TW202033011A - Methods and procedures for iab and v2x - Google Patents

Methods and procedures for iab and v2x Download PDF

Info

Publication number
TW202033011A
TW202033011A TW108141312A TW108141312A TW202033011A TW 202033011 A TW202033011 A TW 202033011A TW 108141312 A TW108141312 A TW 108141312A TW 108141312 A TW108141312 A TW 108141312A TW 202033011 A TW202033011 A TW 202033011A
Authority
TW
Taiwan
Prior art keywords
wtru
feedback
frequency resource
time slot
resource
Prior art date
Application number
TW108141312A
Other languages
Chinese (zh)
Inventor
俊霖 潘
辛方俊
艾爾登 貝拉
春暄 葉
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW202033011A publication Critical patent/TW202033011A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Abstract

Methods and apparatus for integrated access and backhaul (IAB) and vehicle-to-everything (V2X) systems are disclosed herein. A first wireless transmit/receive unit (WTRU) may monitor, in a first time slot, a first frequency resource comprising a first plurality of resource blocks (RBs) and having a first frequency range, for signals from a second WTRU. The first frequency resource may be associated with a physical sidelink shared channel (PSSCH) of the second WTRU. The WTRU may determine a feedback frequency resource based on at least one of the first frequency range, a number of RBs in the first plurality of RBs, or an identity of the first WTRU. The WTRU may transmit, in a second time slot, to the second WTRU, feedback information using the feedback frequency resource.

Description

IAB及V2X方法及程序IAB and V2X methods and procedures

相關申請案的交叉引用Cross references to related applications

本申請案主張2018年11月14日申請的美國臨時專利申請案No. 62/767,291以及2019年1月9日申請的美國臨時專利申請案No. 62/790,303的權益,其內容藉由引用而被併入本文。This application claims the rights and interests of U.S. Provisional Patent Application No. 62/767,291 filed on November 14, 2018 and U.S. Provisional Patent Application No. 62/790,303 filed on January 9, 2019, the contents of which are incorporated by reference Be incorporated into this article.

最近的第三代合作夥伴計畫(3GPP)標準討論定義了若干部署場景,例如室內熱點、密集的城市、鄉村、城市巨集以及高速。基於國際電信聯盟無線電通訊部(ITU-R)、下一代行動網路(NGMN)以及3GPP提出的一般要求,新興的5G系統的用例可被寬泛地分類為增強行動寬頻(eMBB)、大規模機器類型通信(mMTC)以及超可靠以及低潛時通信(URLLC)。這些用例集中於滿足不同的性能要求,例如較高的資料速率、較高的頻譜效率、低功率以及較高的能量效率、及/或較低的潛時以及較高的可靠性。此外,對於各種部署情形,考慮範圍從700 MHz到80 GHz的寬範圍的譜帶。由於各種原因(包括mmW頻譜使用以及大規模MIMO或多波束系統的本地部署),與長期演進(LTE)系統相比,新的無線電(NR)系統被期望具有更大的可用頻寬。The recent 3rd Generation Partnership Project (3GPP) standards discussion defined several deployment scenarios, such as indoor hotspots, dense cities, rural areas, urban macros, and high speeds. Based on the general requirements of the International Telecommunication Union Radio Communications Department (ITU-R), Next Generation Mobile Network (NGMN) and 3GPP, the use cases of emerging 5G systems can be broadly classified as enhanced mobile broadband (eMBB) and large-scale machines Type communication (mMTC) and ultra-reliable and low-latency communication (URLLC). These use cases focus on meeting different performance requirements, such as higher data rates, higher spectral efficiency, low power and higher energy efficiency, and/or lower latency and higher reliability. In addition, for various deployment scenarios, consider a wide range of spectral bands ranging from 700 MHz to 80 GHz. For various reasons (including mmW spectrum usage and local deployment of massive MIMO or multi-beam systems), new radio (NR) systems are expected to have a larger available bandwidth compared to Long Term Evolution (LTE) systems.

本文揭露了用於整合存取及回程(IAB)以及車聯網(V2X)系統的方法及裝置。第一無線傳輸/接收單元(WTRU)可以針對來自第二WTRU的信號以在第一時槽中監視包括第一多個資源塊(RB)並具有第一頻率範圍的第一頻率資源。該第一頻率資源可以與該第二WTRU的實體側鏈路共用通道(PSSCH)相關聯。該WTRU可以基於該第一頻率範圍、該第一多個RB中的RB數量、或該第一WTRU的識別碼中的至少一者來確定回饋頻率資源。該WTRU可以在第二時槽中使用該回饋頻率資源向該第二WTRU傳送回饋資訊。This article discloses methods and devices for integrated access and backhaul (IAB) and Internet of Vehicles (V2X) systems. The first wireless transmission/reception unit (WTRU) may monitor a first frequency resource including a first plurality of resource blocks (RB) and having a first frequency range in a first time slot for a signal from a second WTRU. The first frequency resource may be associated with the physical side link shared channel (PSSCH) of the second WTRU. The WTRU may determine the feedback frequency resource based on at least one of the first frequency range, the number of RBs in the first plurality of RBs, or the identification code of the first WTRU. The WTRU may use the feedback frequency resource in the second time slot to transmit feedback information to the second WTRU.

圖1A是示出了可以實施所揭露的一或更多實施例的範例性通信系統100的圖式。該通信系統100可以是為複數無線使用者提供例如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬在內的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅立葉變換擴展OFDM(ZT-UW-DTS-S-OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。Figure 1A is a diagram illustrating an exemplary communication system 100 in which one or more of the disclosed embodiments can be implemented. The communication system 100 may be a multiple access system that provides content such as voice, data, video, message transmission, and broadcast for multiple wireless users. The communication system 100 can enable multiple wireless users to access such content by sharing system resources including wireless bandwidth. For example, the communication system 100 may use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA) ), single carrier FDMA (SC-FDMA), zero-tail unique word discrete Fourier transform extended OFDM (ZT-UW-DTS-S-OFDM), unique word OFDM (UW-OFDM), resource block filtering OFDM, and multiple filter banks Carrier (FBMC) and so on.

如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN) 104、核心網路(CN) 106、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d每一者可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d(其任一者都可以被稱為站(STA))可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置及應用(例如遠端手術)、工業裝置及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d中的任何一者可被可交換地稱為UE。As shown in FIG. 1A, the communication system 100 may include wireless transmission/reception units (WTRU) 102a, 102b, 102c, 102d, a radio access network (RAN) 104, a core network (CN) 106, and a public switched telephone network. (PSTN) 108, Internet 110, and other networks 112. However, it should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. For example, the WTRU 102a, 102b, 102c, 102d (any of which may be referred to as a station (STA)) may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile Stations, fixed or mobile subscriber units, subscription-based units, pagers, mobile phones, personal digital assistants (PDAs), smart phones, laptop computers, small laptops, personal computers, wireless sensors, hotspots or Mi-Fi devices, Internet of Things (IoT) devices, watches or other wearable devices, head-mounted displays (HMD), vehicles, drones, medical devices and applications (such as remote surgery), industrial devices and applications (such as robots and /Or other wireless devices operating in an industrial and/or automatic processing chain environment), consumer electronic devices, and devices operating on commercial and/or industrial wireless networks, etc. Any one of the WTRU 102a, 102b, 102c, 102d may be referred to interchangeably as a UE.

該通信系統100還可以包括基地台114a及/或基地台114b。基地台114a、114b的每一者可以是被配置為與WTRU 102a、102b、102c、102d中的至少一者無線地介接來促使其存取一或更多通信網路(例如CN 106、網際網路110、及/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B(eNB)、本地節點B、本地e節點B、例如g節點B(gNB)的下一代節點B、新無線電(NR)節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然基地台114a、114b的每一者都被描述為單一元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。The communication system 100 may also include a base station 114a and/or a base station 114b. Each of the base stations 114a, 114b may be configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks (e.g., CN 106, Internet Any type of device on the network 110, and/or other networks 112). For example, the base stations 114a and 114b may be base transceiver stations (BTS), Node B, eNodeB (eNB), local Node B, local eNodeB, next-generation Node B such as gNodeB (gNB), new radio (NR) Node B, website controller, access point (AP), and wireless router, etc. Although each of the base stations 114a, 114b is described as a single element, it should be understood that the base stations 114a, 114b may include any number of interconnected base stations and/or network elements.

基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一或更多載波頻率上傳輸及/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜、或是授權與無授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器都對應於胞元的一個扇區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用複數收發器。例如,可以使用波束成形以在期望的空間方向上傳輸及/或接收信號。The base station 114a may be part of the RAN 104, and the RAN may also include other base stations and/or network elements (not shown), such as base station controller (BSC), radio network controller (RNC), relay Nodes and so on. The base station 114a and/or the base station 114b may be configured to transmit and/or receive wireless signals on one or more carrier frequencies called cells (not shown). These frequencies can be in licensed spectrum, unlicensed spectrum, or a combination of licensed and unlicensed spectrum. Cells can provide wireless service coverage for specific geographic areas that are relatively fixed or that may change over time. Cells can be further divided into cell sectors. For example, the cell associated with the base station 114a can be divided into three sectors. Therefore, in an embodiment, the base station 114a may include three transceivers, that is, each transceiver corresponds to a sector of the cell. In an embodiment, the base station 114a may use multiple input multiple output (MIMO) technology, and may use a complex transceiver for each sector of the cell. For example, beamforming can be used to transmit and/or receive signals in a desired spatial direction.

基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。The base stations 114a, 114b can communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via the air interface 116, where the air interface can be any suitable wireless communication link (such as radio frequency (RF), Microwave, centimeter wave, millimeter wave, infrared (IR), ultraviolet (UV), visible light, etc.). The air interface 116 can be established using any suitable radio access technology (RAT).

更具體地說,如上所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其中所述技術可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速上鏈(UL)封包存取(HSUPA)。More specifically, as described above, the communication system 100 may be a multiple access system, and may use one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and so on. For example, the base station 114a and the WTRU 102a, 102b, 102c in the RAN 104 may implement radio technologies such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use wideband CDMA (WCDMA) To create an air interface 116. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include high-speed downlink (DL) packet access (HSDPA) and/or high-speed uplink (UL) packet access (HSUPA).

在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其中所述技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。In an embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement radio technologies such as Evolved UMTS Terrestrial Radio Access (E-UTRA), where the technologies may use Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A) and/or LTE-Advanced (LTE-A Pro) are used to establish the air interface 116.

在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施可以使用NR建立空中介面116的無線電技術,例如NR無線電存取。In an embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement radio technologies that can use NR to establish the air interface 116, such as NR radio access.

在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a以及WTRU 102a、102b、102c可以一起實施LTE無線電存取以及NR無線電存取(例如使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術、及/或向/從多種類型的基地台(例如eNB以及gNB)發送的傳輸來表徵。In an embodiment, the base station 114a and the WTRU 102a, 102b, 102c may implement multiple radio access technologies. For example, the base station 114a and the WTRUs 102a, 102b, and 102c may implement LTE radio access and NR radio access together (for example, using dual connectivity (DC) principles). Therefore, the air interface used by the WTRU 102a, 102b, 102c can be characterized by multiple types of radio access technologies, and/or transmissions sent to/from multiple types of base stations (e.g., eNB and gNB).

在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即,無線高保真(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)、以及GSM EDGE(GERAN)等等。In other embodiments, the base station 114a and the WTRUs 102a, 102b, and 102c may implement the following radio technologies, such as IEEE 802.11 (i.e., wireless high-fidelity (WiFi)), IEEE 802.16 (Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), for GSM evolution Enhanced data rate (EDGE), and GSM EDGE (GERAN), etc.

圖1A中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促成例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施例如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b以及WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以直接連接到網際網路110。因此,基地台114b不需要經由CN 106來存取網際網路110。The base station 114b in FIG. 1A can be, for example, a wireless router, a local node B, a local eNode B, or an access point, and can use any appropriate RAT to facilitate, for example, business premises, residences, vehicles, campuses, industrial facilities, air corridors (For example for drones) and wireless connections in local areas such as roads. In one embodiment, the base station 114b and the WTRUs 102c, 102d may implement radio technologies such as IEEE 802.11 to establish a wireless local area network (WLAN). In an embodiment, the base station 114b and the WTRUs 102c, 102d may implement radio technologies such as IEEE 802.15 to establish a wireless personal area network (WPAN). In another embodiment, the base station 114b and the WTRUs 102c, 102d may use a cellular-based RAT (such as WCDMA, CDMA2000, GSM, LTE, LTE-A, LTE-A Pro, NR, etc.) to establish picocells or Femtocells. As shown in FIG. 1A, the base station 114b can be directly connected to the Internet 110. Therefore, the base station 114b does not need to access the Internet 110 via the CN 106.

RAN 104可以與CN 106進行通信,該CN可以是被配置為向WTRU 102a、102b、102c、102d的一者或多者提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的流通量需求、時延需求、容錯需求、可靠性需求、資料流通量需求、以及移動性需求等等。CN 106可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者驗證之類的高階安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104及/或CN 106可以直接或間接地和與RAN 104使用相同RAT或不同RAT的其他RAN進行通信。例如,除了與使用NR無線電技術的RAN 104連接之外,CN 106還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。The RAN 104 may communicate with the CN 106, which may be configured to provide voice, data, applications, and/or Voice over Internet Protocol (VoIP) services to one or more of the WTRUs 102a, 102b, 102c, 102d Any type of network. The data may have different quality of service (QoS) requirements, such as different circulation requirements, delay requirements, fault tolerance requirements, reliability requirements, data circulation requirements, and mobility requirements. CN 106 can provide call control, billing services, mobile location-based services, prepaid calling, Internet connection, video distribution, etc., and/or can perform high-level security functions such as user authentication. Although not shown in FIG. 1A, it should be understood that the RAN 104 and/or CN 106 can directly or indirectly communicate with other RANs that use the same RAT or different RATs as the RAN 104. For example, in addition to connecting with the RAN 104 using NR radio technology, the CN 106 can also communicate with another RAN (not shown) using GSM, UMTS, CDMA 2000, WiMAX, E-UTRA, or WiFi radio technology.

CN 106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如傳輸控制協定/網際網路協定(TCP/IP)網際協定族中的TCP、使用者資料包協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。網路112可以包括由其他服務供應者擁有及/或操作的有線或無線通訊網路。例如,網路112可以包括與一或更多RAN連接的另一個CN,其中該一或更多RAN可以使用與RAN 104相同的RAT、或不同RAT。The CN 106 may also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. PSTN 108 may include a circuit-switched telephone network that provides plain old telephone service (POTS). The Internet 110 may include a global communication protocol that uses public communication protocols (such as TCP, User Datagram Protocol (UDP) and/or IP in the Transmission Control Protocol/Internet Protocol (TCP/IP) Internet Protocol Family). Connect the computer network device system. The network 112 may include a wired or wireless communication network owned and/or operated by other service providers. For example, the network 112 may include another CN connected to one or more RANs, where the one or more RANs may use the same RAT as the RAN 104, or a different RAT.

通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c可被配置為與可以使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities (e.g., the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers that communicate with different wireless networks on different wireless links). For example, the WTRU 102c shown in FIG. 1A may be configured to communicate with a base station 114a that can use cellular-based radio technology, and to communicate with a base station 114b that can use IEEE 802 radio technology.

圖1B是示出了範例性WTRU 102的系統圖。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。FIG. 1B is a system diagram showing an exemplary WTRU 102. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmission/reception element 122, a speaker/microphone 124, a keypad 126, a display/touch pad 128, a non-removable memory 130, and a removable memory Body 132, power supply 134, global positioning system (GPS) chipset 136 and/or other peripheral devices 138. It should be understood that, while maintaining compliance with the embodiments, the WTRU 102 may also include any sub-combination of the foregoing elements.

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一或更多微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)、任何其他類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或能使WTRU 102在無線環境中操作的任何其他功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118以及收發器120描述為單獨元件,然而應該瞭解,處理器118以及收發器120也可以一起整合在電子元件或晶片中。The processor 118 may be a general-purpose processor, a dedicated processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller, Dedicated integrated circuit (ASIC), field programmable gate array (FPGA), any other type of integrated circuit (IC), state machine, etc. The processor 118 may perform signal encoding, data processing, power control, input/output processing, and/or any other functions that enable the WTRU 102 to operate in a wireless environment. The processor 118 may be coupled to the transceiver 120, and the transceiver 120 may be coupled to the transmission/reception element 122. Although FIG. 1B describes the processor 118 and the transceiver 120 as separate components, it should be understood that the processor 118 and the transceiver 120 may also be integrated in an electronic component or chip together.

傳輸/接收元件122可被配置為經由空中介面116以傳輸信號至基地台(例如基地台114a)或接收來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在另一實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在一實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF以及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。The transmission/reception element 122 may be configured to transmit signals to or receive signals from a base station (such as base station 114a) via the air interface 116. For example, in one embodiment, the transmission/reception element 122 may be an antenna configured to transmit and/or receive RF signals. For example, in another embodiment, the transmission/reception element 122 may be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals. In an embodiment, the transmission/reception element 122 may be configured to transmit and/or receive RF and optical signals. It should be understood that the transmission/reception element 122 may be configured to transmit and/or receive any combination of wireless signals.

雖然在圖1B中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一實施例中,WTRU 102可以包括經由空中介面116以傳輸及接收無線信號的兩個或複數傳輸/接收元件122(例如複數天線)。Although the transmission/reception element 122 is described as a single element in FIG. 1B, the WTRU 102 may include any number of transmission/reception elements 122. More specifically, the WTRU 102 may use MIMO technology. Therefore, in an embodiment, the WTRU 102 may include two or multiple transmission/reception elements 122 (such as multiple antennas) that transmit and receive wireless signals via the air interface 116.

收發器120可被配置為對傳輸/接收元件122要傳送的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102經由多種RAT(例如NR以及IEEE 802.11)來進行通信的複數收發器。The transceiver 120 may be configured to modulate the signal to be transmitted by the transmission/reception element 122 and demodulate the signal received by the transmission/reception element 122. As mentioned above, the WTRU 102 may have multi-mode capabilities. Therefore, the transceiver 120 may include a plurality of transceivers that allow the WTRU 102 to communicate via multiple RATs, such as NR and IEEE 802.11.

WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。The processor 118 of the WTRU 102 may be coupled to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128 (e.g., a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and may Receive user input from these components. The processor 118 can also output user data to the speaker/microphone 124, the keypad 126, and/or the display/touchpad 128. In addition, the processor 118 can access information from any suitable memory such as the non-removable memory 130 and/or the removable memory 132, and store data in these memories. The non-removable memory 130 may include random access memory (RAM), read-only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 may include a subscriber identity module (SIM) card, a memory stick, a secure digital (SD) memory card, and so on. In other embodiments, the processor 118 may access information from and store data in memory that is not actually located in the WTRU 102. For example, such memory may be located in a server or a home computer (not shown) .

處理器118可以接收來自電源134的電力、並且可被配置為分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一或更多乾電池組(如鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。The processor 118 may receive power from the power source 134 and may be configured to distribute and/or control power for other elements in the WTRU 102. The power source 134 may be any suitable device for powering the WTRU 102. For example, the power supply 134 may include one or more dry battery packs (such as nickel cadmium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, etc. .

處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度以及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或複數附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。The processor 118 may also be coupled to a GPS chipset 136, which may be configured to provide location information (e.g., longitude and latitude) related to the current location of the WTRU 102. As a supplement or alternative to the information from the GPS chipset 136, the WTRU 102 may receive location information from base stations (e.g., base stations 114a, 114b) via the air interface 116, and/or based on information received from two or more nearby base stations. Signal timing to determine its location. It should be understood that, while maintaining compliance with the embodiments, the WTRU 102 may use any appropriate positioning method to obtain location information.

處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一或更多軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一或更多感測器。該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、手勢感測器、生物測定感測器、濕度感測器等。The processor 118 may also be coupled to other peripheral devices 138, where the peripheral devices may include one or more software and/or hardware modules that provide additional features, functions, and/or wired or wireless connections. For example, peripheral devices 138 may include accelerometers, electronic compasses, satellite transceivers, digital cameras (for photos and/or video), universal serial bus (USB) ports, vibration devices, TV transceivers, hands-free headsets, Bluetooth ®Modules, FM radio units, digital music players, media players, video game console modules, Internet browsers, virtual reality and/or augmented reality (VR/AR) devices, and activity tracking And so on. The peripheral device 138 may include one or more sensors. The sensor can be one or more of the following: gyroscope, accelerometer, Hall effect sensor, magnetometer, orientation sensor, proximity sensor, temperature sensor, time sensor , Geographical position sensor, altimeter, light sensor, touch sensor, magnetometer, barometer, gesture sensor, biometric sensor, humidity sensor, etc.

WTRU 102可以包括全雙工無線電裝置,對於該無線電裝置,一些或所有信號(例如與用於UL(例如對傳輸而言)以及DL(例如對接收而言)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元。在實施例中,WTRU 102可以包括傳送及接收一些或所有信號(例如與用於UL(例如對傳輸而言)或DL(例如對接收而言)的特定子訊框相關聯)的半雙工無線電裝置。The WTRU 102 may include a full-duplex radio for which some or all of the signals (e.g., associated with specific subframes for UL (e.g. for transmission) and DL (e.g. for reception)) The reception or transmission can be parallel and/or simultaneous. The full-duplex radio device may include signal processing via hardware (e.g. choke coil) or via a processor (e.g. a separate processor (not shown) or via processor 118) to reduce and/or substantially eliminate self The interference management unit for interference. In an embodiment, the WTRU 102 may include half-duplex for transmitting and receiving some or all of the signals (e.g., associated with specific subframes used for UL (e.g., for transmission) or DL (e.g., for reception)) Radio device.

圖1C是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以在空中介面116上使用E-UTRA無線電技術以與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。FIG. 1C is a system diagram showing the RAN 104 and the CN 106 according to the embodiment. As described above, the RAN 104 may use E-UTRA radio technology on the air interface 116 to communicate with the WTRUs 102a, 102b, 102c. The RAN 104 can also communicate with the CN 106.

RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c每一者都可以包括經由空中介面116以與WTRU 102a、102b、102c通信的一或更多收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用複數天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。The RAN 104 may include eNodeBs 160a, 160b, 160c, however, it should be understood that the RAN 104 may include any number of eNodeBs while maintaining compliance with the embodiments. Each of the eNodeBs 160a, 160b, 160c may include one or more transceivers that communicate with the WTRU 102a, 102b, 102c via the air interface 116. In one embodiment, the eNodeB 160a, 160b, 160c may implement MIMO technology. Thus, for example, the eNodeB 160a may use multiple antennas to transmit wireless signals to and/or receive wireless signals from the WTRU 102a.

e節點B 160a、160b、160c每一者都可以關聯於特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以經由X2介面進行通信。Each of eNodeBs 160a, 160b, 160c can be associated with a specific cell (not shown), and can be configured to handle radio resource management decisions, handover decisions, user scheduling in UL and/or DL, etc. . As shown in FIG. 1C, eNodeBs 160a, 160b, and 160c can communicate with each other via the X2 interface.

圖1C所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(PGW)166。雖然前述元件都被描述為是CN 106的一部分,然而應該瞭解,這些元件中的任一元件都可以由CN操作者之外的實體擁有及/或操作。The CN 106 shown in FIG. 1C may include a mobility management entity (MME) 162, a service gateway (SGW) 164, and a packet data network (PDN) gateway (PGW) 166. Although the aforementioned elements are all described as being part of the CN 106, it should be understood that any of these elements may be owned and/or operated by entities other than the CN operator.

MME 162可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c的每一者、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162可以提供用於在RAN 104與使用其他無線電技術(例如GSM及/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via the S1 interface, and may act as a control node. For example, the MME 162 may be responsible for authenticating users of WTRUs 102a, 102b, 102c, performing bearer activation/deactivation, and selecting a specific service gateway during the initial connection of WTRUs 102a, 102b, 102c, and so on. The MME 162 may provide a control plane function for switching between the RAN 104 and other RANs (not shown) that use other radio technologies, such as GSM and/or WCDMA.

SGW 164可以經由S1介面被連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由使用者資料封包至WTRU 102a、102b、102c及轉發來自WTRU 102a、102b、102c的使用者資料封包。並且,SGW 164還可以執行其他功能,例如在e節點B間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。The SGW 164 may be connected to each of the eNodeBs 160a, 160b, and 160c in the RAN 104 via the S1 interface. The SGW 164 can generally route user data packets to the WTRU 102a, 102b, 102c and forward user data packets from the WTRU 102a, 102b, 102c. In addition, the SGW 164 can also perform other functions, such as anchoring the user plane during the handover between eNodeBs, triggering paging when DL data is available for WTRUs 102a, 102b, 102c, and managing and storing WTRUs 102a, 102b, 102c context and so on.

SGW 164可以連接到PGW 166,該PGW 166可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信。The SGW 164 can be connected to the PGW 166. The PGW 166 can provide the WTRU 102a, 102b, 102c with access to a packet switching network (such as the Internet 110) to facilitate communication between the WTRU 102a, 102b, 102c and IP-enabled devices Communication.

CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供對電路切換式網路(例如PSTN 108)的存取,以促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對該其他網路112的存取,其中該網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。CN 106 can facilitate communication with other networks. For example, the CN 106 may provide the WTRUs 102a, 102b, and 102c with access to a circuit-switched network (such as the PSTN 108) to facilitate communication between the WTRUs 102a, 102b, and 102c and conventional landline communication devices. For example, the CN 106 may include or communicate with an IP gateway (such as an IP Multimedia Subsystem (IMS) server), and the IP gateway may serve as an interface between the CN 106 and the PSTN 108. In addition, the CN 106 may provide the WTRUs 102a, 102b, and 102c with access to the other network 112, where the network 112 may include other wired and/or wireless networks owned and/or operated by other service providers.

雖然在圖1A至圖1D中將WTRU描述為無線終端,然而應該想到的是,在某些典型實施例中,此類終端與通信網路可以使用(例如暫時或永久性)有線通信介面。Although the WTRU is described as a wireless terminal in FIGS. 1A to 1D, it should be conceived that in some typical embodiments, such a terminal and the communication network may use (for example, temporary or permanent) wired communication interfaces.

在典型實施例中,該其他網路112可以是WLAN。In a typical embodiment, the other network 112 may be a WLAN.

採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一或更多站(STA)。該AP可以存取或是介接到分散式系統(DS)、或是將訊務量攜入及/或攜出BSS的另一類型的有線/無線網路。源自BSS外部且至STA的訊務量可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務量可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務量可以經由AP來發送,例如在源STA可以向AP發送訊務量、並且AP可以將訊務量遞送至目的地STA的情況下。在BSS內的STA之間的訊務量可被認為及/或稱為點到點訊務量。該點到點訊務量可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。舉例來說,使用獨立BSS(IBSS)模式的WLAN不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(Ad-hoc)”通信模式。A WLAN adopting an infrastructure basic service set (BSS) mode may have an access point (AP) for the BSS and one or more stations (STA) associated with the AP. The AP can access or interface to a distributed system (DS), or carry traffic into and/or out of another type of wired/wireless network of the BSS. Traffic from outside the BSS to the STA can arrive via the AP and be delivered to the STA. Traffic originating from the STA and to destinations outside the BSS can be sent to the AP for delivery to their respective destinations. The traffic between the STAs in the BSS can be sent via the AP, for example, when the source STA can send the traffic to the AP, and the AP can deliver the traffic to the destination STA. The traffic between STAs in the BSS can be considered and/or referred to as point-to-point traffic. The point-to-point traffic can be sent between the source and destination STAs (for example, directly in between) using direct link establishment (DLS). In some typical embodiments, DLS may use 802.11e DLS or 802.11z tunneled DLS (TDLS). For example, a WLAN that uses an independent BSS (IBSS) mode does not have an AP, and STAs (for example, all STAs) within the IBSS or using the IBSS can directly communicate with each other. Here, the IBSS communication mode may sometimes be referred to as an "Ad-hoc" communication mode.

在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20 MHz的頻寬)或是動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些典型實施例中,(例如在802.11系統中)可以實施具有衝突避免的載波感測多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,一個STA(例如只有一個站)可以在任何指定時間進行傳輸。When using the 802.11ac infrastructure operating mode or a similar operating mode, the AP can transmit beacons on a fixed channel (such as the main channel). The main channel can have a fixed width (for example, a bandwidth of 20 MHz) or a dynamically set width. The main channel can be the operating channel of the BSS and can be used by the STA to establish a connection with the AP. In some typical embodiments, (for example, in an 802.11 system), Carrier Sense Multiple Access (CSMA/CA) with collision avoidance can be implemented. For CSMA/CA, STAs including APs (for example, each STA) can sense the main channel. If a specific STA senses/detects and/or determines that the main channel is busy, then the specific STA can fall back. In a designated BSS, one STA (for example, only one station) can transmit at any designated time.

高流通量(HT)STA可以使用40 MHz寬的通道來進行通信(例如藉由將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道相結合來形成40 MHz寬的通道)。High throughput (HT) STAs can use 40 MHz wide channels to communicate (for example, by combining 20 MHz wide main channels with 20 MHz wide adjacent or non-adjacent channels to form 40 MHz wide channels) .

超高流通量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者藉由組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分成兩個流。在每一個流上可以單獨執行反向快速傅立葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳送。在一接收STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。Very high throughput (VHT) STAs can support 20 MHz, 40 MHz, 80 MHz and/or 160 MHz wide channels. 40 MHz and/or 80 MHz channels can be formed by combining consecutive 20 MHz channels. The 160 MHz channel can be formed by combining 8 continuous 20 MHz channels or by combining two discontinuous 80 MHz channels (this combination can be called an 80+80 configuration). For the 80+80 configuration, after channel encoding, the data can be passed and passed through a segmented parser, which can split the data into two streams. On each stream, inverse fast Fourier transform (IFFT) processing and time domain processing can be performed separately. The stream can be mapped on two 80 MHz channels, and the data can be transmitted by a transmitting STA. On the receiver of a receiving STA, the above operations for the 80+80 configuration can be reversed, and the combined data can be sent to the media access control (MAC).

802.11af以及802.11ah支援1 GHz以下的操作模式。相較於802.11n以及802.11ac中的通道操作頻寬以及載波,在802.11af以及802.11ah中使用通道操作頻寬以及載波減小。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz以及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz以及16 MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(MTC)(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某種能力,例如包含了支援(例如只支援)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。802.11af and 802.11ah support operation modes below 1 GHz. Compared with the channel operating bandwidth and carrier in 802.11n and 802.11ac, the channel operating bandwidth and carrier are reduced in 802.11af and 802.11ah. 802.11af supports 5 MHz, 10 MHz, and 20 MHz bandwidths in the TV White Space (TVWS) spectrum, and 802.11ah supports 1 MHz, 2 MHz, 4 MHz, 8 MHz, and 16 MHz bandwidths using non-TVWS spectrum. According to typical embodiments, 802.11ah can support meter type control/machine type communication (MTC) (for example, MTC devices in the macro coverage area). The MTC device may have certain capabilities, for example, including a limited ability to support (e.g., only support) certain and/or limited bandwidth. The MTC device may include a battery, and the battery life of the battery is higher than a critical value (for example, to maintain a long battery life).

可以支援複數通道以及通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)包括可被指定為主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共操作頻寬。主通道的頻寬可以由支援最小頻寬操作模式的BSS中操作的所有STA中的STA設定及/或限制。在802.11ah的範例中,即使BSS中的AP以及其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置),主通道可以是1 MHz寬。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1 MHz操作模式)對AP進行傳輸),那麼即使大多數的可用頻帶保持空閒並且可供使用,也可以認為所有可用頻帶繁忙。WLAN systems that can support multiple channels and channel bandwidths (such as 802.11n, 802.11ac, 802.11af, and 802.11ah) include channels that can be designated as primary channels. The bandwidth of the main channel may be equal to the maximum common operating bandwidth supported by all STAs in the BSS. The bandwidth of the main channel may be set and/or restricted by all STAs operating in the BSS supporting the minimum bandwidth operation mode. In the 802.11ah example, even if the AP and other STAs in the BSS support 2 MHz, 4 MHz, 8 MHz, 16 MHz, and/or other channel bandwidth operation modes, for STAs that support (for example, only support) 1 MHz mode (For example, MTC type device), the main channel can be 1 MHz wide. Carrier sensing and/or network allocation vector (NAV) settings may depend on the status of the main channel. If the main channel is busy (for example, because the STA (which only supports 1 MHz operation mode) is transmitting to the AP), then even if most of the available frequency bands remain free and available for use, all available frequency bands can be considered busy.

在美國,可供802.11ah使用的可用頻帶是從902 MHz到928 MHz。在韓國,可用頻帶是從917.5 MHz到923.5 MHz。在日本,可用頻帶是從916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是從6 MHz到26 MHz。In the United States, the available frequency band for 802.11ah is from 902 MHz to 928 MHz. In Korea, the available frequency band is from 917.5 MHz to 923.5 MHz. In Japan, the available frequency band is from 916.5 MHz to 927.5 MHz. According to the country code, the total bandwidth available for 802.11ah is from 6 MHz to 26 MHz.

圖1D是示出了根據實施例的RAN 104以及CN 106的系統圖。如上所述,RAN 104可以經由空中介面116以使用NR無線電技術來與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。FIG. 1D is a system diagram showing the RAN 104 and the CN 106 according to an embodiment. As described above, the RAN 104 may communicate with the WTRUs 102a, 102b, 102c via the air interface 116 using NR radio technology. The RAN 104 can also communicate with the CN 106.

RAN 104可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的gNB。gNB 180a、180b、180c每一者都可以包括一或更多收發器,以經由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形以向及/或從gNB 180a、180b、180c傳輸及/或接收信號。因此,舉例來說,gNB 180a可以使用複數天線以向WTRU 102a傳輸無線信號、以及接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳送複數分量載波(未顯示)。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a以及gNB 180b(及/或gNB 180c)的協作傳輸。The RAN 104 may include gNB 180a, 180b, 180c, but it should be understood that the RAN 104 may include any number of gNBs while maintaining compliance with the embodiments. Each of the gNB 180a, 180b, 180c may include one or more transceivers to communicate with the WTRU 102a, 102b, 102c via the air interface 116. In one embodiment, gNB 180a, 180b, 180c can implement MIMO technology. For example, gNB 180a, 180b may use beamforming to transmit and/or receive signals to and/or from gNB 180a, 180b, 180c. Thus, for example, gNB 180a may use multiple antennas to transmit wireless signals to and receive wireless signals from WTRU 102a. In the embodiment, the gNB 180a, 180b, and 180c may implement carrier aggregation technology. For example, gNB 180a may transmit complex component carriers (not shown) to WTRU 102a. A subset of these component carriers can be on the unlicensed spectrum, while the remaining component carriers can be on the licensed spectrum. In an embodiment, the gNB 180a, 180b, and 180c may implement coordinated multipoint (CoMP) technology. For example, the WTRU 102a may receive coordinated transmissions from gNB 180a and gNB 180b (and/or gNB 180c).

WTRU 102a、102b、102c可以使用與可縮放參數集(numweology)相關聯的傳輸以與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續不同的絕對時間長度)以與gNB 180a、180b、180c進行通信。The WTRU 102a, 102b, 102c may use transmissions associated with a scalable parameter set (numweology) to communicate with gNB 180a, 180b, 180c. For example, for different transmissions, different cells and/or different parts of the wireless transmission spectrum, the OFDM symbol spacing and/or OFDM subcarrier spacing may be different. The WTRU 102a, 102b, 102c may use sub-frames or transmission time intervals (TTIs) with different or scalable lengths (e.g., containing a different number of OFDM symbols and/or lasting different absolute time lengths) to compare with the gNB 180a, 180b , 180c to communicate.

gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c可以在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理而基本上同時地與一或更多gNB 180a、180b、180c以及一或更多e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點、並且gNB 180a、180b、180c可以提供附加的覆蓋及/或流通量,以服務WTRU 102a、102b、102c。The gNB 180a, 180b, 180c may be configured to communicate with WTRUs 102a, 102b, 102c in a standalone configuration and/or a non-standalone configuration. In a standalone configuration, the WTRU 102a, 102b, 102c can communicate with the gNB 180a, 180b, 180c without accessing other RANs (e.g., eNodeB 160a, 160b, 160c). In a standalone configuration, the WTRU 102a, 102b, 102c may use one or more of the gNB 180a, 180b, 180c as the action anchor. In a standalone configuration, the WTRU 102a, 102b, 102c may use signals in the unlicensed frequency band to communicate with the gNB 180a, 180b, 180c. In a non-standalone configuration, the WTRU 102a, 102b, 102c may communicate/connect with the gNB 180a, 180b, 180c while communicating/connecting with another RAN (e.g., eNodeB 160a, 160b, 160c). For example, the WTRU 102a, 102b, 102c may implement the DC principle while communicating with one or more gNB 180a, 180b, 180c and one or more eNodeBs 160a, 160b, 160c substantially simultaneously. In a non-independent configuration, the eNodeB 160a, 160b, 160c can act as the anchor point of the WTRU 102a, 102b, 102c, and the gNB 180a, 180b, 180c can provide additional coverage and/or liquidity to serve the WTRU 102a, 102b, 102c.

gNB 180a、180b、180c每一者都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、DC、實施NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取及移動性管理功能(AMF)182a、182b等等。如圖1D所示,gNB 180a、180b、180c彼此可以經由Xn介面通信。Each of gNB 180a, 180b, and 180c can be associated with a specific cell (not shown), and can be configured to handle radio resource management decisions, handover decisions, user scheduling in UL and/or DL, and support networks Cut, DC, implement intercommunication between NR and E-UTRA, route user plane data to user plane functions (UPF) 184a, 184b, and route control plane information to access and mobility management function (AMF) 182a , 182b and so on. As shown in FIG. 1D, gNB 180a, 180b, and 180c can communicate with each other via the Xn interface.

圖1D所示的CN 106可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b、至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然前述元件都被描述了CN 106的一部分,但是應該瞭解,這些元件中的任一元件都可以被CN操作者之外的實體擁有及/或操作。The CN 106 shown in FIG. 1D may include at least one AMF 182a, 182b, at least one UPF 184a, 184b, at least one session management function (SMF) 183a, 183b, and possibly data network (DN) 185a, 185b. Although the aforementioned elements are all described as part of the CN 106, it should be understood that any of these elements can be owned and/or operated by entities other than the CN operator.

AMF 182a、182b可以經由N2介面被連接到RAN 104中的gNB 180a、180b、180c的一者或多者、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同協定資料單元(PDU)對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止非存取層(NAS)傳訊、以及移動性管理等等。AMF 182a、182b可以使用網路切片,以基於WTRU 102a、102b、102c使用的服務類型來定製為WTRU 102a、102b、102c提供的CN支援。例如,針對不同的用例,可以建立不同的網路截割,例如依賴於超可靠低時延(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於MTC存取的服務等等。AMF 182a、182b可以提供用於在RAN 104與使用其他無線電技術(例如,LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。The AMF 182a, 182b may be connected to one or more of the gNB 180a, 180b, 180c in the RAN 104 via the N2 interface, and may act as a control node. For example, AMF 182a, 182b may be responsible for authenticating users of WTRU 102a, 102b, 102c, supporting network interception (for example, processing different protocol data unit (PDU) conversations with different requirements), selecting specific SMF 183a, 183b, and managing Registration area, termination of non-access stratum (NAS) messaging, and mobility management, etc. The AMF 182a, 182b may use network slicing to customize the CN support provided to the WTRU 102a, 102b, 102c based on the type of service used by the WTRU 102a, 102b, 102c. For example, different network interceptions can be established for different use cases, such as services that rely on ultra-reliable low-latency (URLLC) access, services that rely on enhanced large-scale mobile broadband (eMBB) access, and/ Or services for MTC access and so on. AMF 182a, 182b can be provided for use in RAN 104 and other RANs (not shown) that use other radio technologies (for example, LTE, LTE-A, LTE-A Pro, and/or non-3GPP access technologies such as WiFi) Control plane function for switching between.

SMF 183a、183b可以經由N11介面被連接到CN 106中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面被連接到CN 106中的UPF 184a、184b。SMF 183a、183b可以選擇以及控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務量路由。SMF 183a、183b可以執行其他功能,例如管理以及分配UE IP位址、管理PDU對話、控制策略實施以及QoS、以及提供DL資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。SMF 183a, 183b can be connected to AMF 182a, 182b in CN 106 via N11 interface. The SMF 183a, 183b can also be connected to the UPF 184a, 184b in the CN 106 via the N4 interface. SMF 183a, 183b can select and control UPF 184a, 184b, and can configure traffic routing via UPF 184a, 184b. SMF 183a, 183b can perform other functions, such as management and allocation of UE IP address, management of PDU dialogue, control strategy implementation and QoS, and provision of DL data notification, etc. The PDU dialog type can be IP-based, non-IP-based, Ethernet-based, and so on.

UPF 184a、184b可以經由N3介面被連接至RAN 104中的gNB 180a、180b、180c的一者或多者,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、快取DL封包、以及提供移動性錨定等等。UPF 184a, 184b can be connected to one or more of gNB 180a, 180b, 180c in RAN 104 via N3 interface, which can provide packet-switching network for WTRU 102a, 102b, 102c (such as Internet 110) To facilitate communication between WTRU 102a, 102b, 102c and IP-enabled devices, UPF 184, 184b can perform other functions, such as routing and forwarding packets, implementing user plane policies, supporting multi-homed PDU dialogue, Handle user plane QoS, cache DL packets, and provide mobility anchoring, etc.

CN 106可以促進與其他網路的通信。例如,CN 106可以包括充當CN 106與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)、或者可以與該IP閘道進行通信。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其他網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由與UPF 184a、184b介接的N3介面、以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並經由UPF 184a、184b而連接到本地資料網路(DN)185a、185b。CN 106 can facilitate communication with other networks. For example, CN 106 may include an IP gateway (such as an IP Multimedia Subsystem (IMS) server) serving as an interface between CN 106 and PSTN 108, or may communicate with the IP gateway. In addition, the CN 106 may provide the WTRUs 102a, 102b, and 102c with access to other networks 112, which may include other wired and/or wireless networks owned and/or operated by other service providers. In one embodiment, the WTRU 102a, 102b, 102c can be connected via the N3 interface with UPF 184a, 184b, and the N6 interface between UPF 184a, 184b and DN 185a, 185b and connected via UPF 184a, 184b To the local data network (DN) 185a, 185b.

鑒於圖1A至圖1D以及圖1A至圖1D的對應描述,在這裡對照以下的一項或多項描述的一或更多或所有功能可以由一或更多仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN185 a-b及/或這裡描述的一或更多其他任何裝置。這些仿真裝置可以是被配置為仿真這裡描述的一或更多或所有功能的一或更多裝置。舉例來說,這些仿真裝置可用於測試其他裝置、及/或用於模擬網路及/或WTRU功能。In view of the corresponding descriptions of FIGS. 1A to 1D and FIGS. 1A to 1D, one or more or all of the functions described herein with reference to one or more of the following can be performed by one or more simulation devices (not shown): WTRU 102a-d, base station 114a-b, eNodeB 160a-c, MME 162, SGW 164, PGW 166, gNB 180a-c, AMF 182a-b, UPF 184a-b, SMF 183a-b, DN185 ab and/ Or one or more of any other devices described here. These simulation devices may be one or more devices configured to simulate one or more or all of the functions described herein. For example, these simulation devices can be used to test other devices and/or to simulate network and/or WTRU functions.

