顯示器可儘可能顯示此一HDR場景)。注意到具有對能夠以足夠精密度在任何接收側重建原始主HDR影像的技術限制(像是對SDR影像顏色之可逆性的需求),其係導致如其所定義的標準編(解)碼方法之技術設想的一部分。The second encoding option was first standardized under ETSI TS 103 433-1 (note the -1 ; abbreviate it as ETSI1 ). This second encoding option is equivalent when many traditional displays need to be served without interference due to technical limitations Useful (in fact, old SDR monitors only get SDR images, and you don’t need to know that it also encodes HDR images. It can directly display SDR images and immediately get a very good SDR performance of the HDR scene. In fact, the monitor can display as much as possible This HDR scene). Note that there are technical limitations (such as the need for the reversibility of SDR image colors) to be able to reconstruct the original master HDR image with sufficient precision on any receiving side, which leads to one of the standard encoding (de)coding methods defined by it. Part of the technical vision.

ETSI TS 103 433-2 (ETSI2 )係實際上將主HDR影像傳達至接收器的編碼替代方案,且其中(多個)函數F_L(實際上如將於下文所顯示的,雖然為了說明,可將系統設想為彷彿有用於該經傳達影像中的所有像素輝度的單一全域F_L函數,為了技術原因,使用一組隨後施加的映射函數)作用以計算用於在具有PB_D<PB_C_master之顯示器上最佳地顯示的影像(亦即,用於所謂的顯示調適)。各種消費者可選擇其等欲採用的系統,例如,傳達ETSI2 HDR的有線電視營運商將對其使用者部署STB,該STB將針對使用者恰巧在家中所具有的任何顯示器解碼及最佳化。ETSI TS 103 433-2 ( ETSI2 ) is a coding alternative that actually conveys the main HDR image to the receiver, and the function(s) F_L (actually as shown below, although for illustration, you can The system is conceived as if there is a single global F_L function for the brightness of all pixels in the communicated image. For technical reasons, a set of subsequently applied mapping functions are used to calculate the optimal value for the display with PB_D<PB_C_master The displayed image (that is, used for so-called display adaptation). Various consumers can choose the system they want to adopt. For example, a cable TV operator that communicates ETSI2 HDR will deploy STB to its users, which will decode and optimize any display that the user happens to have at home.

3 首先以鳥瞰圖層級顯示一般單一影像增強功能(single-image-plus-function) HDR視訊通訊系統(編碼器+解碼器)的組件,未限制用於解釋基本觀念之目的的SDR通訊類型的一般系統。 Figure 3 first shows the components of a general single-image-plus-function HDR video communication system (encoder+decoder) in a bird’s-eye view layer level, and does not limit the type of SDR communication used for the purpose of explaining the basic concept General system.

顏色變換器302從影像源301得到MAST_HDR影像作為輸入(例如,當其等由攝影機擷取並藉由以圖2所說明之系統分級,且接著透過一些專業視訊通訊系統傳達至廣播台側編碼器321時,其例如將透過空氣或經由電視有線網路傳輸電視節目)。然後施加一組顏色變換函數F_ct(在此實例中,例如,藉由分級自動軟體判定,諸如,申請人的自動HDR至SDR轉換技術,其基於影像特性(諸如,直方圖等)定義F_ct函數;特定細節可對此申請案的說明擱置,因為其僅需要用於任何影像或時間連續影像組的此類最佳化函數存在),包含至少亮度映射函數F_L,以獲得主HDR影像(MAST_HDR)像素之輝度的對應SDR輝度。為易於瞭解,讀者可為了簡單性而假設F_L係4分之一次方的輝度映射函數(L_out_SDR=power(L_in_HDR; ¼)),用於推導經正規化至100尼特PB_C SDR輸出影像Im_LDR(亦即,圖1的右側輝度範圍)中之像素的1.0 SDR輸出輝度。The color converter 302 obtains the MAST_HDR image from the image source 301 as input (for example, when it is captured by a camera and graded by the system illustrated in Figure 2, and then transmitted to the broadcast station side encoder through some professional video communication system 321, for example, it will transmit TV programs through the air or via a TV cable network). Then apply a set of color transformation function F_ct (in this example, for example, by grading automatic software determination, such as applicant's automatic HDR to SDR conversion technology, which defines the F_ct function based on image characteristics (such as histogram, etc.); Specific details can be put on hold for the description of this application, because it only requires the existence of such optimization functions for any image or time continuous image group), including at least the brightness mapping function F_L to obtain the main HDR image (MAST_HDR) pixels The brightness corresponds to the SDR brightness. For ease of understanding, readers can assume that F_L is a quarter-to-four brightness mapping function for simplicity (L_out_SDR=power(L_in_HDR; ¼)), which is used to derive the normalized PB_C SDR output image Im_LDR (also That is, the 1.0 SDR output luminance of the pixel in the luminance range on the right of Figure 1).

因為現在有「正常」SDR影像,其可用標準視訊壓縮技術(例如,MPEG標準(像是HEVC或MPEG2),或類似標準(像是AV1))壓縮,該壓縮係由視訊壓縮器303執行。Because there are now "normal" SDR images, they can be compressed using standard video compression technologies (for example, MPEG standards (such as HEVC or MPEG2), or similar standards (such as AV1)), and the compression is performed by the video compressor 303.

因為接收器必須能夠從所接收的對應經壓縮SDR影像Im_COD重建主HDR影像,除了待傳輸的實際像素化影像外,顏色映射函數F_ct亦必須進入視訊壓縮器。在沒有限制的情況下,可假設函數儲存在後設資料中,例如,藉由SEI(補充增強資訊(supplemental enhancement information))機制或類似技術的方式。最後,格式器304進行所有需要者以針對任何技術的通訊媒體305格式化(放入資料塊等)視訊串流,例如,針對藍光光碟上的儲存,或針對透過衛星的DVB通訊等格式化(此細節可由各別技術領域中具有通常知識者發現,且與理解本發明概念無關)。Because the receiver must be able to reconstruct the main HDR image from the received corresponding compressed SDR image Im_COD, in addition to the actual pixelated image to be transmitted, the color mapping function F_ct must also enter the video compressor. Without limitation, it can be assumed that the function is stored in meta data, for example, by means of SEI (supplemental enhancement information) mechanism or similar technology. Finally, the formatter 304 performs formatting (putting data blocks, etc.) video streams for all those in need with the communication media 305 for any technology, for example, for storage on Blu-ray discs, or formatting for DVB communication via satellites ( This detail can be found by those with ordinary knowledge in the respective technical fields and has nothing to do with understanding the concept of the present invention).

在視訊接收器320中的MPEG解壓縮由視訊解壓縮器307執行後(在已通過未格式器(unformatter) 306後),SDR影像可藉由施加標準Rec. 709 EOTF由接收器解譯(以得到用於SDR顯示器的影像),但接收器亦可不同地解碼所接收的Im_COD影像,以獲得經重建HDR影像Im_RHDR。After the MPEG decompression in the video receiver 320 is executed by the video decompressor 307 (after passing through the unformatter 306), the SDR image can be decoded by the receiver by applying the standard Rec. 709 EOTF (with Obtain the image for SDR display), but the receiver can also decode the received Im_COD image differently to obtain the reconstructed HDR image Im_RHDR.

此係由顏色變換器308執行,該顏色轉換器經配置以將如經壓縮Im_RLDR的SDR影像變換成任何非SDR動態範圍(亦即,高於100尼特之PB_C,且一般至少高於6x)的影像。例如,5000尼特的原始主影像Im_RHDR可藉由施加在編碼側使用的顏色變換F_ct的逆顏色變換IF_ct而重建,以從MAST_HDR產生Im_LDR(且其等在後設資料中接收並通過顏色變換器308)。或者,可包含顯示調適單元309,其將SDR影像Im_RLDR變換成不同的動態範圍,例如,假如顯示器310係3000尼特PB顯示器,受最佳分級的Im3000尼特,或用於對應較低PB_D顯示器的1500尼特或1000尼特PB影像等。已非限制性地假設視訊解碼器及顏色變換器係在單一視訊接收器320中。具有通常知識的讀者可理解可類似地設計具有,例如,分開在待連接至顯示器之機上盒中的解碼功能的許多不同拓樸,該顯示器僅作用為用於如所接收之預最佳化影像的基本型顯示器(dumb display),或其作進一步的影像顏色變換等。This is performed by the color converter 308, which is configured to transform SDR images such as compressed Im_RLDR into any non-SDR dynamic range (ie, PB_C higher than 100 nits, and generally at least higher than 6x) Of the image. For example, the original main image Im_RHDR of 5000 nits can be reconstructed by applying the inverse color transformation IF_ct of the color transformation F_ct used on the encoding side to generate Im_LDR from MAST_HDR (and it is received in the meta data and passed through the color converter 308). Alternatively, a display adjustment unit 309 may be included, which transforms the SDR image Im_RLDR into different dynamic ranges, for example, if the display 310 is a 3000 nit PB display, the best graded Im3000 nit, or for a lower PB_D display PB image of 1500 nits or 1000 nits, etc. It has been assumed without limitation that the video decoder and color converter are in a single video receiver 320. Readers with general knowledge can understand that it is possible to similarly design many different topologies with, for example, the decoding function separated in the set-top box to be connected to the display, which is only used for pre-optimization as received The basic type of image display (dumb display), or further image color conversion, etc.

4 簡短地總結如在ETSI2中標準化之申請人的輝度及顏色映射技術的原理(事實上其詳述顏色變換器302,其根據ETSI2解碼原則(或類似地ETSI1編碼原則)大致在圖3中介紹),因為必須理解其以理解本申請案的一些更特定實施例技術。 Figure 4 briefly summarizes the principle of the applicant's luminance and color mapping technology as standardized in ETSI2 (in fact it details the color converter 302, which is based on the ETSI2 decoding principle (or similar ETSI1 coding principle) roughly in Figure 3 Introduction), because it must be understood to understand some of the more specific embodiment techniques of this application.

輸入應係經PQ定義的YCbCr像素顏色(亦即,每像素的明亮度Y及色度Cb與Cr顏色分量)。首先,藉由必須使用SMPTE 2084 PQ EOTF的EOTF施加單元401將明亮度線性化成正常線性輝度L_in。然後可再次使用正常(實體SI及CIE普遍定義的)輝度定義從輸入HDR像素顏色獲得SDR輸出像素顏色的完整重新分級程序。在此之後,輝度處理可由輝度處理器401執行,該輝度處理器如期望但藉由明智選擇的子單元(此等單元402、403等在技術上設計成有利於各種HDR應用的需要,諸如,自動分級、易於人類分級、IC設計的複雜度等)實現總F_L映射。The input should be the YCbCr pixel color defined by PQ (that is, the brightness Y and chromaticity Cb and Cr color components per pixel). First, the brightness is linearized to the normal linear brightness L_in by the EOTF applying unit 401 that must use the SMPTE 2084 PQ EOTF. The normal (generally defined by entity SI and CIE) luminance definition can then be used again to obtain a complete re-grading procedure for the SDR output pixel color from the input HDR pixel color. After that, the luminance processing can be performed by the luminance processor 401, which is as desired but with wisely selected sub-units (such units 402, 403, etc.) are technically designed to facilitate the needs of various HDR applications, such as, Automatic classification, easy human classification, IC design complexity, etc.) to achieve total F_L mapping.

首先,輝度均勻化器藉由施加定義如下之曲線族的取決於PB之一者而施加其形狀僅取決於輸入HDR影像之峰亮度PB_C_H(PB_C_H=例如,5000尼特)的固定曲線變換: Y’HP=log(1+(RHO-1)*power(L_in/PB_C_H; 1/(2.4)))/log(RHO) [方程式1] 其中 RHO= 1+32*power(PB_C_H/10000;1/2.4)             [方程式2]First, the luminance homogenizer applies a fixed curve transformation whose shape depends only on the peak brightness of the input HDR image PB_C_H (PB_C_H=for example, 5000 nits) by applying one of the PB-dependent curve families defined as follows: Y’HP=log(1+(RHO-1)*power(L_in/PB_C_H; 1/(2.4)))/log(RHO) [Equation 1] among them RHO= 1+32*power(PB_C_H/10000;1/2.4) [Equation 2]

此將所有輝度映射至在感知上均勻的灰色明亮度Y’HP。若PB_C_HDR =10000尼特,則此曲線緊密對應於SMPTE 2084 PQ曲線,其已知係感知均勻的。對於較低PB_C_HDR的輸入影像,曲線良好地按比例調整(事實上,其在絕對意義上表示在10000尼特曲線上在,例如,3000尼特結束的次曲線),導致經正規化[0-1.0]/[0-1.0]輸入/輸出輝度軸表示中的最暗顏色對數伽瑪曲線較不陡峭。亦即,該處理的其餘部分已開始良好地預正規化。This maps all the brightness to a perceptually uniform gray brightness Y'HP. If PB_C_HDR = 10000 nits, this curve closely corresponds to the SMPTE 2084 PQ curve, which is known to be uniform in perception. For input images with lower PB_C_HDR, the curve scales well (in fact, it is expressed in absolute terms on the 10000 nits curve, for example, the sub-curve ending at 3000 nits), resulting in a normalized [0- 1.0]/[0-1.0] The logarithmic gamma curve of the darkest color in the input/output luminance axis representation is less steep. That is, the rest of the process has started to pre-normalize well.

隨後,黑色-白色位準偏移器403可在所期望處施加某個添加白色位準偏移WLO及某個黑色位準偏移BLO。Subsequently, the black-white level shifter 403 may apply a certain additional white level shift WLO and a certain black level shift BLO where desired.

白色位準偏移的效用可理解如下。假設內容創作者在設定在PB_C=4000尼特的系統(亦即,例如他的參考分級監視器具有4000尼特的PB_D)上分級他的影像,然而,在整個視訊中,他從未使用高於,例如,1500尼特(視訊最大值,係與可編碼最大值PB_D不同的事物)的像素最大亮度實際產生影像。然後,因為SDR輝度動態範圍按原樣足夠小,重新按比例調整將該等未使用值下降1500至4000尼特的輸入HDR係合理的(因為正在使用可動態調整的輝度映射,無論如何可每影像/視訊瞬間地將其最佳化)。1500/4000對應於0.375之經正規化(輸入)HDR輝度,所以可藉由除以2.6而將此值映射至經按比例調整HDR明亮度Y’HPS的最大值。The effect of white level shift can be understood as follows. Suppose a content creator grades his image on a system set at PB_C=4000 nits (that is, for example, his reference graded monitor has a PB_D of 4000 nits). However, in the entire video, he never uses high For, for example, the maximum brightness of the pixel of 1500 nits (the maximum value of video, which is different from the maximum value of PB_D that can be encoded) actually produces an image. Then, because the SDR brightness dynamic range is small enough as it is, it is reasonable to re-scale the input HDR that reduces the unused value by 1500 to 4000 nits (because the dynamically adjustable brightness mapping is being used, it can be /Video instantly optimizes it). 1500/4000 corresponds to the normalized (input) HDR brightness of 0.375, so this value can be mapped to the maximum value of the proportionally adjusted HDR brightness Y’HPS by dividing by 2.6.

為了精確,根據ETSI2標準,執行以下計算: Y’HPS=(Y’HP-BLO)/(1-WLO-BLO)                            [方程式3]For accuracy, according to the ETSI2 standard, the following calculations are performed: Y’HPS=(Y’HP-BLO)/(1-WLO-BLO) [Equation 3]

其中WLO及BLO係在後設資料中傳達,該後設資料與所接收視訊影像共同傳達或可與其關聯。Among them, WLO and BLO are communicated in the meta-data, which is communicated with the received video image or can be associated with it.

黑色位準偏移對得到SDR對應重新分級影像的更高對比模樣係有用的,但應留意ESTI1經接收影像應保持對HDR影像係可逆映射的,亦即,不應遺失太多的黑色像素細節(其係亦有平行增益限制器的原因,未顯示於圖4中)。The black level shift is useful for obtaining a higher contrast appearance of the SDR corresponding reclassified image, but it should be noted that the received image of ESTI1 should be reversibly mapped to the HDR image, that is, too much black pixel details should not be lost (It is also due to the parallel gain limiter, not shown in Figure 4).

基本上,可將黑色位準偏移簡單地理解為將某種HDR「黑」色置於SDR中的0.0,或更精確地說,經由準備用於HDR至SDR輝度映射的單元403(亦即,使用仍在HDR中的經正規化輝度,意謂著具有可用於得到HDR顯示器上的良好模樣,及SDR顯示器上的不良仍未最佳化模樣的相對分布)。Basically, the black level offset can be simply understood as placing a certain HDR "black" color in the SDR 0.0, or more precisely, through the unit 403 (that is, the unit prepared for HDR to SDR brightness mapping) , Using the normalized brightness that is still in HDR means that it has a relative distribution that can be used to obtain a good appearance on an HDR display, and a relatively unoptimized appearance on an SDR display).

隨後,粗略動態範圍變換器404施加主要輝度變換以得到SDR輝度(亦即,具有物體輝度的良好第一重新分布,以在SDR顯示器上得到合理模樣)。對此,ETSI2使用由用於最暗的HDR經正規化輝度的斜率可控線性區段(此區段之斜率稱為陰影增益)、用於最亮經正規化HDR輸入輝度Y’HPS的另一線性壓縮部分(具有斜率控制參數高亮度增益)、及藉由針對中間色調提供良好SDR外觀而一起平滑化其的可控拋物線部分(具有控制參數中間色調寬度,且數學在該標準中係可讀的,且在此申請案中僅重新解釋(視需要以簡單易消化的方式)至理解根據本見解之新發明實施例所需的程度)組成的曲線。所以此粗略動態範圍變換器404的輸出明亮度Y’CL首次定義在SDR範圍中,或SDR相對明亮度分布統計中。Subsequently, the coarse dynamic range converter 404 applies the main luminance transformation to obtain the SDR luminance (ie, has a good first redistribution of the object luminance to obtain a reasonable appearance on the SDR display). In this regard, ETSI2 uses a slope controllable linear section for the darkest HDR normalized brightness (the slope of this section is called shadow gain), and another for the brightest normalized HDR input brightness Y'HPS A linear compression part (high brightness gain with a slope control parameter), and a controllable parabolic part that smoothes it together by providing a good SDR appearance for the midtones (with a control parameter midtone width, and the mathematics is available in the standard Read it, and in this application, only reinterpret (as needed in a simple and digestible manner) to the extent required to understand the new invention embodiment based on this insight) composed of the curve. Therefore, the output brightness Y'CL of the rough dynamic range converter 404 is first defined in the SDR range, or SDR relative brightness distribution statistics.

對此單元404之內容創作者的技術(及藝術)提議係分級者可以含有更亮像素之其他物體的物體內對比為代價(因為有限的SDR輝度範圍)而良好地最佳化他所需要多明亮以產生最暗像素,但他可共調諧,例如,高亮度增益。可將陰影增益理解成用於,例如,站在洞穴的暗陰影區域中之0.05尼特輝度的人。若以白色在白色上準則(亦即,正規化映射函數,其係具有係經正規化輝度函數圖表之對角線的45度斜率的恆等函數)將他顯示在SDR顯示器上,將發現他在HDR中的經正規化輝度係0.05/5000,其由於用於粗略映射SDR輝度的恆等映射而停留在相等的經正規化輝度,亦即,在使其等絕對化後,該等像素應以(1/100000)*100顯示在SDR顯示器上,亦即,該顯示器上的最小黑色(「0」驅動信號)且係不可見的。因此,必須可觀地提高此類輝度,甚至在更對數均勻的HDR及SDR相對灰色值或明亮度表示中,以獲得充分可見且導致個人物體(例如,顯示在SDR顯示器上之跨越0.3至1.2尼特的個人像素輝度)內的物體紋理可辨別性的SDR輝度。因此,取決於該人恰巧落在HDR輝度範圍上多深(其如上文所教示的將取決於如HDR場景架構、場景照明、攝影機曝光、及由內容創作者所選擇之藝術主HDR分級的此類因子的組合係如何),編碼器(例如,作出合適F_L部分係此第一粗略輝度映射之選擇以將主HDR輸入重新分級成最佳或合適的對應SDL像素輝度的人類分級者)將選擇用於處理此特定影像的該等最暗像素的適當陰影增益(亦即,影像內容最佳化)。注意到實際上在ETSI中,將陰影增益SG定義為基於輸入與輸出影像之峰亮度(至少其等之明亮度表示)之比率的自動按比例調整的校正。在等明亮度(equiluma)原則下,藉由從經正規化HDR輝度作為:L_200=Y’200*L_HDR開始,應提高表示在經正規化明亮度範圍上的輝度係合理的,該經正規化明亮度範圍對應於,例如,僅200尼特PB_C(或更確切地說,根據以上方程式1及方程式2的值:Y’HP=Y’200=v(PB_C_H/200;RHO(200)),v係上述方程式1的虛擬對數(pseudo-logarithmic)方程式)。然而,此一般提供太亮且低對比的影像,所以分級者可使用曝光增益校正:SG=expgain*Y’200,其將係使SG朝向對角值1.0移回並將一些暗度帶回到SDR影像中(他一般不會選擇expgain=1/Y’200,因為SDR經正規化明亮度接著將等於HDR經正規化明亮度且再度太暗;SG將例如落在1.0與1.8之間)的調光(dimming)因子。The content creator’s technical (and artistic) proposal for this unit 404 is that the grader can optimize the brightness of other objects with brighter pixels at the expense of intra-object contrast (because of the limited SDR brightness range). To produce the darkest pixels, but he can be tuned together, for example, high brightness gain. The shadow gain can be understood to be used for, for example, people standing in a dark shadow area of a cave with a brightness of 0.05 nits. If the criterion of white on white (ie, the normalized mapping function, which is an identity function with a 45-degree slope of the diagonal of the normalized luminance function graph) is displayed on the SDR monitor, he will be found The normalized luminance in HDR is 0.05/5000. It stays at the same normalized luminance due to the identity mapping used to roughly map the SDR luminance, that is, after making it equal, the pixels should It is displayed on the SDR display with (1/100000)*100, that is, the minimum black ("0" drive signal) on the display and is invisible. Therefore, such brightness must be increased considerably, even in a more logarithmic uniform HDR and SDR relative gray value or brightness representation, to obtain full visibility and cause personal objects (for example, display on SDR displays that span 0.3 to 1.2 Ni Unique individual pixel brightness) within the object texture discernibility SDR brightness. Therefore, it depends on how deep the person happens to fall in the HDR brightness range (which, as taught above, will depend on such things as HDR scene architecture, scene lighting, camera exposure, and the master HDR grading selected by the content creator. What is the combination of class factors), the encoder (for example, the appropriate F_L part is the first rough luminance mapping choice to reclassify the main HDR input to the best or suitable human classifier corresponding to the SDL pixel brightness) will choose Appropriate shadow gain of the darkest pixels used to process this particular image (ie, image content optimization). Note that in fact, in ETSI, the shadow gain SG is defined as an automatic scaling correction based on the ratio of the peak brightness of the input and output images (at least the equivalent brightness). Under the principle of equilumina, by starting from the normalized HDR brightness as: L_200=Y'200*L_HDR, it is reasonable to increase the brightness in the normalized brightness range. This normalized The brightness range corresponds to, for example, only 200 nits PB_C (or more precisely, according to the values of Equation 1 and Equation 2 above: Y'HP=Y'200=v(PB_C_H/200; RHO(200)), v is the pseudo-logarithmic equation of Equation 1 above). However, this generally provides too bright and low-contrast images, so the grader can use exposure gain correction: SG=expgain*Y'200, which will move the SG back towards the diagonal value of 1.0 and bring some darkness back to SDR In the image (he generally would not choose expgain=1/Y'200, because the normalized brightness of SDR will then be equal to the normalized brightness of HDR and will be too dark again; SG will fall between 1.0 and 1.8, for example). Dimming factor.

此曲線類似實作用於將可能大得多的輝度動態範圍中的許多HDR輝度擠壓至小得多的SDR DR中的非線性輝度壓縮「彈簧」。因為使用的不係其「永遠不應在平均上太不合理」的固定曲線,但編碼器可施加已經最佳化的曲線,所得的SDR影像對許多HDR場景將不會不好(並非所有HDR場景均同樣複雜,例如,有時在均勻的陽光照射區域旁邊恰有某個弱陰影區域,然後雖然最簡單的系統將產生像是修剪成白色的問題,但不太複雜的智慧HDR至SDR映射(像是單元404的三部分曲線)在建立HDR主影像(例如,出自現實生活事件擷取內容創作者之HDR攝影機的該一者)的合適SDR重新分級影像上往往將已做得好。This curve is similar to the non-linear luminance compression "spring" in the SDR DR that squeezes many HDR luminances in the much larger luminance dynamic range to much smaller SDR DR. Because the fixed curve of "never should never be too unreasonable on average" is used, the encoder can apply an optimized curve, and the resulting SDR image will not be bad for many HDR scenes (not all HDR The scenes are all equally complex, for example, sometimes there is a weak shadow area next to a uniform sunlight area, and then although the simplest system will produce a problem like trimming to white, but not too complicated smart HDR to SDR mapping (Such as the three-part curve of unit 404) will often be well done in creating an appropriate SDR re-graded image of the HDR master image (for example, the one from the HDR camera of the creator of the real life event capture content).

然而,數種其他場景可更複雜,且一些內容創作者在精細調諧他們的藝術內容時(例如,好萊塢電影導演或DOP)亦可具有更高程度的專業需求。However, several other scenarios can be more complex, and some content creators may also have a higher degree of professional demand when fine-tuning their artistic content (for example, Hollywood film directors or DOP).

因此,次一單元(可客製化曲線施加器405)允許內容創作者(再次不論係人類或具有編碼在其演算法中之各種規則的智慧自動化)將可客製化且可能任意成形的精細分級輝度映射函數F_L_CU施加至Y’CL預分級明亮度,產生經分級LDR明亮度Y’GL(對該函數的唯一要求係其係不減少的,且一般甚至係單調增加的,且一般至少如在ETSI2中所選擇地將1.0輸入映射至1.0輸出)。實務上,此函數F_L_CU的形狀可作為一組形狀定義參數(例如,多項式的係數)或作為LUT等的其中一者傳達至解碼器。Therefore, the next unit (customizable curve applicator 405) allows content creators (again, whether humans or intelligent automation with various rules coded in their algorithms) to customize and possibly arbitrarily shaped fine The graded luminance mapping function F_L_CU is applied to the pre-graded luminance of Y'CL to produce graded LDR luminance Y'GL (the only requirement for this function is that it does not decrease, and generally even increases monotonically, and generally at least as Optionally map 1.0 input to 1.0 output in ETSI2). In practice, the shape of this function F_L_CU can be communicated to the decoder as a set of shape definition parameters (for example, coefficients of a polynomial) or as one of the LUTs.

因為視覺系統具有判定經感知影像物體灰色值印象的複雜方式、及/或因為將大跨度(span)的HDR輝度擠壓至有限SDR DR中有時可需要相當的理解能力、及/或因為內容創作者明顯地期望將某種額外藝術氣息置於此客製化曲線F_L_CU(然後該形狀一般將由另一顏色使用者介面電腦硬體及在編碼側所連接的軟體(未圖示)判定),此一精細分級可能係必要的。事實上,在一方面,可說所有的MDR影像均應係(僅)在主HDR影像中的所有資訊的某種壓縮表示,但另一方面(因為可給出相當弱印象的影像,例如,具有太少對比,彷彿透過霧見到的),內容創作的其他重要要求可係將所有影像彌補成SDR影像模樣-鑑於其等的更有限的DR能力-儘可能像HDR場景一樣真實或至少盡可能美麗。人類視力係高度非線性及精巧的,且若已用於太簡單的功能,可快速地感知。所以除了粗略輝度擠壓函數F_C外,內容創作者可能使用對可客製化函數F_L_CU的理解能力以在近乎不可能產生其看起來仍儘可能地好到用於HDR場景且較佳地像是HDR場景的SDR影像時做得更好(例如,降低像素的某個輝度子範圍的亮度以產生恰好多一些的物體間對比,例如,用於彩色玻璃窗的亮度之於教堂內部,或SDR影像中的室內室外視覺對比,或藉由選擇經由F_L_CU曲線的特殊局部形狀將場景中的一些物體的色彩度之於輝度最佳化等)。Because the visual system has a complicated way to determine the impression of the gray value of the perceived image object, and/or because the HDR brightness of a large span is squeezed into a limited SDR DR, considerable understanding ability may sometimes be required, and/or because of the content The creator obviously expects to put some extra artistic flavor on this customized curve F_L_CU (then the shape will generally be determined by the computer hardware of another color user interface and the software (not shown) connected to the encoding side), This fine classification may be necessary. In fact, on the one hand, it can be said that all MDR images should be (only) some kind of compressed representation of all the information in the main HDR image, but on the other hand (because it can give a rather weak image, for example, With too little contrast, as if seen through the fog), other important requirements for content creation can be to make up all images into SDR imagery-given their more limited DR capabilities-as real as possible or at least as real as HDR scenes May be beautiful. Human vision is highly nonlinear and sophisticated, and if it has been used for too simple functions, it can be perceived quickly. Therefore, in addition to the rough brightness squeeze function F_C, content creators may use the ability to understand the customizable function F_L_CU in order to produce it looks as good as possible for HDR scenes and better like SDR images of HDR scenes are better (for example, reduce the brightness of a certain luminance sub-range of pixels to produce just more contrast between objects, for example, the brightness used for stained glass windows is for church interiors, or SDR images The visual contrast between indoor and outdoor in, or by selecting a special local shape through the F_L_CU curve to optimize the color and brightness of some objects in the scene, etc.).

可用顯示於 6 中的「陰影人」影像的單一簡單實例啟發讀者並將可客製化之輝度映射函數的最小必要理解提供給他。The single simple example of the "shadow man" image shown in Figure 6 can be used to inspire the reader and provide him with the minimum necessary understanding of the customizable brightness mapping function.

圖6A幾何地顯示可在影像中見到的事物,而圖6B顯示L_HDR輝度與L_SDR輝度之間的函數關係。該影像顯示機器人602正移動通過其的黑暗太空站(DRKSPST)。在某個影像呈現時間,其遭遇陰影人601(其色度地定義成一組非常亮的HDR像素),其中在組成陰影人身體的各種像素之間有些微輝度差。此係因為他正站在充滿霧氣氛的強烈光照環境中的窗後方而發生。霧將一分量加至源自陰影人身體(例如,他的衣服)的輝度,將例如L_pants=20尼特+ L_mist= 4500尼特= 4520尼特,L_shirt= 50尼特+ L_mist= 4800尼特= 4850尼特等之HDR影像中的最終輝度給予觀看者。當使用具有對最亮像素太小之斜率的進程輝度映射函數的問題係陰影人可變成對比不足且在較小的動態範圍影像(諸如,SDR影像)中難以看見。一種解決方案係定義F_L_CU函數,使得其在輸入HDR輝度區域4500至5000尼特中局部地具有較大斜率,導致陰影人之更大的SDR輝度子範圍RS,使他及他的細節(例如,其穿戴的領帶)在霧中(甚至在SDR影像中)更加可見。可理解到可能有許多比僅有粗略映射函數F_C具有更多一些的額外重新分級控制可係有利的情況。Figure 6A shows geometrically what can be seen in the image, and Figure 6B shows the functional relationship between L_HDR luminance and L_SDR luminance. The image shows the robot 602 moving through its dark space station (DRKSPST). At a certain image presentation time, it encounters the shadow person 601 (its chromaticity is defined as a set of very bright HDR pixels), in which there is a slight difference in brightness between the various pixels that make up the shadow person's body. This happened because he was standing behind a window in a strong lighting environment filled with fog. The fog adds a component to the brightness derived from the shadowed person's body (for example, his clothes), for example, L_pants=20 nits + L_mist = 4500 nits = 4520 nits, L_shirt = 50 nits + L_mist = 4800 nits = The final brightness in the HDR image of 4850 nits is given to the viewer. The problem when using a progressive luminance mapping function with a slope that is too small for the brightest pixel is that shadow people can become insufficiently contrasted and difficult to see in smaller dynamic range images (such as SDR images). One solution is to define the F_L_CU function so that it locally has a larger slope in the input HDR luminance region of 4500 to 5000 nits, resulting in a larger SDR luminance sub-range RS of the shadow person, so that he and his details (for example, The tie it is wearing is more visible in the fog (even in the SDR image). It can be understood that there may be many situations where it may be advantageous to have more additional reclassification control than only the rough mapping function F_C.

回到圖4,在已定義適當的(均勻視覺表示)SDR明亮度之後,線性化器406將其等轉換成(經正規化)SDR明亮度Ls。但是由於SDR輝度此時係以對應於PB_C_S=100尼特(其輸入至單元406中)的RHO而非在輝度處理鏈開始處用於感知不均勻化的5000尼特產生,因此施加上述方程式1的反方程式。Returning to FIG. 4, after the appropriate (uniform visual representation) SDR brightness has been defined, the linearizer 406 converts it into a (normalized) SDR brightness Ls. However, since the SDR luminance is now generated by RHO corresponding to PB_C_S=100 nits (which is input into unit 406) instead of 5000 nits used to perceive unevenness at the beginning of the luminance processing chain, the above equation 1 is applied The inverse equation.

顏色當然不係1維的(除非僅使用消色灰色值影像運作),其使動態範圍轉換及編碼變得更相當複雜,但在其需要用於像素之色度Cb及Cr的平行處理軌的任何情形中,以獲得作為輸出顏色分量Rs、Gs、及Bs的更適合的對應SDR色度,或事實上如最終於圖4所示的合適的SDR RGB顏色。The color is of course not one-dimensional (unless only the achromatic gray value image is used for operation), which makes dynamic range conversion and coding more complicated, but it needs to be used for the parallel processing track of the pixel chromaticity Cb and Cr In any case, to obtain more suitable corresponding SDR chromaticities as the output color components Rs, Gs, and Bs, or in fact suitable SDR RGB colors as finally shown in FIG. 4.

ETSI2的色度處理軌450執行下列者(僅以所需程度再次簡短地解釋)。輸入像素色度Cb與Cr類似地藉由乘法器452乘以值F_C[Y],產出輸出色度Cb*、Cr*。困難在於始終獲得適當的輸出色度,知道有許多困難:可實現顏色的不規則形狀色域(見圖5中的解釋)、數學的非線性、以及觀看者的人類視覺系統等。此外,如將於以下之本申請案的實施例中所示的,市場甚至有更多需求,導致甚至更複雜的HDR處理系統。The chrominance processing track 450 of ETSI2 performs the following (only briefly explained again to the degree required). The input pixel chromaticity Cb and Cr are similarly multiplied by the value F_C[Y] by the multiplier 452 to produce output chromaticities Cb* and Cr*. The difficulty lies in obtaining the appropriate output chromaticity at all times. Knowing that there are many difficulties: the achievable color gamut of irregular shapes (see the explanation in Figure 5), mathematical nonlinearity, and the human visual system of the viewer. In addition, as will be shown in the following embodiments of the present application, there is even more demand in the market, resulting in an even more complex HDR processing system.

ETSI2使用飽和處理判定器451,其可取決於輸入像素恰巧具有的何者明亮度值Y而載入定義待發送至乘法器之輸出值的LUT。再者,內容創作者可自由定義/最佳化此明亮度相依之飽和乘法器定義函數的形狀。至少係因為如將於下文見的,有時發明顏色數學需要將此F_C[Y] LUT定義至所需程度。ETSI2 uses a saturation process determiner 451, which can load a LUT that defines the output value to be sent to the multiplier depending on which brightness value Y the input pixel happens to have. Furthermore, content creators can freely define/optimize the shape of the saturation multiplier definition function dependent on brightness. At least because, as will be seen below, sometimes the invention of color mathematics requires defining this F_C[Y] LUT to the desired degree.

矩陣施加單元453單純地將Cb、Cr顏色規格轉換成對應的經正規化RGB表示(此數學對本申請案係無趣的,且有興趣的讀者可在ETSI2以及ETSI1中找到)。The matrix application unit 453 simply converts the Cb and Cr color specifications into corresponding normalized RGB representations (this mathematics is not interesting for this application, and interested readers can find them in ETSI2 and ETSI1).

可藉由將「非HDR輝度」的經正規化R/Lh等值乘以在輝度處理軌401中計算的經正規化Ls值而定義RGB三元組。注意到所得的RN、GN、及BN值事實上仍係經正規化輝度,而非絕對SDR輝度(Rs等),但其等係「SDR正確」經正規化輝度,因為其等現在將SDR恰巧得到的輝度(Ls)列入考慮。The RGB triplet can be defined by multiplying the normalized R/Lh equivalent value of the "non-HDR luminance" by the normalized Ls value calculated in the luminance processing track 401. Note that the obtained RN, GN, and BN values are in fact still normalized brightness, not absolute SDR brightness (Rs, etc.), but they are "SDR correct" normalized brightness, because they now coincide with SDR The obtained brightness (Ls) is taken into consideration.

有對於不係比色技術中具有通常知識者的人最初有些困難概念的可能性,為了加快讀者的速度,說明在 5 中的經正規化(普遍的,亦即,當如上文所解釋地正規化時,SDR及HDR色域良好地重疊,但當然必須偏移HDR顏色以變成合適的SDR顏色,即使該變換對目前HDR場景影像的需求不係高度精巧且最佳化的,但係簡單地將絕對SDR輝度等同於輸入HDR絕對輝度)YCbCr色域中發生什麼。There is a possibility that people who do not have general knowledge in colorimetric technology may initially have some difficult concepts. In order to speed up the reader, the normalization in Figure 5 (commonly, that is, when as explained above During normalization, the SDR and HDR color gamuts overlap well, but of course the HDR color must be shifted to become a suitable SDR color. Even if the current HDR scene image requirements for this transformation are not highly sophisticated and optimized, it is simple The absolute SDR luminance is equated with the input HDR absolute luminance) What happens in the YCbCr color gamut.

純輝度變換將在垂直方向上發生,所以一般將HDR輝度或其對應明亮度Y(亦即,ColHDR的明亮度)向上移動至最佳的新位置(ColSDR),因為對於HDR至SDR輝度映射,F_L曲線在經正規化軸圖表上將始終落在對角線上方(亦即,具有某個x座標的輸入HDR經正規化輝度或明亮度亦具有該對角線在該x座標之位置的高度的y座標,且始終位於對角線上方之函數的經正規化SDR輸出輝度因此將始終產生較高的經正規化輸出值)。哪個實際(絕對)SDR輝度對應於此經正規化明亮度值Y係藉由首先EOTF成經正規化輝度(由單元406執行,因為Y’HP上至Y’GL的處理明亮度係藉由施加方程式1的對應EOTF而定義),並藉由乘法器455將該等經正規化輝度簡單地乘以100(例如,0.7*100= 70尼特)而發現。亦即,讀者現在看到使用此框架,所需的任何者均可從輸入HDR影像顏色,特別係從其之經PQ定義的明亮度Y(例如,如HDR藍光光碟上所儲存者)定義,一直到待顯示在SDR顯示器上之對應像素的絕對SDR輝度,以將最佳對應SDR影像顯示成HDR輸入影像(及來自所接收HDR影像之SDR影像的所得解碼)。The pure brightness transformation will occur in the vertical direction, so it is general to move the HDR brightness or its corresponding brightness Y (that is, the brightness of ColHDR) up to the best new position (ColSDR), because for HDR to SDR brightness mapping, The F_L curve will always fall above the diagonal on the normalized axis graph (that is, the input HDR normalized brightness or brightness with a certain x coordinate also has the height of the diagonal at the position of the x coordinate The normalized SDR output brightness of the function that is always above the diagonal will always produce a higher normalized output value). Which actual (absolute) SDR brightness corresponds to this normalized brightness value Y by first EOTF to normalized brightness (executed by unit 406, because the processing brightness from Y'HP up to Y'GL is performed by applying The corresponding EOTF of Equation 1 is defined), and the normalized luminance is simply multiplied by 100 (for example, 0.7*100=70 nits) by the multiplier 455. In other words, readers now see that using this framework, whatever is needed can be defined from the input HDR image color, especially the brightness Y defined by PQ (for example, as stored on the HDR Blu-ray Disc). Up to the absolute SDR brightness of the corresponding pixel to be displayed on the SDR display to display the best corresponding SDR image as an HDR input image (and the resulting decoding of the SDR image from the received HDR image).

到這裡為止,讀者現在瞭解至少根據申請人的ETSI標準化編碼原則的HDR編碼的基本起點。對於多數消費者而言,ETSI1或ETSI2之其中一者的選擇(以及隨後技術地發生的一切者)均將對於他們的目的係足夠的,亦即,以美麗的HDR影像供應他們的市場(當然他們仍將需要產生該等美麗的HDR影像,包括針對至少F_C函數且較佳地亦針對F_L_CU函數判定良好形狀,或至少在根據他們自有的特定藝術需求非手動地最佳化該等函數時,購買及使用自動針對各HDR影像種類產生相當不錯模樣的申請人的自動化,及隨後的編解碼器函數形狀)。例如,將去作完全修補以獲得未來性(future-proof)的高品質多樣化HDR的消費者可部署ETSI2系統,且重視其等之SDR影像或SDR消費者之其中一者的市場播放器可更將他們的HDR系統部署為ETSI1系統(此亦可涉及取決於在HDR視訊處理鏈的何處的各種討論,例如,內容創作者之於有線電視通訊系統營運商,並可能涉及轉碼等)。So far, the reader now understands the basic starting point of HDR encoding at least according to the applicant's ETSI standardized encoding principles. For most consumers, the choice of either ETSI1 or ETSI2 (and everything that happens technically afterwards) will be sufficient for their purpose, that is, to supply their market with beautiful HDR images (of course They will still need to generate these beautiful HDR images, including determining good shapes for at least the F_C function and preferably also for the F_L_CU function, or at least when manually optimizing the functions according to their own specific artistic needs , Purchase and use the applicant's automation that automatically generates a pretty good look for each HDR image type, and the subsequent codec function shape). For example, consumers who will be completely patched to obtain future-proof high-quality and diverse HDR can deploy the ETSI2 system, and market players that value one of its SDR images or SDR consumers can be They also deployed their HDR system as an ETSI1 system (this may also involve various discussions depending on where in the HDR video processing chain, for example, content creators are related to cable television communication system operators, and may involve transcoding, etc.) .

