TW202025823A - 利用所配置的排程進行下鏈資料接收 - Google Patents
利用所配置的排程進行下鏈資料接收 Download PDFInfo
- Publication number
- TW202025823A TW202025823A TW108134810A TW108134810A TW202025823A TW 202025823 A TW202025823 A TW 202025823A TW 108134810 A TW108134810 A TW 108134810A TW 108134810 A TW108134810 A TW 108134810A TW 202025823 A TW202025823 A TW 202025823A
- Authority
- TW
- Taiwan
- Prior art keywords
- wtru
- pdsch
- candidates
- cbg
- pdcch
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0052—Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0046—Code rate detection or code type detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
提供了用於排程和接收下鏈資料傳輸的方法和裝置。一種方法包括接收用於一個或複數實體下鏈共用通道(PDSCH)候選的較高層配置。每個PDSCH候選可以具有一個或複數碼塊(CB)或碼塊組(CBG)。該方法包括:針對群組公共實體下鏈控制通道傳輸,監視搜尋空間。該傳輸包括啟動盲解碼的下鏈監視指示(DMI)標誌。可以對該PDSCH候選中的CB或CBG執行盲解碼。可對嘗試盲解碼的CB或CBG的總數應用限制。該方法還可以包括選擇對該CB或CBG的盲解碼將不超過該限制的PDSCH候選子集。然後,可以對所選擇的候選中的一個或複數CB或CBG嘗試盲解碼。
Description
相關申請的交叉引用
本申請要求於2018年9月26日遞交的美國臨時申請No. 62/736,900的權益,其內容藉由引用而被併入本文。
在無線系統中,可以對實體下鏈控制通道(PDCCH)以及實體下鏈共用通道(PDSCH)採用新的結構和設計。可以定義基於時槽和基於非時槽的傳輸以及針對PDCCH的不同監視速率。對於資料傳輸,傳輸塊(TB)是由一個或複數碼塊(CB)組成的資料傳輸單元。CB是與改錯碼的一個塊和一個迴圈冗餘碼(CRC)相關聯的資料的一部分。碼塊組(CBG)是與用於ACK-NACK的單個位元相關聯的一組CB。一個傳輸塊可以由複數CBG組成。每個TB的CBG的最大數量可以藉由較高層的信號來配置。
提供了用於排程和接收下鏈資料傳輸的方法和裝置。一種方法包括接收用於一個或複數PDSCH候選的較高層配置。每個PDSCH候選可以具有一個或複數CB或CBG。該方法包括針對群組公共實體下鏈控制通道傳輸,監視搜尋空間。該傳輸包括啟動盲解碼的下鏈監視指示(DMI)標誌。可以對該PDSCH候選中的CB或CBG執行盲解碼。可對嘗試盲解碼的CB或CBG的總數應用限制。該方法還可以包括選擇對該CB或CBG的盲解碼將不超過該限制的PDSCH候選子集。然後,可以對所選擇的候選中的一個或複數CB或CBG嘗試盲解碼。
圖1A是示出了可以實施所揭露的一個或複數實施例的範例性通信系統100的圖式。該通信系統100可以是為複數無線使用者提供諸如語音、資料、視訊、訊息傳遞、廣播等內容的多工存取系統。該通信系統100可以藉由共用包括無線頻寬在內的系統資源而使複數無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多工(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅立葉變換擴展OFDM(ZT-UW-DTS-S-OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN) 104、核心網路(CN) 106、公共交換電話網絡(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。WTRU 102a、102b、102c、102d每一者可以是被配置成在無線環境中工作和/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d任何一者都可以被稱為站(STA),其可以被配置成發射和/或接收無線信號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療裝置和應用(例如遠端手術)、工業裝置和應用(例如機器人和/或在工業和/或自動處理鏈環境中工作的其他無線裝置)、消費類電子裝置、以及在商業和/或工業無線網路上工作的裝置等等。WTRU 102a、102b、102c、102d中的任何一者可被可交換地稱為UE。
該通信系統100還可以包括基地台114a和/或基地台114b。基地台114a、114b的每一者可以是被配置成藉由以無線方式與WTRU 102a、102b、102c、102d中的至少一個無線對接來促使其存取一個或複數通信網路(例如CN 106、網際網路110、和/或其他網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地收發信台(BTS)、節點B、e節點B(eNB)、本地節點B、本地e節點B、諸如g節點B(gNB)的下一代節點B、新無線電(NR)節點B、網站控制器、存取點(AP)、以及無線路由器等等。雖然基地台114a、114b的每一者都被描述成了單個元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。
基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可被配置成在名為胞元(未顯示)的一個或複數載波頻率上發射和/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合之中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分成胞元磁區。例如,與基地台114a相關聯的胞元可被分為三個磁區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器都對應於胞元的一個磁區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個磁區使用複數收發器。例如,藉由使用波束成形,可以在期望的空間方向上發射和/或接收信號。
基地台114a、114b可以經由空中介面116來與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通信系統100可以是多工存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施某種無線電技術,例如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協議。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)和/或高速上鏈(UL)封包存取(HSUPA)。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施某種無線電技術,例如演進型UMTS陸地無線電存取(E-UTRA),其中該技術可以使用長期演進(LTE)和/或先進LTE(LTE-A)和/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施某種可以使用NR建立空中介面116的無線電技術,例如NR無線電存取。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施多種無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取(例如使用雙連接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術和/或向/從多種類型的基地台(例如eNB和gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施以下的無線電技術,例如IEEE 802.11(即無線高保真(WiFi))、IEEE 802.16(全球微波存取互通性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫行標準2000(IS-2000)、暫行標準95(IS-95)、暫行標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)、以及GSM EDGE(GERAN)等等。
