TW202031912A - High-carbon hot-rolled steel sheet and method for manufacturing same - Google Patents

High-carbon hot-rolled steel sheet and method for manufacturing same Download PDF

Info

Publication number
TW202031912A
TW202031912A TW109102134A TW109102134A TW202031912A TW 202031912 A TW202031912 A TW 202031912A TW 109102134 A TW109102134 A TW 109102134A TW 109102134 A TW109102134 A TW 109102134A TW 202031912 A TW202031912 A TW 202031912A
Authority
TW
Taiwan
Prior art keywords
less
iron
steel sheet
carbon
hot
Prior art date
Application number
TW109102134A
Other languages
Chinese (zh)
Other versions
TWI738186B (en
Inventor
宮本友佳
櫻井康広
小野義彦
Original Assignee
日商杰富意鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商杰富意鋼鐵股份有限公司 filed Critical 日商杰富意鋼鐵股份有限公司
Publication of TW202031912A publication Critical patent/TW202031912A/en
Application granted granted Critical
Publication of TWI738186B publication Critical patent/TWI738186B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

Provided are a high-carbon hot-rolled steel sheet and a method for manufacturing the same. The present invention is a high-carbon hot-rolled steel sheet having a specific component composition, wherein: the microstructure comprises ferrite, cementite, and pearlite accounting for 6.5% or less, in area percentage, of the whole microstructure; as regards the cementite, the proportion of the quantity of cementite having a circle-equivalent diameter of 0.1 [mu]m or less is 20% or less relative to the total quantity of cementite, the average cementite diameter is 2.5 [mu]m or less, and the proportion of cementite relative to the whole microstructure is from 3.5% to 10.0% in area percentage; the average concentration of the amount of solid-soluted B in a region up to a depth of 100 [mu]m from the surface layer is 10 ppm by mass or greater; and the average concentration of the amount of N existing as AlN in a region up to a depth of 100 [mu]m from the surface layer is 70 ppm by mass or less.

Description

高碳熱軋鋼板及其製造方法High-carbon hot-rolled steel plate and manufacturing method thereof

本發明是有關於一種冷加工性及淬火性(浸入淬火性及滲碳淬火性)優異的高碳熱軋鋼板及其製造方法。The present invention relates to a high-carbon hot-rolled steel sheet with excellent cold workability and hardenability (immersion hardenability and carburizing hardenability) and a manufacturing method thereof.

現在,變速器(transmission)、靠背椅(seat recliner)等汽車用零件為了於藉由冷加工而將作為日本工業標準(Japanese Industrial Standards,JIS) G4051中規定的機械結構用碳鋼鋼材及機械結構用合金鋼鋼材的熱軋鋼板(高碳熱軋鋼板)加工成期望的形狀後,確保期望的硬度,多數情況下實施淬火處理來製造。因此,成為原材料的熱軋鋼板需要優異的冷加工性及淬火性,迄今為止已提出有各種鋼板。At present, automotive parts such as transmission and seat recliner are used as carbon steel materials for mechanical structures and alloys for mechanical structures in accordance with Japanese Industrial Standards (JIS) G4051 for cold working. After the hot-rolled steel sheet (high-carbon hot-rolled steel sheet) of the steel material is processed into a desired shape, the desired hardness is ensured, and in many cases, it is manufactured by quenching. Therefore, the hot-rolled steel sheet used as a raw material requires excellent cold workability and hardenability, and various steel sheets have been proposed so far.

例如,在專利文獻1中,記載了一種設為如下成分組成,即,以重量%計,含有C:0.15%~0.9%、Si:0.4%以下、Mn:0.3%~1.0%、P:0.03%以下、T.Al:0.10%以下、更含有Cr:1.2%以下、Mo:0.3%以下、Cu:0.3%以下、Ni:2.0%以下中的一種以上或Ti:0.01%~0.05%、B:0.0005%~0.005%、N:0.01%以下,具有球狀化率80%以上、平均粒徑0.4 μm~1.0 μm的碳化物分散在肥粒鐵中的組織的精密沖裁用高碳鋼板。For example, in Patent Document 1, it is described that a component composition containing C: 0.15% to 0.9%, Si: 0.4% or less, Mn: 0.3% to 1.0%, and P: 0.03 in weight% % Or less, T.Al: 0.10% or less, more Cr: 1.2% or less, Mo: 0.3% or less, Cu: 0.3% or less, Ni: 2.0% or less, or Ti: 0.01%~0.05%, B : 0.0005% to 0.005%, N: 0.01% or less, a high carbon steel sheet for fine blanking with a spheroidization rate of 80% or more and a structure in which carbides with an average particle size of 0.4 μm to 1.0 μm are dispersed in ferrous iron.

在專利文獻2中記載了一種改善了加工性的高碳鋼板,其設為以質量%計含有C:0.2%以上、Ti:0.01%~0.05%、B:0.0003%~0.005%的成分組成,碳化物的平均粒徑為1.0 μm以下,且0.3 μm以下的碳化物的比率為20%以下。Patent Document 2 describes a high-carbon steel sheet with improved workability, which contains C: 0.2% or more, Ti: 0.01% to 0.05%, and B: 0.0003% to 0.005% by mass. The average particle size of carbides is 1.0 μm or less, and the ratio of carbides of 0.3 μm or less is 20% or less.

在專利文獻3中,記載了一種B添加鋼,其以質量%計,具有C:0.20%以上且0.45%以下、Si:0.05%以上且0.8%以下、Mn:0.5%以上且2.0%以下、P:0.001%以上且0.04%以下、S:0.0001%以上且0.006%以下、Al:0.005%以上且0.1%以下、Ti:0.005%以上且0.2%以下、B:0.001%以上且0.01%以下、及N:0.0001%以上且0.01%以下、進而Cr:0.05%以上且0.35%以下、Ni:0.01%以上且1.0%以下、Cu:0.05%以上且0.5%以下、Mo:0.01%以上且1.0%以下、Nb:0.01%以上且0.5%以下、V:0.01%以上且0.5%以下、Ta:0.01%以上且0.5%以下、W:0.01%以上且0.5%以下,Sn:0.003%以上且0.03%以下、Sb:0.003%以上且0.03%以下、As:0.003%以上且0.03%以下的一種或兩種以上成分。Patent Document 3 describes a B-added steel having C: 0.20% or more and 0.45% or less, Si: 0.05% or more and 0.8% or less, Mn: 0.5% or more and 2.0% or less in mass %, P: 0.001% or more and 0.04% or less, S: 0.0001% or more and 0.006% or less, Al: 0.005% or more and 0.1% or less, Ti: 0.005% or more and 0.2% or less, B: 0.001% or more and 0.01% or less, And N: 0.0001% or more and 0.01% or less, and Cr: 0.05% or more and 0.35% or less, Ni: 0.01% or more and 1.0% or less, Cu: 0.05% or more and 0.5% or less, Mo: 0.01% or more and 1.0% Or less, Nb: 0.01% or more and 0.5% or less, V: 0.01% or more and 0.5% or less, Ta: 0.01% or more and 0.5% or less, W: 0.01% or more and 0.5% or less, Sn: 0.003% or more and 0.03% Below, Sb: 0.003% or more and 0.03% or less, As: 0.003% or more and 0.03% or less of one or two or more components.

在專利文獻4中,記載了一種設為如下成分組成,即,以質量%計,含有C:0.10%~1.2%、Si:0.01%~2.5%、Mn:0.1%~1.5%、P:0.04%以下、S:0.0005%~0.05%、Al:0.2%以下、Te:0.0005%~0.05%、N:0.0005%~0.03%、進而Sb:0.001%~0.05%、此外還含有Cr:0.2%~2.0%、Mo:0.1%~1.0%、Ni:0.3%~1.5%、Cu:1.0%以下、B:0.005%以下中的一種以上,且包含以肥粒鐵和波來鐵為主體的組織,肥粒鐵晶體粒度為11號以上的改善了冷加工性和低脫碳性的機械結構用鋼。In Patent Document 4, it is described that a component composition containing C: 0.10% to 1.2%, Si: 0.01% to 2.5%, Mn: 0.1% to 1.5%, and P: 0.04 in mass% % Or less, S: 0.0005% to 0.05%, Al: 0.2% or less, Te: 0.0005% to 0.05%, N: 0.0005% to 0.03%, Sb: 0.001% to 0.05%, and Cr: 0.2% to 2.0%, Mo: 0.1% to 1.0%, Ni: 0.3% to 1.5%, Cu: 1.0% or less, B: 0.005% or less, and it contains a structure mainly composed of ferrite and porlite, Fertilizer iron has a crystal grain size of No. 11 or higher, which is a mechanical structural steel with improved cold workability and low decarburization.

在專利文獻5中,記載了一種以質量%計,含有C:0.20%~0.40%、Si:0.10%以下、Mn:0.50%以下、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.005%以下、B:0.0005%~0.0050%,更含有總計0.002%~0.03%的Sb、Sn、Bi、Ge、Te、Se中的一種以上,具有包含肥粒鐵及雪明碳鐵,肥粒鐵晶粒內的雪明碳鐵密度為0.10個/μm2 以下的微組織,硬度以洛氏硬度(Rockwell hardness)HRB計為75以下,總伸長率為38%以上的改善了淬火性和加工性的高碳熱軋鋼板。In Patent Document 5, it is described that in terms of mass %, C: 0.20% to 0.40%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol.Al :0.10% or less, N: 0.005% or less, B: 0.0005%~0.0050%, and moreover contains one or more of Sb, Sn, Bi, Ge, Te, Se in total 0.002%~0.03%, and contains ferrite iron and Xueming carbon iron, the microstructure of Xueming carbon iron in the fertilized iron grains with a density of 0.10 pcs/μm 2 or less, the hardness is 75 or less in Rockwell hardness (HRB), and the total elongation is more than 38% The high-carbon hot-rolled steel sheet with improved hardenability and workability.

在專利文獻6中,記載了一種以質量%計,含有C:0.20%~0.48%、Si:0.10%以下、Mn:0.50%以下、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.005%以下、B:0.0005%~0.0050%,更含有總計含有0.002%~0.03%的Sb、Sn、Bi、Ge、Te、Se中的一種以上,具有包含肥粒鐵和雪明碳鐵,且所述肥粒鐵粒內的雪明碳鐵密度為0.10個/μm2 以下的微組織,硬度以HRB計為65以下,總伸長率為40%以上的改善了淬火性及加工性的高碳熱軋鋼板。In Patent Document 6, it is described that, in terms of mass %, C: 0.20% to 0.48%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol.Al :0.10% or less, N: 0.005% or less, B: 0.0005%~0.0050%, and moreover, it contains more than one of Sb, Sn, Bi, Ge, Te, Se, which contains 0.002%~0.03% in total. And Xueming carbon iron, and the Xueming carbon iron density in the fertilizer grains is 0.10 pieces/μm 2 or less, the hardness is 65 or less in HRB, and the total elongation is more than 40%, which improves the quenching High carbon hot-rolled steel sheet with high performance and processability.

在專利文獻7中,記載了一種以質量%計,含有C:0.20%~0.40%、Si:0.10%以下、Mn:0.50%以下、P:0.03%以下、S:0.010%以下、sol.Al:0.10%以下、N:0.005%以下、B:0.0005%~0.0050%,更含有合計為0.002%~0.03%的Sb、Sn、Bi、Ge、Te、Se中的一種以上,固溶B量在B含量中所佔的比例為70%以上,具有包含肥粒鐵和雪明碳鐵、且肥粒鐵晶粒內的雪明碳鐵密度為0.08個/μm2 以下的微組織,硬度以HRB計為73以下,總伸長率為39%以上的高碳熱軋鋼板。In Patent Document 7, it is described that C: 0.20% to 0.40%, Si: 0.10% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.010% or less, sol.Al : 0.10% or less, N: 0.005% or less, B: 0.0005% to 0.0050%, moreover, it contains more than one of Sb, Sn, Bi, Ge, Te, Se in a total of 0.002% to 0.03%, and the amount of solid solution B is in The proportion of B content is more than 70%, and it has a microstructure that contains fat iron and snow carbon iron, and the snow carbon iron density in the fat iron grain is 0.08 pieces/μm 2 or less, and the hardness is HRB Counted as 73 or less, high carbon hot-rolled steel sheet with a total elongation of 39% or more.

在專利文獻8中,記載了一種具有如下組成,即以質量%計,含有C:0.15%~0.37%、Si:1%以下、Mn:2.5%以下、P:0.1%以下、S:0.03%以下、sol.Al:0.10%以下、N:0.0005%~0.0050%、B:0.0010%~0.0050%、以及Sb、Sn中至少一種:合計為0.003%~0.10%,且滿足0.50≦(14[B])/(10.8[N])的關係,剩餘部分包含Fe及不可避免的雜質,並且具有包含肥粒鐵相和雪明碳鐵、且肥粒鐵相的平均粒徑為10 μm以下、雪明碳鐵的球狀化率為90%以上的微組織,總伸長率為37%以上的高碳熱軋鋼板。 [現有技術文獻] [專利文獻]Patent Document 8 describes a composition that contains C: 0.15% to 0.37%, Si: 1% or less, Mn: 2.5% or less, P: 0.1% or less, and S: 0.03% by mass%. Or less, sol.Al: 0.10% or less, N: 0.0005%~0.0050%, B: 0.0010%~0.0050%, and at least one of Sb and Sn: 0.003%~0.10% in total, and 0.50≦(14[B ])/(10.8[N]), the remainder contains Fe and unavoidable impurities, and contains the fat iron phase and snow carbon iron, and the average particle size of the fat iron phase is 10 μm or less. It is a high-carbon hot-rolled steel sheet with a microstructure with a spheroidization rate of 90% or more and a total elongation rate of 37% or more. [Prior Art Literature] [Patent Literature]

[專利文獻1]日本專利特開2009-299189號公報 [專利文獻2]日本專利特開2005-344194號公報 [專利文獻3]日本專利第4012475號公報 [專利文獻4]日本專利第4782243號公報 [專利文獻5]日本專利特開2015-017283號公報 [專利文獻6]日本專利特開2015-017284號公報 [專利文獻7]國際公開第2015/146173號 [專利文獻8]日本專利第5458649號公報[Patent Document 1] Japanese Patent Laid-Open No. 2009-299189 [Patent Document 2] Japanese Patent Laid-Open No. 2005-344194 [Patent Document 3] Japanese Patent No. 4012475 [Patent Document 4] Japanese Patent No. 4782243 [Patent Document 5] Japanese Patent Laid-Open No. 2015-017283 [Patent Document 6] Japanese Patent Laid-Open No. 2015-017284 [Patent Document 7] International Publication No. 2015/146173 [Patent Document 8] Japanese Patent No. 5458649

[發明所欲解決之課題] 專利文獻1中記載的技術與精密沖裁性相關,記載了碳化物的分散形態對精密沖裁性及淬火性帶來的影響。具體而言,專利文獻1中記載了藉由將平均碳化物粒徑控制在0.4 μm~1.0 μm,使球狀化率為80%以上,能夠得到改善了精密沖裁性及淬火性的鋼板。但是,專利文獻1中沒有關於冷加工性的討論,另外亦沒有關於滲碳淬火性的記載。[The problem to be solved by the invention] The technique described in Patent Document 1 is related to fine blanking properties, and describes the influence of the dispersion form of carbides on fine blanking properties and hardenability. Specifically, Patent Document 1 describes that by controlling the average carbide particle size to 0.4 μm to 1.0 μm, the spheroidization rate is 80% or more, and a steel sheet with improved fine blanking properties and hardenability can be obtained. However, Patent Document 1 does not discuss cold workability, nor does it describe carburizing and hardenability.

專利文獻2中記載的技術不僅關注碳化物平均粒徑,而且關注0. 3 μm以下的微細碳化物對加工性的影響,將碳化物的平均粒徑控制在1.0 μm以下,並且將0.3 μm以下的碳化物比例控制在20%以下。藉此,記載了能夠得到改善了加工性的鋼板,進而記載了添加了Ti、B的淬火性優異的鋼板。但是,在專利文獻2中,沒有對淬火性產生影響的固溶B等的記述,亦沒有記述相當於鋼板的哪個位置的淬火硬度。The technology described in Patent Document 2 pays attention not only to the average particle size of carbides, but also to the influence of fine carbides of 0.3 μm or less on workability. The average particle size of carbides is controlled to 1.0 μm or less and 0.3 μm or less The proportion of carbides is controlled below 20%. Thereby, it is described that a steel sheet with improved workability can be obtained, and a steel sheet with excellent hardenability added with Ti and B is described. However, in Patent Document 2, there is no description of solid solution B or the like that affects hardenability, and no description of which position of the steel sheet corresponds to the quenching hardness.

專利文獻3中記載的技術記載了藉由調整成分組成,能夠得到改善了冷加工性及耐脫碳性的鋼。但是,在專利文獻3中沒有關於浸入淬火性、滲碳淬火性的記載。The technology described in Patent Document 3 describes that by adjusting the component composition, it is possible to obtain steel with improved cold workability and decarburization resistance. However, Patent Document 3 does not describe immersion hardenability and carburizing hardenability.

專利文獻4所記載的技術說明:含有B,更含有Cr、Ni、Cu、Mo、Nb、V、Ta、W、Sn、Sb、As中的一種或兩種以上的成分,藉由確保規定量的表層中的固溶B,能夠得到實現高淬火性的鋼。但是,專利文獻4中規定退火步驟中的環境中的氫濃度為95%以上,沒有關於在氮氣環境的退火步驟中能否抑制吸氮而確保固溶B的記載。The technical description described in Patent Document 4: Contains B, and moreover contains one or two or more of Cr, Ni, Cu, Mo, Nb, V, Ta, W, Sn, Sb, and As by ensuring a predetermined amount The solid solution B in the surface layer of the steel can achieve high hardenability steel. However, Patent Document 4 stipulates that the hydrogen concentration in the environment in the annealing step is 95% or more, and there is no description about whether it is possible to suppress nitrogen absorption and ensure solid solution B in the annealing step in a nitrogen atmosphere.

專利文獻5~7所記載的技術記載了藉由含有B、進而含有合計為0.002%~0.03%的Sb、Sn、Bi、Ge、Te、Se中的一種以上,滲氮防止效果高,例如即使在氮氣環境下退火的情況下,亦防止滲氮,且藉由維持規定量的固溶B,提高淬火性。但是,專利文獻5~7中,均沒有關於表層中的淬火硬度的記述。The techniques described in Patent Documents 5 to 7 describe that by containing B and further containing one or more of Sb, Sn, Bi, Ge, Te, and Se in a total amount of 0.002% to 0.03%, the effect of preventing nitriding is high. In the case of annealing in a nitrogen atmosphere, nitriding is also prevented, and the hardenability is improved by maintaining a predetermined amount of solid solution B. However, none of Patent Documents 5 to 7 describes the quenching hardness in the surface layer.

在專利文獻8所記載的技術中,提出了藉由含有C:0.15%~0.37%、B、及Sb、Sn的一種以上而淬火性高的鋼。但是,在專利文獻8中,沒有研究滲碳淬火性等更高的淬火性。The technique described in Patent Document 8 proposes a steel with high hardenability by containing C: 0.15% to 0.37%, B, and one or more of Sb and Sn. However, in Patent Document 8, higher hardenability such as carburizing and hardenability has not been studied.