仿真裝置可被設計為在實驗室環境及/或操作者網路環境中實施其他裝置的一項或多項測試。例如,該一或更多仿真裝置可以在被完全或部分作為有線及/或無線通訊網路一部分實施及/或部署的同時執行一或更多或所有功能,以測試通信網路內的其他裝置。該一或更多仿真裝置可以在被暫時作為有線及/或無線通訊網路的一部分實施/部署的同時執行一或更多或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試、及/或可以使用空中無線通訊來執行測試。The simulation device can be designed to perform one or more tests of other devices in a laboratory environment and/or an operator's network environment. For example, the one or more simulation devices can perform one or more or all functions while being fully or partially implemented and/or deployed as a part of a wired and/or wireless communication network to test other devices in the communication network. The one or more simulation devices can perform one or more or all functions while being temporarily implemented/deployed as part of a wired and/or wireless communication network. The simulation device can be directly coupled to another device to perform testing, and/or can use over-the-air wireless communication to perform testing.

一或更多仿真裝置可以在未被作為有線及/或無線通訊網路一部分實施/部署的同時執行包括所有功能的一或更多功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以實施一或更多元件的測試。該一或更多仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(例如,該電路可以包括一或更多天線)的無線通訊來傳輸及/或接收資料。One or more simulation devices may perform one or more functions including all functions while not being implemented/deployed as part of a wired and/or wireless communication network. For example, the simulation device can be used in a test laboratory and/or a test scenario of a wired and/or wireless communication network that has not been deployed (eg, tested) to perform testing of one or more components. The one or more simulation devices may be test devices. The simulation device may use direct RF coupling and/or wireless communication via an RF circuit (for example, the circuit may include one or more antennas) to transmit and/or receive data.

新興的5G系統的用例的寬泛分類包括增強行動寬頻(eMBB)、大規模機器類型通信(mMTC)以及超可靠以及低潛時通信(URLLC)。不同的用例可以集中在不同的要求上,例如較高的資料速率、較高的頻譜效率、低功率以及較高的能量效率、較低的潛時以及較高的可靠性。對於各種部署情形,考慮範圍從700 MHz到80 GHz的寬範圍的譜帶。The broad classification of use cases for emerging 5G systems includes enhanced mobile broadband (eMBB), large-scale machine type communication (mMTC), and ultra-reliable and low-latency communication (URLLC). Different use cases can focus on different requirements, such as higher data rates, higher spectral efficiency, low power and higher energy efficiency, lower latency, and higher reliability. For various deployment scenarios, consider a wide range of spectral bands ranging from 700 MHz to 80 GHz.

隨著載波頻率增加,路徑損耗成為可能妨礙保證足夠覆蓋的限制。毫米波(mmW)系統中的傳輸可能遭受非視線損耗(例如,繞射損耗、穿透損耗、氧氣吸收損耗、樹葉損耗)。在初始存取期間,基地台以及WTRU可以克服這種路徑損耗以發現彼此。一些實施方式使用複數天線元件(例如,數十個或數百個)來產生波束成形信號(例如,以藉由增加波束成形增益來補償這樣的路徑損耗)。波束成形技術的範例可以包括數位波束成形、類比波束成形及/或混合波束成形。As the carrier frequency increases, path loss becomes a limit that may hinder the guarantee of adequate coverage. Transmission in millimeter wave (mmW) systems may suffer from non-line-of-sight losses (eg, diffraction loss, penetration loss, oxygen absorption loss, leaf loss). During the initial access, the base station and the WTRU can overcome this path loss to discover each other. Some embodiments use a complex number of antenna elements (e.g., tens or hundreds) to generate beamforming signals (e.g., to compensate for such path loss by increasing the beamforming gain). Examples of beamforming techniques may include digital beamforming, analog beamforming, and/or hybrid beamforming.

整合存取及回程(IAB)可在NR中使用。例如,蜂巢網路部署場景以及應用可包括對無線回程以及中繼鏈路的支援,以使得能夠靈活及/或密集地部署NR個胞元,而無需成比例地密集化傳輸網路。與LTE相比,NR可用的預期更大頻寬(例如,由於mmW頻譜使用)以及NR中大規模MIMO或多波束系統的本地部署可以創建部署IAB鏈路的機會。這可以藉由建立為WTRU提供的存取而定義的許多控制及資料通道以及程序而允許以更整合的方式更容易地部署自回程NR胞元的密集網路。圖2示出了具有IAB鏈路204以及210的範例性NR網路部署200。在範例性NR網路部署200中,中繼節點(例如,中繼傳輸接收點,rTRP) 206A -206C 可在時間、頻率及/或空間(例如,基於波束的操作)中多工存取鏈路210及回程鏈路204,以向WTRU 212A -212C 提供網路存取。在此範例中,中繼節點206A還具有光纖傳輸回程鏈路208。Integrated access and backhaul (IAB) can be used in NR. For example, cellular network deployment scenarios and applications may include support for wireless backhaul and relay links, so that NR cells can be deployed flexibly and/or densely without proportionally denser transmission networks. Compared to LTE, the expected larger bandwidth available for NR (for example, due to mmW spectrum usage) and the local deployment of massive MIMO or multi-beam systems in NR can create opportunities to deploy IAB links. This allows for easier deployment of dense networks of self-backhauling NR cells in a more integrated manner by establishing many control and data channels and procedures defined for the access provided by the WTRU. FIG. 2 shows an exemplary NR network deployment 200 with IAB links 204 and 210. In an exemplary NR network deployment 200, the relay nodes (eg, relay transmission reception point, rTRP) 206 A- 206 C can be multiplexed in time, frequency, and/or space (eg, beam-based operation) take the backhaul link 210 and link 204, to provide network access to the WTRU 212 A -212 C. In this example, the relay node 206A also has an optical fiber transmission backhaul link 208.

不同的鏈路可以在相同或不同的頻率上操作。以這種方式操作的中繼節點可以分別被稱為帶內中繼以及帶外中繼。對帶外中繼的有效支援對於某些NR部署情形可能是重要的。因為存取鏈路可能在相同的頻率上操作,對於帶內中繼操作的要求可能意味著更緊密的交互作用,以適應雙工約束並且避免或減輕干擾。在mmW頻譜中操作NR系統可能存在挑戰,例如嚴重的短期阻塞,這可能不容易藉由目前基於無線電資源控制(RRC)的切換機制來減輕。這可能是由於:與短期阻塞相比,完成所述基於RRC的程序需要更大的時間尺度。用於克服mmW系統中的短期阻塞的技術可以包括用於在rTRP之間切換的基於RAN (例如,基於快速RAN)的機制。這些技術可以涉及或不涉及核心網路。可以使用允許存取鏈路及回程鏈路的快速切換的整合框架,以減輕mmW頻譜中NR操作的短期阻塞及/或促進自回程(self-backhauled)NR胞元的部署。一些實施方式可以使用rTRP之間的空中(OTA)協調來減輕干擾並支援端到端路由選擇以及最佳化。IAB在網路推廣(rollout)以及初始網路增長階段期間可能是有利的。為了利用這些益處,當進行NR推廣時,IAB可變得可用。Different links can operate on the same or different frequencies. Relay nodes operating in this way may be referred to as in-band relay and out-of-band relay, respectively. Effective support for out-of-band relay may be important for certain NR deployment scenarios. Because the access links may operate on the same frequency, the requirement for in-band relay operation may imply tighter interaction to accommodate duplex constraints and avoid or mitigate interference. There may be challenges in operating NR systems in mmW spectrum, such as severe short-term congestion, which may not be easily mitigated by current radio resource control (RRC)-based handover mechanisms. This may be due to the fact that the completion of the RRC-based procedure requires a larger time scale than short-term blockade. Techniques for overcoming short-term congestion in mmW systems may include RAN-based (e.g., fast RAN-based) mechanisms for switching between rTRP. These technologies may or may not involve the core network. An integration framework that allows fast switching of access links and backhaul links can be used to alleviate short-term congestion of NR operations in mmW spectrum and/or to facilitate the deployment of self-backhauled NR cells. Some embodiments may use over-the-air (OTA) coordination between rTRPs to mitigate interference and support end-to-end routing and optimization. IAB may be beneficial during rollout and initial network growth phases. In order to take advantage of these benefits, IAB can become available when NR is promoted.

若干用例可應用於3GPP車聯網(V2X),例如車輛編隊、延伸感測器、高級駕駛以及遠端駕駛。每個範例性用例組可以具有不同的潛時、可靠性以及資料速率要求。表1示出了這些範例性用例組的範例性要求。在此,使用者、UE、WTRU以及車輛WTRU可以等同地且可互換地指車輛。 用例組 端到端潛時(ms) 可靠性(%) 資料速率(Mbps) 車輛編隊 10 99.99 65 高級駕駛 3 99.999 53 擴展感測器 3 99.999 1000 遠程駕駛 5 99.999 UL: 25, DL: 1 表1:V2X用例的範例性要求Several use cases can be applied to 3GPP Internet of Vehicles (V2X), such as vehicle formation, extended sensors, advanced driving, and remote driving. Each exemplary use case group can have different latency, reliability, and data rate requirements. Table 1 shows the exemplary requirements of these exemplary use case groups. Here, the user, UE, WTRU, and vehicle WTRU may equally and interchangeably refer to the vehicle. Use case group End-to-end dive time (ms) reliability(%) Data rate (Mbps) Vehicle formation 10 99.99 65 Advanced driving 3 99.999 53 Extended sensor 3 99.999 1000 Remote driving 5 99.999 UL: 25, DL: 1 Table 1: Exemplary requirements for V2X use cases

每個用例組內的用例可以具有不同潛時、可靠性以及資料速率要求的範圍。例如,延伸感測器用例組的視訊共用場景中的較低自動化程度可具有50 ms的潛時要求、90%的可靠性要求以及10 Mbps的資料速率,而支援V2X應用的WTRU之間的感測器資訊共用中的較高自動化程度可具有3 ms的潛時要求、99.999%的可靠性要求以及25 Mbps的資料速率。The use cases in each use case group can have different ranges of latency, reliability, and data rate requirements. For example, the lower degree of automation in the video sharing scenario of the extended sensor use case group may have a latency requirement of 50 ms, a reliability requirement of 90%, and a data rate of 10 Mbps, while the sensing between WTRUs supporting V2X applications The higher degree of automation in the information sharing of the detector can have a latency requirement of 3 ms, a reliability requirement of 99.999%, and a data rate of 25 Mbps.

在3GPP V2X中可以定義不同的傳輸模式。例如,車輛可以處於傳輸模式3 (即,模式3使用者)或者可以處於傳輸模式4 (即,模式4使用者)。模式3 WTRU可以直接使用由基地台分配的資源以用於車輛之間(或車輛與行人之間)的側鏈路(SL)通信。模式4 WTRU可以獲得由基地台分配的候選資源的列表、並且可以從該候選資源中選擇供該WTRU用於SL通信的資源。術語使用者、WTRU或UE在這裡也可以指車輛。Different transmission modes can be defined in 3GPP V2X. For example, the vehicle may be in transmission mode 3 (i.e., mode 3 user) or may be in transmission mode 4 (i.e., mode 4 user). Mode 3 The WTRU can directly use the resources allocated by the base station for side link (SL) communication between vehicles (or between vehicles and pedestrians). Mode 4 The WTRU may obtain a list of candidate resources allocated by the base station, and may select resources from the candidate resources for the WTRU to use for SL communication. The terms user, WTRU or UE can also refer to vehicles here.

圖3是例如根據5G NR V2X及/或LTE V2X的用於V2X側鏈路傳輸的(車輛) WTRU 302與基地台(gNB/eNB) 304之間的通信的範例性側鏈路WTRU資訊交換程序300的傳訊圖。一旦WTRU 302駐紮在與gNB/基地台(eNB) 304相關聯的胞元上,WTRU 302就可以接收系統塊(SIB)類型21 (SIB21) 306,其可以包含V2X側鏈路通信配置。例如,SIB21 306可以包括SL-V2X-ConfigCommon 資訊元素(IE),其可以包括但不限於包括組成部分:v2x-CommRxPoolv2x-CommTxPoolNormalCommonv2-CommTxPoolExceptional 及/或v2x-InterFreqInfoListv2x-InterFreqInfoList 可以是V2X側鏈路通信的相鄰頻率(例如,多達七個相鄰頻率)的列表。WTRU 302可以在一或更多訊息中向gNB/基地台(eNB) 304發送側鏈路WTRU資訊308。例如,作為該側鏈路WTRU資訊308的一部分,車輛WTRU 302可以向gNB/基地台(eNB) 304發送(一個或複數)訊息,以向gNB/基地台(eNB) 304表明該WTRU 302感興趣(或不感興趣)於接收V2X側鏈路通信及/或請求指派及/或釋放用於V2X側鏈路通信的傳輸資源。WTRU 302以及gNB/基地台(eNB) 304可交換一或更多RRCConnectionReconfiguration(RRC連接重配置)訊息310,其可包括SL-V2X-ConfigDedicated IE。例如,該SL-V2X-ConfigDedicated IE可包括但不限於commTxResources 及/或v2x-InterFreqInfoListFIG. 3 is an exemplary side link WTRU information exchange procedure for the communication between the (vehicle) WTRU 302 and the base station (gNB/eNB) 304 for V2X side link transmission, for example, according to 5G NR V2X and/or LTE V2X 300's communication map. Once the WTRU 302 is camped on the cell associated with the gNB/base station (eNB) 304, the WTRU 302 may receive System Block (SIB) Type 21 (SIB21) 306, which may include the V2X side link communication configuration. For example, SIB21 306 may include SL-V2X-ConfigCommon Information Element (IE), which may include but is not limited to including components: v2x-CommRxPool , v2x-CommTxPoolNormalCommon , v2-CommTxPoolExceptional and/or v2x-InterFreqInfoList . v2x-InterFreqInfoList may be a list of adjacent frequencies (for example, up to seven adjacent frequencies) of V2X side link communication. The WTRU 302 may send the side link WTRU information 308 to the gNB/base station (eNB) 304 in one or more messages. For example, as part of the side link WTRU information 308, the vehicle WTRU 302 may send a message (one or more) to the gNB/base station (eNB) 304 to indicate to the gNB/base station (eNB) 304 that the WTRU 302 is interested (Or not interested) in receiving V2X side link communication and/or requesting the assignment and/or release of transmission resources for V2X side link communication. The WTRU 302 and the gNB/base station (eNB) 304 may exchange one or more RRCConnectionReconfiguration messages 310, which may include the SL-V2X-ConfigDedicated IE. For example, the SL-V2X-ConfigDedicated IE may include but is not limited to commTxResources and/or v2x-InterFreqInfoList .

關於NR V2X的研究項目考慮基於Uu的側鏈路資源分配/重新配置,以識別LTE Uu介面以及NR Uu介面的增強以控制來自蜂巢網路的NR側鏈路、以及識別該NR Uu介面的增強以控制來自蜂巢網路的LTE側鏈路通信。在LTE V2X同步的上下文中,當WTRU連接到eNB時,WTRU可能已經具有胞元時序。如果WTRU不在eNB的覆蓋範圍內,則WTRU可以使用全球導航衛星系統(GNSS)來進行時序同步。當WTRU不能從eNB或GNSS找到時序時,WTRU可以依賴於側鏈路WTRU以獲得時序資訊。GNSS衛星具有提供穩定以及精確的時間參考的原子振盪器。GNSS接收器可追蹤來自複數衛星的信號、且檢索用於全球定位系統(GPS)接收器的具有小於1 μs的絕對誤差的本地時間參考。對於協調多點傳輸,使用GPS的殘差可以是大約10 ns。GNSS可藉由將本機振盪器鎖相到傳入信號且穩定載波頻率而被用於頻率同步。對於配備有GNSS接收器的現代車輛,用於同步的GNSS解決方案可以用於V2X。The research project on NR V2X considers Uu-based side link resource allocation/reconfiguration to identify the LTE Uu interface and the enhancement of the NR Uu interface to control the NR side link from the cellular network and identify the enhancement of the NR Uu interface To control the LTE side link communication from the cellular network. In the context of LTE V2X synchronization, when the WTRU connects to the eNB, the WTRU may already have cell timing. If the WTRU is not within the coverage of the eNB, the WTRU may use the Global Navigation Satellite System (GNSS) for timing synchronization. When the WTRU cannot find the timing from the eNB or GNSS, the WTRU may rely on the side link WTRU to obtain timing information. GNSS satellites have atomic oscillators that provide a stable and accurate time reference. The GNSS receiver can track signals from a plurality of satellites and retrieve a local time reference with an absolute error of less than 1 μs for the global positioning system (GPS) receiver. For coordinated multipoint transmission, the residual using GPS can be about 10 ns. GNSS can be used for frequency synchronization by phase-locking the local oscillator to the incoming signal and stabilizing the carrier frequency. For modern vehicles equipped with GNSS receivers, GNSS solutions for synchronization can be used for V2X.

例如,對於V2X中的同步,WTRU可以在側鏈路上從其他WTRU接收側鏈路同步信號(SLSS)。該SLSS可以包括主側鏈路同步信號(PSSS)、輔側鏈路同步信號(SSSS)及/或實體側鏈路廣播通道(PSBCH)信號,其可以進一步包括同步資訊。WTRU可以使用該SLSS中攜帶的資訊來獲得時序資訊。用於同步測量的臨界值(例如,同步臨界值)可以在RRC傳訊(例如,v2x-SyncConfig 及/或SL-V2X-Preconfiguration IE)中被接收。For example, for synchronization in V2X, the WTRU may receive side link synchronization signals (SLSS) from other WTRUs on the side link. The SLSS may include a primary side link synchronization signal (PSSS), a secondary side link synchronization signal (SSSS), and/or a physical side link broadcast channel (PSBCH) signal, which may further include synchronization information. The WTRU can use the information carried in the SLSS to obtain timing information. The threshold for synchronization measurement (for example, synchronization threshold) can be received in RRC messaging (for example, v2x-SyncConfig and/or SL-V2X-Preconfiguration IE).

該SLSS可以包括但不限於包括以下範例性信號中的任何一或更多:PSSS、SSSS、PSBCH、及/或用於解調該PSBCH的解調參考信號(DMRS)。例如,PSSS以及SSSS可以在相同子訊框中的相鄰時槽中被傳送。側鏈路-ID (SID)可以被分成兩組。例如,範圍{0,1, ..., 167}中的SID可以被保留用於覆蓋範圍內的WTRU (即,可以接收足夠強的信號以與關聯於eNB的胞元連接的WTRU),並且範圍{168,169,…, 335}中的SID可以用於覆蓋範圍外的WTRU。被用作無線電資源以傳送SLSS以及PSBCH的子訊框可以由較高層配置。The SLSS may include, but is not limited to, any one or more of the following exemplary signals: PSSS, SSSS, PSBCH, and/or demodulation reference signal (DMRS) for demodulating the PSBCH. For example, PSSS and SSSS can be transmitted in adjacent time slots in the same subframe. Side link-ID (SID) can be divided into two groups. For example, SIDs in the range {0, 1, ..., 167} may be reserved for WTRUs within coverage (ie, WTRUs that can receive a signal strong enough to connect with cells associated with the eNB), and SIDs in the range {168,169,..., 335} can be used for WTRUs outside the coverage area. The sub-frames used as radio resources to transmit SLSS and PSBCH can be configured by higher layers.

V2X可以包括未許可頻帶操作。在未許可頻帶中,gNB或WTRU在存取未許可無線通道之前可能需要執行先聽候送(LBT)程序。該LBT程序的細節可以取決於該未許可通道的管理要求而不同。LBT程序可以包括固定及/或隨機持續時間間隔,在該間隔期間,無線節點(例如gNB或WTRU)監聽無線媒體(例如,偵測該無線媒體的能量位準),並且如果從該無線媒體偵測到的能量位準大於臨界值(例如,其由管理者指定),則gNB或WTRU可以避免傳送任何無線信號;否則,該無線節點可以在該LBT程序完成之後傳送信號。在一些管理體制中,LBT程序對於未許可通道使用(由未許可使用者使用)可以是強制性的。因此,在3GPP許可輔助存取(LAA) (版本13)、增強LAA (eLAA) (版本14)以及進一步增強LAA (feLAA) (版本15)中採用了各種LBT類別。一些實施方式為一些或所有用例使用LBT類別4 (CAT4)方案,如在LAA/eLAA中所採用的。V2X can include unlicensed band operation. In the unlicensed frequency band, the gNB or WTRU may need to perform the first listen and wait (LBT) procedure before accessing the unlicensed wireless channel. The details of the LBT program may vary depending on the management requirements of the unlicensed channel. The LBT procedure may include fixed and/or random duration intervals during which a wireless node (such as a gNB or WTRU) monitors the wireless medium (such as detecting the energy level of the wireless medium), and if it detects from the wireless medium If the measured energy level is greater than a critical value (for example, it is specified by the administrator), the gNB or WTRU can avoid transmitting any wireless signals; otherwise, the wireless node can transmit signals after the LBT procedure is completed. In some management systems, the LBT program may be mandatory for unlicensed channel use (used by unlicensed users). Therefore, various LBT categories are adopted in 3GPP License Assisted Access (LAA) (version 13), enhanced LAA (eLAA) (version 14), and further enhanced LAA (feLAA) (version 15). Some implementations use the LBT category 4 (CAT4) scheme for some or all use cases, as used in LAA/eLAA.