圖1A中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B或存取點,並且可以使用任何適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等。在一個實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以藉由實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可藉由使用基於胞元的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以直接連接到網際網路110。由此,基地台114b不需要經由CN 106來存取網際網路110。
RAN 104可以與CN 106進行通信,該CN可以是被配置成向WTRU 102a、102b、102c、102d的一者或多者提供語音、資料、應用和/或借助網際協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的輸送量需求、時延需求、容錯需求、可靠性需求、資料輸送量需求、以及移動性需求等等。CN 106可以提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或可以執行使用者驗證之類的高級安全功能。雖然在圖1A中沒有顯示,然而應該瞭解,RAN 104和/或CN 106可以直接或間接地和其他那些與RAN 104使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用NR無線電技術的RAN 104相連之外,CN 106還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的別的RAN(未顯示)通信。
CN 106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網絡。網際網路110可以包括使用了公共通信協定(例如傳輸控制協定/網際協定(TCP/IP)網際網路協定族中的TCP、使用者資料報協定(UDP)和/或IP)的全球性互連電腦網路裝置系統。網路112可以包括由其他服務供應商擁有和/或操作的有線或無線通訊網路。例如,網路112可以包括與一個或複數RAN相連的另一個CN,其中該一個或複數RAN可以與RAN 104使用相同RAT或不同RAT。
通信系統100中的一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的複數收發器)。例如,圖1A所示的WTRU 102c可被配置成與使用基於胞元的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。
圖1B是示出了範例性WTRU 102的系統圖式。如圖1B所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136和/或其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、習用處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心關聯的一個或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、和/或其他任何能使WTRU 102在無線環境中工作的功能。處理器118可以耦合至收發器120,該收發器120可以耦合至傳輸/接收元件122。雖然圖1B將處理器118和收發器120描述成單獨組件,然而應該瞭解,處理器118和收發器120也可以一起集成在一電子元件或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來發射或接收去往或來自基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成發射和/或接收RF信號的天線。作為範例,在另實施例中,傳輸/接收元件122可以是被配置成發射和/或接收IR、UV或可見光信號的放射器/偵測器。在再一個實施例中,傳輸/接收元件122可被配置成發射和/或接收RF和光信號。應該瞭解的是,傳輸/接收元件122可以被配置成發射和/或接收無線信號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。由此,在一個實施例中,WTRU 102可以包括兩個或複數藉由空中介面116來發射和接收無線信號的傳輸/接收元件122(例如複數天線)。
收發器120可被配置成對傳輸/接收元件122所要傳送的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102借助多種RAT(例如NR和IEEE 802.11)來進行通信的複數收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何適當的記憶體中存取訊號,以及將資訊存入這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶存放裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數字(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取訊號,以及將資料存入這些記憶體,作為範例,此類記憶體可以位於伺服器或家用電腦(未顯示)。
處理器118可以接收來自電源134的電力,並且可被配置分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或複數乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可被配置成提供與WTRU 102的目前位置相關的位置資訊(例如經度和緯度)。作為來自GPS晶片組136的資訊的補充或替換,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊,和/或根據從兩個或複數附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以借助任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能和/或有線或無線連接的一個或複數軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片和/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器、虛擬實境和/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或複數感測器。該感測器可以是以下的一者或多者:陀螺儀、加速度計、霍爾效應感測器、磁強計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、手勢感測器、生物測定感測器、濕度感測器等。
WTRU 102可以包括全雙工無線電裝置,其中對於該無線電裝置來說,一些或所有信號(例如與用於UL(例如對傳輸而言)和DL(例如對接收而言)的特定子訊框相關聯)的接收或傳輸可以是併發和/或同時的。全雙工無線電裝置可以包括借助於硬體(例如扼流線圈)或是憑藉處理器(例如單獨的處理器(未顯示)或是憑藉處理器118)的信號處理來減小和/或基本消除自干擾的干擾管理單元。在實施例中,WTRU 102可以包括傳送和接收一些或所有信號(例如與用於UL(例如對傳輸而言)或DL(例如對接收而言)的特定子訊框相關聯)的半雙工無線電裝置。
圖1C是示出了根據實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以藉由空中介面116使用E-UTRA無線電技術來與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。
RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。e節點B 160a、160b、160c每一者都可以包括藉由空中介面116與WTRU 102a、102b、102c通信的一個或複數收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用複數天線來向WTRU 102a發射無線信號,和/或接收來自WTRU 102a的無線信號。
e節點B 160a、160b、160c每一者都可以關聯於一個特定胞元(未顯示),並且可被配置成處理無線電資源管理決策、切換決策、UL和/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c彼此可以藉由X2介面進行通信。
圖1C所示的CN 106可以包括移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(PGW)166。雖然前述元件都被描述成是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體擁有和/或操作。
MME 162可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一者,並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者,執行承載啟動/去啟動處理,以及在WTRU 102a、102b、102c的初始附著過程中選擇特定的服務閘道等等。MME 162可以提供用於在RAN 104與使用其他無線電技術(例如GSM和/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由和轉發去往/來自WTRU 102a、102b、102c的使用者資料封包。並且,SGW 164還可以執行其他功能,例如在eNB間的切換過程中錨定使用者平面,在DL資料可供WTRU 102a、102b、102c使用時觸發尋呼處理,以及管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 146,該PGW 146可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以便促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信。
CN 106可以促成與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供對電路切換式網路(例如PSTN 108)的存取,以便促成WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對該其他網路112的存取,其中該網路可以包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。
雖然在圖1A至圖1D中將WTRU描述成了無線終端,然而應該想到的是,在某些典型實施例中,此類終端與通信網路可以使用(例如臨時或永久性)有線通信介面。
在典型實施例中,該其他網路112可以是WLAN。
採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或複數站(STA)。該AP可以存取或是對接到分散式系統(DS)或是將訊務量送入和/或送出BSS的別的類型的有線/無線網路。源於BSS外部且去往STA的訊務量可以藉由AP到達並被遞送至STA。源自STA且去往BSS外部的目的地的訊務量可被發送至AP,以便遞送到相應的目的地。處於BSS內部的STA之間的訊務量可以藉由AP來發送,例如在源STA可以向AP發送訊務量並且AP可以將訊務量遞送至目的地STA的情況下。處於BSS內部的STA之間的訊務量可被認為和/或稱為點到點訊務量。該點到點訊務量可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS))。舉例來說,使用獨立BSS(IBSS)模式的WLAN不具有AP,並且處於該IBSS內部或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(Ad-hoc)”通信模式。
在使用802.11ac基礎設施工作模式或類似的工作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20MHz的頻寬)或是動態設定的寬度。主通道可以是BSS的工作通道,並且可被STA用來與AP建立連接。在某些典型實施例中,所實施的可以是具有衝突避免的載波感測多工存取(CSMA/CA)(例如在802.11系統中)。對於CSMA/CA來說,包括AP在內的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到和/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,在任何指定時間都有一個STA(例如只有一個站)進行傳輸。
高輸送量(HT)STA可以使用寬度為40MHz的通道來進行通信(例如借助於將寬度為20MHz的主通道與寬度為20MHz的相鄰或不相鄰通道相結合來形成寬度為40MHz的通道)。
超高輸送量(VHT)STA可以支援寬度為20MHz、40MHz、80MHz和/或160MHz的通道。40MHz和/或80MHz通道可以藉由組合連續的20MHz通道來形成。160MHz通道可以藉由組合8個連續的20MHz通道或者藉由組合兩個不連續的80MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置來說,在通道編碼之後,資料可被傳遞並經過一個分段解析器,該分段解析器可以將資料非成兩個流。在每一個流上可以單獨執行逆快速傅立葉變換(IFFT)處理以及時域處理。該流可被映射在兩個80MHz通道上,並且資料可以由執行傳輸的STA來傳送。在執行接收的STA的接收器上,用於80+80配置的上述操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。
802.11af和802.11ah支援1GHz以下的工作模式。相比於802.11n和802.11ac,在802.11af和802.11ah中使用通道工作頻寬和載波有所縮減。802.11af在TV白空間(TVWS)頻譜中支援5MHz、10MHz和20MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1MHz、2MHz、4MHz、8MHz和16MHz頻寬。依照典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信(MTC)(例如巨集覆蓋區域中的MTC裝置)。MTC裝置可以具有某種能力,例如包含了支援(例如只支援)某些和/或有限頻寬在內的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。
對於可以支援複數通道和通道頻寬的WLAN系統(例如802.11n、802.11ac、802.11af以及802.11ah)來說,這些系統包含了可被指定成主通道的通道。該主通道的頻寬可以等於BSS中的所有STA所支援的最大公共工作頻寬。主通道的頻寬可以由某一個STA設定和/或限制,其中該STA源自在支援最小頻寬工作模式的BSS中工作的所有STA。在關於802.11ah的範例中,即使BSS中的AP和其他STA支援2 MHz、4 MHz、8 MHz、16 MHz和/或其他通道頻寬工作模式,但對支援(例如只支援)1MHz模式的STA(例如MTC類型的裝置)來說,主通道的寬度可以是1MHz。載波感測和/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(其只支援1MHz工作模式)對AP進行傳輸),那麼即使大多數的可用頻帶保持空閒並且可供使用,也可以認為所有可用頻帶繁忙。
在美國,可供802.11ah使用的可用頻帶是902MHz到928MHz。在韓國,可用頻帶是917.5MHz到923.5MHz。在日本,可用頻帶是916.5MHz到927.5MHz。依照國家碼,可用於802.11ah的總頻寬是6MHz到26MHz。
圖1D是示出了根據實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以藉由空中介面116使用NR無線電技術來與WTRU 102a、102b、102c進行通信。RAN 104還可以與CN 106進行通信。