本發明是鑒於上述問題而完成者,其目的在於提供一種具有優異的冷加工性以及優異的淬火性(浸入淬火性、滲碳淬火性)的高碳熱軋鋼板及其製造方法。 [解決課題之手段]The present invention was completed in view of the above-mentioned problems, and its object is to provide a high-carbon hot-rolled steel sheet having excellent cold workability and excellent hardenability (immersion hardenability, carburizing hardenability) and a method of manufacturing the same. [Means to solve the problem]

為了實現上述課題,本發明者等人對作為鋼的成分組成,含有B、更含有選自Sn及Sb中的一種或兩種的高碳熱軋鋼板的製造條件與冷加工性及淬火性(浸入淬火性、滲碳淬火性)的關係進行了努力研究。其結果,得出以下見解。In order to achieve the above-mentioned problems, the inventors of the present inventors studied the manufacturing conditions, cold workability and hardenability (immersion) of high-carbon hot-rolled steel sheets containing B and one or two selected from Sn and Sb as the component composition of steel. The relationship between hardenability and carburizing and hardenability) has been studied hard. As a result, the following findings were obtained.

i)在氮氣環境中實施退火時,環境中的氮氣滲入,濃化到鋼板中,與鋼板中的B、Al結合,在表層生成B氮化物及Al氮化物。藉此,鋼板中的固溶B量降低,或者存在Al氮化物,從而在淬火前的沃斯田鐵(austenite)區域的加熱中沃斯田鐵粒徑變小,有時淬火不足。因此,在本發明中,在氮氣環境下實施退火時,對於要求更高淬火性(高滲碳淬火性)的鋼板,向鋼中添加規定量的Sb及Sn的至少一種以上。另外,藉由在退火中以規定的加熱速度在450℃~600℃的溫度範圍加熱,能夠將從環境向鋼中的滲氮抑制為規定量。藉此,防止上述滲氮,抑制固溶B量的降低及Al氮化物的增加,能夠確保更高的淬火性(高滲碳淬火性)。i) When annealing is carried out in a nitrogen environment, the nitrogen in the environment penetrates and concentrates into the steel sheet, combines with B and Al in the steel sheet, and generates B nitride and Al nitride on the surface layer. As a result, the amount of solid solution B in the steel sheet is reduced, or Al nitrides are present, so that the austenitic iron grain size becomes smaller during the heating of the austenitic iron (austenite) region before quenching, and the quenching may be insufficient. Therefore, in the present invention, when annealing is performed in a nitrogen atmosphere, a predetermined amount of at least one of Sb and Sn is added to the steel for steel sheets requiring higher hardenability (high carburizing and hardenability). In addition, by heating in a temperature range of 450°C to 600°C at a predetermined heating rate during annealing, it is possible to suppress nitriding from the environment into the steel to a predetermined amount. This prevents the aforementioned nitriding, suppresses a decrease in the amount of solid solution B and an increase in Al nitrides, and can ensure higher hardenability (high carburizing hardenability).

ii)當量圓直徑為0.1 μm以下的雪明碳鐵對冷加工性、淬火前高碳熱軋鋼板的硬度(硬度)、總伸長率(以下,有時亦簡稱為伸長率)有很大的影響。藉由使當量圓直徑為0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數為20%以下,能夠得到拉伸強度480 MPa以下、總伸長率(El)為33%以上。ii) Xueming carbon iron with an equivalent circle diameter of 0.1 μm or less has a great influence on the cold workability, the hardness (hardness) of the high carbon hot-rolled steel sheet before quenching, and the total elongation (hereinafter, sometimes referred to as elongation) . By setting the number of snow carbon and iron having an equivalent circle diameter of 0.1 μm or less to 20% or less of the total snow carbon and iron number, a tensile strength of 480 MPa or less and a total elongation (El) of 33% or more can be obtained.

iii)當量圓直徑為0.1 μm以下的雪明碳鐵對淬火前的高碳熱軋鋼板的硬度(硬度)、總伸長率有很大影響。藉由使當量圓直徑為0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數為10%以下,能夠得到拉伸強度為440 MPa以下、總伸長率(El)為36%以上。iii) Xueming carbon iron with an equivalent circle diameter of 0.1 μm or less has a great influence on the hardness (hardness) and total elongation of the high-carbon hot-rolled steel sheet before quenching. By setting the number of snow carbon iron with an equivalent circle diameter of 0.1 μm or less to 10% or less of the total snow carbon iron number, a tensile strength of 440 MPa or less and a total elongation (El) of 36% or more can be obtained.

iv)熱粗軋後,以最終軋製結束溫度:Ar3 變態點以上進行最終軋製,然後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃,以捲繞溫度:500℃~700℃進行捲繞,冷卻至常溫,製成熱軋鋼板後,將該熱軋鋼板以平均加熱速度:15℃/h以上在450℃~600℃間進行加熱,藉由以退火溫度:低於Ac1 變態點保持1.0 h以上的退火,可確保規定的微組織。iv) After hot rough rolling, perform final rolling at the final rolling end temperature: Ar 3 transformation point or higher, and then cool to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec to coil Winding temperature: 500 ℃ ~ 700 ℃ for winding, cooling to normal temperature, after the hot-rolled steel plate is made, the hot-rolled steel plate is heated at an average heating rate: 15 ℃/h or more at 450 ℃ ~ 600 ℃, by Annealing temperature: below Ac 1 transformation point for more than 1.0 h of annealing to ensure the specified microstructure.

v)或者,熱粗軋後,進行最終軋製結束溫度:Ar3 變態點以上的最終軋製,然後以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃,以捲繞溫度:500℃~700℃進行捲繞,冷卻至常溫,製成熱軋鋼板後,將該熱軋鋼板以平均加熱速度:15℃/h以上在450℃~600℃間加熱,藉由在Ac1 變態點以上且Ac3 變態點以下保持0.5h以上,接著,以平均冷卻速度:1℃/h~20℃/h冷卻至小於Ar1 變態點,以小於Ar1 變態點保持20 h以上這樣的2段退火,能夠確保規定的微組織。v) Or, after hot rough rolling, perform final rolling end temperature: Ar 3 transformation point or higher, and then cool to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec to Coiling temperature: 500 ℃ ~ 700 ℃ for winding, cooling to normal temperature, after the hot-rolled steel sheet is made, the hot-rolled steel sheet is heated at an average heating rate: 15 ℃/h or more at 450 ℃ ~ 600 ℃, by Keep it above the Ac 1 transformation point and below the Ac 3 transformation point for more than 0.5h, and then cool to less than the Ar 1 transformation point at an average cooling rate: 1℃/h~20℃/h, and keep it for 20 h below the Ar 1 transformation point The above two-stage annealing can ensure a predetermined microstructure.

本發明是基於以上見解而完成者,其主旨如下。 [1]一種高碳熱軋鋼板,包含如下成分組成:以質量%計,含有C:0.20%以上且0.50%以下,Si:0.8%以下,Mn:0.10%以上且0.80%以下,P:0.03%以下,S:0.010%以下,sol.Al:0.10%以下,N:0.01%以下,Cr:1.0%以下,B:0.0005%以上且0.005%以下,而且,含有合計為0.002%以上且0.1%以下的選自Sb及Sn的一種或兩種,剩餘部分包含Fe及不可避免的雜質,微組織包括:肥粒鐵、雪明碳鐵、及相對於總微組織以面積率計佔6.5%以下的比例的波來鐵,所述雪明碳鐵中,當量圓直徑0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數的比例為20%以下,平均雪明碳鐵直徑為2.5 μm以下,所述雪明碳鐵相對於總微組織所佔的比例以面積率計為3.5%以上且10.0%以下,自表層至深度100 μm的區域中的固溶B量的平均濃度為10質量ppm以上,自表層至深度100 μm的區域中的作為AlN存在的N量的平均濃度為70質量ppm以下。 [2]如[1]所述的高碳熱軋鋼板,其中,拉伸強度為480 MPa以下,總伸長率為33%以上。 [3]如[1]或[2]所述的高碳熱軋鋼板,其中,所述肥粒鐵的平均粒徑為4 μm~25 μm。 [4]如[1]至[3]中任一項所述的高碳熱軋鋼板,其中,除了所述成分組成以外,以質量%計更含有選自下述A群組及B群組中的一群組或兩群組, 記 A群組:Ti:0.06%以下 B群組:使選自Nb、Mo、Ta、Ni、Cu、V、W中的一種或兩種以上分別為0.0005%以上且0.1%以下。 [5]一種高碳熱軋鋼板的製造方法,是如[1]至[4]中任一項所述的高碳熱軋鋼板的製造方法,其中在將具有所述成分組成的鋼熱粗軋後,以最終軋製結束溫度:Ar3 變態點以上進行最終軋製,然後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃,以捲繞溫度: 500℃~700℃進行捲繞,製成熱軋鋼板後,實施將所述熱軋鋼板以平均加熱速度:15℃/h以上加熱至450℃~600℃的溫度範圍,以退火溫度:低於Ac1 變態點保持1.0 h以上的退火。 [6]一種高碳熱軋鋼板的製造方法,是如[1]至[4]中任一項所述的高碳熱軋鋼板的製造方法,其中在將具有所述成分組成的鋼熱粗軋後,以最終軋製結束溫度:Ar3 變態點以上進行最終軋製,然後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃,以捲繞溫度:500℃~700℃進行捲繞,製成熱軋鋼板後,實施將所述熱軋鋼板以平均加熱速度:15℃/h以上加熱至450℃~600℃的溫度範圍,以Ac1 變態點以上Ac3 變態點以下保持0.5h以上,繼而,以平均冷卻速度:1℃/h~20℃/h冷卻至低於Ar1 變態點,並以低於Ar1 變態點保持20 h以上的退火。 [發明的效果]The present invention was completed based on the above knowledge, and its gist is as follows. [1] A high-carbon hot-rolled steel sheet comprising the following composition: in mass %, containing C: 0.20% or more and 0.50% or less, Si: 0.8% or less, Mn: 0.10% or more and 0.80% or less, P: 0.03 % Or less, S: 0.010% or less, sol.Al: 0.10% or less, N: 0.01% or less, Cr: 1.0% or less, B: 0.0005% or more and 0.005% or less, and the total content is 0.002% or more and 0.1% The following are selected from one or two of Sb and Sn, the remaining part contains Fe and unavoidable impurities. The microstructure includes: ferrite, snow carbon iron, and the area ratio of the total microstructure accounts for less than 6.5% In the Xueming carbon iron, the ratio of the Xueming carbon and iron number with an equivalent circle diameter of less than 0.1 μm to the total Xueming carbon and iron number is less than 20%, and the average Xueming carbon and iron diameter is 2.5 μm or less, the ratio of the Xueming carbon iron to the total microstructure is 3.5% or more and 10.0% or less in terms of area ratio, and the average concentration of the solid solution B amount in the region from the surface layer to the depth of 100 μm is 10 Mass ppm or more, and the average concentration of N amount existing as AlN in the region from the surface layer to a depth of 100 μm is 70 mass ppm or less. [2] The high carbon hot-rolled steel sheet according to [1], wherein the tensile strength is 480 MPa or less, and the total elongation is 33% or more. [3] The high-carbon hot-rolled steel sheet according to [1] or [2], wherein the average grain size of the ferrous iron is 4 μm to 25 μm. [4] The high-carbon hot-rolled steel sheet according to any one of [1] to [3], wherein, in addition to the component composition, it contains in mass% selected from the following A group and B group One or two groups in group A: Ti: 0.06% or less Group B: Make one or more of Nb, Mo, Ta, Ni, Cu, V, and W be 0.0005 % Above and below 0.1%. [5] A method for manufacturing a high-carbon hot-rolled steel sheet, which is the method for manufacturing a high-carbon hot-rolled steel sheet according to any one of [1] to [4], wherein the steel having the composition After rolling, perform final rolling at the final rolling end temperature: Ar 3 transformation point or higher, and then cool to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec, and the winding temperature: 500 After coiling at ℃~700℃ to make a hot-rolled steel sheet, the hot-rolled steel sheet is heated to a temperature range of 450℃~600℃ at an average heating rate: 15℃/h or more, with annealing temperature: lower than Ac 1 The transformation point remains annealed for 1.0 h or more. [6] A method for manufacturing a high-carbon hot-rolled steel sheet, which is the method for manufacturing a high-carbon hot-rolled steel sheet according to any one of [1] to [4], wherein the steel having the composition After rolling, perform final rolling at the final rolling end temperature: Ar 3 transformation point or higher, and then cool to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec, and to coil temperature: 500 After coiling at ℃~700℃ to make a hot-rolled steel sheet, the hot-rolled steel sheet is heated at an average heating rate: 15℃/h or more to a temperature range of 450℃-600℃, with Ac 1 transformation point or more Ac 3 Keep below the transformation point for more than 0.5h, and then cool down to below the Ar 1 transformation point at an average cooling rate of 1°C/h to 20°C/h, and keep the annealing below the Ar 1 transformation point for more than 20 hours. [Effects of the invention]

根據本發明,能夠得到冷加工性及淬火性(浸入淬火性、滲碳淬火性)優異的高碳熱軋鋼板。並且,藉由將根據本發明製造的高碳熱軋鋼板作為原材料鋼板而應用於需要冷加工性的靠背椅、門閂以及傳動系統等汽車用零件,能夠大大有助於要求穩定的品質的汽車用零件的製造,起到產業上顯著的效果。According to the present invention, a high-carbon hot-rolled steel sheet excellent in cold workability and hardenability (immersion hardenability, carburization hardenability) can be obtained. In addition, by applying the high-carbon hot-rolled steel sheet manufactured according to the present invention as a raw material steel sheet to automotive parts requiring cold workability, such as backrests, door latches, and transmission systems, it can greatly contribute to automotive parts requiring stable quality The manufacturing of this product has a significant effect in the industry.

以下,詳細說明本發明的高碳熱軋鋼板及其製造方法。再者,本發明不限於以下的實施方式。Hereinafter, the high carbon hot rolled steel sheet of the present invention and its manufacturing method will be described in detail. In addition, the present invention is not limited to the following embodiments.

1)成分組成 對本發明的高碳熱軋鋼板的成分組成及其限定理由進行說明。再者,作為以下成分組成的含量單元的「%」只要沒有特別說明就是指「質量%」。1) Composition The composition of the high-carbon hot-rolled steel sheet of the present invention and the reason for its limitation will be described. In addition, "%" as a content unit of the following component composition means "mass %" unless otherwise specified.

C:0.20%以上且0.50%以下 C是獲得淬火後強度的重要元素。C量不足0.20%時,無法藉由成形後的熱處理得到所期望的硬度,因此C量需要為0.20%以上。但是,C量若超過0.50%,則硬質化,且韌性和冷加工性劣化。因此,使C量為0.20%以上且0.50%以下。在用於形狀複雜且難以衝壓加工的零件的冷加工時,C量較佳為0.45%以下,進而佳為0.40%以下。C: 0.20% or more and 0.50% or less C is an important element to obtain the strength after quenching. When the C content is less than 0.20%, the desired hardness cannot be obtained by the heat treatment after forming, so the C content needs to be 0.20% or more. However, if the amount of C exceeds 0.50%, the hardness will be hardened, and toughness and cold workability will deteriorate. Therefore, the amount of C is set to 0.20% or more and 0.50% or less. When used for cold working of parts that are complicated in shape and difficult to press, the amount of C is preferably 0.45% or less, and more preferably 0.40% or less.

Si:0.8%以下 Si是藉由固溶強化使強度上升的元素。隨著Si量的增加而硬質化,冷加工性劣化,因此,Si量為0.8%以下。較佳為0.65%以下,進而佳為0.50%以下。於在難成形零件的用途中進一步要求冷加工性時,較佳為設為0.30%以下。自在淬火後的回火步驟中確保規定的軟化阻力的觀點出發,Si量較佳為0.1%以上,更佳為0.2%以上。Si: 0.8% or less Si is an element that increases the strength by solid solution strengthening. As the amount of Si increases, it hardens and deteriorates cold workability. Therefore, the amount of Si is 0.8% or less. It is preferably 0.65% or less, and more preferably 0.50% or less. When cold workability is further required in the use of difficult-to-form parts, it is preferably 0.30% or less. From the viewpoint of ensuring a predetermined softening resistance in the tempering step after quenching, the amount of Si is preferably 0.1% or more, and more preferably 0.2% or more.

Mn:0.10%以上且0.80%以下 Mn是在提高淬火性的同時,藉由固溶強化使強度上升的元素。Mn量不足0.10%時,浸入淬火性及滲碳淬火性均開始降低,因此Mn量為0.10%以上。在厚物材等中可靠地淬火到內部時,較佳為0.25%以上,進而佳為0.30%以上。另一方面,若Mn量超過0.80%,則由Mn的偏析所引起的帶狀組織擴展,組織變得不均一,並且由於固溶強化,鋼硬質化,冷加工性降低。因此,將Mn量設為0.80%以下。作為要求成形性的零件用材料,需要規定的冷加工性,因此Mn量較佳為0.65%以下。進而佳為0.55%以下。Mn: 0.10% or more and 0.80% or less Mn is an element that increases the strength by solid solution strengthening while improving hardenability. When the Mn content is less than 0.10%, both the immersion hardenability and carburizing and hardenability begin to decrease, so the Mn content is 0.10% or more. When it is reliably hardened to the inside in thick materials, etc., it is preferably 0.25% or more, and more preferably 0.30% or more. On the other hand, if the amount of Mn exceeds 0.80%, the banded structure due to segregation of Mn spreads, the structure becomes non-uniform, and the steel is hardened due to solid solution strengthening, and cold workability is reduced. Therefore, the amount of Mn is set to 0.80% or less. As a material for parts requiring formability, a predetermined cold workability is required, so the amount of Mn is preferably 0.65% or less. More preferably, it is 0.55% or less.

P:0.03%以下 P為藉由固溶強化而使強度上升的元素。若P量增加超過0.03%會導致晶界脆化,淬火後的韌性劣化。另外,冷加工性亦會降低。因此,P量為0.03%以下。為了獲得優異的淬火後的韌性,P量較佳為0.02%以下。因P使冷加工性以及淬火後的韌性下降,故P量越少越佳。然而,若過度地減少P,則精煉成本增加,因此P量較佳為0.005%以上。進而佳為0.007%以上。P: Below 0.03% P is an element that increases the strength by solid solution strengthening. If the amount of P is increased by more than 0.03%, it will cause grain boundary embrittlement and deterioration of toughness after quenching. In addition, cold workability is also reduced. Therefore, the amount of P is 0.03% or less. In order to obtain excellent toughness after quenching, the amount of P is preferably 0.02% or less. Since P decreases cold workability and toughness after quenching, the smaller the amount of P, the better. However, if P is excessively reduced, refining costs increase, so the amount of P is preferably 0.005% or more. More preferably, it is 0.007% or more.

S:0.010%以下 S為因形成硫化物而使高碳熱軋鋼板的冷加工性及淬火後的韌性下降,故不得不減少的元素。若S量超過0.010%,則高碳熱軋鋼板的冷加工性及淬火後的韌性顯著劣化。因此,將S量設為0.010%以下。為了得到優異的冷加工性及淬火後的韌性,S量較佳為0.005%以下。因S使冷加工性以及淬火後的韌性下降,故S量越少越佳。但是,若過度降低S,則精煉成本增大,故S量較佳為0.0005%以上。S: Below 0.010% S is an element that has to be reduced due to the formation of sulfides, which reduces the cold workability and toughness of the high-carbon hot-rolled steel sheet after quenching. If the S content exceeds 0.010%, the cold workability of the high-carbon hot-rolled steel sheet and the toughness after quenching are significantly deteriorated. Therefore, the amount of S is set to 0.010% or less. In order to obtain excellent cold workability and toughness after quenching, the amount of S is preferably 0.005% or less. Since S reduces cold workability and toughness after quenching, the smaller the amount of S, the better. However, if S is excessively reduced, refining costs increase, so the amount of S is preferably 0.0005% or more.

sol.Al:0.10%以下 sol.Al量超過0.10%時,於淬火處理的加熱時生成AlN且沃斯田鐵(austenite)粒過度微細化。藉此,冷卻時會促進肥粒鐵相的生成,微組織變成肥粒鐵與麻田散鐵(martensite),淬火後的硬度會下降。因此,將sol.Al量設為0.10%以下。較佳設為0.06%以下。再者,sol.Al具有脫氧的效果,為了充分脫氧,較佳設為0.005%以上。sol.Al: 0.10% or less When the amount of sol.Al exceeds 0.10%, AlN is generated during the heating of the quenching treatment and the austenite grains are excessively refined. As a result, the formation of the fat iron phase is promoted during cooling, the microstructure becomes fat iron and martensite, and the hardness after quenching decreases. Therefore, the amount of sol.Al is set to 0.10% or less. It is preferably set to 0.06% or less. In addition, sol.Al has a deoxidizing effect, and in order to sufficiently deoxidize, it is preferably 0.005% or more.