在一個範例中,該LBT CAT4程序可以在基地台(或WTRU)試圖在未許可通道中傳送控制或資料時開始。該基地台(或WTRU)可以進行初始空閒通道評估(CCA)以確定該通道是否空閒一段時間(例如,固定的時段以及偽隨機持續時間的總和)。可以藉由將在未許可通道的頻寬上偵測到的能量(ED)位準與能量臨界值(例如,由管理者設定)進行比較來確定該通道的可用性。如果確定該通道是空閒的,則該基地台(或WTRU)可以繼續在該通道上進行傳輸。如果確定該通道在使用中,則該基地台(或WTRU)可以進行時槽化隨機退避程序。在範例性時槽化隨機退避程序中,從可以被稱為競爭視窗的指定間隔中選擇亂數。可以獲得退避倒數計數,並且可以驗證通道是否空閒,並且當退避計數器變為零時,可啟動傳輸。在基地台已獲得對通道的存取之後,基地台僅被允許在有限的持續時間內進行傳送,該持續時間可以被稱為最大通道佔用時間(MCOT)。具有隨機退避以及可變競爭視窗大小的該CAT4 LBT程序可以促進公平通道存取以及與例如Wi-Fi以及其它LAA網路之類的其它無線電存取技術(RAT)的共存。In one example, the LBT CAT4 procedure can be started when the base station (or WTRU) attempts to transmit control or data in an unlicensed channel. The base station (or WTRU) may perform an initial clear channel assessment (CCA) to determine whether the channel is idle for a period of time (for example, the sum of a fixed period and a pseudo-random duration). The availability of the channel can be determined by comparing the energy (ED) level detected on the bandwidth of the unlicensed channel with the energy threshold (for example, set by the administrator). If it is determined that the channel is idle, the base station (or WTRU) can continue to transmit on the channel. If it is determined that the channel is in use, the base station (or WTRU) may perform a time-slotted random backoff procedure. In an exemplary time slotted random backoff procedure, random numbers are selected from a specified interval that can be called a contention window. The backoff countdown can be obtained, and it can be verified whether the channel is idle, and when the backoff counter becomes zero, the transmission can be started. After the base station has gained access to the channel, the base station is only allowed to transmit for a limited duration, which may be referred to as the maximum channel occupation time (MCOT). The CAT4 LBT program with random backoff and variable contention window size can facilitate fair channel access and coexistence with other radio access technologies (RATs) such as Wi-Fi and other LAA networks.

在IAB系統中,在某些情況下,隨機存取通道(RACH)可以由存取鏈路中的WTRU及回程鏈路中的IAB節點存取。IAB節點可以是gNB、TRP、rTRP或BS、並且在本文中與gNB、TRP、rTRP以及BS可以互換使用。該IAB節點可提供整合的存取鏈路及回程鏈路的功能。IAB節點的存取距離可以比WTRU的存取距離更遠。因此,RACH配置以及程序可被設計為滿足IAB節點以及WTRU這兩者的RACH要求。在支援IAB節點以及WTRU的RACH傳輸的範例中,實體隨機存取通道(PRACH)配置、PRACH前導碼格式、前導碼配置及/或RACH程序可以支援來自WTRU的RACH傳輸以及來自IAB節點的RACH傳輸的多工。In the IAB system, in some cases, the random access channel (RACH) can be accessed by the WTRU in the access link and the IAB node in the backhaul link. The IAB node may be gNB, TRP, rTRP, or BS, and is used interchangeably with gNB, TRP, rTRP, and BS in this document. The IAB node can provide integrated access link and backhaul link functions. The access distance of the IAB node may be greater than the access distance of the WTRU. Therefore, the RACH configuration and procedures can be designed to meet the RACH requirements of both the IAB node and the WTRU. In the example of supporting the RACH transmission of the IAB node and the WTRU, the physical random access channel (PRACH) configuration, PRACH preamble format, preamble configuration and/or RACH procedure can support RACH transmission from the WTRU and RACH transmission from the IAB node Multitasking.

在IAB系統中,可在回程鏈路與存取鏈路之間分配資源。例如,可以在IAB系統中使用分時多工(TDM)、分頻多工(FDM)及/或分空間多工(SDM)技術來分配資源,並且可以動態地或半靜態地分配資源。在FDM及/或SDM被用於多工回程鏈路以及存取鏈路的實施方式中,可能會發生交叉鏈路干擾。In the IAB system, resources can be allocated between the backhaul link and the access link. For example, time division multiplexing (TDM), frequency division multiplexing (FDM), and/or space division multiplexing (SDM) techniques can be used in the IAB system to allocate resources, and resources can be allocated dynamically or semi-statically. In implementations where FDM and/or SDM are used for multiplexed backhaul links and access links, cross-link interference may occur.

在IAB系統中,IAB節點的PRACH配置週期性可以比WTRU的PRACH配置週期性長。例如,可以為IAB節點配置一長PRACH配置週期,因為在一些情況下,IAB節點可能不像WTRU那樣頻繁地傳送PRACH。然而,在IAB節點需要執行隨機存取或傳送前導碼的情況下,長的PRACH配置週期可能引入長的存取延遲。因此,可使用複數程序來減輕與長PRACH配置週期對應的IAB節點的RACH延遲。In the IAB system, the periodicity of the PRACH configuration of the IAB node may be longer than the periodicity of the PRACH configuration of the WTRU. For example, a long PRACH configuration period may be configured for the IAB node, because in some cases, the IAB node may not transmit PRACH as frequently as the WTRU. However, in the case where the IAB node needs to perform random access or transmit a preamble, a long PRACH configuration period may introduce a long access delay. Therefore, a complex number procedure can be used to reduce the RACH delay of the IAB node corresponding to the long PRACH configuration period.

在使用未許可頻譜的IAB系統中,在接收到一或更多前導碼之後,gNB或IAB節點可確定隨機存取回應(RAR)視窗並傳送RAR。該RAR視窗可由WTRU確定。WTRU確定的RAR視窗可以不同於例如在gNB或IAB節點錯過前導碼的情況下gNB或IAB節點確定的RAR視窗。在接收到幾個前導碼之後,gNB或IAB節點可以傳送RAR。複數程序可以確定gNB/IAB節點可發送多少個RAR以及gNB/IAB節點可與複數RAR一起配置多少個RACH訊息3 (Msg3,例如(RRC連接請求訊息) UL授權。In the IAB system using unlicensed spectrum, after receiving one or more preambles, the gNB or IAB node can determine the random access response (RAR) window and transmit the RAR. The RAR window may be determined by the WTRU. The RAR window determined by the WTRU may be different from the RAR window determined by the gNB or IAB node, for example, if the gNB or IAB node misses the preamble. After receiving several preambles, the gNB or IAB node can transmit RAR. The plural program can determine how many RARs can be sent by the gNB/IAB node and how many RACH messages the gNB/IAB node can configure with the plural RAR 3 (Msg3, for example (RRC connection request message) UL authorization.

當WTRU在V2X模式中操作時,用於回饋(例如ACK/NACK)的資源對於可以傳送資料的WTRU可以是已知的(例如在時間以及頻率方面)。複數程序可以促進避免使用該ACK/NACK回饋資源的WTRU的傳輸之間的衝突、及/或解決用於資料傳輸與回饋的資源之間的衝突。When the WTRU is operating in V2X mode, the resources used for feedback (e.g., ACK/NACK) may be known to the WTRU that can transmit data (e.g., in terms of time and frequency). The complex number procedure can facilitate avoiding conflicts between transmissions of WTRUs that use the ACK/NACK feedback resource, and/or resolve conflicts between resources used for data transmission and feedback.

可以使用IAB系統中的PRACH配置衝突避免的範例性方法。在一個範例中,IAB系統可以支援網路靈活性以配置回程RACH資源。圖4示出了範例性NR IAB網路部署中的範例性PRACH配置400。該範例性PRACH配置用於具有包括IAB WTRU 4021 -4024 的不同跳階(hop order)的回程。網路可以配置用於PRACH時機的偏移,以便行動終端(MT) IAB節點4061 以及4064 跨相鄰的跳而對回程RACH資源進行TDM。該偏移可以根據K個持續時間來定義,其中該持續時間可以是例如無線電訊框、子訊框、時槽、微型時槽、非時槽及/或OFDM符號。An exemplary method of PRACH configuration conflict avoidance in the IAB system can be used. In one example, the IAB system can support network flexibility to configure backhaul RACH resources. Figure 4 shows an exemplary PRACH configuration 400 in an exemplary NR IAB network deployment. The exemplary PRACH configuration having a different hop backhaul IAB WTRU comprising step (hop order) 402 1 -402 4 is. Network can be configured to offset PRACH opportunity in order to move the terminal (MT) IAB nodes 4061 and 4064 carried out across the adjacent TDM backhaul RACH resources jump. The offset can be defined according to K durations, where the duration can be, for example, a radio frame, a sub-frame, a time slot, a micro time slot, a non-time slot, and/or an OFDM symbol.

在範例性PRACH配置400中,WTRU 4021 -4024 可以被配置有用於初始存取的相同PRACH配置,即,PRACH配置4041 。在範例中,具有偶數跳階的IAB節點4062 以及4064 被配置有用於初始存取的相同PRACH配置4042 ,其可與用於WTRU 4021 -4024 的PRACH配置4041 不同;具有奇數跳階的IAB節點4063 可被配置有用於初始存取的相同PRACH配置4043 ,其可與用於WTRU 4021 -4024 的PRACH配置4041 不同以及與用於具有偶數跳階的IAB節點4062 以及4064 的PRACH配置4042 不同。在範例中,PRACH配置4041 可以與R15 PRACH配置相同。在一範例中,PRACH配置4042 及/或4043 可具有比PRACH配置4041 的週期性週期410更長的週期性週期412。在範例中,PRACH配置4042 及/或4043 可具有較長的PRACH格式及/或可具有與R15 PRACH配置的其它差異。PRACH配置4041 、4012 以及4043 可使用TDM來彼此多工,如範例性排程430中所示。In the exemplary PRACH configuration 400, WTRU 402 1 -402 4 may be configured with the same PRACH configuration used for initial access, i.e., PRACH configuration 4041. In an example, with an even hop node IAB order 4062 and 4064 are arranged with the same initial access for PRACH configuration 4042 that may be used WTRU PRACH 402 1 -402 4 disposed 4,041 different; with odd jump order IAB node 4063 may be configured with the same initial access for PRACH configuration 4043, which may be configured 404 1 IAB having a node and a different order and for even-hop WTRU PRACH 402 1 -402 4 of The PRACH configuration 404 2 of 406 2 and 406 4 are different. In an example, the PRACH configuration 404 1 may be the same as the R15 PRACH configuration. In an example, the PRACH configuration 404 2 and/or 404 3 may have a longer periodic period 412 than the periodic period 410 of the PRACH configuration 404 1 . In an example, PRACH configuration 4042 and / or 4043 may have a longer PRACH format and / or may have other differences in configuration of the R15 PRACH. The PRACH configurations 404 1 , 401 2 and 404 3 can use TDM to multiplex with each other, as shown in the exemplary schedule 430.

如範例性PRACH配置400中所示,IAB節點的PRACH配置週期性可長於WTRU的PRACH配置週期性。如果IAB節點不像WTRU那樣頻繁地傳送PRACH,則IAB節點的相對長的PRACH配置週期可能是適當的。然而,如果IAB節點需要執行隨機存取或傳送前導碼,則相對較長的PRACH配置週期可能引入長延遲。可使用複數程序來減輕或避免由於長PRACH配置週期而引起的IAB節點的RACH延遲。As shown in the exemplary PRACH configuration 400, the IAB node's PRACH configuration periodicity may be longer than the WTRU's PRACH configuration periodicity. If the IAB node does not transmit PRACH as frequently as the WTRU, the relatively long PRACH configuration period of the IAB node may be appropriate. However, if the IAB node needs to perform random access or transmit a preamble, a relatively long PRACH configuration period may introduce a long delay. A complex number procedure can be used to reduce or avoid the RACH delay of the IAB node caused by the long PRACH configuration period.

解決由於長PRACH配置週期而導致的IAB節點的RACH延遲的範例性程序可以考慮IAB節點不是移動的,並且從一個IAB節點到其父節點的位置可以是相對固定的。在此情況下,從一個特定IAB父節點接收的同步信號塊(SSB)可以是所有所傳送的SSB的相對固定子集。為了減少IAB節點的RACH存取延遲,該IAB節點可將PRACH與SSB的子集而不是所有SSB關聯(即,IAB節點可僅報告來自一個SSB子集的一個SSB,而不是報告來自所有SSB的SSB)。圖5示出了由IAB節點502提供的範例性SSB配置500、並且具體地示出了在每個對應扇區B1-B8中作為PRACH配置的一部分而被廣播的SSB子集資訊SSB1-SSB8。The exemplary procedure for solving the RACH delay of the IAB node due to the long PRACH configuration period may consider that the IAB node is not mobile, and the position from an IAB node to its parent node may be relatively fixed. In this case, the synchronization signal block (SSB) received from a specific IAB parent node may be a relatively fixed subset of all transmitted SSBs. In order to reduce the RACH access delay of the IAB node, the IAB node can associate PRACH with a subset of SSBs instead of all SSBs (that is, the IAB node can only report one SSB from one SSB subset, instead of reporting from all SSBs SSB). FIG. 5 shows an exemplary SSB configuration 500 provided by the IAB node 502, and specifically shows the SSB subset information SSB1-SSB8 broadcast as part of the PRACH configuration in each corresponding sector B1-B8.

在範例性SSB配置500中,IAB施子(donor)502可傳送八個SSB:SSB1-SSB8。如果所有SSB(SSB1-SSB8)被一對一映射到RACH時機(RO),則SSB的延遲可以長達八個RO。然而,如果使用或配置了SSB子集資訊,則WTRU (未示出)可以僅關聯到在對應SSB子集內的(一個或複數)SSB,並且可以減少延遲。可以使用不同的(一個或複數)前導碼子集、(一個或複數)前導碼根及/或不同的FDM多工的RO來表明該SSB子集(並且該SSB子集可因此而彼此區分)。在一個範例中,一些SSB子集可以在幾何上(即,空間上)被隔離。In the exemplary SSB configuration 500, the IAB donor 502 can transmit eight SSBs: SSB1-SSB8. If all SSBs (SSB1-SSB8) are mapped to RACH occasions (RO) one-to-one, the delay of SSB can be as long as eight ROs. However, if SSB subset information is used or configured, the WTRU (not shown) can only be associated with (one or more) SSBs in the corresponding SSB subset, and the delay can be reduced. Different (one or plural) preamble subsets, (one or plural) preamble roots, and/or different FDM multiplexed ROs can be used to indicate the SSB subsets (and the SSB subsets can therefore be distinguished from each other) . In one example, some SSB subsets may be isolated geometrically (ie, spatially).

圖6示出了用於潛時減少的SSB子集指派程序600。每個SSB子集可以具有一或更多SSB。例如,SSB子集可包括兩個SSB (例如,SSB子集{ SSB1,SSB2}、{ SSB3,SSB4}、{ SSB5,SSB6}、及/或{ SSB7,SSB8})。如果IAB節點偵測到SSB3,則根據該SSB子集,IAB節點可選擇SSB3以及SSB4以與RO相關聯。子集{ SSB1,SSB2}以及子集{ SSB5,SSB6}可以在例如在子集{ SSB1,SSB2}以及子集{ SSB5,SSB6}由於非重疊波束而被自然隔離的情況下使用相同的PRACH資源/前導碼資源。在一個範例中,針對SSB配置的SSB子集方法可以減少存取節點、IAB節點及/或gNB在未許可頻帶中的RACH延遲。Figure 6 shows an SSB subset assignment procedure 600 for latency reduction. Each SSB subset can have one or more SSBs. For example, the SSB subset may include two SSBs (eg, SSB subsets {SSB1, SSB2}, {SSB3, SSB4}, {SSB5, SSB6}, and/or {SSB7, SSB8}). If the IAB node detects SSB3, based on the SSB subset, the IAB node can select SSB3 and SSB4 to associate with the RO. The subset {SSB1, SSB2} and the subset {SSB5, SSB6} can use the same PRACH resources, for example, when the subset {SSB1, SSB2} and the subset {SSB5, SSB6} are naturally isolated due to non-overlapping beams /Preamble resource. In one example, the SSB subset method for SSB configuration can reduce the RACH delay of the access node, IAB node and/or gNB in the unlicensed band.

以下程序中的任一個可用於IAB的未許可操作。在一個範例中,例如在LBT失敗的情況下,可以不執行前導碼功率斜變,並且可以不遞增前導碼傳輸計數器。當UL LBT成功但在RAR視窗內沒有從gNB接收到RAR時,可使用功率斜變程序。在範例性過程中,該LBT可以在每個RO時槽處被執行。指示符(例如,一位元(one-bit)指示符)可以用於表明通道(例如,胞元公共PDCCH、群組公共PDCCH、廣播DL通道或其他PHY傳訊)在先前的RO時槽中是空閒的還是繁忙的。此範例性程序可促進WTRU確定該WTRU沒有接收到RAR的原因是否是由於gNB的隱藏節點干擾。Any of the following procedures can be used for unlicensed operations of IAB. In one example, for example, in the case of LBT failure, the preamble power ramp may not be performed, and the preamble transmission counter may not be incremented. When the UL LBT is successful but the RAR is not received from the gNB within the RAR window, the power ramp procedure can be used. In an exemplary process, the LBT can be executed at each RO slot. The indicator (for example, one-bit indicator) can be used to indicate that the channel (for example, cell public PDCCH, group public PDCCH, broadcast DL channel, or other PHY transmission) is in the previous RO slot Free or busy. This exemplary procedure may facilitate the WTRU to determine whether the reason why the WTRU did not receive the RAR is due to the hidden node interference of the gNB.

在一個範例中,可以在用於初始存取的RAR視窗中的RACH Msg2 (例如,RAR)接收之前執行複數PRACH傳輸。所允許的傳輸的數量可以是預定義的或者可以被表明(例如,在剩餘最小系統資訊(RMSI)中被表明)。在一些情況下,複數RAR可以被發送到相同WTRU。在WTRU傳送複數前導碼的情況下,可以使用跨不同RO的相同的複數前導碼,及/或複數前導碼可以不同但是在不同RO中可以具有預配置或表明的順序。In one example, a complex PRACH transmission can be performed before the RACH Msg2 (eg, RAR) reception in the RAR window for initial access. The number of allowed transmissions can be predefined or can be indicated (for example, indicated in the remaining minimum system information (RMSI)). In some cases, multiple RARs may be sent to the same WTRU. In the case where the WTRU transmits a complex preamble, the same complex preamble across different ROs may be used, and/or the complex preamble may be different but may have a pre-configured or indicated order in different ROs.

在另一個例子中,可以用特定的方式為傳送複數前導碼的WTRU定義該RAR。如果WTRU傳送複數前導碼,則該RAR視窗可與第一前導碼傳輸相關聯。錯過該第一前導碼的gNB可能具有不正確的RAR視窗。在一個範例中,只要在與先前的前導碼傳輸相關聯的RAR視窗結束之前沒有接收到(RACH) Msg2,WTRU可以在任何RO期間傳送一或更多前導碼,直到達到前導碼傳輸數量或接收到RAR。在gNB每次從WTRU接收一個前導碼時,gNB可在RAR視窗內發送RAR。In another example, the RAR may be defined in a specific way for the WTRU transmitting the complex preamble. If the WTRU transmits a complex preamble, the RAR window may be associated with the first preamble transmission. The gNB that missed the first preamble may have an incorrect RAR window. In one example, as long as the (RACH) Msg2 is not received before the end of the RAR window associated with the previous preamble transmission, the WTRU may transmit one or more preambles during any RO period until the number of preamble transmissions or reception is reached To RAR. Each time the gNB receives a preamble from the WTRU, the gNB may send the RAR within the RAR window.

在一個範例中,如果WTRU傳送複數前導碼,則gNB可能未接收到任何前導碼、接收到一些前導碼或接收到所有前導碼。在一個範例中,gNB可確定該RAR視窗、並在接收到一或更多前導碼之後發送該RAR。在一個範例中,該RAR視窗可由WTRU導出,其可不同於由gNB導出的RAR視窗(例如,因為gNB可能已經錯過了一或更多前導碼)。在一個範例中,gNB可能不知道哪些前導碼來自相同的WTRU (或來自不同的WTRU)。在一個範例中,gNB可以獨立地處理接收到的前導碼。例如,gNB可為每個接收的前導碼使用獨立的RAR以及RAR視窗,而不管該前導碼是來自相同的WTRU還是不同的WTRU。In one example, if the WTRU transmits a complex preamble, the gNB may not receive any preambles, some preambles, or all preambles. In one example, the gNB can determine the RAR window and send the RAR after receiving one or more preambles. In one example, the RAR window may be derived by the WTRU, which may be different from the RAR window derived by gNB (for example, because the gNB may have missed one or more preambles). In one example, the gNB may not know which preambles are from the same WTRU (or from different WTRUs). In one example, the gNB can independently process the received preamble. For example, the gNB may use independent RAR and RAR windows for each received preamble, regardless of whether the preamble comes from the same WTRU or a different WTRU.

在接收到幾個前導碼之後,gNB可以發送對應的RAR。gNB可以使用複數程序來確定該gNB可以發送的RAR的數量,以及該gNB可以與複數RAR一起配置的Msg3 UL授權的數量。After receiving several preambles, the gNB can send the corresponding RAR. The gNB can use a complex number program to determine the number of RARs that the gNB can send, and the number of Msg3 UL grants that the gNB can configure with the complex number of RARs.

在一個範例中,該gNB可區分來自相同WTRU或不同WTRU的前導碼。在一個範例中,gNB可使用具有不同UL授權的複數RAR。在範例中,可以保留複數UL授權。在一個範例中,WTRU可以嘗試使用複數UL資源發送複數Msg3。複數UL授權保留的使用可以導致複數UL/DL切換以及資源。In one example, the gNB can distinguish preambles from the same WTRU or different WTRUs. In one example, gNB may use plural RARs with different UL grants. In the example, multiple UL authorizations can be reserved. In one example, the WTRU may try to send a plurality of Msg3 using a plurality of UL resources. The use of multiple UL grant reservations can lead to multiple UL/DL switching and resources.