RAN 104可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的gNB。gNB 180a、180b、180c每一者都可以包括一個或複數收發器,以便藉由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b、180c可以使用波束成形處理來向和/或從gNB 180a、180b、180c發射和/或接收信號。由此,舉例來說,gNB 180a可以使用複數天線來向WTRU 102a發射無線信號,以及接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳送複數分量載波(未顯示)。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(和/或gNB 180c)的協作傳輸。
WTRU 102a、102b、102c可以使用與可擴縮數位配置相關聯的傳輸來與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元和/或不同的無線傳輸頻譜部分來說,OFDM符號間隔和/或OFDM子載波間隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可擴縮長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號和/或持續不同的絕對時間長度)來與gNB 180a、180b、180c進行通信。
gNB 180a、180b、180c可被配置成與採用獨立配置和/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號來與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c會在與別的RAN(例如e節點B 160a、160b、160c)進行通信/相連的同時與gNB 180a、180b、180c進行通信/相連。舉例來說,WTRU 102a、102b、102c可以藉由實施DC原理而以基本同時的方式與一個或複數gNB 180a、180b、180c以及一個或複數e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋和/或輸送量,以便為WTRU 102a、102b、102c提供服務。
gNB 180a、180b、180c每一者都可以關聯於特定胞元(未顯示),並且可以被配置成處理無線電資源管理決策、切換決策、UL和/或DL中的使用者排程、支援網路切片、DC、實施NR與E-UTRA之間的互通處理、路由去往使用者平面功能(UPF)184a、184b的使用者平面資料、以及路由去往存取和移動性管理功能(AMF)182a、182b的控制平面資訊等等。如圖1D所示,gNB 180a、180b、180c彼此可以藉由Xn介面通信。
圖1D所示的CN 106可以包括至少一個AMF 182a、182b,至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b,並且有可能包括資料網路(DN)185a、185b。雖然前述元件都被描述了CN 106的一部分,但是應該瞭解,這其中的任一元件都可以被CN操作者之外的實體擁有和/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 104中的gNB 180a、180b、180c的一者或多者,並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者,支援網路切片(例如處理具有不同需求的不同協定資料單元(PDU)對話),選擇特定的SMF 183a、183b,管理註冊區域,終止非存取層(NAS)信號,以及移動性管理等等。AMF 182a、182b可以使用網路切片處理,以便基於WTRU 102a、102b、102c使用的服務類型來定制為WTRU 102a、102b、102c提供的CN支援。作為範例,針對不同的用例,可以建立不同的網路切片,例如依賴於超可靠低時延(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、和/或用於MTC存取的服務等等。AMF 182a、182b可以提供用於在RAN 104與使用其他無線電技術(例如,LTE、LTE-A、LTE-A Pro和/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 106中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 106中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以藉由UPF 184a、184b來配置訊務量路由。SMF 183a、183b可以執行其他功能,例如管理和分配UE IP位址、管理PDU對話、控制策略實施和QoS,以及提供DL資料通知等等。PDU對話類型可以是基於IP的、不基於IP的,以及基於乙太網路的等等。
UPF 184a、184b可以經由N3介面連接RAN 104中的gNB 180a、180b、180c的一者或多者,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以便促成WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由和轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、緩衝DL封包、以及提供移動性錨定處理等等。
CN 106可以促成與其他網路的通信。例如,CN 106可以包括或者可以與充當CN 106與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,這其中可以包括其他服務供應商擁有和/或操作的其他有線和/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由對接到UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並藉由UPF 184a、184b連接到本地資料網路(DN)185a、185b。
有鑒於圖1A至圖1D以及關於圖1A至圖1D的相應描述,在這裡對照以下的一項或多項描述的一個或複數或所有功能可以由一個或複數模擬裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或這裡描述的一個或複數其他任何裝置。這些模擬裝置可以是被配置成類比這裡描述的一個或複數或所有功能的一個或複數裝置。舉例來說,這些模擬裝置可用於測試其他裝置和/或類比網路和/或WTRU功能。
模擬裝置可被設計成在實驗室環境和/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或複數模擬裝置可以在被完全或部分作為有線和/或無線通訊網路一部分實施和/或部署的同時執行一個或複數或所有功能,以便測試通信網路內部的其他裝置。該一個或複數模擬裝置可以在被臨時作為有線和/或無線通訊網路的一部分實施/部署的同時執行一個或複數或所有功能。該模擬裝置可以直接耦合到別的裝置以執行測試,和/或可以使用空中無線通訊來執行測試。
一個或複數模擬裝置可以在未被作為有線和/或無線通訊網路一部分實施/部署的同時執行包括所有功能在內的一個或複數功能。例如,該模擬裝置可以在測試實驗室和/或未被部署(例如測試)的有線和/或無線通訊網路的測試場景中使用,以便實施關於一個或複數元件的測試。該一個或複數模擬裝置可以是測試裝置。該模擬裝置可以使用直接的RF耦合和/或借助RF電路(例如,該電路可以包括一個或複數天線)的無線通訊來發射和/或接收資料。
資料傳輸可以由gNB使用下鏈控制資訊(DCI)動態排程,該下鏈控制資訊可以藉由PDCCH傳輸。用於排程PDSCH的DCI格式可以包括DCI格式1_0和格式1_1。在表1中,示出了由具有格式1-0的DCI指示的參數,其中CRC由胞元無線網路臨時識別字(C-RNTI)加擾。
表1:DCI格式1-0 (具有由C-RNTI加擾的CRC)
表2示出了在具有格式1-1的DCI內傳輸的參數。
表2:具有格式1-1的DCI
用於下鏈資料排程的另一種方法是結合PDCCH驗證使用的下鏈(DL)半持久排程(SPS)。類似的方法亦可用於所配置的UL許可類型2。兩種情況(DL SPS及所配置的UL許可)的範例過程可被描述如下:例如,對於排程啟動或排程釋放,WTRU可以驗證DL SPS指派PDCCH或所配置的UL許可類型2 PDCCH是否滿足以下條件:(1)相應DCI格式的CRC同位檢查位元被由較高層參數CS-RNTI提供的CS-RNTI加擾,以及(2)所啟用的傳輸塊的新資料指示符欄位被設定為“0”。如果該DCI格式的所有欄位根據下面示出的表3或表4而被設定,則可以實現DCI格式的驗證。如果實現了驗證,則WTRU可以將該DCI格式中的資訊視為DL SPS或所配置的UL許可類型2的有效啟動或有效釋放,如果沒有實現驗證,則WTRU將該DCI格式視為已被偵測到具有不匹配的CRC。