N:0.01%以下 N量超過0.01%時,因AlN的形成,於淬火處理的加熱時沃斯田鐵粒過度微細化,冷卻時會促進肥粒鐵相的生成,故淬火後的硬度會下降。因此,將N量設為0.01%以下。較佳為0.0065%以下。進而佳為0.0050%以下。再者,N形成AlN、Cr系氮化物和B氮化物。藉此是在淬火處理加熱時適度抑制沃斯田鐵粒生長,提高淬火後的韌性的元素。因此,N量較佳為0.0005%以上。進而佳為0.0010%以上。N: 0.01% or less When the amount of N exceeds 0.01%, due to the formation of AlN, the austenitic iron grains are excessively refined during the heating of the quenching treatment, and the formation of the fat grain iron phase is promoted during cooling, so the hardness after quenching will decrease. Therefore, the amount of N is set to 0.01% or less. Preferably it is 0.0065% or less. More preferably, it is 0.0050% or less. Furthermore, N forms AlN, Cr-based nitrides, and B nitrides. This is an element that moderately suppresses the growth of austenitic iron grains during quenching heating and improves toughness after quenching. Therefore, the amount of N is preferably 0.0005% or more. More preferably, it is 0.0010% or more.

Cr:1.0%以下 在本發明中,Cr是提高淬火性的重要元素。在鋼中的Cr量為0%時,特別是在滲碳淬火中,表層容易產生肥粒鐵,無法得到完全淬火組織,有時容易引起硬度降低。因此,在用於重視淬火性的用途時,較佳為0.05%以上,進而佳為0.10%以上,進而更佳為0.20%以上。另一方面,Cr量超過1.0%時,淬火前的鋼板硬質化,冷加工性受損。因此,將Cr量設為1.0%以下。再者,在加工難以衝壓成形的需要高加工的零件時,由於需要更優異的冷加工性,因此Cr量較佳為0.7%以下,進而佳為0.5%以下。Cr: 1.0% or less In the present invention, Cr is an important element for improving hardenability. When the amount of Cr in the steel is 0%, especially during carburizing and quenching, the surface layer is likely to produce fat iron, and a complete quenched structure cannot be obtained, which may easily cause a decrease in hardness. Therefore, when it is used for applications where hardenability is important, it is preferably 0.05% or more, more preferably 0.10% or more, and still more preferably 0.20% or more. On the other hand, when the amount of Cr exceeds 1.0%, the steel sheet before quenching hardens, and cold workability is impaired. Therefore, the amount of Cr is 1.0% or less. Furthermore, when processing parts requiring high processing that are difficult to press and form, since more excellent cold workability is required, the amount of Cr is preferably 0.7% or less, and more preferably 0.5% or less.

B:0.0005%以上且0.005%以下 在本發明中,B是提高淬火性的重要元素。B量不足0.0005%時,看不到充分的效果,因此B量需要為0.0005%以上。較佳為0.0010%以上。另一方面,B量超過0.005%時,最終軋製後的沃斯田鐵的再結晶延遲,結果熱軋鋼板的質地發展,退火後的各向異性變大,於捲壓成形中容易產生邊緣。因此,B量設為0.005%以下。較佳為0.004%以下。B: 0.0005% or more and 0.005% or less In the present invention, B is an important element for improving hardenability. When the amount of B is less than 0.0005%, no sufficient effect is seen, so the amount of B needs to be 0.0005% or more. Preferably it is 0.0010% or more. On the other hand, when the B content exceeds 0.005%, the recrystallization of the austenitic iron after final rolling is delayed. As a result, the texture of the hot-rolled steel sheet develops, and the anisotropy after annealing becomes large, which tends to produce edges during coil forming. . Therefore, the amount of B is set to 0.005% or less. Preferably it is 0.004% or less.

選自Sb及Sn的一種或兩種的合計:0.002%以上0.1%以下。 Sb、Sn是抑制自鋼板表層的滲氮的有效元素。該些元素的一種以上的合計不足0.002%時,看不到充分的效果,因此該些元素的一種以上的合計為0.002%以上。進而佳為0.005%以上。另一方面,即使該些元素的一種以上的合計含有超過0.1%,滲氮防止效果亦飽和。另外,該些元素存在偏析至粒界的傾向,因此合計超過0.1%時,含量過高,有可能引起粒界脆化。因此,選自Sb及Sn中的一種或兩種的合計含量設為0.1%以下。較佳為0.03%以下,進而佳為0.02%以下。One or a total of two selected from Sb and Sn: 0.002% or more and 0.1% or less. Sb and Sn are effective elements for suppressing nitriding from the surface layer of the steel sheet. When the total of one or more of these elements is less than 0.002%, sufficient effects are not seen, so the total of one or more of these elements is 0.002% or more. More preferably, it is 0.005% or more. On the other hand, even if the total content of one or more of these elements exceeds 0.1%, the effect of preventing nitriding is saturated. In addition, these elements tend to segregate to grain boundaries, so if the total exceeds 0.1%, the content is too high, which may cause grain boundary embrittlement. Therefore, the total content of one or two selected from Sb and Sn is set to 0.1% or less. It is preferably 0.03% or less, and more preferably 0.02% or less.

在本發明中,藉由使選自Sb及Sn中的一種或兩種合計為0.002%以上且0.1%以下,即使在氮氣環境中退火的情況下,亦抑制自鋼板表層的滲氮,從而抑制鋼板表層中的氮氣濃度的增加。如此,根據本發明,由於能夠抑制來自鋼板表層的滲氮,故即使在氮氣環境下退火的情況下,亦能夠適當地確保自退火後的鋼板表層到深度100 μm的區域中的固溶B量,並且抑制自鋼板表層到深度100 μm的區域中的Al氮化物(AlN)的生成,藉此在淬火前加熱時的肥粒鐵粒能夠成長。其結果,冷卻時可延遲肥粒鐵及波來鐵的生成,藉此可得到較高的淬火性。In the present invention, by making the total of one or two selected from Sb and Sn 0.002% or more and 0.1% or less, even in the case of annealing in a nitrogen atmosphere, nitriding from the surface of the steel sheet is suppressed, thereby suppressing An increase in the concentration of nitrogen in the surface of the steel sheet. Thus, according to the present invention, since nitriding from the surface of the steel sheet can be suppressed, even in the case of annealing in a nitrogen atmosphere, it is possible to appropriately ensure the amount of solid solution B from the surface of the annealed steel sheet to a depth of 100 μm. In addition, the formation of Al nitride (AlN) in the region from the surface of the steel sheet to a depth of 100 μm is suppressed, thereby enabling the growth of ferrous iron grains during heating before quenching. As a result, it is possible to delay the production of ferrous iron and pulverized iron during cooling, thereby obtaining high hardenability.

在本發明中,上述以外的剩餘部分是Fe及不可避免的雜質。In the present invention, the remainder other than the above is Fe and unavoidable impurities.

藉由以上的必須含有元素,本發明的高碳熱軋鋼板能夠得到目標特性。再者,本發明的高碳熱軋鋼板例如以進一步提高淬火性為目的,根據需要可含有下述元素。With the above essential elements, the high-carbon hot-rolled steel sheet of the present invention can obtain target characteristics. Furthermore, the high-carbon hot-rolled steel sheet of the present invention is for the purpose of further improving hardenability, and may contain the following elements as necessary.

Ti:0.06%以下 Ti是用於提高淬火性的有效元素。僅僅含有B而淬火性不充分的情況下,藉由含有Ti,可提高淬火性。Ti量不足0.005%時,看不到其效果,故含有Ti時,Ti量較佳為0.005%以上。進而佳為0.007%以上。另一方面,Ti量含有超過0.06%時,淬火前的鋼板硬質化,冷加工性受損,故含有Ti時,Ti量設為0.06%以下。較佳為0.04%以下。Ti: Below 0.06% Ti is an effective element for improving hardenability. When only B is contained and the hardenability is insufficient, the hardenability can be improved by containing Ti. When the amount of Ti is less than 0.005%, the effect is not seen, so when Ti is contained, the amount of Ti is preferably 0.005% or more. More preferably, it is 0.007% or more. On the other hand, if the Ti content exceeds 0.06%, the steel sheet before quenching hardens and the cold workability is impaired. Therefore, when Ti is contained, the Ti content is set to 0.06% or less. Preferably it is 0.04% or less.

進而,為了使本發明的機械特性及淬火性穩定化,亦可分別添加所需量的選自Nb、Mo、Ta、Ni、Cu、V、W中的一種或兩種以上。Furthermore, in order to stabilize the mechanical properties and hardenability of the present invention, one or two or more selected from Nb, Mo, Ta, Ni, Cu, V, and W may be added in required amounts.

Nb:0.0005%以上且0.1%以下 Nb是對形成碳氮化物,防止淬火前加熱時的結晶粒的異常粒生長、改善韌性、改善回火軟化阻力而言有效元素。若不足0.0005%,不能充分發現添加效果,故含有Nb時較佳為將下限設為0.0005%。進而佳為0.0010%以上。Nb超過0.1%時,不僅添加效果飽和,而且因Nb碳化物,母材的拉伸強度增加,伴隨於此使伸長率降低,因此含有Nb時,較佳為將上限設為0.1%。進而佳為0.05%以下,更佳為小於0.03%。Nb: 0.0005% or more and 0.1% or less Nb is an effective element for forming carbonitrides, preventing abnormal grain growth of crystal grains during heating before quenching, improving toughness, and improving temper softening resistance. If it is less than 0.0005%, the effect of the addition cannot be sufficiently observed, so when Nb is contained, the lower limit is preferably 0.0005%. More preferably, it is 0.0010% or more. When Nb exceeds 0.1%, not only the effect of addition is saturated, but also the tensile strength of the base material increases due to the Nb carbides, and the elongation decreases with this. Therefore, when Nb is contained, the upper limit is preferably set to 0.1%. It is more preferably 0.05% or less, and more preferably less than 0.03%.

Mo:0.0005%以上且0.1%以下 Mo是提高淬火性和提高回火軟化阻力性的有效元素。若不足0.0005%,則添加效果小,因此含有Mo時較佳為下限設為0.0005%。進而佳為0.0010%以上。Mo超過0.1%時,添加效果飽和,成本亦增加,因此含有Mo時較佳為上限設為0.1%。進而佳為0.05%以下,進而更佳小於0.03%。Mo: 0.0005% or more and 0.1% or less Mo is an effective element for improving hardenability and tempering softening resistance. If it is less than 0.0005%, the effect of addition is small. Therefore, when Mo is contained, the lower limit is preferably 0.0005%. More preferably, it is 0.0010% or more. When Mo exceeds 0.1%, the effect of addition is saturated and the cost increases. Therefore, when Mo is contained, the upper limit is preferably set to 0.1%. It is more preferably 0.05% or less, and still more preferably less than 0.03%.

Ta:0.0005%以上且0.1%以下 Ta是與Nb同樣地形成碳氮化物,對於防止淬火前加熱時結晶粒的異常粒生長、防止結晶粒的粗大化、改善回火軟化阻力有效的元素。若不足0.0005%,則添加效果小,因此含有Ta時,較佳為下限設為0.0005%。進而佳為0.0010%以上。若Ta超過0.1%,則添加效果飽和,由過剩的碳化物形成引起的淬火硬度降低,另外成本增加,故含有Ta時較佳為上限設為0.1%。進而佳為0.05%以下,進而更佳為小於0.03%。Ta: 0.0005% or more and 0.1% or less Ta is an element that forms carbonitrides like Nb, and is effective for preventing abnormal grain growth of crystal grains during heating before quenching, preventing coarsening of crystal grains, and improving temper softening resistance. If it is less than 0.0005%, the effect of addition is small. Therefore, when Ta is contained, the lower limit is preferably set to 0.0005%. More preferably, it is 0.0010% or more. If Ta exceeds 0.1%, the effect of the addition is saturated, the quenching hardness due to the formation of excess carbides is reduced, and the cost increases, so when Ta is contained, the upper limit is preferably set to 0.1%. More preferably, it is 0.05% or less, and still more preferably less than 0.03%.

Ni:0.0005%以上且0.1%以下 Ni是對提高韌性和提高淬火性而言效果高的元素。由於不足0.0005%時沒有添加效果,故含有Ni時較佳為下限設為0.0005%。進而佳為0.0010%以上。Ni超過0.1%時,添加效果飽和且導致成本增加,因此含有Ni時較佳為上限設為0.1%。進而佳為0.05%以下。Ni: 0.0005% or more and 0.1% or less Ni is an element that is highly effective in improving toughness and improving hardenability. Since there is no additive effect if it is less than 0.0005%, when Ni is contained, the lower limit is preferably 0.0005%. More preferably, it is 0.0010% or more. When Ni exceeds 0.1%, the effect of addition is saturated and the cost increases. Therefore, when Ni is contained, the upper limit is preferably set to 0.1%. More preferably, it is 0.05% or less.

Cu:0.0005%以上且0.1%以下 Cu是確保淬火性的有效元素。若不足0.0005%,則不能充分確認添加效果,因此含有Cu時,較佳為下限設為0.0005%。進而佳為0.0010%以上。Cu超過0.1%時,容易產生熱軋時的缺陷,使成品率降低等製造性劣化,因此含有Cu時較佳為上限設為0.1%。進而佳為0.05%以下。Cu: 0.0005% or more and 0.1% or less Cu is an effective element for ensuring hardenability. If it is less than 0.0005%, the effect of the addition cannot be fully confirmed. Therefore, when Cu is contained, the lower limit is preferably made 0.0005%. More preferably, it is 0.0010% or more. When Cu exceeds 0.1%, defects during hot rolling are likely to occur, and manufacturability deteriorates such as a decrease in yield. Therefore, when Cu is contained, the upper limit is preferably set to 0.1%. More preferably, it is 0.05% or less.

V:0.0005%以上且0.1%以下 V與Nb及Ta同樣地,是形成碳氮化物,防止淬火前加熱時的結晶粒的異常粒生長、改善韌性、改善回火軟化阻力的有效元素。因為不足0.0005%時不能充分發現添加效果,所以含有V時較佳為下限設為0.0005%。進而佳為0.0010%以上。V超過0.1%時,不僅添加效果飽和,而且由於Nb碳化物,母材的拉伸強度增加,伴隨與此,使伸長率降低,因此含有V時較佳為上限設為0.1%。進而佳為0.05%以下,進而更佳為小於0.03%。V: 0.0005% or more and 0.1% or less V, like Nb and Ta, is an effective element that forms carbonitrides, prevents abnormal grain growth of crystal grains during heating before quenching, improves toughness, and improves temper softening resistance. If it is less than 0.0005%, the effect of the addition cannot be sufficiently observed. Therefore, when V is contained, the lower limit is preferably 0.0005%. More preferably, it is 0.0010% or more. When V exceeds 0.1%, not only the effect of addition is saturated, but also the tensile strength of the base material increases due to the Nb carbide, and the elongation decreases with this. Therefore, when V is contained, the upper limit is preferably set to 0.1%. More preferably, it is 0.05% or less, and still more preferably less than 0.03%.

W:0.0005%以上且0.1%以下 W與Nb、V一樣,是形成碳氮化物,防止淬火前加熱時沃斯田鐵結晶粒的異常粒生長和改善回火軟化阻力的有效元素。若不足0.0005%,則添加效果小,因此含有W時,較佳為下限設為0.0005%。進而佳為0.0010%以上。W超過0.1%時,添加效果飽和,過剩的碳化物形成引起的淬火硬度降低,另外成本增加,因此含有W時較佳為上限設為0.1%。進而佳為0.05%以下,進而更佳小於0.03%。W: 0.0005% or more and 0.1% or less Like Nb and V, W is an effective element that forms carbonitrides, prevents abnormal grain growth of austenitic iron crystal grains during heating before quenching, and improves temper softening resistance. If it is less than 0.0005%, the effect of addition is small. Therefore, when W is contained, the lower limit is preferably made 0.0005%. More preferably, it is 0.0010% or more. When W exceeds 0.1%, the effect of the addition is saturated, the quenching hardness due to the formation of excess carbides is reduced, and the cost increases. Therefore, when W is contained, the upper limit is preferably set to 0.1%. It is more preferably 0.05% or less, and still more preferably less than 0.03%.

再者,在本發明中,在含有選自Nb、Mo、Ta、Ni、Cu、V、W中兩種以上的情況下,較佳為使其合計量為0.001%以上且0.1%以下。Furthermore, in the present invention, when two or more selected from Nb, Mo, Ta, Ni, Cu, V, and W are contained, the total amount is preferably 0.001% or more and 0.1% or less.

2)微組織 對本發明的高碳熱軋鋼板的微組織的限定理由進行說明。2) Micro organization The reason for the limitation of the microstructure of the high carbon hot rolled steel sheet of the present invention will be described.

在本發明中,微組織具有肥粒鐵及雪明碳鐵,關於該雪明碳鐵,當量圓直徑為0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數為20%以下,平均雪明碳鐵直徑為2.5 μm以下,上述雪明碳鐵相對於總微組織所佔的比例以面積率計為3.5%以上且10.0%以下,自表層到深度100 μm的區域中的固溶B量的平均濃度為10質量ppm以上,自表層到深度100 μm的區域中作為AlN存在的N量的平均濃度為70質量ppm以下。 另外,在本發明中,肥粒鐵的平均粒徑較佳為4 μm~25 μm。更佳為5 μm以上。In the present invention, the microstructure has fat-grained iron and snow carbon iron. With respect to the snow carbon iron, the snow carbon iron number with an equivalent circle diameter of 0.1 μm or less relative to the total snow carbon iron number is 20% or less, The average snow carbon iron diameter is 2.5 μm or less, and the ratio of the above snow carbon iron to the total microstructure is 3.5% or more and 10.0% or less in terms of area ratio, solid solution from the surface layer to a depth of 100 μm The average concentration of the B content is 10 mass ppm or more, and the average concentration of the N content existing as AlN in the region from the surface layer to the depth of 100 μm is 70 mass ppm or less. In addition, in the present invention, the average particle size of the ferrite grains is preferably 4 μm to 25 μm. More preferably, it is 5 μm or more.

2-1)肥粒鐵及雪明碳鐵 本發明的高碳熱軋鋼板的微組織具有肥粒鐵及雪明碳鐵。再者,在本發明中,肥粒鐵以面積率計較佳為90%以上。如果肥粒鐵面積率不足90%,則成形性變差,有時用加工度高的零件難以進行冷加工。因此,肥粒鐵面積率較佳為90%以上。進而佳為92%以上。2-1) Fertilizer iron and Xueming carbon iron The microstructure of the high-carbon hot-rolled steel sheet of the present invention has fat grain iron and snow carbon iron. Furthermore, in the present invention, the fertilizer grain iron is preferably 90% or more in terms of area ratio. If the area ratio of ferrous iron is less than 90%, the formability will deteriorate, and it may be difficult to cold work with parts with high workability. Therefore, the area ratio of fertilizer grains is preferably above 90%. More preferably, it is 92% or more.

再者,本發明的高碳熱軋鋼板的微組織除了上述肥粒鐵和雪明碳鐵以外,亦可生成波來鐵。波來鐵相對於總微組織的面積率為6.5%以下時,不會損害本發明的效果,因此可含有波來鐵。In addition, the microstructure of the high-carbon hot-rolled steel sheet of the present invention can also produce polished iron in addition to the above-mentioned fat iron and snow carbon iron. When the area ratio of pleite relative to the total microstructure is 6.5% or less, the effect of the present invention will not be impaired, and therefore pleite may be contained.