然而,市場有另一需求或有提議給不喜歡部署精確標準化之ETSI1或ETSI2之消費者的市場。若選擇將HDR影像傳達為表示所有各種PB_D顯示器所需之影像的整體頻譜的單獨影像,傳達(例如,5000尼特PB_C)主HDR影像自身係非常合理的,不僅因為該等影像已經可用,亦因為影像HDR場景的最佳品質表示(事實上其等係內容創作者的「財富」,由他特別創作且認可,且常係創意視覺電影之起點的影像,若已非他主動創作的唯一事物,若重新分級的其餘部分藉由所選技術自動地運作)。然而,尤其是未來幾年,有可從另一額外方法獲益的市場情況。遺憾的係並非市場中之非基本型傳統SDR顯示器(亦即,不能進行涉及在HDR解碼、顯示調適等中的所有數學)的所有電視(或一般視訊解碼或處置裝置)將始終係立即有ETSI2(或ETSI1)能力的電視。市場上有許多將非常不同的方法(像是,例如,根據最近標準化的混合對數伽瑪方法)施加至HDR編碼及顯示的電視。或者可能某些tv可僅解碼經PQ明亮度編碼的HDR影像,僅此而已。可能一些電視可僅使用該方法,所以很可能它們所能作的最好事情係完全不處理傳入的ETSI2 HDR視訊。類似地,市場中可能有不遵循任何標準原則的一些電視,至少不關於顯示調適,亦即,在接收時將例如2000尼特影像重新分級成用於900尼特PB_D顯示器的例如900尼特影像。此一電視將需要解碼能力以理解所接收的影像含有哪些像素顏色且尤其係輝度,但其等可將其等自有(色調映射)的啟發使用在如何產生900尼特的影像上。至少從想要每個消費者均可看見與他原本創作其時一樣好的電影的內容創作者的觀點,缺點係此一變異性將建立高度不確定性,任何特定品牌的電視將在該不確定性上產生任何經接收HDR影像。例如,近來執行的HDR影像的簡單顯示重新解譯係HDR影像輝度的絕對演現。此意謂著將至多900尼特的所有HDR影像輝度以如編碼在影像中的輝度精確地顯示,但將所有更高的輝度修剪至顯示器的最白的可能白色(亦即,PB_D)。使用實例影像,像是圖7的太空站,可意謂著地球的一些部分將修剪成醜陋的白色斑點(在其右方的太陽過度照射地球處)。而此TV在某種程度上仍將係美麗的HDR TV,因為其將顯示通過太空站的頂部觀看口看見的與黑暗內部成良好地對比的大部分係非常明亮的藍色的地球,該影像的至少一部分將看起來係醜陋的(且一些其他場景至少在一些TV上可顯示更為嚴重的錯誤,像是例如,修剪掉圖1之洞穴或市集等外側的每個影像細節)。執行另一簡化色調映射重新解譯(像是例如,輝度的線性壓縮,像是白色在白色上策略)可產生若干其他問題。因此,雖然此一系統可為終端觀看者運作並產生某種種類的HDR影像(例如,在吾等的ETSI2系統中,此一TV僅可使用401的PQ函數,但忽略所有其他輝度映射函數後設資料及隨之發生的循序輝度映射402、403等,其等在ESTI2中執行顯示調適的功能),但結果將不會係最佳視覺品質也不會係可預測的(其可能係更糟的)。However, the market has another demand or a market that proposes to consumers who do not like to deploy accurate standardized ETSI1 or ETSI2. If you choose to communicate the HDR image as a single image representing the overall spectrum of the images required by all various PB_D displays, it is very reasonable to communicate (for example, 5000 nits PB_C) the main HDR image itself, not only because these images are already available, but also Because the best quality of the image HDR scene represents (in fact, it is the "wealth" of content creators, specially created and recognized by him, and often the starting point of creative visual movies, if not the only thing he actively created , If the rest of the reclassification works automatically by the selected technology). However, especially in the next few years, there are market conditions that can benefit from another additional method. Unfortunately, all TVs (or general video decoding or processing devices) that are not non-basic traditional SDR displays in the market (that is, cannot perform all the mathematics involved in HDR decoding, display adjustment, etc.) will always have ETSI2 immediately. (Or ETSI1) capable TV. There are many TVs on the market that apply very different methods (like, for example, according to the recently standardized hybrid logarithmic gamma method) to HDR encoding and display. Or maybe some tv can only decode HDR images encoded with PQ brightness, nothing more. Maybe some TVs can only use this method, so it is likely that the best thing they can do is not to process the incoming ETSI2 HDR video at all. Similarly, there may be some TVs in the market that do not follow any standard principles, at least not about display adaptation, that is, when receiving, for example, 2000 nits images are reclassified into, for example, 900 nits images for 900 nit PB_D displays. . This TV will need decoding capabilities to understand what pixel colors and especially the brightness the received image contains, but it can use its own (tone mapping) heuristics on how to generate 900 nits of images. At least from the point of view of content creators who want every consumer to see movies that are as good as they were originally created. The disadvantage is that this variability will create a high degree of uncertainty. Deterministically produce any received HDR images. For example, the simple display re-interpretation of HDR images performed recently is the absolute rendering of HDR image brightness. This means that all HDR image brightness of up to 900 nits is accurately displayed as the brightness coded in the image, but all higher brightness is clipped to the whitest possible white of the display (ie, PB_D). Using an example image, such as the space station in Figure 7, means that some parts of the earth will be trimmed into ugly white spots (where the sun on the right is over-illuminating the earth). And this TV will still be a beautiful HDR TV to a certain extent, because it will display most of the very bright blue earth that is seen through the top viewing port of the space station in good contrast with the dark interior. This image At least part of will look ugly (and some other scenes can show more serious errors on at least some TVs, such as, for example, trimming out every image detail on the outside of the cave or market in Figure 1). Performing another simplified tone mapping reinterpretation (like, for example, linear compression of luminance, like a white on white strategy) can cause several other problems. Therefore, although this system can operate for terminal viewers and generate some kind of HDR images (for example, in our ETSI2 system, this TV can only use the PQ function of 401, but after ignoring all other luminance mapping functions Suppose the data and the subsequent sequential brightness mapping 402, 403, etc., perform the display adjustment function in ESTI2), but the result will not be the best visual quality or predictable (it may be worse) of).

此導致除了主HDR影像外,基於第二類型之HDR影像的新編碼拓撲,所謂的中間動態範圍 (intermediate dynamic range, IDR) 影像,其首先在WO2016020189中引入。然後優點係可以位於本領域中之許多電視的範圍中的PB_C(例如,1000尼特、或750尼特;雖然亦可選擇使用相同技術的500尼特,或可能甚至400尼特PB_IDR)定義此類次級HDR影像(經IDR編碼影像,其將傳達至接收器而非典型ETSI2編解碼器原則中的主HDR影像)。但就所需的藝術地或實際地技術限制(例如,可用分級監視器)而言,無論如何仍可期望產生PB_MHDR主HDR。該想法係無論任何電視所使用的顯示重新解譯(包括色調映射)技術,其應係平滑的,從這個意義而言若PB_D接近PB_IDR(所接收之IDR影像的峰亮度),處理不應與所接收影像偏離太多。例如,即使係僅修剪所有高於PB_D的像素輝度之如此基本型的電視,當時亦不應修剪過多(例如,並非整個地球或洞穴影像的晴朗外側)。且內容創作者取回一些控制,因為即使他一方面期望產生美麗的超明亮影像區域,例如,5000尼特PB_C_H之主影像中的在4000尼特的平均值左右,他可控制他重新分級IDR影像中之該等區域的方式,使得它們下降至,例如,充分地低於1000尼特,使得即使800尼特的基本型電視應僅修剪最亮且視覺上破壞性最小的像素,例如,僅修剪圖7之太空站實例中的太陽的光線。因此需要某種新技術以迎合該新方法。This leads to a new coding topology based on the second type of HDR image, the so-called intermediate dynamic range (IDR) image, in addition to the main HDR image, which was first introduced in WO2016020189. Then the advantage is that the PB_C (for example, 1000 nits, or 750 nits; PB_IDR of 500 nits using the same technology, or perhaps even 400 nits PB_IDR) can be defined in the range of many TVs in the field. Class secondary HDR image (IDR-encoded image, which will be transmitted to the receiver instead of the main HDR image in the typical ETSI2 codec principle). But in terms of required artistic or practical technical limitations (for example, available graded monitors), it can still be expected to generate PB_MHDR master HDR anyway. The idea is that regardless of the display reinterpretation (including tone mapping) technology used by any TV, it should be smooth. In this sense, if PB_D is close to PB_IDR (the peak brightness of the received IDR image), the processing should not be The received image deviates too much. For example, even if it is such a basic TV that only trims all pixels higher than PB_D, it should not be trimmed too much at that time (for example, not the entire earth or the sunny outside of the cave image). And the content creator takes back some control, because even if he expects to produce beautiful super bright image areas on the one hand, for example, the main image of 5000 nits PB_C_H has an average of 4000 nits, he can control him to reclassify IDR The way these areas in the image drop to, for example, sufficiently below 1000 nits, so that even a basic TV of 800 nits should only trim the brightest and least visually destructive pixels, for example, only Trim the rays of the sun in the space station example in Figure 7. Therefore, some new technology is needed to cater to the new method.

7 顯示迎合通道調適方法之WO2016020189的編解碼器原則(該通道傳達影像係IDR影像,藉此可說特定通訊通道經組態以用於發送,例如,1000尼特PB_CH影像)。再次選擇對一些主要概念的說明有趣的實例。應理解的一件事係若沿著該範圍的所有不同的PB_C影像精確地或至少非常接近於若內容創作者分開地且未受任何技術系統限制地分級其等之各者所產生的事物,雖然其可係有用的,但此需求並不一定始終如此,尤其是對於IDR影像。可能涉及某種放寬(另一方面,亦可能有對HDR場景類別的某種特定影像分級X之於Y何時或為何係最佳的某種爭論,且似乎有足夠的偏差用於該偏差;例如,可想像街燈之像素的輝度比面部之像素更不重要,尤其係若其應被視為係半隱藏在黑暗中,亦已因為在現實生活中,無論如何任何街燈均很有可能更亮或更不亮些)。 Figure 7 shows the codec principle of WO2016020189 that caters to the channel adaptation method (the channel conveying the image is an IDR image, so that it can be said that a specific communication channel is configured for sending, for example, a 1000 nit PB_CH image). Again, select interesting examples that illustrate some of the main concepts. One thing that should be understood is that if all the different PB_C images along the range are exactly or at least very close to what would be produced if the content creators graded them separately and not restricted by any technical system, Although it can be useful, this need is not always the case, especially for IDR images. It may involve some kind of relaxation (on the other hand, there may also be some kind of debate about when or why a certain image classification of the HDR scene category X is the best, and there seems to be enough deviation for this deviation; for example It is conceivable that the brightness of the pixel of a street lamp is less important than the pixel of a face, especially if it should be regarded as half hidden in the dark, because in real life, any street lamp is likely to be brighter or brighter anyway. Not brighter).

WO2016020189提供從作為某個中間點的IDR影像(亦即,向上朝向待從當由接收器接收時的IDR影像重建的主HDR,及向下以進行針對PB_D < PB_IDR的MDR顯示器的顯示調適)定義函數(不同函數)的方式。使用此一技術,主HDR範圍可良好地選擇成始終固定為10000尼特PB_C範圍,其係連結至PQ函數的範圍。WO2016020189 provides definitions from an IDR image as an intermediate point (that is, upward toward the main HDR to be reconstructed from the IDR image when received by the receiver, and downward for display adjustment for the MDR display of PB_D <PB_IDR) Function (different function) method. Using this technique, the main HDR range can be well selected to always be fixed at 10000 nits PB_C range, which is linked to the range of the PQ function.

看到可能再次有涉及如何轉變各種可能輝度的不同考量,且此等可能有利地在所選擇IDR影像的左方上相當不同於右方上。因為事實上,在概念上可能正在作不同的事。在左方,從主HDR影像產生次級(「較小」)HDR影像。所以一個考量可係此IDR影像必須與主HDR影像「一樣好」(儘管較低的PB_IDR)(及然後如何優雅地解決該表面矛盾?)。在右方,正朝向甚至更小的PB_MDR壓縮(其對一些高複雜度係可觀的,意謂著除了其他事物之外之遍布輝度範圍的許多關鍵物體,及高PB_C_H影像),亦即,似乎具有不同的經顯示調適影像產生任務。所以,可想像此可導致(相當)不同的技術處置,特別係在吾等的影像+輝度映射視覺不同地經成形/設計的輝度映射函數中。It is seen that there may again be different considerations concerning how to transform the various possible brightnesses, and these may advantageously be quite different on the left side of the selected IDR image than on the right side. Because in fact, different things may be being done conceptually. On the left, secondary ("smaller") HDR images are generated from the main HDR image. So one consideration can be that this IDR image must be "as good" as the main HDR image (despite the lower PB_IDR) (and then how to elegantly resolve the apparent contradiction?). On the right, it is moving towards even smaller PB_MDR compression (which is considerable for some high-complexity, meaning many key objects in the luminance range among other things, and high PB_C_H images), that is, it seems There are different display-adapted image generation tasks. Therefore, it is conceivable that this can lead to (quite) different technical treatments, especially in our image + brightness mapping visually shaped/designed brightness mapping function.

在此實例中,該暗太空站輝度可(至少原則上)在每個合理的電視上顯示,因為其等比60尼特更暗。但該等較亮像素首先必須相當和緩地壓縮至IDR影像,然後在第一部分中完成較少壓縮,更多者必須朝向SDR影像完成。且可能再度有不同準則用於例示性的二個亮物體,亮藍色地球之於遠為明亮但幾乎無色的太陽與其光線。當分別在主HDR影像輝度範圍(BE)及用於明亮地球物體的IDR輝度範圍(Be2)上的輝度子範圍指示理想上此內容創作者可期望用於地球的最大亮度從未高於,例如,750尼特,無論任何影像或顯示器的PB_C能力(因為否則地球可能開始太過發光而看起來不真實)。然而,然後太陽輝度必須做的事變成隨數個因素而變動,不僅係藝術需求,亦係留下用於編碼在所選(800尼特PB_IDR)IDR影像中高於750尼特之太陽物體的輝度量(當然在一些情況中,內容傳達者可選擇另一較高的PB_IDR值,但此處已假設任何連接至通訊通道之接收端的設備始終預期用於任何視訊內容(無論係好萊塢電影或新聞節目)的800尼特PB_IDR)。使用二個箭號顯示針對作為子集之所有此等最亮像素用於從主HDR影像輝度建立IDR影像輝度之最終選擇的F_H2h輝度映射函數:將解決方案選擇成定義一起用於二個物體的總壓縮動作,其亦減少一些最不明亮的地球物體輝度。此係未100%完全滿足(因為可能對應於一些其他技術困難)內容創作者之理想重新分級需求之情況的實例,而IDR影像對多數人而言足夠接近。地球像素在IDR影像中是否僅有些更暗真的沒那麼重要,且甚至可能將有些期望其用於較低品質的HDR影像。但重點係此IDR影像仍可滿足原始ETSI2原則的所有要求(同時此額外編解碼器步驟亦滿足接近800尼特PB_D的基本型顯示器在顯示已接收IDR影像之前不使其劣化太多的需求):藉由採用右側輝度變換函數,所有MDR影像上至SDR主影像仍可依內容創作者的期望由接收器產生,且(甚至具有經暗化的明亮地球物體像素)主HDR 2000尼特PB_C或10,000尼特PB_C影像仍可藉由逆向F_H2h函數而重建(亦可根據其技術及/或藝術需求藉由其自身對各影像、編碼電影之特定鏡頭的一組連續影像最佳化)。In this example, the dark space station brightness can (at least in principle) be displayed on every reasonable TV because it is darker than 60 nits. But the brighter pixels must first be compressed to the IDR image fairly gently, and then less compression is done in the first part, and more must be done towards the SDR image. And again there may be different criteria for the two illustrative bright objects, the bright blue earth to the far bright but almost colorless sun and its rays. When the luminance sub-ranges respectively in the main HDR image luminance range (BE) and the IDR luminance range (Be2) for bright earth objects indicate that the maximum brightness that content creators can expect for the earth has never been higher, for example , 750 nits, regardless of the PB_C capability of any image or display (because otherwise the earth may start to glow too much to look unreal). However, what the sun's brightness must do then varies with several factors, not only for artistic needs, but also for encoding the brightness of solar objects higher than 750 nits in the selected (800 nits PB_IDR) IDR image. (Of course, in some cases, the content transmitter can choose another higher PB_IDR value, but it has been assumed here that any device connected to the receiving end of the communication channel is always expected to be used for any video content (whether it is a Hollywood movie or news program) 800 nits PB_IDR). Use two arrows to display the final selected F_H2h brightness mapping function for all these brightest pixels as a subset of the IDR image brightness from the main HDR image brightness: select the solution to define the one used for the two objects together The total compression action also reduces the brightness of some of the least bright earth objects. This is an example of a situation where the ideal reclassification requirements of content creators are not 100% fully satisfied (because it may correspond to some other technical difficulties), and IDR images are close enough for most people. It really doesn't matter whether the earth pixels are only darker in IDR images, and some may even be expected to be used for lower quality HDR images. But the key point is that this IDR image can still meet all the requirements of the original ETSI2 principle (at the same time, this additional codec step also meets the requirement of not degrading the received IDR image too much before displaying the received IDR image on a basic display close to 800 nits PB_D) : By adopting the right brightness transformation function, all MDR images up to the SDR main image can still be generated by the receiver according to the content creator’s expectations, and (even with darkened bright earth object pixels) the main HDR 2000 nits PB_C or The 10,000 nits PB_C image can still be reconstructed by the inverse F_H2h function (it can also be optimized by itself for each image and a set of continuous images of a specific lens of the encoded movie according to its technical and/or artistic needs).

值得討論關於其等的無關度(因為不應混淆不同的技術態樣)而非其等重要性(但由於潛在混淆,其等值得討論)的二個文件:US20160307602及EP2689392(亦稱為WO2012127401),其等二者考慮所謂的「顯示最佳化」而非視訊影像編碼框架設計。此主要差異係使用圖23對具有通常知識者說明,其顯示一般實例總視訊處置鏈。在內容創作側2301,假設有藉由攝影機2302方式的HDR場景的現場(或先前記錄的)擷取。人類分級者(或著色者)判定,例如,除了其他事物之外之擷取的主分級(亦即,各種影像物體像素輝度在主HDR影像之輝度動態範圍上的相對位置-其在例如PB_C_H50=5000尼特的最大表示值處結束;並在某個小的黑色值開始,例如,MB_C_H50=0.001尼特,可針對目前討論將其假設等同於零:例如,針對太空站,他藉由影像處理而改變原始攝影機擷取,使得太陽像素變成4500尼特,地球的亮藍色變成,例如,200尼特等)。其次,在吾等之方法中的分級者一般想要以至少一個亮度映射函數(實務上,此一亮度映射函數可經不同地定形以用於HDR視訊的連續影像,且甚至在吾等的ETSI標準中解釋甚至針對一個單一瞬間視訊影像定義數個函數在技術上可係如何相當便利的,但其等之進一步複雜度對說明本領域的本創新貢獻不係必要的)指示哪個一般將係指定如何必須將5000尼特PB_C_H50之經正規化主HDR輝度重新分級至100尼特LDR經正規化輝度的函數:FL_50t1。It is worth discussing two documents about their irrelevance (because different technical aspects should not be confused) rather than their importance (but due to potential confusion, they are worth discussing): US20160307602 and EP2689392 (also known as WO2012127401) , Both of them consider the so-called "display optimization" rather than video image coding framework design. This main difference is explained to those with general knowledge using Figure 23, which shows a general example of the total video processing chain. On the content creation side 2301, it is assumed that there is a live (or previously recorded) capture of an HDR scene by means of a camera 2302. The human grader (or shader) judges, for example, the main grading captured among other things (that is, the relative position of the luminance of various image objects in the luminance dynamic range of the main HDR image-which is in, for example, PB_C_H50= It ends at the maximum value of 5000 nits; and starts at a small black value, for example, MB_C_H50=0.001 nits, which can be assumed to be equal to zero for the current discussion: for example, for the space station, he uses image processing Changing the original camera capture makes the sun pixel become 4500 nits and the bright blue of the earth becomes, for example, 200 nits, etc.). Secondly, the graders in our method generally want to use at least one brightness mapping function (in practice, this brightness mapping function can be shaped differently for continuous images of HDR video, and even in our ETSI The standard explains how it is technically convenient to even define several functions for a single instant video image, but their further complexity is not necessary to explain the contribution of this innovation in the field) indicating which is generally designated How to reclassify the normalized main HDR luminance of 5000 nits PB_C_H50 to 100 nits LDR normalized luminance: FL_50t1.

然後第三重要態樣係用於主HDR影像之編碼的編碼技術,以(經由至少一個編碼技術)傳達出至一或多個接收器。在HDR視訊研究開始時,且對應地在由申請人標準化的較簡單版本中,此將係相對簡單的編碼,諸如,例如LDR 100尼特影像,然後其不錯地回溯相容,使得其可以良好的視覺外觀直接顯示在沒有對HDR的理解能力或處理能力的舊型LDR電視上。WO2016020189編碼方法及本教示係更先進的第二代方法的實例,其更複雜但可在一些特定HDR視訊通訊或處理技術生態系統中迎合額外需求。藉由例如人類分級者2304執行的分級(假如此非自動化的,諸如,通常在現實生活的廣播節目中)在分級設備2303(其一般將含有數個工具以改變像素輝度,針對本說明仍可假設成由提供使用者介面以指定FL_50t1形狀,及傳達出此一函數形狀(例如,作為包含定義函數之形狀的一些參數的後設資料)的元件組成)上完成。Then the third important aspect is the encoding technique used for encoding the main HDR image to be communicated (via at least one encoding technique) to one or more receivers. At the beginning of the HDR video research, and correspondingly in the simpler version standardized by the applicant, this will be a relatively simple encoding, such as, for example, an LDR 100 nit image, and then it is well retrospectively compatible so that it can work well. The visual appearance is directly displayed on the old LDR TV without HDR understanding or processing capabilities. WO2016020189 encoding method and this teaching are examples of more advanced second-generation methods, which are more complex but can cater to additional needs in some specific HDR video communication or processing technology ecosystems. The classification performed by, for example, the human grader 2304 (if this is not automated, such as usually in a real-life broadcast program) is performed in the grading device 2303 (which generally will contain several tools to change the pixel brightness. This description can still It is assumed to be completed by providing a user interface to specify the shape of FL_50t1 and conveying the shape of this function (for example, as a component that includes some parameters defining the shape of the function).

雖然視訊編碼器2305(非限制地假設其之輸入主HDR影像係用於所有像素的一組輝度,其將執行產生主HDR影像之實際編碼的所有技術,亦即,例如及一般YCbCr像素顏色三元組的8位元、10位元、或12位元像素化矩陣連同鑑於所選擇之無論哪個編碼技術描述所有進一步資訊(像是輝度映射函數)的後設資料)在原則上可包括在分級設備2303中,一般已將其顯示為可進一步連接的設備。此表示足以說明本發明之針對讀者的簡化,其中其總結在外側廣播軌中發生的,例如,擷取(及可能的分級),及或許在一些中間通訊中繼站中發生之編碼(例如,在將本地廣告插入在信號中等,其中亦可涉及各種影像內容的各別調和,但其係不需要說明的細節)的各種實際變化。重點係瞭解在創作側發生什麼(見例如貢獻與分布之間的不同),可將其定義為當,例如,藉由衛星天線2306及通訊衛星2340方式(或任何等效視訊通訊通道,例如,經由網際網路等)將最終經編碼視訊信號傳達至一些消費者時正式結束。Although the video encoder 2305 (without limitation assumes that its input main HDR image is a set of luminance for all pixels, it will perform all the actual encoding techniques that produce the main HDR image, that is, for example, and general YCbCr pixel color three The 8-bit, 10-bit, or 12-bit pixelized matrix of tuples together with the meta-data describing all further information (such as the luminance mapping function) in view of which coding technology is selected can be included in the classification in principle In the device 2303, it is generally displayed as a device that can be further connected. This representation suffices to illustrate the simplification of the present invention for the reader, where it summarizes what happens in the outer broadcast track, for example, the capture (and possibly the classification), and perhaps the encoding that occurs in some intermediate communication relay stations (for example, in the Local advertisements are inserted in the signal, which can also involve the individual reconciliation of various video content, but it is a variety of actual changes that need not be explained. The point is to understand what happens on the creative side (see, for example, the difference between contribution and distribution), which can be defined as when, for example, by means of satellite antenna 2306 and communication satellite 2340 (or any equivalent video communication channel, for example, It officially ends when the final encoded video signal is delivered to some consumers via the Internet, etc.

在接收側,一般面臨在最終消費者家的消費性設備,諸如,在輸入側上連接至本地衛星接收碟(local satellite dish) 2351,及在輸出側上連接至HDR顯示器2353的衛星tv機上盒,或任何等效解碼及最終處理設備2352,該顯示器可具有各種顯示器能力,例如,1000尼特、或700尼特、或2500尼特的PB_D。而可能係針對機上盒藉由解碼器2381僅對需要顯示的輝度值再度執行解碼就係足夠的,該解碼器常時執行編碼器的反操作,此一般僅在有限量的情況將係有用的。通常將有藉由顯示最佳化器2382的顯示最佳化程序,該顯示最佳化器再度改變絕對各別地經正規化輝度分布(所接收之,例如,LDR影像或經解碼主HDR,例如,5000尼特影像的任一者),因為主影像可已針對,例如,5000尼特PB_C_H50編碼,亦即,可能含有2000尼特輝度像素,特定消費者的HDR顯示器仍可僅,例如,顯示至多700尼特(其之可顯示最白的白色)。On the receiving side, generally facing consumer equipment at the end consumer’s home, such as a satellite tv connected to a local satellite dish 2351 on the input side and a satellite TV connected to an HDR display 2353 on the output side Box, or any equivalent decoding and final processing device 2352, the display can have various display capabilities, for example, a PB_D of 1000 nits, or 700 nits, or 2500 nits. It may be sufficient for the set-top box to use the decoder 2381 to decode the luminance value that needs to be displayed. The decoder often performs the reverse operation of the encoder. This is generally only useful in a limited amount of cases. . Usually there will be a display optimization process by the display optimizer 2382, which again changes the absolutely individually normalized luminance distribution (received, for example, LDR image or decoded master HDR, For example, any of the 5000 nits image), because the main image may have been encoded for, for example, 5000 nits PB_C_H50, that is, may contain 2000 nits of brightness pixels, the HDR display of a specific consumer can still only be, for example, Display up to 700 nits (which can display the whitest white).

所以,在一方面,在其中一側上的器具(及其等的技術設計原則等)之間有主要的技術差異,例如,創作/編碼/傳輸側將僅具有視訊編碼器2370以將主HDR視訊(MsterHDR)編碼為某個經通道編碼的中間動態範圍影像IDR,而接收側亦可顯示最佳化經重建5000尼特HDR影像(RecHDR)在,例如,700尼特PB_C影像ImDA最佳化的顯示器中,最佳地適用於經連接的700尼特PB_D顯示器。二者之間的技術差異可見於一者可進行作為(可選的)後處理的顯示最佳化,而編碼/解碼僅係影像重建技術,一般不需要與顯示最佳化有關的任何教示。二側的設備(及操作程序等)一般亦由相當不同的技術人員處置。內容創作設備可由專業視訊裝備生產商設計,且由廣播工程師等操作。機上盒及電視一般係由亞裔的消費性電子器具製造商製造。Therefore, on the one hand, there are major technical differences between the appliances on one side (and their technical design principles, etc.). For example, the authoring/encoding/transmission side will only have a video encoder 2370 to convert the main HDR The video (MsterHDR) is encoded as a channel-encoded intermediate dynamic range image IDR, and the receiving side can also display the optimized 5000 nit HDR image (RecHDR) in, for example, 700 nit PB_C image ImDA optimized Among the displays, it is best suited for the connected 700-nit PB_D display. The technical difference between the two can be seen in that one can perform display optimization as an (optional) post-processing, while encoding/decoding is only an image reconstruction technology, and generally does not require any teaching related to display optimization. The equipment (and operating procedures, etc.) on the two sides are generally handled by quite different technicians. Content creation equipment can be designed by professional video equipment manufacturers and operated by broadcast engineers. Set-top boxes and TVs are generally manufactured by Asian consumer electronic appliance manufacturers.

US20160307602係申請人的第一個顯示最佳化專利。總結而言,此中的想法係內容創作者可給出用於可存在於影像中之各種(至少二個)區域(區域係一種概念,該概念係影像中的一組像素,及當具有各種動態範圍的各種可用顯示器時該等像素所需要的重新分級行為二者)的引導重新分級行為規則及演算法。雖然此首先實現內容創作者的需求與最終消費地點的實際顯示之間的連接,但實際上顯示調適的受控行為必須在此終端地點發生。且理想上,機上盒或電視(假如至少顯示調適在該電視中發生)的製造者將大部分遵循內容創作者針對視訊影像中的各種區域物體指定為良好行為者(例如,某人從暗區域淡入而在任何顯示器能力上既不太過可見亦不太過不可見,甚至100尼特PB_D LDR顯示器),因為其係此內容需要的,而非他自身盲目地作任何事。但此清楚地係在消費側發生的最終行為,且與視訊通訊技術供應商想要如何發展、任何實作者分別想要如何部署的任何特定視訊編解碼器原則完全正交。亦不應與任何特設色調映射技術混淆,已針對此一映射一般將係不可逆的事實,應具有經由較低動態範圍IDR影像編碼的性質。US20160307602 is the applicant's first display optimization patent. In summary, the idea here is that the content creator can give various (at least two) areas that can exist in the image (area is a concept, the concept is a group of pixels in the image, and when there are various The dynamic range of the various available displays when the pixels require re-grading behavior (two) guide the re-grading behavior rules and algorithms. Although this first realizes the connection between the needs of the content creator and the actual display of the final consumption location, in fact, the controlled behavior of display adaptation must occur at this terminal location. And ideally, the maker of a set-top box or a TV (provided that at least the display adaptation takes place in the TV) will mostly follow the content creator’s designation of various regional objects in the video image as good actors (for example, someone from dark The area fades in and is neither too visible nor too invisible in any display capability, even a 100-nit PB_D LDR display), because it is needed for this content, rather than blindly doing anything. But this is clearly the final behavior that takes place on the consumer side, and is completely orthogonal to the principles of how video communication technology providers want to develop, and how any real author wants to deploy any specific video codec. It should not be confused with any ad-hoc tone mapping technology. It has been in view of the fact that this mapping will generally be irreversible and should have the property of being encoded by IDR images with lower dynamic range.

WO2012127401亦係用於指定顯示最佳化行為的早期HDR年代技術,其可藉由DATGRAD結構的各種實施例方式完成,該DATGRAD結構指定各種影像內容應如何針對不同的輝度動態範圍能力重新分級。此DATGRAD結構將用以針對MDR顯示器PB_D在主HDR可編碼峰亮度PB_C(亦即,本表示法中的PB_C_H50)與最低必要重新分級規格(p. 16)的100尼特LDR PB_C之間產生任何需要的中等動態範圍影像(MDR)。MDR影像的推導不僅藉由使用如編碼在DATGRAD資料結構中之影像的重新分級需求,亦使用特定顯示器側觀看態樣(諸如,例如觀看環境亮度或最終觀看者偏好設定(見p. 5))最佳地完成。WO2012127401 is also an early HDR chronological technology for specifying display optimization behaviors, which can be accomplished by various embodiments of the DATGRAD structure, which specifies how various image content should be reclassified for different luminance dynamic range capabilities. This DATGRAD structure will be used to generate anything between the main HDR-encoded peak brightness PB_C (that is, PB_C_H50 in this notation) for the MDR display PB_D and the 100 nit LDR PB_C of the minimum necessary reclassification specification (p. 16) The required medium dynamic range image (MDR). The derivation of MDR images is not only based on the use of reclassification requirements such as the images encoded in the DATGRAD data structure, but also the use of specific display-side viewing aspects (such as, for example, viewing environment brightness or final viewer preference settings (see p. 5)) Best done.

應該清楚的係自始當不具有進一步相當具體的洞察力時,此類教示未帶給通常知識者關於編解碼器重新設計的任何事物。It should be clear that from the beginning, when there is no further and quite specific insight, such teachings have not brought anything to the general knowledge about codec redesign.

與已可在先前技術中發現者相比,除了在產生特定函數上的差異外,更重要的係創新的編解碼器結構/框架本身,亦應提到第二PB_C值(除了實際傳達之IDR影像的較低一者外,主內容的最高一者)的實際通訊亦與可使用在WO2016020189中的(可選的)種類特徵化器不同。除了二者在字面上並不相同的事實外,列舉器(enumerator)可扮演不同角色,且特別係若考慮該框架相較於本教示的細節。此一‘189之特徵化器在有例如二個向上重新分級輝度映射函數的情形中可係有用的。然後其可能對選擇哪一個以獲得任何事物(像是創作側之主HDR影像的緊密重建)有用。但此類資訊既不係嚴格需要的,亦不必要施加在先前技術中。可使用來自主HDR影像的升級函數以取代5000尼特的重建影像而獲得4000或6000尼特的重建影像。有中間影像的二個側,降級函數通常係具有臨界影像內容(特別係必須足夠明亮且如實的顯示在所有PB_D顯示器上的內容)之一者,但升級函數在針對最非常明亮的物體(像是車頭燈、日光反射等)指定重新分級行為的此一方式上將具體地不同。其等係一般的HDR影響目的/效應,然而亦不可以任何方式正確地複製,因為其在各種能力的顯示器改變最多之輝度範圍的上區域中。因此,從,例如,600尼特IDR影像產生4000尼特PB_C重建影像可具有相較於其等的理想輝度值(即使此一值可在4000尼特輝度範圍上表示)略微太暗的一些車頭燈,但若僅施加,例如,多重線性經正規化重新分級函數在[0-1]/[0-1]軸系統上,其仍將係相當好看的HDR影像,其中水平軸表示IDR影像之經PB_C正規化之輝度,且垂直軸對應於被選以計算經重建HDR影像PB_C的任何事物,該HDR影像PB_C並未太不合理地遠離主HDR PB_C(可能並不知道而僅係假設)。在吾等的技術中,主動在後設資料中傳達PB_C_H50輝度值自身,因為其亦在解碼器的演算法中使用。Compared with those found in the prior art, in addition to the difference in generating specific functions, the more important is the innovative codec structure/framework itself. The second PB_C value should also be mentioned (in addition to the actual IDR In addition to the lower one of the image, the actual communication of the highest one of the main content is also different from the (optional) category characterizer that can be used in WO2016020189. Except for the fact that the two are not the same literally, enumerators can play different roles, especially if you consider the details of the framework compared to the teachings. This characterizer of '189 can be useful in situations where there are, for example, two upwardly reclassified luminance mapping functions. Then it might be useful to choose which one to get anything (like a tight reconstruction of the main HDR image on the creative side). However, such information is neither strictly required nor necessary to be applied to prior art. The upgrade function from the main HDR image can be used to replace the 5000 nit reconstruction image to obtain a 4000 or 6000 nit reconstruction image. There are two sides of the intermediate image, the downgrade function usually has one of the critical image content (especially the content that must be bright enough and faithfully displayed on all PB_D monitors), but the upgrade function is for the brightest objects (like It is the headlights, daylight reflections, etc.) that specify the reclassification behavior in this way will be specifically different. It is a general HDR affecting purpose/effect, but it cannot be replicated correctly in any way, because it is in the upper region of the brightness range where displays of various capabilities change the most. Therefore, for example, a 4000-nit PB_C reconstructed image generated from a 600-nit IDR image may have an ideal luminance value (even if this value can be expressed in the 4000-nit luminance range) for some car heads that are slightly too dark. Light, but if only applied, for example, the multi-linear normalized re-grading function is on the [0-1]/[0-1] axis system, it will still be a pretty good-looking HDR image, where the horizontal axis represents the IDR image The luminance normalized by PB_C, and the vertical axis corresponds to anything selected to calculate the reconstructed HDR image PB_C, which is not too unreasonably far away from the main HDR PB_C (it may not be known but just an assumption). In our technology, the PB_C_H50 brightness value itself is actively conveyed in the meta-data because it is also used in the algorithm of the decoder.

本專利申請案的發明人想要以許多方式限制通用IDR方法,特別係環繞已於當今部署之ETSI2編碼原則及系統(IC、電視、機上盒)。The inventor of this patent application wants to restrict the general IDR method in many ways, especially around the ETSI2 coding principles and systems (IC, TV, set-top box) deployed today.

許多技術考量係由發明人產生。在一方面,其等想要其等的系統與已部署的ETSI2解碼器相容。因此,若傳達例如1500尼特的IDR影像(該ETSI2解碼器不知道任何有關IDR架構原理的事物,因此假設此僅係該HDR場景的一原始HDR主影像),則應共同傳達其係圖7之進行該正確顯示調適之F_I2s函數的一F_L_IDR輝度映射函數(及根據ETSI2的所有其他顏色映射資訊)。因此,無論是否曾使用一IDR額外技術,ETSI2(亦稱為SLHDR2)解碼器應能夠正常地建立所有MDR影像上至SDR影像,且其等應(理想上)看起來如同該內容創作者所期望的。理想上,根據本原理的任何新的解碼器(其將稱為一SLHDR2PLUS 解碼器 )亦應針對IDR與SDR之間的所有影像(亦即,該IDR及SDR影像的至少一者較佳地不應與其將導致為該顏色分級者或通常內容創作者將如何想要或至少接受以看到其的該MDR影像偏離太多)精確地或至少近似地產生相同模樣。另一方面,非常重要的準則係主HDR可幾乎完美地重建(但可能對一些不知不覺中產生的次要修整錯誤,例如,當在用於傳輸之MPEG壓縮相位中DCT化IDR影像時,其將在接收側導致主HDR的非常次要的無異議的重建錯誤)。當然,可能有在主HDR之重建品質上具有一些放寬的一些系統(一些內容提供者可將IDR影像視為更重要,至少在涉及一些暫時態樣的情況中,像是廣播中或甚至單一投注至有限觀眾,而非,例如用於儲存,例如藍光光碟上),但通常涉及視訊處理鏈的至少一個主要當事人將發現主HDR影像的完美可重建性係重要的(其與從IDR開始建立某個更高動態範圍模樣的盲目嘗試區分開)。Many technical considerations are generated by the inventor. On the one hand, the systems they want to wait for are compatible with the deployed ETSI2 decoders. Therefore, if an IDR image of, for example, 1500 nits is communicated (the ETSI2 decoder does not know anything about the principle of the IDR architecture, so it is assumed that this is only an original HDR main image of the HDR scene), it should be communicated together as shown in Figure 7. A F_L_IDR luminance mapping function (and all other color mapping information according to ETSI2) of the F_I2s function that performs the correct display adjustment. Therefore, regardless of whether an IDR additional technology has been used, the ETSI2 (also known as SLHDR2) decoder should be able to create all MDR images up to SDR images normally, and they should (ideally) look like the content creator expects of. Ideally, any new decoder (which will be referred to as an SLHDR2PLUS decoder ) according to this principle should also target all images between IDR and SDR (that is, at least one of the IDR and SDR images is preferably not It should accurately or at least approximately produce the same appearance instead of how much deviation will result from the MDR image that the color grader or the content creator would want or at least accept to see it. On the other hand, a very important criterion is that the main HDR can be reconstructed almost perfectly (but may be unknowingly caused by minor trimming errors, for example, when the IDR image is DCTized in the MPEG compression phase for transmission, It will cause a very minor unobjectionable reconstruction error of the main HDR on the receiving side). Of course, there may be some systems with some relaxation in the quality of the main HDR reconstruction (some content providers may regard IDR images as more important, at least in cases involving some temporary aspects, such as broadcasting or even single betting. To a limited audience, not, for example, for storage, such as on Blu-ray discs), but usually at least one major party involved in the video processing chain will find that the perfect reconstruction of the master HDR image is important (it is similar to the establishment of a certain A blind attempt to distinguish between a higher dynamic range appearance).

最後,雖然看到在不需要重新設計及重新部署ETSI2解碼器的情況下服務,必須共同傳達F_I2s函數(亦即,較佳地儘可能重新使用該SLHDR2系統的該編(解)碼電路系統,但至少包括其等之輝度及顏色映射函數的該等視訊信號仍應符合該標準化定義,使得尤其係除了一些它們不需要且可忽略的後設資料外,傳統的SLHDR2系統知道它們取得什麼),該內容分級者一般可想要指定他已建立之主HDR與其之某種對應的SDR(亦即,100尼特PB_C)版本(他可已例如使用圖4所示之一系統建立其)之間的他的輝度(及顏色)映射函數。使得F_Mt1函數(見圖10)既不係圖7的F_H2h也不係F_I2s函數,而係跨越主HDR與主SDR之間的該重新分級效果的總體性的函數(亦即,此F_Mt1將一HDR場景影像的該重新分級需求定義在該HDR場景的最不同的動態範圍表示之間)。所以需要一種技術以優雅地關連此等二種情況,特別係ETSI2框架原則中或圍繞其(例如,該SLHDR2PLUS的解碼方法產生與顯示適應該已接收IDR影像及D_I2s函數的ETSI2接收器相同的MDR影像模樣;針對時間上的各瞬間,一或多個函數部分地進行該瞬間的該輸入動態範圍影像與該瞬間的該期望輸出動態範圍影像之間的該重新分級)。Finally, although it is seen that services without the need to redesign and redeploy the ETSI2 decoder, the F_I2s function must be communicated together (that is, it is better to reuse the encoding (decoding) circuit system of the SLHDR2 system as much as possible, But at least the video signals including their luminance and color mapping functions should still conform to the standardized definition, so that, in particular, except for some unnecessary and negligible meta-data, the traditional SLHDR2 system knows what they obtain), The content grader may generally want to specify between the master HDR he has established and some corresponding SDR (ie, 100 nit PB_C) version (he may have established it, for example, using one of the systems shown in Figure 4) His brightness (and color) mapping function. So that the F_Mt1 function (see Figure 10) is neither the F_H2h nor the F_I2s function of Figure 7, but is a function that spans the overall reclassification effect between the main HDR and the main SDR (that is, this F_Mt1 is an HDR The reclassification requirement of the scene image is defined between the most different dynamic range representations of the HDR scene). Therefore, a technique is needed to elegantly connect these two situations, especially in or around the ETSI2 framework principle (for example, the SLHDR2PLUS decoding method produces the same MDR as the ETSI2 receiver that adapts the received IDR image and the D_I2s function. Image appearance; for each instant in time, one or more functions partially perform the reclassification between the input dynamic range image at that instant and the expected output dynamic range image at that instant).

如將於下文所見的,其可根據該等各種發明人的不同洞察而以數種方式完成,取決於所確切期望的哪個系統種類,及哪個所欲限制條件放寬得更多及哪個放寬得更少(亦將此類特定實際技術因子列入考量,像是例如,針對各種選擇將需要多少個循環或電晶體,何者可使一些選擇比其他者更係係期望的,但不必為此專利申請案鑽研該等細節)。As will be seen below, it can be done in several ways based on the different insights of the various inventors, depending on which type of system is exactly desired, and which one wants to relax more restrictive conditions and which relaxes more. (Also take such specific actual technical factors into consideration, such as, for example, how many cycles or transistors will be required for various options, which makes some options more desirable than others, but does not need to apply for a patent Delve into these details).