表3:用於DL SPS和UL許可類型2排程啟動PDCCH驗證的特殊欄位
表4:用於DL SPS和UL許可類型2排程釋放PDCCH的特殊欄位
DCI參數 | 位元 | 注釋 |
針對DCI格式的識別字 | 1 | 總是被設定為1,意味著這是對於DL的 |
頻域資源指派 | 可變 | 由於RB的DL BW數量,其是可變的 |
時域資源指派 | X | |
VRB至PRB映射 | 1 | 非交織與交織 |
調變和編碼方案 | 5 | 來自針對PDSCH的關聯表的MCS索引 |
新資料指示符 | 1 | |
冗餘版本(RV) | 2 | |
HARQ進程號 | 4 | |
下鏈指派索引 | 2 | |
用於所排程的PUCCH的TPC命令 | 2 | |
PUCCH資源指示符 | 3 | |
PDSCH至HARQ_Feedback(HARQ_回饋)時序指示符 | 3 |
DCI參數 | 位元 | 注釋 |
載波指示符 | 0,3 | |
針對DCI格式的指示符 | 1 | |
頻寬部分指示符 | 0,1,2 | |
頻域資源指派 | 可變 | 隨資源配置類型可變 |
時域資源指派 | 1,2,3,4 | |
VRB至PRB映射 | 0,1 | |
PRB捆綁大小指示符 | 0,1 | |
速率匹配指示符 | 0,1,2 | |
調變和編碼方案[TB1] | 5 | |
新資料指示符[TB1] | 1 | |
冗餘版本[TB1] | 2 | |
調變和編碼方案[TB2] | 5 | |
新資料指示符[TB2] | 1 | |
冗餘版本[TB2] | 2 | |
HARQ進程號 | 4 | |
下鏈指派索引 | 0,4 | |
針對所排程的PUCCH的TPC命令 | 2 | |
PUCCH資源指示符 | 2 | |
PDSCH至HARQ_feedback時序指示符 | 3 | |
天線埠(一個或複數)及層數 | 1,2,3,4,5,6 | |
傳輸配置指示 | 0,3 | |
CSI請求 | 2 | |
CBG傳輸資訊 | 0,2,4,6,8 | |
CBG清除資訊 | 0,1 | |
DMRS序列初始化 | 1 |
DCI 格式 0_0/0_1 | DCI 格式 1_0 | DCI 格式 1_1 | |
HARQ 進程號 | 設定為全 ‘0’ | 設定為全 ‘0’ | 設定為全 ‘0’ |
冗餘版本 | 設定為 ‘00’ | 設定為 ‘00’ | 對於所啟用的傳輸塊:設定為 ‘00’ |
DCI 格式 0_0 | DCI 格式 1_0 | |
HARQ 進程號 | 設定為全 ‘0’ | 設定為全 ‘0’ |
冗餘版本 | 設定為 ‘00’ | 設定為 ‘00’ |
調變和編碼方案 | 設定為全 ‘1’ | 設定為全 ‘1’ |
資源塊指派 | 設定為全 ‘1’ | 設定為全 ‘1’ |
參考符號可以用於表示諸如固定的、已知的並且用作導頻的複數之類的符號。參考信號可以用於表示在處理參考符號之後生成的時域信號。例如,在OFDM中,參考符號是被饋送到IDFT塊中的複數,並且參考信號是該IDFT塊的輸出。下鏈控制資訊(DCI)是可以在PDCCH上為一個使用者或一組使用者發送的位元集合。資源元素(RE)是一個子載波上的一個OFDM符號。資源單元組(REG)是RE組,並且是PDCCH的最小構建塊。REG可以用作控制通道元素(CCE)的構建塊。每個REG在時間上由一個OFDM符號上的十二個資源元素RE和在頻率上的一個資源塊(RB)組成。在每個REG中,九個RE用於控制資訊,並且三個RE用於解調參考信號(DMRS)。在時間或頻率上相鄰的複數REG (2、3或6)形成REG束,該REG束與相同的預編碼器一起使用,並且它們的DMRS一起用於通道估計。六個REG (以1、2或3個REG束的格式)形成一個CCE,其是最小可能的PDCCH。每個PDCCH由一個或複數CCE (即,1、2、4、8或16個CCE)組成,並且用於PDCCH的CCE的數量被稱為其聚合級別(AL)。REG束的映射可以具有交織和非交織的兩種不同模式。在非交織映射中,連續的REG束(在頻率上相鄰)形成CCE,並且在頻率上相鄰的CCE形成PDCCH。在交織映射中,REG在被映射到CCE之前被交織(或置換),通常導致在一個CCE中的非相鄰REG束和在一個PDCCH中的非相鄰CCE。控制資源集(CORESET)是用於下鏈控制通道的資源元素集,並且藉由其頻率指派而被配置為具有六個RB的組塊、時間長度(1-3個OFDM符號)、REG束的類型以及從REG束到CCE的映射的類型(即,其是交織還是非交織)。在每個頻寬部分(BWP)中,可以有多達三個CORESET (在所有四個可能的頻寬部分中有十二個CORESET)。
每個WTRU可以被指派有在PDCCH的盲偵測期間要監視的PDCCH候選集合,其被稱為搜尋空間或搜尋空間集合(用於複數聚合級別)。每個搜尋空間集合由其相關聯的CORESET、每個聚合級別的候選的數量、以及監視時機來配置。可以藉由按照時槽的監視週期性、監視偏移和監視模式(例如,作為與時槽內的所有可能符號模式相對應的14位元)來確定該監視時機。
下鏈資料傳輸可以由DCI排程,並由PDCCH發送,其可在其指定的資源上被傳輸。將WTRU特定DCI與每個下鏈資料傳輸相關聯的需求可能產生一些問題。一個問題是用於WTRU特定PDCCH的指定資源可能不足以排程所有需要的下鏈資料傳輸,並且對於某些WTRU來說,PDCCH的阻塞可能以高概率發生。另一個問題是,對於一些小資料或一些定期發生且排程參數沒有很大變化的下鏈傳輸,傳輸動態專用WTRU特定DCI可能是低效的,並且可能在控制資源方面是浪費的。為了gNB在下鏈排程中的靈活性,在WTRU側監視下鏈傳輸的不同選項的能力可能是必要的,這增加了WTRU接收器開銷。因此,需要用於下鏈傳輸的多種方法,其可沒有相關聯的WTRU特定DCI,並且在監視能力方面沒有超過WTRU接收器的限制。
無線系統可以支援多種類型的訊務,這其中包括eMBB和URLLC。半持久排程(SPS)可以由RRC針對每個服務胞元和針對每個BWP來配置,並且複數配置可以在不同的服務胞元上同時活動。SPS的啟動和去啟動可藉由PDCCH而在服務胞元之間可以是獨立。為了實現對不同用例(例如,eMBB和URLLC)或同一用例內的不同訊務類型的SPS支援,可在單個服務胞元內和/或單個BWP內配置和啟動複數SPS配置。在一些情形中,單個SPS配置可啟用複數子SPS配置,並且可在單個服務胞元內和/或在單個BWP內被啟動。在複數SPS配置是活動的情況下,可能需要方法來向WTRU用信號通知每個配置的屬性。除配置的典型參數之外,這可包括每一SPS排程配置的優先順序的標識。在存在複數SPS配置的情況下,對於相同的WTRU,可能存在一些配置資源重疊的概率。在這種情況下,WTRU過程可能需要使該WTRU能夠在解碼時識別所傳輸的特定SPS/CS配置。這可能限制WTRU上的解碼負載,尤其是在大封包的情況下。
參考符號可以用於表示諸如固定的、已知的並且用作導頻的複數之類的符號。參考信號可以用於表示在處理該參考符號之後生成的時域信號。例如,在OFDM中,參考符號可以被認為是饋送到IDFT塊中的複數,而參考信號是該IDFT塊的輸出。下鏈控制資訊(DCI)可以是在PDCCH上為一個使用者或一組使用者發送的位元集合。資源元素(RE)可以是一個子載波上的一個OFDM符號,並且資源元素組(REG)可以指用作控制通道元素(CCE)的構建塊的RE組,CCE可以向使用者指派資源元素。控制資源集(CORESET)可以是用於下鏈控制通道的資源元素集,其由其頻率資源及其時間長度(以符號為單位)及其REG束的類型來配置。搜尋空間(或搜尋空間集合)可以是在PDCCH的盲偵測期間由WRTU或一組WTRU監視的PDCCH候選的集合。碼塊(CB)可以是與改錯碼的一個塊和一個CRC相關聯的資料的一部分。碼塊組(CBG)可以是與ACK-NACK的單個位元相關聯的一組CB。傳輸塊(TB)可以是由一個或複數CB組成的資料傳輸單元。
本文描述了用於PDSCH候選的半靜態配置的方法。一種用於在沒有相關聯的實體下鏈控制通道(PDCCH)的情況下進行下鏈傳輸的方法是使用半靜態配置來配置用於排程該下鏈資料傳輸所需的全部或部分參數。“無DCI PDSCH”、“沒有WTRU特定DCI的下鏈資料傳輸”以及“利用所配置的排程進行下鏈資料接收”可以用於指代該方法。
該配置可以確定用於排程下鏈資料傳輸所需的所有參數,或者其可以定義將由WTRU監視的候選。藉由RRC或其它較高層信號的半靜態配置可以指示用於一個或複數下鏈傳輸候選的以下參數中的一個或複數:調變和編碼方案(MCS);頻率資源;時間資源;相關聯的HARQ參數;或者根據時槽數量的週期性和偏移。