2-2)當量圓直徑0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數的比例:20%以下 當量圓直徑在0.1 μm以下的雪明碳鐵多時,會因分散強化而硬質化,伸長率降低。自得到冷加工性的觀點出發,本發明中,當量圓直徑為0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數設為20%以下。其結果是,拉伸強度可進一步達到480 MPa以下,總伸長率(El)可達到33%以上。 用於難成形零件時需要高的冷加工性,此時,當量圓直徑為0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數較佳為10%以下。藉由使當量圓直徑為0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數為10%以下,拉伸強度可達到440 MPa以下,總伸長率(El)可達到36%以上。再者,定義當量圓直徑為0.1 μm以下的雪明碳鐵的比例的理由是:0.1 μm以下的雪明碳鐵產生分散強化能,所述大小的雪明碳鐵增加時會對冷加工性帶來障礙。 自抑制退火中的肥粒鐵粒的異常粒生長的觀點出發,當量圓直徑為0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數較佳為3%以上。2-2) The ratio of the number of carbon and iron of the equivalent circle diameter of 0.1 μm or less to the total number of carbon and iron of the snow: 20% or less When there is a large amount of snow carbon iron with a circle diameter of 0.1 μm or less, it will be hardened by dispersion strengthening and the elongation will decrease. From the viewpoint of obtaining cold workability, in the present invention, the number of snow carbon and iron having an equivalent circle diameter of 0.1 μm or less is set to 20% or less of the total snow carbon and iron number. As a result, the tensile strength can further reach 480 MPa or less, and the total elongation (El) can reach 33% or more. When used for difficult-to-form parts, high cold workability is required. In this case, the number of snow carbon iron with an equivalent circle diameter of 0.1 μm or less is preferably 10% or less relative to the total snow carbon iron number. By making the number of snow carbon iron with an equivalent circle diameter of 0.1 μm or less relative to the total snow carbon iron number 10% or less, the tensile strength can reach 440 MPa or less, and the total elongation (El) can reach 36% or more. Furthermore, the reason for defining the ratio of snow carbon iron with an equivalent circle diameter of 0.1 μm or less is that: snow carbon iron of 0.1 μm or less produces dispersion strengthening energy, and the increase in the size of snow carbon iron will affect the cold workability. Come obstacles. From the viewpoint of suppressing abnormal grain growth of fertilizer grains during annealing, the number of snow-carbon iron with an equivalent circle diameter of 0.1 μm or less is preferably 3% or more with respect to the total snow-carbon iron number.

再者,淬火前存在的雪明碳鐵直徑以當量圓直徑計為0.07 μm~3.0 μm左右。因此,關於對析出強化沒有太大影響的尺寸的,淬火前的當量圓直徑超過0.1 μm的雪明碳鐵的分散狀態,在本發明中沒有特別規定。In addition, the diameter of the snow carbon iron existing before quenching is about 0.07 μm to 3.0 μm in terms of the equivalent circle diameter. Therefore, there is no particular regulation in the present invention regarding the dispersion state of the snow carbon iron having a size that does not greatly affect the precipitation strengthening and the equivalent circle diameter before quenching exceeds 0.1 μm.

2-3)平均雪明碳鐵直徑:2.5 μm以下 淬火時需要將雪明碳鐵全部熔化,確保規定的肥粒鐵中的固溶C量。平均雪明碳鐵直徑超過2.5 μm時,在沃斯田鐵區域保持中雪明碳鐵無法完全溶解,因此平均雪明碳鐵直徑設為2.5 μm以下。更佳為2.0 μm以下。再者,雪明碳鐵過微細時,雪明碳鐵的析出強化導致冷加工性降低,因此平均雪明碳鐵直徑較佳為0.1 μm以上。進而佳為0.15 μm以上。 再者,本發明中所謂「雪明碳鐵直徑」是指雪明碳鐵的當量圓直徑,雪明碳鐵的當量圓直徑是測定雪明碳鐵的長徑和短徑並換算成當量圓直徑而得到的值。另外,「平均雪明碳鐵直徑」是指將換算成當量圓直徑的全部雪明碳鐵的當量圓直徑的合計除以雪明碳鐵總數而求出的值。2-3) Average Xueming Carbon Iron Diameter: 2.5 μm or less It is necessary to melt all the Xueming carbon iron during quenching to ensure the specified amount of solid solution C in the fertilizer grain iron. When the average Xueming carbon iron diameter exceeds 2.5 μm, the Xueming carbon iron cannot be completely dissolved in the austenitic iron area, so the average Xueming carbon iron diameter is set to 2.5 μm or less. More preferably, it is 2.0 μm or less. Furthermore, when the Xueming Iron Carbon is too fine, the precipitation strengthening of the Xueming Carbon Iron leads to a decrease in cold workability. Therefore, the average Xueming Carbon Iron diameter is preferably 0.1 μm or more. More preferably, it is 0.15 μm or more. Furthermore, in the present invention, the "Xueming Carbon Iron Diameter" refers to the equivalent circle diameter of Xueming Carbon Iron. The Equivalent Circle Diameter of Xueming Carbon Iron is to measure the long and short diameters of Xueming Carbon Iron and convert them into equivalent circles. The value obtained from the diameter. In addition, the "average snow carbon iron diameter" refers to a value obtained by dividing the total of the equivalent circle diameters of all snow carbon iron converted into the equivalent circle diameter by the total number of snow carbon iron.

2-4)雪明碳鐵相對於總微組織所佔的比例(面積率):3.5%以上且10.0%以下 雪明碳鐵相對於總微組織的比例超過10.0%時,伴隨於此,有助於析出強化的0.1 μm以下的雪明碳鐵數亦增加,鋼硬質化,因此設為10.0%以下。較佳為9.5%以下。另一方面,上述比例小於3.5%時,實質的C含量未達到0.20%,熱處理後得不到規定的硬度,因此設為3.5%以上。進而佳為4.0%以上。2-4) The ratio of Xueming carbon iron to the total microstructure (area ratio): 3.5% or more and 10.0% or less When the ratio of snow carbon iron to the total microstructure exceeds 10.0%, the number of snow carbon iron of 0.1 μm or less that contributes to precipitation strengthening increases with this, and the steel is hardened, so it is set to 10.0% or less. Preferably it is 9.5% or less. On the other hand, when the above ratio is less than 3.5%, the actual C content does not reach 0.20%, and the specified hardness cannot be obtained after heat treatment, so it is set to 3.5% or more. More preferably, it is 4.0% or more.

2-5)肥粒鐵的平均粒徑:4 μm~25 μm(較佳條件) 肥粒鐵的平均粒徑不足4 μm時,冷加工前的強度增加,有可能使衝壓成形性劣化,因此較佳為4 μm以上。另一方面,肥粒鐵的平均粒徑超過25 μm時,母材強度有可能下降。另外,成型加工成目標產品形狀後,在不淬火使用的區域,在一定程度上需要母材的強度。因此,肥粒鐵平均粒徑較佳為25 μm以下。進而佳為5 μm以上,進而更佳為6 μm以上。更佳為20 μm以下。進而更佳為18 μm以下。2-5) Average particle size of fertilizer grains: 4 μm~25 μm (best condition) When the average particle size of the fat iron is less than 4 μm, the strength before cold working increases, which may deteriorate the press formability, so it is preferably 4 μm or more. On the other hand, when the average particle size of the ferrous iron exceeds 25 μm, the strength of the base metal may decrease. In addition, after forming into the target product shape, the strength of the base material is required to a certain extent in the area that is not used for quenching. Therefore, the average particle size of the ferrous iron is preferably 25 μm or less. It is more preferably 5 μm or more, and still more preferably 6 μm or more. More preferably, it is 20 μm or less. More preferably, it is 18 μm or less.

再者,在本發明中,上述雪明碳鐵的當量圓直徑、平均雪明碳鐵直徑、雪明碳鐵相對於總微組織所佔的比例、肥粒鐵的面積率、肥粒鐵的平均粒徑等可藉由後述的實施例所述的方法來測定。Furthermore, in the present invention, the equivalent circle diameter of the above-mentioned Xueming carbon iron, the average Xueming carbon iron diameter, the ratio of the Xueming carbon iron to the total microstructure, the area ratio of the fat iron, and the proportion of the fat iron The average particle diameter and the like can be measured by the method described in the below-mentioned Examples.

2-6)自表層到深度100 μm的區域中的固溶B量的平均濃度:10質量ppm以上 在本發明的高碳熱軋鋼板中,為了防止淬火鋼板時在表層部容易生成的被稱為波來鐵、糙斑鐵的淬火組織,需要自鋼板表層向板厚方向100 μm位置為止的區域(部位)(表層100 μm部)的B量作為未氮化或未氧化的固溶B以平均濃度計存在10質量ppm以上。對於進行淬火處理來使用的需要耐磨損性的汽車零件,要求表面硬度。為了得到規定的表面硬度,需要在淬火後表層100 μm部得到完全淬火組織。較佳為上述固溶B量的平均濃度為12質量ppm以上。進而佳為15質量ppm以上。再者,固溶B過高會妨礙熱軋組織的質地的發展,因此將其設為40質量ppm以下。進而佳為35質量ppm以下。2-6) The average concentration of solid solution B in the region from the surface layer to the depth of 100 μm: 10 mass ppm or more In the high-carbon hot-rolled steel sheet of the present invention, in order to prevent the quenched structure called polished iron or matte iron that is easily formed on the surface during quenching of the steel sheet, a region from the surface of the steel sheet to a position of 100 μm in the thickness direction is required (Location) (100 μm surface layer) The amount of B is 10 mass ppm or more in average concentration as unnitrided or unoxidized solid solution B. For automotive parts that require abrasion resistance for use by quenching, surface hardness is required. In order to obtain a predetermined surface hardness, it is necessary to obtain a completely quenched structure at 100 μm of the surface layer after quenching. It is preferable that the average concentration of the solid solution B amount is 12 mass ppm or more. More preferably, it is 15 mass ppm or more. Furthermore, too high solid solution B hinders the development of the texture of the hot-rolled structure, so it is set to 40 mass ppm or less. More preferably, it is 35 mass ppm or less.

2-7)自表層到深度100 μm的區域中的作為AlN存在的N量的平均濃度:70質量ppm以下 藉由將自鋼板表層向板厚方向100 μm位置的區域中的作為AlN存在的N量的平均濃度設為70質量ppm以下,於淬火前加熱中的沃斯田鐵區域促進結晶粒的生長。藉此,在冷卻階段難以得到波來鐵、糙斑鐵這樣的組織,不會引起淬火不足,得到規定的表面硬度。自表層到深度100 μm的區域中作為AlN存在的N量的平均濃度較佳為50質量ppm以下。 再者,自在沃斯田鐵區域的加熱中抑制異常粒生長的觀點出發,上述N量的平均濃度較佳為10質量ppm以上,進而佳為20質量ppm以上。2-7) The average concentration of the amount of N existing as AlN from the surface layer to the depth of 100 μm: 70 mass ppm or less By setting the average concentration of the amount of N present as AlN in the region 100 μm in the thickness direction from the steel sheet surface layer to 70 mass ppm or less, the austenitic iron region heated before quenching promotes the growth of crystal grains. By this, it is difficult to obtain a structure such as polished iron and matte iron in the cooling stage, and the specified surface hardness is obtained without causing insufficient quenching. The average concentration of the amount of N present as AlN in the region from the surface layer to a depth of 100 μm is preferably 50 mass ppm or less. In addition, from the viewpoint of suppressing abnormal grain growth during the heating of the austenitic iron region, the average concentration of the amount of N is preferably 10 mass ppm or more, and more preferably 20 mass ppm or more.

本發明中,判明對於鋼板表層部的固溶B量以及作為AlN存在的N量而言,加熱條件、捲繞條件、退火條件的各步驟中的製造條件密切相關,需要最優化這一系列的製造條件。再者,在各步驟中為了得到固溶B量及作為AlN的N量所需要的理由將在後面敘述。In the present invention, it is found that the amount of solute B in the surface layer of the steel sheet and the amount of N present as AlN are closely related to the manufacturing conditions in each step of heating conditions, winding conditions, and annealing conditions, and it is necessary to optimize this series Manufacturing conditions. In addition, the reason required to obtain the amount of solid solution B and the amount of N as AlN in each step will be described later.

3)機械特性 本發明的高碳熱軋鋼板因藉由冷壓來使齒輪、變速器、靠背椅等汽車用零件成形,故需要優異的加工性。另外,必須藉由淬火處理來增大硬度,而賦予耐磨耗性。因此,本發明的高碳熱軋鋼板藉由降低鋼板的拉伸強度而使拉伸強度(TS)為480 MPa以下,並且提高伸長率而使總伸長率(El)為33%以上,從而具有優異的冷加工性,並且能夠兼顧優異的淬火性(浸入淬火性、滲碳淬火性)。進而佳為將TS設為460 MPa以下,將El設為35%以上。3) Mechanical characteristics The high-carbon hot-rolled steel sheet of the present invention needs to have excellent workability because it is cold-pressed to form automotive parts such as gears, transmissions, and backrests. In addition, it is necessary to increase the hardness by quenching treatment to impart wear resistance. Therefore, the high-carbon hot-rolled steel sheet of the present invention reduces the tensile strength of the steel sheet so that the tensile strength (TS) is 480 MPa or less, and the elongation is increased to make the total elongation (El) 33% or more, thereby having Excellent cold workability, and can have excellent hardenability (immersion hardenability, carburizing hardenability). More preferably, TS is 460 MPa or less, and El is 35% or more.

另外,設想成形需要冷壓性的難成形零件,進一步降低鋼板的拉伸強度,使TS為440 MPa以下,並且提高總伸長率,使El為36%以上,藉此具有優異的冷加工性,並且兼顧優異的淬火性(浸入淬火性、滲碳淬火性)。進而佳為將TS設為410 MPa以下,將El設為38%以上。In addition, imagine forming difficult-to-form parts requiring cold pressability, further reduce the tensile strength of the steel sheet, make TS less than 440 MPa, and increase the total elongation to make El 36% or more, thereby having excellent cold workability, and Both excellent hardenability (immersion hardenability, carburizing hardenability). More preferably, TS is 410 MPa or less, and El is 38% or more.

再者,上述的拉伸強度(TS)、總伸長率(El)可藉由後述的實施例所記載的方法來測定。In addition, the above-mentioned tensile strength (TS) and total elongation (El) can be measured by the method described in the below-mentioned Examples.

4)製造方法 本發明的高碳熱軋鋼板藉由如下方式來製造,即以具有上述成分組成的鋼為原材料,將該原材料(鋼原材料)熱粗軋後,以最終軋製結束溫度:Ar3 變態點以上進行最終軋製,然後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃,以捲繞溫度:500℃~700℃進行捲繞,冷卻至常溫而製成熱軋鋼板後,實施將熱軋鋼板以平均加熱速度:15℃/h以上加熱至450℃~600℃的溫度範圍,以退火溫度:小於Ac1 變態點保持1.0 h以上的退火。4) Manufacturing method The high-carbon hot-rolled steel sheet of the present invention is manufactured by using steel with the above-mentioned composition as a raw material, and after hot rough rolling the raw material (steel raw material), the final rolling end temperature: Ar The final rolling is performed above the transformation point, and then cooled to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec, coiled at a winding temperature: 500°C to 700°C, and cooled to room temperature After the hot-rolled steel sheet is made, the hot-rolled steel sheet is heated to a temperature range of 450°C to 600°C at an average heating rate: 15°C/h or more, and annealing is performed at an annealing temperature: less than the Ac 1 transformation point for more than 1.0 h.

另外,藉由如下方式來製造,即,以具有上述成分組成的鋼為原材料,將該原材料(鋼原材料)熱粗軋後,以最終軋製結束溫度:Ar3 變態點以上進行最終軋製,然後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃,以捲繞溫度:500℃~700℃進行捲繞,冷卻至常溫而製成熱軋鋼板後,實施將熱軋鋼板以平均加熱速度:15℃/h以上加熱至450℃~600℃的溫度範圍,並以Ac1 變態點以上Ac3 變態點以下保持0.5 h以上,繼而以平均冷卻速度:1℃/h~20℃/h冷卻至小於Ar1 變態點,以小於Ar1 變態點保持20 h以上的二段退火。In addition, it is manufactured by using steel having the above-mentioned composition as a raw material, after hot rough rolling the raw material (steel raw material), and then performing final rolling at a final rolling end temperature: Ar 3 transformation point or higher, Then, cool to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec, wind at a winding temperature: 500°C to 700°C, and cool to room temperature to make a hot rolled steel sheet. Heat the hot-rolled steel sheet at an average heating rate: 15°C/h or more to a temperature range of 450°C to 600°C, and keep it at the Ac 1 transformation point or more and Ac 3 transformation point for 0.5 h or more, and then the average cooling rate: 1°C /h~20℃/h to cool down to less than Ar 1 transformation point, and keep it less than Ar 1 transformation point for more than 20 hours of two-stage annealing.

以下,對本發明的高碳熱軋鋼板的製造方法中的限定理由進行說明。再者,在說明中,與溫度相關的「℃」表示是代表鋼板表面或鋼原材料的表面的溫度。Hereinafter, the reason for the limitation in the method of manufacturing the high-carbon hot-rolled steel sheet of the present invention will be explained. Furthermore, in the description, the temperature-related "°C" indicates the temperature of the surface of the steel sheet or the surface of the steel material.

在本發明中,鋼原材料的製造方法無需特別限定。例如,為了熔製本發明的高碳鋼,轉爐、電爐均可使用。利用轉爐等公知的方法熔製的高碳鋼藉由鑄塊-分塊軋製或連續鑄造而成為板坯等(鋼原材料)。板坯通常在加熱後進行熱軋(熱粗軋、最終軋製)。In the present invention, the manufacturing method of the steel raw material does not need to be particularly limited. For example, in order to melt the high carbon steel of the present invention, both a converter and an electric furnace can be used. The high-carbon steel melted by a known method such as a converter is converted into a slab or the like (steel raw material) by ingot-dividing rolling or continuous casting. Slabs are usually hot rolled (hot rough rolling, final rolling) after heating.

例如,在藉由連續鑄造製造的板坯的情況下,於為藉由連續鑄造所製造的鋼坯的情況下,亦可應用直軋,該直軋直接進行軋製,或者為了抑制溫度降低而保溫後進行軋製。另外,於對板坯進行加熱來進行熱軋的情況下,為了避免由鏽引起的表面狀態的劣化,較佳為將板坯的加熱溫度設為1280℃以下。再者,板坯的加熱溫度的下限較佳為1100℃,進而佳為1150℃,進而更佳為1200℃以上。再者,在熱軋中,為了確保最終軋製結束溫度,亦可在熱軋中藉由薄板坯加熱器(Sheet Bar heater)等加熱機構來進行被軋製材料的加熱。For example, in the case of a slab manufactured by continuous casting, in the case of a steel slab manufactured by continuous casting, straight rolling may also be applied. The straight rolling is directly rolled, or in order to suppress temperature drop and heat preservation After rolling. In addition, in the case of heating a slab for hot rolling, in order to avoid deterioration of the surface condition due to rust, it is preferable to set the heating temperature of the slab to 1280°C or lower. Furthermore, the lower limit of the heating temperature of the slab is preferably 1100°C, more preferably 1150°C, and still more preferably 1200°C or higher. Furthermore, in hot rolling, in order to ensure the final rolling end temperature, the material to be rolled may be heated by a heating mechanism such as a sheet bar heater during hot rolling.

以最終軋製結束溫度:Ar3 變態點以上進行最終軋製 最終軋製結束溫度不足Ar3 變態點時,熱軋後及退火後形成粗大的肥粒鐵粒,延伸率顯著降低。因此,最終軋製結束溫度設為Ar3 變態點以上。較佳為(Ar3 變態點+20℃)以上。再者,最終軋製結束溫度的上限無需特別規定,但為了順利進行最終軋製後的冷卻,較佳為1000℃以下。The final rolling is performed at the final rolling end temperature: Ar 3 transformation point or higher. When the final rolling end temperature is less than the Ar 3 transformation point, coarse iron grains are formed after hot rolling and annealing, and the elongation is significantly reduced. Therefore, the final rolling end temperature is set to be equal to or higher than the Ar 3 transformation point. It is preferably (Ar 3 transformation point + 20°C) or higher. In addition, the upper limit of the final rolling end temperature does not need to be particularly specified, but in order to smoothly perform cooling after the final rolling, it is preferably 1000° C. or lower.

再者,上述Ar3 變態點可藉由利用全自動相變儀(formastor)等的冷卻時的熱膨脹測定或利用電阻測定的實測來確定。In addition, the aforementioned Ar 3 transformation point can be determined by thermal expansion measurement during cooling using a fully automatic phase changer (formastor) or the like or actual measurement by electrical resistance measurement.