更有所有方法均使用的一些基礎的基本原則。可用 8 總結至少二種解決方式。接收器接收IDR影像(其應可以某種方式重建成Mster HDR影像,在PB_C = 4000尼特的此實例中),且其等亦具有函數F_I2s。但是它們必須以某種方式針對各IDR輝度發現函數F_??,以計算所需的對應經正規化且因此絕對的主HDR輝度(其將該主HDR精確重建成其原樣,仍絕不傳達其(多個)影像)。可建構可判定所需功能的新穎SLHDR2PLUS解碼器顏色變換系統(其仍至少根據其之如圖4所示的處理IC或軟體核心,具有輝度處理軌及其細節(採用子單元的至少一些者),及色度處理軌),或亦可嘗試將所有的智慧性置入編碼器中,使得可原樣使用標準的ETSI2編碼顏色變換方法(除了係其之新規劃以藉由接收此第二期望峰亮度PB_C_H50的後設資訊重建4000尼特的原始HDR的其新穎性外,其一般涉及適當的全部或部分輝度及色度處理LUT的載入),將其設定成外插而非用於比PB_IDR值更小之PB_D的顯示調適影像。二種方法及其等的實施例將需要一些通用的新技術成分,雖然落在通用的SLHDR2PLUS新編碼原則下。There are some basic principles that all methods use. Figure 8 can be used to summarize at least two solutions. The receiver receives IDR images (which should be reconstructed into Mster HDR images in some way, in this example with PB_C = 4000 nits), and they also have the function F_I2s. But they must find the function F_?? for each IDR brightness in some way to calculate the required corresponding normalized and therefore absolute master HDR brightness (which accurately reconstructs the master HDR into its original state, but never conveys it. (Multiple) images). A novel SLHDR2PLUS decoder color conversion system that can determine the required functions can be constructed (it is still at least based on its processing IC or software core as shown in Figure 4, with a luminance processing track and its details (using at least some of the subunits) , And chroma processing track), or try to put all the intelligence into the encoder, so that the standard ETSI2 encoding color conversion method can be used as it is (except for its new plan to receive this second expected peak In addition to the novelty of reconstructing the original HDR of 4000 nits from the meta-information of the luminance PB_C_H50, it generally involves the loading of all or part of the luminance and chrominance processing LUT), which is set as extrapolation instead of being used for comparison with PB_IDR The smaller value of PB_D display adjustment image. The embodiments of the two methods and others will require some general new technical components, although they fall under the general new coding principles of SLHDR2PLUS.

9 所示之該通用IDR編碼器的SLHDR2PLUS編碼器900種類的該基本構造(其將於下文更詳細地解釋),看見與正常HDR編碼的差異,特別係ETSI2 HDR視訊編碼:現在有二個峰亮度 共同編碼在該後設資料中,亦即,首先係「正常」峰亮度(其應稱為通道峰亮度PB_CH,亦即所接收之該IDR影像的該峰亮度,將任何技術用於其,亦即對該內容創作者、擁有者、或轉碼者看起來最佳的任何峰亮度位準,及用以計算IDR像素輝度的任何數學技術方法),該正常峰亮度指示所傳達及稍後接收之視訊(亦即,(多個)IDR影像)的最大可編碼輝度[此係正常ETSI2解碼器所將看到者,忽略所有其他新穎方法]。其次,但現在亦有該(多個)原始 主HDR影像的該峰亮度,亦即該內容峰亮度PB_C_H50(例如,5000尼特)。在一些實施例中,在IDR影像建立前的許多個月,該第二者的PB_C_H50可能已在該主HDR影像建立時(例如,基於攝影機擷取動作、在該電腦中等)指定,並可在通道編碼時藉由許多不同的可能方式將該PB_CH設定為至解碼器900內的一外部輸入(例如,一有線電視營運商可具有設定在記憶體中的一固定值,其可在一年度基礎上升級以反映他的消費者之HDR顯示器的該目前平均狀態,或一經最佳化PB_CH可將該視訊之至少一個影像的某種輝度或其他影像細節、或其之關聯後設資料、甚至可能特別包括用於引導稍後的IDR重新編碼的後設資料等列入考量而計算)。使一(單一)峰亮度共同傳達對HDR編碼,至少對ETSI2的該系統(其在當時僅已被視為係它們所需的唯一事物,亦即,所接收之影像的「該」峰亮度)係有用的,但鑑於傳統ETSI2顯示器的該完全透明可用性,其將如所述必須係PB_CH(否則它們不能作它們的正常顯示調適計算)。另一方面,PB_C_H50必須完全能夠計算圖8的F_??函數,且使用此函數,最終所期望的該主HDR重建影像來自該所接收的IDR影像。From the basic structure of the SLHDR2PLUS encoder 900 type of the universal IDR encoder shown in Figure 9 (which will be explained in more detail below), we can see the difference from the normal HDR encoding, especially the ETSI2 HDR video encoding: now there are two The peak brightness is coded together in the meta-data, that is, the “normal” peak brightness (which should be called the channel peak brightness PB_CH, that is, the peak brightness of the received IDR image. Any technique used for It means any peak brightness level that looks best to the content creator, owner, or transcoder, and any mathematical technique used to calculate the IDR pixel brightness), the normal peak brightness indicator conveys and The maximum encodable brightness of the video received later (ie, IDR image(s)) [this is what a normal ETSI2 decoder will see, ignoring all other novel methods]. Second, but now there is also the peak brightness of the original master HDR image(s), that is, the content peak brightness PB_C_H50 (for example, 5000 nits). In some embodiments, many months before the IDR image is created, the PB_C_H50 of the second person may have been specified when the main HDR image was created (for example, based on the camera capture action, on the computer, etc.), and can be used in During channel encoding, the PB_CH is set as an external input to the decoder 900 in many different possible ways (for example, a cable TV operator may have a fixed value set in memory, which may be set on an annual basis Upgrade to reflect the current average status of his consumer’s HDR display, or once optimized, PB_CH may be able to provide certain brightness or other image details of at least one image of the video, or its associated meta-data, or even possibly In particular, include the meta-data used to guide the later IDR re-encoding into consideration and calculation). Make a (single) peak brightness collectively convey the encoding of HDR, at least for the ETSI2 system (it was considered the only thing they needed at the time, that is, the "the" peak brightness of the received image) It is useful, but in view of the fully transparent availability of traditional ETSI2 displays, they must be PB_CH as described (otherwise they cannot do their normal display adjustment calculations). On the other hand, PB_C_H50 must be able to calculate the F_?? function of Figure 8, and using this function, the final expected main HDR reconstruction image comes from the received IDR image.

因此,立即顯示一傳統ETSI2視訊編碼資料串流之間的差異,且傳統ETSI2解碼器將不知道此額外後設資料並簡單地忽略其,因為ETSI2解碼器不必使用比它們在該後設資料中接收之PB_C_H更高的PB_C而判定任何影像,該後設資料指示它們所接收之該影像中的該最亮可能輝度(因為根據一純粹的ETSI2原則,所接收的該影像始終係最佳品質影像,事實上其係由該內容創作者創作之最高品質的主HDR影像)。但如圖11所示,一通用SLHDR2PLUS解碼器將不僅接收及讀取PB_C_H50值,且亦使用其以重建REC_M_HDR影像,其係由該內容創作者所創作之該主HDR影像的一近乎完美重建(事實上,此一解碼器將使用PB_C_H50值以從所接收的(多個)F_I2sCI函數計算所需的(多個)F_??函數)。此解碼器亦可有利地輸出較低的PB_C影像,像是例如,400尼特的PB_C MDR_300影像,但可針對比PB_CH更低之PB_C的此類影像選擇使用一標準ETSI2計算核心,或可在該新的SLHDR2PLUS計算核心的一實施例中進行該計算(但針對具有比PB_CH更高之PB之影像的準確重建,新的洞察肯定係需要的,因為不能使用ETSI2技術瑣細地完成)。Therefore, the difference between a traditional ETSI2 video encoding data stream is immediately displayed, and the traditional ETSI2 decoder will not know this additional meta-data and simply ignore it, because the ETSI2 decoder does not need to use it in the meta-data. If the received PB_C_H is higher than the PB_C, any image is judged. The meta data indicates the brightest possible brightness of the image received (because according to a pure ETSI2 principle, the received image is always the best quality image , In fact, it is the highest quality master HDR image created by the content creator). However, as shown in Figure 11, a general SLHDR2PLUS decoder will not only receive and read the PB_C_H50 value, but also use it to reconstruct the REC_M_HDR image, which is an almost perfect reconstruction of the main HDR image created by the content creator ( In fact, this decoder will use the PB_C_H50 value to calculate the required F_?? function(s) from the received F_I2sCI function(s). This decoder can also advantageously output lower PB_C images, such as, for example, 400 nits of PB_C MDR_300 images, but it can choose to use a standard ETSI2 computing core for such images of PB_C lower than PB_CH, or you can This calculation is performed in an embodiment of the new SLHDR2PLUS computing core (but for the accurate reconstruction of images with a higher PB than PB_CH, new insights are definitely needed because it cannot be done trivially using ETSI2 technology).

因此,設定成藉由該新技術解決的該等任務係藉由一種高動態範圍視訊編碼器(900)實現,該高動態範圍視訊編碼器經配置以經由一影像輸入(920)接收一輸入高動態範圍影像(MsterHDR),該輸入高動態範圍影像具有一第一最大像素輝度(PB_C_H50),該編碼器具有用於該第一最大像素輝度的一第一後設資料輸入(922),且該高動態範圍視訊編碼器經配置以經由一第二後設資料輸入(921)接收一主明亮度映射函數(FL_50t1),該明亮度映射函數定義該輸入高動態範圍影像的經正規化明亮度與對應的一低動態範圍影像(Im_LDR)的經正規化明亮度之間的該關係,該低動態範圍影像較佳地具有等於100尼特的一LDR最大像素輝度,其特徵在於該編碼器進一步包含一第三後設資料輸入(923)以接收一第二最大像素輝度(PB_CH),且該編碼器的進一步特徵在於其包含: -                  一HDR函數產生單元(901),其經配置以施加一經標準化演算法以將該主明亮度映射函數(FL_50t1)變換成一經調適明亮度映射函數(F_H2hCI),該經調適明亮度映射函數使該輸入高動態範圍影像的經正規化明亮度相關於一中間動態範圍影像(IDR)的經正規化輝度,該中間動態範圍影像的特徵在於具有等於該第二最大像素輝度(PB_CH)的一最大可能輝度; -                  一IDR影像計算單元(902),其經配置以施加該經調適明亮度映射函數(F_H2hCI)至該輸入高動態範圍影像(MsterHDR)之像素的明亮度,以獲得係此單元之輸出的該中間動態範圍影像(IDR)之像素的明亮度;及 -                  一IDR映射函數產生器(903),其經配置以在該主明亮度映射函數(FL_50t1)及該經調適明亮度映射函數(F_H2hCI)的基礎上推導一通道明亮度映射函數(F_I2sCI),該通道明亮度映射函數在將該中間動態範圍影像(IDR)的該等各別經正規化明亮度給定作為輸入時將該低動態範圍影像(Im_LDR)的該等各別經正規化明亮度定義作為輸出,該等明亮度繼而對應於該輸入高動態範圍影像(MsterHDR)的各別明亮度;該編碼器的進一步特徵係具有: -                  一影像輸出(930),以輸出該中間動態範圍影像(IDR); -                  一第一後設資料輸出(932),以輸出該第二最大像素輝度(PB_CH); -                  一第二後設資料輸出(931),以輸出該通道明亮度映射函數(F_I2sCI);及 -                  一第三後設資料輸出(933),以輸出該第一最大像素輝度(PB_C_H50)。Therefore, the tasks set to be solved by the new technology are achieved by a high dynamic range video encoder (900) that is configured to receive an input high through an image input (920). Dynamic range image (MsterHDR), the input high dynamic range image has a first maximum pixel brightness (PB_C_H50), the encoder has a first post data input (922) for the first maximum pixel brightness, and the high The dynamic range video encoder is configured to receive a primary brightness mapping function (FL_50t1) via a second meta data input (921), which defines the normalized brightness and corresponding brightness of the input high dynamic range image The relationship between the normalized brightness of a low dynamic range image (Im_LDR), the low dynamic range image preferably has an LDR maximum pixel brightness equal to 100 nits, characterized in that the encoder further includes a The third meta data input (923) is used to receive a second maximum pixel brightness (PB_CH), and the encoder is further characterized in that it includes: -An HDR function generating unit (901), which is configured to apply a standardized algorithm to transform the main brightness mapping function (FL_50t1) into an adjusted brightness mapping function (F_H2hCI), and the adjusted brightness mapping function makes The normalized brightness of the input high dynamic range image is related to the normalized brightness of an intermediate dynamic range image (IDR). The intermediate dynamic range image is characterized by having a maximum value equal to the second maximum pixel brightness (PB_CH). Possible brightness -An IDR image calculation unit (902), which is configured to apply the adjusted brightness mapping function (F_H2hCI) to the brightness of the pixels of the input high dynamic range image (MsterHDR) to obtain the output of this unit The brightness of the pixels of the intermediate dynamic range image (IDR); and -An IDR mapping function generator (903), which is configured to derive a channel brightness mapping function (F_I2sCI) on the basis of the main brightness mapping function (FL_50t1) and the adjusted brightness mapping function (F_H2hCI), The channel brightness mapping function, when the respective normalized brightness of the intermediate dynamic range image (IDR) is given as input, the respective normalized brightness of the low dynamic range image (Im_LDR) Defined as output, the brightness corresponds to the respective brightness of the input high dynamic range image (MsterHDR); further features of the encoder are: -An image output (930) to output the intermediate dynamic range image (IDR); -A first meta data output (932) to output the second maximum pixel brightness (PB_CH); -A second meta data output (931) to output the channel brightness mapping function (F_I2sCI); and -A third meta data output (933) to output the first maximum pixel brightness (PB_C_H50).

首先注意到雖然在概念上顯示用於本編碼器之各所需資料項的一分開輸入,實務上,具有通常知識的讀者理解此等輸入(且類似地對於輸出)的一或多者可係相同的,取決於一視訊輸入技術可處置什麼(例如,一些較早的HDMI影像輸入不能處置該動態變化-亦即,對於各時間上連續的視訊影像可能不同-的主明亮度映射函數(FL_50t1),在該情形中,資料可透過例如Wi-Fi連接等以一同步方式而傳達)。各種輸入資料如何輸入亦可取決於它們於何處產生,亦即,編碼器連接於其中或連接至的哪個其他系統(其可取決於在事件之攝影機擷取的同一時間是否期望即時編碼,或稍後針對某個視訊通訊系統編碼,像是例如,有線電視分配系統,其在任何稍後時間接收來自原始內容創作者的所有資料,以鑑於此特定有線電視系統的限制或需求最佳地分配其等)。First notice that although a separate input for each required data item of this encoder is conceptually shown, in practice, readers with general knowledge understand that one or more of these inputs (and similarly for outputs) can be The same depends on what a video input technology can handle (for example, some earlier HDMI video inputs cannot handle this dynamic change-that is, the main brightness mapping function (FL_50t1) may be different for consecutive video images in time ), in this case, the data can be communicated in a synchronized manner through, for example, a Wi-Fi connection). How the various input data is entered can also depend on where they are generated, that is, the encoder is connected to it or to which other system it is connected to (it can depend on whether real-time encoding is expected at the same time the camera captures the event, or It is later coded for a certain video communication system, such as, for example, a cable TV distribution system, which receives all the data from the original content creator at any later time in order to optimally distribute it in view of the limitations or needs of this particular cable TV system Its etc.).

在沒有故意限制的情況下,可假設MsterHDR影像在此之前已由使用一電腦上的顏色分級軟體的一人類顏色分級者而分級,且他已定義FL_50t1函數,該函數定義一對應的較低動態範圍影像,一般係一100尼特的SDR影像(雖然該重新分級影像頻譜的目前最低端根據標準協議係一100尼特PB_C影像,所以似乎不可能改變,三者的所述最低影像,亦即該LDR影像,在未來實施例中可具有不恰係100尼特的一LDR最大輝度,但可能係100尼特的k倍數,例如較佳係k係至多3x,亦即在本系統之實施例實現中的該LDR最大輝度係300尼特),對應於該MsterHDR影像(將可觀的較低輝度動態範圍列入考量,該SDR影像較佳地看起來儘可能地類似於該MsterHDR影像),其依需要一般至少合理地傳達用於在視覺上最佳地訴說(例如,電影故事)的期望模樣(不同的視訊應用程式亦可具有不同需求,諸如不同的顏色準則,可能涉及FL_50t1函數上的不同技術限制)。Without deliberate restrictions, it can be assumed that the MsterHDR image has been graded by a human color grader using a color grading software on a computer, and he has defined the FL_50t1 function, which defines a corresponding lower dynamic The range image is generally a 100-nit SDR image (although the current lowest end of the reclassified image spectrum is a 100-nit PB_C image according to the standard protocol, it seems impossible to change the lowest image of the three, namely The LDR image may have an LDR maximum brightness that is not exactly 100 nits in future embodiments, but may be a k multiple of 100 nits, for example, k is preferably at most 3x, that is, in the embodiment of the system The maximum brightness of the LDR in implementation is 300 nits), which corresponds to the MsterHDR image (considering the considerable lower brightness dynamic range, the SDR image preferably looks as similar to the MsterHDR image as possible), which Generally, at least reasonably convey the desired appearance for the best visual telling (for example, movie stories) according to needs (different video applications may also have different requirements, such as different color criteria, which may involve different FL_50t1 functions Technical limitations).

PB_CH值與其他後設資料有一些不同,在於其事實上係用於中間動態範圍編碼的設定。因此,其可能或可能不來自分級者。其可係例如用於特定視訊編碼系統(比方說,例如,衛星廣播系統)的固定值,其可從例如附接至編碼器或編碼器中的固定記憶體提取。在基於網際網路的遞送中,此PB_CH值可依該IDR影像係針對其產生的一最終消費者的需求傳達。例如,具有一不良品質行動顯示器的一消費者可僅請求一500尼特PB_IDR影像以由在該網際網路之其他側上的一伺服器計算,例如按需求視訊公司的伺服器,而一些其他消費者可要求一1000尼特PB_IDR版本,且在此一情形中,所請求的PB_CH=PB_IDR將輸入該編碼器中。The PB_CH value is somewhat different from other meta-data in that it is actually used for the setting of the intermediate dynamic range encoding. Therefore, it may or may not come from the grader. It can be, for example, a fixed value used in a specific video coding system (for example, a satellite broadcasting system, for example), which can be extracted from, for example, an encoder or a fixed memory attached to the encoder. In Internet-based delivery, the PB_CH value can be communicated according to the needs of an end consumer generated by the IDR image system. For example, a consumer with a poor-quality mobile display may only request a 500-nit PB_IDR image to be calculated by a server on the other side of the Internet, such as the server of an on-demand video company, and some others Consumers can request a 1000-nit PB_IDR version, and in this case, the requested PB_CH=PB_IDR will be input into the encoder.

所以,而在該編碼側有一最高品質(事實上,最高PB_C)的MsterHDR影像,此並非接收器(互補解碼器)將接收之影像,而係該IDR影像(且它們將需要藉由計算REC_M_HDR影像而緊密地重建MsterHDR影像)。該等技術藉由將任何事物公式化成在0.0至1.0明亮度中正規化而最佳地實現。事實上,當談論一明亮度映射函數時,此實際上亦等效於一輝度映射函數(因為明亮度與它們對應輝度(例如,一般待顯示的輝度)之間的關係),但技術上嚴格地說,吾等計算使用明亮度映射函數運作較佳,且較佳地以經視覺心理均勻化的明亮度定義,如藉由飛利浦v函數所計算的(見方程式1以及方程式2)。Therefore, there is a MsterHDR image with the highest quality (in fact, the highest PB_C) on the encoding side. This is not the image that the receiver (complementary decoder) will receive, but the IDR image (and they will need to be calculated by calculating REC_M_HDR And closely reconstruct the MsterHDR image). These techniques are best achieved by formulating everything to be normalized between 0.0 and 1.0 brightness. In fact, when talking about a brightness mapping function, this is actually equivalent to a brightness mapping function (because of the relationship between brightness and their corresponding brightness (for example, the brightness to be displayed in general)), but technically strict In other words, our calculations work better with the brightness mapping function, and are preferably defined by the visually psychologically homogenized brightness, as calculated by the Philips v function (see Equation 1 and Equation 2).

如上文所解釋的,吾等之處置HDR視訊的方法(特別係不僅編碼在特定峰亮度之不同動態範圍中的單一、或二個不同重新分級影像,且係編碼對應的不同DR重新分級的整體頻譜)係有關相關各種可能的經正規化明亮度,此類至少二個可相關影像的像素可具有例如對應於image_2中的0.4之在image_1中的0.2等。此係該明亮度映射函數所定義的,在一種情況(亦即,一種重新分級)與任何其他經選擇的不同情況之間。As explained above, our method of handling HDR video (especially not only encodes a single or two different reclassified images in different dynamic ranges of specific peak brightness, but also encodes the whole of the corresponding different DR reclassifications The spectrum) is related to various possible normalized brightness. Such at least two pixels of the relevant image may have, for example, 0.4 in image_2 and 0.2 in image_1. This is defined by the brightness mapping function, between one situation (that is, a reclassification) and any other selected different situations.

使用標準化演算法,意謂著必須有某種固定方式以將一第一組可能函數(其可具有許多不同形狀及定義)相關於一第二組對應函數。亦即,這僅意謂著一些通訊技術(或甚至所有技術)中,該編碼器及該解碼器之該設計者已定義獨特地指定如何將任何輸入函數的該形狀(一般在正規化至1.0的軸上)變換至該輸出函數之該形狀的一方法。可有各種此類演算法,因此原則上該編解碼器設計者可決定他可能想要傳達給解碼器等的任何此類演算法的順序數-例如,約定演算法數目3,但正常不需要如此複雜,因為吾等之方法將僅藉由預約定(pre-agree)一個固定標準化函數變換演算法而完美且最簡單地運作,例如在下文之支援數學中的一者。Using standardized algorithms means that there must be some fixed way to relate a first set of possible functions (which can have many different shapes and definitions) to a second set of corresponding functions. That is, this only means that in some communication technologies (or even all technologies), the designer of the encoder and the decoder has defined and uniquely specified how the shape of any input function (usually normalized to 1.0 A method of transforming to the shape of the output function. There can be various such algorithms, so in principle the codec designer can determine the order number of any such algorithms that he may want to convey to the decoder, etc.-for example, the number of algorithms is 3, but it is not normally required It is so complicated because our method will work perfectly and most simply by pre-agreeing a fixed standardized function transformation algorithm, such as one of the supporting mathematics below.

對使讀者快速瞭解,下文將係此一演算法的一簡單實例。假設該輸入函數係冪函數:power(x_in; P),則演算法可推導對應函數power(x_in; P-1)。藉由反轉,當接收到該等對應函數(藉由該+1演算法)時,該等原始函數亦可再次重新推導。To make readers understand quickly, the following will be a simple example of this algorithm. Assuming that the input function is a power function: power(x_in; P), the algorithm can derive the corresponding function power(x_in; P-1). By reversing, when the corresponding functions (by the +1 algorithm) are received, the original functions can be derived again.

不應誤解為該標準化演算法本身一般不傳達至接收器,僅係該所得輸出對應函數。此係為何將其標準化,或預約定,亦即必須係固定的,使得該解碼器可知道在已在該編碼側發生什麼。約定此的方式並不如此相關於瞭解所專利化的技術。例如,可有5種不同的固定演算法,且一有線電視營運商可決定以演算法3編碼,並將對應設定供應給他的消費者機上盒以解碼固定演算法3(即使該STB可在某些情況下針對一些其他視訊通訊重設至,例如演算法4;但演算法變化通常將不會係必要的,雖然在用於不同有線電視通道之PB_CH上的變化,例如,可係感興趣的)。It should not be misunderstood that the standardized algorithm itself is generally not communicated to the receiver, only the resulting output corresponding function. This is why it is standardized or scheduled, that is, it must be fixed so that the decoder can know what has happened on the encoding side. The way this is agreed is not so related to understanding the patented technology. For example, there may be 5 different fixed algorithms, and a cable TV operator may decide to encode with Algorithm 3, and supply the corresponding settings to his consumer set-top box to decode fixed Algorithm 3 (even if the STB can In some cases, reset to some other video communication, such as algorithm 4; but the algorithm change will usually not be necessary, although the change on the PB_CH used for different cable TV channels, for example, can be Of interest).

亦應小心注意一般不將該對應經調適明亮度映射函數F_H2hCI傳達至該等接收器的事實,但隨後傳達另一可進一步推導的通道明亮度映射函數(F_I2sCI),且該解碼器亦需要以某種方式反轉此雙重推導。事實上,將該總重新分級映射分成二個部分,因此若該第一部分經標準化,該第二部分亦可被定義,所以藉由解碼器之此IDR編碼的該反轉可視為係大概可能的(雖然困難)(使新的SLHDR2PLUS編解碼器的架構及正確作用變得可能)。Careful attention should also be paid to the fact that the corresponding adjusted brightness mapping function F_H2hCI is generally not communicated to the receivers, but then another channel brightness mapping function (F_I2sCI) that can be further derived is communicated, and the decoder also needs to use Somehow reverse this double derivation. In fact, the total reclassification map is divided into two parts, so if the first part is standardized, the second part can also be defined, so the inversion of the IDR encoding by the decoder can be regarded as probably possible (Although difficult) (to make the architecture and correct function of the new SLHDR2PLUS codec possible).

已進一步以 24 說明經標準化可編碼峰亮度相依函數變化演算法的此概念。因此在左方看到由該分級者或內容創作側重新分級函數判定自動化設計的各種FL_50t1函數的發生。例如,FL_50t1_1可已針對有重要動作發生之在其中之有相當深之黑色的一HDR場景判定,其必須係可觀地明亮化以在低動態範圍顯示器上仍足夠可見,但該等最亮部分不係如此關鍵的-像是例如,街燈-並可以任何顯示器上的一單一幾乎最大白色輝度表示(或因此計算的影像,亦即恰含有如其等待在該顯示器上演現的該等絕對輝度,或更精確地說,通常係編碼該等輝度的該等明亮度碼)。對比地,FL_50t1_2係針對影像或含有另一類型的HDR場景的連續影像的鏡頭建立,其中有一重要的較低亮度物體(或更精確地說,區域)及一較高亮度物體二者,其已在「中間」的任一側上導致經特別調諧的重新分級曲線形狀。FL_50t1_3係藉由HDR函數產生單元901施加至該標準化演算法的又另一可能的輸入函數,其可例如針對具有非常明亮內容及一些局部較暗區域的一日間場景(及不過高PB_C的主影像)發生,像是例如,在印度的一室外場景中進入一寺廟。The concept of the standardized coded peak brightness dependent function change algorithm has been further illustrated in FIG. 24 . Therefore, on the left, you can see the occurrence of various FL_50t1 functions automatically designed by the grader or content authoring side re-grading function. For example, FL_50t1_1 may have been determined for an HDR scene in which an important action is taking place with a fairly deep black. It must be considerably brightened to still be visible enough on a low dynamic range display, but the brightest parts are not It is so critical-like, for example, a street lamp-and can be represented by a single almost maximum white luminance on any display (or the image calculated accordingly, which contains exactly the absolute luminance as it is waiting to appear on that display, or more To be precise, it is usually the same brightness code that encodes the same brightness). In contrast, FL_50t1_2 is created for an image or a continuous image containing another type of HDR scene, in which there is an important lower-brightness object (or more precisely, an area) and a higher-brightness object. On either side of the "middle" results a specially tuned regrading curve shape. FL_50t1_3 is yet another possible input function applied to the standardized algorithm by the HDR function generation unit 901, which can be used for example for daytime scenes with very bright content and some local darker areas (and main images that are not too high PB_C). ) Occurs, like, for example, entering a temple in an outdoor scene in India.

單元901將針對該等三種情況的任一者,及所有其他百萬種情況,判定一輸出函數。此演算法的性質係此函數將類似地成形,但更接近該對角線(因為若該原始函數表示在,例如,X尼特PB_C影像對應的(在能力允許的程度上合理地類似模樣)Y尼特PB_C2影像(姑且說100尼特的影像)之間的重新分級,然後以,例如,在X與Y之間一半的Z從X重新分級至Z尼特PB_C影像將涉及類似的重新分級,但程度較小;若從X映射至X,將具有對應於對角線的恆等變換)。The unit 901 will determine an output function for any one of these three situations and all the other millions of situations. The nature of this algorithm is that this function will be similarly shaped, but closer to the diagonal (because if the original function is expressed in, for example, the Xnit PB_C image corresponds to (reasonably similar to the extent allowed by the ability) Reclassification between Y nits PB_C2 images (let's say 100 nits of images), and then reclassification from X to Z nits PB_C images with, for example, half of the Z between X and Y will involve a similar reclassification , But to a lesser degree; if mapped from X to X, there will be an identity transformation corresponding to the diagonal).

有數個方式,其中一者可定義此一標準化演算法以獨特地獲得對應於該等各別輸入函數的輸出F_H2hCI_1、F_H2hCI_2、及F_H2hCI_3輝度映射函數,且其之細節不真的形成本發明的基本要素,除了必須具有如此行為之可得的一些經標準化演算法的事實。例如,一般可定義一些度量(在所選的PB_C_CH IDR影像可編碼最大輝度上量化PB_C_CH相依性),其可用於以某種方式(例如,大的等步伐、或非均勻地等)用於使任何經正規化輸入輝度之該輸入函數的點y(x)朝向對角線偏移。雖然亦可垂直地偏移,下文詳述之相當良好地運作的較佳實施例在正交於從[0,0]至[1,1]之該對角線的軌跡上偏移此類函數點。There are several ways, one of which can define this standardized algorithm to uniquely obtain the output F_H2hCI_1, F_H2hCI_2, and F_H2hCI_3 brightness mapping functions corresponding to the respective input functions, and the details of which do not really form the basis of the present invention Elements, except for the fact that some standardized algorithms must be available for such behavior. For example, some metrics can generally be defined (to quantify the PB_C_CH dependency on the maximum luminance of the selected PB_C_CH IDR image can be encoded), which can be used in a certain way (for example, large equal steps, or non-uniformly, etc.) to make The point y(x) of the input function of any normalized input luminance is offset toward the diagonal. Although it can also be offset vertically, the preferred embodiment described below, which works quite well, offsets such functions on the trajectory orthogonal to the diagonal from [0,0] to [1,1] point.

該高動態範圍視訊編碼器(900)的一個有利實施例的特徵在於該HDR函數產生單元(901)的該經標準化演算法朝向該主明亮度映射函數(FL_50t1)的該對角線施加一壓縮以獲得該經調適明亮度映射函數(F_H2hCI),該壓縮涉及以一比例因子按比例調整該函數的所有輸出明亮度值,該比例因子取決於該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)。An advantageous embodiment of the high dynamic range video encoder (900) is characterized in that the standardized algorithm of the HDR function generation unit (901) applies a compression towards the diagonal of the main brightness mapping function (FL_50t1) To obtain the adjusted brightness mapping function (F_H2hCI), the compression involves scaling all output brightness values of the function by a scale factor that depends on the first maximum pixel brightness (PB_C_H50) and the second Maximum pixel brightness (PB_CH).

可有各種經定義F_L50t1函數(下文的para定義係一個實例),且其等可藉由該經標準化演算法以各種方式按比例調整,但一般將有按比例調整涉及,且此按比例調整取決於起始PB_C_H50及目標值PB_CH=PB_IDR。此可藉由不同度量完成,但申請人這些年已發現易於基於在視覺心理上均勻的值及藉由將其等發送通過該v函數的該等峰亮度的比率而定義該比例因子,亦即基於對應於該二個峰亮度(及可能地該SDR影像的第三PB_C)之v函數明亮度輸出而定義一比例因子。There can be various defined F_L50t1 functions (the definition of para below is an example), and they can be scaled in various ways by the standardized algorithm, but generally there will be scale adjustment involved, and this scale adjustment depends on At the start PB_C_H50 and target value PB_CH=PB_IDR. This can be done by different metrics, but the applicant has found over the years that it is easy to define the scale factor based on visually psychologically uniform values and by sending them through the ratio of the peak brightnesses of the v function, that is A scale factor is defined based on the v-function brightness output corresponding to the two peak brightness (and possibly the third PB_C of the SDR image).

該高動態範圍視訊編碼器(900)的一個有利實施例包含:一限制器(1804),其經配置以針對包含等於1.0之最亮的該經正規化明亮度的該等經正規化明亮度的一子範圍重新判定該通道明亮度映射函數(F_I2sCI)的一斜率。此對許多實施例並非必要的,但特別係處置在ETSI2中標準化之para的該等高亮度增益的編碼HG_COD之特定選擇的有用方式,以完全順應於此特定實施例有用的所有者。An advantageous embodiment of the high dynamic range video encoder (900) includes: a limiter (1804) configured to target the normalized brightnesses including the brightest normalized brightness equal to 1.0 Re-determine a slope of the channel brightness mapping function (F_I2sCI) in a sub-range of. This is not necessary for many embodiments, but it is particularly a useful way to deal with the specific selection of the high-brightness gain encoding HG_COD of para, which is standardized in ETSI2, in order to fully comply with the owner of this specific embodiment.

對該編碼器的一種對應鏡像技術(事實上,藉由能夠重新推導所有需要的資訊(即使此類資料未實際傳達)而取消所有編碼處理)係一種高動態範圍視訊解碼器(1100),其具有一影像輸入(1110)以接收一中間動態範圍影像(IDR),該中間動態範圍影像具有藉由較佳係0.8或更小的一乘法因子而小於一主高動態範圍影像(MsterHDR)的一第一最大像素輝度(PB_C_H50)的一第二最大像素輝度(PB_CH),該第二最大像素輝度(PB_CH)經由一第二後設資料輸入(1112)接收,該解碼器具有一第一後設資料輸入(1111)以接收一明亮度映射函數(F_I2sCI),該明亮度映射函數定義該中間動態範圍影像(IDR)的所有可能的經正規化明亮度至一LDR最大像素輝度低動態範圍影像(Im_LDR)之對應經正規化明亮度的該變換,該解碼器的特徵在於其具有一第三後設資料輸入(1113)以接收該第一最大像素輝度(PB_C_H50),且該解碼器包含: -                  一輝度函數判定單元(1104),其經配置以施加一經標準化演算法以將該明亮度映射函數(F_I2sCI)變換成一解碼明亮度映射函數(F_ENCINV_H2I),該解碼明亮度映射函數針對該中間動態範圍影像(IDR)的一像素之任何可能的輸入經正規化明亮度將該主高動態範圍影像(MsterHDR)的一對應經正規化HDR明亮度指定為輸出,該經標準化演算法使用該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)的該等值;及 -                  一顏色變換器(1102),其經配置以將該解碼明亮度映射函數(F_ENCINV_H2I)連續地施加至該中間動態範圍影像(IDR)之經輸入的經正規化明亮度,以獲得一經重建主HDR影像(REC_M_HDR)之像素的經正規化經重建明亮度(L_RHDR);該解碼器進一步具有一影像輸出(1120)以輸出該經重建主HDR影像(REC_M_HDR)。該LDR最大輝度再次較佳地係該經標準化的100尼特SDR輝度,雖然可設想所部署之在其中該重新分級影像頻譜的該低(亦即,最低)動態範圍(亦即,最大輝度)影像及其通訊係例如200尼特影像之類似運作的未來變化。A corresponding mirroring technology to the encoder (in fact, canceling all encoding by being able to re-derive all required information (even if such data is not actually communicated)) is a high dynamic range video decoder (1100), which It has an image input (1110) to receive an intermediate dynamic range image (IDR), the intermediate dynamic range image having a multiplication factor that is preferably 0.8 or less than a main high dynamic range image (MsterHDR) A second maximum pixel brightness (PB_CH) of the first maximum pixel brightness (PB_C_H50), the second maximum pixel brightness (PB_CH) is received via a second meta data input (1112), the decoder has a first meta data Input (1111) to receive a brightness mapping function (F_I2sCI) that defines all possible normalized brightness of the intermediate dynamic range image (IDR) to an LDR maximum pixel brightness low dynamic range image (Im_LDR ) Corresponds to the transformation of normalized brightness. The decoder is characterized in that it has a third meta data input (1113) to receive the first maximum pixel brightness (PB_C_H50), and the decoder includes: -A luminance function determination unit (1104) configured to apply a standardized algorithm to transform the luminance mapping function (F_I2sCI) into a decoded luminance mapping function (F_ENCINV_H2I), the decoded luminance mapping function for the intermediate dynamics The normalized brightness of any possible input of a pixel of the range image (IDR) designates a corresponding normalized HDR brightness of the main high dynamic range image (MsterHDR) as the output, and the normalized algorithm uses the first The equivalent values of the maximum pixel brightness (PB_C_H50) and the second maximum pixel brightness (PB_CH); and -A color converter (1102) configured to continuously apply the decoded brightness mapping function (F_ENCINV_H2I) to the input normalized brightness of the intermediate dynamic range image (IDR) to obtain a reconstructed master The normalized reconstructed brightness (L_RHDR) of the pixels of the HDR image (REC_M_HDR); the decoder further has an image output (1120) to output the reconstructed main HDR image (REC_M_HDR). The LDR maximum brightness is again preferably the standardized 100 nit SDR brightness, although it is conceivable to deploy the low (ie, lowest) dynamic range (ie, maximum brightness) in which the reclassified image spectrum is deployed The image and its communication are future changes in similar operations such as 200 nit images.

所以,MsterHDR影像實際上並未作為一影像接收,但其仍由 接收的該資料獨特地定義(所以,雖然形式上,此MsterHDR影像係存在於對應的匹配解碼器地點的對應主影像,且該解碼器僅從其接收的IDR影像重建幾乎相同的REC_M_HDR影像,各種函數甚至在任何解碼地點確實定義MsterHDR影像性質)。不同的消費者可選擇PB_C_H50及PB_IDR二者的各種值。第一者可由該內容創作者針對各種原因選擇,諸如,例如因為他購買4000尼特的分級監視器、或因為他喜歡給予他的主內容某種最佳品質(例如,以不少於10,000尼特的PB_C建立/定義所有事物)、或因為至少根據該創作者,某些類型的影像要求某種品質,亦即,PB_C_H50(例如,壯觀的煙火表演或燈光表演或流行演唱會可比,例如,合理地均勻發光的網球比賽或新聞閱讀值得更高的PB_C_H50)。Therefore, the MsterHDR image is not actually received as an image, but it is still uniquely defined by the received data (so, although formally, this MsterHDR image exists in the corresponding main image of the corresponding matching decoder location, and The decoder only reconstructs almost the same REC_M_HDR image from the IDR image it receives, and various functions even define the nature of the MsterHDR image at any decoding location). Different consumers can choose various values of PB_C_H50 and PB_IDR. The first one can be selected by the content creator for various reasons, such as, for example, because he purchased a 4000 nits rating monitor, or because he likes to give his main content some kind of best quality (for example, with no less than 10,000 nits The special PB_C establishes/defines everything), or because at least according to the creator, certain types of images require a certain quality, that is, PB_C_H50 (for example, spectacular fireworks or light shows or popular concerts are comparable, for example, A reasonably uniformly illuminated tennis match or news reading deserves a higher PB_C_H50).

PB_IDR值可基於不同的技術考量選擇,例如視訊通訊公司之一般消費者的計價,且如所述,該通訊公司通常可與該創作公司不同。The PB_IDR value can be selected based on different technical considerations, such as the pricing of general consumers of a video communication company, and as mentioned, the communication company can usually be different from the creative company.

一般而言,產生在PB_C上的差異小於至少20%的重新分級IDR內含係不太合理的(亦即,因子0.8,雖然原則上PB_C之值可更接近,例如0.9),但通常更一般地在PB_C之間將有乘法因子2或更多(例如,以低於1000尼特(例如,800、700、或600尼特)且一般高於500尼特的某個PB_CH發送的2000尼特主材料)。在解碼地點的PB_C_H50一般類似於其他後設資料,且尤其係PB_CH值,所以一般將其接收為與視訊資料關聯的後設資料,例如,非限制性SEI訊息、或視訊通訊協定上的特殊封包等(無論係在一個邏輯資料結構或數個結構中,根據最佳地適於各經標準化或非標準視訊通訊協定的事物,此係本新技術的次要細節)。因為解碼器使用經標準化演算法以最終來到IDR影像及其之ETSI2順應後設資料,對應的經標準化演算法可針對其最終判定REC_M_HDR影像像素明亮度之重建所需的F_ENCINV_H2I明亮度映射函數的解碼器設計或設計在該解碼器中(然後進一步使用此影像完成任何事物,顯示其係典型應用,但例如儲存在硬碟記憶體上係另一應用)。Generally speaking, it is not reasonable to produce a reclassified IDR whose difference in PB_C is less than at least 20% (that is, factor 0.8, although in principle the value of PB_C can be closer, such as 0.9), it is usually more general The ground between PB_C will have a multiplication factor of 2 or more (for example, 2000 nits sent at a certain PB_CH that is lower than 1000 nits (for example, 800, 700, or 600 nits) and generally higher than 500 nits Main material). The PB_C_H50 at the decoding location is generally similar to other meta data, and especially the value of PB_CH, so it is generally received as meta data associated with video data, such as unrestricted SEI messages or special packets on video communication protocols Etc. (Whether it is in a logical data structure or several structures, according to what is best suited for each standardized or non-standard video communication protocol, this is a secondary detail of this new technology). Because the decoder uses a standardized algorithm to finally arrive at the IDR image and its ETSI2 compliant meta-data, the corresponding standardized algorithm can finally determine the F_ENCINV_H2I brightness mapping function required for reconstruction of the REC_M_HDR image pixel brightness. The decoder is designed or designed in the decoder (then further use this image to accomplish anything, showing that it is a typical application, but for example, it is another application that is stored on the hard disk memory).

該高動態範圍視訊解碼器(1100)的一個感興趣的實施例的特徵在於該輝度函數判定單元(1104)的該經標準化演算法計算其取決於該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)的一比例因子。如所提及的,此可對應地以各種方式完成,但在視覺心理上均勻的基於v函數的比例因子實務上相當易用於受良好控制的HDR影像處置,並符合各種甚至關鍵的藝術要求,而同時保持技術複雜度受控制。An interesting embodiment of the high dynamic range video decoder (1100) is characterized in that the standardized algorithm of the luminance function determination unit (1104) calculates that it depends on the first maximum pixel luminance (PB_C_H50) and the second A scale factor of the maximum pixel brightness (PB_CH). As mentioned, this can be done in various ways, but the visually psychologically uniform v-function-based scale factor is practically easy to use for well-controlled HDR image processing, and meets various even critical artistic requirements , While keeping technical complexity under control.