在範例性實施例中,可以藉由標準規範來指定用於無PDCCH PDSCH的參數的一部分。例如,可以規定:僅利用QPSK調變來傳輸無PDCCH PDSCH。對於無DCI下鏈傳輸,第一參數集可以在DCI格式0-1或1-1中指定,並且可以是RRC配置的,其中對於每個參數,WTRU被配置有一個或複數值。然而,第二DCI參數集在PDSCH解碼期間不一定是已知的,而是可以被指定為在PDSCH內被聚合。
在該範例中,所配置的WTRU可以搜尋具有屬於該第一參數集的參數的配置值之一的PDSCH。如果偵測到PDSCH,WTRU可以檢索屬於該第二集的參數值,並且繼續PDSCH處理。可能適合於該第一參數集的參數如下:頻域資源指派;時域資源指派;VRB到PRB映射;調變和編碼方案;冗餘版本(RV);以及下鏈指派索引。適合於該第二參數集的參數可以包括以下:新資料指示符、HARQ進程號、PUCCH資源指示符、用於所排程的PUCCH的TPC命令、以及PDSCH到HARQ _ Feedback時序指示符。
本文描述了用於以降低的複雜度對PDSCH候選進行盲偵測的方法。在沒有PDCCH的情況下,一種用於降低PDSCH候選的盲偵測複雜度的方法是僅對該PDSCH候選的一部分執行盲偵測,並且如果偵測到該部分失敗,則中止該過程。
在一個實施方式中,如圖2所示,WTRU可以對傳輸塊(TB)或碼塊組(CBG)的第一碼塊(CB)執行盲偵測/解碼。在此範例中,如果與PDSCH候選相關聯的傳輸塊的CBG的第一CB被成功解碼並且CRC校驗成功,則該CBG的後續CB可被解碼。否則,WTRU可以中止構成該CBG的後續CB的解碼/偵測過程,如圖2所示。在這種情況下,如果CBG的所有CB都被正確解碼(即,如果它們的CRC成功通過),則WTRU可以在PUCCH中為該CBG傳送HARQ-ACK回饋;否則,將發送NACK。在該方法的一個實施例中,僅當傳輸塊的第一CB被成功偵測到並且其CRC校驗成功時,才發送PDSCH的HARQ ACK/NACK回饋。如圖2的範例所示,WTRU可以僅使用CBG的第一CB對PDSCH候選執行盲偵測。在這種情況下,傳輸塊(TB) 200由兩個CBG 210和220組成。第一CBG 210由CB 211、212和213組成,第二CBG 220由CB 221、222和223組成。
在圖3中一般性示出的實施例中,WTRU可以對傳輸塊(TB)的第一碼塊(CBG)執行盲偵測/解碼。在本實施例中,如果與PDSCH候選相關聯的TB的第一CBG被成功解碼,並且對於構成該CBG的所有CB的CRC校驗成功,則可以解碼該TB的後續CBG。否則,WTRU可以中止對構成該TB的後續CBG的解碼/偵測過程。
例如,從圖3中可以看出,WTRU可以對PDSCH候選300執行盲偵測,其中只有每個TB的第一CBG被用於盲偵測。這裡,每個傳輸塊(TB)由三個CBG組成。第一TB 310由CBG 311、312和313組成,第二TB 320由CBG 321、322和323組成。
在一個實施例中,在標準規範中可以規定對於給定數位配置的每個時槽的WTRU的PDSCH監視/盲偵測的CB/CBG的最大數量的限制。例如,對於時槽、符號、CB、CBG或TB的跨度,可以應用類似的限制。在這種情況下,WTRU可以確定應該考慮其配置的PDSCH候選中的哪個候選用於盲偵測。如果所配置的PDSCH候選的數量超過了所指定的可基於WTRU能力/類別的最大CB/CBG數量的限制,則該WTRU可能不被期望監視、解碼或偵測所配置的PDSCH候選子集。
WTRU可以基於以下參數中的一個或複數參數來選擇PDSCH候選子集以用於盲偵測:載波的索引(在WTRU被配置用於利用載波聚合進行操作的情況下)、頻寬部分(BWP)的索引(在WTRU被配置用於利用複數活動的BWP進行操作的情況下)、該PDSCH候選的索引、搜尋空間的索引(在PDSCH候選被封包到複數搜尋空間中的情況下)、該PDSCH候選的優先順序(例如,URLLC對比於eMBB),構成該PDSCH候選的TB的數量、構成TB的CBG的數量、構成CBG的CB的數量、針對該PDSCH候選的TB大小、該PDSCH候選的調變和編碼方案、該PDSCH候選的層數(其影響偵測複雜度)、該PDSCH候選的PRB捆綁大小(其影響通道估計複雜度)、分量載波(例如,服務胞元)的數量(在WTRU被配置用於利用載波聚合進行操作的情況下)、或者BWP的數量(在WTRU被配置用於利用複數活動的BWP進行操作的情況下)。
在一個範例中,從服務胞元的最低索引DL BWP上的最低PDSCH索引和/或最高優先順序開始,如果PDSCH候選的總CB/CBG數沒有超過盲偵測CB/CBG數的指定限制,則WTRU可以將該PDSCH候選添加到活動PDSCH候選池中以進行監視/盲偵測。
在一個實施例中,在標準規範中可以規定對於給定數位配置的每個時槽的WTRU的PDSCH監視/盲偵測的RB和/或資源塊組(RBG)的最大數量的限制。假定WTRU可能需要為用於PDSCH偵測的每個實體資源塊(PRB)或PRB束執行通道估計,則對PRB/RBG數量的限制可以確保每時槽的通道估計的複雜度不超過WTRU的能力。例如,對於時槽、符號、CB、CBG或TB的跨度,可以應用類似的限制。如果所配置的PDSCH候選的數量超過了所指定的可基於WTRU能力/類別的RB/RBG的最大數量的限制,則不期望該WTRU監視、解碼或偵測所配置的PDSCH候選子集。
當WTRU確定用於監視的PDSCH候選時,WTRU可以不考慮接近用於PDSCH監視限制的RB/RBG的最大數量的重疊RB/RBG。如果RB/RBG對應於不同的BWP索引、不同的載波索引、不同的PDSCH搜尋空間索引、用於接收相應PDSCH候選的不同的第一符號、用於相應PDSCH候選的不同長度、或不同的PRB捆綁大小,則WTRU可以確定該RB/RBG是非重疊的。
根據實施例,WTRU可以考慮對RB和/或RBG的最大數量以及用於PDSCH監視的CB/CBG的最大數量存在聯合限制。對於盲解碼PDCCH候選的CCE的數量和無PDCCH PDSCH的盲解碼CB的數量或固定倍數的盲解碼CB也可以存在聯合限制(例如,N _ { CCE } + 4 _ { CB } > 100)。在該範例中,WTRU可以基於盲解碼的CCE的數量的聯合限制、基於所配置的搜尋空間、以及可以在標準規範中指定的CB/CBG的數量來確定時槽中的盲偵測的CB/CBG的數量的限制。
在另一個範例中,對於PDCCH和PDSCH的盲偵測可以有兩個聯合限制:
(1)對PDCCH候選的盲偵測和CRC校驗的數量以及PDSCH候選的盲偵測和CRC校驗的數量的聯合限制(例如,N_{PDCCH} + N_{CB} > 60);或者(2)用於由盲解碼的PDCCH候選覆蓋的CCE的數量以及用於PDSCH候選的盲解碼的CB的RB/RBG的數量的聯合限制(例如,a*N_{CCE} + b*N_{ RBGs} > N_{total})。該限制可以對應於對PDCCH和無DCI PDSCH的通道估計的複雜度的限制。
通常,對於時槽中的PDCCH和無DCI PDSCH的盲偵測,可以滿足一個或複數限制,其中,這些限制中的每一個可以基於該時槽中的以下參數中的一個或複數:盲解碼的PDCCH候選的數量、由盲解碼的PDCCH候選覆蓋的相異CCE的數量、盲解碼的PDSCH候選的數量、與該盲解碼的PDSCH候選相關聯的盲解碼的CB或CBG的數量、由盲解碼的PDSCH候選覆蓋的相異RB或RBG的數量、由該PDSCH候選的盲解碼的CB覆蓋的相異RB或RBG的數量、由該PDSCH候選的盲解碼的CBG覆蓋的相異RB的數量,或由該PDSCH候選的盲解碼的CB覆蓋的相異CBG的數量。
圖4顯示此方法的基於WTRU的過程的範例。例如,當WTRU支援兩種不同類型的下鏈訊務時,可以使用該方法。如圖4所示,在步驟410,WTRU可以接收較高層信號,其表明該PDSCH候選、每TB的最大CBG數量以及關於PDCCH搜尋空間的配置。在步驟420,WTRU可以基於對於PDCCH和無DCI PDSCH的通道估計複雜度的聯合限制來確定對於PDSCH候選的盲解碼CB的RB/RBG數量的限制。WTRU可以減去由時槽中的相關聯的搜尋空間覆蓋的CCE的數量。在其它情況下,可以應用類似的限制,例如,對於時槽、符號、CB、CBG或TB的跨度。在步驟430中,WTRU可以基於對於PDCCH和PDSCH盲解碼的數量的聯合限制來確定對於PDSCH候選的盲解碼的CB的數量的限制。同樣,WTRU可以減去由時槽中的相關聯的搜尋空間覆蓋的CCE的數量。在步驟440,WTRU可以選擇滿足盲解碼的CB和相關聯的RB/RBG的數量限制的PDSCH候選子集,該選擇可基於他們的索引和他們的CBG的數量。在步驟450中,WTRU可以對PDSCH候選的CBG中的第一CB執行盲偵測。在步驟460,如果該CRC通過,WTRU可以繼續解碼CBG。如果該CRC沒有通過,WTRU可以結束該PDSCH候選的盲偵測。