最終軋製後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃ 最終軋製後,至650℃~750℃的平均冷卻速度對退火後的球狀化雪明碳鐵的尺寸有很大影響。最終軋製後,平均冷卻速度不足20℃/sec時,作為退火前組織成為肥粒鐵組織過多的肥粒鐵和波來鐵組織,因此退火後無法得到規定的雪明碳鐵分散狀態和尺寸。因此,必須在20℃/sec以上進行冷卻。較佳為25℃/sec以上。另一方面,平均冷卻速度超過100℃/sec時,退火後難以得到具有規定尺寸的雪明碳鐵,因此設為100℃/sec以下。較佳為75℃/sec以下。After the final rolling, cool down to 650℃~750℃ at an average cooling rate: 20℃/sec~100℃/sec After the final rolling, the average cooling rate to 650°C to 750°C has a great influence on the size of the annealed spheroidized snow carbon iron. After the final rolling, when the average cooling rate is less than 20°C/sec, the structure before annealing becomes the ferrous iron and the poriferous iron structure with too much ferrous iron structure. Therefore, the specified Xueming carbon iron dispersion state and size cannot be obtained after annealing. . Therefore, cooling must be performed at 20°C/sec or more. Preferably it is 25°C/sec or more. On the other hand, when the average cooling rate exceeds 100°C/sec, it is difficult to obtain snow carbon iron having a predetermined size after annealing, so it is set to 100°C/sec or less. Preferably it is 75°C/sec or less.

捲繞溫度:500℃~700℃ 最終軋製後的熱軋鋼板捲繞成線圈形狀。捲繞溫度過高時熱軋鋼板的強度過低,捲繞成線圈形狀時,有時會因線圈的自重而變形。因此,自作業上的觀點來看並不佳。因此,將捲繞溫度上限設為700℃。較佳為690℃以下。另一方面,捲繞溫度過低時,熱軋鋼板硬質化,因此不較佳。因此,捲繞溫度設為500℃。較佳為530℃以上。Winding temperature: 500℃~700℃ The hot-rolled steel sheet after final rolling is wound into a coil shape. When the winding temperature is too high, the strength of the hot-rolled steel sheet is too low, and when wound into a coil shape, the coil may deform due to its own weight. Therefore, it is not good from the operational point of view. Therefore, the upper limit of the winding temperature is 700°C. Preferably it is 690°C or less. On the other hand, when the winding temperature is too low, the hot-rolled steel sheet becomes hardened, which is not preferable. Therefore, the winding temperature is set to 500°C. It is preferably 530°C or higher.

捲繞成線圈狀後,冷卻至常溫,可實施酸洗處理。酸洗處理後,進行退火。再者,酸洗處理可適用公知的方法。其後,對得到的熱軋鋼板實施以下的退火。After being wound into a coil shape, it can be cooled to room temperature and pickled. After the pickling treatment, annealing is performed. In addition, a known method can be applied to the pickling treatment. After that, the following annealing was performed on the obtained hot-rolled steel sheet.

450℃~600℃溫度範圍的平均加熱速度:15℃/h以上 對如上得到的熱軋鋼板實施退火(雪明碳鐵的球狀化退火)。在氮環境中的退火中,在450℃~600℃的溫度範圍內容易產生氨氣,自氨氣中分解的氮進入表面鋼板,與鋼中的B和Al結合生成氮化物。因此,盡可能縮短450℃~600℃的溫度範圍的加熱時間。在該溫度範圍內的平均加熱速度為15℃/h以上。較佳為20℃/h以上。自以提高生產率為目的而抑制爐內的偏差的觀點出發,較佳為100℃/h以下,進而佳為70℃/h以下。Average heating rate in the temperature range of 450℃~600℃: 15℃/h or more The hot-rolled steel sheet obtained as described above is annealed (spheroidizing annealing of Xueming carbon iron). During annealing in a nitrogen environment, ammonia gas is easily generated in the temperature range of 450°C to 600°C. The nitrogen decomposed from the ammonia gas enters the surface steel plate and combines with B and Al in the steel to form nitrides. Therefore, the heating time in the temperature range of 450°C to 600°C should be shortened as much as possible. The average heating rate in this temperature range is 15°C/h or more. Preferably it is 20°C/h or more. From the viewpoint of suppressing variations in the furnace for the purpose of improving productivity, it is preferably 100°C/h or less, and more preferably 70°C/h or less.

以退火溫度:低於Ac1 變態點保持1.0 h以上 退火溫度在Ac1 變態點以上時,沃斯田鐵析出,退火後的冷卻過程中形成粗大波來鐵組織,形成不均勻的組織。因此,退火溫度設為不足Ac1 變態點。較佳為(Ac1 變態點-10℃)以下。再者,退火溫度的下限沒有特別規定,但是為了得到規定的雪明碳鐵分散狀態,退火溫度較佳為600℃以上,進而佳為700℃以上。再者,環境氣體可使用氮氣、氫氣、氮氣和氫氣的混合氣體中的任一種。另外,上述退火溫度下的保持時間設為1.0小時(h)以上。若退火溫度下的保持時間不足1.0小時,則退火的效果缺乏,無法得到作為本發明的目標的組織,其結果,無法得到作為本發明的目標的鋼板的硬度和伸長率。因此,退火溫度下的保持時間為1.0小時以上。較佳為5小時以上,進而佳為超過20小時。另一方面,若上述退火溫度下的保持時間超過40.0小時,則生產率降低,製造成本過大。因此,上述退火溫度下的保持時間較佳為40.0小時以下。進而佳為35小時以下。Annealing temperature: below the Ac 1 transformation point for more than 1.0 h. When the annealing temperature is above the Ac 1 transformation point, austenitic iron is precipitated, and a coarse iron structure is formed during the cooling process after annealing, forming an uneven structure. Therefore, the annealing temperature is set to be less than the Ac 1 transformation point. It is preferably (Ac 1 transformation point -10°C) or lower. In addition, the lower limit of the annealing temperature is not particularly specified, but in order to obtain a predetermined dispersion of snow carbon iron, the annealing temperature is preferably 600°C or higher, and more preferably 700°C or higher. Furthermore, the ambient gas can use any of nitrogen, hydrogen, a mixed gas of nitrogen and hydrogen. In addition, the holding time at the above-mentioned annealing temperature is 1.0 hour (h) or more. If the holding time at the annealing temperature is less than 1.0 hour, the effect of annealing is insufficient and the structure targeted by the present invention cannot be obtained. As a result, the hardness and elongation of the steel sheet targeted by the present invention cannot be obtained. Therefore, the holding time at the annealing temperature is 1.0 hour or more. It is preferably 5 hours or more, and more preferably more than 20 hours. On the other hand, if the holding time at the above-mentioned annealing temperature exceeds 40.0 hours, the productivity decreases and the manufacturing cost becomes excessive. Therefore, the holding time at the above annealing temperature is preferably 40.0 hours or less. More preferably, it is 35 hours or less.

在本發明中,能夠代替上述的退火而實施以下的2段退火。具體而言,亦可藉由如下方式製造:捲繞並冷卻至常溫而形成熱軋鋼板後,實施對所述熱軋鋼板以平均加熱速度:15℃/h以上在450℃~600℃的溫度範圍加熱,以Ac1 變態點以上且Ac3 變態點以下保持0.5 h以上(第1段的退火),接著,以平均冷卻速度:1℃/h~20℃/h冷卻至小於Ar1 變態點,以小於Ar1 變態點保持20 h以上(第2段退火)的2段退火。In the present invention, the following two-stage annealing can be performed instead of the above-mentioned annealing. Specifically, it can also be manufactured by the following method: after winding and cooling to room temperature to form a hot-rolled steel sheet, the hot-rolled steel sheet is subjected to an average heating rate: 15°C/h or more at a temperature of 450°C to 600°C Range heating, keep at least Ac 1 transformation point and below Ac 3 transformation point for 0.5 h or more (the first stage of annealing), and then cool down to less than Ar 1 transformation point at an average cooling rate: 1℃/h~20℃/h , Keep the transformation point less than Ar 1 for more than 20 h (second annealing) two-stage annealing.

在本發明中,將熱軋鋼板以平均加熱速度:15℃/h以上在450℃~600℃的溫度範圍加熱,以Ac1 變態點以上保持0.5h以上,溶解熱軋鋼板中析出的比較微細的碳化物,使其固溶於γ相中,然後以平均冷卻速度:1℃/h~20℃/h冷卻至不足Ar1 變態點,以不足Ar1 變態點保持20 h以上。藉此,以比較粗大的未溶解碳化物等為核析出固溶C,可成為使當量圓直徑0.1 μm以下的雪明碳鐵數相對於整體雪明碳鐵數的比例為20%以下般的,控制碳化物(雪明碳鐵)的分散的狀態。即,在本發明中,藉由在規定條件下實施2段退火,控制碳化物的分散形態,使鋼板軟質化。於在本發明中作為對象的高碳鋼板中,在軟質化的基礎上控制退火後的碳化物的分散形態變得重要。在本發明中,藉由在Ac1 變態點以上且Ac3 變態點以下保持高碳熱軋鋼板(第1段退火),使微細的碳化物溶解,將C固溶於γ(沃斯田鐵)中。在之後的低於Ar1 變態點的冷卻階段和保持階段(第2階段的退火),在Ac1 變態點以上的溫度區域存在的α/γ界面和未溶解碳化物成為核生成位點,析出比較粗大的碳化物。以下,對此種2段退火的條件進行說明。再者,退火時的環境氣體可使用氮氣、氫氣、氮氣和氫氣的混合氣體的任一種。In the present invention, the hot-rolled steel sheet is heated at an average heating rate: 15°C/h or more in the temperature range of 450°C to 600°C, and maintained at the Ac 1 transformation point or more for 0.5h or more, and the precipitates in the hot-rolled steel sheet are relatively finely dissolved. The carbides are dissolved in the γ phase, and then cooled to less than the Ar 1 transformation point at an average cooling rate of 1°C/h to 20°C/h, and kept for more than 20 h if the Ar 1 transformation point is less than. As a result, solid solution C is precipitated with relatively coarse undissolved carbides as the nucleus, and the ratio of the number of snow carbon and iron with an equivalent circle diameter of 0.1 μm or less to the total number of snow carbon and iron is 20% or less. , Control the dispersion state of carbides (Xue Ming Carbon Iron). That is, in the present invention, by performing two-stage annealing under predetermined conditions, the dispersion form of carbides is controlled and the steel sheet is softened. In the high-carbon steel sheet targeted in the present invention, it is important to control the dispersion form of carbides after annealing in addition to softening. In the present invention, by maintaining the high carbon hot-rolled steel sheet above the Ac 1 transformation point and below the Ac 3 transformation point (first stage annealing), fine carbides are dissolved, and C is dissolved in γ (austenitic iron). )in. In the subsequent cooling stage and holding stage below the Ar 1 transformation point (second stage annealing), the α/γ interface and undissolved carbides existing in the temperature range above the Ac 1 transformation point become nucleation sites and precipitate Larger carbides. Hereinafter, the conditions of this two-stage annealing will be described. Furthermore, the ambient gas during annealing can be any of nitrogen, hydrogen, and a mixed gas of nitrogen and hydrogen.

450℃~600℃的溫度範圍的平均加熱速度:15℃/h以上 以與上述相同的理由,在450℃~600℃的溫度範圍內容易產生氨氣,自氨氣分解的氮進入表面鋼板,與鋼中的B、Al結合生成氮化物,因此盡可能縮短450℃~600℃的溫度範圍的加熱時間。在該溫度範圍內的平均加熱速度設為15℃/h以上。較佳為20℃/h以上。平均加熱速度的上限較佳為100℃/h,進而佳為90℃/h以下。Average heating rate in the temperature range of 450℃~600℃: 15℃/h or more For the same reason as above, ammonia gas is easily generated in the temperature range of 450°C to 600°C. Nitrogen decomposed from ammonia gas enters the surface steel plate and combines with B and Al in the steel to form nitrides. Therefore, shorten 450°C as much as possible Heating time in the temperature range of ~600°C. The average heating rate in this temperature range is set to 15°C/h or more. Preferably it is 20°C/h or more. The upper limit of the average heating rate is preferably 100°C/h, and more preferably 90°C/h or less.

以Ac1 變態點以上、Ac3 變態點以下保持0.5h以上(第1段退火) 藉由將以Ac1 變態點以上保持熱軋鋼板,使鋼板組織的肥粒鐵的一部分相變為沃斯田鐵,使肥粒鐵中析出的微細碳化物溶解,使C固溶於沃斯田鐵中。另一方面,未相變成沃斯田鐵而殘留的肥粒鐵在高溫下被退火,因此位錯密度減少而軟化。另外,肥粒鐵中殘留有未溶解的比較粗大的碳化物(未溶解碳化物),但藉由奧斯華粗化,變得更粗大。退火溫度低於Ac1 變態點時,不產生沃斯田鐵相變,因此不能使碳化物固溶於沃斯田鐵中。另一方面,第1段的退火溫度超過Ac3 變態點時,退火後得到許多棒狀雪明碳鐵,得不到規定的伸長率,因此設為Ac3 變態點以下。另外,本發明中,Ac1 變態點以上、Ac3 變態點以下的保持時間不足0.5 h時,不能充分溶解微細的碳化物。因此,作為第1段的退火,設為以Ac1 變態點以上、Ac3 變態點以下保持0.5 h以上。保持時間較佳為1.0 h以上。另外,保持時間較佳為10 h以下。再者,即使在以Ac1 變態點以上、Ac3 變態點以下進行保持來退火的情況下,加熱速度較佳為將450℃~600℃的溫度範圍的平均加熱速度設為15℃/h以上,將上限設為100℃/h以下。Keep at the Ac 1 transformation point or more and Ac 3 transformation point for 0.5h or more (first stage annealing). By keeping the hot-rolled steel sheet at the Ac 1 transformation point or higher, part of the ferrous iron in the steel sheet structure is transformed into Voss Tien iron dissolves the fine carbides precipitated in the fertilizer grain iron, so that C is dissolved in the austenitic iron. On the other hand, the ferrous iron remaining without being transformed into austenitic iron is annealed at a high temperature, so the dislocation density is reduced and softened. In addition, there are relatively coarse undissolved carbides (undissolved carbides) remaining in the fertilized iron, but they become coarser by Oswald coarsening. When the annealing temperature is lower than the Ac 1 transformation point, the austenitic iron phase transformation does not occur, and therefore the carbide cannot be dissolved in the austenitic iron. On the other hand, when the annealing temperature in the first stage exceeds the Ac 3 transformation point, many rod-shaped snow carbon irons are obtained after annealing, and the predetermined elongation cannot be obtained, so the Ac 3 transformation point is set to be below the Ac 3 transformation point. In addition, in the present invention, when the retention time of Ac 1 transformation point or more and Ac 3 transformation point or less is less than 0.5 h, fine carbides cannot be sufficiently dissolved. Therefore, as the first stage of annealing, it is assumed to be maintained at the Ac 1 transformation point or more and Ac 3 transformation point or less for 0.5 h or more. The retention time is preferably 1.0 h or more. In addition, the holding time is preferably 10 h or less. In addition, even in the case of annealing by holding the Ac 1 transformation point or more and Ac 3 transformation point or less, the heating rate is preferably set to an average heating rate of 15°C/h or more in the temperature range of 450°C to 600°C , Set the upper limit to 100°C/h or less.

以平均冷卻速度:1℃/h~20℃/h冷卻至小於Ar1 變態點 在上述第1段退火後,以平均冷卻速度:1℃/h~20℃/h冷卻至小於作為第2段退火的溫度區域的Ar1 變態點。冷卻過程中,伴隨著自沃斯田鐵向肥粒鐵的相變,自沃斯田鐵排出的C以α/γ界面或未溶解碳化物為核生成位點,作為比較粗大的球狀碳化物析出。在此冷卻中,必須調節冷卻速率以不生成波來鐵。第1段退火後至第2段退火的平均冷卻速度不足1℃/h時,生產效率差,因此該平均冷卻速度為1℃/h以上。較佳為5℃/h以上。另一方面,平均冷卻速度超過20℃/h而變大時,波來鐵析出,硬度變高,因此設為20℃/h以下。較佳為15℃/h以下。Cooling at an average cooling rate: 1℃/h~20℃/h to less than Ar 1 transformation point After annealing in the first stage above, cooling at an average cooling rate: 1℃/h~20℃/h to less than the second stage Ar 1 transformation point in the annealing temperature range. During the cooling process, with the phase transition from austenitic iron to fat iron, the C discharged from austenitic iron takes the α/γ interface or undissolved carbides as nucleation sites, as relatively coarse spherical carbonization Matter precipitated out. In this cooling, the cooling rate must be adjusted so as not to generate wavelet iron. When the average cooling rate from the first stage annealing to the second stage annealing is less than 1°C/h, the production efficiency is poor, so the average cooling rate is 1°C/h or more. Preferably it is 5°C/h or more. On the other hand, when the average cooling rate exceeds 20° C./h and becomes larger, poriferous iron is precipitated and the hardness becomes higher, so it is made 20° C./h or less. Preferably it is 15 degrees C/h or less.

以小於Ar1 變態點保持20h以上(第2段退火) 上述第1段退火後,以規定的平均冷卻速度冷卻,以低於Ar1 變態點保持,藉由奧斯華粗化,使粗大的球狀碳化物進一步生長,使微細的碳化物消失。小於Ar1 變態點的保持時間不足20 h時,無法使碳化物充分生長,退火後的硬度變得過大。因此,第2階段的退火以小於Ar1 變態點保持20 h以上。再者,沒有特別限定,但第二段的退火溫度為了使碳化物充分生長,因此較佳為660℃以上,另外,自生產效率的觀點出發,保持時間較佳為30 h以下。Keep at less than Ar 1 transformation point for more than 20 hours (second stage annealing) After the above-mentioned first stage annealing, cool at a predetermined average cooling rate, keep it at a lower transformation point than Ar 1 , and coarsen it by Oswald Spherical carbides grow further, and fine carbides disappear. If the retention time shorter than the Ar 1 transformation point is less than 20 h, the carbide cannot be grown sufficiently, and the hardness after annealing becomes too large. Therefore, the annealing in the second stage is kept below the transformation point of Ar 1 for more than 20 h. In addition, it is not particularly limited, but the annealing temperature in the second stage is preferably 660° C. or higher in order to fully grow carbides. In addition, from the viewpoint of production efficiency, the holding time is preferably 30 h or less.

再者,上述的Ac3 變態點、Ac1 變態點、Ar3 變態點、Ar1 變態點可藉由變態點測定(自動相變儀(formastor))試驗等的加熱時、冷卻時的熱膨脹測定或藉由電阻測定的實測來確定。In addition, the above-mentioned Ac 3 transformation point, Ac 1 transformation point, Ar 3 transformation point, and Ar 1 transformation point can be measured by thermal expansion during heating and cooling such as the transformation point measurement (automatic phase changer (formastor)) test. Or it can be determined by the actual measurement of resistance measurement.

另外,上述的平均加熱速度、平均冷卻速度是設置在爐內的熱電偶測定溫度來求出。 實施例In addition, the above-mentioned average heating rate and average cooling rate are obtained by measuring the temperature of a thermocouple installed in the furnace. Example

熔製具有表1所示鋼序號A~T的成分組成的鋼,接著按照表2-1及表3-1所示的製造條件進行熱軋。繼而,進行酸洗,在氮氣環境中(環境氣體:氮氣),在表2-1及表3-1所示的退火溫度及退火時間(h)下實施退火(球狀化退火),製造板厚3.0 mm的熱軋退火板。Steels having the component compositions of the steel numbers A to T shown in Table 1 were melted, and then hot rolled under the production conditions shown in Tables 2-1 and 3-1. Then, pickling is performed, and annealing (spheroidizing annealing) is performed in a nitrogen environment (ambient gas: nitrogen) at the annealing temperature and annealing time (h) shown in Table 2-1 and Table 3-1 to produce a plate 3.0 mm thick hot rolled annealed sheet.