該高動態範圍視訊解碼器(1100)的一個有用實施例具有由一明亮度映射定義的該明亮度映射函數(F_I2sCI),該明亮度映射由具有用於一黑暗經正規化明亮度範圍的一第一斜率(SG_gr)的一第一線性區段、具有用於一明亮經正規化明亮度範圍的一第二斜率(HG_gr)的一第二線性區段、及用於在該二個範圍之間之明亮度的一拋物線區段組成。對應的數學除了其他事物之外涉及解二階方程式以獲得用於進行該重建所需要的該經通道調適高亮度增益。此係有用的一階HDR重新分級方法,其適用於具有非最高像素顏色控制需求的市場,諸如例如現實生活的電視廣播(如對比於有時涉及在例如賣座電影中的例如詳細顏色控制)。如下文所提及的,此在一些進一步劃分的實施例中可係完全定義F_L50t1函數及所有可推導函數(例如,與IDR影像一起傳達的函數:F_I2S)的單獨分量,但其亦可係該重新分級函數的一部分定義,例如,如圖4所說明地定義全部的重新分級連同一可客製化函數。A useful embodiment of the high dynamic range video decoder (1100) has the brightness mapping function (F_I2sCI) defined by a brightness map consisting of a normalized brightness range for a dark A first linear section with a first slope (SG_gr), a second linear section with a second slope (HG_gr) for a bright normalized brightness range, and a second linear section for the two ranges Between the brightness of a parabolic section. The corresponding mathematics involves, among other things, solving a second-order equation to obtain the channel-adjusted high brightness gain needed for the reconstruction. This is a useful first-order HDR reclassification method, which is suitable for markets with non-highest pixel color control requirements, such as, for example, real-life television broadcasts (as compared to, for example, detailed color control that sometimes involves, for example, blockbuster movies). As mentioned below, in some further divided embodiments, the F_L50t1 function and the individual components of all derivable functions (for example, the function communicated with IDR images: F_I2S) can be fully defined, but it can also be the A part of the definition of the reclassification function, for example, as illustrated in FIG. 4, defines all the reclassification functions together with the same customizable function.

該高動態範圍視訊解碼器(1100)的一個有用實施例具有其之顏色變換器(1102),該顏色變換器經配置以計算具有一最大像素輝度(PB_MDR)的一中等動態範圍影像(MDR_300)的像素明亮度,該最大像素輝度不等於該等值100尼特、該第一最大像素輝度(PB_C_H50)、及該第二最大像素輝度(PB_CH),且該解碼器具有用於輸出該中等動態範圍影像(MDR_300)的一影像輸出(1122)。雖然REC_M_HDR影像的重建可係一些子市場中的一些設備所需的一切(有所有類型的其他變換施加在該重建影像上的可能),若吾等的SLHDR2PLUS解碼器除了僅重建主HDR影像外,亦可使用其他PB_C計算對應影像(例如,可直接顯示在具有任何PB_C的某種顯示器上的MDR影像)係有利的。此亦將例如以圖16說明的方式或任何等效方式使用本發明的數學原理。A useful embodiment of the high dynamic range video decoder (1100) has its color converter (1102), which is configured to calculate a medium dynamic range image (MDR_300) with a maximum pixel intensity (PB_MDR) The maximum pixel brightness is not equal to the same value of 100 nits, the first maximum pixel brightness (PB_C_H50), and the second maximum pixel brightness (PB_CH), and the decoder has the medium dynamic range for outputting An image output (1122) of the image (MDR_300). Although the reconstruction of REC_M_HDR images can be everything required by some equipment in some submarkets (all types of other transformations may be applied to the reconstructed image), if our SLHDR2PLUS decoder only reconstructs the main HDR image, It is also advantageous to use other PB_C to calculate the corresponding image (for example, an MDR image that can be directly displayed on a certain display with any PB_C). This will also use the mathematical principle of the present invention, for example, in the manner illustrated in FIG. 16 or any equivalent manner.

該高動態範圍視訊解碼器(1100)的另一有用實施例具有一後設資料輸出(1121),該後設資料輸出用於輸出一明亮度映射函數(F_L_subsq),該明亮度映射函數針對該經重建主HDR影像(REC_M_HDR)或替代地該中等動態範圍影像(MDR_300)的所有經正規化明亮度定義具有另一最大像素輝度的一影像的對應明亮度,此另一最大像素輝度較佳地係100尼特,或高於或低於各別該經重建主HDR影像(REC_M_HDR)或替代地該中等動態範圍影像(MDR_300)的該最大輝度值的一值。其可能係將該已接收IDR影像重建成不直接顯示在一基本型監視顯示器上的REC_M_HDR影像,但發送至進行進一步色度計算的某種系統。然後該解碼器實施例亦可輸出一合適的明亮度映射函數係有用的,亦即,一般意謂著與其正被輸出之該影像關聯的一明亮度映射函數,例如REC_M_HDR影像(一般與所定義之該函數的該輸入經正規化明亮度係共同輸出之影像的經正規化明亮度的意義關聯,且該函數的輸出係某個參考影像(常係SDR影像)的經正規化明亮度,當將其標準化成具有PB_C= 100尼特時,其一般係HDR年代中所將希望的最低品質,此不排除某人可能想要以用於定義係,例如80或50尼特的共同傳達函數之輸出縱座標的PB_C施加本教示)。Another useful embodiment of the high dynamic range video decoder (1100) has a post-data output (1121) for outputting a brightness mapping function (F_L_subsq) for the brightness mapping function All normalized brightness of the reconstructed main HDR image (REC_M_HDR) or alternatively the medium dynamic range image (MDR_300) defines the corresponding brightness of an image with another maximum pixel brightness, and the other maximum pixel brightness is preferably It is 100 nits, or a value higher or lower than the maximum luminance value of the reconstructed main HDR image (REC_M_HDR) or alternatively the medium dynamic range image (MDR_300). It may be that the received IDR image is reconstructed into a REC_M_HDR image that is not directly displayed on a basic monitor display, but is sent to a certain system for further colorimetric calculation. Then the decoder embodiment can also output a suitable brightness mapping function which is useful, that is, generally means a brightness mapping function associated with the image being output, such as REC_M_HDR image (generally with the defined The normalized brightness of the input of the function is the meaning of the normalized brightness of the images that are output together, and the output of the function is the normalized brightness of a reference image (usually an SDR image), when When it is standardized to have PB_C = 100 nits, it is generally the lowest quality expected in the HDR era. This does not exclude that someone may want to use it to define the system, such as a common transfer function of 80 or 50 nits. The PB_C of the output ordinate applies this teaching).

針對設備(或設備的一部分或聚集)制訂的任何事物可等效地制訂成信號、包含影像的記憶體產品(諸如,藍光光碟)、方法等,例如:Anything formulated for a device (or a part or collection of a device) can be equivalently formulated into a signal, a memory product containing images (such as a Blu-ray disc), a method, etc., for example:

一種具有一第一最大像素輝度(PB_C_H50)的一經接收輸入高動態範圍影像(MsterHDR)之高動態範圍視訊編碼的方法,其包含接收一主明亮度映射函數(FL_50t1),該明亮度映射函數定義該輸入高動態範圍影像的經正規化明亮度與對應的一低動態範圍影像(Im_LDR)的經正規化明亮度之間的一關係,該低動態範圍影像具有其較佳地具有等於100尼特的一值的一LDR最大像素輝度,該方法的特徵在於該編碼進一步包含接收一第二最大像素輝度(PB_CH),且該編碼包含: -                  施加一經標準化演算法以將該主明亮度映射函數(FL_50t1)變換成一經調適明亮度映射函數(F_H2hCI),該經調適明亮度映射函數使該輸入高動態範圍影像的經正規化明亮度相關於一中間動態範圍影像(IDR)的經正規化輝度,該中間動態範圍影像的特徵在於具有等於該第二最大像素輝度(PB_CH)的一最大可能輝度; -                  施加該經調適明亮度映射函數(F_H2hCI)至該輸入高動態範圍影像(MsterHDR)之像素的明亮度,以獲得該中間動態範圍影像(IDR)之像素的明亮度; -                  在該主明亮度映射函數(FL_50t1)及該經調適明亮度映射函數(F_H2hCI)的基礎上推導一通道明亮度映射函數(F_I2sCI),該通道明亮度映射函數在該中間動態範圍影像(IDR)的該等各別經正規化明亮度係給定為輸入時將該低動態範圍影像(Im_LDR)的該等各別經正規化明亮度定義作為輸出,該等明亮度繼而對應於該輸入高動態範圍影像(MsterHDR)的各別明亮度; -                  輸出該中間動態範圍影像(IDR);及 -                  輸出該第二最大像素輝度(PB_CH)、該通道明亮度映射函數(F_I2sCI)、及該第一最大像素輝度(PB_C_H50)。A method for high dynamic range video encoding of a received input high dynamic range image (MsterHDR) with a first maximum pixel brightness (PB_C_H50), which includes receiving a master brightness mapping function (FL_50t1), the brightness mapping function definition A relationship between the normalized brightness of the input high dynamic range image and the normalized brightness of a corresponding low dynamic range image (Im_LDR), the low dynamic range image preferably has a relationship equal to 100 nits The method is characterized in that the encoding further includes receiving a second maximum pixel luminance (PB_CH), and the encoding includes: -Apply a standardized algorithm to transform the main brightness mapping function (FL_50t1) into an adjusted brightness mapping function (F_H2hCI), the adjusted brightness mapping function correlates the normalized brightness of the input high dynamic range image Normalized luminance of an intermediate dynamic range image (IDR), the intermediate dynamic range image is characterized by having a maximum possible luminance equal to the second maximum pixel luminance (PB_CH); -Apply the adjusted brightness mapping function (F_H2hCI) to the brightness of the pixels of the input high dynamic range image (MsterHDR) to obtain the brightness of the pixels of the intermediate dynamic range image (IDR); -Based on the main brightness mapping function (FL_50t1) and the adjusted brightness mapping function (F_H2hCI), a channel brightness mapping function (F_I2sCI) is derived, and the channel brightness mapping function is in the intermediate dynamic range image (IDR). ) When the respective normalized brightness of the low dynamic range image (Im_LDR) is given as the input, the respective normalized brightness of the low dynamic range image (Im_LDR) is defined as the output, and the brightness corresponds to the input high The individual brightness of dynamic range images (MsterHDR); -Output the intermediate dynamic range image (IDR); and -Output the second maximum pixel brightness (PB_CH), the channel brightness mapping function (F_I2sCI), and the first maximum pixel brightness (PB_C_H50).

或者,一種一經接收中間動態範圍影像(IDR)之高動態範圍視訊解碼的方法,該影像具有藉由較佳係0.8或更小的一乘法因子而低於一主高動態範圍影像(MsterHDR)的一第一最大像素輝度(PB_C_H50)的一第二最大像素輝度(PB_CH),該第二最大像素輝度(PB_CH)係接收為該中間動態範圍影像的後設資料,該解碼方法亦接收後設資料中的一明亮度映射函數(F_I2sCI),該明亮度映射函數定義該中間動態範圍影像(IDR)的所有可能的經正規化明亮度至一LDR最大像素輝度低動態範圍影像(Im_LDR)之對應經正規化明亮度的該變換,且該解碼方法的特徵在於其接收該第一最大像素輝度(PB_C_H50),且該解碼方法的特徵在於其包含: -                  施加一經標準化演算法以將該明亮度映射函數(F_I2sCI)變換成一解碼明亮度映射函數(F_ENCINV_H2I),該解碼明亮度映射函數針對該中間動態範圍影像(IDR)的一像素之任何可能的輸入經正規化明亮度將該主高動態範圍影像(MsterHDR)的一對應經正規化HDR明亮度指定為輸出,該經標準化演算法使用該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)的該等值; -                  將該解碼明亮度映射函數(F_ENCINV_H2I)施加至該中間動態範圍影像(IDR)之經正規化明亮度,以獲得一經重建主HDR影像(REC_M_HDR)之像素的經正規化經重建明亮度(L_RHDR);及 -                  輸出該經重建主HDR影像(REC_M_HDR)。Or, a method for decoding high dynamic range video once received an intermediate dynamic range image (IDR), the image having a multiplication factor that is preferably 0.8 or less than a main high dynamic range image (MsterHDR) A second maximum pixel brightness (PB_CH) of a first maximum pixel brightness (PB_C_H50), the second maximum pixel brightness (PB_CH) is received as the meta data of the intermediate dynamic range image, and the decoding method also receives meta data A brightness mapping function (F_I2sCI), which defines all possible normalized brightness of the intermediate dynamic range image (IDR) to an LDR maximum pixel brightness low dynamic range image (Im_LDR). The transformation of normalized brightness, and the decoding method is characterized in that it receives the first maximum pixel brightness (PB_C_H50), and the decoding method is characterized in that it includes: -Apply a standardized algorithm to transform the brightness mapping function (F_I2sCI) into a decoded brightness mapping function (F_ENCINV_H2I), the decoded brightness mapping function for any possible input of a pixel of the intermediate dynamic range image (IDR) The normalized brightness designates a corresponding normalized HDR brightness of the main high dynamic range image (MsterHDR) as the output, and the normalized algorithm uses the first maximum pixel brightness (PB_C_H50) and the second maximum pixel brightness (PB_CH) equivalent value; -Apply the decoded brightness mapping function (F_ENCINV_H2I) to the normalized brightness of the intermediate dynamic range image (IDR) to obtain the normalized reconstructed brightness (L_RHDR) of the pixels of the reconstructed main HDR image (REC_M_HDR) );and -Output the reconstructed main HDR image (REC_M_HDR).

圖25不錯地繪示本案之經SLHDR2PLUS編碼HDR影像信號(2501),亦即,例如4kx2k的像素顏色矩陣2502(YCbCr,或可藉由已知色度方程式藉由預處理器[未圖示]計算成所需之YCbCr表示的任何顏色表示),及必要的後設資料:輝度映射函數F_I2sCI,及該二個PB_C值。假如將此HDR影像信號傳達至標準的SLHDR2解碼器2510並由該解碼器接收,因為F_I2sCI係正規函數,此解碼器將預期從其之 已接收影像峰亮度重新分級(PB_CH,在該實例中係800尼特至任何較低的峰亮度,其可藉由顯示最佳化計算Im350而針對例如經連接的350尼特中等動態範圍顯示器最佳化而顯示(其如所述,不係此申請案的關鍵態樣,其僅使作為來到新穎編解碼器框架的起始設計準則的一者變得可能,且可用於顯示器最佳化,例如揭示於US20160307602中的方法,或類似一者)。但現在變得可能的係具有SLHDR2PLUS解碼器2520(例如,由決定引入此服務的有線電視營運者新部署的,及類似者)的任何人可製造高於PB_CH值之PB_C的其他影像,例如,5000尼特的例示性主HDR影像的重建(亦即,輸出影像Im5000),或在PB_C_H50與PB_CH之間、或甚至可能高於PB_C_H50(像是Im1250經顯示調適影像)等的任何經顯示調適影像。Figure 25 nicely shows the SLHDR2PLUS-encoded HDR image signal (2501) of this case, that is, for example, a 4kx2k pixel color matrix 2502 (YCbCr, or the preprocessor can be used by the known chromaticity equation [not shown] Calculate into any color representation required by YCbCr), and necessary post-data: the luminance mapping function F_I2sCI, and the two PB_C values. If this video signal HDR standard SLHDR2 communicated to the decoder by the decoder 2510 receives, as F_I2sCI based regular function, the decoder would be expected to have a peak brightness of the received image binning (PB_CH from which, the system in this example 800 nits to any lower peak brightness, which can be displayed by the display optimization calculation Im350 for, for example, a connected 350 nits medium dynamic range display optimization (which is not related to this application as described) The key aspect of this is only possible as one of the initial design criteria for the novel codec framework, and can be used for display optimization, such as the method disclosed in US20160307602, or the like). But it is now possible that anyone with SLHDR2PLUS decoder 2520 (for example, newly deployed by the cable TV operator who decided to introduce this service, and the like) can create other images with PB_C higher than the PB_CH value, for example, Reconstruction of an exemplary main HDR image of 5000 nits (ie, output image Im5000), or any displayed adapted image between PB_C_H50 and PB_CH, or even higher than PB_C_H50 (like Im1250 displayed adapted image) .

9 大致顯示新的SLHDR2PLUS編碼器900。當輸入時,其得到主HDR影像(例如,5000尼特PB_C影像MsterHDR),其不想要失去讀者可假設已在由使用顏色分級軟體的人類顏色分級者編碼時或左右產生的通用性,例如藉由從未處理的攝影機擷取的HDR影像開始(MsterHDR影像針對,例如,一般夜色昏暗(亦即,其平均環繞輝度等)的電視觀看環境最佳化;本技術亦可與其他或可變環境運作,但其更確切地說係顯示調適而非建立或編碼HDR影像之新方法的問題)。該分級者亦已建立至少一個良好的輝度降級函數FL_50t1,以將5000尼特主HDR影像轉換成他已在他的SDR參考監視器上檢查之對應好看的SDR影像(亦即,通常100尼特PB_C的影像),且他已根據色度處理單元451藉由填充403、404、及405之部分重新分級態樣的一些者,及一些良好顏色調整F_C[Y]而完成此)(例如,在現實生活的事件廣播中,其他方法可在運作中計算可施加函數形狀,然後可能有某個導演粗略地觀看結果,或甚至沒有,但原理係出現良好函數FL_50t1,無論係來自部分單元的僅一者或所有單元一起的總函數等)。 Figure 9 roughly shows the new SLHDR2PLUS encoder 900. When input, it gets the main HDR image (for example, 5000 nits PB_C image MsterHDR). It does not want to lose the reader can assume that it has been coded by human color graders using color grading software or around the universality, such as borrowing Start with HDR images captured by unprocessed cameras (MsterHDR images are aimed at, for example, the optimization of the TV viewing environment where the night is generally dim (that is, its average surround brightness, etc.); this technology can also be combined with other or variable environments Works, but it is more precisely a problem of display adaptation rather than new methods of creating or encoding HDR images). The grader has also established at least one good luminance degradation function FL_50t1 to convert the 5000-nit master HDR image into the corresponding good-looking SDR image (that is, usually 100 nits) that he has checked on his SDR reference monitor PB_C image), and he has completed this by filling in some of the 403, 404, and 405 parts according to the chrominance processing unit 451, and some good color adjustment F_C[Y]) (for example, in In real-life event broadcasting, other methods can calculate the applicable function shape in operation, and then some director may watch the result roughly, or even not, but the principle is that a good function FL_50t1 appears, regardless of whether it is only one from some units. Or the total function of all units together, etc.).

此函數FL_50t1亦必須輸入為新穎編碼器900的起始資訊。亦輸入峰亮度靜態(對於整體電影或廣播)後設資料PB_C_H50,因為其將會被使用,但亦由編碼器輸出為總IDR視訊編碼信號(IDR+F_I2sCI+PB_CH+PB_C_H50,其中該影像一般根據一些合適的視訊通訊標準(例如,HEVC)來壓縮或解壓縮,且其他後設資料可根據任何可用或可組態的後設資料通訊機制傳達,範圍從MPEG SEI訊息至專用網際網路封包等)。This function FL_50t1 must also be input as the start information of the novel encoder 900. Also input the peak brightness static (for the overall movie or broadcast) post data PB_C_H50, because it will be used, but it is also output by the encoder as the total IDR video coding signal (IDR+F_I2sCI+PB_CH+PB_C_H50, where the image is generally based on Some suitable video communication standards (for example, HEVC) are used to compress or decompress, and other meta-data can be communicated according to any available or configurable meta-data communication mechanism, ranging from MPEG SEI messages to private Internet packets, etc. ).

HDR函數產生單元901將計算HDR至IDR輝度映射函數F_H2hCI,其係從Mster HDR影像計算IDR影像之所需,且其將需要IDR的PB_CH之選擇,假設其得自某個其他輸入(例如,此可已由有線電視營運商選擇,並置於記憶體中的某處,待由組態軟體載入);將假設PB_CH等於1000尼特(僅用於說明目的;一般而言,此值將係SDR PB_C的數倍高(例如4x高),基於所選擇的值,技術態樣在實施例細節上有些不同)。The HDR function generating unit 901 will calculate the HDR to IDR luminance mapping function F_H2hCI, which is required to calculate the IDR image from the Mster HDR image, and it will require the selection of the IDR PB_CH, assuming it is derived from some other input (for example, this It may have been selected by the cable TV operator and placed somewhere in the memory to be loaded by the configuration software; it will be assumed that PB_CH is equal to 1000 nits (for illustration purposes only; in general, this value will be SDR PB_C is several times high (for example, 4x high), based on the selected value, the technical aspect is somewhat different in the embodiment details).

10 繪示此HDR函數產生單元901可如何作用。 FIG. 10 illustrates how the HDR function generating unit 901 can function.

假設分級者已定義某個函數(此處在說明實例中係線性-拋物線-線性函數(簡寫成para ),申請人根據ETSI標準化編解碼器原則使用其以進行主導影像區域之亮度的第一已大部分良好的重新平衡(亦即,其例如以最亮輝度區域之共同控制壓縮的成本在SDR影像中對深色提供足夠可見度)。Assuming that the classifier has defined a certain function (here, in the illustrated example, it is a linear-parabolic-linear function (abbreviated as para ), the applicant uses it according to the ETSI standardized codec principle to do the first setting of the brightness of the image area. Mostly good rebalancing (ie, it provides sufficient visibility for dark colors in SDR images at the cost of co-control compression, for example, in the brightest areas).

此一函數藉由具有由分級者針對此HDR影像最佳地選擇的受控斜率SG_gr的線性關係使明亮度之最暗子區域(L<Ld)的輸入明亮度(在藉由根據上述方程式1及方程式2變換像素輝度的視覺心理均等表示中)相關於所需輸出輝度: Ln_XDR= SG_gr *Ln_Mster_HDR    if(Ln_Mster_HDR<Ld)   [方程式4] (其中Ln_Mstr_HDR及Ln_XDR分別係當藉由分級者預分級為最佳開始影像時之輸入主HDR影像的明亮度(亦即,對應像素輝度在視覺心理上的均勻表示),且Ln_XDR係具有不同動態範圍且尤其係峰亮度PB_C之影像的數個輸出明亮度的總結,為解釋在本發明及其實施例後面的概念而全部顯示在相同的經正規化垂直軸上)。特別係,當分級者針對他的已最佳地分級的Mster_HDR影像而開始重新分級對應的最佳SDR影像時,XDR將係該種類SDR,並將對應的輝度映射函數形狀係顯示成F_Mt1[使用速記符號xty以指示函數將明亮度從該開始PB_C x映射至該結束PB_C y,且x及y任一者大致可指示影像的PB_C,像是M指示主(Master),或數值地指示實例值,其中將二個零丟掉,例如,50意指5000且1意指100尼特]。This function makes the input brightness of the darkest sub-region (L<Ld) of brightness by having a linear relationship with a controlled slope SG_gr optimally selected by the grader for this HDR image (in accordance with the above equation 1 And equation 2 transforms the visual psychological equal representation of pixel brightness) is related to the required output brightness: Ln_XDR= SG_gr *Ln_Mster_HDR if(Ln_Mster_HDR<Ld) [Equation 4] (Ln_Mstr_HDR and Ln_XDR are respectively the brightness of the input main HDR image when pre-graded as the best starting image by the grader (that is, the uniform representation of the corresponding pixel brightness in visual psychology), and the Ln_XDR system has different dynamics The range and especially the summary of the output brightness of the image of the peak brightness PB_C are all shown on the same normalized vertical axis in order to explain the concept behind the present invention and its embodiments). In particular, when the grader starts to re-grade the corresponding best SDR image for his best graded Mster_HDR image, XDR will be the SDR of this type, and the corresponding brightness mapping function shape will be displayed as F_Mt1 [Use The shorthand symbol xty indicates that the function maps the brightness from the start PB_C x to the end PB_C y, and any one of x and y can roughly indicate the PB_C of the image, such as M indicating Master, or numerically indicating instance values , Where two zeros are dropped, for example, 50 means 5000 and 1 means 100 nits].

類似地,對於高於Lb的輸入明亮度Ln_Mster_HDR,再次有可控制的線性關係: Ln_SDR=HG_gr* Ln_Mster_HDR +(1-HG_gr) if(Ln_Mster_HDR>Lb) [方程式5]Similarly, for input brightness Ln_Mster_HDR higher than Lb, there is again a controllable linear relationship: Ln_SDR=HG_gr* Ln_Mster_HDR +(1-HG_gr) if(Ln_Mster_HDR>Lb) [Equation 5]

para延伸在Ld=mx-WP與Lb=mx+WP之間的拋物線部分具有L_XDR=a*x^2+b*x+c的函數定義,其之係數a、b、及c可藉由計算該線正切於來自其之極點相交的該曲線之點及其之橫座標mx而計算(如ETSI1標準中所定義的;mx=(1-HG)/(SG-HG))。The parabolic part of para extending between Ld=mx-WP and Lb=mx+WP has the function definition of L_XDR=a*x^2+b*x+c, and its coefficients a, b, and c can be calculated by The line tangent is calculated from the point of the curve where its poles intersect and its abscissa mx (as defined in the ETSI1 standard; mx=(1-HG)/(SG-HG)).

作為本發明之基礎的大致想法如下(且其可在乘法圖(multiplicative view)中解釋)。任何主HDR輝度可藉由施加恆等變換(對角線)而變換成本身。若在重新分級影像之光譜的終端(亦即,為建立對應的SDR輝度(XDR=SDR)),必須獲得輸出輝度L_SDR=F_Mt1(Ln_M),其中Ln_M係Ln_Mstr_HDR輝度的某特定值,則亦可將此視為輸入輝度L_SDR=b_SDR(Ln_M)*Ln_M的乘法提升。若現可定義某個中間函數F_Mt1_ca,則最終處理係二個函數的連續施加F_IDRt1(F_Mt1_ca(Ln_Mster_HDR)),其中F_IDRt1進行從已計算之IDR像素輝度(從主HDR輝度推導)開始朝向任何像素(或物體)之SDR輝度的最終輝度映射。採用乘法項形式,可說是L_SDR=b_IDR*b_ca*Ln_M,其中二個提升對應於中間函數(或通道調適函數)及其餘的相關功能(其恰巧係與IDR影像一起傳達以建立ETSI2順應HDR視訊編碼的該函數)。注意到此等提升因子本身係Ln_Mster_HDR(或事實上任何與之關聯的中間明亮度)的函數。The general idea underlying the present invention is as follows (and it can be explained in a multiplicative view). Any master HDR brightness can be transformed into itself by applying an identity transformation (diagonal). If at the end of the spectrum of the reclassified image (that is, to establish the corresponding SDR brightness (XDR=SDR)), the output brightness L_SDR=F_Mt1(Ln_M) must be obtained, where Ln_M is a specific value of Ln_Mstr_HDR brightness, so Think of this as the multiplicative promotion of input luminance L_SDR=b_SDR(Ln_M)*Ln_M. If an intermediate function F_Mt1_ca can now be defined, the final process is to apply two functions continuously F_IDRt1(F_Mt1_ca(Ln_Mster_HDR)), where F_IDRt1 starts from the calculated IDR pixel brightness (derived from the main HDR brightness) towards any pixel ( (Or object) the final brightness mapping of the SDR brightness. In the form of multiplication terms, it can be said that L_SDR=b_IDR*b_ca*Ln_M, two of which correspond to the intermediate function (or channel adaptation function) and other related functions (which happen to be communicated with the IDR image to create an ETSI2 compliant HDR video Encoding the function). Note that these boost factors are themselves a function of Ln_Mster_HDR (or indeed any intermediate brightness associated with it).

現在若不需要傳達任何額外函數則係便利的(若後設資料管理不完美等,其可能例如丟失)。Now it is convenient if you don't need to convey any additional functions (if the meta-data management is not perfect, it may be lost, for example).

所以,若SLHDR2PLUS原則使用預約定固定方式以將分級者的F_Mt1函數(亦即,用於他期望使用之任何函數形狀的機制)變換成與PB_IDR(根據ETSI2編碼方法,一般亦將該值作為PB_CH傳達至接收器)對應的通道調適函數可係有用的。可顯示向上分級函數F_H2h不需要在與IDR影像關聯的後設資料中共同傳達,因為其對解碼器係固定且已知的,所以反函數F_??或許可從已接收F_I2s函數計算,如所將確實顯示的(若PB_C_H50亦傳達至接收器)。解碼器的新穎性係推導PB_C > PB_IDR之影像的此新方法。理論上,可進行從主F_Mt1推導F_Mt1_ca函數的任何固定方法,條件係其在數學上可逆或至少根據需求係可解碼的,但期望選擇執行HDR至IDR重分級(亦即,推導F_Mt1_ca形狀)使得其用於推導MDR影像的進一步變形與ETSI2所會產生者相容的一種方法(理論上,僅將ETSI2影像標準化在PB_C與100尼特之間,所以可以對PB_IDR與100尼特之間的動態範圍的所有影像要求影像模樣(亦即,所有像素輝度及顏色)的接近相等性開始,但亦可嘗試將技術限制加諸在將獲得的解決方案上,該技術限制係從已接收IDR朝向主HDR影像升級的影像(亦即,使用待由SLHDR2PLUS解碼器計算的F_??)具有與由ETSI2的顯示調適所將獲得的相同的模樣,該ETSI2用以接收,例如5000尼特PB_C Mster_HDR影像,及總輝度重新映射函數F_Mt1。Therefore, if the SLHDR2PLUS principle uses a predetermined fixed method to transform the grader’s F_Mt1 function (that is, the mechanism for any function shape he expects to use) to PB_IDR (according to the ETSI2 encoding method, this value is generally used as PB_CH The corresponding channel adaptation function can be useful. The displayable up-grading function F_H2h does not need to be shared in the meta data associated with the IDR image, because it is fixed and known to the decoder, so the inverse function F_?? may be calculated from the received F_I2s function, as shown It will be displayed (if PB_C_H50 is also transmitted to the receiver). The novelty of the decoder is the new method of deriving the image of PB_C> PB_IDR. Theoretically, any fixed method of deriving the F_Mt1_ca function from the main F_Mt1 can be carried out, provided that it is mathematically reversible or at least decodable according to demand, but it is desirable to choose to perform HDR to IDR reclassification (that is, to derive the F_Mt1_ca shape) such that It is used to derive a method compatible with the further deformation of MDR images and those produced by ETSI2 (in theory, only ETSI2 images are standardized between PB_C and 100 nits, so the dynamics between PB_IDR and 100 nits can be All images in the range require the image appearance (that is, the brightness and color of all pixels) to start with close equality, but it is also possible to try to impose technical limitations on the solution to be obtained. The technical limitation is from the received IDR to the main The HDR image upgraded image (that is, using F_?? to be calculated by the SLHDR2PLUS decoder) has the same appearance as that obtained by the display adjustment of ETSI2, which is used to receive, for example, 5000 nits PB_C Mster_HDR image, And the total brightness remapping function F_Mt1.

首先解釋此一較佳的通道調適 (亦即,F_Mt1_ca的計算、或於圖9中計算的F_H2hCI;及對應的(多個)IDR影像)可如何設計成其對SLHDR2PLUS的數個方法/實施例有用。First, explain how this better channel adaptation (that is, the calculation of F_Mt1_ca, or F_H2hCI calculated in Figure 9; and the corresponding IDR image(s)) can be designed into several methods/embodiments of SLHDR2PLUS it works.

圖12a顯示由分級者(或自動)最佳地選擇的白色位準偏移WLO_gr,且若可用,黑色位準偏移(BLO_gr)亦如此;對應於圖4中的單元403。FIG. 12a shows the white level offset WLO_gr optimally selected by the grader (or automatically), and if available, the black level offset (BLO_gr) is also the same; corresponding to the unit 403 in FIG. 4.

此時可假設此係唯一的動態範圍調整,亦即,輝度映射操作以從Mster_HDR起始影像獲得SDR影像(此白色在白色上及黑色在黑色上(black-on-black)更確切地說係給予不良品質LDR影像的基本型動態範圍轉換,該等不良品質LDR影像既不具有正確的平均亮度亦不具有平均視覺對比,更別說所期望之所得影像的更高影像品質描述符,但作為根據申請人之方法的重新分級鏈的第一步驟,其係不錯的步驟,且吾等首先必須解釋此步驟及其通道調適)。想法在於若(儘管至多PB_HDR=5000尼特之碼明亮度的可能性)實際上在目前待映射影像(或假如決定對所有的該等時間連續影像使用相同函數,在相同場景之視訊中的影像鏡頭)中沒有高於值MXH的像素輝度,則將最高MXH映射至SDR中的最大明亮度碼係合理的(亦即,例如1024,對應於100尼特的輝度)。任何其他映射方法(例如,HDR白色在SDR白色上映射(HDR-white-on-SDR-white mapping))將使所有的實際目前輝度變得甚至更暗,且其並非最佳的,鑑於SDR輝度範圍已經足夠小,仍需要最佳地含有HDR輝度的大範圍對應模擬。At this time, it can be assumed that this is the only dynamic range adjustment, that is, the brightness mapping operation to obtain the SDR image from the Mster_HDR starting image (the white is on white and the black is on black (black-on-black)). Basic dynamic range conversion for poor-quality LDR images, which have neither the correct average brightness nor the average visual contrast, let alone the expected higher image quality descriptor of the resulting image, but as According to the first step of the reclassification chain of the applicant's method, it is a good step, and we must first explain this step and its channel adjustment). The idea is that if (despite the possibility of at most PB_HDR=5000 nits code brightness) the image to be mapped is actually currently (or if it is decided to use the same function for all the time-continuous images, the image in the video of the same scene If there is no pixel brightness higher than the value MXH in the lens), it is reasonable to map the highest MXH to the maximum brightness code in the SDR (ie, 1024, corresponding to a brightness of 100 nits). Any other mapping method (for example, HDR-white-on-SDR-white mapping) will make all the actual current brightness even darker, and it is not optimal, given the SDR brightness The range is small enough, and a large-range corresponding simulation that best contains HDR brightness is still needed.

然後,問題係此WLO值是否應針對IDR影像調整(如可於圖12b中所見的,中間影像中的最亮明亮度可能已下降成更接近PB_IDR,仍將有用於SDR重新分級影像的最終偏移以映射在1.0上;該映射亦可等效地顯示在HDR 5000尼特影像的經正規化輝度範圍上,如藉由ON所指示的)。在第一種方法中,不需要其(因為在如何設計用於計算F_Mt1_ca函數的演算法上有一些自由),但假如按比例調整其,則可使用下列方法。Then, the question is whether this WLO value should be adjusted for the IDR image (as can be seen in Figure 12b, the brightest brightness in the intermediate image may have been reduced to be closer to PB_IDR, and there will still be a final offset for the SDR reclassified image Shift to map on 1.0; the map can also be equivalently displayed on the normalized luminance range of the HDR 5000 nit image, as indicated by ON). In the first method, it is not needed (because there is some freedom in how to design the algorithm used to calculate the F_Mt1_ca function), but if it is adjusted proportionally, the following method can be used.

用於此類水平按比例調整的比例因子需要判定,以能夠按比例調整輝度映射函數,其在此情形中係其之參數WLO_ca,及類似地經按比例調整BLO_gr(符號BLO_ca)。若期望此參數隨PB_IDR線性按比例調整,則限制係該動作完全進行,亦即,當PB_IDR=PB_SDR時,偏移具有其之最大程度BLO_gr。另一方面,對於HDR影像,BLO或WLO應係零,因為具有用於將5000尼特Mster_HDR映射至Mster_HDR的恆等變換,所以沒有需要校正的事物。The scale factor used for such level scaling needs to be determined in order to be able to scale the brightness mapping function, which in this case is its parameter WLO_ca, and similarly scaled BLO_gr (symbol BLO_ca). If this parameter is expected to be adjusted linearly and proportionally with PB_IDR, the restriction is that the action is fully performed, that is, when PB_IDR=PB_SDR, the offset has its maximum degree of BLO_gr. On the other hand, for HDR images, BLO or WLO should be zero, because there is an identity transform for mapping 5000 nits of Mster_HDR to Mster_HDR, so there is nothing to correct.

因此,可制訂參數的此一定義 WLO_ca=scaleHor*WLO_gr    (0<=ScaleHor<=1) BLO_ca=scaleHor*BLO_gr      [方程式6]Therefore, this definition of the parameter can be formulated WLO_ca=scaleHor*WLO_gr (0<=ScaleHor<=1) BLO_ca=scaleHor*BLO_gr [Equation 6]

然後問題係如何定義ScaleHor。Then the question is how to define ScaleHor.

12b 顯示不同動態範圍的頻譜,更具體的,沿著水平軸而組織的不同PB_C影像。其等沿著各影像之峰亮度PB_C之感知位置而定位。因此,將其等置於係v(PB_C)的橫座標位置上,藉此v係函數方程式1,其中值PB_C用於參數L_in,並具有針對已分級之Mster_HDR影像的峰亮度計算之方程式2的值RHO(亦即,例如對於5000尼特PB_C Mster_HDR影像,RHO係25)。若縱座標軸亦使其明亮度L根據v函數(在垂直軸上)參數化,具有相同的RHO=25,則PB_C很好地遵循直線,且可在此框架中完成定義及計算。例如,可將任何中間影像的峰亮度PB_C的明亮度投射至主(5000尼特)明亮度軸上。所使用的符號係「P_I1oI2」,意謂著當表示在影像I2的明亮度範圍上時,經由影像I1的峰亮度(其係正常輝度)之v函數的施加所對應之明亮度的值。所以,例如,P_IoH係在Mster_HDR明亮度範圍上的經選擇IDR影像之峰亮度的明亮度,且P_SoH係100尼特的明亮度(注意到此範圍上的1.0對應於Mster_HDR影像的PB_C,使得,例如,100尼特的位置(例如,0.5)將取決於所選擇之Mster-HDR影像表示而改變,其係為何方程式1及方程式2係RHO參數化的曲線家族)。 Figure 12b shows the spectrum of different dynamic ranges, more specifically, different PB_C images organized along the horizontal axis. They are located along the perceived position of the peak brightness PB_C of each image. Therefore, place them on the abscissa position of the system v(PB_C), whereby v is the function equation 1, where the value PB_C is used for the parameter L_in, and has the equation 2 for the peak brightness calculation of the graded Mster_HDR image Value RHO (ie, for example, for 5000 nits PB_C Mster_HDR images, RHO is 25). If the ordinate axis also makes its brightness L parameterized according to the v function (on the vertical axis), with the same RHO=25, then PB_C follows the straight line well, and the definition and calculation can be completed in this framework. For example, the brightness of the peak brightness PB_C of any intermediate image can be projected onto the main (5000 nits) brightness axis. The symbol used is "P_I1oI2", which means the brightness value corresponding to the application of the v function of the peak brightness of the image I1 (which is the normal brightness) when it is expressed in the brightness range of the image I2. So, for example, P_IoH is the peak brightness of the selected IDR image in the Mster_HDR brightness range, and P_SoH is the brightness of 100 nits (note that 1.0 in this range corresponds to the PB_C of the Mster_HDR image, so that, For example, the position of 100 nits (for example, 0.5) will change depending on the selected Mster-HDR image representation, which is why Equation 1 and Equation 2 are the RHO parameterized curve family).

然後用於ScaleHor的合適函數將係從1-P_IoH開始。PB_IDR減少得越多,亦即,選擇更朝向右方,此函數將確實增加MsterHDR影像的吾等IDR影像表示。且假如P_IoH=1,其將產生0,其在選擇5000尼特的IDR影像時發生(純粹用於scaleHor方程式的理論解釋,因為技術上不合理)。然而,當IDR=SDR時,此方程式不等於1.0,因此需要使用因子k將其按比例調整。Then the appropriate function for ScaleHor will start from 1-P_IoH. The more the PB_IDR decreases, that is, the more to the right, this function will indeed increase our IDR image representation of the MsterHDR image. And if P_IoH=1, it will produce 0, which occurs when the IDR image of 5000 nits is selected (purely used for the theoretical explanation of the scaleHor equation, because it is technically unreasonable). However, when IDR=SDR, this equation is not equal to 1.0, so it needs to be adjusted proportionally with a factor k.

若k=1-P_SoH(其係與對應於各種IDR位置的變數P_IoH成對比的固定值),可證實正規化係正確的,因此: ScaleHor=(1-P_IoH)/(1-P_SoH)         [方程式7]If k=1-P_SoH (which is a fixed value compared with the variable P_IoH corresponding to various IDR positions), it can be verified that the normalization system is correct, so: ScaleHor=(1-P_IoH)/(1-P_SoH) [Equation 7]

用於該通道轉換的正確para的判定(圖4,單元404)係更複雜的,並以 13 說明。The determination of the correct para for this channel conversion (FIG. 4, unit 404) is more complicated and is illustrated with FIG. 13 .

在此情形中,發明人決定在正交於恆等對角線([0,0]-[1,1])的對角線方向上進行函數變換。此必須在所有函數重新分級的正常Mster_HDR/XDR座標系統表示中以等效參數化轉換。In this case, the inventor decided to perform the function transformation in the diagonal direction orthogonal to the identity diagonal ([0,0]-[1,1]). This must be converted with equivalent parameterization in the normal Mster_HDR/XDR coordinate system representation of the reclassification of all functions.

將基本按比例調整定義在將對角線改變成水平軸的45度旋轉的軸系統中(圖13a)。看到其係例如經旋轉para的函數Fx。以因子La/K對經旋轉對角線(亦即,新的x軸)上的點按比例調整任何值dY係合理的(該dX對應於某個橫座標,亦即原始軸系統中的L_Mster_HDR明亮度),藉此K係函數的完整動作,亦即完整dY值,且經按比例調整dY_ca值在此經旋轉系統中將係(La/K)*dY。The basic proportional adjustment is defined in a 45-degree rotation axis system that changes the diagonal to the horizontal axis (Figure 13a). See that it is a function Fx that is rotated para, for example. It is reasonable to adjust any value dY in proportion to the points on the rotated diagonal (ie, the new x axis) by the factor La/K (the dX corresponds to a certain abscissa, that is, L_Mster_HDR in the original axis system) Brightness), the complete action of the K system function, that is, the complete dY value, and the proportionally adjusted dY_ca value will be (La/K)*dY in this rotating system.

定義sc_r=La/K,其中La= 1/P_IoH且K=1/P_SoH(應注意I2明亮度在I1軸上的值可係重新制訂成I1明亮度在I2軸上的值,特別係例如1/P_IoH=P_HoI;例如若P_IoH=0.7,此意謂著PB_Mstr_HDR將釘在PB_IDR上方的1/0.7)。Define sc_r=La/K, where La=1/P_IoH and K=1/P_SoH (It should be noted that the value of I2 brightness on the I1 axis can be reformulated to the value of I1 brightness on the I2 axis, especially for example 1. /P_IoH=P_HoI; for example, if P_IoH=0.7, this means that PB_Mstr_HDR will be nailed to 1/0.7 above PB_IDR).