在範例中,複數RAR可以用於複數(例如,一個或複數) UL授權,其中該複數UL授權可以是相同的。RAR中的UL授權的配置方法可以使複數RAR中的UL授權相同。時域中的Msg3 UL授權可以具有從RAR視窗的結尾的偏移。在一個範例中,gNB可保留相同的UL授權,這導致較少的DL/UL切換。在這種情況下,相同的RAR視窗可以用於WTRU以及gNB。In an example, plural RAR may be used for plural (for example, one or plural) UL grants, where the plural UL grants may be the same. The configuration method of the UL grant in the RAR can make the UL grants in the plural RAR the same. The Msg3 UL grant in the time domain may have an offset from the end of the RAR window. In one example, gNB can retain the same UL grant, which results in fewer DL/UL switching. In this case, the same RAR window can be used for WTRU and gNB.

在一範例中,一個RAR可被用於給定WTRU的一個UL授權。gNB可以回應第一接收的前導碼並忽略後續前導碼;此方法可能不會減輕由於LBT引起的RACH延遲。在一個範例中,一RAR可以用於給定WTRU的複數UL授權。In an example, one RAR may be used for one UL grant for a given WTRU. The gNB can respond to the first received preamble and ignore the subsequent preamble; this method may not alleviate the RACH delay caused by LBT. In one example, a RAR may be used for multiple UL grants for a given WTRU.

在一個範例中,在從gNB接收到複數RAR之後,可能存在複數Msg3 UL授權。在一個範例中,WTRU藉由在所有UL授權中傳送Msg3來回應那些Msg3 UL授權。在這種情況下,Msg3傳輸由於LBT故障而失敗的機會可能降低。在另一個例子中,WTRU可以回應於複數Msg3 UL授權而僅傳送一個Msg3,這可以減少干擾以及開銷。如果傳送複數Msg3,則gNB可能未接收到任何所傳送的Msg3。在這種情況下,gNB可以為每個Msg3指派Msg3重傳,及/或WTRU可以具有複數Msg3 UL授權。In one example, after receiving the plural RAR from the gNB, there may be plural Msg3 UL grants. In one example, the WTRU responds to those Msg3 UL grants by sending Msg3 in all UL grants. In this case, the chance of Msg3 transmission failing due to LBT failure may decrease. In another example, the WTRU may transmit only one Msg3 in response to multiple Msg3 UL grants, which can reduce interference and overhead. If multiple Msg3 are transmitted, the gNB may not receive any transmitted Msg3. In this case, the gNB may assign Msg3 retransmissions for each Msg3, and/or the WTRU may have multiple Msg3 UL grants.

在一個範例中,gNB可能接收了該複數Msg3中的一些但不是全部。圖7示出了WTRU 702與gNB 704之間的範例性RACH訊息交換700的傳訊圖,其可以用於IAB系統中的未許可操作。在範例性RACH訊息交換700中,gNB沒有成功地從WTRU 702接收Msg1 706以及Msg3 718,而gNB成功地從WTRU 702接收Msg1 708、Msg1 710以及Msg3 716。在這種情況下,gNB可回應於接收到的Msg3 716而將Msg4 720 (在發送RAR 712以及714之後)發送到WTRU 702、及/或可針對未接收到的Msg3 718而將用於Msg3重傳722的指派發送到WTRU 702。在一個範例中,因為至少一些Msg3 (Msg3 716)已被WTRU 702接收,gNB可以不指派Msg3重傳。In an example, the gNB may have received some but not all of the plural Msg3. Figure 7 shows a signaling diagram of an exemplary RACH message exchange 700 between WTRU 702 and gNB 704, which can be used for unlicensed operation in an IAB system. In the exemplary RACH message exchange 700, the gNB did not successfully receive Msg1 706 and Msg3 718 from the WTRU 702, while the gNB successfully received Msg1 708, Msg1 710, and Msg3 716 from the WTRU 702. In this case, the gNB may send Msg4 720 (after sending RAR 712 and 714) to the WTRU 702 in response to the received Msg3 716, and/or may use it for Msg3 replay for the unreceived Msg3 718. The 722 assignment is sent to the WTRU 702. In one example, because at least some Msg3 (Msg3 716) has been received by the WTRU 702, the gNB may not assign Msg3 retransmission.

在一個範例中,gNB可能從WTRU接收到所有Msg3。gNB可為所有接收的Msg3向WTRU發送Msg4。在一個範例中,gNB可通知該WTRU:所有Msg3來自相同WTRU,因為它們具有相同的WTRU ID。在一個範例中,gNB可能需要知道是否已經接收到來自相同WTRU的Msg3。在一些範例中,對於每個Msg3,gNB可包括輔助資訊,以表明如何呈現或使用Msg3 UL授權以及呈現或使用什麼Msg3 UL授權。例如,對於每個Msg3,gNB可表明特定WTRU正在使用的所有Msg3 UL授權。在一個範例中,每個Msg3可表明該WTRU已接收的所有RAR。輔助資訊可以包括例如隨機存取無線網路臨時識別符(RA-RNTI)、前導碼ID、前導碼索引、RACH資源索引及/或任何其它ID或索引。In one example, the gNB may receive all Msg3 from the WTRU. The gNB may send Msg4 to the WTRU for all received Msg3. In one example, the gNB may notify the WTRU that all Msg3s are from the same WTRU because they have the same WTRU ID. In one example, the gNB may need to know whether it has received Msg3 from the same WTRU. In some examples, for each Msg3, the gNB may include auxiliary information to indicate how to present or use the Msg3 UL authorization and what Msg3 UL authorization to present or use. For example, for each Msg3, gNB may indicate all Msg3 UL grants that a particular WTRU is using. In one example, each Msg3 may indicate all RARs that the WTRU has received. The auxiliary information may include, for example, a random access wireless network temporary identifier (RA-RNTI), a preamble ID, a preamble index, a RACH resource index, and/or any other ID or index.

用於前導碼LBT阻塞減輕的複數程序可用於FDM UL傳輸。圖8A示出了範例性IAB網路部署800。圖8B示出了根據範例性IAB網路部署800的範例性傳輸時序的範例性RACH訊息交換801B的傳訊圖。圖8C示出了根據用該範例性IAB網路部署800的另一範例性傳輸時序的另一範例性RACH訊息交換801C的傳訊圖。The complex number procedure for preamble LBT congestion reduction can be used for FDM UL transmission. Figure 8A shows an exemplary IAB network deployment 800. FIG. 8B shows a signaling diagram of an exemplary RACH message exchange 801B according to an exemplary transmission timing of an exemplary IAB network deployment 800. FIG. 8C shows a signaling diagram of another exemplary RACH message exchange 801C according to another exemplary transmission sequence using the exemplary IAB network deployment 800.

在一個範例中,WTRU 802可以執行RACH,而WTRU 804可以處於RRC連接模式。WTRU 802可以具有T1的時間延遲(即,gNB 806與WTRU 802之間的傳輸延遲),而WTRU 804可以具有T2的時間延遲(即,gNB 806與WTRU 804之間的傳輸延遲)。當WTRU 802正在傳送前導碼816時,WTRU 804也可被排程為在相同或重疊時槽中傳送UL資料812,如圖8B所示。例如,WTRU 804可以使用時序提前(TA) T3傳送UL資料812,並且WTRU 802可能不知道該TA T3 (例如,T3<T1+T2)。WTRU 802及/或804可以基於來自gNB 806的SSB接收810的時序來執行LBT 813/811。在這種情況下,WTRU 804的UL資料傳輸812可能干擾WTRU 802的LBT 813、並且阻塞WTRU 802的前導碼傳輸816。In one example, the WTRU 802 may perform RACH, and the WTRU 804 may be in RRC connected mode. The WTRU 802 may have a time delay of T1 (ie, the transmission delay between gNB 806 and WTRU 802), and the WTRU 804 may have a time delay of T2 (ie, the transmission delay between gNB 806 and WTRU 804). When the WTRU 802 is transmitting the preamble 816, the WTRU 804 may also be scheduled to transmit UL data 812 in the same or overlapping time slots, as shown in FIG. 8B. For example, the WTRU 804 may use a timing advance (TA) T3 to transmit the UL data 812, and the WTRU 802 may not know the TA T3 (e.g., T3<T1+T2). The WTRU 802 and/or 804 may perform LBT 813/811 based on the timing of the SSB reception 810 from the gNB 806. In this case, the UL data transmission 812 of the WTRU 804 may interfere with the LBT 813 of the WTRU 802 and block the preamble transmission 816 of the WTRU 802.

為了避免阻塞該前導碼傳輸816,與RO相同的時槽中的UL傳輸820可以使用在與該RO相同的時槽中排程的UL傳輸820的開始處(以及LBT821之後)的保護週期823 (間隙或持續時間),如範例性RACH訊息交換801C中所示。In order to avoid blocking the preamble transmission 816, the UL transmission 820 in the same time slot as the RO can use the guard period 823 at the beginning (and after LBT821) of the UL transmission 820 scheduled in the same time slot as the RO ( Gap or duration), as shown in the exemplary RACH message exchange 801C.

圖9A示出了範例性IAB網路部署900,其中WTRU 902以及904彼此靠近並且位於gNB 906的相同胞元的邊界處。圖9B示出了根據該範例性IAB網路部署900的範例性傳輸時序的範例性RACH訊息交換901的傳訊圖。從該胞元邊界到gNB 906的時間延遲表示為Tcell 。WTRU 902及/或904可基於來自gNB 906的SSB接收910的時序來執行LBT 913/911。為了避免阻塞WTRU 902的前導碼傳輸916,持續時間為2Tcell 的保護週期915 (持續時間)可被用在WTRU 904的UL傳輸912的開始。例如,該保護週期915可以是持續時間中的幾個OFDM符號。FIG. 9A shows an exemplary IAB network deployment 900 in which WTRUs 902 and 904 are close to each other and located at the boundary of the same cell of gNB 906. FIG. 9B shows a transmission diagram of an exemplary RACH message exchange 901 according to an exemplary transmission timing of the exemplary IAB network deployment 900. The time delay from the cell boundary to gNB 906 is denoted as T cell . The WTRU 902 and/or 904 may perform LBT 913/911 based on the timing of the SSB reception 910 from the gNB 906. In order to avoid blocking the preamble transmission 916 of the WTRU 902, a guard period 915 (duration) with a duration of 2T cell may be used at the beginning of the UL transmission 912 of the WTRU 904. For example, the guard period 915 may be several OFDM symbols in the duration.

在一個範例中,SS/PBCH塊的週期性在IAB系統中可以是長的(例如,長於20ms)。SS/PBCH塊的長週期性可允許IAB節點(例如,IAB施子節點)以更長的週期性傳送SS/PBCH塊(例如,當IAB施子節點在非獨立模式(NSA)中操作時)。例如,IAB節點可以用80 ms或160 ms或更長的週期性來傳送用於實體廣播通道(SS/PBCH)塊的同步信號。在一個範例中,IAB節點還以長週期性傳送RMSI。例如,該IAB節點可以用比SS/PBCH塊更長的週期性傳送RMSI。RMSI可能僅對於IAB執行的初始存取是需要的。因此,可以不使用RMSI的頻繁傳輸。例如,IAB節點可以以160 ms或320 ms或更長的週期性來傳送SS/PBCH塊。對於IAB節點,RMSI可用於獲取用於初始存取的最小系統資訊。例如,RACH配置可以是用於IAB的RMSI的一部分。RMSI中的一些資訊可能不被使用。In one example, the periodicity of the SS/PBCH block can be long in the IAB system (for example, longer than 20ms). The long periodicity of the SS/PBCH block may allow the IAB node (for example, the IAB donor node) to transmit the SS/PBCH block with a longer periodicity (for example, when the IAB donor node is operating in non-standalone mode (NSA)) . For example, the IAB node can transmit synchronization signals for the physical broadcast channel (SS/PBCH) block with a periodicity of 80 ms or 160 ms or longer. In one example, the IAB node also transmits RMSI in a long period. For example, the IAB node can transmit RMSI with a longer period than the SS/PBCH block. RMSI may only be needed for the initial access performed by the IAB. Therefore, frequent transmission of RMSI may not be used. For example, the IAB node may transmit the SS/PBCH block with a periodicity of 160 ms or 320 ms or longer. For IAB nodes, RMSI can be used to obtain minimum system information for initial access. For example, the RACH configuration can be part of the RMSI for IAB. Some information in RMSI may not be used.

可以使用相同或不同的週期性來傳送該SS/PBCH塊以及RMSI。如果該SS/PBCH塊以及RMSI以相同的週期性被傳送,則在RMSI中可能不需要附加資訊。然而,如果使用不同的週期性來傳送SS/PBCH塊以及RMSI,則可能需要附加資訊(例如,在SS/PBCH或RMSI中,用於表明SS/PBCH或RMSI的存在或不存在)。如果該SS/PBCH塊比RMSI不那麼頻繁地被傳送,則可能需要附加資訊(例如,在RMSI中,用於表明SS/PBCH的存在或不存在)。在另一個範例中,如果SS/PBCH塊比RMSI更頻繁地被傳送,則可能需要附加資訊(例如,在PBCH中,用於表明RMSI的存在或不存在)。在一個範例中,在SS/PBCH與RMSI之間可以存在關聯。例如,如果SS/PBCH塊比RMSI不那麼頻繁地被傳送,則可能需要附加資訊(例如,在RMSI中,用於表明SS/PBCH不存在以及該關聯未保持)。然而,如果SS/PBCH塊比RMSI更頻繁地被傳送,則可能需要附加資訊(例如,在PBCH中,用於表明RMSI不存在以及該關聯未保持)。The SS/PBCH block and RMSI can be transmitted using the same or different periodicity. If the SS/PBCH block and RMSI are transmitted with the same periodicity, additional information may not be needed in the RMSI. However, if different periodicities are used to transmit SS/PBCH blocks and RMSI, additional information may be required (for example, in SS/PBCH or RMSI, to indicate the presence or absence of SS/PBCH or RMSI). If the SS/PBCH block is transmitted less frequently than RMSI, additional information may be required (for example, in RMSI, to indicate the presence or absence of SS/PBCH). In another example, if SS/PBCH blocks are transmitted more frequently than RMSI, additional information may be required (for example, in PBCH, to indicate the presence or absence of RMSI). In one example, there may be an association between SS/PBCH and RMSI. For example, if SS/PBCH blocks are transmitted less frequently than RMSI, additional information may be required (for example, in RMSI, to indicate that SS/PBCH does not exist and the association is not maintained). However, if SS/PBCH blocks are transmitted more frequently than RMSI, additional information may be required (for example, in PBCH, to indicate that RMSI does not exist and the association is not maintained).

在一個範例中,該SS/PBCH以及RMSI可以具有相同的週期性。例如,可以使用相同的週期性(例如,比預設的20 ms長的160 ms)來傳送SS/PBCH以及RMSI。可以(例如,藉由gNB或網路或傳輸器)為SS/PBCH以及RMSI傳輸表明相同或不同的週期性。此外,在存在用於SS/PBCH以及RMSI傳輸的不同週期性的情況下,還可以(例如,藉由gNB或網路或傳輸器)表明SS/PBCH的週期性是短於還是長於RMSI。SS/PBCH或RMSI的存在/不存在也可以相應地向WTRU表明。In an example, the SS/PBCH and RMSI may have the same periodicity. For example, the same periodicity (for example, 160 ms longer than the preset 20 ms) can be used to transmit SS/PBCH and RMSI. It is possible (for example, by gNB or network or transmitter) to indicate the same or different periodicity for SS/PBCH and RMSI transmission. In addition, when there are different periodicities for SS/PBCH and RMSI transmission, it is also possible (for example, by gNB or network or transmitter) to indicate whether the periodicity of SS/PBCH is shorter or longer than RMSI. The presence/absence of SS/PBCH or RMSI can also be indicated to the WTRU accordingly.

用於V2X回饋信號的複數程序可以在有或沒有IAB的情況下使用。在一個範例中,實體側鏈路回饋通道(PSFCH)可被用於V2X通信。該PSFCH可以用於攜帶任何回饋資訊,其包括但不限於任何混合自動重複請求(HARQ)回饋資訊、ACK/NACK資訊及/或通道狀態資訊(CSI)。The complex program for V2X feedback signals can be used with or without IAB. In one example, the physical side link feedback channel (PSFCH) can be used for V2X communication. The PSFCH can be used to carry any feedback information, including but not limited to any hybrid automatic repeat request (HARQ) feedback information, ACK/NACK information and/or channel status information (CSI).

在範例性場景中,已經向第二WTRU傳送了資料的第一WTRU可以嘗試從該第二WTRU接收一種類型的回饋(例如,ACK及/或NACK回饋)。在此範例中,為了成功地接收該回饋資訊,第一WTRU可能需要知道用於攜帶該回饋資訊的側鏈路資源。用於來自該第二WTRU的回饋的該側鏈路資源可以包括但不限於包括時間(例如時槽索引)、頻率(例如,子載波索引)及/或碼(例如,擴展序列索引)。用於V2X回饋信號的複數程序應確保來自複數WTRU的回饋(例如,其中該回饋的預期接收器可以相同或不同)不衝突、或者在整個網路操作中衝突概率維持在可接受的低位準(例如,低於臨界值位準)。In an exemplary scenario, a first WTRU that has transmitted data to a second WTRU may try to receive a type of feedback (e.g., ACK and/or NACK feedback) from the second WTRU. In this example, in order to successfully receive the feedback information, the first WTRU may need to know the side link resources used to carry the feedback information. The side link resources used for the feedback from the second WTRU may include, but are not limited to, time (e.g., time slot index), frequency (e.g., subcarrier index), and/or code (e.g., spread sequence index). The complex procedures used for V2X feedback signals should ensure that the feedback from multiple WTRUs (e.g., where the expected receivers of the feedback may be the same or different) does not conflict, or that the collision probability is maintained at an acceptable low level throughout the network operation ( For example, below the threshold level).

根據用於V2X回饋信號的範例性程序,用於回饋(例如,ACK/NACK)的資源對於已經傳送資料的WTRU (即,該回饋的預期接收者)在時間以及頻率上是已知的,使得其他WTRU不與該V2X回饋資源中的回饋傳輸(例如,ACK/NACK)衝突。該(例如,ACK/NACK)回饋資源可以由用於傳送該回饋所對應的資料的資源來確定。圖10示出了範例性時槽格式1000的資源圖,其中從用於資料傳輸的資源1020導出回饋資源1022。在時槽n 中,WTRU 1001使用位於頻率資源1020中以及頻率範圍F = [F1至F2]中的實體側鏈路共用通道(PSSCH) 1010將資料傳送到WTRU 1002。在稍後的時槽(時槽n+1 )中,WTRU 1002例如使用PSFCH 1014向WTRU 1001傳送回饋(例如,針對時槽n 中的傳輸的ACK或NACK)。在一個範例中,可以預先確定(例如,配置)何時傳送該資料以及何時傳送與該資料傳輸對應的該回饋的時槽索引(例如,n,n+1)。在一些範例中,此時序關係可以在與該資料傳輸對應的排程指派內被表明。用於在該時槽內攜帶該回饋的OFDM符號的索引也可以是被預先確定的或被傳訊的。According to an exemplary procedure for V2X feedback signals, the resources used for feedback (e.g., ACK/NACK) are known in time and frequency to the WTRU that has transmitted data (ie, the intended recipient of the feedback), so that Other WTRUs do not conflict with the feedback transmission (for example, ACK/NACK) in the V2X feedback resource. The (for example, ACK/NACK) feedback resource may be determined by the resource used to transmit the data corresponding to the feedback. FIG. 10 shows a resource diagram of an exemplary time slot format 1000, in which a feedback resource 1022 is derived from a resource 1020 for data transmission. In time slot n , the WTRU 1001 uses the physical side link shared channel (PSSCH) 1010 located in the frequency resource 1020 and in the frequency range F=[F1 to F2] to transmit data to the WTRU 1002. In a later time slot (time slot n+1 ), the WTRU 1002, for example, uses PSFCH 1014 to transmit feedback to the WTRU 1001 (eg, ACK or NACK for the transmission in time slot n ). In one example, it may be predetermined (eg, configured) when to transmit the data and when to transmit the time slot index (eg, n, n+1) of the feedback corresponding to the data transmission. In some examples, this timing relationship can be indicated in the scheduling assignment corresponding to the data transmission. The index of the OFDM symbol used to carry the feedback in the time slot may also be predetermined or signaled.

在一個範例中,WTRU 1002用來向WTRU 1001傳送回饋的頻率資源1022可以在用於從WTRU 1001到WTRU 1002的資料傳輸的相同頻率資源範圍F = [F1到F2]內。藉由從範圍F = [F1至F2]中選擇資源,該回饋頻率資源1022可以不與相同時槽n+1中的其它資源重疊,其中該其他資源例如為WTRU 1002使用PSSCH 1012將資料傳輸到另一WTRU所使用的資源1024。In one example, the frequency resource 1022 used by the WTRU 1002 to send feedback to the WTRU 1001 may be within the same frequency resource range F=[F1 to F2] used for data transmission from the WTRU 1001 to the WTRU 1002. By selecting resources from the range F = [F1 to F2], the feedback frequency resource 1022 may not overlap with other resources in the same time slot n+1, where the other resources are, for example, the WTRU 1002 using PSSCH 1012 to transmit data to Resources used by another WTRU 1024.

圖11示出了另一範例性時槽格式1100的資源圖,其中回饋資源1122是從用於資料傳輸的資源1120中導出的。在時槽n ,WTRU 1101使用在頻率資源1120中並且位於頻率範圍F = [F1到F2]中的PSSCH 1110向WTRU 1102傳送資料。在相同的時槽n 中,WTRU 1102例如使用PSFCH 1112向WTRU 1101傳送回饋(例如,針對時槽n 中的傳輸的ACK或NACK)。WTRU 1102用來向WTRU 1101傳送該回饋的頻率資源1122可以在用於從WTRU 1101向WTRU 1102傳輸資料的相同頻率資源範圍F = [F1到F2]內。FIG. 11 shows a resource diagram of another exemplary time slot format 1100, in which the feedback resource 1122 is derived from the resource 1120 for data transmission. In time slot n , the WTRU 1101 uses the PSSCH 1110 in the frequency resource 1120 and is located in the frequency range F=[F1 to F2] to transmit data to the WTRU 1102. In the same time slot n , the WTRU 1102, for example, uses PSFCH 1112 to transmit feedback to the WTRU 1101 (e.g., ACK or NACK for the transmission in time slot n ). The frequency resource 1122 used by the WTRU 1102 to transmit the feedback to the WTRU 1101 may be within the same frequency resource range F=[F1 to F2] used for data transmission from the WTRU 1101 to the WTRU 1102.