在本發明的實施例中,自如此得到的熱軋退火板中採集試驗片,如下所述,分別求出微組織、固溶B量、AlN中的N量、拉伸強度、總伸長率以及淬火硬度(淬火後的鋼板硬度、滲碳淬火後的鋼板硬度)。再者,表1所示的Ac3 變態點、Ac1 變態點、Ar1 變態點及Ar3 變態點是藉由變態點測定試驗求出的。In the examples of the present invention, test pieces were collected from the hot-rolled and annealed sheets thus obtained, and the microstructure, the amount of solid solution B, the amount of N in AlN, tensile strength, total elongation, and Quenching hardness (hardness of steel plate after quenching, steel plate hardness after carburizing and quenching). In addition, the Ac 3 transformation point, Ac 1 transformation point, Ar 1 transformation point, and Ar 3 transformation point shown in Table 1 were obtained by a transformation point measurement test.

(1)微組織 退火後的鋼板的微組織是將自板寬中央部採集的試驗片(大小:3 mmt×10 mm×10 mm)切斷研磨後,實施硝酸浸蝕液腐蝕,使用掃描型電子顯微鏡(scanning electron microscope,SEM),在自表層起板厚1/4處的5個部位以3000倍的倍率進行拍攝。拍攝所得的組織照片藉由圖像處理確定了各相(肥粒鐵、雪明碳鐵、波來鐵等)。表2-2和表3-2中作為微組織記載了「波來鐵面積率」,關於波來鐵以面積率計確認超過6.5%的鋼,作為比較例。以面積率計具有6.5%以下的波來鐵、肥粒鐵和雪明碳鐵的鋼作為本發明例。(1) Micro organization The microstructure of the annealed steel sheet is a test piece (size: 3 mmt×10 mm×10 mm) collected from the center of the width of the plate, cut and polished, and then corroded by a nitric acid etching solution. The scanning electron microscope is used. , SEM), shooting at 3000 times magnification at 5 locations at 1/4 of the thickness from the surface. The photographs of the tissues obtained were used to determine the phases (ferrous iron, snow carbon iron, pleite, etc.) through image processing. In Table 2-2 and Table 3-2, the "Polalite area ratio" is described as the microstructure, and the steel whose area ratio exceeds 6.5% was confirmed as a comparative example. Steels having polished iron, ferrite iron, and snow carbon iron in an area ratio of 6.5% or less are examples of the present invention.

另外,使用圖像解析軟體,根據SEM圖像將肥粒鐵和肥粒鐵以外的區域二值化,求出肥粒鐵的面積率(%)。雪明碳鐵亦同樣,使用圖像解析軟體,根據SEM圖像將雪明碳鐵和雪明碳鐵以外的區域二值化,求出雪明碳鐵的面積率(%)。另外,波來鐵以自100(%)減去肥粒鐵和雪明碳鐵的各面積率(%)而得到的值作為波來鐵的面積率(%)。In addition, using image analysis software, binarize the areas other than the fat iron and the fat iron based on the SEM image to obtain the area ratio (%) of the fat iron. The same applies to Xueming Carbon Iron. Using image analysis software, the area other than Xueming Carbon Iron and Xueming Carbon Iron is binarized based on the SEM image to obtain the area ratio (%) of Xueming Carbon Iron. In addition, the area ratio (%) of plethyrite is the value obtained by subtracting the area ratios (%) of the ferrite iron and the snow-carbon iron from 100 (%).

另外,針對拍攝而得的組織照片,對各個雪明碳鐵直徑進行了評價。測量長徑和短徑,將雪明碳鐵直徑換算成當量圓直徑。平均雪明碳鐵直徑是用換算成當量圓直徑的全部雪明碳鐵的當量圓直徑的合計除以雪明碳鐵總數而求出。測定當量圓直徑的值為0.1 μm以下的雪明碳鐵的個數,作為當量圓直徑為0.1 μm以下的雪明碳鐵的數量。另外,求出總雪明碳鐵的個數,作為總雪明碳鐵數。並且,求出當量圓直徑0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數的比例((當量圓直徑0.1 μm以下的雪明碳鐵數/總雪明碳鐵數)×100(%))。再者,有時亦將該「當量圓直徑0.1 μm以下的雪明碳鐵的比例」簡稱為當量圓直徑0.1 μm以下的雪明碳鐵。In addition, the diameter of each Xueming carbon iron was evaluated with respect to the photograph of the structure. Measure the long and short diameters, and convert the Xueming carbon iron diameter into an equivalent circle diameter. The average Xueming carbon iron diameter is calculated by dividing the sum of the equivalent circle diameters of all Xueming carbon irons converted to the equivalent circle diameter by the total number of Xueming carbon irons. The value of the equivalent circle diameter is measured as the number of snow carbon irons with an equivalent circle diameter of 0.1 μm or less, and is taken as the number of snow carbon irons with an equivalent circle diameter of 0.1 μm or less. In addition, the number of total Xueming carbon and iron was calculated as the total Xueming carbon and iron number. In addition, calculate the ratio of the number of snow carbon and iron with an equivalent circle diameter of 0.1 μm or less to the total number of snow carbon and iron ((the number of snow carbon and iron with an equivalent circle diameter of 0.1 μm or less/total snow carbon and iron number)×100 (%)). In addition, the "ratio of the iron with an equivalent circle diameter of 0.1 μm or less" may also be simply referred to as an iron with an equivalent circle diameter of 0.1 μm or less.

另外,對於拍攝而得的組織照片,使用JIS G 0551中規定的結晶粒度的評價方法(切斷法),求出肥粒鐵的平均粒徑。In addition, with regard to the photographic structure photograph, the average particle size of the fat iron was determined by using the crystal grain size evaluation method (cutting method) specified in JIS G 0551.

(2)固溶B量的平均濃度的測定 以與下述參考文獻中記載的方法相同的方法求出。即,收集自表層到深度100 μm的區域的研磨粉並測定三次,將該平均值作為固溶B量的平均濃度而求出。 [參考文獻]城代哲史、石田智治、豬瀨國生、藤本京子、≪鐵與鋼≫,vol.99(2013)No.5,p.362-365 (3)作為AlN存在的N量的平均濃度的測定 與上述同樣地,以與下述參考文獻中記載的方法相同的方法,求出作為AlN存在的N量的平均濃度。 [參考文獻]城代哲史,石田智治,豬瀨國生,藤本京子,≪鐵與鋼≫,vol.99(2013)No.5,p.362-365 (4)鋼板的拉伸強度和伸長率 使用在相對於軋製方向為0°的方向(L方向)上自退火後的鋼板(原板)切出的JIS 5號拉伸試驗片,以10 mm/分鐘進行拉伸試驗,求出公稱應力公稱應變曲線,將最大應力作為拉伸強度。另外,將斷裂的樣品對接,求出總伸長率。其結果設為伸長率(El)。(2) Determination of the average concentration of solid solution B It is determined by the same method as described in the following references. That is, the grinding powder from the surface layer to a depth of 100 μm is collected and measured three times, and the average value is determined as the average concentration of the solid solution B amount. [References] Tetsushi Castle, Tomoharu Ishida, Kunio Inose, Kyoko Fujimoto, ≪Iron and Steel≫, vol.99 (2013) No.5, p.362-365 (3) Measurement of the average concentration of the amount of N present as AlN In the same manner as described above, the average concentration of the amount of N present as AlN was determined by the same method as that described in the following references. [References] Tetsushi Castle, Tomoharu Ishida, Kunio Inose, Kyoko Fujimoto, "Iron and Steel", vol.99 (2013) No.5, p.362-365 (4) Tensile strength and elongation of steel plate Use a JIS No. 5 tensile test piece cut from the annealed steel sheet (original plate) in the direction (L direction) at 0° relative to the rolling direction, and perform a tensile test at 10 mm/min to obtain the nominal stress The nominal strain curve uses the maximum stress as the tensile strength. In addition, the broken samples were butted, and the total elongation was determined. The result is defined as elongation (El).

(5)淬火後的鋼板硬度(浸入淬火性) 自退火後的鋼板的板寬中央採集平板試驗片(寬15 mm×長40 mm×板厚3 mm),如下般藉由70℃油冷實施淬火處理,求出淬火硬度(浸入淬火性)。淬火處理採用使用上述平板試驗片在900℃下保持600s並立即用70℃的油進行冷卻的方法(70℃油冷)實施。關於淬火硬度,對於淬火處理後的試驗片的切斷面,在距表層70 μm板厚內部的區域和1/4板厚,利用維氏硬度試驗機於負荷為0.2 kgf的條件下測定5處硬度並求出平均硬度,將其設為淬火硬度(HV)。再者,距上述的表層70 μm板厚內部的區域在表2-2及表3-2中表示為「表層」。(5) Hardness of steel plate after quenching (immersion hardenability) A flat test piece (width 15 mm × length 40 mm × plate thickness 3 mm) was collected from the center of the width of the annealed steel sheet, and quenched with oil cooling at 70°C as follows to determine the quenching hardness (immersion hardenability). The quenching treatment is performed by a method (70°C oil cooling) in which the above flat test piece is kept at 900°C for 600s and immediately cooled with 70°C oil. Regarding the quenching hardness, the cut surface of the test piece after the quenching treatment was measured at 5 places in the area 70 μm from the surface layer and 1/4 of the plate thickness using a Vickers hardness tester under a load of 0.2 kgf The hardness is calculated and the average hardness is determined, and this is defined as the quenching hardness (HV). In addition, the area within the thickness of 70 μm from the above-mentioned surface layer is indicated as "surface layer" in Table 2-2 and Table 3-2.

(6)滲碳淬火後鋼板硬度(滲碳淬火性) 對於退火後的鋼板,在930℃下以合計時間4小時進行鋼的均熱、滲碳處理、擴散處理等滲碳淬火處理,在850℃下保持30分鐘後,進行油冷(油冷的溫度:60℃)。在距鋼板表面的深度0.1 mm的位置和深度1.2 mm的位置,以0.1 mm間隔在載荷1 kgf的條件下測定硬度,求出滲碳淬火時的表層0.1 mm的硬度(HV)和有效硬化層深度(mm)。有效硬化層深度定義為自熱處理後表面測定硬度,成為550 HV以上的深度。(6) Hardness of steel plate after carburizing and quenching (carburizing and hardenability) For the annealed steel sheet, carburizing and quenching treatments such as soaking, carburizing, and diffusion treatment are carried out at 930°C for a total of 4 hours. After keeping at 850°C for 30 minutes, it is oil-cooled (the temperature of oil cooling). : 60℃). The hardness is measured at a depth of 0.1 mm from the surface of the steel plate and a position of 1.2 mm in depth at intervals of 0.1 mm under a load of 1 kgf, and the hardness (HV) and effective hardened layer of the surface layer at the time of carburizing and quenching are determined by 0.1 mm Depth (mm). The effective hardened layer depth is defined as the depth at which the hardness of the surface is measured after heat treatment and becomes 550 HV or more.

然後,根據由上述(5)、(6)得到的結果,在表4所示的條件下進行淬火性評價。表4表示能夠評價為淬火性充分的、對應於C含量的淬火性的合格標準。70℃油冷後硬度(HV)、滲碳淬火時表層0.1 mm深度的硬度(HV)及滲碳淬火時的有效硬化層深度全部滿足表4的標準時,判定為合格(用符號:○表示),評價為淬火性優異。另一方面,任一個值不滿足表4所示的標準時,判定為不合格(用符號:×表示),評價為淬火性差。Then, based on the results obtained in (5) and (6) above, the hardenability evaluation was performed under the conditions shown in Table 4. Table 4 shows the acceptance criteria of the hardenability corresponding to the C content that can be evaluated as sufficient hardenability. If the hardness (HV) after oil cooling at 70°C, the hardness (HV) of the surface layer depth of 0.1 mm during carburizing and quenching, and the effective hardened layer depth during carburizing and quenching all meet the criteria in Table 4, it is judged as qualified (marked by ○) , It is evaluated as excellent hardenability. On the other hand, when any of the values did not satisfy the criteria shown in Table 4, it was judged to be unacceptable (indicated by the symbol: ×), and the hardenability was evaluated as poor.

[表1] 鋼編號 成分組成(質量%) Ac1 變態點 (℃) Ar1 變態點 (℃) Ac3 變態點 (℃) Ar3 變態點 (℃) 備註 C Si Mn P S sol.Al N Cr B Sn、Sb Ti Nb Mo Ta Ni Cu V W A 0.20 0.01 0.55 0.02 0.004 0.030 0.0044 0.50 0.0030 Sb+Sn:0.010 726 716 836 824 本發明鋼 B 0.22 0.03 0.45 0.01 0.003 0.050 0.0041 0.40 0.0030 Sb:0.012 726 716 835 825 本發明鋼 C 0.28 0.79 0.50 0.02 0.004 0.010 0.0044 0.12 0.0020 Sb:0.025 743 737 852 840 本發明鋼 D 0.24 0.64 0.60 0.02 0.004 0.010 0.0044 0.65 0.0015 Sb+Sn:0.020 0.001 746 736 842 832 本發明鋼 E 0.23 0.85 0.40 0.02 0.004 0.010 0.0044 0.50 0.0025 Sb:0.010 0.001 752 742 861 851 比較鋼 F 0.22 0.15 0.85 0.02 0.004 0.050 0.0050 0.30 0.0035 Sb+Sn:0.010 723 713 829 827 比較鋼 G 0.22 0.30 0.40 0.01 0.003 0.006 0.0045 0.02 0.0030 Sb:0.012 728 718 835 825 本發明鋼 H 0.23 0.35 0.45 0.01 0.003 0.030 0.0050 0.40 0.0032 Sb:0.008 0.02 735 725 839 829 本發明鋼 I 0.22 0.01 0.35 0.01 0.003 0.050 0.0050 1.05 0.0020 Sb+Sn:0.010 737 727 832 820 比較鋼 J 0.23 0.01 0.45 0.01 0.003 0.030 0.0050 0.40 0.0032 0.000 725 727 824 814 比較鋼 K 0.35 0.01 0.35 0.02 0.004 0.010 0.0044 0.01 0.0020 Sb:0.009 0.0015 0.001 720 716 810 798 本發明鋼 L 0.33 0.15 0.31 0.01 0.003 0.120 0.0110 0.10 0.0015 Sb:0.025 0.01 726 716 855 845 比較鋼 M 0.35 0.05 0.35 0.02 0.004 0.020 0.0044 0.20 0.0001 Sb+Sn:0.012 724 714 811 801 比較鋼 N 0.36 0.01 0.04 0.02 0.003 0.050 0.0047 0.20 0.0030 Sb+Sn:0.011 0.0150 726 717 830 819 比較鋼 O 0.45 0.03 0.35 0.02 0.004 0.030 0.0050 0.02 0.0026 Sn+Sb:0.100 0.0020 0.0015 720 723 801 790 本發明鋼 P 0.48 0.25 0.31 0.01 0.004 0.010 0.0044 0.06 0.0025 Sb:0.009 0.025 0.0015 728 718 794 782 本發明鋼 Q 0.48 0.03 0.28 0.01 0.002 0.035 0.0052 0.45 0.0010 Sb+Sn:0.012 0.0015 728 716 788 778 本發明鋼 R 0.44 0.10 0.32 0.01 0.003 0.040 0.0047 0.05 0.0048 Sb:0.011 0.04 0.0015 723 713 803 793 本發明鋼 S 0.18 0.05 0.45 0.01 0.004 0.035 0.0050 0.40 0.0030 Sb:0.010 0.04 726 715 840 829 比較鋼 T 0.55 0.25 0.45 0.01 0.003 0.040 0.0050 0.45 0.0020 Sn+Sb:0.008 0.0012 733 722 785 775 比較鋼 [Table 1] Steel number Composition (mass%) Ac 1 transformation point (℃) Ar 1 transformation point (℃) Ac 3 transformation point (℃) Ar 3 transformation point (℃) Remarks C Si Mn P S sol.Al N Cr B Sn, Sb Ti Nb Mo Ta Ni Cu V W A 0.20 0.01 0.55 0.02 0.004 0.030 0.0044 0.50 0.0030 Sb+Sn: 0.010 726 716 836 824 Steel of the invention B 0.22 0.03 0.45 0.01 0.003 0.050 0.0041 0.40 0.0030 Sb: 0.012 726 716 835 825 Steel of the invention C 0.28 0.79 0.50 0.02 0.004 0.010 0.0044 0.12 0.0020 Sb: 0.025 743 737 852 840 Steel of the invention D 0.24 0.64 0.60 0.02 0.004 0.010 0.0044 0.65 0.0015 Sb+Sn: 0.020 0.001 746 736 842 832 Steel of the invention E 0.23 0.85 0.40 0.02 0.004 0.010 0.0044 0.50 0.0025 Sb: 0.010 0.001 752 742 861 851 Comparative steel F 0.22 0.15 0.85 0.02 0.004 0.050 0.0050 0.30 0.0035 Sb+Sn: 0.010 723 713 829 827 Comparative steel G 0.22 0.30 0.40 0.01 0.003 0.006 0.0045 0.02 0.0030 Sb: 0.012 728 718 835 825 Steel of the invention H 0.23 0.35 0.45 0.01 0.003 0.030 0.0050 0.40 0.0032 Sb: 0.008 0.02 735 725 839 829 Steel of the invention I 0.22 0.01 0.35 0.01 0.003 0.050 0.0050 1.05 0.0020 Sb+Sn: 0.010 737 727 832 820 Comparative steel J 0.23 0.01 0.45 0.01 0.003 0.030 0.0050 0.40 0.0032 0.000 725 727 824 814 Comparative steel K 0.35 0.01 0.35 0.02 0.004 0.010 0.0044 0.01 0.0020 Sb: 0.009 0.0015 0.001 720 716 810 798 Steel of the invention L 0.33 0.15 0.31 0.01 0.003 0.120 0.0110 0.10 0.0015 Sb: 0.025 0.01 726 716 855 845 Comparative steel M 0.35 0.05 0.35 0.02 0.004 0.020 0.0044 0.20 0.0001 Sb+Sn: 0.012 724 714 811 801 Comparative steel N 0.36 0.01 0.04 0.02 0.003 0.050 0.0047 0.20 0.0030 Sb+Sn: 0.011 0.0150 726 717 830 819 Comparative steel O 0.45 0.03 0.35 0.02 0.004 0.030 0.0050 0.02 0.0026 Sn+Sb: 0.100 0.0020 0.0015 720 723 801 790 Steel of the invention P 0.48 0.25 0.31 0.01 0.004 0.010 0.0044 0.06 0.0025 Sb: 0.009 0.025 0.0015 728 718 794 782 Steel of the invention Q 0.48 0.03 0.28 0.01 0.002 0.035 0.0052 0.45 0.0010 Sb+Sn: 0.012 0.0015 728 716 788 778 Steel of the invention R 0.44 0.10 0.32 0.01 0.003 0.040 0.0047 0.05 0.0048 Sb: 0.011 0.04 0.0015 723 713 803 793 Steel of the invention S 0.18 0.05 0.45 0.01 0.004 0.035 0.0050 0.40 0.0030 Sb: 0.010 0.04 726 715 840 829 Comparative steel T 0.55 0.25 0.45 0.01 0.003 0.040 0.0050 0.45 0.0020 Sn+Sb: 0.008 0.0012 733 722 785 775 Comparative steel