現在需要計算對角線sc_r的等效垂直按比例調整sc*。Now it is necessary to calculate the equivalent vertical scale of the diagonal sc_r to adjust sc*.

此可藉由施加反向旋轉數學(實際上藉由首先將K及La界定為1.0而非1.4),將圖13a表示帶到圖13b的對角線上而完成。此藉由矩陣旋轉(旋轉至主表示之對角線系統中的任何x_r、y_r,例如1、dY)產生: [x1,y1]=[cos(pi/4) -sin(pi/4) ; sin(pi/4) cos(pi/4)]*[1, P_HoI= 1/La] [x2,y2]=[cos(pi/4) -sin(pi/4) ; sin(pi/4) cos(pi/4)]*[1, P_HoS= 1/K] [方程式8]This can be done by applying reverse rotation mathematics (actually by first defining K and La as 1.0 instead of 1.4), bringing the representation of Figure 13a to the diagonal of Figure 13b. This is generated by matrix rotation (rotation to any x_r, y_r in the diagonal system of the main representation, such as 1, dY): [x1,y1]=[cos(pi/4) -sin(pi/4); sin(pi/4) cos(pi/4)]*[1, P_HoI= 1/La] [x2,y2]=[cos(pi/4) -sin(pi/4); sin(pi/4) cos(pi/4)]*[1, P_HoS= 1/K] [Equation 8]

應注意因為對角按比例調整,x座標及y座標二者將改變,但無論如何將SG及HG(以及任何其他經按比例調整點改變)係定義成斜率而非角度。It should be noted that because the diagonal is adjusted proportionally, both the x-coordinate and the y-coordinate will change, but in any case, SG and HG (and any other proportional adjustment points) are defined as slopes rather than angles.

從圖13b中之從(0,0)至表示明亮度映射函數之對角按比例調整點的正方形之線對從(0,0)至係原始輝度映射函數點的圓之線的旋轉(或反之亦然)可藉由任何固定橫座標值(例如,a)除斜率而找出(具有對應於經標準化比例因子sc*之垂直變化的角度變化): sc* = (y2/x2)/(y1/x1)=[(1+1/K)/(1-1/K)]/[(1+1/La)/(1-1/La)]=[(K+1)/(K-1)]/[(La+1)/(La-1)] =[(La-1)*(K+1)]/[(La+1)*(K-1)]         [方程式8]The rotation of the line from (0,0) in Figure 13b to the square representing the diagonally proportional adjustment point of the brightness mapping function from (0,0) to the circle of the original brightness mapping function point (or And vice versa) can be found by dividing the slope by any fixed abscissa value (for example, a) (with the angle change corresponding to the vertical change of the normalized scale factor sc*): sc* = (y2/x2)/(y1/x1)=[(1+1/K)/(1-1/K)]/[(1+1/La)/(1-1/La)] =[(K+1)/(K-1)]/[(La+1)/(La-1)] =[(La-1)*(K+1)]/[(La+1)*(K-1)] [Equation 8]

隨後,必須計算對應於全部垂直按比例調整(sc*=1)的實際縱座標距離n,且此可藉由由於涉及在對角線中的45度角,使按比例調整mip係中點(具有在其下方至對角線及在其上方至para的二個線性區段之交點(mx, my)的距離Fd)而完成。因此,n=Fd等於在mx之差動斜率SG-1的一半,亦即,mx*(SG-1)/2。Subsequently, the actual ordinate distance n corresponding to all vertical scaling (sc*=1) must be calculated, and this can be achieved by making the midpoint of the scaled mip system due to the 45 degree angle in the diagonal ( It is completed with a distance Fd from below it to the diagonal and above it to the intersection point (mx, my) of two linear segments of para. Therefore, n=Fd is equal to half of the differential slope SG-1 at mx, that is, mx*(SG-1)/2.

隨後,必須將經偏移交點(mxca, myca)計算如下: mxca=mx+d= mx+ [mx*(SG-1)/2]*(1-sc*) myca=my-d=SG*mx-(mxca-mx)= -mxca+ mx*(SG+1)     [方程式9]Subsequently, the offset intersection point (mxca, myca) must be calculated as follows: mxca=mx+d= mx+ [mx*(SG-1)/2]*(1-sc*) myca=my-d=SG*mx-(mxca-mx)= -mxca+ mx*(SG+1) [Equation 9]

使用新點的位置,最終可計算經通道調適陰影增益(SG_ca,見圖10)及經通道調適高亮度增益HG_ca: SG_ca = myca/mxca HG_ca=(myca-1)/(mxca-1)        [方程式10]Using the position of the new point, the channel-adjusted shadow gain (SG_ca, see Figure 10) and the channel-adjusted high brightness gain HG_ca can be calculated finally: SG_ca = myca/mxca HG_ca=(myca-1)/(mxca-1) [Equation 10]

最後,有數個用於拋物線中間區段的方法/實施例。Finally, there are several methods/embodiments for the middle section of the parabola.

在產生實務上相當良好之視覺結果的一種方法中,取WP_ca=WP_gr,其中WP_gr係當由有關主HDR及主SDR影像之內容創作者的分級者或自動化而最佳化時拋物線區段的原始寬度,且WP_ca係經通道調適para函數的寬度。另一方法係定義WP_ca=v(abs(sc*), 100)*WP_gr,其中v函數再度藉由上述方程式1及方程式2定義。In a way to produce practically good visual results, take WP_ca=WP_gr, where WP_gr is the original parabolic section when optimized by the grader or automation of the content creator of the main HDR and main SDR images Width, and WP_ca is the width of the para function adjusted by the channel. Another method is to define WP_ca=v(abs(sc*), 100)*WP_gr, where the v function is again defined by the above equations 1 and 2.

使其作為可用技術,其可用以針對SLHDR2PLUS定義合適的IDR定義。Make it a usable technology that can be used to define a suitable IDR definition for SLHDR2PLUS.

回到 10,上述方程式定義可如何獨特地定義函數F_Mt1_ca,以用於從例如5000尼特主HDR影像開始之例如所選擇的1000尼特PB_IDR。若此函數係由HDR函數產生單元901判定,可將其輸出為F_H2hCI並發送為IDR影像計算單元902的輸入。此單元將會將此函數施加至接收為影像輸入[L_IDR=F_H2hCI(L_MsterHDR)= F_Mt1_ca(L_MsterHDR)]之MsterHDR影像的所有像素輝度,以獲得對應的IDR影像像素輝度,且將輸出IDR影像。Returning to FIG. 10, the above equation defines how the function F_Mt1_ca can be uniquely defined for the selected 1000 nit PB_IDR starting from, for example, a 5000 nit master HDR image. If this function is determined by the HDR function generating unit 901, it can be output as F_H2hCI and sent as the input of the IDR image calculation unit 902. This unit will apply this function to all the pixel intensities of the MsterHDR image received as the image input [L_IDR=F_H2hCI(L_MsterHDR)= F_Mt1_ca(L_MsterHDR)] to obtain the corresponding IDR image pixel intensity, and will output the IDR image.

現在問題仍係將哪個輝度映射函數加至到IDR的後設資料中,以使其彷彿正常的ETSI2影像一樣顯現(亦即,使得任何傳統的ETSI2解碼器可正常地將其解碼,產生如其應有之模樣的SDR影像或任何MDR影像)。The question is still which brightness mapping function to add to the IDR meta data to make it appear like a normal ETSI2 image (that is, so that any traditional ETSI2 decoder can decode it normally, and produce it as it should. SDR image or any MDR image that looks like it).

可將此次級IDR輝度映射函數F_I2sCI(其亦將係para)定義如下(且將藉由IDR映射函數產生器903計算)。可將用於IDR影像SG_IDR的陰影增益視為在已從Mster_HDR去到IDR影像之後的剩餘乘法(或斜率)(亦即,從IDR影像開始的剩餘相對明亮化以獲得SDR影像): Y_out (x_in)=SG_gr*x_in; = F_I2sCI(L_IDR=SG_ca*x_in)This secondary IDR luminance mapping function F_I2sCI (which will also be para) can be defined as follows (and will be calculated by the IDR mapping function generator 903). The shadow gain used for the IDR image SG_IDR can be regarded as the remaining multiplication (or slope) after going from Mster_HDR to the IDR image (that is, the remaining relative brightening from the IDR image to obtain the SDR image): Y_out (x_in)=SG_gr*x_in; = F_I2sCI(L_IDR=SG_ca*x_in)

亦已知將用於最暗像素的相同para線性區段映射施加至新的IDR明亮度輸入: Y_out=SG_IDR*L_IDR 因此: SG_gr= SG_IDR*SG_ca [方程式11] (例如,取輸入x_in=L_Mster_HDR=0.2,其從對角線映射至L_IDR=0.3=(0.3/0.2)*x_in,其最後映射至Y_out=0.4=k*0.3,其中k=0.4/0.3;Y_out=SG_gr*0.2=(0.4)*0.2=(0.4/0.3)*(0.3/0.2)*0.2)。It is also known to apply the same para linear segment mapping for the darkest pixel to the new IDR brightness input: Y_out=SG_IDR*L_IDR therefore: SG_gr= SG_IDR*SG_ca [Equation 11] (For example, take the input x_in=L_Mster_HDR=0.2, which maps from the diagonal to L_IDR=0.3=(0.3/0.2)*x_in, and finally maps to Y_out=0.4=k*0.3, where k=0.4/0.3; Y_out =SG_gr*0.2=(0.4)*0.2=(0.4/0.3)*(0.3/0.2)*0.2).

因此,從方程式11,遵循該方式以計算所需的SG_IDR(鑑於如上文所述地使用固定方法以判定SG_ca): SG_IDR=SG_gr/SG_ca   [方程式12] 類似地: HG_IDR=HG_gr/HG_ca [方程式13]Therefore, from Equation 11, follow this method to calculate the required SG_IDR (in view of the fixed method used to determine SG_ca as described above): SG_IDR=SG_gr/SG_ca [Equation 12] Similarly: HG_IDR=HG_gr/HG_ca [Equation 13]

其中,HG_gr再次係由將主SDR影像模樣相關於主HDR影像模樣(亦即,其明亮度分布)的內容創作者判定的最佳高亮度增益,且HG_ca係對應於原始高亮度增益HG_gr的經通道調適高亮度增益。Among them, HG_gr is again the best high brightness gain determined by the content creator who correlates the main SDR image pattern with the main HDR image pattern (that is, its brightness distribution), and HG_ca corresponds to the original high brightness gain HG_gr. Channel adjustment is high brightness gain.

須注意基本陰影增益調整可相關於來自SDR與IDR影像之間的峰亮度的差異之所預期的簡單陰影增益而判定為:ShadBst=SG_IDR/P_IoS。如所述,當表示在SDR影像的經正規化明亮度軸上時,P_IoS係IDR影像的最大可編碼輝度,亦即,例如7.0。It should be noted that the basic shadow gain adjustment can be determined by the expected simple shadow gain from the difference in peak brightness between SDR and IDR images as: ShadBst=SG_IDR/P_IoS. As mentioned, when expressed on the normalized brightness axis of the SDR image, P_IoS is the maximum coded brightness of the IDR image, that is, for example, 7.0.

注意到,有高亮度增益無法大於預定義數目(以ETSI標準編成高亮度增益)的一些實際實施例,在此情形中,需要高亮度增益的更進一步重新計算,見下文,但此對所有實施例而言非必要的。例如,可將此實現為:Note that there are some practical embodiments where the high-brightness gain cannot be greater than the predefined number (the high-brightness gain is programmed in the ETSI standard). In this case, a further recalculation of the high-brightness gain is required. See below, but this applies to all implementations. For example, it is not necessary. For example, this can be implemented as:

If HG_IDR>KLIM then HG_IDR_adj=KLIM  [方程式14],其中KLIM較佳地等於0.5。If HG_IDR>KLIM then HG_IDR_adj=KLIM [Equation 14], where KLIM is preferably equal to 0.5.

確實地,假設分級者已使HG_gr接近0.5之最大值,且對應的HG_ca(其作為更柔軟映射應具有更接近對角線的HG_ca,亦即,大於HG_gr)係例如0.75,則發現該除法係0.67,其高於當標準化時可根據純粹的ETSI2 HDR視訊信號傳達的最大值。一種解決方案係例如重新定義較小的HG_gr,使得HG_IDR將不高於0.5(經標準化最大值)。此再度需要將所有重新分級態樣列入考量的可觀計算,如將於下文所示者。另一選項係例如藉由將HG_IDR限制至0.5,以使IDR +後設資料信號順應,同時傳達為額外後設資料(完全不受限制的HG_IDR)。HG_gr一般將取決於Mster_HDR影像的PB_C,但亦取決於何種影像物體在影像中(例如,明亮多彩的物體,其足夠重要到不能將其等之輝度壓縮太多,一極端實例係接近強大太陽之明亮行星的影像,其使用許多非常高的L_Mster_HDR明亮度值及很少的暗者分級)。HG_ca一般除了其他事物之外將取決於所選擇的PB_IDR有多接近PB_Mster_HDR。Indeed, assuming that the classifier has made HG_gr close to the maximum value of 0.5, and the corresponding HG_ca (which as a softer map should have HG_ca closer to the diagonal, that is, greater than HG_gr) is, for example, 0.75, the division system is found 0.67, which is higher than the maximum value that can be communicated based on a pure ETSI2 HDR video signal when standardized. One solution is to redefine the smaller HG_gr so that HG_IDR will not be higher than 0.5 (the standardized maximum value). This again requires that all reclassification aspects be taken into account in a considerable calculation, as will be shown below. Another option is to limit the HG_IDR to 0.5, so that the IDR + meta-data signal is compliant, and at the same time communicated as additional meta-data (HG_IDR is completely unrestricted). HG_gr will generally depend on the PB_C of the Mster_HDR image, but it also depends on what image object is in the image (for example, bright and colorful objects, which are important enough to not compress their brightness too much, an extreme case is close to the powerful sun The image of the bright planet, which uses many very high L_Mster_HDR brightness values and very few dark ones). HG_ca will generally depend on how close the selected PB_IDR is to PB_Mster_HDR among other things.

此外,假設WP_IDR=WP_gr      [方程式15]In addition, suppose WP_IDR=WP_gr [Equation 15]

如所述,其他實施例係可能的,但以較容易方式說明該等原理,現在產生該假設。As mentioned, other embodiments are possible, but the principles are explained in an easier way, and this hypothesis is now generated.

使用方程式6計算黑色位準偏移與白色位準偏移的適當經通道調適值(若有任何此類偏移由內容創作者定義)。現在剩下的係如何計算(藉由IDR視訊編碼器)BLO_IDR及WLO_IDR的對應值。Use Equation 6 to calculate the appropriate channel-adjusted values for the black level offset and white level offset (if any such offset is defined by the content creator). Now the rest is how to calculate (by IDR video encoder) the corresponding values of BLO_IDR and WLO_IDR.

首先,以編碼值glim的較佳方式計算: glim= {log[1+(rhoSDR-1)*power((0.1/100);1/2.4)]/log(rhoSDR)}/{log[1+(rhoHDR-1)*power(1/PB_Mster_HDR;1/2.4)]/log(rhoHDR)} [方程式16] 其中rhoSDR=1+32*power(100/10000;1/2.4),且 rhoHDR=1+32*power(PB_Mster_HDR/10000; 1/ 2.4)First, calculate in a better way to encode the value glim: glim= {log[1+(rhoSDR-1)*power((0.1/100);1/2.4)]/log(rhoSDR)}/{log[1+(rhoHDR-1)*power(1/PB_Mster_HDR; 1/2.4)]/log(rhoHDR)} [Equation 16] Where rhoSDR=1+32*power(100/10000;1/2.4), and rhoHDR=1+32*power(PB_Mster_HDR/10000; 1/ 2.4)

此將導致調適BLO的簡單方式,因為實際上在HDR編碼的ETSI1及ETSI2標準方法中,亦有平行於輝度處理鏈(圖4中的單元402至406及圖15中的1502至1506)之將具有角度glim的線性曲線施加至所感知的Y’HP且與由所解釋之單元所計算的Y’GL值比較及取得平行計算之二個值的最大者(此除了其他事物之外對ETSI1的可逆性係重要,以允許最暗的HDR明亮度的重建)的線性增益限制器,該等圖式僅用於易於瞭解所說明之發明人之方法的部分循序重新分級步驟。This will lead to a simple way to adapt BLO, because in fact, in the ETSI1 and ETSI2 standard methods of HDR encoding, there are also parallel to the luminance processing chain (units 402 to 406 in Figure 4 and 1502 to 1506 in Figure 15). A linear curve with an angle glim is applied to the perceived Y'HP and compared with the Y'GL value calculated by the explained unit, and the largest of the two values calculated in parallel is obtained (this, among other things, is for ETSI1 Reversibility is important to allow the reconstruction of the darkest HDR brightness) linear gain limiter. These diagrams are only used for easy understanding of part of the sequential reclassification steps of the described inventor's method.

現在可顯示由於此限制器之動作,BLO值可容易地以下列方程式而通道調適: BLO_IDR=BLO_gr*glim          [方程式17] glim如上文所示地取決於PB_Mster_HDR的特定選擇,且可係例如0.6。It can now be shown that due to the action of this limiter, the BLO value can be easily adjusted to the channel by the following equation: BLO_IDR=BLO_gr*glim [Equation 17] glim depends on the specific selection of PB_Mster_HDR as shown above, and can be, for example, 0.6.

此以 17 說明。圖17b顯示圖17a所示之全範圍明亮度映射的最暗明亮度的放大。將各種函數再次顯示在經標準化圖表上,該等函數對應於各種輸入PB_C及輸出PB_C。This is illustrated in Figure 17 . Figure 17b shows an enlargement of the darkest brightness of the full range brightness map shown in Figure 17a. The various functions are displayed on the standardized chart again, and these functions correspond to various input PB_C and output PB_C.

FL_gr係由內容創作者建立之用於將例如4000尼特Mster_HDR映射至SDR的函數。點虛(dotted)曲線FL_ca係用以從Mster_HDR產生例如500尼特IDR的通道調適。虛(dashed)曲線FL_IDR係將IDR明亮度映射至SDR明亮度的曲線。在圖17b的放大圖表中,看到FL_gr曲線在約0.03的輸入處具有尖銳扭轉,其係平行增益限制器起作用處(亦即,其線性輸出y=glim*Y’HP被選為較低明亮度輸入的函數輸出,而非來自圖4所示之該鏈中的所有單元之動作的Y’GL值(關於全部電路描述,見ETSI1標準,圖4))。FL_gr is a function created by content creators to map, for example, 4000 nits Mster_HDR to SDR. The dotted curve FL_ca is used to generate channel adaptation such as 500 nit IDR from Mster_HDR. The dashed curve FL_IDR is a curve that maps the IDR brightness to the SDR brightness. In the enlarged chart of Figure 17b, it can be seen that the FL_gr curve has a sharp twist at the input of about 0.03, which is where the parallel gain limiter works (that is, its linear output y=glim*Y'HP is selected as the lower The output of the function of the brightness input, instead of the Y'GL value from the actions of all the units in the chain shown in Figure 4 (for full circuit description, see ETSI1 standard, Figure 4)).

任何曲線的BLO值係若沒有增益限制時將發生的與水平軸的相交,亦即,例如如點虛線所作地藉由將局部斜率延伸至高於FL_gr曲線的0.3所示的BLO_gr。The BLO value of any curve is the intersection with the horizontal axis that will occur if there is no gain limit, that is, for example, as shown by the dotted line by extending the local slope to BLO_gr higher than 0.3 of the FL_gr curve.

針對此施加,知道亦可延伸FL_IDR曲線以獲得BLO_IDR值(應注意有glim_IDR值,其係ETSI2標準所將使用的,其不同於glim_gr),及知道可將此較低BLO_IDR值發現為glim*BLO_gr(應注意此glim(唯一需要針對SLHDR2PLUS計算之glim)係在圖17b中顯示為glim_gr的事物)係足夠的。For this application, know that the FL_IDR curve can also be extended to obtain the BLO_IDR value (note that there is a glim_IDR value, which is used by the ETSI2 standard, which is different from glim_gr), and that this lower BLO_IDR value can be found as glim*BLO_gr (It should be noted that this glim (the only glim that needs to be calculated for SLHDR2PLUS) is what is shown as glim_gr in Figure 17b) is sufficient.

隨後,執行以下計算以獲得WLO_IDR。Subsequently, the following calculation is performed to obtain WLO_IDR.

圖17a亦顯示者係有三個不同的WLO,亦即,原本由分級者產生為他的主HDR至SDR映射策略的WLO_gr(亦為圖12b中的ON)、在FL_ca曲線橫跨上水平線處的經通道調適的WLO_ca、及係WLO_gr明亮度至IDR明亮度軸上之映射的該者(其可使用像圖12的表示來發想,其中MXH投影至MXI,且最後亦有WLO_IDR,其係剩下用於將IDR明亮度向下明亮度映射至SDR的WLO(當從用於WLO_gr及WLO_ca的關聯PB_C=5000(因為用於使用該等函數之重新分級的輸入影像係5000尼特Mster_HDR)開始至用於重新分級所需之IDR相關定義的PB_C=1000尼特時(因為在ETSI2順應觀點中,所接收之自其推導其他影像的起始影像係,例如,1000尼特PB_C IDR影像),其因為經正規化明亮度橫座標定義改變而與經按比例調整WLO_ca不同)。Figure 17a also shows that there are three different WLOs, that is, the WLO_gr (also ON in Figure 12b) that was originally generated by the grader as his master HDR to SDR mapping strategy, and the FL_ca curve crosses the upper horizontal line. The channel-adapted WLO_ca and the mapping from WLO_gr brightness to IDR brightness axis (it can be imagined using a representation like Figure 12, where MXH is projected to MXI, and there is also WLO_IDR at the end, which is left WLO used to map IDR brightness down to SDR (when starting from the associated PB_C=5000 for WLO_gr and WLO_ca (because the input image used for reclassification using these functions is 5000 nits Mster_HDR) When PB_C=1000 nits for the IDR-related definition required for reclassification (because in the ETSI2 compliance point of view, the received initial image system from which other images are derived, for example, 1000 nits PB_C IDR image), It is different from the scaled WLO_ca because of the change in the normalized brightness abscissa definition).

圖17c在函數圖表的上隅角(接近[1,1])上放大。如從(經正規化)縱座標位置至橫座標位置的圓形投影所示,WLO_IDR值遵循將作為輸入發送通過FL_ca曲線的WLO_gr值。在圖12b上看到MXI位置確實係在IDR明亮度軸上之被映射至1.0的SDR明亮度的經正規化位置,因此其係如WLO_IDR之定義之所需。Figure 17c zooms in on the upper corner of the function graph (close to [1,1]). As shown by the circular projection from the (normalized) ordinate position to the abscissa position, the WLO_IDR value follows the WLO_gr value that will be sent as input through the FL_ca curve. It can be seen in Figure 12b that the MXI position is indeed the normalized position mapped to the SDR brightness of 1.0 on the IDR brightness axis, so it is required by the definition of WLO_IDR.

可從表面上認為,若WLO值隨後在編碼側通過其的映射曲線係para(見圖4,單元404在單元403之後映射),其一般係將涉及之para的上線性區段。On the surface, it can be considered that if the WLO value subsequently passes through the mapping curve para on the encoding side (see FIG. 4, the unit 404 is mapped after the unit 403), it will generally be the upper linear section of para.

然而,由於para如何定義,可涉及其之任何部分(甚至有僅有para之SG的特殊值定義理論上移動至高於1.0之非常高的交點的設定,因此在至多最亮明亮度之情形中的行為僅由陰影增益斜率判定,導致對將大多含有非常亮的明亮度的HDR影像重新分級至SDR有用的線性曲線,像是例如,科幻電影中由5個太陽照明的沙漠行星)。因此,此變成有點涉及計算,其中其需要測試para的三個子部分的何者係可施加的,較佳的數學實現係: WLO_co=255*WLO_ca/510 BLO_co=255*BLO_ca/2040 Xh=(1-HG_ca)/(SG_ca-HG_ca)+WP_ca WW=(1-WLO_gr*255/510-BLO_co)/(1-WLO_co-BLO-co) IF WW>=Xh THEN WLO_IDR=HG_ca*(1-WW)*510/255 [該上線性區段] ELSE { Xs=(1-HG_ca)/(SG_ca-HG_ca)-WP_ca IF WW>Xs { [輸入,亦即WLO_gr必須通過經通道調適para的拋物線子部分映射] A= -0.5*(SG_ca-HG_ca/(2*WP_ca)) B=(1-HG_ca)/(2*WP_ca) + (SG_ca+HG_ca)/2 C= -[(SG_ca-HG_ca)*(2*WP_ca)-2*(1-HG_ca)]^2 / (8*(SG_ca-HG_ca)* 2*WP_ca) WLO_IDR=(1-(A*WW*WW+B*WW+C))*510/255 } ELSE [在施加para之陰影增益子部分的特殊情形中] WLO_IDR =(1-SG_ca*WW)*510/255 }However, because of how para is defined, any part of it can be involved (there is even a setting where the definition of a special value of SG of only para is theoretically moved to a very high intersection point higher than 1.0, so in the case of at most the brightest brightness The behavior is only determined by the shadow gain slope, resulting in a linear curve useful for regrading HDR images that mostly contain very bright brightness to SDR, such as, for example, a desert planet illuminated by 5 suns in a science fiction movie). Therefore, this becomes a bit involved in calculations, where it needs to test which of the three sub-parts of para can be applied, a better mathematical realization system: WLO_co=255*WLO_ca/510 BLO_co=255*BLO_ca/2040 Xh=(1-HG_ca)/(SG_ca-HG_ca)+WP_ca WW=(1-WLO_gr*255/510-BLO_co)/(1-WLO_co-BLO-co) IF WW>=Xh THEN WLO_IDR=HG_ca*(1-WW)*510/255 [The upper linear section] ELSE { Xs=(1-HG_ca)/(SG_ca-HG_ca)-WP_ca IF WW>Xs {[Input, that is, WLO_gr must be mapped through the parabolic sub-part of the parabolic channel adjustment] A= -0.5*(SG_ca-HG_ca/(2*WP_ca)) B=(1-HG_ca)/(2*WP_ca) + (SG_ca+HG_ca)/2 C= -[(SG_ca-HG_ca)*(2*WP_ca)-2*(1-HG_ca)]^2 / (8*(SG_ca-HG_ca)* 2*WP_ca) WLO_IDR=(1-(A*WW*WW+B*WW+C))*510/255 } ELSE [In the special case where the shadow gain sub-part of para is applied] WLO_IDR =(1-SG_ca*WW)*510/255 }

這些參數SG_IDR、HG_IDR、WP_IDR、BLO_IDR、WLO_IDR(且若有需要,用於可客製化曲線的類似額外參數)係特徵化且因此作為函數F_I2sCI之輸出的參數(實際上是否輸出特徵化此所需曲線的形狀以進行顯示調適的此等參數,或是否輸出特徵化該函數的LUT僅係實施例選擇;主要者係在經正規化至1.0之軸系統中的正確輝度映射函數形狀F_I2sCI作為後設資料與(多個)IDR影像共同傳達)。These parameters SG_IDR, HG_IDR, WP_IDR, BLO_IDR, WLO_IDR (and if necessary, similar additional parameters for the customizable curve) are the parameters of the characterization and therefore as the output parameters of the function F_I2sCI (in fact, whether to output the characterization of this The shape of the curve is required to display these parameters for adjustment, or whether to output the LUT characterizing the function is only an embodiment choice; the main one is the correct brightness mapping function shape F_I2sCI in the axis system normalized to 1.0 as the back Suppose the data is shared with (multiple) IDR images).

編碼器現在根據新穎的SLHDR2PLUS方法特徵化。然後問題係應如何設計解碼器。必須瞭解此解碼器現在將僅得到F_I2sCI函數,所以其必須稍微計算從已接收IDR影像重建原始Mster_HDR影像所需的函數F_??。在此SLHDR2PLUS編碼方法中,此將係使用在編碼器中以產生IDR明亮度的F_H2hCI函數的反函數,但此類函數仍應係可計算的。The encoder is now characterized according to the novel SLHDR2PLUS method. Then the question is how to design the decoder. It must be understood that this decoder will now only get the F_I2sCI function, so it must slightly calculate the function F_?? required to reconstruct the original Mster_HDR image from the received IDR image. In this SLHDR2PLUS encoding method, this will be the inverse function of the F_H2hCI function used in the encoder to generate IDR brightness, but such functions should still be computable.

11 所大致說明的,SLHDR2PLUS視訊解碼器1100,輝度函數判定單元1104必須僅基於其接收的資訊計算F_??函數,亦即F_I2sCI及二個峰亮度PB_CH及PB_C_H50。一旦判定函數,可施加其以重建原始的Mster_HDR輝度,藉由施加其(在顏色變換器1102中)至所接收的IDR明亮度:L_REC_M_HDR=F_??(L_IDR),對應HDR輝度可藉由施加方程式1及方程式2的反函數至該等L_REC_M_HDR明亮度而從該明亮度計算。最後,經重建主HDR影像(REC_M_HDR)可依需要以任何格式由顏色變換器1102輸出,例如,基於PQ的YCbCr顏色配方等。解碼器1100在較佳實施例中亦可經組態以計算任何經顯示調適影像,例如,MDR_300,假如300尼特PB_D連接顯示器待以所接收之HDR影像的最佳等效物供應,且此可藉由SLHDR2PLUS數學、或僅由正規的ETSI2解碼完成,因為適當影像(IDR)及輝度映射函數(F_I2sCI)已可用為顏色變換器1102中的輸入)。As illustrated generally in FIG. 11, SLHDR2PLUS video decoder 1100, the luminance function determining unit 1104 must be calculated only F_ ?? function based on the information it receives, i.e. two peaks and brightness PB_CH F_I2sCI and PB_C_H50. Once the function is determined, it can be applied to reconstruct the original Mster_HDR brightness, by applying it (in the color converter 1102) to the received IDR brightness: L_REC_M_HDR=F_??(L_IDR), the corresponding HDR brightness can be obtained by applying The inverse functions of Equation 1 and Equation 2 are calculated from the brightness of the L_REC_M_HDR. Finally, the reconstructed main HDR image (REC_M_HDR) can be output by the color converter 1102 in any format as needed, for example, a PQ-based YCbCr color formula. The decoder 1100 can also be configured in the preferred embodiment to calculate any display-adapted image, for example, MDR_300, if 300 nits PB_D is connected to the display to be supplied with the best equivalent of the HDR image to be received, and this It can be done by SLHDR2PLUS mathematics, or only by the formal ETSI2 decoding, because the proper image (IDR) and the luminance mapping function (F_I2sCI) are already available as input in the color converter 1102).

14 顯示para所涉及者,以從所接收的IDR影像重建REC_M_HDR影像(類似計算將對WLO及BLO,及可客製化曲線形狀點完成,在可應用處(應注意如下文所討論的,一些實施例將不在Mster_HDR與IDR之間,而僅如同SDR降級技術般,亦即,在IDR與SDR之間施加可客製化曲線原則)。 Figure 14 shows those involved in para to reconstruct the REC_M_HDR image from the received IDR image (similar calculations will be completed for WLO and BLO, as well as the customizable curve shape points, where applicable (note that as discussed below, Some embodiments will not be between Mster_HDR and IDR, but just like SDR downgrade technology, that is, apply the principle of customizable curve between IDR and SDR).

現在,需要計算新的主HDR重建陰影增益(SG_REC)及重建高亮度增益(HG_REC),且必須計算拋物線區段的反拋物線方程式以完成所需的重建para輝度映射函數形狀F_L_RHDR(注意僅用於說明目的,反SDR至Mster_HDR輝度映射函數亦已在此經正規化圖表上顯示為點虛線;應注意由於SDR至HDR映射的反函數性質,該曲線SG_RM的陰影增益等於1/SG_gr等)。Now, the new main HDR reconstruction shadow gain (SG_REC) and reconstruction high brightness gain (HG_REC) need to be calculated, and the inverse parabola equation of the parabolic section must be calculated to complete the required reconstruction para brightness mapping function shape F_L_RHDR (note that it is only used for For illustrative purposes, the inverse SDR to Mster_HDR luminance mapping function has also been shown as a dotted line on this normalized graph; it should be noted that due to the inverse nature of the SDR to HDR mapping, the shadow gain of the curve SG_RM is equal to 1/SG_gr, etc.).

15 首先說明一般解碼器1502核心計算拓撲的一些態樣。如可見到的,其粗略地與編碼器的結構相同,儘管其在相反方向(從IDR重建REC_M_HDR)上執行重新分級,當可輕易地如需求所指定地重組態此一計算拓撲時,其係便利的。若輝度映射器1501得到(所有部分連續重新分級動作的)總LUT,其確實將以相似方式(像是解碼器)運作。 Figure 15 first illustrates some aspects of the core computing topology of the general decoder 1502. As can be seen, it is roughly the same structure as the encoder, although it performs reclassification in the opposite direction (reconstruction of REC_M_HDR from IDR). When this computing topology can be easily reconfigured as required, it Department of convenience. If the luminance mapper 1501 obtains the total LUT (all parts of the continuous reclassification action), it will indeed operate in a similar manner (like a decoder).

當然,一些差異需要經組態以使解碼器作正確的HDR重建重新分級。首先,L_in現在將係IDR經正規化輝度,且輸出輝度Lh將係正確地針對例如5000尼特PB_D顯示器演現按比例調整的經正規化輝度。也看見產生REC_M_HDR影像像素顏色(Rs, Gs, Bs)的最後乘數現在乘以在後設資料中接收的PB_C_H50值。事實上,由感知化器1502及線性化器1506執行的感知化外計算迴路分別將PB_CH及PB_C_H50值施加在方程式1及方程式2及此等方程式的反方程式中。亦應注意現在各種部分重新分級在其等存在的情況下的順序係相反的:首先感知IDR明亮度Y’IP藉由產生重新分級IDR明亮度Y’IPG的精細分級單元1503中的反可客製化曲線而精細分級。之後,至HDR明亮度軸的第一映射(亦即,用於對應的正確HDR模樣(事實上,5000尼特PB_C_H50 Mster_HDR模樣)的對應重新分布明亮度)係由粗略輝度映射單元1504執行,其施加圖14的反para,其仍需要正確地計算,且其將產生初始HDR明亮度Y’HC。最後,反黑色及白色偏移器1505將建立正確的經正規化REC_M_HDR明亮度(Y'HR),以與色度用於進一步的計算,以到達各像素的全三維顏色。如所解釋者,單元1504一般將得到所計算的SG_REC等(或待對應地施加至此等三個值之明亮度映射函數的LUT版本)。應注意若將各種PW值保持相同,則WP_REC再次係WP_gr。單元1505將類似地得到用於Mster_HDR之重建的黑色及白色偏移(WLO_REC, BLO_REC)。進行色度處理之核心單元的下部分(色度處理器1550)將類似於圖4的編碼器拓撲,除了在色度處理判定單元1551中載入正確的C_LUT F_C[Y](見下文解釋之其之計算)。Of course, some differences need to be configured to enable the decoder to perform the correct HDR reconstruction and reclassification. First of all, L_in will now be the IDR normalized luminance, and the output luminance Lh will be the normalized luminance that is scaled correctly for, for example, a 5000-nit PB_D display. Also see that the last multiplier that produced the REC_M_HDR image pixel color (Rs, Gs, Bs) is now multiplied by the PB_C_H50 value received in the meta data. In fact, the perceptual external calculation loop performed by the perceptualizer 1502 and linearizer 1506 applies the values of PB_CH and PB_C_H50 to Equation 1 and Equation 2 and the inverse equations of these equations, respectively. It should also be noted that the order of reclassification of various parts is reversed when they exist: firstly, the IDR brightness Y'IP is sensed by generating the reclassified IDR brightness Y'IPG in the fine classification unit 1503. The curve is refined and graded. After that, the first mapping to the HDR brightness axis (that is, the corresponding redistributed brightness for the corresponding correct HDR pattern (in fact, 5000 nits PB_C_H50 Mster_HDR pattern) is performed by the rough brightness mapping unit 1504, which Applying the reverse para of FIG. 14, it still needs to be calculated correctly, and it will produce the initial HDR brightness Y'HC. Finally, the anti-black and white shifter 1505 will establish the correct normalized REC_M_HDR brightness (Y'HR) to be used in further calculations with the chromaticity to reach the full three-dimensional color of each pixel. As explained, the unit 1504 will generally obtain the calculated SG_REC etc. (or the LUT version of the brightness mapping function to be applied to these three values accordingly). It should be noted that if the various PW values remain the same, WP_REC is WP_gr again. The unit 1505 will similarly obtain the black and white offsets (WLO_REC, BLO_REC) used for reconstruction of Mster_HDR. The lower part of the core unit for chroma processing (chroma processor 1550) will be similar to the encoder topology in Figure 4, except that the correct C_LUT F_C[Y] is loaded in the chroma processing determination unit 1551 (see the explanation below Its calculation).

現在問題係是否及如何計算施加在經程式化以從IDR重建Mster_HDR的解碼器中之函數的參數(此係不在HDR視訊解碼之前發生的情況)。The question now is whether and how to calculate the parameters of the function applied to the decoder programmed to reconstruct Mster_HDR from IDR (this is not the case before HDR video decoding).

例如,可見到用於陰影增益的方法。For example, you can see a method for shadow gain.

在計算SG_REC之前,可詢問是否可判定從SDR至Mster_HDR的總陰影增益SG_RM,且然後可經由方程式12的除法自其判定SG_REC。 所以SG_IDR=SG_gr/SG_ca 亦可顯示SG_ca= (mx/mxca)*(SG_gr+1) -1Before calculating SG_REC, it can be asked whether the total shadow gain SG_RM from SDR to Mster_HDR can be determined, and then SG_REC can be determined by itself via the division of Equation 12. So SG_IDR=SG_gr/SG_ca It can also display SG_ca= (mx/mxca)*(SG_gr+1) -1

此可看到因為myca=SG_ca*mxca(按照經通道調適之para的下線性區段的定義),且亦可看到myca=my-d = mx*SG_gr+(mx-mxca)。This can be seen because myca=SG_ca*mxca (according to the definition of the lower linear section of para adjusted by the channel), and also myca=my-d = mx*SG_gr+(mx-mxca).

mxca/mx的第二關係藉由將方程式9的上方程式除以mx而遵循。The second relationship of mxca/mx is followed by dividing the upper formula of Equation 9 by mx.

因為藉由將第一關係填充至第二者(移除mx/mxca部分)中,SG_ca可按照SG_gr寫出,現在最終關係可形成在SG_IDR與SG_gr之間: SG_ca= (SG_gr+1)/[(SG_gr-1)*(1-sc*)/2+1]-1 從此: SG_IDR=SG_gr/{(SG_gr+1)/[(SG_gr-1)*(1-sc*)/2+1]-1}         [方程式18]Because by filling the first relationship into the second (removing the mx/mxca part), SG_ca can be written as SG_gr, and now the final relationship can be formed between SG_IDR and SG_gr: SG_ca= (SG_gr+1)/[(SG_gr-1)*(1-sc*)/2+1]-1 Since then: SG_IDR=SG_gr/{(SG_gr+1)/[(SG_gr-1)*(1-sc*)/2+1]-1} [Equation 18]

鑑於已知(已接收)的SG_IDR(且sc*已僅從峰亮度(其亦已知)計算,因為PB_CH(亦即,PB_IDR)及PB_C_H50二者已接收且PB_SDR通常係100尼特,但若非如此亦可被置入信號的後設資料中),此方程式現在可針對未知的SG_gr求解。Given that the known (received) SG_IDR (and sc* has been calculated only from the peak brightness (which is also known), because both PB_CH (ie, PB_IDR) and PB_C_H50 have been received and PB_SDR is usually 100 nits, but if not This can also be placed in the post data of the signal), this equation can now be solved for the unknown SG_gr.

將SG_IDR= y及SG_gr =x用於簡化符號,然後: y=[(x-1)*(1-sc*)*x/2+x]/[x-(x-1)*(1-sc*)/2] 因此:x^2+x*(y-1)*[(sc*+1)/(sc*-1)]-y=0             [方程式19] [其係y及sc*之函數的該等係數(下文中稱為A’、B’、C’)將於下文在用於重建Mster_HDR影像的明亮度之方程式的總系統中用以解出二次方程式]。Use SG_IDR = y and SG_gr = x to simplify notation, and then: y=[(x-1)*(1-sc*)*x/2+x]/[x-(x-1)*(1-sc*)/2] Therefore: x^2+x*(y-1)*[(sc*+1)/(sc*-1)]-y=0 [Equation 19] [These coefficients which are functions of y and sc* (hereinafter referred to as A', B', C') will be used in the overall system of the equation used to reconstruct the brightness of the Mster_HDR image to solve two Equation].

為判定給定重建輝度映射函數之形狀的所有參數,下列方程式一般可在實施例的一者中完成(此重建用以在編碼器側產生IDR影像的函數的反函數)。首先,判定正確的para,黑色與白色偏移係可隨後自其計算的。In order to determine all the parameters of the shape of a given reconstruction luminance mapping function, the following equation can generally be completed in one of the embodiments (this reconstruction is used to generate the inverse function of the IDR image on the encoder side). First, determine the correct para, the black and white offset can be calculated from it later.

再次如上述地計算rhoSDR,並將rhoCH計算為: rhoCH=1+32*power(PB_CH/10000; 1/ 2.4) mu= log[1+(rhoSDR-1)*power(PB_CH/PB_SDR ; 1/2.4)]/log(rhoSDR) K及La及sc*如上述地計算,其中K=P_HoS且La=P_HoI A’=1 B’=(SG_IDR-1)*(sc*+1)/(sc*-1) C’=-SG_IDRCalculate rhoSDR as above again, and calculate rhoCH as: rhoCH=1+32*power(PB_CH/10000; 1/ 2.4) mu = log[1+(rhoSDR-1)*power(PB_CH/PB_SDR; 1/2.4)]/log(rhoSDR) K and La and sc* are calculated as above, where K=P_HoS and La=P_HoI A’=1 B’=(SG_IDR-1)*(sc*+1)/(sc*-1) C’=-SG_IDR

一旦已能夠在解碼器側判定所有所需函數的必要參數(留意:從其他經接收可用參數SG_IDR等),解碼的其餘部分由於剛施加編碼的(多個)反曲線之可逆性(例如,像圖14中的para(藉由已計算其之適當定義的參數1/SG_REC等而合適地成形))而將取消如圖10所繪示之IDR編碼para的行動,亦即定義IDR至Mster_HDR明亮度的重新解碼等)。Once the necessary parameters of all required functions can be determined on the decoder side (note: the available parameters SG_IDR etc. are received from other channels), the rest of the decoding is due to the reversibility of the inverse curve(s) that have just been coded (for example, like The para in Figure 14 (appropriately shaped by calculating its appropriately defined parameter 1/SG_REC, etc.) will cancel the action of IDR encoding para as shown in Figure 10, that is, define IDR to Mster_HDR brightness Re-decoding etc.).