當該回饋在與該資料不同的時槽中被傳送時(例如,如圖10所示),可能另一WTRU在與排程該回饋以進行傳輸時相同的時槽(例如,時槽n+1)中已經保留了頻率範圍F1至F2內的資源。在一個範例中,第三WTRU可以不在頻率範圍F內及/或在該回饋被排程以被傳送的OFDM符號上進行傳送(即,那些資源可以被排除在其他WTRU的傳輸之外)。圖12示出了另一範例性時槽格式1200的資源圖,其中回饋資源1222是從用於資料傳輸的資源1220中導出的。在時槽n ,WTRU 1201使用位於頻率資源1220以及頻率範圍F = [F1至F2]中的PSSCH 1210將資料傳送到WTRU 1202。在稍後的時槽(時槽n +1)中,WTRU 1202例如使用PSFCH 1014向WTRU 1201傳送回饋(例如,針對時槽n 中的傳輸的ACK或NACK)。WTRU 1202用來向WTRU 1201傳送該回饋的頻率資源1222可以在相同的頻率資源範圍F = [F1至F2]內。在此範例中,WTRU 1203可以使用也位於頻率資源1220中的PSSCH 1212傳送資料(到另一個WTRU)。在這種情況下,WTRU 1203可以對其資料傳輸的傳輸塊進行打孔或速率匹配,使得其與回饋資源1222一起適合於頻率資源1220。在這種情況下,WTRU 1203 (以及試圖保留資源的任何其他WTRU)可以知道為PSFCH傳輸1214分配的時間/頻率資源1222。例如,WTRU可以傳送保留信號以保留用於排程指派(SA)/資料傳輸的資源。由於資料傳輸(例如,PSSCH 1210)與對應的回饋(PSFCH 1213)之間的預定時序關係,接收該保留信號的WTRU可以知道回饋將在其內被發送的時間及/或頻率資源。例如,在圖12的範例性時槽格式1200中,WTRU 1201可以藉由發送(一個或複數)保留信號(未示出)來保留時槽n以及頻率範圍F中的資源1220。接收該(一個或複數)保留信號的其他WTRU (例如,WTRU 1203)也可以確定時槽n+1以及頻率範圍F中的某些OFDM符號也被保留用於至WTRU 1201的回饋。該PSFCH 1214的時槽索引可以在該保留信號中被表明。When the feedback is sent in a different time slot than the data (for example, as shown in Figure 10), it is possible that another WTRU is in the same time slot as when the feedback is scheduled for transmission (for example, time slot n+ 1) The resources in the frequency range F1 to F2 have been reserved. In one example, the third WTRU may not be in frequency range F and/or transmit on the OFDM symbol where the feedback is scheduled to be transmitted (ie, those resources may be excluded from transmissions by other WTRUs). FIG. 12 shows a resource diagram of another exemplary time slot format 1200, in which the feedback resource 1222 is derived from the resource 1220 for data transmission. In time slot n , the WTRU 1201 uses the PSSCH 1210 located in the frequency resource 1220 and the frequency range F=[F1 to F2] to transmit data to the WTRU 1202. In a later time slot (time slot n + 1), the WTRU 1202, for example, uses PSFCH 1014 to transmit a feedback to the WTRU 1201 (eg, ACK or NACK for the transmission in time slot n ). The frequency resource 1222 used by the WTRU 1202 to transmit the feedback to the WTRU 1201 may be in the same frequency resource range F=[F1 to F2]. In this example, the WTRU 1203 may use the PSSCH 1212 which is also located in the frequency resource 1220 to transmit data (to another WTRU). In this case, the WTRU 1203 may perform puncturing or rate matching on the transmission block of its data transmission, so that it and the feedback resource 1222 are suitable for the frequency resource 1220. In this case, the WTRU 1203 (and any other WTRUs attempting to reserve resources) may know the time/frequency resources 1222 allocated for PSFCH transmission 1214. For example, the WTRU may transmit a reservation signal to reserve resources for scheduled assignment (SA)/data transmission. Due to the predetermined timing relationship between the data transmission (for example, PSSCH 1210) and the corresponding feedback (PSFCH 1213), the WTRU receiving the reserved signal can know the time and/or frequency resources within which the feedback will be sent. For example, in the exemplary time slot format 1200 of FIG. 12, the WTRU 1201 may reserve resources 1220 in time slot n and frequency range F by sending (one or more) reservation signals (not shown). Other WTRUs (for example, WTRU 1203) receiving the reserved signal(s) may also determine that certain OFDM symbols in time slot n+1 and frequency range F are also reserved for feedback to WTRU 1201. The time slot index of the PSFCH 1214 can be indicated in the reserved signal.

IAB系統中的一些資料傳輸可能不需要回饋。例如,當WTRU保留資源時,保留信號可以包括關於該保留是否將需要回饋的資訊。例如,一位元旗標可以表明是否應該使用PSFCH。在另一範例中,該信號內的另一參數可以隱式地表明是否需要回饋。例如,該保留信號可以表明訊務類型(例如,具有回饋的單播、具有回饋的群播、沒有回饋的群播、廣播),從該訊務類型可以暗示回饋的使用。Some data transmissions in the IAB system may not require feedback. For example, when the WTRU reserves resources, the reservation signal may include information about whether the reservation will require feedback. For example, a one-bit flag can indicate whether PSFCH should be used. In another example, another parameter in the signal can implicitly indicate whether feedback is required. For example, the reserved signal may indicate the type of service (for example, unicast with feedback, group broadcast with feedback, group broadcast without feedback, broadcast), and the use of feedback may be implied from the service type.

圖13示出了包括兩個SA階段(SA階段-1以及SA階段-2)的範例性時槽格式1300的資源圖。在時槽n 中,WTRU 1301使用位於頻率資源1320中以及頻率範圍F = [F1到F2]中的PSSCH 1310向WTRU 1302傳送資料。在稍後的時槽(時槽n +1)中,WTRU 1302例如使用PSFCH 1312向WTRU 1301傳送回饋(例如,針對時槽n 中的傳輸的ACK或NACK)。WTRU 1302用於向WTRU 1301傳送回饋的頻率資源1322可以在用於從WTRU 1301到WTRU 1302的資料傳輸的相同頻率資源範圍F = [F1到F2]內。SA以及實體側鏈路控制通道(PSCCH)可以指相同的通道。該複數SA階段中的至少一個可由在可接收第一階段SA的附近的WTRU的全部或子集解碼。該第一階段SA以及對應PSFCH 1312的位置可以相關聯(例如,第一階段SA可以直接或間接地表明PSFCH 1312的位置)。以下中的任何一或更多都可以應用(注意,這些方法也可以類似地應用於SA階段-2):SA階段-1的位置可以隱式地表明PSFCH 1322的位置;用於攜帶該SA階段-1的控制資源集(CORESET)可以隱式地表明PSFCH 1322的位置;SA階段-1可表明該接收WTRU是否需要傳送回饋(例如,該WTRU可由gNB、基地台或例如車隊管理者WTRU之類的其他傳輸WTRU配置以提供回饋);PSFCH 1312的位置(例如,頻率以及時間資源1322)以及是否需要PSFCH 1312回饋可以用SA階段I及/或SA階段II的組合來表明;及/或PSFCH 1312的位置(例如,頻率以及時間資源1322)以及是否需要PSFCH 1312回饋可以用SA階段-2以及保留信號的組合來表明(例如,該保留信號可以與該SA階段-1相同或不同)。FIG. 13 shows a resource diagram of an exemplary time slot format 1300 including two SA phases (SA phase-1 and SA phase-2). In time slot n , the WTRU 1301 uses the PSSCH 1310 located in the frequency resource 1320 and in the frequency range F=[F1 to F2] to transmit data to the WTRU 1302. In a later time slot (time slot n +1), the WTRU 1302 uses PSFCH 1312 to transmit feedback to the WTRU 1301 (eg, ACK or NACK for the transmission in time slot n ), for example. The frequency resource 1322 used by the WTRU 1302 to send feedback to the WTRU 1301 may be within the same frequency resource range F=[F1 to F2] used for data transmission from the WTRU 1301 to the WTRU 1302. The SA and the physical side link control channel (PSCCH) may refer to the same channel. At least one of the complex SA phases can be decoded by all or a subset of WTRUs in the vicinity that can receive the first phase SA. The first stage SA and the position of the corresponding PSFCH 1312 may be associated (for example, the first stage SA may directly or indirectly indicate the position of the PSFCH 1312). Any one or more of the following can be applied (note that these methods can also be similarly applied to SA phase-2): The position of SA phase-1 can implicitly indicate the position of PSFCH 1322; used to carry the SA phase The control resource set (CORESET) of -1 can implicitly indicate the location of PSFCH 1322; SA stage-1 can indicate whether the receiving WTRU needs to send feedback (for example, the WTRU can be used by gNB, base station, or such as a fleet manager WTRU) Other transmission WTRU configurations to provide feedback); the location of PSFCH 1312 (for example, frequency and time resources 1322) and whether PSFCH 1312 feedback is required can be indicated by a combination of SA phase I and/or SA phase II; and/or PSFCH 1312 The location (for example, frequency and time resources 1322) and whether PSFCH 1312 feedback is required can be indicated by a combination of SA phase-2 and a reserved signal (for example, the reserved signal may be the same as or different from the SA phase-1).

在一些範例中,在該PSFCH以及階段-1 SA被映射到相同的子載波(例如,在相同的時槽或不同的時槽中)的情況中,該階段1 SA的位置可隱式地表明該PSFCH的時間以及頻率資源。在一些範例中,該PSFCH可以被映射到由該階段-1 SA使用的子載波的子集。例如,特定子集可以由中央控制器配置。In some examples, in the case where the PSFCH and the stage-1 SA are mapped to the same subcarrier (for example, in the same time slot or different time slots), the position of the stage-1 SA may be implicitly indicated The time and frequency resources of the PSFCH. In some examples, the PSFCH may be mapped to a subset of subcarriers used by the phase-1 SA. For example, a specific subset can be configured by the central controller.

在用於攜帶該SA-I的CORESET可以隱式地表明PSFCH的位置的範例中,該CORESET可以由時間/頻率資源單元組成,並且這些時間/頻率資源單元中的一或更多可以與該PSFCH的頻率及/或時間/頻率位置相關聯。在SA-I也可以表明該接收WTRU是否需要傳送回饋的範例中,此資訊可以包括至少一個位元並且可以被編碼為SA-I訊息的一部分。在SA-I的解調參考信號(DM-RS)或與SA-I相關聯的一些其它類型的參考信號(RS)可以用於表明是否需要回饋的範例中,該RS可以包括兩個部分,並且這些部分可以用[1 1]或[1 -1]加擾以表明一位元資訊。在一個範例中,RS的循環移位及/或序列索引可以用於表明該一位元資訊。In the example in which the CORESET used to carry the SA-I can implicitly indicate the location of the PSFCH, the CORESET can consist of time/frequency resource units, and one or more of these time/frequency resource units can be associated with the PSFCH Associated with the frequency and/or time/frequency location. In the example where SA-I can also indicate whether the receiving WTRU needs to send feedback, this information can include at least one bit and can be encoded as part of the SA-I message. In an example where the demodulation reference signal (DM-RS) of SA-I or some other type of reference signal (RS) associated with SA-I can be used to indicate whether feedback is required, the RS can include two parts, And these parts can be scrambled with [1 1] or [1 -1] to show one-bit information. In one example, the cyclic shift and/or sequence index of the RS can be used to indicate the bit information.

在可以使用階段-1 SA以及階段-2 SA的組合來表明該PSFCH的位置(時間/頻率資源)以及是否需要PSFCH回饋的情況下,階段-1 SA可以表明是否將存在PSFCH傳輸,並且階段-2 SA可以表明該PSFCH的位置(時間/頻率資源),使得該PSFCH不必位於用於SA (或PSSCH)的相同頻率範圍F中。例如,階段-2 SA可以包括表明該PSFCH的時間及/或頻率位置的編碼位元。正在監聽該傳輸的WTRU可以解碼階段-1 SA、並且接收關於該傳輸WTRU的保留的資訊。如果任何其它WTRU (例如圖12中的UE 1203)嘗試存取相同的資源池,則該WTRU還可以解碼階段-2 SA以確定該PSFCH的時間/頻率資源(位置)。WTRU可以確定使用或不使用分配給該PSFCH的相同資源(例如,選擇使用該資源、或者允許使用或禁止使用此資源)。In the case that a combination of phase-1 SA and phase-2 SA can be used to indicate the location (time/frequency resource) of the PSFCH and whether PSFCH feedback is required, phase-1 SA can indicate whether there will be PSFCH transmission, and phase- 2 SA can indicate the location (time/frequency resource) of the PSFCH, so that the PSFCH need not be located in the same frequency range F used for SA (or PSSCH). For example, the stage-2 SA may include coded bits indicating the time and/or frequency position of the PSFCH. The WTRU that is listening for the transmission may decode the Phase-1 SA and receive information about the reservation of the transmitting WTRU. If any other WTRU (e.g., UE 1203 in Figure 12) tries to access the same resource pool, the WTRU may also decode the Phase-2 SA to determine the time/frequency resources (location) of the PSFCH. The WTRU may determine to use or not to use the same resource allocated to the PSFCH (for example, choose to use the resource, or allow or prohibit the use of this resource).

在該PSFCH的時間/頻率資源(位置)以及是否需要PSFCH回饋可由階段-1 SA以及保留信號的組合來表明的範例中(例如,如果該保留信號不同於SA-I),參數(例如,訊務類型資訊)可與PSFCH的存在相關聯或可表明PSFCH的存在,並且該PSFCH的時間/頻率資源(位置)可由階段-1 SA內的編碼位元表明。在一個範例中,階段-1 SA可以具有多種可能格式中的一種,並且這些格式中的至少一種可以包括PSFCH資訊,並且這些格式中的至少一種可以不包括PSFCH資訊。在一個範例中,m位元階段-1 SA格式可以包括至少關於PSFCH的一位元欄位,並且n位元階段-1 SA格式可以是已知的(例如,由其他WTRU知道)不具有PSFCH資訊(例如,意味著即將到來的傳輸將不需要回饋)。In the example where the time/frequency resource (location) of the PSFCH and whether PSFCH feedback is required can be indicated by the combination of stage-1 SA and reserved signal (for example, if the reserved signal is different from SA-I), the parameters (for example, signal The service type information) may be associated with the existence of the PSFCH or may indicate the existence of the PSFCH, and the time/frequency resource (location) of the PSFCH may be indicated by the coded bits in the stage-1 SA. In one example, the stage-1 SA may have one of multiple possible formats, and at least one of these formats may include PSFCH information, and at least one of these formats may not include PSFCH information. In one example, the m-bit phase-1 SA format may include at least one bit field for the PSFCH, and the n-bit phase-1 SA format may be known (eg, known by other WTRUs) without PSFCH Information (for example, meaning that the upcoming transmission will not require feedback).

在一個範例中,下鏈控制資訊(DCI)中的另一個參數可以隱式地表明傳輸器(例如,gNB、其它傳輸WTRU等)是否需要回饋。例如,該DCI可以表明訊務類型(例如,具有回饋的單播、具有回饋的群播、沒有回饋的群播、廣播)。在一個範例中,SA的複數階段可以在不同的時槽中傳送,並且該DCI可以是階段-1 SA及/或階段-2 SA的一部分。例如,階段-1 SA可以攜帶該訊務類型資訊。In one example, another parameter in Downlink Control Information (DCI) can implicitly indicate whether the transmitter (eg, gNB, other transmitting WTRU, etc.) needs feedback. For example, the DCI may indicate the type of traffic (for example, unicast with feedback, group broadcast with feedback, group broadcast without feedback, broadcast). In an example, the plural stages of the SA may be transmitted in different time slots, and the DCI may be part of the stage-1 SA and/or the stage-2 SA. For example, the phase-1 SA can carry the traffic type information.

如果WTRU從其傳輸中排除PSFCH資源(例如,圖12中的範例WTRU 1203),則該WTRU可以向其預期的接收器表明PSFCH資源的該排除,使得該接收器可以執行適當的接收操作。在一個範例中,WTRU傳送的SA中的DCI可以表明在該傳輸中是否有任何資源已經被排除。例如,一位元旗標可以表明是否已經排除了m個OFDM符號上的頻率範圍F。參考圖13,如果WTRU 1203使用的頻率範圍大於PSFCH 1214的頻率範圍1222,則WTRU 1203可以排除所有攜帶PSFCH 1214的OFDM符號。If a WTRU excludes PSFCH resources from its transmission (e.g., the example WTRU 1203 in FIG. 12), the WTRU may indicate the exclusion of PSFCH resources to its intended receiver so that the receiver can perform appropriate reception operations. In one example, the DCI in the SA transmitted by the WTRU may indicate whether any resources have been excluded from the transmission. For example, a one-bit flag can indicate whether the frequency range F on m OFDM symbols has been excluded. Referring to FIG. 13, if the frequency range used by the WTRU 1203 is greater than the frequency range 1222 of the PSFCH 1214, the WTRU 1203 may exclude all OFDM symbols carrying the PSFCH 1214.

在一個範例中,頻率資源的子集F可以被分配給PSFCH傳輸。接收並解碼PSCCH及/或發現通道或一些其它通道的WTRU可以知道該PSFCH的時間/頻率資源(位置)。例如,WTRU及其預期的接收器可能已經接收到了關於PSFCH的時間/頻率資源(位置)的資訊。基於此,WTRU可以(例如,藉由速率匹配或打孔)跳過其傳輸中的PSFCH資源,並且預期的接收器將不會在這些資源上期望來自該WTRU的任何資訊位元。In one example, a subset F of frequency resources may be allocated for PSFCH transmission. The WTRU that receives and decodes the PSCCH and/or the discovery channel or some other channel can know the time/frequency resources (location) of the PSFCH. For example, the WTRU and its intended receiver may have received information about the time/frequency resources (location) of the PSFCH. Based on this, the WTRU may skip PSFCH resources in its transmission (for example, by rate matching or puncturing), and the intended receiver will not expect any information bits from the WTRU on these resources.

圖14示出了範例性時槽格式1400的資源圖,其中從用於資料傳輸的資源中導出回饋資源。在時槽n 中,WTRU 1401在頻率範圍為ΔF的頻率資源1420中使用PSSCH 1410將資料傳送到WTRU 1402。WTRU 1402在時槽n中針對該PSSCH 1410上的來自WTRU 1401的信號(例如,攜帶資料的訊息)監視訊率範圍ΔF,其中該頻率範圍ΔF可以包括對應的複數資源塊(RB)。WTRU 1402基於以下資訊中的任一或更多資訊來確定回饋頻率資源1422:該頻率範圍ΔF;第一複數RB中的RB數量;及/或該WTRU 1401的識別碼。例如,回饋頻率資源1422可被確定為頻率資源1420中的該複數RB的子集。WTRU 1402在時槽n+k中使用該回饋頻率資源1422向WTRU 1401傳送回饋資訊(例如,ACK/NAK,以確認/否定確認由WTRU 1401在時槽n中在PSSCH 1410上傳送的資料)。例如,WTRU 1402可以使用該回饋頻率資源1422以在PSFCH 1412上向WTRU 1401傳送HARQ回饋資訊。在時槽n+k中,另一WTRU 1403可以使用不同的頻率資源1424以在PSSCH 1414上向另一WTRU 1404傳送資料,其中該不同的頻率資源1424可以不與頻率資源1422及/或頻率資源1420重疊。FIG. 14 shows a resource diagram of an exemplary time slot format 1400 in which the feedback resource is derived from the resource used for data transmission. In time slot n , the WTRU 1401 uses the PSSCH 1410 to transmit data to the WTRU 1402 in the frequency resource 1420 in the frequency range ΔF. The WTRU 1402 monitors the signal rate range ΔF for the signal from the WTRU 1401 on the PSSCH 1410 (for example, a message carrying data) in the time slot n, where the frequency range ΔF may include corresponding plural resource blocks (RB). The WTRU 1402 determines the feedback frequency resource 1422 based on any or more of the following information: the frequency range ΔF; the number of RBs in the first complex number of RBs; and/or the identification code of the WTRU 1401. For example, the feedback frequency resource 1422 may be determined as a subset of the complex number of RBs in the frequency resource 1420. The WTRU 1402 uses the feedback frequency resource 1422 to send feedback information to the WTRU 1401 in time slot n+k (for example, ACK/NAK to confirm/negatively confirm the data sent by the WTRU 1401 on the PSSCH 1410 in time slot n). For example, the WTRU 1402 may use the feedback frequency resource 1422 to transmit HARQ feedback information to the WTRU 1401 on the PSFCH 1412. In time slot n+k, another WTRU 1403 may use a different frequency resource 1424 to transmit data to another WTRU 1404 on the PSSCH 1414, where the different frequency resource 1424 may not be the same as the frequency resource 1422 and/or frequency resource 1420 overlap.