另一種具有降低的複雜度的盲偵測方法是利用存在所配置的WTRU特定DMRS序列(一個或複數)。在一個範例中,WTRU可以嘗試在每個PDSCH頻率-時間區域中偵測所指派的WTRU特定DMRS,其中對於該PDSCH頻率-時間區域而言,WTRU已經被配置用於無DCI的PDSCH傳輸。如果WTRU沒有以高確定性偵測到任何配置的DMRS序列,則WTRU可以假定不存在無DCI的PDSCH;否則WTRU可以繼續盲偵測過程。
在另一個範例中,可以向WTRU指派複數DMRS序列,其中每個序列的存在可以指示為該WTRU排程了無DCI的PDSCH。例如,WTRU可以被配置用於具有四個MCS值的無DCI PDSCH傳輸,並且WTRU可以確定該DMRS序列中的每一個被映射到該四個MCS值中的一個MCS值。WTRU可以嘗試在該WTRU被配置的PDSCH頻率-時間區域的每一個中偵測所指派的WTRU特定DMRS序列。如果WTRU以高確定性偵測到任何所配置的DMRS序列,則WTRU可以假定存在無DCI的PDSCH,並且偵測到的DMRS序列被映射到所指派的參數的值。在另一種方法中,WTRU可以為所指派的DCI參數按序放置多於一個值,其中這些值可以根據偵測到的相關聯DMRS序列的可靠性來排序。因此,如果WTRU偵測到具有可接受可靠性級別的一個或複數配置的DMRS序列,則WTRU可以將該DCI參數的該值放置在有序集中,其中與較高可靠性DMRS序列相關聯的值位於該有序集的頂部。WTRU可以繼續偵測具有與最高可靠DMRS序列相關聯的DCI參數值的PDSCH;如果沒有偵測到具有校驗的CRC的PDSCH,則WTRU可以選擇與第二最可靠DMRS序列相關聯的DCI參數的第二值,以此類推。然而,如果WTRU偵測到所配置的序列集合中唯一的序列,則WTRU可以將該序列解釋為存在與該PDSCH傳輸相對應的DCI參數的指示。
在該方法中,可以使用群組公共PDCCH (GC-PDCCH)來表明時槽中的所配置的PDSCH候選或者所配置的PDSCH候選的子集的活動性。例如,當不同的偶發性下鏈傳輸是針對不同的WTRU,但它們的時序可能是相關的或同時的(例如針對WTRU群組的特定的基於事件的單獨下鏈資料)時,該方法可能是有用的。
在實施例中,可以被稱為資料監視指示符或DMI的群組公共DCI可以用於動態地指示時槽或複數連續時槽中的所配置的PDSCH候選的子集。DMI可以由指定的DCI格式發送,該DCI格式可以基於其自己的特定RNTI (例如DMI-RNTI)來加擾。DMI也可以被附著到另一群組公共的DCI上。例如,DMI可以與SFI組合或者基於SFI的配置表而被隱式地解釋。
在一個範例中,DMI可以包括一位元標誌,該一位元標誌指示在相關聯的一個或複數時槽中對所配置的PDSCH候選的盲偵測的啟動或去啟動。在另一範例中,DMI可以表明一個或複數活動PDSCH候選。在另一範例中,DMI可以指示該時槽或相關聯的時槽群組內的監視時機。
圖5提供了範例過程,藉由該過程,WTRU可以基於該DMI標誌確定對其配置的PDSCH候選進行盲解碼或者監視其配置的WTRU特定PDCCH搜尋空間。在步驟510,WTRU可以接收表明PDCCH搜尋空間和無PDCCH PDSCH候選的數量的較高層信號。在步驟520,WTRU可以接收包含DMI標誌的GC-PDCCH。在步驟530,WTRU可以確定該DMI是否指示了所配置的PDSCH候選的特定子集。如果不是,則在步驟540(a),WTRU可以在步驟545中接收由PDCCH排程的PDSCH之前,基於所配置的搜尋空間來監視一個或複數WTRU特定PDCCH。如果在步驟530,WTRU確定DMI已經啟用了盲解碼,則轉而在步驟540(b),WTRU可以對所配置的PDSCH候選執行盲偵測。
在另一個範例中,基於對盲解碼的CB和CCE的數量的指定聯合限制,(如DMI所指示的)PDSCH盲偵測的活動性可以來減少活動的所監視的WTRU特定搜尋空間的數量。
本文提供了應用於所配置的PDSCH候選子集並且在圖6中示出的用於盲偵測的過程。假定該DMI啟用了盲偵測,則在步驟610,WTRU可以確定每個PDSCH候選的盲解碼的數量。在步驟620,WTRU可以將PDSCH盲解碼和它們相應的盲解碼CB的數量與對於PDSCH和PDCCH盲偵測的聯合限制進行比較。在這樣做時,WTRU可以考慮對應於PDSCH候選和/或活動PDCCH候選的盲解碼的CB的數量以及它們的在該時槽中盲解碼的CCE的相應數量。在步驟630,WTRU可以選擇滿足該聯合盲偵測限制的PDSCH候選的子集(例如,根據索引和/或優先順序進行選擇)作為該時槽中的活動PDSCH候選。在步驟640,WTRU然後可以藉由首先盲解碼該活動PDSCH候選的預定義數量的CB來在時槽中對該活動PDSCH候選執行盲偵測。如果在該步驟期間,WTRU確定偵測到來自預期傳輸的CB子集的至少一部分,則WTRU可以繼續解碼整個PDSCH候選。
圖7提供了根據上述規則執行的盲偵測過程的範例。如圖7所示,WTRU可以接收指示以監視四個PDSCH候選710、720、730和740。PDSCH候選710可以具有兩個CBG 711和712,並且每個CBG可以具有CB (a)至(c)。PDSCH候選720可以具有兩個CBG 721和722,每個CBG具有兩個CB (a)和(b)。候選730也可具有兩個CBG 731及732,每一CBG具有兩個CB (a)及(b)。最後,PDSCH候選740可以具有兩個CBG 741和742,並且每個CBG可以具有CB (a)至(c)。在這個範例中,WTRU可以藉由加和CB的總數(在這種情況下為20)來確定CB盲解碼的數量。隨後,WTRU可以藉由減去PDSCH盲解碼的數量而將PDSCH盲解碼與對於時槽內PDSCH和PDCCH盲解碼的聯合限制進行比較。這裡,假設WTRU已經確定了對於PDSCH和PDCCH盲解碼的聯合限制為24,WTRU將藉由從24中減去20來確定CB盲解碼的最大數量為達到4。因此,在該範例中,WTRU必須選擇這樣一PDSCH候選的子集,該子集將不需要WTRU在多於4個CB上執行盲解碼。從第一PDSCH候選710開始,WTRU可以嘗試對每個CBG 711和712的第一CB (a)中的每一個進行盲解碼。假定該兩個解碼實例都失敗,WTRU可以中止解碼並嘗試對下一個PDSCH候選720進行解碼。同樣,WTRU可以將上述過程應用於第一CBG 721和第二CBG 722的每個第一CB (a)。假設CB 721 (a)的解碼失敗,但是CB 722 (a)的解碼通過,WTRU可以繼續候選720的解碼。這裡,因為WTRU已經嘗試了4個CB盲解碼,所以PDSCH候選730和740從盲偵測程序中被丟棄。
基於半持久排程(SPS)的過程可以使得能夠在沒有WTRU特定排程的情況下接收PDSCH傳輸。為了實現用於多訊務無PDCCH下鏈資料接收的信號,可以使用本文描述的方法。在一個實施例中,每個SPS可以被分配給單獨的胞元無線網路臨時識別字(C-RNTI),並且因此WTRU可以被配置有複數SPS C-RNTI。在一個範例中,可以針對每個用例(例如,eMBB或URLLC)或針對用例內的每個訊務類型(例如,高優先順序和/或低優先順序mMTC)進行單獨的配置。對於基於SPS的PDSCH接收,WTRU可以使用每個SPS C-RNTI獨立地監視PDCCH,以識別SPS何時被啟動或去啟動。這可能增加WTRU上的PDCCH監視負載,並且可能需要減少的PDCCH監視方法,諸如所討論的那些方法
在一個實施例中,WTRU可以被分配單個C-RNTI,其中複數子RNTI映射到複數子SPS。SPS C-RNTI可被修改以包含標識該用例或訊務類型的複數SPS子配置。該配置可包括參數,用於標識可用的SPS子配置的數量和/或標識特定SPS子配置是否是活動的。
這兩個選項可包括標識SPS子配置的相對優先順序的資訊。可以隱式地發送該資訊。如果隱式地發送該相對優先順序,則可以按照配置的屬性(例如,週期性)來對優先順序排序。在一個範例中,較小的週期性意味著較高的優先順序,例如,如在URLLC實現中那樣。在另一範例中,可以顯式地發送該資訊。在這種情況下,可以配置優先順序參數,例如當優先順序被提供為固定的數位集合時,其中較高或較低的數字指示較低或較高的優先順序。
如果對於不同配置,存在資源衝突,則可能發生關於具有一個以上活動SPS資源的一個或複數問題。在這種情況下,WTRU可能必須解碼複數SPS配置,導致不必要的複雜度增加。為了解決這個問題,可以考慮若干規則中的一個或複數。在一個系統中,gNB確保在複數配置和它們的重複位置之間不發生衝突。例如,該配置可藉由BWP和/或頻率而被建立在正交資源上。在該系統中,WTRU可能需要檢查所有可能的配置。在另一系統中,gNB不防止衝突,但是可能仍然需要檢查所有可能的SPS配置。