從此遵循 SG_gr=[-B’+SQRT(B’ ^2-4*A’*C’)]/2*A’Follow SG_gr=[-B’+SQRT(B’ ^2-4*A’*C’)]/2*A’

其中^2指示平方。 SG_REC = SG_gr/SG_IDR       [方程式20]Where ^2 indicates square. SG_REC = SG_gr/SG_IDR [Equation 20]

因此,反通道調適陰影增益(1/SG_REC)已係已知。Therefore, the anti-channel adaptive shadow gain (1/SG_REC) is already known.

類似地,可計算所需的高亮度增益。 A’’= (SG_REC*HG_IDR -SG_gr)*(SG_gr+1)/(SG_REC+1) B’’=SG_gr-HG_IDR-(SG_REC*HG_IDR-1)*(SG_gr+1)/(SG_REC+1) C’’=HG_IDR-1 MxRec=[-B’’+SQRT(B’’ ^2-4*A’’*C’’)]/2*A’’ IF MxRec =1 THEN HG_REC= 0 ELSE = HG_REC= max[0,(MxRec *SG_gr-1)/(MxRec -1)]Similarly, the required high brightness gain can be calculated. A’’= (SG_REC*HG_IDR -SG_gr)*(SG_gr+1)/(SG_REC+1) B’’=SG_gr-HG_IDR-(SG_REC*HG_IDR-1)*(SG_gr+1)/(SG_REC+1) C’’=HG_IDR-1 MxRec=[-B’’+SQRT(B’’ ^2-4*A’’*C’’)]/2*A’’ IF MxRec =1 THEN HG_REC = 0 ELSE = HG_REC = max[0,(MxRec *SG_gr-1)/(MxRec -1)]

當para函數係定義自其參數時,一旦計算出其等,所需para即被定義。When the para function is defined from its parameters, once the parameters are calculated, the required para is defined.

為獲得BLO_REC及WLO_REC,執行下列方程式: mx=(1-HG_gr)/(SG_gr-HG_gr) mxca=mx*(SG_gr-1)*(1-sc*)/2+mx myca=mx*(SG_gr+1)-mxca SG_ca=myca/mxca IF mxca=1 THEN HG_ca=0 ELSE HG_ca=max[0, (myca-1)/(mxca-1)] ScaleHor=(1-1/La)/(1-1/K) RHO=1+32*power(PB_C_H50/10000; 1/2,4) glim = {log[1 + (rhoSDR-1) * (0.1/100)^(1/2.4)] / log(rhoSDR)}/{log[1 + (RHO-1) * (1/PB_C_H50)^(1/2.4)] / log(RHO)}; [如之前;因為在ETSI方法中的Im_PB_C_1 <> Im_PB_C_2機制的此一固定平行旁路,該glim與由編碼器使用的相同,該等二個影像被定義為從相同的PB_C_1開始重新分級,且在此特定SLHDR2PLUS方法中分別係Mster_HDR及IDR影像] BLO_gr=BLO_IDR/glim[方程式17的反方程式,因此,此相對容易判定而不需更高階方程式,且隨後僅需要施加固定的經通道調適機制以獲得所需的WLO_REC,其等於由編碼使用的WLO_ca,但現在將係反的,加法變成減法] BLO_REC=BLO_ca=BLO_REC*ScaleHorTo obtain BLO_REC and WLO_REC, execute the following equations: mx=(1-HG_gr)/(SG_gr-HG_gr) mxca=mx*(SG_gr-1)*(1-sc*)/2+mx myca=mx*(SG_gr+1)-mxca SG_ca=myca/mxca IF mxca=1 THEN HG_ca=0 ELSE HG_ca=max[0, (myca-1)/(mxca-1)] ScaleHor=(1-1/La)/(1-1/K) RHO=1+32*power(PB_C_H50/10000; 1/2,4) glim = {log[1 + (rhoSDR-1) * (0.1/100)^(1/2.4)] / log(rhoSDR)}/{log[1 + (RHO-1) * (1/PB_C_H50)^( 1/2.4)] / log(RHO)}; [As before; because of this fixed parallel bypass of the Im_PB_C_1 <> Im_PB_C_2 mechanism in the ETSI method, the glim is the same as that used by the encoder, and these two images It is defined as re-grading from the same PB_C_1, and in this particular SLHDR2PLUS method are Mster_HDR and IDR images respectively] BLO_gr=BLO_IDR/glim[The inverse equation of Equation 17, therefore, this is relatively easy to determine without the need for higher-order equations, and then only a fixed channel adaptation mechanism needs to be applied to obtain the required WLO_REC, which is equal to the WLO_ca used by the encoding , But now it’s the opposite, and addition becomes subtraction] BLO_REC=BLO_ca=BLO_REC*ScaleHor

隨後,WLO_REC係藉由將其投影通過待於隨後反轉的para(如編碼原理)而計算。 IF HG_ca=0 WLO_REC=0 ELSE { BLO_co=255*BLO_ca/2040 Xh=(1-HG_REC)/(SG_REC-HG_REC)+WP_REC Xh_REC=HG_REC*Xh+1-HG_REC WW_REC=1-WLO_IDR*255/510 IF WW_REC>=Xh_REC THEN WCA=1-(1-WW_REC)/HG_REC ELSE Xs=(1-HG_REC)/(SG_REC-HG_REC)-WP_REC Xsca=SG_REC*Xs IF WW_REC>Xsca { A’’’=-0.5*(SG_REC-HG_REC)/(2*WP_REC) B’’’=(1-HG_REC)/(2*WP_REC)+(SG_REC+HG_REC)/2 C’’’= - [(SG_REC-HG_REC)*(2*WP_REC)-2*(1-HG_REC)]^2 / [8*(SG_REC-HG_REC)*(2*WP_RE)] WCA=(-B’’’+SQRT(B’’’^2-4*A’’’*{C’’’-WW_REC})/(2*A’’’) WCA=min (WCA,1) } ELSE WCA=WW_REC/SG_REC WLO_REC=(1-WCA)*(1-BLO_co)/[(1-WCA*ScaleHor)*(510/255)]Subsequently, WLO_REC is calculated by projecting it through para to be inverted later (such as the encoding principle). IF HG_ca=0 WLO_REC=0 ELSE { BLO_co=255*BLO_ca/2040 Xh=(1-HG_REC)/(SG_REC-HG_REC)+WP_REC Xh_REC=HG_REC*Xh+1-HG_REC WW_REC=1-WLO_IDR*255/510 IF WW_REC>=Xh_REC THEN WCA=1-(1-WW_REC)/HG_REC ELSE Xs=(1-HG_REC)/(SG_REC-HG_REC)-WP_REC Xsca=SG_REC*Xs IF WW_REC>Xsca { A’’’=-0.5*(SG_REC-HG_REC)/(2*WP_REC) B’’’=(1-HG_REC)/(2*WP_REC)+(SG_REC+HG_REC)/2 C’’’=-[(SG_REC-HG_REC)*(2*WP_REC)-2*(1-HG_REC)]^2 / [8*(SG_REC-HG_REC)*(2*WP_RE)] WCA=(-B’’’+SQRT(B’’’^2-4*A’’’*{C’’’-WW_REC})/(2*A’’’) WCA=min (WCA,1) } ELSE WCA=WW_REC/SG_REC WLO_REC=(1-WCA)*(1-BLO_co)/[(1-WCA*ScaleHor)*(510/255)]

應注意雖然BLO就映射而言實際上係純加法貢獻,WLO轉換成對最大值的乘法按比例調整(例如,在圖4中): Y’HPS= (Y’HP-BLO)/(1-BLO-WLO)         [方程式21]It should be noted that although BLO is actually a pure additive contribution in terms of mapping, WLO is converted to a multiplication of the maximum value proportionally (for example, in Figure 4): Y’HPS= (Y’HP-BLO)/(1-BLO-WLO) [Equation 21]

所有此資訊一般可填充至單一輝度處理LUT中,其將Y’IP(例如,在感知域中)相關於Y’HR(或更佳地,仍係其針對各L_in值定義Lh的總LUT)。此將重建REC_M_HDR影像。All this information can generally be filled into a single luminance processing LUT, which relates Y'IP (for example, in the perceptual domain) to Y'HR (or better still, it is the total LUT that defines Lh for each L_in value) . This will reconstruct the REC_M_HDR image.

如上文所提及的,若解碼器可直接輸出經顯示調適影像,例如,MDR_300,其亦係有用的。As mentioned above, it is also useful if the decoder can directly output the display-adapted image, for example, MDR_300.

後續技術可如 16 所說明地使用(其中使用二個部分LUT,實務上最有用的係僅載入稱為P_LUT的一個LUT,因為輝度計算上軌係在較佳的核心計算單元中,例如,專用解碼IC的各像素顏色處理器,一般簡單地具現為LUT。Y_IDR明亮度值係輸入(例如,一般經基於PQ的YCbCr編碼),且其等由線性化器1601轉換成經正規化輝度L_in。感知化器1602如上文解釋地運作(方程式1及方程式2),並使用用於IDR峰亮度PB_IDR的RHO值,例如,1000尼特。此產生經感知化IDR明亮度Y’IP。輝度映射單元1603如上文所解釋地重建主HDR影像,亦即,其得到定義IDR至MsterHDR重建輝度映射函數F_L_REC的所有經計算參數,或一般得到該函數形狀的LUT。此產生經重建Mster_HDR明亮度Y’HPR。此影像形成計算低動態範圍/峰亮度PB_C之影像的良好基礎。基本上,倘若施加正確的函數,此像ETSI2機制般操作。此等函數可從共同傳達為後設資料的F_L_IDR按比例調整,或從經重建F_50t1函數計算,該經重建函數係內容創作者在其側定義為最佳函數以從Mster_HDR影像計算主SDR影像之函數的重建。然後可根據定義在ETSI2標準中的原理(此細節讀者請參考該標準)將此F_50t1函數計算成用於,例如,300尼特PB_D的適當顯示調適函數F_L_DA。將此載入至HDR至MDR輝度映射器1604(假設有一者)。實務上,單一P_LUT將含有F_L_REC及後續F_L_DA的全部動作。Follow-up techniques may be used as illustrated in FIG. 16 (wherein the LUT using two parts, the most useful practice-based merely referred to as a LUT P_LUT loaded, because the luminance is calculated based on the rail in the preferred core calculation unit, e.g. , Each pixel color processor of the dedicated decoding IC is generally simply presented as LUT. Y_IDR brightness value is input (for example, generally PQ-based YCbCr encoding), and it is converted into normalized brightness by linearizer 1601 L_in. Perceptualizer 1602 operates as explained above (Equations 1 and 2), and uses the RHO value for IDR peak brightness PB_IDR, for example, 1000 nits. This produces the perceived IDR brightness Y'IP. Brightness The mapping unit 1603 reconstructs the main HDR image as explained above, that is, it obtains all the calculated parameters that define the IDR to MsterHDR reconstruction luminance mapping function F_L_REC, or generally obtains the LUT of the function shape. This generates the reconstructed Mster_HDR brightness Y 'HPR. This image forms a good basis for calculating the low dynamic range/peak brightness PB_C image. Basically, if the correct function is applied, this operates like the ETSI2 mechanism. These functions can be collectively communicated from the F_L_IDR button of the meta data Scale adjustment, or calculated from the reconstructed F_50t1 function, which is defined by the content creator as the best function to calculate the reconstruction of the main SDR image from the Mster_HDR image. Then it can be based on the principle defined in the ETSI2 standard (Readers of this standard, please refer to the standard for this detail) Calculate this F_50t1 function into an appropriate display adaptation function F_L_DA for, for example, 300 nits PB_D. Load this into the HDR to MDR brightness mapper 1604 (assuming one). Practice Above, a single P_LUT will contain all the actions of F_L_REC and subsequent F_L_DA.

最後,將所獲得的MDR相對輝度發送至圖4的第一乘法器454,以進行相同處理(亦使用正確伴隨的F_C[Y])。Finally, the obtained MDR relative luminance is sent to the first multiplier 454 of FIG. 4 to perform the same processing (also using the correct accompanying F_C[Y]).

最後,需要計算適當的C_LUT(分別在圖4或圖15中的F_C[Y]),其給予輝度重新分級輸出顏色其等的適當色度(以具有儘可能接近Mster_HDR影像的模樣,亦即,輸出影像像素及Mster_HDR影像的色度應達到可能給予不同的較小動態範圍幾乎相同的程度)。Finally, it is necessary to calculate the appropriate C_LUT (F_C[Y] in Figure 4 or Figure 15 respectively), which gives the brightness re-graded output color and other appropriate chromaticity (to have the appearance as close as possible to the Mster_HDR image, that is, The output image pixels and the chromaticity of the Mster_HDR image should be almost the same degree as possible to give different smaller dynamic ranges).

用於Mster_HDR重建的C_LUT係如下(其他重新分級C-LUT運算遵循類似原理,例如,將ETSI2教示列入考量)。The C_LUT system used for Mster_HDR reconstruction is as follows (other reclassified C-LUT operations follow similar principles, for example, taking ETSI2 teaching into consideration).

首先計算CP-LUT,其係上文提及之在編碼器施加以將Mster_HDR影像映射至IDR影像之P_LUT的反式(因此在解碼器中,此反色度校正將用以從所接收之IDR影像色度Cb及Cr反轉換至Mster_HDR經重建色度)。First calculate the CP-LUT, which is the trans-form of the P_LUT that is applied in the encoder to map the Mster_HDR image to the IDR image (so in the decoder, this inverse chromaticity correction will be used from the received IDR The image chroma Cb and Cr are inversely converted to Mster_HDR (reconstructed chroma).

然後可將用於Mster_HDR重建的C_LUT運算如下: XH=v(PB_M_HDR; 10000) XS=v(PB_SDR=100; 10000) XD=v(PB_D; 10000) XC=v(PB_CH; 10000)Then the C_LUT used for Mster_HDR reconstruction can be calculated as follows: XH=v(PB_M_HDR; 10000) XS=v(PB_SDR=100; 10000) XD=v(PB_D; 10000) XC=v(PB_CH; 10000)

其中v再度係如上述方程式1及方程式2所定義的函數v(x,RHO)。 CfactCH=1-(XC-XS)/(XH-XS) CfactCA=1-(XD-XS)/(XH-XS) C_LUT[Y}=[1+CfactCA*power(CP_LUT[Y] ;2.4)]/[Y*{1+CfactCH* power(CP_LUT[Y] ;2.4)}]        [方程式22]Where v is again the function v(x, RHO) defined in the above equation 1 and equation 2. CfactCH=1-(XC-XS)/(XH-XS) CfactCA=1-(XD-XS)/(XH-XS) C_LUT[Y}=[1+CfactCA*power(CP_LUT[Y] ;2.4)]/[Y*{1+CfactCH* power(CP_LUT[Y] ;2.4)}] [Equation 22]

可將顯示器目標PB_D設定成PB_Mster_HDR以用於重建,在該情形中,僅有除法器保持為C_LUT判定器。在實際實施例中,2.4次方亦可在LUT中包括為,例如,CPP_LUT = power(CP_LUT[Y]; 2.4),其在一些實施例中可節省一些運算。The display target PB_D can be set to PB_Mster_HDR for reconstruction, in which case only the divider remains as the C_LUT determiner. In actual embodiments, the power of 2.4 can also be included in the LUT as, for example, CPP_LUT = power(CP_LUT[Y]; 2.4), which can save some operations in some embodiments.

上文說過SLHDR2PLUS編碼器的一些實際實施例(用於目前的ETSI2後設資料定義順應性)重計算HG_gr以用於順應HG_IDR值。此可如下文所述地完成。As mentioned above, some practical embodiments of the SLHDR2PLUS encoder (used in the current ETSI2 meta data definition compliance) recalculate HG_gr for compliance with the HG_IDR value. This can be done as described below.

例如,後設資料可保留用於para之HG的8位元碼,亦即在此情形中,因為IDR影像+其後設資料應係ETSI2順應信號,問題係所需要的HG_IDR是否將適配在所分配的碼中。該標準一般使用碼分配函數以將實體需要HG_IDR變換成某個HG_COD : [0,255]中的HG_COD = F_COD[HG_IDR]。例如,FCOD可係128*(4*HG_IDR),其意謂著255的最大值對應於0.5的最大HG_IDRFor example, the meta data can be reserved for the 8-bit code of the HG of para, that is, in this case, because the IDR image + the meta data should be an ETSI2 compliant signal, the question is whether the required HG_IDR will fit in In the assigned code. The standard generally uses a code allocation function to transform the entity's HG_IDR into a certain HG_COD: HG_COD = F_COD[HG_IDR] in [0,255]. For example, FCOD can be 128*(4*HG_IDR), which means that the maximum value of 255 corresponds to the maximum HG_IDR of 0.5

想要確保將IDR影像產生成使得HG_IDR恰適配在碼範圍中,亦即,實用的實施例可藉由將分級者的HG_gr調適一些而實現此(使得具有固定通道調適且基於其之IDR後設資料判定恰好避免溢出)。To ensure that the IDR image is generated so that the HG_IDR fits within the code range, that is, a practical embodiment can achieve this by adjusting the HG_gr of the grader to some extent (making the IDR post-adjustment based on the fixed channel Suppose the data is judged to avoid overflow).

用於此(可選的)實施例的計算可係,例如: 設定HG_IDR=(254*2)/(255*4); Exposure=shadow/4+0.5 [其中shadow係陰影增益SG_gr的ETSI2編碼] SG_gr=K*exposure A= SG_gr*(HG_IDR-1)-0.5*(SG_gr-1)*(1-sc*)*(HG_IDR+SG_gr) B=SG_gr-HG_IDR+1+0.5*(SG_gr-1)*(1-sc*)*(HG_IDR+1) C=HG_IDR-1 MxLM=[-B+sqrt(B*B-4*A*C)]/(2*A) IF MxLM= 1 THEN HG_gr_LM = 0 ELSE HG_gr_LM=max[0, (MxLM*SG_gr-1)/(MxLM-1)] 其中HG_gr_LM係經調整的HG_gr值。然後該演算法的其餘部分將如上文所述地運作,就好像分級者從開始就選擇最佳HG_gr_LM值。The calculation used for this (optional) embodiment can be, for example: Set HG_IDR=(254*2)/(255*4); Exposure=shadow/4+0.5 [where shadow is the ETSI2 code of shadow gain SG_gr] SG_gr=K*exposure A = SG_gr*(HG_IDR-1)-0.5*(SG_gr-1)*(1-sc*)*(HG_IDR+SG_gr) B=SG_gr-HG_IDR+1+0.5*(SG_gr-1)*(1-sc*)*(HG_IDR+1) C=HG_IDR-1 MxLM=[-B+sqrt(B*B-4*A*C)]/(2*A) IF MxLM = 1 THEN HG_gr_LM = 0 ELSE HG_gr_LM=max[0, (MxLM*SG_gr-1)/(MxLM-1)] Where HG_gr_LM is the adjusted HG_gr value. Then the rest of the algorithm will work as described above, as if the grader had selected the best HG_gr_LM value from the beginning.

此詳述處理SLHDR2PLUS新編解碼器設計問題的一種方法。取決於所作的技術選擇,特別係發現關鍵重要性的態樣之於可放寬的其他態樣,而有替代方式。This article details a method to deal with the design problems of the new codec of SLHDR2PLUS. Depends on the technical choice made, especially finding the critically important aspect over other aspects that can be relaxed, and there are alternative ways.

上述數學定義實作HDR解碼器的全新方式,其至少具有與ETSI1及ETSI2方法一致的核心計算方法:特別係雖然不同形狀的P-LUT及C_LUT函數將如其等於上文所說明地計算(儘管圖4及圖15詳述吾等的HDR編碼方法如何及為何運作背後的技術物理原則,實務上等效於分別在明亮度處理軌401及1501中之輝度處理的整體明亮度處理[在一維顏色態樣中,經由非線性相關的該等二者係影像相依函數變換]係藉由載入正確的總P_LUT明亮度映射函數形狀而執行,並類似地對分別在單元451及1551中之稱為F_C[Y]的C-LUT),該計算拓撲可重新使用,其對客戶係高度有用的性質(其等必須購買在例如STB中的IC一次,且其可藉由重新程式化後設資料處置但維持每像素顏色變換引擎而重組態成各種新的編碼原則)。The above mathematical definition of a new way to implement an HDR decoder has at least the core calculation method consistent with the ETSI1 and ETSI2 methods: in particular, although the P-LUT and C_LUT functions of different shapes will be calculated as described above (although the figure 4 and Figure 15 detail the technical and physical principles behind how and why our HDR encoding method works. In practice, it is equivalent to the overall brightness processing of the brightness processing in the brightness processing track 401 and 1501 respectively [One-dimensional color In the aspect, the two-system image dependent function transformation through non-linear correlation] is performed by loading the correct shape of the total P_LUT brightness mapping function, and similarly referred to in units 451 and 1551 respectively The C-LUT of F_C[Y]), the computing topology can be reused, and its nature is highly useful to customers (it must be purchased once, for example, the IC in STB, and it can be processed by reprogramming meta-data But maintain the per-pixel color conversion engine and reconfigure into various new coding principles).

亦可設計深入地重新使用相同的ETSI2解碼數學的IDR編碼技術(亦即,部分重新分級1503至1505的鏈),藉由僅指示ETSI2解碼器合適地外插而替代其之將所接收影像降級的正常作業,顯示器將其調適成PB_D < PB_IDR的顯示器。應強調此並非「盲目」外插法,其給出對應於IDR影像之模樣(亦即,尤其係IDR像素的相對明亮度或絕對輝度的統計分布)的「恰好任何」更高動態範圍影像,但實際上藉由編碼看起來儘可能地接近像是內容創作者側之原始Mster_HDR影像(其在此類實施例中亦仍未實際地接收,亦未接收其後設資料,例如,SG_gr)的HDR輸出影像的此方式「自動地」產生。此自動地當然不係如此簡單,並涉及在內容編碼側的正確方法。對於此原則之實施例中的解碼器,所接收的PB_C_H50次級峰亮度在核心每像素解碼器的程式化中等效地運行,彷彿其係所期望的顯示器亮度PB_D(然後其係例如5x高於PB_IDR)。It is also possible to design IDR encoding techniques that deeply reuse the same ETSI2 decoding mathematics (ie, partially reclassify the 1503 to 1505 chain), and degrade the received image by only instructing the ETSI2 decoder to properly extrapolate instead of it. For normal operations, the display adapts it to a display with PB_D <PB_IDR. It should be emphasized that this is not a "blind" extrapolation method, which gives "exactly any" higher dynamic range image corresponding to the appearance of the IDR image (that is, especially the statistical distribution of the relative brightness or absolute brightness of the IDR pixel). But in fact, the encoding looks as close as possible to the original Mster_HDR image on the content creator's side (which has not actually been received in this type of embodiment, nor has it received the subsequent data, such as SG_gr) This method of HDR output image is "automatically" generated. This automatic is of course not so simple and involves the correct method on the content encoding side. For the decoder in the embodiment of this principle, the received PB_C_H50 secondary peak brightness is equivalently run in the programming of the core per-pixel decoder as if it is the desired display brightness PB_D (then it is, for example, 5x higher than PB_IDR).

18 說明此方法(編碼器數學在概念上如何運作的方塊圖)。此外,為了簡單,將假設(雖然不必將該等選擇連結為需要對此實例如此)選擇固定通道調適演算法的選擇自由以僅進行連結Mster_HDR及IDR的para變換,而將任何的BLO及WLO(若已可施加於目前影像或影像鏡頭)及可客製化曲線留給次級變換,亦即IDR至SDR重新分級,並將屬於ETSI2順應IDR信號的後設資料傳達給接收器(無論係傳統ETSI2接收器或SLHDR2PLUS解碼接收器)。 Figure 18 illustrates this method (a block diagram of how encoder math works conceptually). In addition, for the sake of simplicity, it is assumed (although it is not necessary to connect these options as necessary for this example) to choose the freedom of choice of the fixed channel adaptation algorithm to only perform the para transformation that connects Mster_HDR and IDR, and any BLO and WLO ( If it can be applied to the current image or image lens) and the customizable curve is left for the secondary transformation, that is, IDR to SDR reclassification, and the meta data belonging to the ETSI2 compliant IDR signal is transmitted to the receiver (regardless of the traditional ETSI2 receiver or SLHDR2PLUS decoder receiver).

首先需要一些介紹性定義:First, some introductory definitions are needed:

如圖10所示之para曲線的反曲線(亦即,具有如在上述方程式4及方程式5中所制定之ETSI經標準化形狀定義及藉由a*x^2+b*x+c定義的拋物線中間部分)在此本文中為了簡明應稱為abcara 的曲線。根據ETSI1第7節(HDR信號重建),其定義為: L_out = 1/SG * L_in (if 0<= L_in <= xS) L_out = -b/2a+ sqrt(b^2-4*a*(c-L_in))/2a (if xS< L_in < xH) L_out = 1/HG *(L_in-1)+1 (if xH<= L_in)     [方程式23]The inverse curve of the para curve shown in Figure 10 (that is, the parabola defined by the standardized shape of ETSI as defined in Equation 4 and Equation 5 above and defined by a*x^2+b*x+c Middle part) In this article, for the sake of brevity, it should be called abcara curve. According to ETSI1 section 7 (HDR signal reconstruction), it is defined as: L_out = 1/SG * L_in (if 0<= L_in <= xS) L_out = -b/2a+ sqrt(b^2-4*a*(c -L_in))/2a (if xS<L_in < xH) L_out = 1/HG *(L_in-1)+1 (if xH<= L_in) [Equation 23]

其中xS及xH係線性區段改變成拋物線中間區段的點,與para如何針對編碼(或任何其他用途)定義一致。Among them, xS and xH are the points where the linear section is changed to the middle section of the parabola, which is consistent with how para is defined for coding (or any other purpose).

圖18之視訊編碼器實施例所嘗試達成之事物的基本原理在 20 中顯示(在此實例中,已選擇說明500尼特的PB_C IDR的實例,不想要說此方法有些受限於或更適合較低的PB_IDR)。The basic principle of what the video encoder embodiment of FIG. 18 is trying to achieve is shown in FIG. 20 (in this example, an example of PB_C IDR of 500 nits has been selected. I don’t want to say that this method is somewhat limited or more limited. Suitable for lower PB_IDR).

若具有固定機制(在ETSI2相容或ETSI2傳統解碼器中)以從IDR外插至比PB_IDR更高的PB_C(使用此類PB_C設定,彷彿其係顯示器峰亮度),則亦可設計反轉該處理的編碼器,亦即藉由使用經合適調適外插輝度映射函數F_E_I2S的反函數F_ENCINV_H2I(從藉由IDR信號(亦即,IDR影像+包括F_I2S函數的後設資料)的接收器接收之符合ETSI2規格的F_I2S函數調適)建立IDR影像,且隨後加入正確的後設資料,其如所述地將係F_I2S,其待從由內容創作者(例如,人類分級者)或在任何中間即時編碼程序中的自動化等建立的總輝度映射函數F_H2S(例如,F_50t1)推導。If there is a fixed mechanism (in ETSI2 compatible or ETSI2 traditional decoder) to extrapolate from IDR to a higher PB_C than PB_IDR (using this type of PB_C setting, as if it is the peak brightness of the display), it can also be designed to reverse this The processed encoder, that is, by using the inverse function F_ENCINV_H2I of the appropriately adapted extrapolation luminance mapping function F_E_I2S (conformity received from the receiver by the IDR signal (ie, IDR image + post data including the F_I2S function) ETSI2 standard F_I2S function adjustment) to create IDR image, and then add the correct meta data, which will be F_I2S as described, which will be processed by content creators (for example, human graders) or in any intermediate real-time encoding process The total luminance mapping function F_H2S (for example, F_50t1) established by the automation in the derivation.

該關係亦可以乘法觀點制定: L_SDR=m_F_I2S*m_F_ENCINV_H2I*L_HDR= m_F_I2S* L_IDR L_HDR=m_F_E_I2S*L_IDRThis relationship can also be formulated from the multiplicative viewpoint: L_SDR=m_F_I2S*m_F_ENCINV_H2I*L_HDR= m_F_I2S* L_IDR L_HDR=m_F_E_I2S*L_IDR

其中m_F_I2S或更確切地說m_F_I2S(L_HDR)係實現每個任何選擇的L_HDR值之輝度重新分級所需的對應乘數,對應於F_I2S輝度映射函數形狀,且類似地用於其他乘數。Among them, m_F_I2S or more precisely m_F_I2S(L_HDR) is the corresponding multiplier required to realize the brightness reclassification of any selected L_HDR value, corresponding to the F_I2S brightness mapping function shape, and similarly used for other multipliers.

所以必須解決從HDR至IDR之para的反式(亦即,從IDR運作至HDR的abcara)具有與(在任何L_IDR上開始)外插至PB_HDR的某個para相同的效果。Therefore, it must be resolved that the trans form of para from HDR to IDR (that is, abcara operating from IDR to HDR) has the same effect as a para extrapolated to PB_HDR (starting on any L_IDR).

為了更好一些地瞭解,使用 21 。從較高輸入影像PB_C(亦即,在經由高於經正規化輸出影像輝度之PB_D的PB_Ch而對應於實際輝度的任何經正規化輸入輝度L_in_X上運作)至較低PB_D的正常內插模式中,原始分級者的para F_H2S(如藉由標準的ESTI2編碼視訊通訊鏈在後設資料中接收)將遵循朝向對角線[0,0]-[1,1]的箭頭對角地按比例調整,產生F_ENCIV_H2I(其現在對應於PB_IDR/PB_HDR vs. PB_SDR/PB_HDR(亦即,例如v(100/5000)/v(500;5000)=0.54/0.72 [其中v(x;y)係具有橫座標x之方程式1的函數,且RHO經由方程式2對應於y])的視覺均勻化虛擬對數距離比)。可想像通過將PB_HDR映射至PB_HDR的恆等處理而繼續從任何較高至較低PB_D情況的重新分級行為將產生變成陡峭下降的曲線,事實上對於para種類的輝度映射曲線,其等將在數學上變成abcara。實際上,用於外插任何已接收IDR影像的所需函數(基於在後設資料中接收的起始輝度映射函數F_H2S,藉由使用ETSI2第7.3章顯示器調適機制)F_E_I2S將係藉由在F_ENCINV_H2I之對角線周圍鏡像而獲得的鏡像函數(且反之亦然)。For a better understanding, use Figure 21 . From the higher input image PB_C (that is, operating on any normalized input luminance L_in_X that corresponds to the actual luminance through PB_Ch higher than the normalized output image luminance PB_D) to the normal interpolation mode of lower PB_D , The original grader’s para F_H2S (such as received in the meta-data through the standard ESTI2 coded video communication chain) will be adjusted diagonally according to the arrow facing the diagonal [0,0]-[1,1], Generate F_ENCIV_H2I (which now corresponds to PB_IDR/PB_HDR vs. PB_SDR/PB_HDR (that is, for example, v(100/5000)/v(500;5000)=0.54/0.72 [where v(x;y) has the horizontal coordinate x The function of Equation 1, and RHO corresponds to the visual homogenization virtual logarithmic distance ratio of y]) via Equation 2. It is conceivable that through the identity process of mapping PB_HDR to PB_HDR and continuing from any higher to lower PB_D situation, the reclassification behavior will produce a curve that becomes a steep drop. In fact, for the brightness mapping curve of the para type, it will be in mathematics Up becomes abcara. In fact, the required function for extrapolating any received IDR image (based on the initial luminance mapping function F_H2S received in the meta-data, by using ETSI2 Chapter 7.3 Display Adaptation Mechanism) F_E_I2S will be used in F_ENCINV_H2I The mirror image function obtained by mirroring around the diagonal (and vice versa).

因此,鑑於想要重新利用標準的ETSI2運算機制以實作SLHDR2PLUS功能性,所剩下的係定義對應編碼器,如 18 所說明的。Thus, in view of the desired re-use standard ETSI2 SLHDR2PLUS calculation mechanism to implement the functionality, the rest of the system is defined corresponding to the encoder, as illustrated in FIG. 18.

例如,F_ENCINV_H2I的SG在abcara定義1/SG * L_in_X中。For example, the SG of F_ENCINV_H2I is in the abcara definition 1/SG * L_in_X.

依據SG_COD(亦即,上述物理數學陰影增益SG的ETSI經定義編碼),得到(SG_COD=SGC*255/2以及ETSI1方程式C23 exposure=SGC/4 +0.5以及C24 expgain=v(PB_HDR=5000/PB_target=500; PB_target)以及方程式C27 SG=expgain*exposure): 1/[(SGC/4+0.5)*v(5000/500;500)]=(X/4+0.5)* v(500/5000;500) [方程式24]According to SG_COD (that is, the ETSI defined code of the above physical and mathematical shadow gain SG), (SG_COD=SGC*255/2 and the ETSI1 equation C23 exposure=SGC/4 +0.5 and C24 expgain=v(PB_HDR=5000/PB_target =500; PB_target) and equation C27 SG=expgain*exposure): 1/[(SGC/4+0.5)*v(5000/500;500)]=(X/4+0.5)* v(500/5000;500) [Equation 24]

待針對未知的para陰影增益控制X求解(亦即,X係F_ENCINV_H2I的SG)。To be solved for the unknown para shadow gain control X (that is, the SG of the X system F_ENCINV_H2I).

亦即,解碼器針對任何分級者的F_H2S選擇定義F_E_I2S形狀將如何像什麼(使用ETSI2 7.3演算法),但需要將其解譯為ETSI1 abcara,使得可將abcara相關於對應的所需反para F_ENCINV_H2I,以最終在新的SLHDR2PLUS編碼器中使用對應的para,以計算IDR影像輝度(在通用SLHDR2PLUS方法之此特定種類方法的第一較佳實施例中,亦即,使用第二峰亮度之輝度映射函數的導數計算;白色與黑色偏移在此種類中(至少在HDR<>IDR子範圍中)將被忽略,因為其等將可施加至不同的PB_C影像光譜的HDR<>SDR子範圍中,如圖7所示)。That is, the decoder defines how the F_E_I2S shape will look like for any grader's F_H2S selection (using the ETSI2 7.3 algorithm), but it needs to be interpreted as ETSI1 abcara, so that abcara can be related to the corresponding desired antipara F_ENCINV_H2I , In order to finally use the corresponding para in the new SLHDR2PLUS encoder to calculate the IDR image brightness (in the first preferred embodiment of this specific method of the general SLHDR2PLUS method, that is, the second peak brightness is used for the brightness mapping Derivative calculation of the function; white and black offsets in this category (at least in the HDR<>IDR sub-range) will be ignored, because they can be applied to the HDR<>SDR sub-ranges of different PB_C image spectra, As shown in Figure 7).

編碼器現在實務上係以其他順序運作(但遵守相同關係,以保持系統ETSI2順應)。通道適配器1801(從所接收之F50t1函數形狀)計算所需的para以將L_HDR明亮度變換成例如500尼特PB_C L_IDR明亮度(可僅藉由施加para而使用上述先前實施例的通道調適數學,但之後忽略WLO及BLO調適,亦即para僅在二個0至1.0明亮度表示之間運作而不涉及任何偏移)。反相器1802使用方程式24的反方程式計算對應的abcara(亦即,具有鑑於方程式右側上的已知SGC而計算之在左方上的1/X)。此係將自所接收之L_IDR明亮度重建L_HDR像素明亮度的映射。假設例如在編解碼器定義鏈上保持恆定的WP,反相器1802將因此計算abcara的陰影增益SG_abc及高亮度增益HG_abc。進行後設資料管理的下軌最終將需要計算F_L_IDR (=F_I2S),所以適配器1803藉由在反方向上施加ETSI2 7.3的演算法(若部分輝度重新分級已藉由使用F_ENCINV_H2I而對IDR影像明亮度完成,實現總變換F_H2S的剩餘變換F_I2S)而判定所需的映射函數F_I2S(尤其係其之SG_IDR及HG_IDR)。The encoder now operates in other order in practice (but obeys the same relationship to keep the system ETSI2 compliant). The channel adapter 1801 (from the received F50t1 function shape) calculates the required para to transform the L_HDR brightness into, for example, 500 nits PB_C L_IDR brightness (the channel adaptation mathematics of the previous embodiment described above can be used only by applying para, But then the WLO and BLO adjustments are ignored, that is, para only operates between the two 0 to 1.0 brightness representations without any offset involved). The inverter 1802 uses the inverse equation of Equation 24 to calculate the corresponding abcara (that is, has 1/X calculated on the left in view of the known SGC on the right side of the equation). This is a map that reconstructs the brightness of the L_HDR pixel from the received L_IDR brightness. Assuming that, for example, a constant WP is maintained in the codec definition chain, the inverter 1802 will therefore calculate the shadow gain SG_abc and the high brightness gain HG_abc of abcara. The lower track for meta data management will eventually need to calculate F_L_IDR (=F_I2S), so the adapter 1803 applies the ETSI2 7.3 algorithm in the opposite direction (if part of the brightness reclassification has been completed by using F_ENCINV_H2I to complete the brightness of the IDR image , Realize the remaining transformation F_I2S of the total transformation F_H2S) and determine the required mapping function F_I2S (especially its SG_IDR and HG_IDR).

如上文已提及的,在某些情景中,可發生HG_IDR值下降至在可ETSI2順應編碼為HG_COD的事物上方。在此一情景中可完成的係將HG_IDR的該值限制至其最大值,並通過鏈返回至所意指的事物,特別係不同的原始分級者的F_H2S函數所將對應者。然後所有計算可從該情況重新開始,且係以虛線顯示之可選單元在一個連續處理線中所執行者。As mentioned above, in some scenarios, it can happen that the HG_IDR value drops above what can be coded as HG_COD in ETSI2 compliance. What can be done in this scenario is to limit the value of HG_IDR to its maximum value and return to the intended thing through the chain, especially the counterpart of the F_H2S function of different original graders. Then all calculations can be restarted from this situation, and the optional units shown in dashed lines are performed in a continuous processing line.

22 解釋當輝度映射曲線重新成形時限制器1804所執行者。以點虛線顯示起始F_H2S,及可如何使用固定通道調適演算法自此推導F_ENCINV_H2I函數,及(原始)剩餘部分重新分級函數F_I2S_or可如何推導(假如在目前制定的ETSI2中沒有額外的特定限制,原始F_IDR呼叫現在解釋之更詳細描述的特定實施例方法)。鑑於HDR視訊編碼上的此一全新方法,此函數的HG_IDR_or可能不適配於HG_COD定義,亦即需要高於可在ETSI2順應HDR視訊編碼信號中傳達之其之8位元最大值255的值。因此,HG_IDR_or必須下降至至多經限制之仍可編碼值HG_IDR_LIM(其在ETSI2的目前實施例中係2.0,但此並非本方法的基本限制)。此建立其具有更有些接近上水平邊限(L_out_X=1.0)的高亮度線性區段的para,其對應於更亮一些的IDR影像,但沒有基本問題(如上文提及的,在系統中有一些放寬可能性以設計各種變化)。將意謂著HDR場景影像中的最高輝度區域得到較小的對比IDR表示(雖然原始的主HDR係可完全回復的,且該SDR模樣及所有MDR重新分級看起來亦將係良好的),但因為係從較高的PB_C HDR主影像分級而沒有實際問題,且此對應於,例如,3000至5000尼特範圍中的事物,其一般係燈及類似者,其可遭受一點劣化(因為一些劣化映射係無論如何總是必需的,且對此類超明亮區域係有點預期的)。然後第二通道適配器1805將再度施加所有上述數學,但現在係在有限HG_IDR的情況下(所以首先可計算等效F_H2S,如所述,在此類別實施例中,其可藉由將有限F_I2S_LIM外插至PB_D=PB_Mster_HDR情況而執行,然後可再度施加通道調適)。 FIG. 22 explains what the limiter 1804 performs when the brightness mapping curve is reshaped. The dotted line shows the starting F_H2S, and how the fixed channel adaptation algorithm can be used to derive the F_ENCINV_H2I function from this, and how the (original) remaining reclassification function F_I2S_or can be derived (provided there are no additional specific restrictions in the current ETSI2 The original F_IDR call now explains the specific embodiment method described in more detail). In view of this new method of HDR video coding, the HG_IDR_or of this function may not fit the HG_COD definition, that is, it needs to be higher than the 8-bit maximum value of 255 that can be conveyed in the ETSI2 compliant HDR video coding signal. Therefore, HG_IDR_or must be reduced to at most limited still codeable value HG_IDR_LIM (it is 2.0 in the current embodiment of ETSI2, but this is not a basic limitation of the method). This establishes a para with a high-brightness linear segment closer to the upper horizontal margin (L_out_X=1.0), which corresponds to a brighter IDR image, but there is no basic problem (as mentioned above, there are Some relaxation possibilities to design various changes). It will mean that the highest brightness area in the HDR scene image is represented by a smaller contrast IDR (although the original main HDR system can be fully restored, and the SDR appearance and all MDR reclassifications will also look good), but There is no practical problem because it is graded from the higher PB_C HDR main image, and this corresponds to, for example, things in the range of 3000 to 5000 nits, which are generally lamps and the like, which may suffer a little degradation (because of some degradation) The mapping system is always necessary anyway, and is somewhat expected for such ultra-bright areas). Then the second channel adapter 1805 will apply all the above mathematics again, but now it is in the case of finite HG_IDR (so the equivalent F_H2S can be calculated first, as mentioned, in this type of embodiment, it can be obtained by adding the finite F_I2S_LIM outside Insert into the PB_D=PB_Mster_HDR situation and execute, and then apply channel adjustment again).

此所得的F_H2I_LIM(亦即,將L_HDR明亮度映射至L_IDR明亮度)現在可藉由影像像素輝度映射器1806施加,以逐像素地判定所有IDR明亮度(或事實上,亦使用ETSI2的色度處理,亦即,對應於F_H2I_LIM明亮度映射函數形狀的已定義C_LUT,所有IDR YCbCr顏色)。最後IDR後設資料判定器1807計算完整的後設資料組以用於實現ETSI2順應的基於後設資料的重新分級,以將PB_C影像(針對任何顯示器PB_D)降低至低於其所係的PB_IDR(或藉由高於PB_IDR的外插)。所以,SG_IDR、HG_IDR、及WP_IDR再次根據形成如上文解釋之實施例的可能組合的任何者判定。現在亦判定BLO_IDR及WLO_IDR(如上文所解釋的,可將在Mster_HDR明亮度軸上的特定明亮度映射至SDR明亮度軸上的1.0,且此可係重新制定成經合適按比例調整的IDR明亮度的映射,亦即,定義WLO_IDR,並類似地用於BLO_IDR)。The resulting F_H2I_LIM (that is, mapping L_HDR brightness to L_IDR brightness) can now be applied by the image pixel brightness mapper 1806 to determine all IDR brightness on a pixel-by-pixel basis (or in fact, also use ETSI2 chroma Processing, that is, the defined C_LUT corresponding to the shape of the F_H2I_LIM brightness mapping function, all IDR YCbCr colors). Finally, the IDR meta data determiner 1807 calculates a complete meta data set for reclassification based on meta data that is compliant with ETSI2 to reduce the PB_C image (for any display PB_D) to be lower than the PB_IDR ( Or by extrapolation higher than PB_IDR). Therefore, SG_IDR, HG_IDR, and WP_IDR are again determined based on any of the possible combinations that form the embodiment explained above. Now also determine BLO_IDR and WLO_IDR (as explained above, the specific brightness on the Mster_HDR brightness axis can be mapped to 1.0 on the SDR brightness axis, and this can be reformulated to an IDR brightness that is appropriately scaled Degree mapping, that is, define WLO_IDR, and similarly apply to BLO_IDR).