圖15示出了範例性時槽格式1500的資源圖,其中從用於資料傳輸的資源中導出回饋資源。在時槽n 中,WTRU 1501在頻率範圍ΔFc中的頻率資源1523中的PSCCH 1508上傳送控制資訊(例如,側鏈路上的廣播資訊)。該頻率範圍ΔFc可以是頻率範圍ΔF的子集,該頻率資源1523可以是由WTRU 1501使用PSSCH 1510向WTRU 1502傳送資料所使用的頻率資源1520的子集(例如,複數RB的子集)。WTRU 1502在時槽n中針對PSCCH 1508上來自WTRU 1501的信號(例如攜帶控制資訊的訊息)監視訊率範圍ΔFc。WTRU 1502在時槽n中監視訊率範圍ΔF,以尋找PSSCH 1510上的來自WTRU 1501的信號(例如,攜帶資料的訊息)。WTRU 1502基於以下資訊中的任何一或更多資訊來確定回饋頻率資源1522:該頻率範圍ΔF;與頻率資源1520相關聯的複數RB中的RB數量;該頻率範圍ΔFc;與頻率資源1523相關聯的複數RB中的RB的數量;及/或該WTRU 1501的識別碼。例如,回饋頻率資源1522可被確定為頻率資源1523中的該複數RB的子集。WTRU 1502在時槽n+k中使用該回饋頻率資源1522向WTRU 1501傳送回饋資訊(例如,ACK/NAK,用於對由WTRU 1501在時槽n中在PSSCH 1510上傳送的資料進行確認/否定確認)。例如,WTRU 1502可以使用該回饋頻率資源1522以在PSFCH 1512上向WTRU 1501傳送HARQ回饋資訊。在時槽n+k中,另一WTRU 1503可以使用與頻率資源1522及/或頻率資源1520不重疊的不同頻率資源1524以在PSSCH 1514上向另一WTRU 1504傳送資料。FIG. 15 shows a resource diagram of an exemplary time slot format 1500 in which the feedback resource is derived from the resource used for data transmission. In time slot n , the WTRU 1501 transmits control information (for example, broadcast information on the side link) on the PSCCH 1508 in the frequency resource 1523 in the frequency range ΔFc. The frequency range ΔFc may be a subset of the frequency range ΔF, and the frequency resource 1523 may be a subset of the frequency resource 1520 used by the WTRU 1501 to transmit data to the WTRU 1502 using the PSSCH 1510 (for example, a subset of a plurality of RBs). The WTRU 1502 monitors the signal rate range ΔFc for the signal from the WTRU 1501 on the PSCCH 1508 (for example, a message carrying control information) in time slot n. The WTRU 1502 monitors the signal rate range ΔF in the time slot n to find the signal from the WTRU 1501 on the PSSCH 1510 (for example, a message carrying data). The WTRU 1502 determines the feedback frequency resource 1522 based on any one or more of the following information: the frequency range ΔF; the number of RBs in the plurality of RBs associated with the frequency resource 1520; the frequency range ΔFc; associated with the frequency resource 1523 The number of RBs in the plural RBs; and/or the identification code of the WTRU 1501. For example, the feedback frequency resource 1522 may be determined as a subset of the complex number of RBs in the frequency resource 1523. The WTRU 1502 uses the feedback frequency resource 1522 in time slot n+k to send feedback information (for example, ACK/NAK) to the WTRU 1501 to confirm/negate the data sent by WTRU 1501 on PSSCH 1510 in time slot n confirm). For example, the WTRU 1502 may use the feedback frequency resource 1522 to transmit HARQ feedback information to the WTRU 1501 on the PSFCH 1512. In time slot n+k, another WTRU 1503 may use a different frequency resource 1524 that does not overlap with frequency resource 1522 and/or frequency resource 1520 to transmit data to another WTRU 1504 on PSSCH 1514.

這裡描述的用於V2X回饋信號的範例性程序適用於該PSFCH覆蓋整個頻率範圍F的情況,並且還可適用於該PSFCH覆蓋用於原始資料傳輸的頻率範圍F的子集(例如,頻率範圍F中的RB的子集)的情況。The exemplary procedure for the V2X feedback signal described here is applicable to the case where the PSFCH covers the entire frequency range F, and is also applicable to the PSFCH covering a subset of the frequency range F used for original data transmission (for example, the frequency range F In the case of a subset of RB).

在一個範例中,ACK/NACK回饋可以利用序列而被傳送。例如,序列1傳輸可以表明ACK,而序列2傳輸可以表明NACK。該序列可以包括例如Lm 個係數,其中m 是RB中的子載波數量。在這種情況下,該序列可以被映射到整個頻率範圍F = [F1到F2]、或者被映射到頻率範圍F的子集。在一個範例中,該頻率資源F內的PSFCH的位置可以是固定的。例如,該回饋可以總是在該分配F的第一RB內被傳送。在一個範例中,該頻率資源內的PSFCH的位置可以基於例如UE ID (例如,mod (UE2 ID,頻率資源中的RB的數量)可以表明該PSFCH的第一RB的索引)之類的其它傳輸參數。In one example, ACK/NACK feedback can be transmitted using a sequence. For example, sequence 1 transmission can indicate ACK, while sequence 2 transmission can indicate NACK. The sequence may include, for example, Lm coefficients, where m is the number of subcarriers in the RB. In this case, the sequence can be mapped to the entire frequency range F=[F1 to F2], or to a subset of the frequency range F. In an example, the position of the PSFCH in the frequency resource F may be fixed. For example, the feedback may always be transmitted in the first RB of the allocation F. In an example, the position of the PSFCH in the frequency resource may be based on other transmissions such as UE ID (for example, mod (UE2 ID, the number of RBs in the frequency resource) may indicate the index of the first RB of the PSFCH). parameter.

在一個範例中,可以對ACK/NACK位元進行編碼及調變,以創建可以映射到可用頻率資源範圍F中的子載波的回饋傳輸塊。用於傳送該回饋塊的RB的索引可以是預定的、或者可以是例如UE ID之類的其它傳輸參數的函數。在一個範例中,ACK/NACK回饋可以被映射到可用頻率範圍F的子集,並且F內的剩餘子載波可以用於傳送其它控制資訊,例如CSI。例如,如果F包括N 個RB,則UE 2可以使用m 個RB以向UE 1傳送ACK/NACK,而UE 2可以使用剩餘的N-m 個RB以向UE 1傳送CSI。在這種情況下,ACK/NACK以及CSI可被單獨編碼。CSI傳輸可以在DCI (例如,非週期性CSI)內被請求、或者可以被配置用於使用預定時間及/或頻率資源的傳輸。在一個範例中,如果WTRU未被排程來傳送CSI、但是具有ACK/NACK要傳送,則其可以使用頻率範圍F中的剩餘資源來傳送資料。In one example, the ACK/NACK bits can be encoded and modulated to create a feedback transport block that can be mapped to subcarriers in the available frequency resource range F. The index of the RB used to transmit the feedback block may be predetermined or may be a function of other transmission parameters such as UE ID. In one example, ACK/NACK feedback can be mapped to a subset of the available frequency range F, and the remaining subcarriers in F can be used to transmit other control information, such as CSI. For example, if F includes N RBs, UE 2 may use m RBs to transmit ACK/NACK to UE 1, and UE 2 may use the remaining Nm RBs to transmit CSI to UE 1. In this case, ACK/NACK and CSI can be coded separately. CSI transmission may be requested within DCI (for example, aperiodic CSI) or may be configured for transmission using predetermined time and/or frequency resources. In one example, if the WTRU is not scheduled to transmit CSI but has ACK/NACK to transmit, it can use the remaining resources in frequency range F to transmit data.

在一個範例中,如果該訊務類型是群播並且需要回饋,則複數接收WTRU可以在相同的PSFCH內回饋ACK/NACK。在一個範例中,這些WTRU實施分時及/或分頻及/或分碼多工,以多工它們的ACK/NACK位元。用於回饋的至少一個資源(例如,OFDM符號以及子載波的索引、序列的循環移位的索引、擴展序列的索引)可以是UE ID的函數,以防止衝突。在一個範例中,該PSFCH可以包括複數OFDM符號。圖16示出了另一範例性時槽格式1600的資源圖,其中頻率範圍[F1,F2]中的PSFCH 1610 (從WTRU 1602傳送到WTRU 1601)包括複數OFDM符號。在一個範例中,一個OFDM符號的至少一部分可以在接收器處用於自動增益控制(AGC)目的。In one example, if the traffic type is multicast and feedback is required, the multiple receiving WTRUs can return ACK/NACK in the same PSFCH. In one example, these WTRUs implement time division and/or frequency division and/or code division multiplexing to multiplex their ACK/NACK bits. At least one resource used for feedback (for example, the index of the OFDM symbol and the subcarrier, the index of the cyclic shift of the sequence, the index of the spreading sequence) may be a function of the UE ID to prevent collisions. In an example, the PSFCH may include complex OFDM symbols. FIG. 16 shows a resource diagram of another exemplary time slot format 1600, where the PSFCH 1610 (transmitted from WTRU 1602 to WTRU 1601) in the frequency range [F1, F2] includes complex OFDM symbols. In one example, at least a part of an OFDM symbol may be used for automatic gain control (AGC) purposes at the receiver.

在一個範例中,在該PSFCH的所有OFDM符號中重複相同的複數符號,例如以減輕或避免性能損失。該複數符號可以是序列及/或編碼及調變的資料位元及/或DMRS符號。在一個範例中,第一OFDM符號用於傳送已知序列,例如DMRS序列,以減輕或避免性能損失。在一個範例中,對複數資料位元進行編碼、速率匹配以及調變,使得所有OFDM符號上的所有子載波都用於映射該調變符號,例如以減輕或避免性能損失。In an example, the same complex symbols are repeated in all OFDM symbols of the PSFCH, for example, to reduce or avoid performance loss. The complex symbols can be sequence and/or coded and modulated data bits and/or DMRS symbols. In one example, the first OFDM symbol is used to transmit a known sequence, such as a DMRS sequence, to reduce or avoid performance loss. In one example, the complex data bits are encoded, rate matched, and modulated, so that all subcarriers on all OFDM symbols are used to map the modulated symbols, for example, to reduce or avoid performance loss.

在一個範例中,V2X的保留以及佔先可以在有或沒有IAB的情況下被執行。在一個範例中,WTRU可以傳送保留信號以保留傳輸資源。保留信號可包括編碼位元、並可用於將傳輸WTRU計畫在稍後時間為其自己的傳輸保留的資源通知給偵聽WTRU。在範例中,該保留信號可以用於保留用於該SA以及資料傳輸的資源。例如,該保留信號可以在預期用於所計畫的SA傳輸的頻率資源的子集上被傳送。圖17示出了另一範例性時槽格式1700的資源圖,其中對可以在其中傳送保留信號1706、1708的頻率資源1710、1714取得兩個樣本。WTRU可以在時槽n 中的一組頻率資源1710、1714上傳送該保留信號1706、1708。在一個範例中,可以在時槽n 中的一或更多OFDM符號上傳送該保留信號1706、1708。此保留信號用於保留時槽[n+k ] 到[n+k+L ]中的頻率資源。注意,L 可以是非零或零。該保留信號1706、1708與SA 1712、1716之間的資源關係可以使得保留信號1706、1708在為SA 1712、1716配置的CORESET的PDCCH候選者之一中被傳送。在這種情況下,可以使用針對SA 1712、1716以及保留信號1706、1708的單一CORESET配置。在範例中,可以為該保留信號配置單獨的CORESET,其中該保留信號CORESET可以是該SA CORESET的子集。注意,k 可以是零,使得該保留信號以及相關聯的SA/資料傳輸可以在相同的時槽中發生。在這種情況下,該保留信號、該SA以及該資料傳輸可以共用保留的頻率資源。In one example, the reservation and preemption of V2X can be performed with or without IAB. In one example, the WTRU may transmit a reservation signal to reserve transmission resources. The reserved signal may include coded bits and may be used to notify the listening WTRU of the resources that the transmitting WTRU plans to reserve for its own transmission at a later time. In an example, the reservation signal can be used to reserve resources for the SA and data transmission. For example, the reserved signal may be transmitted on a subset of the frequency resources expected to be used for the planned SA transmission. FIG. 17 shows a resource diagram of another exemplary time slot format 1700, in which two samples are taken for the frequency resources 1710, 1714 in which the reserved signals 1706, 1708 can be transmitted. The WTRU may transmit the reservation signal 1706, 1708 on a set of frequency resources 1710, 1714 in time slot n . In one example, the reserved signals 1706, 1708 can be transmitted on one or more OFDM symbols in time slot n . This reserved signal is used to reserve frequency resources in time slots [ n+k ] to [ n+k+L ]. Note that L can be non-zero or zero. The resource relationship between the reserved signals 1706, 1708 and the SA 1712, 1716 may cause the reserved signals 1706, 1708 to be transmitted in one of the PDCCH candidates of the CORESET configured for the SA 1712, 1716. In this case, a single CORESET configuration for SA 1712, 1716 and reserved signals 1706, 1708 can be used. In an example, a separate CORESET can be configured for the reserved signal, where the reserved signal CORESET can be a subset of the SA CORESET. Note that k can be zero, so that the reserved signal and the associated SA/data transmission can occur in the same time slot. In this case, the reserved signal, the SA, and the data transmission can share the reserved frequency resources.

在一個範例中,該保留信號的CORESET可以與該SA的CORESET分離。在這種情況下,在該保留信號內傳送的控制資訊可以包括要保留的頻率及/或時間資源。在範例中,可以從該保留信號的時間資源確定要保留的時間資源。例如,所保留的資源的第一時槽索引與該保留信號的時槽索引之間的差可以是固定的,例如k 個時槽。該保留信號的循環冗餘檢查(CRC)可以用特定RNTI (例如,保留RNTI)來加擾。打算發起傳輸的WTRU可以偵測並解碼該保留信號、並創建所保留的資源的映射。In one example, the CORESET of the reserved signal can be separated from the CORESET of the SA. In this case, the control information transmitted in the reservation signal may include the frequency and/or time resources to be reserved. In the example, the time resource to be reserved can be determined from the time resource of the reserved signal. For example, the difference between the first time slot index of the reserved resource and the time slot index of the reserved signal may be fixed, for example, k time slots. The cyclic redundancy check (CRC) of the reserved signal can be scrambled with a specific RNTI (for example, reserved RNTI). The WTRU that intends to initiate the transmission can detect and decode the reserved signal and create a mapping of the reserved resources.

在一個範例中,佔先信號可以被用來重寫(overwrite)先前傳送的保留信號。例如,第一WTRU可以傳送保留信號以分配資源。第二WTRU可以藉由傳送佔先信號來重寫該分配。該第二WTRU可以具有比該第一WTRU更高的優先序。在範例中,該佔先信號以及被重寫的保留信號可以彼此相關聯。可以在與該保留信號相同的控制通道頻率資源上傳送該佔先信號。在傳送該佔先信號的時槽與該資源已被排程的時槽之間可以存在固定的時序關係。In one example, the preempt signal can be used to overwrite the previously transmitted reserved signal. For example, the first WTRU may transmit a reservation signal to allocate resources. The second WTRU may rewrite the allocation by transmitting a preempt signal. The second WTRU may have a higher priority than the first WTRU. In an example, the preempt signal and the overwritten reservation signal may be associated with each other. The preemption signal can be transmitted on the same control channel frequency resource as the reserved signal. There may be a fixed timing relationship between the time slot for transmitting the preempt signal and the time slot for which the resource has been scheduled.

在一個範例中,可以在該保留信號的相同CORESET內的不同PDCCH候選中或者在不同CORESET中傳送該佔先信號。該佔先信號可以攜帶被佔先資源的時間/頻率資源。佔先信號可以是利用單獨的RNTI (例如佔先RNTI)進行CRC加擾的。在一個範例中,保留信號以及佔先信號都可以使用相同的格式以及RNTI。在一個範例中,DCI內容可以(例如,使用位元/旗標)表明其是保留信號還是佔先信號。圖18示出了包括保留信號1806、1808以及佔先信號1810以及1812的另一範例性時槽格式1800的資源圖。在此範例中,第一WTRU在時槽n中傳送保留信號1806、1808以保留資源以用於SA 1816、1820、以及從時槽n+k開始的資料傳輸。第二WTRU在時槽n+m中傳送佔先信號1810、1812以重寫該第一WTRU的保留。該第一WTRU在接收到佔先信號1810、1812之後可以將先前保留的資源從可用性中排除。在範例中,可用資源的子集可以包括可佔先屬性,並且可以佔先那些資源。在一個範例中,保留那些資源的WTRU可能需要解碼所有可能的佔先信號。In one example, the preempt signal may be transmitted in different PDCCH candidates within the same CORESET of the reserved signal or in different CORESETs. The preemption signal may carry time/frequency resources of the preempted resource. The preemptive signal may be CRC scrambled using a separate RNTI (for example, preemptive RNTI). In one example, both the reserved signal and the preempt signal can use the same format and RNTI. In one example, the DCI content can (for example, use bits/flags) to indicate whether it is a reserved signal or a preemptive signal. FIG. 18 shows a resource diagram of another exemplary time slot format 1800 including reserved signals 1806 and 1808 and preempt signals 1810 and 1812. In this example, the first WTRU transmits reservation signals 1806, 1808 in time slot n to reserve resources for SA 1816, 1820, and data transmission starting from time slot n+k. The second WTRU transmits preemption signals 1810, 1812 in time slot n+m to overwrite the reservation of the first WTRU. The first WTRU may exclude previously reserved resources from availability after receiving the preemption signals 1810, 1812. In an example, the subset of available resources can include preemptable attributes, and can preempt those resources. In one example, a WTRU that reserves those resources may need to decode all possible preempt signals.

在一個範例中,可佔先資源可以在當計畫發生SA以及資料傳輸時的相同時槽中被佔先。圖19示出了包括低潛時佔先場景的另一範例性時槽格式1900的資源圖。在此範例中,第一WTRU在目前時槽中接收至少第一OFDM符號。第一WTRU在至少第一OFDM符號中搜尋佔先信號1906。如果第一WTRU偵測到為另一WTRU保留目前時槽的佔先信號1906,則第一WTRU中止並且不使用目前時槽進行傳輸。如果第一WTRU沒有偵測到佔先信號,則其停止接收並開啟其傳輸器。Rx/Tx轉迴時間1910可花費少於一個OFDM符號、一個OFDM符號或多於一個OFDM符號。當該傳輸器被開啟並準備就緒時,該第一WTRU在該時槽的剩餘部分中開始傳輸其本身的SA及/或資料。從第一WTRU的角度來看,由於該時槽的初始部分不能用於傳輸,因此第一WTRU可以相應地對已經準備好的傳輸塊(TB)進行打孔以補償不可用的資源。In one example, the preemptable resource can be preempted in the same time slot when the SA and data transfer are planned. FIG. 19 shows a resource map of another exemplary time slot format 1900 including a low-latency time preemptive scene. In this example, the first WTRU receives at least the first OFDM symbol in the current time slot. The first WTRU searches for a preempt signal 1906 in at least the first OFDM symbol. If the first WTRU detects a preempt signal 1906 that reserves the current time slot for another WTRU, the first WTRU aborts and does not use the current time slot for transmission. If the first WTRU does not detect the preempt signal, it stops receiving and turns on its transmitter. The Rx/Tx turnaround time 1910 may take less than one OFDM symbol, one OFDM symbol, or more than one OFDM symbol. When the transmitter is turned on and ready, the first WTRU starts transmitting its own SA and/or data in the remainder of the time slot. From the perspective of the first WTRU, since the initial part of the time slot cannot be used for transmission, the first WTRU may accordingly puncture the prepared transmission block (TB) to compensate for unavailable resources.

在一個範例中,當時槽包括來自第一WTRU的可能的ACK/NACK傳輸時,該佔先可以僅影響該時槽的一部分。如果已經發起佔先的WTRU知道ACK/NACK傳輸,則由第一WTRU為ACK/NACK傳輸分配的資源可以被另一WTRU跳過。關於保留資源是否將用於ACK/NACK傳輸的資訊可以是該保留信號的一部分。例如,該保留信號中的旗標可以表明所保留的資源可能(例如,部分地)用於ACK/NACK回饋。在一個範例中,該保留信號可以表明為該ACK/NACK回饋分配的OFDM符號。在這種情況下,佔先該保留的WTRU可以允許該保留WTRU傳送該回饋資訊。In one example, when the time slot includes possible ACK/NACK transmissions from the first WTRU, the preemption may only affect a part of the time slot. If the preemptive WTRU is aware of the ACK/NACK transmission, the resources allocated by the first WTRU for the ACK/NACK transmission may be skipped by another WTRU. The information about whether reserved resources will be used for ACK/NACK transmission may be part of the reserved signal. For example, the flag in the reserved signal may indicate that the reserved resources may (e.g., partially) be used for ACK/NACK feedback. In an example, the reserved signal may indicate the OFDM symbol allocated for the ACK/NACK feedback. In this case, the WTRU that preempts the reservation may allow the reserved WTRU to transmit the feedback information.

儘管在較佳實施例中以特定組合描述了本發明的特徵以及元素,但是每個特徵或元素可以在沒有較佳實施例的其它特徵以及元素的情況下單獨使用,或者在具有或不具有本發明的其它特徵以及元素的情況下以各種組合使用。Although the features and elements of the present invention are described in specific combinations in the preferred embodiments, each feature or element can be used alone without the other features and elements of the preferred embodiment, or with or without the present invention. The other features and elements of the invention are used in various combinations.

儘管本文描述的解決方案考慮LTE、LTE-A、新無線電(NR)或5G特定協定,但是應當理解,本文描述的解決方案不限於這種情形,並且也可應用於其它無線系統。Although the solution described herein considers LTE, LTE-A, New Radio (NR), or 5G specific agreements, it should be understood that the solution described herein is not limited to this situation and can also be applied to other wireless systems.