[表2-1] 試樣編號   鋼編號   熱軋條件 退火條件 最終軋製 結束溫度 (℃) 最終軋製後、至650℃~750℃的 平均冷卻速度 (℃/sec) 捲繞溫度 (℃) 450℃~600℃的溫度範圍的平均加熱速度 (℃/h) 退火 (退火溫度-保持時間) 1 A 850 40 550 45 715℃-30h 2 A 850 55 480 60 715℃-30h 3 A 850 55 680 15 715℃-30h 4 A 850 55 620 15 710℃-15h 5 B 845 30 550 30 715℃-30h 6 B 845 30 550 30 770℃-25h 7 B 845 30 510 15 715℃-30h 8 B 845 30 620 5 715℃-30h 9 C 860 40 620 35 710℃-22h 10 D 860 60 680 90 710℃-25h 11 E 880 50 580 20 715℃-30h 12 F 840 50 620 30 710℃-25h 13 G 850 50 600 30 680℃-25h 14 H 850 40 580 50 715℃-30h 15 H 850 40 510 40 715℃-0.25h 16 I 840 50 600 40 715℃-30h 17 J 830 80 700 20 715℃-30h 18 K 830 60 700 40 715℃-30h 19 L 860 40 700 50 715℃-30h 20 M 880 50 680 60 715℃-30h 21 N 840 50 660 40 715℃-30h 22 O 830 50 590 40 715℃-30h 23 P 830 25 550 40 715℃-30h 24 Q 830 25 560 30 715℃-30h 25 R 820 40 650 45 715℃-30h 26 S 860 40 650 40 715℃-30h 27 T 810 40 650 40 710℃-25h [table 2-1] Sample No Steel number Hot rolling conditions Annealing conditions Final rolling end temperature (℃) After final rolling, the average cooling rate to 650℃~750℃ (℃/sec) Winding temperature (℃) Average heating rate in the temperature range of 450℃~600℃ (℃/h) Annealing (annealing temperature-holding time) 1 A 850 40 550 45 715℃-30h 2 A 850 55 480 60 715℃-30h 3 A 850 55 680 15 715℃-30h 4 A 850 55 620 15 710℃-15h 5 B 845 30 550 30 715℃-30h 6 B 845 30 550 30 770℃-25h 7 B 845 30 510 15 715℃-30h 8 B 845 30 620 5 715℃-30h 9 C 860 40 620 35 710℃-22h 10 D 860 60 680 90 710℃-25h 11 E 880 50 580 20 715℃-30h 12 F 840 50 620 30 710℃-25h 13 G 850 50 600 30 680℃-25h 14 H 850 40 580 50 715℃-30h 15 H 850 40 510 40 715℃-0.25h 16 I 840 50 600 40 715℃-30h 17 J 830 80 700 20 715℃-30h 18 K 830 60 700 40 715℃-30h 19 L 860 40 700 50 715℃-30h 20 M 880 50 680 60 715℃-30h twenty one N 840 50 660 40 715℃-30h twenty two O 830 50 590 40 715℃-30h twenty three P 830 25 550 40 715℃-30h twenty four Q 830 25 560 30 715℃-30h 25 R 820 40 650 45 715℃-30h 26 S 860 40 650 40 715℃-30h 27 T 810 40 650 40 710℃-25h

[表2-2] 試樣編號 鋼編號 微組織 {(當量圓直徑0.1 μm以下的雪明碳鐵)/(總雪明碳鐵)}×100 (%) 平均雪明碳鐵直徑 (μm) 肥粒鐵 平均粒徑 (μm) 肥粒鐵 面積率 (%) 雪明碳鐵佔總微組織的比例 (面積%) 波來鐵 面積率 (%) 表層100 μm部的固溶B量平均濃度 (質量ppm) 表層100 μm部的作為AlN存在的N量平均濃度 (質量ppm) TS (MPa) 總伸長率 (%) 浸入淬火性(HV) 滲碳淬火性 淬火性評價 備註 70℃油冷(表層) 70℃油冷 (1/4板厚) 滲碳淬火時的表層0.1 mm硬度 (HV) 滲碳淬火時的有效硬化層深度 (mm) 1 A 肥粒鐵+雪明碳鐵 15 0.40 7 95 3.5 1.5 15 35 460 37 360 390 670 0.70 本發明例 2 A 肥粒鐵+雪明碳鐵 22 0.18 6 91 3.9 5.1 14 40 490 32 355 385 665 0.68 比較例 3 A 肥粒鐵+雪明碳鐵 12 0.45 8 95 3.5 1.5 16 60 450 38 360 395 675 0.65 本發明例 4 B 肥粒鐵+雪明碳鐵 18 0.35 4 94 3.6 2.4 15 60 470 34 360 395 675 0.65 本發明例 5 B 肥粒鐵+雪明碳鐵 11 0.55 8 94 3.6 2.4 15 35 450 38 380 420 655 0.65 本發明例 6 B 肥粒鐵+雪明碳鐵+波來鐵 4 0.65 11 80 0.5 19.5 15 40 460 31 370 420 655 0.64 比較例 7 B 肥粒鐵+雪明碳鐵 1 0.50 7 94 3.6 2.4 10 70 460 36 360 425 600 0.62 本發明例 8 C 肥粒鐵+雪明碳鐵 13 0.52 7 93 3.7 3.3 9 80 395 41 340 415 580 0.60 × 比較例 9 D 肥粒鐵+雪明碳鐵 14 0.45 7 93 4.7 2.3 17 40 460 35 390 470 680 0.62 本發明例 10 E 肥粒鐵+雪明碳鐵 12 0.50 8 94 4.0 2.0 15 30 480 33 380 430 690 0.70 本發明例 11 F 肥粒鐵+雪明碳鐵 14 0.38 7 93 3.8 3.2 14 40 490 32 370 425 670 0.70 比較例 12 G 肥粒鐵+雪明碳鐵 14 0.40 6 92 3.7 4.3 14 40 490 32 390 425 700 0.80 比較例 13 H 肥粒鐵+雪明碳鐵 17 0.30 5 94 3.7 2.3 15 40 430 40 370 425 650 0.65 本發明例 14 H 肥粒鐵+雪明碳鐵 12 0.50 8 92 3.8 4.2 12 35 430 40 370 430 700 0.70 本發明例 15 H 肥粒鐵+雪明碳鐵+波來鐵 30 0.20 4 90 3.3 6.7 15 40 480 32 370 430 700 0.65 比較例 16 I 肥粒鐵+雪明碳鐵 10 0.30 8 94 3.7 2.3 15 35 490 30 400 425 710 0.80 比較例 17 J 肥粒鐵+雪明碳鐵 15 0.50 7 93 3.7 3.3 5 50 430 39 300 430 580 0.65 × 比較例 18 K 肥粒鐵+雪明碳鐵 12 0.40 8 94 5.9 0.1 12 60 420 40 510 570 680 0.65 本發明例 19 L 肥粒鐵+雪明碳鐵 12 0.41 8 94 5.5 0.5 12 200 420 38 380 480 580 0.65 × 比較鋼 20 M 肥粒鐵+雪明碳鐵 12 0.35 8 93 5.9 1.1 0 70 430 41 470 530 570 0.55 × 比較鋼 21 N 肥粒鐵+雪明碳鐵 11 0.40 7 94 6.0 0.0 15 50 410 42 470 490 590 0.50 × 比較例 22 O 肥粒鐵+雪明碳鐵 7 0.40 9 92 7.5 0.5 17 40 460 35 670 680 700 0.70 本發明例 23 P 肥粒鐵+雪明碳鐵 13 0.45 10 92 8.0 0.0 15 35 460 36 680 700 675 0.70 本發明例 24 Q 肥粒鐵+雪明碳鐵 12 0.48 9 91 8.1 0.9 14 34 450 37 680 710 675 0.70 本發明例 25 R 肥粒鐵+雪明碳鐵 9 0.50 9 92 7.4 0.6 14 38 440 37 580 620 695 0.70 本發明例 26 S 肥粒鐵+雪明碳鐵 12 0.40 7 95 2.7 2.3 15 40 400 42 310 380 700 0.60 × 比較例 27 T 肥粒鐵+雪明碳鐵 25 0.35 6 90 9.2 0.8 15 40 520 28 680 720 700 0.68 比較例 [Table 2-2] Sample No Steel number Microstructure {(Snow-ming carbon iron with an equivalent circle diameter of 0.1 μm or less)/(total snow-ming carbon iron)}×100 (%) Average Xueming Carbon Iron Diameter (μm) Fertilizer iron average particle size (μm) Fertilizer iron area rate (%) The proportion of Xueming carbon iron in the total microstructure (area%) Rail area rate (%) The average concentration of dissolved B in the surface layer at 100 μm (mass ppm) The average concentration of N as AlN in the surface layer at 100 μm (mass ppm) TS (MPa) Total elongation (%) Immersion hardenability (HV) Carburizing and hardenability Hardenability evaluation Remarks 70℃ oil cooling (surface layer) 70°C oil cooling (1/4 plate thickness) 0.1 mm hardness of the surface layer during carburizing and quenching (HV) Effective hardened layer depth during carburizing and quenching (mm) 1 A Fertilizer iron + Xueming carbon iron 15 0.40 7 95 3.5 1.5 15 35 460 37 360 390 670 0.70 Example of the invention 2 A Fertilizer iron + Xueming carbon iron twenty two 0.18 6 91 3.9 5.1 14 40 490 32 355 385 665 0.68 Comparative example 3 A Fertilizer iron + Xueming carbon iron 12 0.45 8 95 3.5 1.5 16 60 450 38 360 395 675 0.65 Example of the invention 4 B Fertilizer iron + Xueming carbon iron 18 0.35 4 94 3.6 2.4 15 60 470 34 360 395 675 0.65 Example of the invention 5 B Fertilizer iron + Xueming carbon iron 11 0.55 8 94 3.6 2.4 15 35 450 38 380 420 655 0.65 Example of the invention 6 B Fertilizer Iron + Xueming Carbon Iron + Polly Iron 4 0.65 11 80 0.5 19.5 15 40 460 31 370 420 655 0.64 Comparative example 7 B Fertilizer iron + Xueming carbon iron 1 0.50 7 94 3.6 2.4 10 70 460 36 360 425 600 0.62 Example of the invention 8 C Fertilizer iron + Xueming carbon iron 13 0.52 7 93 3.7 3.3 9 80 395 41 340 415 580 0.60 × Comparative example 9 D Fertilizer iron + Xueming carbon iron 14 0.45 7 93 4.7 2.3 17 40 460 35 390 470 680 0.62 Example of the invention 10 E Fertilizer iron + Xueming carbon iron 12 0.50 8 94 4.0 2.0 15 30 480 33 380 430 690 0.70 Example of the invention 11 F Fertilizer iron + Xueming carbon iron 14 0.38 7 93 3.8 3.2 14 40 490 32 370 425 670 0.70 Comparative example 12 G Fertilizer iron + Xueming carbon iron 14 0.40 6 92 3.7 4.3 14 40 490 32 390 425 700 0.80 Comparative example 13 H Fertilizer iron + Xueming carbon iron 17 0.30 5 94 3.7 2.3 15 40 430 40 370 425 650 0.65 Example of the invention 14 H Fertilizer iron + Xueming carbon iron 12 0.50 8 92 3.8 4.2 12 35 430 40 370 430 700 0.70 Example of the invention 15 H Fertilizer Iron + Xueming Carbon Iron + Polly Iron 30 0.20 4 90 3.3 6.7 15 40 480 32 370 430 700 0.65 Comparative example 16 I Fertilizer iron + Xueming carbon iron 10 0.30 8 94 3.7 2.3 15 35 490 30 400 425 710 0.80 Comparative example 17 J Fertilizer iron + Xueming carbon iron 15 0.50 7 93 3.7 3.3 5 50 430 39 300 430 580 0.65 × Comparative example 18 K Fertilizer iron + Xueming carbon iron 12 0.40 8 94 5.9 0.1 12 60 420 40 510 570 680 0.65 Example of the invention 19 L Fertilizer iron + Xueming carbon iron 12 0.41 8 94 5.5 0.5 12 200 420 38 380 480 580 0.65 × Comparative steel 20 M Fertilizer iron + Xueming carbon iron 12 0.35 8 93 5.9 1.1 0 70 430 41 470 530 570 0.55 × Comparative steel twenty one N Fertilizer iron + Xueming carbon iron 11 0.40 7 94 6.0 0.0 15 50 410 42 470 490 590 0.50 × Comparative example twenty two O Fertilizer iron + Xueming carbon iron 7 0.40 9 92 7.5 0.5 17 40 460 35 670 680 700 0.70 Example of the invention twenty three P Fertilizer iron + Xueming carbon iron 13 0.45 10 92 8.0 0.0 15 35 460 36 680 700 675 0.70 Example of the invention twenty four Q Fertilizer iron + Xueming carbon iron 12 0.48 9 91 8.1 0.9 14 34 450 37 680 710 675 0.70 Example of the invention 25 R Fertilizer iron + Xueming carbon iron 9 0.50 9 92 7.4 0.6 14 38 440 37 580 620 695 0.70 Example of the invention 26 S Fertilizer iron + Xueming carbon iron 12 0.40 7 95 2.7 2.3 15 40 400 42 310 380 700 0.60 × Comparative example 27 T Fertilizer iron + Xueming carbon iron 25 0.35 6 90 9.2 0.8 15 40 520 28 680 720 700 0.68 Comparative example

[表3-1] 試樣編號   鋼編號   熱軋條件 退火條件 最終軋製 結束溫度 (℃) 最終軋製後、至650℃~750℃的平均冷卻速度 (℃/sec) 捲繞溫度 (℃) 450℃~600℃的溫度範圍的平均加熱速度 (℃/h) 第1段退火 (退火溫度-保持時間) 自第1段至第2段的平均冷卻速度 (℃/h) 第2段的退火 (退火溫度-保持時間) 28 A 850 40 680 50 790℃-8h 10 710℃-30h 29 A 850 55 680 50 790℃-8h 10 710℃-15h 30 A 850 55 680 10 790℃-8h 10 710℃-30h 31 A 850 40 680 50 820℃-0.1h 10 710℃-30h 32 B 845 30 620 40 780℃-10h 12 710℃-20h 33 B 845 30 620 40 860℃-8h 10 710℃-30h 34 B 845 30 670 15 800℃-6h 50 710℃-30h 35 C 860 40 680 35 790℃-7h 12 710℃-25h 36 D 860 60 620 90 750℃-8h 10 715℃-20h 37 E 880 50 480 30 755℃-4h 10 690℃-30h 38 F 840 50 510 30 750℃-4h 10 690℃-20h 39 G 850 50 550 60 790℃-8h 10 710℃-30h 40 H 850 40 510 50 760℃-8h 10 710℃-25h 41 I 840 50 600 40 770℃-6h 10 710℃-30h 42 J 830 80 700 20 800℃-6h 10 710℃-25h 43 K 830 60 700 15 800℃-6h 10 710℃-25h 44 L 860 40 700 50 800℃-6h 10 710℃-25h 45 M 880 50 680 50 800℃-6h 10 710℃-20h 46 N 840 50 660 40 790℃-8h 15 705℃-30h 47 O 830 50 590 40 790℃-4h 8 710℃-25h 48 Q 830 25 610 30 770℃-8h 10 710℃-20h 49 R 820 40 700 45 800℃-8h 10 710℃-30h 50 S 860 40 850 40 810℃-4h 10 710℃-21h 51 T 810 40 650 40 800℃-6h 10 710℃-25h [Table 3-1] Sample No Steel number Hot rolling conditions Annealing conditions Final rolling end temperature (℃) After final rolling, the average cooling rate to 650℃~750℃ (℃/sec) Winding temperature (℃) Average heating rate in the temperature range of 450℃~600℃ (℃/h) The first stage of annealing (annealing temperature-holding time) The average cooling rate from the 1st stage to the 2nd stage (℃/h) The second stage of annealing (annealing temperature-holding time) 28 A 850 40 680 50 790℃-8h 10 710℃-30h 29 A 850 55 680 50 790℃-8h 10 710℃-15h 30 A 850 55 680 10 790℃-8h 10 710℃-30h 31 A 850 40 680 50 820℃-0.1h 10 710℃-30h 32 B 845 30 620 40 780℃-10h 12 710℃-20h 33 B 845 30 620 40 860℃-8h 10 710℃-30h 34 B 845 30 670 15 800℃-6h 50 710℃-30h 35 C 860 40 680 35 790℃-7h 12 710℃-25h 36 D 860 60 620 90 750℃-8h 10 715℃-20h 37 E 880 50 480 30 755℃-4h 10 690℃-30h 38 F 840 50 510 30 750℃-4h 10 690℃-20h 39 G 850 50 550 60 790℃-8h 10 710℃-30h 40 H 850 40 510 50 760℃-8h 10 710℃-25h 41 I 840 50 600 40 770℃-6h 10 710℃-30h 42 J 830 80 700 20 800℃-6h 10 710℃-25h 43 K 830 60 700 15 800℃-6h 10 710℃-25h 44 L 860 40 700 50 800℃-6h 10 710℃-25h 45 M 880 50 680 50 800℃-6h 10 710℃-20h 46 N 840 50 660 40 790℃-8h 15 705℃-30h 47 O 830 50 590 40 790℃-4h 8 710℃-25h 48 Q 830 25 610 30 770℃-8h 10 710℃-20h 49 R 820 40 700 45 800℃-8h 10 710℃-30h 50 S 860 40 850 40 810℃-4h 10 710℃-21h 51 T 810 40 650 40 800℃-6h 10 710℃-25h