最後,可客製化曲線可藉由可客製化曲線最佳化器1808針對新的IDR後設資料情況最佳化(假如使用可客製化曲線,因為一些次市場編解碼器技術實施例變化(諸如,現實生活廣播)可能已選擇決不使用可客製化曲線,然後施加前者的para+偏移數學)。Finally, the customizable curve can be optimized for the new IDR post-data situation by the customizable curve optimizer 1808 (if the customizable curve is used, because some sub-market codec technology embodiments Variations (such as real-life broadcasts) may have chosen to never use a customizable curve, and then apply the former para+offset math).

19 說明客製化曲線的調適如何運作。其始終包含二個概念成分(無論僅在單一方向(或反向)上直接施加)。第一成分可藉由將注意力聚焦在物體上而瞭解:假設一下多線性區段可客製化曲線之控制點的一者對應於一條褲子(所以特定L_in_S經正規化明亮度xo1I係,例如,所有褲子像素的平均明亮度)。使用變換以根據人類分級者(或自動化軟體),例如,使該等褲子像素變亮(周圍或特別係控制點的一者)以輸出對該等褲子係更佳明亮度的經正規化明亮度。亦在圖4中看到在ETSI方法中,此發生為解碼器(單元405)中的最末(可選的)精細分級編碼步驟,及對應地解碼器中的第一步驟。所以實際上,此明亮度變換實際上定義在SDR明亮度域中(在para+偏移的粗略HDR至SDR明亮度映射之後(若有的話))。 Figure 19 illustrates how the adjustment of the customized curve works. It always contains two conceptual components (whether it is directly applied in a single direction (or reverse)). The first component can be understood by focusing attention on the object: suppose one of the control points of the customizable curve in the multi-linear segment corresponds to a pair of pants (so the specific L_in_S is normalized by the brightness xo1I system, for example , The average brightness of all pants pixels). Use transformation to according to human graders (or automated software), for example, to brighten the pants pixels (the surrounding or one of the particular control points) to output a normalized brightness that is better for the pants. It can also be seen in Figure 4 that in the ETSI method, this occurs as the last (optional) fine hierarchical coding step in the decoder (unit 405), and correspondingly the first step in the decoder. So in fact, this brightness transformation is actually defined in the SDR brightness domain (after the rough HDR to SDR brightness mapping of para+offset (if any)).

所以,可推論任何明亮度均需要變換(針對該物體!),其可乘法地寫為L_out=m(L_in_SDR)*L_in_SDR。Therefore, it can be inferred that any brightness needs to be transformed (for the object!), which can be written multiplicatively as L_out=m(L_in_SDR)*L_in_SDR.

所需的乘法明亮度變化(按百分比)可在任何其他影像(例如,IDR影像)上不同,但應能夠依靠的一個事物係精細分級的校正對應於需要重新分級的特定「物體」(即使將可客製化曲線用於其之效益的另一者,除了特定物體精細分級外,例如,粗略分級輝度映射曲線之形狀的改善,仍可在實體上將其解讀為此一基於物體的改善,其藉由定義對應於一些明亮度子範圍的一組虛擬物體)。所以,若追蹤該等物體至另一DR明亮度範圍,經正規化橫座標值可改變,但非物體的核心本質(例如,機車上的人具有與在SDR(亦即,5/100)中不同的HDR中之經正規化明亮度(亦即,5/5000))。所以,必須重新計算用於新的經正規化明亮度位置分布的函數(此可針對中間部分重新分級輝度映射函數的任何量完成,甚至無論各種向上及向下部分軌多麼複雜,將想要設計HDR視訊編碼實施例)。所以,圖19a大致地顯示此:原始SDR物體明亮度(例如,可客製化曲線之線性區段的線性區段端點)xo1I移動至xo1N(此將藉由施加,例如,係圖20之F_I2S的反式的abcara而發生)。相同者發生至其他點,例如,五邊形區段點(一般可將其假設成有足夠良好擴散的區段點(例如,16),若分級者,例如,施加粗略線性經客製化重新分級至較暗明亮度的相對大子區域,可藉由分級軟體自動地設定其(例如,10))。所以,使所有此等點偏移,現在可藉由施加原始CC_gr偏移(亦即,L_out_SDR=CC_gr[L_in_S])從主內容後設資料分級者的原始CC_gr曲線(在SDR明亮度範圍上具有CC的F_H2S)定義中間曲線CC_XRM,其中L_in_S值係原始值xo1I等(但現在將L_out值施加至xo1N經重新映射IDR明亮度位置(產生虛曲線)。當然,此將不係適當的HDR至IDR(或更準確地,IDR至IDR)映射乘數,使得校正在步驟2中執行,如圖19b所繪示的。The required multiplicative brightness change (in percentage) can be different on any other image (for example, IDR image), but one thing you should be able to rely on is that the fine-graded correction corresponds to the specific “object” that needs to be regraded (even if the Customizable curve is used for another of its benefits. In addition to the fine grading of specific objects, for example, the improvement of the shape of the rough grading brightness mapping curve can still be physically interpreted as an object-based improvement. By defining a set of virtual objects corresponding to some sub-ranges of brightness). Therefore, if these objects are tracked to another DR brightness range, the normalized abscissa value can be changed, but it is not the core nature of the object (for example, a person on a locomotive has the same value as in SDR (ie, 5/100) Normalized brightness in different HDR (ie, 5/5000)). Therefore, it is necessary to recalculate the function for the new normalized brightness position distribution (this can be done for any amount of the reclassified brightness mapping function for the middle part, even no matter how complicated the various upward and downward partial tracks are, you will want to design HDR video coding embodiment). Therefore, Figure 19a roughly shows this: the original SDR object brightness (for example, the end point of the linear segment of the customizable curve) xo1I is moved to xo1N (this will be applied, for example, in Figure 20 The trans-abcara of F_I2S occurs). The same happens to other points, for example, the pentagonal segment point (generally it can be assumed to have a sufficiently good diffusion segment point (for example, 16), if the grader, for example, apply rough linearity and customize it again The relatively large sub-regions graded to darker brightness can be automatically set by the grading software (for example, 10)). Therefore, to offset all these points, it is now possible to post the original CC_gr curve of the data grader from the main content by applying the original CC_gr offset (that is, L_out_SDR=CC_gr[L_in_S]) (within the SDR brightness range) CC's F_H2S) defines the intermediate curve CC_XRM, where the L_in_S value is the original value xo1I, etc. (but now the L_out value is applied to xo1N and the IDR brightness position is remapped (produces a dashed curve). Of course, this will not be an appropriate HDR to IDR (Or more accurately, IDR to IDR) map the multiplier so that the correction is performed in step 2, as shown in Figure 19b.

如可再次在圖19b中看到的,可將乘法精細校正解譯為在用於在重新分級影像的頻譜中(與Mster_HDR)最極端不同之PB_C影像的無校正(按照定義,Mster_HDR像素明亮度已係正確的,因為此影像由內容創作者最佳地分級以自其開始)至完全校正之間改變的可按比例調整處理,其在申請人的方法中一般係100尼特SDR影像(其中用於特定像素的完全校正係,例如,mso1,其可寫為絕對偏移,但亦可寫為乘法校正yio1=mso1*xso1(任何明亮度映射曲線形狀yio1=F_L(xso1)可制定為明亮度相依乘法值的曲線)。As can be seen again in Figure 19b, the multiplicative fine correction can be interpreted as uncorrected (by definition, Mster_HDR pixel brightness) for the most extreme difference in the spectrum of the reclassified image (from Mster_HDR) PB_C image It has been correct, because the image is optimally graded by the content creator from its start) to full calibration, which can be adjusted in proportion, which is generally a 100 nit SDR image in the applicant’s method (where A complete correction system for a specific pixel, for example, mso1, which can be written as an absolute offset, but can also be written as a multiplicative correction yio1=mso1*xso1 (any brightness mapping curve shape yio1=F_L(xso1) can be specified as bright Degree-dependent multiplication value curve).

因為可將乘法校正觀點制定為自對角線的偏移,其中yio1=xso1,可引入垂直比例因子: ScaleVer= max [(1-La)/(1-K); 0]         [方程式25] 使用如上文定義的La及K。Because the multiplicative correction viewpoint can be formulated as the offset from the diagonal, where yio1=xso1, the vertical scale factor can be introduced: ScaleVer= max [(1-La)/(1-K); 0] [Equation 25] Use La and K as defined above.

然後將可客製化曲線的所需經調適值發現為: yiDA=Min[(yio1-xso1)*ScaleVer+xio1;1]         [方程式26] 且此係對xso1的所有值計算。Then find the required adjusted value of the customizable curve as: yiDA=Min[(yio1-xso1)*ScaleVer+xio1;1] [Equation 26] And this is to calculate all the values of xso1.

27 給出以用於解碼器之技術上優雅的方式判定可客製化精細分級曲線之區段端點的另一方式。已描述可如何重新計算粗略分級para曲線的參數(且若存在黑色及/或白色偏移,但將藉由聚焦在para而簡化解釋)。假設para從任何起始動態範圍進行粗略分級到最終動態範圍(例如,LDR動態範圍)。黑色及白色偏移可將經正規化範圍差異(若任何者係必要的)列入考量,所以可客製化曲線僅關於沿著經正規化軸重新定位特定區域的相對輝度。因此,曲線將分別在(0,0)開始且在(1,1)結束,且在實例中具有一些區段連接器點在2個曲線形狀判定點(例如,(x1,y1))其間。線性區段及點的數目在任何表示中及其之重新分級中相等亦係合理的,因為區域的本質不變(最暗區域,例如室內顏色在例如200尼特PB_C影像中可在與1500尼特PB_C影像中不同的(一般在感知上均勻)經正規化明亮度結束,但存在二個區域(室內及室外)的事實在重新分級時不改變。 Fig. 27 shows another way to determine the end points of the segments of the customizable fine grading curve in a technically elegant way for the decoder. It has been described how to recalculate the parameters of the rough hierarchical para curve (and if there is a black and/or white offset, the explanation will be simplified by focusing on para). Assume that para is roughly graded from any starting dynamic range to the final dynamic range (for example, LDR dynamic range). The black and white offset can take into account the difference in the normalized range (if any of them is necessary), so the customizable curve only relates to the relative brightness of a specific area repositioned along the normalized axis. Therefore, the curves will start at (0, 0) and end at (1, 1) respectively, and in the example there are some segment connector points between 2 curve shape determination points (for example, (x1, y1)). It is also reasonable that the number of linear segments and points are equal in any representation and its re-grading, because the nature of the area does not change (the darkest area, such as the indoor color in a 200-nit PB_C image, can be compared with 1500 nits). In the special PB_C image, the different (generally perceptually uniform) normalized brightness ends, but the fact that there are two areas (indoor and outdoor) will not change when reclassified.

因此,對於多重線性重新分級函數形狀重新判定,僅需要找到對應端點(xnew, ynew)。Therefore, for the re-determination of the shape of the multiple linear reclassification function, only the corresponding endpoints (xnew, ynew) need to be found.

可利用待符合(理想上)的另一性質,亦即不論使用總跨度函數FL_50t1(其在此情形中將由二個連續待施加函數組成:總para 2710及總多重線性函數2711)直接重新分級主HDR影像,或在二個步驟中進行重新分級,首先從5000尼特主影像至700尼特IDR(再度藉由使用二個函數:IDR產生para 2701及IDR產生多重線性函數2702),然後自其降級至100尼特LDR影像(使用通道para 2703及通道多重線性函數2704),結果必須相同:相同的LDR影像,因為其係始終針對主HDR影像產生的LDR影像,亦即內容創作者已編碼及傳達的該者(具有降級輝度映射函數形狀)。亦即,選擇所有可能的輸入HDR經正規化明亮度x1_MH的任何者,最終LDR輸出明亮度均應相同。因此,此針對恰映射(經由先前映射)至通道多重線性之x座標:x1_CH_L的輸入明亮度將亦為真。此一者可用以重新計算線段,因為在縱座標y上具有相等性,僅需要針對其他動態範圍上的對應多重線性經客製化曲線的特定區段計算x_new。Another property to be met (ideally) can be used, that is, regardless of the use of the total span function FL_50t1 (which in this case will consist of two continuous functions to be applied: total para 2710 and total multilinear function 2711) directly reclassify the main HDR images, or reclassification in two steps, first from the main image of 5000 nits to IDR of 700 nits (again by using two functions: IDR to generate para 2701 and IDR to generate multilinear function 2702), and then from it Downgrade to 100-nit LDR images (using channel para 2703 and channel multi-linear function 2704), the result must be the same: the same LDR image, because it is always the LDR image generated for the main HDR image, that is, the content creator has coded and The one conveyed (with the shape of the degraded luminance mapping function). That is, any one of all possible input HDR normalized brightness x1_MH is selected, and the final LDR output brightness should be the same. Therefore, the input brightness for exactly mapped (via the previous mapping) to the x coordinate of the channel multilinear: x1_CH_L will also be true. This one can be used to recalculate the line segment, because there is equality on the ordinate y, and only need to calculate x_new for the specific section of the corresponding multi-linear customized curve on the other dynamic range.

所以在編碼側,可藉由施加經按比例調整標準化演算法針對任何x1_MH輸入計算經通道調適Y_CHA。此值Y_CHA將形成次一方塊的對應輸入x座標,其進入通道PB_C經判定para(上文給出之方程式)。yi_CH值已為已知,因為其等於用於5000尼特至100尼特之總重新分級的y1_L值,其在編碼側(相對於解碼側)當然係直接已知(例如由人類分級者產生)。針對多重線性函數的所有點進行此,獲得待寫入視訊信號(作為F_I2sCI的一部分)中的所有其特徵化參數。So on the encoding side, the channel-adapted Y_CHA can be calculated for any x1_MH input by applying a scaled standardized algorithm. This value Y_CHA will form the corresponding input x coordinate of the next block, which enters the channel PB_C and is determined para (the equation given above). The value of yi_CH is already known because it is equal to the value of y1_L used for the total reclassification of 5000 nits to 100 nits, which of course is directly known on the encoding side (relative to the decoding side) (for example, generated by a human grader) . This is done for all points of the multilinear function to obtain all its characteristic parameters in the video signal to be written (as part of F_I2sCI).

在解碼器側,可再度使用相同的原理以得到有些不同的演算法,因為現在必須計算一些未知參數。所以現在必須計算對應於已接收而因此已知之x1_CH_L值的x1_ML值,因為第一步驟係恢復(多個)總重新分級函數。一般有函數的數位精確度,例如256個經量化x值(亦即,不係特定的,例如,二或三個區段間的點,而係所有點,所以在其間之線上的點亦如此),所以可簡單地在其係客製化時針對可客製化曲線之所有點數值地建構LUT表,亦即已知曲線的y1_L,對應於x1_CH_L的所需x1_ML。On the decoder side, the same principle can be used again to get a somewhat different algorithm, because now some unknown parameters must be calculated. So now it is necessary to calculate the x1_ML value corresponding to the received and therefore known x1_CH_L value, because the first step is to restore the total reclassification function(s). Generally there is the digital accuracy of the function, such as 256 quantized x values (that is, not specific, for example, points between two or three segments, but all points, so the points on the line in between are also the same ), so you can simply construct the LUT table for all points of the customizable curve when it is customized, that is, the y1_L of the known curve corresponds to the required x1_ML of x1_CH_L.

從LDR映射至IDR明亮度,對任何yi_CH得到x1_CH,且該值可經由para 2703反映射。若知道para 2701及多重線性2702,亦可判定所有可能的x1_MH值的何者映射至此Y_CHA值。從上文知道如何從解碼器側接收的函數後設資料計算para 2701,如上文所解釋的。(仍)不知道多重線性2702,但目前不需要。因為知道已客製化曲線2702亦遵循經標準化演算法的垂直按比例調整方程式。任何經測試的X1_MH可轉換成對應的X_CHA,且對應於其(及需要)的Y_CHA值遵循:Y_CHA=(y1_L - x1_ML)*scaleVer + X_CHA,且x1_ML可藉由施加總para 2710而自x1_MH計算。Mapping from LDR to IDR brightness, x1_CH is obtained for any yi_CH, and this value can be demapped via para 2703. If you know para 2701 and multilinear 2702, you can also determine which of all possible x1_MH values map to this Y_CHA value. From the above, we know how to calculate para 2701 from the function meta data received from the decoder side, as explained above. (Still) Don't know Multilinear 2702, but not needed at this time. Because it is known that the customized curve 2702 also follows the vertical scaling equation of the standardized algorithm. Any tested X1_MH can be converted into the corresponding X_CHA, and the Y_CHA value corresponding to it (and required) follows: Y_CHA=(y1_L-x1_ML)*scaleVer + X_CHA, and x1_ML can be calculated from x1_MH by applying a total para 2710 .

因此,將恰發現分別對應於x1_MH及x1_ML值的一者,其將恢復總多重線性函數2711。因為之後知道總重新分級及通道部分重新分級,亦可判定剩餘的重新分級(亦即,在5000尼特主影像及700尼特IDR之間),因此解碼所有事物,亦即判定函數,且所有IDR影像像素顏色的處理可開始,如使用圖26所解釋的。Therefore, exactly one corresponding to the x1_MH and x1_ML values will be found, which will restore the total multilinear function 2711. Since the total reclassification and channel part reclassification are known later, the remaining reclassification can also be determined (that is, between the main image of 5000 nits and the IDR of 700 nits), so everything is decoded, that is, the decision function, and all The processing of the IDR image pixel color can begin, as explained using Figure 26.

為確保讀者更佳程度的瞭解,圖26再度以總結方式概念地說明,具有通常知識的讀者可已於上文的詳細解釋中發現的全部內容。上軌格子係有關後設資料重新計算,亦即,各種輝度映射函數判定的各種步驟(下單元2650等係執行實際像素顏色處理者)。現在良好地參見二步驟計算,分別對應於編碼器(但現在來自SLHDR2PLUS視訊解碼器側)中之HDR函數單元901中的經標準化演算法施加及IDR映射函數產生器903的函數判定。如所解釋者,解碼器得到函數F_I2sCI,該函數指定具有其之通道峰亮度PB_CH的已接收經選擇IDR影像及100尼特分級之間的輝度重新分級行為。但需要判定原始函數計算器2601將進行的較大跨度函數(在100尼特與例如PB_C_H50=6000尼特的主HDR峰亮度之間),亦即,FL_50t1函數(或更精準地說,在編碼側使用之該者的反成形函數)。但仍未到達,想要將IDR經正規化輝度(或更精準地說,在吾等的一般解碼拓撲中,感知上均勻的經正規化像素明亮度)解碼成主HDR經重建輝度。所以,原始接收的F_I2sCI,及函數FL_50t1皆無法判定PB_C_H50尼特主影像與100尼特(不係PB_CH尼特IDR影像及其他二者的任一者)之間的重新分級,所以需要判定施加至所接收的IDR像素明亮度的函數F_IDRt50,以獲得(感知上均勻的)經重建主HDR影像像素明亮度YpMstr,其係重建函數判定器2602所將進行的。已將顯示調適可能性顯示為虛線顯示最佳化函數計算單元2603,因為如所述,雖然其一般亦將在吾等的全功能SLHDR2PLUS解碼IC中實現,但其原理上針對SLHDR2PLUS解碼係可選的。通道峰亮度PB_CH將用以轉換經正常編碼(例如,10位元YCbCr)IDR像素輝度至感知均勻IDR像素明亮度YpIDR上,一般將在吾等的較佳SLHDR2PLUS IC中於其上進行吾等的重建輝度映射(雖然具有通常知識者瞭解可如何在不施加感知均勻化、或其他方法等的替代電路或軟體中具現本發明原理)。感知均勻化器2650以PB_C_H= PB_CH對其施加方程式1及方程式2。輝度上映射器2651藉由簡單地施加經判定函數,亦即YpMstr=F_IDRt50(YpIDR),而重建主HDR影像明亮度。假如需要顯示調適以建立例如350尼特PB_C影像,顯示最佳化器2652僅針對其施加經判定顯示最佳化函數,產生經顯示最佳化像素明亮度:Yglim= F_DO(YpMstr)。可藉由線性化器2653將該等轉換成實際經正規化像素輝度L,該線性化器施加反方程式1及2,但現在使用顯示最佳化的例如350尼特PB_C_DO而非PB_CH。最後,一般可選地有進一步明亮度碼產生器2654,其施加SMPTE 2084的感知量化器EOTF以普及的HDR10格式給予輸出明亮度YPQ。In order to ensure a better understanding of the readers, Figure 26 again conceptually illustrates in a summary manner. Readers with general knowledge can have found all the content in the above detailed explanation. The upper rail grid is related to the recalculation of the post data, that is, the various steps of determining various brightness mapping functions (the lower unit 2650 is the person who performs the actual pixel color processing). Now, it is good to refer to the two-step calculation, which respectively correspond to the standardized algorithm application in the HDR function unit 901 in the encoder (but from the SLHDR2PLUS video decoder side) and the function determination of the IDR mapping function generator 903. As explained, the decoder obtains the function F_I2sCI, which specifies the brightness reclassification behavior between the selected IDR image and the 100 nits classification with its channel peak luminance PB_CH. However, it is necessary to determine the larger span function that the original function calculator 2601 will perform (between 100 nits and the main HDR peak brightness of, for example, PB_C_H50=6000 nits), that is, the FL_50t1 function (or more precisely, in the coding The inverse shaping function of the one used by the side). But it has not yet arrived. I want to decode the IDR normalized brightness (or more accurately, in our general decoding topology, the perceptually uniform normalized pixel brightness) into the main HDR reconstructed brightness. Therefore, the originally received F_I2sCI and the function FL_50t1 cannot determine the reclassification between the PB_C_H50 nit main image and 100 nits (not the PB_CH nit IDR image and either of the other two), so it is necessary to determine the The received IDR pixel brightness function F_IDRt50 is used to obtain the (perceptually uniform) reconstructed main HDR image pixel brightness YpMstr, which is performed by the reconstruction function determiner 2602. The display adaptation possibility has been shown as a dotted line to show the optimization function calculation unit 2603, because as mentioned, although it will generally be implemented in our full-featured SLHDR2PLUS decoding IC, it is optional for the SLHDR2PLUS decoding system in principle. of. The channel peak brightness PB_CH will be used to convert the normal coded (for example, 10-bit YCbCr) IDR pixel brightness to the perceptually uniform IDR pixel brightness YpIDR, which will generally be performed on it in our better SLHDR2PLUS IC Reconstruct the luminance mapping (although those with ordinary knowledge know how to implement the principles of the present invention in alternative circuits or software that do not apply perceptual homogenization or other methods). The perceptual homogenizer 2650 applies Equation 1 and Equation 2 to it with PB_C_H=PB_CH. The brightness mapper 2651 simply applies the determined function, that is, YpMstr=F_IDRt50(YpIDR), to reconstruct the brightness of the main HDR image. If display adaptation is required to create a 350-nit PB_C image, for example, the display optimizer 2652 only applies the determined display optimization function to it to generate display optimized pixel brightness: Yglim=F_DO(YpMstr). These can be converted into the actual normalized pixel luminance L by the linearizer 2653, which applies the inverse equations 1 and 2, but now uses display-optimized, such as 350 nits PB_C_DO instead of PB_CH. Finally, there is generally an optional further brightness code generator 2654, which applies the perceptual quantizer EOTF of SMPTE 2084 to give the output brightness YPQ in the popular HDR10 format.

雖然提出一些實施例/教示以說明可單獨或組合地變化的一些態樣,但可瞭解數種進一步變化可沿著相同的基本原理形成:符合ETSI2 HDR視訊通訊或類似者從接收之不同的中間動態範圍影像後設資料重新推導明亮度映射方程式,以重建已在內容創作地點處最佳地分級的主HDR影像。在本文中揭示的演算法成分可(全部或部分地)實務上實現為硬體(例如,特定應用IC的一部分),或實現為在特殊數位信號處理器或通用處理器上運行的軟體等。Although some embodiments/teachings are proposed to illustrate some aspects that can be changed individually or in combination, it is understood that several further changes can be formed along the same basic principle: conforming to ETSI2 HDR video communication or the like from receiving different intermediates After the dynamic range image is set up, the brightness mapping equation is re-derived to reconstruct the master HDR image that has been optimally graded at the content creation location. The algorithm components disclosed in this article can be implemented in practice (in whole or in part) as hardware (for example, a part of a specific application IC), or as software running on a special digital signal processor or a general-purpose processor.

所屬技術領域中具有通常知識者應可從吾等的呈現理解該等成分可係可選的改善,且可與其他成分組合而實現,且方法的(可選的)步驟如何對應於設備的各別構件,且反之亦然。本申請案中的用字「設備(apparatus)」係以其最廣義的意義使用,亦即,允許特定目的之實現的構件群組,且可因此可係例如IC(的小電路部件)、或專用器具(諸如,具有顯示器的器具)、或網路系統的一部分等。「配置(arrangement)」亦意圖以最廣義的意義使用,所以其可除了其他事物之外包含單一設備、設備的一部分、協作設備的(一部分的)集合等。Those with general knowledge in the technical field should be able to understand from our presentation that these ingredients can be optional improvements and can be combined with other ingredients to achieve, and how the (optional) steps of the method correspond to the various equipment Other components, and vice versa. The word "apparatus" in this application is used in its broadest sense, that is, a group of components that allow the realization of a specific purpose, and can therefore be, for example, IC (small circuit components), or Dedicated appliances (such as appliances with displays), or part of a network system, etc. "Arrangement" is also intended to be used in the broadest sense, so it can include, among other things, a single device, a part of a device, a (partial) collection of collaborative devices, etc.

應將電腦程式產品標誌理解為涵蓋實現通用或特殊目的處理器、在一系列載入步驟(其可包括中間轉換步驟,諸如,轉譯至中間語言,及最後的處理器語言)以將命令輸入至處理器中之後、以執行發明之特徵功能之任何者的命令集合的任何實體實現。尤其是電腦程式產品可實現為載體(諸如,例如磁碟或磁帶)上的資料、存在於記憶體中的資料、經由網路連接(有線或無線)的資料行進、或紙上的程式碼。除了程式碼外,程式所需要的特徵資料亦可具現為電腦程式產品。The computer program product logo should be understood as covering the realization of general-purpose or special-purpose processors, in a series of loading steps (which may include intermediate conversion steps, such as translation to intermediate language, and the final processor language) to input commands to After that, the processor is implemented by any entity that executes any of the characteristic functions of the invention. In particular, computer program products can be implemented as data on a carrier (such as, for example, magnetic disks or tapes), data stored in memory, data travel via a network connection (wired or wireless), or program codes on paper. In addition to the code, the characteristic data required by the program can also be realized as a computer program product.

該方法之操作所需的一些步驟可能已經存在於處理器的功能中,而非在電腦程式產品中描述,諸如,資料輸入與輸出步驟。Some steps required for the operation of this method may already exist in the function of the processor instead of being described in the computer program product, such as data input and output steps.

應注意以上提及的實施例說明而非限制本發明。當具有通常知識者可輕易地實現所呈現實例至申請專利範圍之其他區域的映射時,吾等為了簡明而不深入提及所有此等選項。除了在申請專利範圍中組合之本發明之元件的組合外,元件的其他組合係可能的。元件的任何組合可實現在單一專用元件中。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention. When a person with ordinary knowledge can easily map the presented examples to other areas of the patent application, we do not mention all these options in depth for the sake of brevity. In addition to the combination of the elements of the present invention combined in the scope of the patent application, other combinations of elements are possible. Any combination of elements can be implemented in a single dedicated element.

在申請專利範圍中的圓括號之間的任何參考符號未意圖限制申請專利範圍。用字「包含(comprising)」不排除未列於申請專利範圍中之元件或態樣的存在。元件前的用字「一(a/an)」不排除複數個此類元件的存在。 [所使用的術語及縮寫]:Any reference signs between parentheses in the scope of patent application are not intended to limit the scope of patent application. The word "comprising" does not exclude the existence of elements or aspects not listed in the scope of the patent application. The word "一 (a/an)" before the element does not exclude the existence of multiple such elements. [Terms and abbreviations used]:

PB_C :影像的最大可編碼輝度,通常針對任何情況指示,C表示編碼(不與位元深度混淆),例如,HDR影像可具有PB_C_HDR = 4000尼特(其亦定義以下的所有相對輝度,因為L_norm = L/PB_C,其中L_norm(經正規化輝度)位於0.0與1.0之間 PB_C : The maximum encodable brightness of the image, usually indicated for any situation, C represents encoding (not to be confused with bit depth), for example, HDR images can have PB_C_HDR = 4000 nits (which also defines all the relative brightness below, because L_norm = L/PB_C, where L_norm (normalized brightness) is between 0.0 and 1.0

PB_D :任何顯示器的最大可顯示輝度(亦稱為,峰亮度),例如,目前的HDR顯示器一般具有1000尼特的PB_D(但降至600尼特或至多2000尼特且甚至4000尼特的值亦係目前可購買的,且在未來可能有更高的PB_D)。 PB_D : The maximum displayable brightness (also known as peak brightness) of any display. For example, current HDR displays generally have a PB_D of 1000 nits (but down to 600 nits or at most 2000 nits and even 4000 nits It is also currently available for purchase, and may have a higher PB_D in the future).

IDR (中間動態範圍):將原本以PB_C1(例如,10,000尼特)定義的影像(亦即,主影像)實際表示為具有PB_C2 < PB_C1(例如,一般係因子2或更低,且PB_C2一般>=500尼特)之次級HDR影像的機制。 IDR (Intermediate Dynamic Range): The image originally defined by PB_C1 (for example, 10,000 nits) (that is, the main image) is actually expressed as having PB_C2 <PB_C1 (for example, the general factor is 2 or lower, and PB_C2 is general> = 500 nits) of the secondary HDR image mechanism.

MDR (中等動態範圍;一定不要與IDR混淆):具有PB_C_MDR的影像一般位於所接收之HDR影像的PB_C (PB_C_H)與PB_C_SDR=100尼特(藉由視訊領域中的約定定義)之間,將該PB_C_MDR值設定成等於任何顯示器的PB_D(以此方式,具有錯誤的動態範圍,且因而更重要地具有相對於彼此的經正規化明亮度的錯誤相對統計分布的傳入HDR影像可針對較低動態範圍能力的特定可用顯示器最佳地重新分級,亦即PB_D< PB_C_H) MDR (medium dynamic range; must not be confused with IDR): The image with PB_C_MDR is generally located between PB_C (PB_C_H) of the received HDR image and PB_C_SDR=100 nits (defined by the convention in the video field). The PB_C_MDR value is set equal to the PB_D of any display (in this way, incoming HDR images that have the wrong dynamic range, and therefore more importantly have the wrong relative statistical distribution of normalized brightness relative to each other, can be targeted for lower dynamics The specific available display of range capability is optimally reclassified, ie PB_D <PB_C_H)

Para :特定在程式上高度有用的函數,以將在對應於PB_C1之第一經正規化明亮度範圍上定義的明亮度映射成由PB_C2正規化,且該函數在上文係由方程式4及方程式5以及拋物線在其間的區段定義,或正式地以ETSI TS 103 433-1 V1.2.1 (2017-08) [簡而言之ETSI1] p. 70方程式C-20定義。 Para : A function that is highly useful in programming to map the brightness defined on the first normalized brightness range corresponding to PB_C1 to be normalized by PB_C2, and this function is described by Equation 4 and Equation above 5 and the definition of the parabola in between, or formally defined by ETSI TS 103 433-1 V1.2.1 (2017-08) [in short ETSI1] p. 70 Equation C-20.

Abcara :任何para的反函數(亦即,具有獨特地定義其形狀的參數),該相反形狀亦可藉由交換軸而直觀地發現(但有時需要數學地計算)。 Abcara : The inverse function of any para (that is, a parameter that uniquely defines its shape), the opposite shape can also be found intuitively by swapping the axes (but sometimes requires mathematical calculation).

WLO (white level offset,白位準偏移):在被映射至第二經正規化明亮度範圍上的1.0之第一影像(im1)之經正規化明亮度範圍中的經正規化明亮度,藉此PB_C_im1>PB_C_im2。在此施加中,有沿著編碼程序定義用於不同PB_C之各種影像的數個不同的WLO,彼等給定後標,像是例如WLO_gr,因此可輕易區別其等。 WLO (white level offset): the normalized brightness in the normalized brightness range of the first image (im1) mapped to 1.0 on the second normalized brightness range, Therefore, PB_C_im1>PB_C_im2. In this application, there are several different WLOs defined for various images of different PB_Cs along the encoding process. They are given a postscript, such as WLO_gr, so they can be easily distinguished.

BLO (black level offset,黑位準偏移):在被映射至第二經正規化明亮度範圍上的0.0之第一影像之經正規化明亮度範圍中的經正規化明亮度,藉此PB_C_im1>PB_C_im2。在此施加中,有沿著編碼處理定義用於不同PB_C之各種影像的數個不同的BLO,彼等給定後標,像是例如BLO_IDR,因此可輕易區別其等。 BLO (black level offset): the normalized brightness in the normalized brightness range of the first image mapped to 0.0 on the second normalized brightness range, thereby PB_C_im1 >PB_C_im2. In this application, there are several different BLOs defined for various images of different PB_Cs along the encoding process. They are given a postscript such as BLO_IDR, so they can be easily distinguished.

P_LUT :將第一影像的任何可能經正規化明亮度轉換成第二影像的對應經正規化明亮度所需的總映射(包含吾等編解碼器方法中的部分重新分級,如圖4所解釋的),藉此PB_C_im1 != PB_C_im2(一般至少在乘法因子1.02不同)。因為P_LUT[L](其一般係影像內容相依的,且例如藉由智慧影像分析自動化或人類而最佳化)改變經正規化明亮度的相對分布,亦即直方圖,其係動態範圍變換的關鍵態樣,例如涉及在其係本新穎HDR編解碼器原則中之關鍵的IDR影像定義中的該者 P_LUT : The total mapping required to convert any possible normalized brightness of the first image into the corresponding normalized brightness of the second image (including part of the reclassification in our codec method, as explained in Figure 4 ), take this PB_C_im1 != PB_C_im2 (generally at least different in the multiplication factor 1.02). Because P_LUT[L] (which is generally image content-dependent and optimized by intelligent image analysis automation or humans, for example) changes the relative distribution of normalized brightness, that is, the histogram, which is a dynamic range transform Key aspects, such as those involved in the definition of IDR images that are key in the principles of this novel HDR codec

C_LUT :像素顏色之色度的像素明亮度相依映射,連同P_LUT完成顏色變換(YCbCr_out=T[Y_cbCr_in]) C_LUT : Pixel brightness dependent mapping of chromaticity of pixel color, together with P_LUT to complete the color conversion (YCbCr_out=T[Y_cbCr_in])