儘管以上以特定組合描述了特徵以及元素,但是本領域普通技術人員將理解,每個特徵或元素可以單獨使用或與其他特徵以及元素進行任何組合。另外,在此所述的方法可以在結合在電腦可讀媒體中的電腦程式、軟體或固件中實施,以由電腦或處理器執行。電腦可讀媒體的範例包括但不限於電子信號(通過有線或無線連接傳輸)以及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、寄存器、緩衝記憶體、半導體記憶體裝置、磁媒體(例如,內部硬碟以及可移磁片)、磁光媒體以及光學媒體(例如,CD-ROM盤以及數位通用盤(DVD))。與軟體相關聯的處理器可用於實施用於WTRU、UE、終端、基地台、RNC以及任何主機電腦的射頻收發器。Although the features and elements are described above in specific combinations, those of ordinary skill in the art will understand that each feature or element can be used alone or in any combination with other features and elements. In addition, the methods described herein can be implemented in a computer program, software or firmware incorporated in a computer-readable medium to be executed by a computer or a processor. Examples of computer-readable media include, but are not limited to, electronic signals (transmitted through wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, read-only memory (ROM), random access memory (RAM), registers, buffer memory, semiconductor memory devices, magnetic media (for example, internal hard drives and removable Magnetic disk), magneto-optical media, and optical media (for example, CD-ROM discs and digital versatile discs (DVD)). The processor associated with the software can be used to implement the radio frequency transceiver for the WTRU, UE, terminal, base station, RNC, and any host computer.

100:通信系統 102、102a、102b、102c、102d、212A-212C、302、4021-4024、702、802、804、902、904:無線傳輸/接收單元(WTRU) 104:無線電存取網路(RAN) 106:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b、304:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B 162:移動性管理實體(MME) 164:服務閘道 166:封包資料網路(PDN)閘道 180a、180b、180c、704、806、906:gNB 182a、182b:存取及移動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) 200:新的無線電(NR)網路部署 204:回程鏈路 206A-206C:中繼傳輸接收點 208:光纖傳輸回程鏈路 210:多工存取鏈路 300:側鏈路WTRU資訊交換程序 306:系統塊(SIB)類型21(SIB21) 308:側鏈路WTRU資訊 310:RRC連接重配置訊息 400:PRACH配置 4061-4064、502:整合存取及回程(IAB)節點 410、412:週期性週期 430:範例性排程 500:同步信號塊(SSB)配置 600:用於潛時減少的SSB子集指派程序 700:RACH訊息交換 706、708、710:Msg 1 712、714:隨機存取回應(RAR) 716、718:Msg 3 720:Msg 4 722:Msg3重傳 800、900:IAB網路部署 801、901:RACH訊息交換 812、820、822、912:高速上鏈(UL)資料 813、811、821、825、911、913:先聽候送(LBT) 816、916:前導碼傳輸 823、915:保護週期 1000、1100、1200、1300、1400、1500、1600、1700、1800、1900:時槽格式 1420、1424:頻率資源 1508、1710、1714、1814、1818:實體側鏈路共用通道(PSSCH) 1706、1708、1806、1808:保留信號 1712、1716、1816、1820:排程指派(SA) 1810、1812、1906:佔先信號 HARQ:混合自動重複請求 Msg:訊息 PRACH:實體隨機存取通道 PSFCH:實體側鏈路回饋通道 RACH:RAR視窗結束之前沒有接收到 RO:RACH時機 RRC:無線電資源控制 WTRU:無線傳輸/接收單元100: Communication system 102, 102a, 102b, 102c, 102d, 212 A -212 C , 302, 402 1 -402 4 , 702, 802, 804, 902, 904: wireless transmission/reception unit (WTRU) 104: radio storage Access Network (RAN) 106: Core Network (CN) 108: Public Switched Telephone Network (PSTN) 110: Internet 112: Other Networks 114a, 114b, 304: Base Station 116: Air Interface 118: Processor 120: Transceiver 122: Transmit/receive element 124: Speaker/Microphone 126: Keypad 128: Display/Touchpad 130: Non-removable memory 132: Removable memory 134: Power supply 136: Global Positioning System (GPS) Chipset 138: Peripherals 160a, 160b, 160c: eNodeB 162: Mobility Management Entity (MME) 164: Service Gateway 166: Packet Data Network (PDN) Gateway 180a, 180b, 180c, 704, 806, 906: gNB 182a, 182b: Access and Mobility Management Function (AMF) 183a, 183b: Session Management Function (SMF) 184a, 184b: User Plane Function (UPF) 185a, 185b: Data Network (DN) 200: New radio (NR) network deployment 204: Backhaul link 206 A- 206 C : Relay transmission receiving point 208: Optical fiber transmission backhaul link 210: Multiple access link 300: Side link WTRU information exchange program 306 : The system block (SIB) type 21 (SIB21) 308: side link information WTRU 310: RRC connection reconfiguration message 400: PRACH configuration 4061-4064, 502: integration access and backhaul (IAB) nodes 410, 412: Periodic period 430: Exemplary schedule 500: Synchronization signal block (SSB) configuration 600: SSB subset assignment procedure for latency reduction 700: RACH message exchange 706, 708, 710: Msg 1 712, 714: Random storage Get response (RAR) 716, 718: Msg 3 720: Msg 4 722: Msg3 retransmission 800, 900: IAB network deployment 801, 901: RACH message exchange 812, 820, 822, 912: High-speed uplink (UL) data 813, 811, 821, 825, 911, 913: first listen and wait (LBT) 816, 916: preamble transmission 823, 915: protection period 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900 : Time slot format 1420, 1424: Frequency resource 1508, 1710, 1714, 18 14, 1818: physical side link shared channel (PSSCH) 1706, 1708, 1806, 1808: reserved signal 1712, 1716, 1816, 1820: scheduled assignment (SA) 1810, 1812, 1906: preempt signal HARQ: hybrid automatic repeat Request Msg: Message PRACH: Physical Random Access Channel PSFCH: Physical Side Link Feedback Channel RACH: Not Received Before the End of the RAR Window RO: RACH Timing RRC: Radio Resource Control WTRU: Wireless Transmission/Receiving Unit

此外,附圖中相同的元件符號表示相同的元素,並且其中: 圖1A是示出了可以實施所揭露的一或更多實施例的範例性通信系統的系統圖; 圖1B是示出了根據實施例的可以在圖1A所示的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖; 圖1C是示出了根據實施例的可以在圖1A所示的通信系統內使用的範例性無線電存取網路(RAN)以及範例性核心網路(CN)的系統圖; 圖1D是示出了根據實施例的可以在圖1A所示的通信系統內使用的另一個範例性RAN以及另一個範例性CN的系統圖; 圖2示出了具有整合存取及回程(IAB)鏈路的範例性新無線電(NR)網路部署; 圖3是用於車輛對所有事物(V2X)側鏈路傳輸的(車輛) WTRU與基地台之間的通信的範例性側鏈路WTRU資訊交換程序的傳訊圖; 圖4示出了範例性NR IAB網路部署中的範例性實體隨機存取通道(PRACH)配置; 圖5示出了在PRACH配置內廣播的同步信號塊(SSB)子集; 圖6示出了用於潛時減少的SSB子集方法; 圖7示出了WTRU與gNB之間的範例性RACH訊息交換的傳訊圖,其可以用於IAB系統中的未授權操作; 圖8A示出了範例性IAB網路部署; 圖8B示出了根據圖8A中的範例性IAB網路部署的範例性傳輸時序的範例性RACH訊息交換的傳訊圖; 圖8C示出了根據圖8A中的範例性IAB網路部署的另一範例性傳輸時序的另一範例性RACH訊息交換的傳訊圖; 圖9A示出了一範例性IAB網路部署,其中兩個WTRU被定位為彼此靠近且位於相同胞元的邊界處; 圖9B示出了根據圖9A中的範例性IAB網路部署的範例性傳輸時序的範例性RACH訊息交換的傳訊圖; 圖10示出了範例性時槽格式的資源圖,其中從用於資料傳輸的資源中導出回饋資源; 圖11示出了另一範例性時槽格式的資源圖,其中從用於資料傳輸的資源中導出回饋資源; 圖12示出了另一範例性時槽格式1200的資源圖,其中回饋資源1222是從用於資料傳輸的資源1220中導出的; 圖13示出了包括兩個排程指派(SA)階段(SA階段-1以及SA階段-2)的範例性時槽格式的資源圖; 圖14示出了範例性時槽格式的資源圖,其中從用於資料傳輸的資源中導出回饋資源; 圖15示出了範例性時槽格式的資源圖,其中從用於資料傳輸的資源中導出回饋資源; 圖16示出了另一範例性時槽格式的資源圖,其中實體側鏈路回饋通道(PSFCH)包括複數OFDM符號; 圖17示出了另一範例性時槽格式的資源圖,其中對可以在其內傳送保留信號的頻率資源採取兩個樣本; 圖18示出了包括保留信號以及佔先信號的另一範例性時槽格式的資源圖;以及 圖19示出了包括低潛時佔先場景的另一範例性時槽格式的資源圖。In addition, the same element symbols in the drawings represent the same elements, and among them: FIG. 1A is a system diagram showing an exemplary communication system in which one or more disclosed embodiments can be implemented; FIG. 1B is a system diagram showing an exemplary wireless transmission/reception unit (WTRU) that can be used in the communication system shown in FIG. 1A according to an embodiment; 1C is a system diagram showing an exemplary radio access network (RAN) and an exemplary core network (CN) that can be used in the communication system shown in FIG. 1A according to an embodiment; FIG. 1D is a system diagram showing another exemplary RAN and another exemplary CN that can be used in the communication system shown in FIG. 1A according to an embodiment; Figure 2 shows an exemplary new radio (NR) network deployment with integrated access and backhaul (IAB) links; Figure 3 is a signaling diagram of an exemplary side-link WTRU information exchange procedure for communication between a (vehicle) WTRU and a base station for vehicle-to-everything (V2X) side-link transmission; Figure 4 shows an exemplary physical random access channel (PRACH) configuration in an exemplary NR IAB network deployment; Figure 5 shows a subset of the synchronization signal block (SSB) broadcast within the PRACH configuration; Figure 6 shows the SSB subset method for latent time reduction; Figure 7 shows an exemplary RACH message exchange between a WTRU and a gNB, which can be used for unauthorized operations in the IAB system; Figure 8A shows an exemplary IAB network deployment; FIG. 8B shows a transmission diagram of an exemplary RACH message exchange according to the exemplary transmission timing of the exemplary IAB network deployment in FIG. 8A; FIG. 8C shows a signaling diagram of another exemplary RACH message exchange according to another exemplary transmission timing of the exemplary IAB network deployment in FIG. 8A; Figure 9A shows an exemplary IAB network deployment, in which two WTRUs are positioned close to each other and at the boundary of the same cell; FIG. 9B shows a transmission diagram of an exemplary RACH message exchange according to the exemplary transmission timing of the exemplary IAB network deployment in FIG. 9A; FIG. 10 shows a resource diagram in an exemplary time slot format, in which feedback resources are derived from resources used for data transmission; Figure 11 shows another exemplary resource diagram in a time slot format, in which feedback resources are derived from resources used for data transmission; FIG. 12 shows a resource diagram of another exemplary time slot format 1200, in which the feedback resource 1222 is derived from the resource 1220 used for data transmission; FIG. 13 shows a resource diagram of an exemplary time slot format including two scheduled assignment (SA) phases (SA phase-1 and SA phase-2); Figure 14 shows a resource diagram in an exemplary time slot format, in which feedback resources are derived from resources used for data transmission; Figure 15 shows a resource diagram in an exemplary time slot format, in which feedback resources are derived from resources used for data transmission; FIG. 16 shows a resource diagram of another exemplary time slot format, where the physical side link feedback channel (PSFCH) includes a complex number of OFDM symbols; FIG. 17 shows a resource diagram of another exemplary time slot format, in which two samples are taken for the frequency resources in which reserved signals can be transmitted; FIG. 18 shows a resource diagram of another exemplary time slot format including a reserved signal and a preempt signal; and FIG. 19 shows a resource diagram in another exemplary time slot format including a low-latency time preemption scenario.

1400:時槽格式 1400: Time slot format

1420、1424:頻率資源 1420, 1424: frequency resources

HARQ:混合自動重複請求 HARQ: Hybrid automatic repeat request

PSSCH:實體側鏈路共用通道 PSSCH: physical side link shared channel

WTRU:無線傳輸/接收單元 WTRU: wireless transmission/reception unit

Claims (20)

一種第一無線傳輸/接收單元(WTRU),包括: 一接收器; 一傳輸器;以及 一處理器,其中 該接收器被配置為:針對來自一第二WTRU的信號,在一第一時槽中監視包括一第一複數資源塊(RB)並且具有一第一頻率範圍的一第一頻率資源,其中該第一頻率資源與該第二WTRU的一實體側鏈路共用通道(PSSCH)相關聯; 該處理器被配置為基於該第一頻率範圍、該第一複數RB中的一RB數量、或該第一WTRU的一識別碼中的至少一者來確定一回饋頻率資源;以及 該傳輸器被配置為在一第二時槽中使用該回饋頻率資源向該第二WTRU傳送一回饋資訊。A first wireless transmission/reception unit (WTRU), including: A receiver A transmitter; and A processor, where The receiver is configured to: for a signal from a second WTRU, monitor a first frequency resource including a first complex resource block (RB) and having a first frequency range in a first time slot, wherein the The first frequency resource is associated with a physical side link shared channel (PSSCH) of the second WTRU; The processor is configured to determine a feedback frequency resource based on at least one of the first frequency range, a number of RBs in the first plurality of RBs, or an identification code of the first WTRU; and The transmitter is configured to use the feedback frequency resource to transmit feedback information to the second WTRU in a second time slot. 如請求項1所述的第一WTRU,其中該回饋頻率資源是一混合自動重複請求(HARQ)頻率資源,並且使用該回饋頻率資源傳送的該回饋是一HARQ回饋。The first WTRU according to claim 1, wherein the feedback frequency resource is a hybrid automatic repeat request (HARQ) frequency resource, and the feedback transmitted using the feedback frequency resource is a HARQ feedback. 如請求項1所述的第一WTRU,其中該回饋頻率資源至少包括該第一複數RB的一子集。The first WTRU according to claim 1, wherein the feedback frequency resource includes at least a subset of the first complex RB. 如請求項1所述的第一WTRU,其中該回饋頻率資源是在該第一頻率範圍中。The first WTRU according to claim 1, wherein the feedback frequency resource is in the first frequency range. 如請求項1所述的第一WTRU,其中一第二頻率範圍是在該第一頻率範圍內並且與該第二WTRU的一實體側鏈路控制通道(PSCCH)相關聯,並且該回饋頻率資源是在該第二頻率範圍中。The first WTRU according to claim 1, wherein a second frequency range is within the first frequency range and is associated with a physical side link control channel (PSCCH) of the second WTRU, and the feedback frequency resource Is in this second frequency range. 如請求項1所述的第一WTRU,其中該回饋頻率資源與該第一WTRU的一實體側鏈路回饋通道(PSFCH)相關聯。The first WTRU according to claim 1, wherein the feedback frequency resource is associated with a physical side link feedback channel (PSFCH) of the first WTRU. 如請求項1所述的第一WTRU,其中該回饋資訊是下列中的一者:一混合自動重複請求(HARQ)回饋資訊;一ACK/NACK資訊;或一通道狀態資訊(CSI)。The first WTRU according to claim 1, wherein the feedback information is one of the following: a hybrid automatic repeat request (HARQ) feedback information; an ACK/NACK information; or a channel status information (CSI). 如請求項1所述的第一WTRU,其中該第一頻率範圍包括該第一時槽中的複數子載波以及該第二時槽中的該複數子載波。The first WTRU according to claim 1, wherein the first frequency range includes the complex number of subcarriers in the first time slot and the complex number of subcarriers in the second time slot. 如請求項1所述的第一WTRU,其中該第一頻率範圍包括該第一時槽中的複數OFDM符號以及該第二時槽中的該複數OFDM符號。The first WTRU of claim 1, wherein the first frequency range includes a complex number of OFDM symbols in the first time slot and the complex number of OFDM symbols in the second time slot. 如請求項1所述的第一WTRU,該第一WTRU被配置用於一車聯網(V2X)通信。The first WTRU described in claim 1, which is configured for a vehicle-to-vehicle (V2X) communication. 一種由一第一無線傳輸/接收單元(WTRU)執行的方法,該方法包括: 針對來自一第二WTRU的信號,在一第一時槽中監視包括一第一複數資源塊(RB)並且具有一第一頻率範圍的一第一頻率資源,其中該第一頻率資源與該第二WTRU的一實體側鏈路共用通道(PSSCH)相關聯; 基於該第一頻率範圍、該第一複數RB中的一RB數量、或該第一WTRU的一識別碼中的至少一者,確定一回饋頻率資源;以及 在一第二時槽中使用該回饋頻率資源向該第二WTRU傳送一回饋資訊。A method executed by a first wireless transmission/reception unit (WTRU), the method includes: For a signal from a second WTRU, a first frequency resource including a first complex resource block (RB) and having a first frequency range is monitored in a first time slot, wherein the first frequency resource and the second frequency resource are Two WTRUs are associated with a physical side link shared channel (PSSCH); Determining a feedback frequency resource based on at least one of the first frequency range, a number of RBs in the first complex number of RBs, or an identification code of the first WTRU; and The feedback frequency resource is used in a second time slot to send feedback information to the second WTRU. 如請求項11所述的方法,其中該回饋頻率資源是一混合自動重複請求(HARQ)頻率資源,並且使用該回饋頻率資源傳送的該回饋是一HARQ回饋。The method according to claim 11, wherein the feedback frequency resource is a hybrid automatic repeat request (HARQ) frequency resource, and the feedback transmitted using the feedback frequency resource is a HARQ feedback. 如請求項11所述的方法,其中該回饋頻率資源至少包括該第一複數RB的一子集。The method according to claim 11, wherein the feedback frequency resource includes at least a subset of the first complex number RB. 如請求項11所述的方法,其中該回饋頻率資源是在該第一頻率範圍中。The method according to claim 11, wherein the feedback frequency resource is in the first frequency range. 如請求項11所述的方法,其中一第二頻率範圍是在該第一頻率範圍內並且與該第二WTRU的一實體側鏈路控制通道(PSCCH)相關聯,並且該回饋頻率資源是在該第二頻率範圍中。The method according to claim 11, wherein a second frequency range is within the first frequency range and is associated with a physical side link control channel (PSCCH) of the second WTRU, and the feedback frequency resource is in In the second frequency range. 如請求項11所述的方法,其中該回饋頻率資源與該第一WTRU的一實體側鏈路回饋通道(PSFCH)相關聯。The method of claim 11, wherein the feedback frequency resource is associated with a physical side link feedback channel (PSFCH) of the first WTRU. 如請求項11所述的方法,其中該回饋資訊是下列中的一者:一混合自動重複請求(HARQ)回饋資訊;一ACK/NACK資訊;或一通道狀態資訊(CSI)。The method according to claim 11, wherein the feedback information is one of the following: a hybrid automatic repeat request (HARQ) feedback information; an ACK/NACK information; or a channel status information (CSI). 如請求項11所述的方法,其中該第一頻率範圍包括該第一時槽中的複數子載波以及該第二時槽中的該複數子載波。The method according to claim 11, wherein the first frequency range includes a complex number of subcarriers in the first time slot and the complex number of subcarriers in the second time slot. 如請求項11所述的方法,其中該第一頻率範圍包括該第一時槽中的複數OFDM符號以及該第二時槽中的該複數OFDM符號。The method according to claim 11, wherein the first frequency range includes a complex number of OFDM symbols in the first time slot and the complex number of OFDM symbols in the second time slot. 如請求項11所述的方法,其中該第一WTRU被配置用於一車聯網(V2X)通信。The method of claim 11, wherein the first WTRU is configured for a vehicle-to-vehicle (V2X) communication.
TW108141312A 2018-11-14 2019-11-14 Methods and procedures for iab and v2x TW202033011A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862767291P 2018-11-14 2018-11-14
US62/767291 2018-11-14
US201962790303P 2019-01-09 2019-01-09
US62/790303 2019-01-09

Publications (1)

Publication Number Publication Date
TW202033011A true TW202033011A (en) 2020-09-01

Family

ID=68841198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108141312A TW202033011A (en) 2018-11-14 2019-11-14 Methods and procedures for iab and v2x

Country Status (2)

Country Link
TW (1) TW202033011A (en)
WO (1) WO2020102410A1 (en)

Also Published As

Publication number Publication date
WO2020102410A1 (en) 2020-05-22

Similar Documents

Publication Publication Date Title
TWI706685B (en) Initial access and channel access in new radio/new radio-unlicensed (nr/nr-u)
CN111587550B (en) Data transmission and HARQ-ACK associated with unlicensed spectrum
CN110832928B (en) Transmission adaptation and unlicensed access
KR102397297B1 (en) Random Access in Next-Generation Wireless Systems
TWI776409B (en) Physical random access for nr-u
US20220086915A1 (en) Methods and apparatus for msg-a transmission in two-step rach
US20210274555A1 (en) Methods, apparatus and systems for system access in unlicensed spectrum
TW201939913A (en) Synchronization signal and paging for new radio-unlicensed (NR-U) band communications
TW201937973A (en) Physical random access
TW202027552A (en) Simplified physical random access methods and procedures for nr-u
TW201943244A (en) Method and apparatus for collision mitigation and complexity reduction for NOMA
TW201937971A (en) Methods and apparatuses for Non-Orthogonal Multiple Access
CN112789932A (en) Autonomous low latency communication
TW202142037A (en) Improving coverage in a high frequency range
CN116114340A (en) Method and apparatus for wireless transmit/receive unit (WTRU) -initiated Channel Occupancy Time (COT)
TW201907743A (en) Uplink transmission without an uplink grant
TW202033011A (en) Methods and procedures for iab and v2x
CN113508540B (en) Method for MSG-B in two-step RACH
US20240163905A1 (en) Channel Access Priority Class for Sidelink Feedback Transmission with Conflict Information
RU2777374C2 (en) Transmission adaptation and access without granting
WO2023014831A1 (en) Methods for prach in higher frequencies
CN113508540A (en) Method for MSG-B in two-step RACH