[表3-2] 試 樣 編 號   鋼 編 號 微組織 {(當量圓直徑0.1 μm以下的雪明碳鐵)/(總雪明碳鐵)}×100 (%) 平均雪明碳鐵直徑 (μm) 肥粒鐵 平均粒徑 (μm) 肥粒鐵 面積率 (%) 雪明碳鐵佔總微組織的比例 (面積%) 波來鐵 面積率 (%) 表層100 μm部的固溶B量平均濃度 (質量ppm) 表層100 μm部的作為AlN存在的N量 平均濃度 (質量ppm) TS (MPa) 總伸長率 (%) 浸入淬火性(HV) 滲碳淬火性 淬 火 性 評 價 備註 70℃油冷 (表層) 70℃油冷 (1/4板厚) 滲碳淬火時的表層0.1 mm硬度 (HV) 滲碳淬火時的 有效硬化層深度 (mm) 28 A 肥粒鐵+雪明碳鐵 1 1.5 15 95 3.8 1.2 15 30 400 42 360 395 670 0.72 本發明例 29 A 肥粒鐵+雪明碳鐵+波來鐵 5 1.3 13 83 3.9 13.1 15 30 400 32 360 400 670 0.73 比較例 30 A 肥粒鐵+雪明碳鐵 1 1.5 16 94 3.7 2.3 10 80 390 43 340 395 590 0.60 × 比較例 31 A 肥粒鐵+雪明碳鐵 25 0.4 10 92 3.5 4.5 15 30 480 32 365 398 671 0.72 比較例 32 B 肥粒鐵+雪明碳鐵 1 1.5 17 94 4.2 1.8 17 35 370 44 375 410 655 0.65 本發明例 33 B 肥粒鐵+雪明碳鐵+波來鐵 5 1.1 17 80 0.5 19.5 13 35 370 32 375 410 655 0.67 比較例 34 B 肥粒鐵+雪明碳鐵+波來鐵 3 1.2 15 83 4.2 12.8 14 36 371 32 375 405 655 0.65 比較例 35 C 肥粒鐵+雪明碳鐵 1 1.3 14 94 5.2 0.8 15 70 410 40 390 465 680 0.63 本發明例 36 D 肥粒鐵+雪明碳鐵 1 2.0 17 94 4.5 1.5 10 50 385 41 380 415 675 0.70 本發明例 37 E 肥粒鐵+雪明碳鐵 1 1.1 12 93 4.3 2.7 16 30 485 32 370 425 671 0.70 比較例 38 F 肥粒鐵+雪明碳鐵 1 1.1 12 92 4.1 3.9 16 30 485 32 370 430 698 0.68 比較例 39 G 肥粒鐵+雪明碳鐵 1 1.5 15 93 4.1 2.9 14 30 370 45 370 430 690 0.65 本發明例 40 H 肥粒鐵+雪明碳鐵 1 1.5 14 92 4.4 3.6 15 35 380 44 370 420 702 0.85 本發明例 41 I 肥粒鐵+雪明碳鐵 1 1.1 10 91 4.1 4.9 13 45 490 32 370 420 710 0.80 比較例 42 J 肥粒鐵+雪明碳鐵 1 1.3 14 93 4.3 2.7 16 35 365 45 340 420 590 0.55 × 比較例 43 K 肥粒鐵+雪明碳鐵 1 1.8 15 93 6.5 0.5 14 60 370 42 510 570 680 0.65 本發明例 44 L 肥粒鐵+雪明碳鐵 1 1.5 13 93 6.2 0.8 12 200 370 43 380 480 580 0.65 × 比較例 45 M 肥粒鐵+雪明碳鐵 1 1.3 15 93 6.7 0.3 0 70 390 43 470 530 570 0.55 × 比較例 46 N 肥粒鐵+雪明碳鐵 1 2.5 20 93 6.8 0.2 15 35 365 44 470 490 590 0.50 × 比較例 47 O 肥粒鐵+雪明碳鐵 1 1.9 18 91 8.4 0.6 16 30 410 38 670 680 705 0.68 本發明例 48 Q 肥粒鐵+雪明碳鐵 1 1.3 13 91 8.9 0.1 14 35 400 40 680 710 675 0.70 本發明例 49 R 肥粒鐵+雪明碳鐵 1 1.4 13 91 8.2 0.8 15 40 400 39 685 705 670 0.67 本發明例 50 S 肥粒鐵+雪明碳鐵 1 1.4 15 94 3.0 3.0 14 35 360 45 310 380 700 0.60 × 比較例 51 T 肥粒鐵+雪明碳鐵+波來鐵 25 1.5 12 50 10.5 39.5 14 35 490 32 680 720 700 0.68 比較例 [Table 3-2] Sample No Steel number Microstructure {(Snow-ming carbon iron with an equivalent circle diameter of 0.1 μm or less)/(total snow-ming carbon iron)}×100 (%) Average Xueming Carbon Iron Diameter (μm) Fertilizer iron average particle size (μm) Fertilizer iron area rate (%) The proportion of Xueming carbon iron in the total microstructure (area%) Rail area rate (%) The average concentration of dissolved B in the surface layer at 100 μm (mass ppm) The average concentration of N as AlN in the surface layer at 100 μm (mass ppm) TS (MPa) Total elongation (%) Immersion hardenability (HV) Carburizing and hardenability Hardenability evaluation Remarks 70℃ oil cooling (surface layer) 70°C oil cooling (1/4 plate thickness) 0.1 mm hardness of the surface layer during carburizing and quenching (HV) Effective hardened layer depth during carburizing and quenching (mm) 28 A Fertilizer iron + Xueming carbon iron 1 1.5 15 95 3.8 1.2 15 30 400 42 360 395 670 0.72 Example of the invention 29 A Fertilizer Iron + Xueming Carbon Iron + Polly Iron 5 1.3 13 83 3.9 13.1 15 30 400 32 360 400 670 0.73 Comparative example 30 A Fertilizer iron + Xueming carbon iron 1 1.5 16 94 3.7 2.3 10 80 390 43 340 395 590 0.60 × Comparative example 31 A Fertilizer iron + Xueming carbon iron 25 0.4 10 92 3.5 4.5 15 30 480 32 365 398 671 0.72 Comparative example 32 B Fertilizer iron + Xueming carbon iron 1 1.5 17 94 4.2 1.8 17 35 370 44 375 410 655 0.65 Example of the invention 33 B Fertilizer Iron + Xueming Carbon Iron + Polly Iron 5 1.1 17 80 0.5 19.5 13 35 370 32 375 410 655 0.67 Comparative example 34 B Fertilizer Iron + Xueming Carbon Iron + Polly Iron 3 1.2 15 83 4.2 12.8 14 36 371 32 375 405 655 0.65 Comparative example 35 C Fertilizer iron + Xueming carbon iron 1 1.3 14 94 5.2 0.8 15 70 410 40 390 465 680 0.63 Example of the invention 36 D Fertilizer iron + Xueming carbon iron 1 2.0 17 94 4.5 1.5 10 50 385 41 380 415 675 0.70 Example of the invention 37 E Fertilizer iron + Xueming carbon iron 1 1.1 12 93 4.3 2.7 16 30 485 32 370 425 671 0.70 Comparative example 38 F Fertilizer iron + Xueming carbon iron 1 1.1 12 92 4.1 3.9 16 30 485 32 370 430 698 0.68 Comparative example 39 G Fertilizer iron + Xueming carbon iron 1 1.5 15 93 4.1 2.9 14 30 370 45 370 430 690 0.65 Example of the invention 40 H Fertilizer iron + Xueming carbon iron 1 1.5 14 92 4.4 3.6 15 35 380 44 370 420 702 0.85 Example of the invention 41 I Fertilizer iron + Xueming carbon iron 1 1.1 10 91 4.1 4.9 13 45 490 32 370 420 710 0.80 Comparative example 42 J Fertilizer iron + Xueming carbon iron 1 1.3 14 93 4.3 2.7 16 35 365 45 340 420 590 0.55 × Comparative example 43 K Fertilizer iron + Xueming carbon iron 1 1.8 15 93 6.5 0.5 14 60 370 42 510 570 680 0.65 Example of the invention 44 L Fertilizer iron + Xueming carbon iron 1 1.5 13 93 6.2 0.8 12 200 370 43 380 480 580 0.65 × Comparative example 45 M Fertilizer iron + Xueming carbon iron 1 1.3 15 93 6.7 0.3 0 70 390 43 470 530 570 0.55 × Comparative example 46 N Fertilizer iron + Xueming carbon iron 1 2.5 20 93 6.8 0.2 15 35 365 44 470 490 590 0.50 × Comparative example 47 O Fertilizer iron + Xueming carbon iron 1 1.9 18 91 8.4 0.6 16 30 410 38 670 680 705 0.68 Example of the invention 48 Q Fertilizer iron + Xueming carbon iron 1 1.3 13 91 8.9 0.1 14 35 400 40 680 710 675 0.70 Example of the invention 49 R Fertilizer iron + Xueming carbon iron 1 1.4 13 91 8.2 0.8 15 40 400 39 685 705 670 0.67 Example of the invention 50 S Fertilizer iron + Xueming carbon iron 1 1.4 15 94 3.0 3.0 14 35 360 45 310 380 700 0.60 × Comparative example 51 T Fertilizer Iron + Xueming Carbon Iron + Polly Iron 25 1.5 12 50 10.5 39.5 14 35 490 32 680 720 700 0.68 Comparative example

[表4] C量 70℃油冷後硬度 (HV) 滲碳淬火時的表層0.1 mm深度處的硬度 (HV) 滲碳淬火時的有效硬化層深度 (mm) C>0.20% ≧340 ≧600 ≧0.60 0.20%≦C>0.30% ≧350 ≧600 ≧0.60 0.30%≦C>0.35% ≧400 ≧600 ≧0.60 0.35%≦C>0.40% ≧490 ≧600 ≧0.60 0.40%≦C>0.45% ≧580 ≧600 ≧0.60 0.45%≦C>0.50% ≧670 ≧600 ≧0.60 0.50%≦C ≧700 ≧650 ≧0.60 [Table 4] C amount Hardness after oil cooling at 70°C (HV) Hardness (HV) at a depth of 0.1 mm of the surface layer during carburizing and quenching Effective hardened layer depth during carburizing and quenching (mm) C>0.20% ≧340 ≧600 ≧0.60 0.20%≦C>0.30% ≧350 ≧600 ≧0.60 0.30%≦C>0.35% ≧400 ≧600 ≧0.60 0.35%≦C>0.40% ≧490 ≧600 ≧0.60 0.40%≦C>0.45% ≧580 ≧600 ≧0.60 0.45%≦C>0.50% ≧670 ≧600 ≧0.60 0.50%≦C ≧700 ≧650 ≧0.60

根據表2-2及表3-2的結果,可知本發明例的高碳熱軋鋼板中,當量圓直徑0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數的比例為20%以下,平均雪明碳鐵直徑為2.5 μm以下,所述雪明碳鐵相對於總微組織所佔的比例為3.5%以上且10.0%以下,且包括具有肥粒鐵與雪明碳鐵的的微組織,冷加工性優異,同時淬火性亦優異。另外,亦得到了拉伸強度為480 MPa以下、總伸長率(El)為33%以上的優良的機械特性。According to the results of Table 2-2 and Table 3-2, it can be seen that in the high-carbon hot-rolled steel sheet of the example of the present invention, the ratio of the number of snow carbon iron with an equivalent circle diameter of 0.1 μm or less to the total snow carbon iron number is 20% Hereinafter, the average Xueming carbon iron diameter is 2.5 μm or less, and the proportion of the Xueming carbon iron relative to the total microstructure is 3.5% or more and 10.0% or less, and includes those with fertilizer grain iron and snow carbon iron Microstructure, excellent cold workability, and excellent hardenability. In addition, excellent mechanical properties with a tensile strength of 480 MPa or less and a total elongation (El) of 33% or more were also obtained.

另一方面,可知不在本發明範圍的比較例中,成分組成、微組織、固溶B量、AlN中的N量的任意一個以上不滿足本發明的範圍,其結果是冷加工性、淬火性的任意一個以上無法滿足上述目標性能。另外,亦有拉伸強度(TS)、總伸長率(El)中的一個以上無法滿足目標特性的情況。例如,在表2-2及表3-2中,鋼S的C量低於本發明範圍,因此不滿足浸入淬火性。另外,鋼T的C量高於本發明範圍,因此不滿足鋼板的TS、總伸長率的特性。On the other hand, it can be seen that in the comparative examples outside the scope of the present invention, any one or more of the composition, microstructure, the amount of solid solution B, and the amount of N in AlN does not satisfy the scope of the present invention, and the result is cold workability and hardenability. Any one or more cannot meet the above target performance. In addition, there are cases where one or more of the tensile strength (TS) and total elongation (El) cannot meet the target characteristics. For example, in Table 2-2 and Table 3-2, the amount of C in steel S is lower than the range of the present invention, and therefore does not satisfy the immersion hardenability. In addition, the C content of the steel T is higher than the range of the present invention, and therefore does not satisfy the characteristics of TS and total elongation of the steel sheet.

no

Claims (6)

一種高碳熱軋鋼板,包含如下成分組成: 以質量%計,含有 C:0.20%以上且0.50%以下, Si:0.8%以下, Mn:0.10%以上且0.80%以下, P:0.03%以下, S:0.010%以下, sol.Al:0.10%以下, N:0.01%以下, Cr:1.0%以下, B:0.0005%以上且0.005%以下, 而且,含有合計為0.002%以上且0.1%以下的選自Sb及Sn的一種或兩種, 剩餘部分包含Fe及不可避免的雜質, 微組織包括:肥粒鐵、雪明碳鐵、及相對於總微組織以面積率計佔6.5%以下的比例的波來鐵, 所述雪明碳鐵中,當量圓直徑0.1 μm以下的雪明碳鐵數相對於總雪明碳鐵數的比例為20%以下,平均雪明碳鐵直徑為2.5 μm以下,所述雪明碳鐵相對於總微組織所佔的比例以面積率計為3.5%以上且10.0%以下, 自表層至深度100 μm的區域中的固溶B量的平均濃度為10質量ppm以上, 自表層至深度100 μm的區域中的作為AlN存在的N量的平均濃度為70質量ppm以下。A high-carbon hot-rolled steel sheet comprising the following ingredients: In terms of mass%, containing C: 0.20% or more and 0.50% or less, Si: 0.8% or less, Mn: 0.10% or more and 0.80% or less, P: 0.03% or less, S: less than 0.010%, sol.Al: 0.10% or less, N: 0.01% or less, Cr: 1.0% or less, B: 0.0005% or more and 0.005% or less, Furthermore, it contains one or two selected from Sb and Sn in a total of 0.002% or more and 0.1% or less, The remainder contains Fe and unavoidable impurities, The microstructure includes: ferrite grains, snow carbon iron, and perlite with an area ratio of 6.5% or less relative to the total microstructure, In the Xueming carbon iron, the ratio of the Xueming carbon iron with an equivalent circle diameter of 0.1 μm or less to the total Xueming carbon iron number is 20% or less, and the average Xueming carbon iron diameter is 2.5 μm or less. The ratio of carbon iron to the total microstructure is 3.5% or more and 10.0% or less in terms of area ratio, The average concentration of the amount of solid solution B in the region from the surface layer to a depth of 100 μm is 10 mass ppm or more, The average concentration of the amount of N present as AlN in the region from the surface layer to a depth of 100 μm is 70 mass ppm or less. 如請求項1所述的高碳熱軋鋼板,其中,拉伸強度為480 MPa以下,總伸長率為33%以上。The high-carbon hot-rolled steel sheet according to claim 1, wherein the tensile strength is 480 MPa or less, and the total elongation is 33% or more. 如請求項1或請求項2所述的高碳熱軋鋼板,其中,所述肥粒鐵的平均粒徑為4 μm~25 μm。The high-carbon hot-rolled steel sheet according to claim 1 or claim 2, wherein the average grain size of the ferrous iron is 4 μm to 25 μm. 如請求項1至請求項3中任一項所述的高碳熱軋鋼板,其除了所述成分組成以外,以質量%計更含有選自下述A群組及B群組中的一群組或兩群組, A群組:Ti:0.06%以下 B群組:使選自Nb、Mo、Ta、Ni、Cu、V、W中的一種或兩種以上分別為0.0005%以上且0.1%以下。The high-carbon hot-rolled steel sheet according to any one of claims 1 to 3, which, in addition to the component composition, further contains a group selected from the following A group and B group in terms of mass% Group or two groups, Group A: Ti: Below 0.06% Group B: Let one or two or more selected from Nb, Mo, Ta, Ni, Cu, V, and W be 0.0005% or more and 0.1% or less. 一種高碳熱軋鋼板的製造方法,是如請求項1至請求項4中任一項所述的高碳熱軋鋼板的製造方法,其中 在將具有所述成分組成的鋼熱粗軋後,以最終軋製結束溫度:Ar3 變態點以上進行最終軋製,然後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃, 以捲繞溫度:500℃~700℃進行捲繞,製成熱軋鋼板後, 實施將所述熱軋鋼板以平均加熱速度:15℃/h以上加熱至450℃~600℃的溫度範圍,以退火溫度:低於Ac1 變態點保持1.0 h以上的退火。A method for manufacturing a high-carbon hot-rolled steel sheet is the method for manufacturing a high-carbon hot-rolled steel sheet as described in any one of Claims 1 to 4, wherein after hot rough rolling of the steel having the composition, Perform final rolling at the end temperature of the final rolling: Ar 3 transformation point or higher, and then cool to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec, and at the winding temperature: 500°C to 700 After coiling at ℃ to make a hot-rolled steel sheet, heat the hot-rolled steel sheet at an average heating rate: 15°C/h or more to a temperature range of 450°C to 600°C, and an annealing temperature: lower than Ac 1 transformation point Keep annealing for more than 1.0 h. 一種高碳熱軋鋼板的製造方法,是如請求項1至請求項4中任一項所述的高碳熱軋鋼板的製造方法,其中 在將具有所述成分組成的鋼熱粗軋後,以最終軋製結束溫度:Ar3 變態點以上進行最終軋製,然後,以平均冷卻速度:20℃/sec~100℃/sec冷卻至650℃~750℃, 以捲繞溫度:500℃~700℃進行捲繞,製成熱軋鋼板後, 實施將所述熱軋鋼板以平均加熱速度:15℃/h以上加熱至450℃~600℃的溫度範圍,在Ac1 變態點以上且Ac3 變態點以下保持0.5 h以上,繼而,以平均冷卻速度:1℃/h~20℃/h冷卻至低於Ar1 變態點,以低於Ar1 變態點保持20 h以上的退火。A method for manufacturing a high-carbon hot-rolled steel sheet is the method for manufacturing a high-carbon hot-rolled steel sheet as described in any one of Claims 1 to 4, wherein after hot rough rolling of the steel having the composition, Perform final rolling at the end temperature of the final rolling: Ar 3 transformation point or higher, and then cool to 650°C to 750°C at an average cooling rate: 20°C/sec to 100°C/sec, and at the winding temperature: 500°C to 700 After coiling at ℃ to prepare a hot-rolled steel sheet, the hot-rolled steel sheet is heated at an average heating rate of 15°C/h or more to a temperature range of 450°C to 600°C, which is above the Ac 1 transformation point and Ac 3 transformation Keep the temperature below the temperature for more than 0.5 h, and then cool down to below the Ar 1 transformation point at an average cooling rate of 1°C/h to 20°C/h, and keep annealing for more than 20 h at a temperature lower than the Ar 1 transformation point.
TW109102134A 2019-01-30 2020-01-21 High-carbon hot-rolled steel plate and manufacturing method thereof TWI738186B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019013957 2019-01-30
JP2019-013957 2019-01-30

Publications (2)

Publication Number Publication Date
TW202031912A true TW202031912A (en) 2020-09-01
TWI738186B TWI738186B (en) 2021-09-01

Family

ID=71842205

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109102134A TWI738186B (en) 2019-01-30 2020-01-21 High-carbon hot-rolled steel plate and manufacturing method thereof

Country Status (7)

Country Link
US (1) US20220170126A1 (en)
EP (1) EP3901303A4 (en)
JP (1) JP6927427B2 (en)
KR (1) KR102570145B1 (en)
CN (1) CN113366137B (en)
TW (1) TWI738186B (en)
WO (1) WO2020158357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792968B (en) * 2021-03-31 2023-02-11 日商Jfe鋼鐵股份有限公司 Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444097B2 (en) 2021-02-10 2024-03-06 Jfeスチール株式会社 Hot rolled steel sheet and its manufacturing method
CN115181905B (en) * 2022-06-23 2023-09-15 首钢集团有限公司 Gear steel and production method thereof
CN115418567B (en) * 2022-08-31 2024-01-19 马鞍山钢铁股份有限公司 Nb-Ti-B microalloyed high-temperature-resistant low-internal oxidation carburized gear steel and manufacturing method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458649U (en) 1977-09-30 1979-04-23
JPS5788967A (en) 1980-11-21 1982-06-03 Showa Alum Corp Formation of porous layer on metallic surface
JP4012475B2 (en) 2003-02-21 2007-11-21 新日本製鐵株式会社 Machine structural steel excellent in cold workability and low decarburization and method for producing the same
JP4057930B2 (en) * 2003-02-21 2008-03-05 新日本製鐵株式会社 Machine structural steel excellent in cold workability and method for producing the same
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP4332072B2 (en) 2004-06-07 2009-09-16 新日本製鐵株式会社 High carbon steel plate with excellent workability and hardenability
CN102348822A (en) * 2009-03-16 2012-02-08 新日本制铁株式会社 Boron-containing steel sheet with excellent hardenability and method of manufacturing same
JP5458649B2 (en) 2009-04-28 2014-04-02 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
JP5280324B2 (en) 2009-09-08 2013-09-04 日新製鋼株式会社 High carbon steel sheet for precision punching
JP5590254B2 (en) * 2012-01-05 2014-09-17 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
MX2016000009A (en) * 2013-07-09 2016-03-09 Jfe Steel Corp High-carbon hot-rolled steel sheet and production method for same.
JP5812048B2 (en) 2013-07-09 2015-11-11 Jfeスチール株式会社 High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP6244701B2 (en) 2013-07-09 2017-12-13 Jfeスチール株式会社 High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
EP3091097B1 (en) * 2014-03-28 2018-10-17 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing same
KR101892524B1 (en) * 2014-03-28 2018-08-28 제이에프이 스틸 가부시키가이샤 High-carbon hot-rolled steel sheet and method for manufacturing the same
KR102029566B1 (en) * 2015-05-26 2019-10-07 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
JP6119923B1 (en) * 2015-05-26 2017-04-26 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
EP3312299A4 (en) * 2015-06-17 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet and manufacturing method
WO2019131099A1 (en) * 2017-12-25 2019-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792968B (en) * 2021-03-31 2023-02-11 日商Jfe鋼鐵股份有限公司 Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet

Also Published As

Publication number Publication date
KR102570145B1 (en) 2023-08-23
WO2020158357A1 (en) 2020-08-06
JPWO2020158357A1 (en) 2021-02-18
US20220170126A1 (en) 2022-06-02
EP3901303A1 (en) 2021-10-27
CN113366137B (en) 2022-10-28
EP3901303A4 (en) 2021-11-03
KR20210105417A (en) 2021-08-26
TWI738186B (en) 2021-09-01
JP6927427B2 (en) 2021-08-25
CN113366137A (en) 2021-09-07

Similar Documents

Publication Publication Date Title
TWI738186B (en) High-carbon hot-rolled steel plate and manufacturing method thereof
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP2006307271A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same
CN111655893B (en) High carbon hot-rolled steel sheet and method for producing same
TWI728659B (en) High-carbon hot-rolled steel plate and manufacturing method thereof
JP7125923B2 (en) High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP7444097B2 (en) Hot rolled steel sheet and its manufacturing method
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
KR102597734B1 (en) Steel plates, members and their manufacturing methods
JP2005264318A (en) Soft nitriding treated steel superior in wear resistance