201:攝影機 202:OOTF映射 203:分級單元 204:影像通訊連接 205:顯示器 206:使用者介面控制單元 301:影像源 302:顏色變換器 303:視訊壓縮器 304:格式器 305:通訊媒體 306:未格式器 307:視訊解壓縮器 308:顏色變換器 309:顯示調適單元 310:顯示器 320:視訊接收器 321:廣播台側編碼器 401:EOTF施加單元/輝度處理器/輝度處理軌/明亮度處理軌 402:單元/輝度映射 403:黑色-白色位準偏移器/單元/輝度映射 404:粗略動態範圍變換器/單元 405:曲線施加器/單元 406:線性化器/單元 450:色度處理軌 451:飽和處理判定器/單元 452:乘法器 453:矩陣施加單元 454:第一乘法器 455:乘法器 601:陰影人 602:機器人 900:編碼器 901:HDR函數產生單元/單元 902:IDR影像計算單元 903:IDR映射函數產生器 920:影像輸入 921:第二後設資料輸入 922:第一後設資料輸入 923:第三後設資料輸入 930:影像輸出 931:第二後設資料輸出 932:第一後設資料輸出 933:第三後設資料輸出 1100:高動態範圍視訊解碼器/解碼器 1102:顏色變換器 1104:輝度函數判定單元 1110:影像輸入 1111:第一後設資料輸入 1112:第二後設資料輸入 1113:第三後設資料輸入 1120:影像輸出 1121:後設資料輸出 1122:影像輸出 1501:輝度映射器/明亮度處理軌 1502:感知化器/解碼器/單元 1503:精細分級單元/單元 1504:粗略輝度映射單元/單元 1505:反黑色及白色偏移器/單元 1506:線性化器/單元 1550:色度處理器 1551:色度處理判定單元/單元 1601:線性化器 1602:感知化器 1603:輝度映射單元 1604:HDR至MDR輝度映射器 1801:通道適配器 1802:反相器 1803:適配器 1804:限制器 1805:第二通道適配器 1806:影像像素輝度映射器 1807:IDR後設資料判定器 1808:可客製化曲線最佳化器 2301:內容創作側 2302:攝影機 2303:分級設備 2304:分級者 2305:視訊編碼器 2306:衛星天線 2340:通訊衛星 2351:本地衛星接收碟 2352:最終處理設備 2353:HDR顯示器 2370:視訊編碼器 2381:解碼器 2382:顯示最佳化器 2501:經SLHDR2PLUS編碼HDR影像信號 2502:像素顏色矩陣 2510:SLHDR2解碼器 2520:SLHDR2PLUS解碼器 2601:原始函數計算器 2602:重建函數判定器 2603:顯示最佳化函數計算單元 2650:感知均勻化器/單元 2651:輝度上映射器 2652:顯示最佳化器 2653:線性化器 2654:明亮度碼產生器 2701:para 2702:IDR產生多重線性函數/多重線性/曲線 2703:para 2704:通道多重線性函數 2710:總para 2711:總多重線性函數 BE:主HDR影像輝度範圍 Be2:IDR輝度範圍 BLO_gr:黑色位準偏移 BLO_IDR:參數 BLO_REC:偏移 BN:經正規化輝度 Bs:顏色分量 Cb:色度 Cb*:輸出色度 CC_XRM:中間曲線 ColHDR:明亮度 ColSDR:明亮度 Cr:色度 Cr*:輸出色度 DR_1:LDR輝度動態範圍/第一動態範圍 DR_2:HDR輝度範圍/第二動態範圍 DRKSPST:黑暗太空站 dX:橫座標 EXP:曝光 F_??:函數 F_C:粗略輝度擠壓函數/粗略映射函數 F_ct:顏色變換函數/顏色映射函數 F_E_I2S:輝度映射函數 F_ENCINV_H2I:解碼明亮度映射函數 F_H2h:輝度映射函數/向上分級函數 F_H2hCI:經調適明亮度映射函數/輝度映射函數 F_H2hCI_1:輸出 F_H2hCI_2:輸出 F_H2hCI_3:輸出 F_H2I_LIM:明亮度映射函數形狀 F_H2S:總輝度映射函數/起始輝度映射函數 F_I2s:函數 F_I2S:映射函數 F_I2S_or:剩餘部分重分級函數 F_I2sCI:通道明亮度映射函數/明亮度映射函數/輝度映射函數 F_IDRt50:函數 F_L_CU:精細分級輝度映射函數/函數/曲線 F_L_DA:顯示調適函數/輝度映射函數 F_L_REC:MsterHDR重建輝度映射函數 F_L_RHDR:重建para輝度映射函數形狀 F_L_subsq:明亮度映射函數 F_Mt1:函數/總輝度重新映射函數 F_Mt1_ca:中間函數 F50t1:函數形狀 Fd:距離 FL_50t1:主明亮度映射函數/總跨度函數/輝度降級函數 FL_ca:曲線 FL_gr:曲線 FL_IDR:曲線 Fx:函數 GN:經正規化輝度 Gs:顏色分量 HG:斜率 HG_abc:高亮度增益 HG_ca:高亮度增益 HG_gr:第二斜率/原始高亮度增益 HG_IDR:參數 HG_IDR_LIM:可編碼值 HG_REC:重建高亮度增益 IDR:中間動態範圍 Im1250:經顯示調適影像 Im5000:輸出影像 Im_COD:經壓縮SDR影像 Im_LDR:輸出影像/低動態範圍影像/標準態範圍影像 Im_RHDR:經重建HDR影像/原始主影像 Im_RLDR:SDR影像 ImDA:PB_C影像 ImSCN1:晴朗室外影像 ImSCN2:夜間場景 ImSCN3:場景影像 K:函數的完整動作 L_HDR:輝度 L_IDR:明亮度 L_in:輸入/參數/經正規化輝度 L_in_X:經正規化輸入輝度 L_Mster_HDR:明亮度 L_REC_M_HDR:明亮度 L_RHDR:經正規化經重建明亮度 L_SDR:輝度 Lh:輸出輝度 LIN_HDR:線性輝度影像 Ln_Mster_HDR:輸入明亮度 Ln_XDR:明亮度 Ls:SDR明亮度/輝度 MAST_HDR:主HDR影像 MB:最小黑色位準/下端點 MDR:中等動態範圍 MDR_300:中等動態範圍影像 mip:中點 mso1:絕對偏移 Mster_HDR:影像 Mster HDR:影像 MsterHDR:主HDR視訊/輸入高動態範圍影像/主高動態範圍影像 mx:橫座標 n:距離 OOTF:光-光學方法 P_IoH:明亮度 P_SoH:明亮度 PB_C:影像編碼峰亮度/最大可編碼輝度 PB_C_H:峰亮度 PB_C_H50:第一最大像素輝度/第二期望峰亮度/內容峰亮度 PB_CH:通道峰亮度/第二最大像素輝度 PB_MDR:最大像素輝度 PQ:感知量化器 REC_M_HDR:影像/經重建主HDR影像 RecHDR:HDR影像 RN:經正規化輝度 Rs:顏色分量 RS:SDR輝度子範圍 sc*:經標準化比例因子 SDR:標準動態範圍 SG:陰影增益 SG_abc:陰影增益 SG_ca:陰影增益 SG_gr:第一斜率 SG_IDR:IDR影像/參數 SG_REC:陰影增益 SG_RM:曲線/總陰影增益 WLO_ca:參數 WLO_gr:白色位準偏移 WLO_IDR:參數 WLO_REC:偏移 WP_IDR:參數 xo1I:明亮度 Y:明亮度 Y’CL:輸出明亮度 Y’GL:經分級LDR明亮度 Y’HC:初始HDR明亮度 Y’HP:灰色明亮度 Y’HPR:經重建Mster_HDR明亮度 Y’HPS:經按比例調整HDR明亮度/經正規化HDR輸入輝度 Y’IP:IDR明亮度 Y’IPG:重新分級IDR明亮度 Y_IDR:明亮度值 Yglim:經顯示最佳化像素明亮度 yio1:明亮度映射曲線形狀 YpIDR:感知均勻IDR像素明亮度 YpMstr:經重建主HDR影像像素明亮度 YPQ:輸出明亮度201: Camera 202: OOTF mapping 203: Grading Unit 204: Video communication connection 205: display 206: User Interface Control Unit 301: Image source 302: color changer 303: Video Compressor 304: Formatter 305: Communication Media 306: Unformatted 307: Video Decompressor 308: color changer 309: display adjustment unit 310: display 320: Video receiver 321: Broadcast station side encoder 401: EOTF applying unit/brightness processor/brightness processing track/brightness processing track 402: unit/luminance mapping 403: Black-white level shifter/unit/luminance mapping 404: rough dynamic range converter/unit 405: Curve Applicator/Unit 406: linearizer/unit 450: chroma processing track 451: Saturation processing determiner/unit 452: Multiplier 453: Matrix application unit 454: first multiplier 455: Multiplier 601: Shadow Man 602: Robot 900: encoder 901: HDR function generation unit/unit 902: IDR image calculation unit 903: IDR mapping function generator 920: video input 921: Second Metadata Input 922: First Metadata Input 923: Third Metadata Input 930: Image output 931: second meta data output 932: First meta data output 933: Third Metadata Output 1100: High dynamic range video decoder/decoder 1102: color changer 1104: Luminance function determination unit 1110: video input 1111: First meta data input 1112: Second meta data input 1113: Third Metadata Input 1120: Video output 1121: Metadata output 1122: Video output 1501: Luminance Mapper/Luminance Processing Track 1502: Perceptualizer/decoder/unit 1503: Fine grading unit/unit 1504: rough brightness mapping unit/unit 1505: Anti-black and white offset device/unit 1506: Linearizer/unit 1550: chroma processor 1551: Chroma processing judging unit/unit 1601: Linearizer 1602: Perceptualizer 1603: Luminance Mapping Unit 1604: HDR to MDR brightness mapper 1801: channel adapter 1802: inverter 1803: adapter 1804: limiter 1805: second channel adapter 1806: Image pixel brightness mapper 1807: IDR post data determiner 1808: Customizable curve optimizer 2301: content creation side 2302: Camera 2303: Grading equipment 2304: Grader 2305: Video Encoder 2306: Satellite antenna 2340: Communication Satellite 2351: Local satellite receiving dish 2352: final processing equipment 2353: HDR display 2370: Video Encoder 2381: decoder 2382: display optimizer 2501: HDR image signal encoded by SLHDR2PLUS 2502: pixel color matrix 2510: SLHDR2 decoder 2520: SLHDR2PLUS decoder 2601: Original function calculator 2602: Reconstruction function determiner 2603: Display optimization function calculation unit 2650: Perceptual homogenizer/unit 2651: Luminance Upper Mapper 2652: Display Optimizer 2653: Linearizer 2654: Luminance code generator 2701: para 2702: IDR generates multiple linear functions/multiple linearities/curves 2703: para 2704: Channel multiple linear function 2710: total para 2711: Total multilinear function BE: Main HDR image brightness range Be2: IDR brightness range BLO_gr: black level offset BLO_IDR: parameter BLO_REC: offset BN: Normalized brightness Bs: color component Cb: chroma Cb*: output color CC_XRM: Middle curve ColHDR: Brightness ColSDR: Brightness Cr: chroma Cr*: output chromaticity DR_1: LDR luminance dynamic range/first dynamic range DR_2: HDR brightness range / second dynamic range DRKSPST: Dark Space Station dX: abscissa EXP: Exposure F_??: function F_C: rough brightness extrusion function/rough mapping function F_ct: color transformation function/color mapping function F_E_I2S: Luminance mapping function F_ENCINV_H2I: decode brightness mapping function F_H2h: Brightness mapping function/upgrading function F_H2hCI: Adjusted brightness mapping function/luminance mapping function F_H2hCI_1: output F_H2hCI_2: output F_H2hCI_3: output F_H2I_LIM: Luminance mapping function shape F_H2S: Total luminance mapping function/initial luminance mapping function F_I2s: function F_I2S: mapping function F_I2S_or: remaining part reclassification function F_I2sCI: Channel brightness mapping function/luminance mapping function/luminance mapping function F_IDRt50: function F_L_CU: Fine graded luminance mapping function/function/curve F_L_DA: display adaptation function/luminance mapping function F_L_REC: MsterHDR reconstruction brightness mapping function F_L_RHDR: reconstruct the shape of the para luminance mapping function F_L_subsq: Brightness mapping function F_Mt1: function/total luminance remapping function F_Mt1_ca: Intermediate function F50t1: Function shape Fd: distance FL_50t1: Main brightness mapping function/total span function/luminance degradation function FL_ca: Curve FL_gr: Curve FL_IDR: Curve Fx: function GN: Normalized brightness Gs: color component HG: slope HG_abc: High brightness gain HG_ca: High brightness gain HG_gr: second slope/original high brightness gain HG_IDR: parameter HG_IDR_LIM: Codable value HG_REC: Rebuild high brightness gain IDR: Intermediate dynamic range Im1250: Display adjusted image Im5000: output image Im_COD: Compressed SDR image Im_LDR: output image/low dynamic range image/standard state range image Im_RHDR: Reconstructed HDR image/original main image Im_RLDR: SDR image ImDA:PB_C image ImSCN1: Sunny outdoor image ImSCN2: night scene ImSCN3: Scene image K: The complete action of the function L_HDR: Brightness L_IDR: Brightness L_in: input/parameter/normalized brightness L_in_X: Normalized input brightness L_Mster_HDR: Brightness L_REC_M_HDR: Brightness L_RHDR: normalized and reconstructed brightness L_SDR: Brightness Lh: Output brightness LIN_HDR: Linear luminance image Ln_Mster_HDR: Input brightness Ln_XDR: Brightness Ls: SDR brightness/luminance MAST_HDR: Main HDR image MB: minimum black level/lower endpoint MDR: Medium dynamic range MDR_300: Medium dynamic range image mip: midpoint mso1: absolute offset Mster_HDR: image Mster HDR: video MsterHDR: Main HDR video/input high dynamic range video/main high dynamic range video mx: abscissa n: distance OOTF: Optical-Optical Method P_IoH: Brightness P_SoH: Brightness PB_C: Image encoding peak brightness/maximum encoding brightness PB_C_H: Peak brightness PB_C_H50: The first maximum pixel brightness / second expected peak brightness / content peak brightness PB_CH: channel peak brightness / second largest pixel brightness PB_MDR: Maximum pixel brightness PQ: Perceptual quantizer REC_M_HDR: image/reconstructed main HDR image RecHDR: HDR image RN: normalized brightness Rs: color component RS: SDR luminance sub-range sc*: standardized scale factor SDR: Standard dynamic range SG: Shadow gain SG_abc: shadow gain SG_ca: shadow gain SG_gr: first slope SG_IDR: IDR image/parameter SG_REC: Shadow gain SG_RM: curve/total shadow gain WLO_ca: parameter WLO_gr: White level offset WLO_IDR: parameter WLO_REC: offset WP_IDR: parameter xo1I: Brightness Y: Brightness Y’CL: Output brightness Y’GL: Graded LDR brightness Y’HC: Initial HDR brightness Y’HP: Gray brightness Y’HPR: Reconstructed Mster_HDR brightness Y’HPS: Proportionally adjusted HDR brightness/normalized HDR input brightness Y’IP: IDR brightness Y’IPG: Reclassify IDR brightness Y_IDR: Brightness value Yglim: Optimized pixel brightness after display yio1: Brightness mapping curve shape YpIDR: Perceive uniform IDR pixel brightness YpMstr: Pixel brightness of the reconstructed main HDR image YPQ: output brightness

根據本發明之方法及設備的此等及其他態樣將參考下文描述的實施方案及實施例並參考附圖說明而變得顯而易見,該等附圖僅作為例示更一般性之概念的非限制性具體圖示,且其中虛線用以指示組件係可選的,非虛線組件不必然係必要的。虛線亦可用於指示被解釋為必要的,但隱藏在物體的內部中,或用於無形事物,諸如,例如物體/區域的選擇(及它們可如何顯示在顯示器上)的元件。These and other aspects of the method and equipment according to the present invention will become apparent with reference to the embodiments and examples described below and with reference to the accompanying drawings, which are only non-limiting to illustrate more general concepts It is shown in detail, and the dotted line is used to indicate that the component is optional, and the non-dotted component is not necessarily necessary. Dotted lines can also be used to indicate elements that are interpreted as necessary, but are hidden inside the object, or used for intangible things such as, for example, the selection of objects/regions (and how they can be displayed on the display).

在圖式中: [圖1]示意地繪示在將高動態範圍影像最佳地映射至對應的經最佳地顏色分級及類似模樣(鑑於各別第一動態範圍DR_1與第二動態範圍DR_2中的差異,如所期望及可行者般類似)的較低動態範圍影像(例如,100尼特峰亮度的標準動態範圍影像)時發生的許多一般顏色變換,其在可逆性(模式2)的情形中亦將對應於由接收器(解碼器)接收之SDR影像的映射,該SDR影像實際編碼HDR場景; [圖2]顯示用於HDR影像之擷取系統可看起來似者; [圖3]說明將HDR影像傳達為特定(不同)峰亮度的一些影像的可能方式及在後設資料中共同傳達之一般定義為明亮度映射函數(例如,定義為可傳統使用的SDR影像Im_LDR)的輝度映射函數,例如根據申請人的較佳方法,以高概念程度開始針對本技術之新讀者的說明; [圖4]顯示根據申請人之在ETSI2中標準化的特定方法編碼HDR影像的各種進一步細節,其等態樣係瞭解下文所撰寫之新穎SLHDR2PLUS編解碼器方法的各種教示的各種細節之所需; [圖5]說明顏色如何變換且特別係重新分級運作在YCbCr色域中的明亮度變換; [圖6]藉由解釋有用的應用以一些更多細節說明吾等的可客製化曲線的概念; [圖7]解釋在原始主HDR影像的中間動態範圍(IDR)編碼及通訊上的基本觀點,以及中等動態範圍影像(MDR)的不待混淆的概念,其一般從任何已接收影像計算以針對在可用之顯示峰亮度PB_D的任何特定顯示器上的顯示來將其最佳化,例如由企圖觀看所接收之HDR視訊的任何終端消費者購買的特定HDR tv; [圖8]進一步說明如何開始處理IDR問題,特別係藉由解碼器將其以特定可自動計算方式解決,且尤其係若可能接收內容的至少一些解碼器係已在市場上的ETSI2順應解碼器,且可能不可輕易地以新的SLHDR2PLUS技術升級(例如,因為tv或STB的擁有者不將其升級); [圖9]顯示本申請案之新穎SLHDR2PLUS編碼器一般需要之技術部件的通用構造; [圖10]說明在藉由編碼器連續推導各種對應明亮度映射函數時所涉及的一些基本技術態樣,特別使用para明亮度映射函數的實例說明; [圖11]顯示新穎的SLHDR2PLUS解碼器的可能典型高階構造,其遵循下文描述之各種可能性的一些實施例教示,以實現SLHDR2PLUS視訊通訊; [圖12]進一步解釋當根據內容創作者的觀點由他在他之定義他的視訊內容的重新分級需求的主明亮度映射函數中選擇時,黑色及白色偏移的一些態樣; [圖13]描述根據對角線按比例調整原理用於推導para之通道調適版本的固定演算法之較佳方法的技術原理; [圖14]說明para的反曲線(所謂的abcara)的一些態樣; [圖15]詳細說明SLHDR2PLUS解碼器的一些態樣; [圖16]說明實作顯示調適以計算用於與本申請案之新技術的SLHDR2PLUS編碼原理整合之任何特定PB_D顯示器的MDR影像的有用方式; [圖17]說明黑色與白色偏移(BLO & WLO)的通道調適以伴隨及簡化以下數學,並給予通用的物理技術基本原理的一些進一步態樣; [圖18]顯示SLHDR2PLUS編碼的另一實施例(或實際以一個圖式說明之各種實施例組合的數個教示),其係特別有用的,因為經編碼影像可由標準的已部署的ETSI2解碼器直接解碼; [圖19]說明如何針對各種相依峰亮度影像表示(無論作為輸入或輸出影像)判定原始主客製化曲線的對應版本,例如具有客製化曲線的共同規範的IDR影像,以依例如電影創作者之分級者的需要將粗略映射IDR明亮度精細調諧至精確的最終SDR明亮度; [圖20]在可重新分級影像的頻譜上顯示圖18之方法的基本技術原理; [圖21]說明超越起始影像之最高值(對應於一致變換或圖表中的對角線)的明亮度映射函數(例如,para)之調適的外插法(extrapolation),及亦以其說明在特定選擇的para函數形狀與對應的abcara之間的關係; [圖22]示意地說明para的高亮度增益的限制的具體實施例如何在輸入經正規化明亮度與輸出經正規化明亮度之間的輝度重新分級上運作; [圖23]示意地繪示總HDR通訊及處置鏈,以清楚地指出視訊編碼與顯示最佳化之間的差異(前者係關於影像本身的真正定義,而後者僅關於針對在特定動態範圍能力的任何特定顯示器上的最佳化,寬鬆地說可客製化,較佳地將各種可能相當不同且相當有挑戰性的HDR場景影像的重新分級需求列入考量); [圖24]進一步說明經標準化函數改變演算法將如何運作,其將採用由,例如,內容創作者的分級者產生的任何輸入函數形狀,以指定第一峰亮度動態範圍的經正規化輝度應如何映射至第二峰亮度影像表示的經正規化輝度,及如何可從此輸入函數針對任何給定輸入函數獨特地計算在不同的特別低的第三峰亮度表示及該第二者之間映射的函數; [圖25]示意地繪示目前已教示之SLHDR2PLUS視訊編碼機制及信號如何不錯地與傳統SLHDR2解碼器相容,但仍為已部署的SLHDR2PLUS解碼器提供額外可能性; [圖26]示意地在方塊中總結所有以下的解碼數學,以針對進行所有需要的解碼輝度處理恢復所有需要的輝度映射函數,以從已接收IDR影像獲得所需影像;及 [圖27]示意地說明不錯的實用方法,以數值地具體地獲得可客製化曲線的客製化版本(若存在)。In the schema: [Figure 1] It schematically shows how to map the high dynamic range image to the corresponding optimal color grading and similar appearance (in view of the difference in the first dynamic range DR_1 and the second dynamic range DR_2, such as Many general color transformations that occur in lower dynamic range images (for example, standard dynamic range images with 100 nits peak brightness) that are similar to those expected and feasible) will also correspond in the case of reversibility (mode 2) In the mapping of the SDR image received by the receiver (decoder), the SDR image actually encodes the HDR scene; [Figure 2] Shows how the capture system for HDR images looks like; [Figure 3] Explains the possible ways to convey HDR images as some images with specific (different) peak brightness and the general definition of the common transmission in the meta-data is the brightness mapping function (for example, it is defined as the SDR image Im_LDR that can be used traditionally ) Brightness mapping function, for example, according to the applicant’s better method, start the description for new readers of the technology with a high conceptual level; [Figure 4] Shows various further details of encoding HDR images according to the applicant's specific method standardized in ETSI2, which is necessary to understand the various details of the various teachings of the novel SLHDR2PLUS codec method written below; [Figure 5] Explain how the color changes and especially re-classify the brightness conversion in the YCbCr color gamut; [Figure 6] Explain the concept of our customizable curve in some more details by explaining useful applications; [Figure 7] Explains the basic idea of the intermediate dynamic range (IDR) encoding and communication of the original master HDR image, as well as the not to be confused concept of the intermediate dynamic range image (MDR), which is generally calculated from any received image to target the current The display on any specific display with the peak brightness PB_D can be used to optimize it, such as a specific HDR tv purchased by any end consumer who attempts to watch the received HDR video; [Figure 8] It further explains how to start to deal with the IDR problem, especially by the decoder to solve it in a specific automatic calculation method, and especially if at least some of the decoders that can receive the content are ETSI2 compliant decoders on the market , And may not be easily upgraded with the new SLHDR2PLUS technology (for example, because the owner of tv or STB does not upgrade it); [Figure 9] Shows the general structure of the technical components generally required for the novel SLHDR2PLUS encoder of this application; [Figure 10] Explain some basic technical aspects involved in the continuous derivation of various corresponding brightness mapping functions by the encoder, especially the example of using the para brightness mapping function; [Figure 11] shows the possible typical high-level structure of the novel SLHDR2PLUS decoder, which follows the teachings of some embodiments of various possibilities described below to realize SLHDR2PLUS video communication; [Figure 12] Further explain some aspects of black and white shifts when he chooses from the main brightness mapping function that defines the reclassification requirements of his video content according to the content creator’s point of view; [Figure 13] Describes the technical principle of a better method for deriving the fixed algorithm of the channel-adapted version of para according to the principle of diagonal scaling; [Figure 14] Explain some aspects of the inverse curve of para (the so-called abcara); [Figure 15] Detailed description of some aspects of SLHDR2PLUS decoder; [Figure 16] Illustrates a useful way of implementing display adaptation to calculate the MDR image of any specific PB_D display integrated with the SLHDR2PLUS encoding principle of the new technology of this application; [Figure 17] Explain the channel adjustment of black and white offset (BLO & WLO) to accompany and simplify the following mathematics, and give some further aspects of the basic principles of general physical technology; [Figure 18] shows another embodiment of SLHDR2PLUS encoding (or a combination of several teachings of various embodiments illustrated in a diagram), which is particularly useful because the encoded image can be used by a standard deployed ETSI2 decoder Direct decoding [Figure 19] Explains how to determine the corresponding version of the original master customized curve for various dependent peak brightness image representations (whether as input or output images), such as IDR images with a common specification of customized curves, for example, movie creators The grader needs to fine-tune the rough-mapped IDR brightness to the precise final SDR brightness; [Figure 20] The basic technical principle of the method in Figure 18 is displayed on the frequency spectrum of the re-gradable image; [Figure 21] Explain the adjustment of the extrapolation of the brightness mapping function (for example, para) beyond the highest value of the initial image (corresponding to the consistent transformation or the diagonal line in the graph), and also explain it The relationship between the shape of a particular selected para function and the corresponding abcara; [Figure 22] A schematic illustration of how the specific embodiment of para’s high-brightness gain limitation works on the brightness reclassification between the input normalized brightness and the output normalized brightness; [Figure 23] Schematic diagram of the overall HDR communication and processing chain to clearly point out the difference between video encoding and display optimization (the former is the true definition of the image itself, while the latter is only about the ability to target in a specific dynamic range The optimization on any particular display of, loosely speaking, it can be customized, and it is better to take into account the reclassification requirements of various HDR scene images that may be quite different and quite challenging); [Figure 24] It further explains how the normalized function changes the algorithm will work. It will use any input function shape generated by, for example, the content creator’s grader to specify the normalized luminance response of the first peak luminance dynamic range. How to map to the normalized brightness of the second peak brightness image representation, and how can this input function be uniquely calculated for any given input function to map between a different particularly low third peak brightness representation and the second one function; [Figure 25] It schematically shows how the SLHDR2PLUS video encoding mechanism and signal that have been taught so far are well compatible with the traditional SLHDR2 decoder, but still provide additional possibilities for the deployed SLHDR2PLUS decoder; [Figure 26] Schematically summarize all the following decoding mathematics in a block to recover all the required luminance mapping functions for performing all required decoding luminance processing to obtain the required image from the received IDR image; and [Figure 27] A schematic illustration of a good practical method to obtain a customized version of the customizable curve (if it exists) numerically.

900:編碼器 900: encoder

901:HDR函數產生單元/單元 901: HDR function generation unit/unit

902:IDR影像計算單元 902: IDR image calculation unit

903:IDR映射函數產生器 903: IDR mapping function generator

920:影像輸入 920: video input

921:第二後設資料輸入 921: Second Metadata Input

922:第一後設資料輸入 922: First Metadata Input

923:第三後設資料輸入 923: Third Metadata Input

930:影像輸出 930: Image output

931:第二後設資料輸出 931: second meta data output

932:第一後設資料輸出 932: First meta data output

933:第三後設資料輸出 933: Third Metadata Output

F_H2hCI:經調適明亮度映射函數 F_H2hCI: adapted brightness mapping function

F_I2sCI:通道明亮度映射函數 F_I2sCI: Channel brightness mapping function

FL_50t1:主明亮度映射函數 FL_50t1: main brightness mapping function

IDR:中間動態範圍 IDR: Intermediate dynamic range

MsterHDR:主HDR視訊/輸入高動態範圍影像 MsterHDR: Main HDR video/input high dynamic range image

PB_C_H50:第一最大像素輝度 PB_C_H50: The first maximum pixel brightness

PB_CH:通道峰亮度/第二最大像素輝度 PB_CH: channel peak brightness / second largest pixel brightness

Claims (10)

一種高動態範圍視訊編碼器(900),其經配置以經由一影像輸入(920)接收一輸入高動態範圍影像(MsterHDR),該輸入高動態範圍影像具有一第一最大像素輝度(PB_C_H50),該編碼器具有用於該第一最大像素輝度的一第一後設資料輸入(922),且該高動態範圍視訊編碼器經配置以經由一第二後設資料輸入(921)接收一主明亮度映射函數(FL_50t1),該明亮度映射函數定義該輸入高動態範圍影像的經正規化明亮度與對應的一低動態範圍影像(Im_LDR)的經正規化明亮度之間的關係,該低動態範圍影像較佳地具有等於100尼特的一LDR最大像素輝度,其特徵在於該編碼器進一步包含一第三後設資料輸入(923)以接收低於該第一最大像素輝度(PB_C_H50)的一第二最大像素輝度(PB_CH),且該編碼器的進一步特徵在於其包含: -                 一HDR函數產生單元(901),其經配置以施加一經標準化演算法以將該主明亮度映射函數(FL_50t1)變換成一經調適明亮度映射函數(F_H2hCI),該經調適明亮度映射函數使該輸入高動態範圍影像的經正規化明亮度相關於一中間動態範圍影像(IDR)的經正規化輝度,該中間動態範圍影像的特徵在於具有等於該第二最大像素輝度(PB_CH)的一最大可能輝度; -                 一IDR影像計算單元(902),其經配置以施加該經調適明亮度映射函數(F_H2hCI)至該輸入高動態範圍影像(MsterHDR)之像素的明亮度,以獲得係此單元之輸出的該中間動態範圍影像(IDR)之像素的明亮度;及 -                 一IDR映射函數產生器(903),其經配置以在該主明亮度映射函數(FL_50t1)及該經調適明亮度映射函數(F_H2hCI)的基礎上推導一通道明亮度映射函數(F_I2sCI),該通道明亮度映射函數在將該中間動態範圍影像(IDR)的該等各別經正規化明亮度給定作為輸入時將該低動態範圍影像(Im_LDR)的該等各別經正規化明亮度定義作為輸出,該等明亮度繼而對應於該輸入高動態範圍影像(MsterHDR)的各別明亮度;該編碼器的進一步特徵係具有: -                 一影像輸出(930),以輸出該中間動態範圍影像(IDR); -                 一第一後設資料輸出(932),以輸出該第二最大像素輝度(PB_CH); -                 一第二後設資料輸出(931),以輸出該通道明亮度映射函數(F_I2sCI);及 -                 一第三後設資料輸出(933),以輸出該第一最大像素輝度(PB_C_H50)。A high dynamic range video encoder (900) configured to receive an input high dynamic range image (MsterHDR) via an image input (920), the input high dynamic range image having a first maximum pixel brightness (PB_C_H50), The encoder has a first meta data input (922) for the first maximum pixel brightness, and the high dynamic range video encoder is configured to receive a master brightness via a second meta data input (921) A mapping function (FL_50t1), which defines the relationship between the normalized brightness of the input high dynamic range image and the normalized brightness of a corresponding low dynamic range image (Im_LDR). The low dynamic range The image preferably has an LDR maximum pixel brightness equal to 100 nits, which is characterized in that the encoder further includes a third post data input (923) to receive a first maximum pixel brightness (PB_C_H50) lower than the first maximum pixel brightness (PB_C_H50). Two maximum pixel brightness (PB_CH), and the encoder is further characterized in that it includes: -An HDR function generating unit (901), which is configured to apply a standardized algorithm to transform the main brightness mapping function (FL_50t1) into an adjusted brightness mapping function (F_H2hCI), and the adjusted brightness mapping function makes The normalized brightness of the input high dynamic range image is related to the normalized brightness of an intermediate dynamic range image (IDR). The intermediate dynamic range image is characterized by having a maximum value equal to the second maximum pixel brightness (PB_CH). Possible brightness -An IDR image calculation unit (902), which is configured to apply the adjusted brightness mapping function (F_H2hCI) to the brightness of the pixels of the input high dynamic range image (MsterHDR) to obtain the output of this unit The brightness of the pixels of the intermediate dynamic range image (IDR); and -An IDR mapping function generator (903), which is configured to derive a channel brightness mapping function (F_I2sCI) based on the main brightness mapping function (FL_50t1) and the adjusted brightness mapping function (F_H2hCI), The channel brightness mapping function, when the respective normalized brightness of the intermediate dynamic range image (IDR) is given as input, the respective normalized brightness of the low dynamic range image (Im_LDR) Defined as output, the brightness corresponds to the respective brightness of the input high dynamic range image (MsterHDR); further features of the encoder are: -An image output (930) to output the intermediate dynamic range image (IDR); -A first meta data output (932) to output the second maximum pixel brightness (PB_CH); -A second meta data output (931) to output the channel brightness mapping function (F_I2sCI); and -A third meta data output (933) to output the first maximum pixel brightness (PB_C_H50). 如請求項1之高動態範圍視訊編碼器(900),其中該HDR函數產生單元(901)的該經標準化演算法朝向該主明亮度映射函數(FL_50t1)的該對角線施加一壓縮以獲得該經調適明亮度映射函數(F_H2hCI),該壓縮涉及以一比例因子按比例調整該函數的所有輸出明亮度值,該比例因子取決於該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)。For example, the high dynamic range video encoder (900) of claim 1, wherein the standardized algorithm of the HDR function generating unit (901) applies a compression toward the diagonal of the main brightness mapping function (FL_50t1) to obtain The adjusted brightness mapping function (F_H2hCI), the compression involves scaling all the output brightness values of the function by a scale factor that depends on the first maximum pixel brightness (PB_C_H50) and the second maximum pixel Brightness (PB_CH). 如請求項1或2之高動態範圍視訊編碼器(900),其包含:一限制器(1804),其經配置以針對包含等於1.0之最亮的該經正規化明亮度的該等經正規化明亮度的一子範圍重新判定該通道明亮度映射函數(F_I2sCI)的一斜率。For example, the high dynamic range video encoder (900) of claim 1 or 2, which includes: a limiter (1804), which is configured to target the normalized brightness that includes the brightest normalized brightness equal to 1.0 Change a sub-range of brightness to re-determine a slope of the channel brightness mapping function (F_I2sCI). 一種高動態範圍視訊解碼器(1100),其具有一影像輸入(1110)以接收一中間動態範圍影像(IDR),該中間動態範圍影像具有藉由較佳係0.8或更小的一乘法因子而小於一主高動態範圍影像(MsterHDR)的一第一最大像素輝度(PB_C_H50)的一第二最大像素輝度(PB_CH),該第二最大像素輝度(PB_CH)經由一第二後設資料輸入(1112)接收,該解碼器具有一第一後設資料輸入(1111)以接收一明亮度映射函數(F_I2sCI),該明亮度映射函數定義該中間動態範圍影像(IDR)的所有可能的經正規化明亮度至一LDR最大像素輝度低動態範圍影像(Im_LDR)之對應經正規化明亮度的該變換,該解碼器的特徵在於其具有一第三後設資料輸入(1113)以接收該第一最大像素輝度(PB_C_H50),且該解碼器包含: -                 一輝度函數判定單元(1104),其經配置以施加一經標準化演算法以將該明亮度映射函數(F_I2sCI)變換成一解碼明亮度映射函數(F_ENCINV_H2I),該解碼明亮度映射函數針對該中間動態範圍影像(IDR)的一像素之任何可能的輸入經正規化明亮度將該主高動態範圍影像(MsterHDR)的一對應經正規化HDR明亮度指定為輸出,該經標準化演算法使用該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)的該等值;及 -                 一顏色變換器(1102),其經配置以將該解碼明亮度映射函數(F_ENCINV_H2I)連續地施加至該中間動態範圍影像(IDR)之經輸入的經正規化明亮度,以獲得一經重建主HDR影像(REC_M_HDR)之像素的經正規化經重建明亮度(L_RHDR);該解碼器進一步具有一影像輸出(1120)以輸出該經重建主HDR影像(REC_M_HDR)。A high dynamic range video decoder (1100), which has an image input (1110) to receive an intermediate dynamic range image (IDR), the intermediate dynamic range image has a multiplication factor preferably 0.8 or less A second maximum pixel brightness (PB_CH) that is smaller than a first maximum pixel brightness (PB_C_H50) of a main high dynamic range image (MsterHDR), and the second maximum pixel brightness (PB_CH) is input via a second meta data (1112 ) Receiving, the decoder has a first meta data input (1111) to receive a brightness mapping function (F_I2sCI), the brightness mapping function defines all possible normalized brightness of the intermediate dynamic range image (IDR) The transformation of the corresponding normalized brightness to an LDR maximum pixel brightness low dynamic range image (Im_LDR), the decoder is characterized in that it has a third post data input (1113) to receive the first maximum pixel brightness (PB_C_H50), and the decoder includes: -A luminance function determination unit (1104) configured to apply a standardized algorithm to transform the luminance mapping function (F_I2sCI) into a decoded luminance mapping function (F_ENCINV_H2I), the decoded luminance mapping function for the intermediate dynamics The normalized brightness of any possible input of a pixel of the range image (IDR) designates a corresponding normalized HDR brightness of the main high dynamic range image (MsterHDR) as the output, and the normalized algorithm uses the first The equivalent values of the maximum pixel brightness (PB_C_H50) and the second maximum pixel brightness (PB_CH); and -A color converter (1102) configured to continuously apply the decoded brightness mapping function (F_ENCINV_H2I) to the input normalized brightness of the intermediate dynamic range image (IDR) to obtain a reconstructed master The normalized reconstructed brightness (L_RHDR) of the pixels of the HDR image (REC_M_HDR); the decoder further has an image output (1120) to output the reconstructed main HDR image (REC_M_HDR). 如請求項4之高動態範圍視訊解碼器(1100),其中該輝度函數判定單元(1104)的該經標準化演算法計算其取決於該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)的一比例因子。For example, the high dynamic range video decoder (1100) of claim 4, wherein the standardized algorithm of the luminance function determination unit (1104) calculates that it depends on the first maximum pixel brightness (PB_C_H50) and the second maximum pixel brightness (PB_CH) a scale factor. 如請求項4或5之高動態範圍視訊解碼器(1100),其中該明亮度映射函數(F_I2sCI)係由一明亮度映射定義,該明亮度映射由具有用於一黑暗經正規化明亮度範圍的一第一斜率(SG_gr)的一第一線性區段、具有用於一明亮經正規化明亮度範圍的一第二斜率(HG_gr)的一第二線性區段、及用於在該二個範圍之間之明亮度的一拋物線區段組成。For example, the high dynamic range video decoder (1100) of claim 4 or 5, wherein the brightness mapping function (F_I2sCI) is defined by a brightness map, and the brightness map is defined by having a normalized brightness range for darkness A first linear section with a first slope (SG_gr) for a bright normalized brightness range, a second linear section with a second slope (HG_gr) for a bright normalized brightness range, and a second linear section for Consists of a parabolic segment of brightness between two ranges. 如請求項4或5之高動態範圍視訊解碼器(1100),其中該顏色變換器(1102)經配置以計算具有一最大像素輝度(PB_MDR)的一中等動態範圍影像(MDR_300)的像素明亮度,該最大像素輝度不等於該LDR最大輝度、該第一最大像素輝度(PB_C_H50)、及該第二最大像素輝度(PB_CH)的該等值,且該解碼器具有用於輸出該中等動態範圍影像(MDR_300)的一影像輸出(1122)。Such as the high dynamic range video decoder (1100) of claim 4 or 5, wherein the color converter (1102) is configured to calculate the pixel brightness of a medium dynamic range image (MDR_300) with a maximum pixel brightness (PB_MDR) , The maximum pixel brightness is not equal to the values of the LDR maximum brightness, the first maximum pixel brightness (PB_C_H50), and the second maximum pixel brightness (PB_CH), and the decoder is capable of outputting the medium dynamic range image ( MDR_300) an image output (1122). 如請求項4或5之高動態範圍視訊解碼器(1100),其具有一後設資料輸出(1121),該後設資料輸出用於輸出一明亮度映射函數(F_L_subsq),該明亮度映射函數針對該經重建主HDR影像(REC_M_HDR)或替代地該中等動態範圍影像(MDR_300)的所有經正規化明亮度定義具有另一最大像素輝度的一影像的對應明亮度,此另一最大像素輝度較佳地係100尼特,或高於或低於各別該經重建主HDR影像(REC_M_HDR)或替代地該中等動態範圍影像(MDR_300)的該最大輝度值的一值。For example, the high dynamic range video decoder (1100) of claim 4 or 5 has a post-data output (1121), the post-data output is used to output a brightness mapping function (F_L_subsq), the brightness mapping function For the reconstructed main HDR image (REC_M_HDR) or alternatively the normalized brightness of the medium dynamic range image (MDR_300), define the corresponding brightness of an image with another maximum pixel brightness, and the other maximum pixel brightness is lower than Preferably, it is 100 nits, or a value higher or lower than the maximum luminance value of the reconstructed main HDR image (REC_M_HDR) or alternatively the medium dynamic range image (MDR_300). 一種具有一第一最大像素輝度(PB_C_H50)的一經接收輸入高動態範圍影像(MsterHDR)之高動態範圍視訊編碼的方法,其包含接收一主明亮度映射函數(FL_50t1),該明亮度映射函數定義該輸入高動態範圍影像的經正規化明亮度與對應的一低動態範圍影像(Im_LDR)的經正規化明亮度之間的一關係,該低動態範圍影像具有其較佳地具有等於100尼特的一值的一LDR最大像素輝度,該方法的特徵在於該編碼進一步包含接收一第二最大像素輝度(PB_CH),且該編碼包含: -                 施加一經標準化演算法以將該主明亮度映射函數(FL_50t1)變換成一經調適明亮度映射函數(F_H2hCI),該經調適明亮度映射函數使該輸入高動態範圍影像的經正規化明亮度相關於一中間動態範圍影像(IDR)的經正規化輝度,該中間動態範圍影像的特徵在於具有等於該第二最大像素輝度(PB_CH)的一最大可能輝度; -                 施加該經調適明亮度映射函數(F_H2hCI)至該輸入高動態範圍影像(MsterHDR)之像素的明亮度,以獲得該中間動態範圍影像(IDR)之像素的明亮度; -                 在該主明亮度映射函數(FL_50t1)及該經調適明亮度映射函數(F_H2hCI)的基礎上推導一通道明亮度映射函數(F_I2sCI),該通道明亮度映射函數在該中間動態範圍影像(IDR)的該等各別經正規化明亮度係給定為輸入時將該低動態範圍影像(Im_LDR)的該等各別經正規化明亮度定義作為輸出,該等明亮度繼而對應於該輸入高動態範圍影像(MsterHDR)的各別明亮度; -                 輸出該中間動態範圍影像(IDR);及 -                 輸出該第二最大像素輝度(PB_CH)、該通道明亮度映射函數(F_I2sCI)、及該第一最大像素輝度(PB_C_H50)。A method for high dynamic range video encoding of a received input high dynamic range image (MsterHDR) with a first maximum pixel brightness (PB_C_H50), which includes receiving a master brightness mapping function (FL_50t1), the brightness mapping function definition A relationship between the normalized brightness of the input high dynamic range image and the normalized brightness of a corresponding low dynamic range image (Im_LDR), the low dynamic range image preferably has a relationship equal to 100 nits The method is characterized in that the encoding further includes receiving a second maximum pixel luminance (PB_CH), and the encoding includes: -Apply a standardized algorithm to transform the main brightness mapping function (FL_50t1) into an adjusted brightness mapping function (F_H2hCI), the adjusted brightness mapping function correlates the normalized brightness of the input high dynamic range image Normalized luminance of an intermediate dynamic range image (IDR), the intermediate dynamic range image is characterized by having a maximum possible luminance equal to the second maximum pixel luminance (PB_CH); -Apply the adjusted brightness mapping function (F_H2hCI) to the brightness of the pixels of the input high dynamic range image (MsterHDR) to obtain the brightness of the pixels of the intermediate dynamic range image (IDR); -Based on the main brightness mapping function (FL_50t1) and the adjusted brightness mapping function (F_H2hCI), a channel brightness mapping function (F_I2sCI) is derived, and the channel brightness mapping function is in the intermediate dynamic range image (IDR ) When the respective normalized brightness of the low dynamic range image (Im_LDR) is given as the input, the respective normalized brightness of the low dynamic range image (Im_LDR) is defined as the output, and the brightness corresponds to the input high The individual brightness of dynamic range images (MsterHDR); -Output the intermediate dynamic range image (IDR); and -Output the second maximum pixel brightness (PB_CH), the channel brightness mapping function (F_I2sCI), and the first maximum pixel brightness (PB_C_H50). 一種一經接收中間動態範圍影像(IDR)之高動態範圍視訊解碼的方法,該影像具有藉由較佳係0.8或更小的一乘法因子而低於一主高動態範圍影像(MsterHDR)的一第一最大像素輝度(PB_C_H50)的一第二最大像素輝度(PB_CH),該第二最大像素輝度(PB_CH)係接收為該中間動態範圍影像的後設資料,該解碼方法亦接收後設資料中的一明亮度映射函數(F_I2sCI),該明亮度映射函數定義該中間動態範圍影像(IDR)的所有可能的經正規化明亮度至一LDR最大像素輝度低動態範圍影像(Im_LDR)之對應經正規化明亮度的該變換,且該解碼方法的特徵在於其接收該第一最大像素輝度(PB_C_H50),且該解碼方法的特徵在於其包含: -                 施加一經標準化演算法以將該明亮度映射函數(F_I2sCI)變換成一解碼明亮度映射函數(F_ENCINV_H2I),該解碼明亮度映射函數針對該中間動態範圍影像(IDR)的一像素之任何可能的輸入經正規化明亮度將該主高動態範圍影像(MsterHDR)的一對應經正規化HDR明亮度指定為輸出,該經標準化演算法使用該第一最大像素輝度(PB_C_H50)及該第二最大像素輝度(PB_CH)的該等值; -                 將該解碼明亮度映射函數(F_ENCINV_H2I)施加至該中間動態範圍影像(IDR)之經正規化明亮度,以獲得一經重建主HDR影像(REC_M_HDR)之像素的經正規化經重建明亮度(L_RHDR);及 -                 輸出該經重建主HDR影像(REC_M_HDR)。A method for decoding a high dynamic range video after receiving an intermediate dynamic range image (IDR), the image having a first high dynamic range image (MsterHDR) lower than a main high dynamic range image (MsterHDR) by a multiplication factor of preferably 0.8 or less A second maximum pixel brightness (PB_CH) of a maximum pixel brightness (PB_C_H50), the second maximum pixel brightness (PB_CH) is received as the meta data of the intermediate dynamic range image, and the decoding method also receives the meta data in the meta data A brightness mapping function (F_I2sCI), the brightness mapping function defines all possible normalized brightness of the intermediate dynamic range image (IDR) to an LDR maximum pixel brightness and the corresponding normalized low dynamic range image (Im_LDR) The conversion of brightness, and the decoding method is characterized in that it receives the first maximum pixel brightness (PB_C_H50), and the decoding method is characterized in that it includes: -Apply a standardized algorithm to transform the brightness mapping function (F_I2sCI) into a decoded brightness mapping function (F_ENCINV_H2I) for any possible input of a pixel of the intermediate dynamic range image (IDR) The normalized brightness designates a corresponding normalized HDR brightness of the main high dynamic range image (MsterHDR) as the output, and the normalized algorithm uses the first maximum pixel brightness (PB_C_H50) and the second maximum pixel brightness (PB_CH) equivalent value; -Apply the decoded brightness mapping function (F_ENCINV_H2I) to the normalized brightness of the intermediate dynamic range image (IDR) to obtain the normalized reconstructed brightness (L_RHDR) of the pixels of the reconstructed main HDR image (REC_M_HDR) );and -Output the reconstructed main HDR image (REC_M_HDR).
TW108131502A 2018-09-05 2019-09-02 Multi-range hdr video coding TWI843747B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP18192636.1 2018-09-05
EP18192636.1A EP3621307A1 (en) 2018-09-05 2018-09-05 Multi-range hdr video coding
EP19176732.6 2019-05-27
EP19176732 2019-05-27

Publications (2)

Publication Number Publication Date
TW202034692A true TW202034692A (en) 2020-09-16
TWI843747B TWI843747B (en) 2024-06-01

Family

ID=

Similar Documents

Publication Publication Date Title
JP6596125B2 (en) Method and apparatus for creating a code mapping function for encoding of HDR images, and method and apparatus for use of such encoded images
US11195492B2 (en) Optimizing high dynamic range images for particular displays
CN108431886B (en) Optimizing high dynamic range images for specific displays
RU2687267C2 (en) Optimization of images with extended dynamic range for specific displays
US10902567B2 (en) Handling multiple HDR image sources
CN107211079B (en) Dynamic range coding for images and video
JP6619888B2 (en) HDR video encoding and decoding
US10964248B2 (en) Optimized decoded high dynamic range image saturation
JP6009539B2 (en) Apparatus and method for encoding and decoding HDR images
CN112640471B (en) High dynamic range video encoder, decoder, encoding method and decoding method
JP2019512954A (en) HDR video encoding and decoding
JP6831389B2 (en) Processing of multiple HDR image sources
WO2019170465A1 (en) Versatile dynamic range conversion processing
EP3621307A1 (en) Multi-range hdr video coding
TWI843747B (en) Multi-range hdr video coding
TW202034692A (en) Multi-range hdr video coding
RU2790178C2 (en) Multirange encoding of video with expanded dynamic range
KR102279842B1 (en) Methods and apparatuses for encoding hdr images
CN118318243A (en) Optimizing display of HDR images
JP2024517241A (en) Display-optimized HDR video contrast adaptation