在又一個範例中,gNB藉由基於規則或基於優先順序的傳輸來限制衝突,決定哪些資源對應於每個資源。這裡,WTRU可以使用基於該gNB規則的丟棄解碼規則來解碼該配置的子集,並丟棄其餘的配置。例如,WTRU可以解碼具有較高優先順序的配置,並且丟棄具有較低優先順序的配置的解碼。在另一個範例中,WTRU可以解碼在該資源中具有較低或較高重傳次數的配置,並且丟棄對具有較高或較低重傳次數的配置的解碼。如果一種配置被提供用於初始傳輸,而一種配置被提供用於重傳,則WTRU可以解碼與初始傳輸(或重傳,取決於該規則)有關的配置,而不考慮優先順序。
在另一個範例中,WTRU可以檢查在該資源中具有較高重傳次數的配置。WTRU可以應用規則的任何組合。例如,如果兩個配置涉及初始傳輸,則WTRU可以檢查使用較高優先順序的訊務類型以避免資源衝突。
被配置用於複數SPS/CS資源的WTRU可以遵循以下程序。例如,WTRU可以經由RRC接收第一配置(例如,SPS-CRNTI1)。WTRU然後可以經由RRC接收第二配置(例如,SPS-CRNTI2)。WTRU可以使用多種配置來開始PDCCH監視。然後,WTRU可以在時間間隔或時槽中接收用於配置1的PDCCH傳輸,其啟動或去啟動SPS1。在一種情況下,可以針對每個時間間隔啟用複數PDCCH配置。WTRU可以在相同的時間間隔或時槽中繼續監視PDCCH以獲得配置2。然後,WTRU可以在相同時槽中接收用於配置2(啟動SPS2)的PDCCH傳輸。在另一種情況下,可以針對每個時間間隔啟用單個PDCCH配置。這裡,由於每個時間間隔或時槽僅發送一個PDCCH,因此WTRU可以停止PDCCH監視。
對於下鏈傳輸,系統還實現單個或複數配置的排程配置。以上討論的過程可以應用於下鏈CS。本文提供了用於利用所配置的排程的PDSCH接收的資源配置的方法。根據這些實施例,WTRU可以由較高層(例如,參數ConfiguredScheduleConfig
)半靜態地配置有用於利用所配置的排程的PDSCH接收的資源配置。
在一個範例中,當WTRU被配置用於利用所配置的排程的PDSCH接收時,WTRU可以從較高層接收並應用若干參數中的一個或複數參數用於PDSCH接收。例如,WTRU可以應用時域偏移。較高層參數(例如,pdsch-TimeDomainOffset
)可以指示利用所配置的排程的下鏈資料接收相對於預先指定的系統訊框號(例如,SFN =0)的偏移。WTRU可以應用時域分配。在這種情況下,較高層參數(例如,pdsch-TimeDomainAllocation
)可以指示以下的組合以用於利用所配置的排程的PDSCH接收:起始符號、長度和映射類型。WTRU可以應用頻域分配。較高層參數(例如,pdsch-FrequencyDomainAllocation
)可以指示用於利用所配置的排程的PDSCH接收的頻域資源配置。WTRU可以應用用於調變和編碼方案以及TB大小的參數。較高層參數(例如,pdsch-McsAndTBS
)可以指示用於利用所配置的排程的PDSCH接收的調變階數、目的碼率和TB大小。WTRU可以應用冗餘版本。如果WTRU藉由較高層而被配置了下鏈資料重複,則較高層參數(例如,pdsch-RV
)可以定義要應用於PDSCH的重複的冗餘版本模式。WTRU可以指定一個或複數天線埠。較高層參數(例如,pdsch-AntennaPort
)可以指示用於利用所配置的排程的PDSCH接收的天線埠(一個或複數)。WTRU可以指定傳輸配置指示。較高層參數(例如,pdsch-TCI
)可以指示一個RS集中的DL參考符號(RS)與來自所配置的TCI狀態的清單(例如,tci-StatesToAddModList
)的PDSCH解調參考符號(DM-RS)埠之間的天線埠准共位元(QCL)關係。WTRU可以應用DMRS序列初始化。當複數加擾ID已經由較高層配置在DMRS配置中(例如,DMRS-DownlinkConfig
)時,較高層參數(例如,pdsch-DMRS-SeqInitialization
)可以指示用於利用所配置的排程的PDSCH接收的DM-RS序列初始化的加擾ID。
對於利用所配置的排程的PDSCH接收,如果WTRU在時槽n
中偵測到PDSCH,則WTRU可以在時槽n + k
內的PUCCH傳輸中提供相應的HARQ-ACK資訊,其中k
由較高層提供(例如,參數dl-DataToUL-ACK
)。對於利用所配置的排程的PDSCH接收,WTRU可以根據由較高層提供的參數(例如,參數n1PUCCH-AN
)來確定用於對應HARQ-ACK資訊傳輸的PUCCH資源。當由較高層排程的PDSCH在時間上與由DCI動態排程的另一PDSCH傳輸部分或完全重疊時,WTRU可以不對該由較高層排程的PDSCH進行解碼,其中對於該DCI,其CRC是利用相同胞元(例如,主胞元)內的CS-RNTI加擾的。
URLLC訊息可以使用各種方法經由PDCCH通道來發送或接收。此後,術語“ URLLC訊息”可以與“URLLC PDSCH”、“傳輸塊”、“訊息”、“URLLC訊息”、“封包”、“URLLC封包”互換地使用。
在一範例中,WTRU可在PDCCH的搜尋空間中監視、嘗試解碼、或接收URLLC訊息(例如,傳輸塊),其中該搜尋空間可被配置具有用於URLLC訊息接收的搜尋空間。可以應用以下情況中的一個或複數。例如,WTRU可以監視一種或多種類型的PDCCH搜尋空間,其中WTRU可以監視或嘗試解碼第一類型的PDCCH搜尋空間中的下鏈控制資訊(DCI),並且WTRU可以監視或嘗試解碼第二類型的PDCCH搜尋空間中的傳輸塊。在這種情況下,當WTRU在第二類型的PDCCH搜尋空間中接收到傳輸塊時,WTRU可以發送相關聯的HARQ-ACK,而如果WTRU接收到DCI,則WTRU可以不發送相關聯的HARQ-ACK。如果WTRU在第一類型的PDCCH搜尋空間中接收到DCI,則該DCI可以用於相關聯的PDSCH接收或PUSCH傳輸。
該第一類型的搜尋空間的聚合級別(AL)候選值的子集可用於該第二類型的搜尋空間。例如,WTRU可以被配置有來自AL候選值(例如,{1,2,4,8,16})的AL集合以用於該第一類型的搜尋空間,而WTRU可以被配置有來自AL候選值的子集(例如,{4,8,16})的AL集合。在實施例中,單個AL可用於該第二類型的搜尋空間,並且一個或複數AL可用於該第一類型的搜尋空間。該AL候選值中的最大AL可用於該第二類型的搜尋空間。
可以在PDCCH搜尋空間中監視或接收的傳輸塊的大小可以基於以下各項中的一個或複數來確定:該搜尋空間的時間和/或頻率位置、該PDCCH解碼候選的標識、較高層配置、在該CRC中加擾的RNTI、REG束大小、該PDCCH解碼候選的聚合級別、被配置用於相關聯的CORESET的RB的數量、或可以用於該傳輸塊的加擾標識。
如果使用較高層配置來確定該傳輸塊大小,則搜尋空間配置可以包括可以在該PDCCH搜尋空間中監視或接收的一個或複數傳輸塊大小。如果實際傳輸塊大小小於所配置的傳輸塊大小,則可以在該傳輸塊的開頭或末尾處填充一個或複數零位。如果在CRC中對RNTI進行加擾,則可以使用一個或複數RNTI,並且每個RNTI可以與傳輸塊大小相關聯。
如下面例示的,可以基於一個或複數指示符來確定可以在PDCCH搜尋空間中監視或接收的傳輸塊的HARQ進程號。可以根據時槽內的搜尋空間的時間位置來確定該HARQ進程號。例如,如果WTRU在位於時槽中的第一時間位置(例如,時槽中的第一符號)的搜尋空間中接收到傳輸塊,則可以使用第一HARQ進程號。如果WTRU在位於時槽中的第二時間位置(例如,時槽中的第三符號)的搜尋空間中接收到傳輸塊,則可以使用第二HARQ進程號。
可以基於在CRC中加擾的RNTI來確定該HARQ進程號。這裡,例如,可以使用一個或複數RNTI,並且每個RNTI可以與HARQ進程號相關聯。可以基於可以用於該傳輸塊的加擾標識來確定該HARQ進程號。
在另一範例中,WTRU可被配置成在被配置成用於監視一個或複數DCI的PDCCH搜尋空間中監視、嘗試解碼或接收URLLC訊息(例如,傳輸塊)。可以應用以下情況中的一個或複數。DCI有效酬載可以攜帶一個或複數資訊類型,其中第一資訊類型可以是控制資訊,第二資訊類型可以是傳輸塊。WTRU可以基於若干指示符中的至少一個來確定該DCI有效酬載的資訊類型。
在一個範例中,用CRC加擾的RNTI可以指示該DCI有效酬載的資訊類型。例如,可以使用兩個RNTI,並且如果WTRU偵測到第一RNTI,則WTRU可以確定在DCI中攜帶第一資訊類型,並且如果WTRU偵測到第二RNTI,則WTRU可以確定在DCI中攜帶第二資訊類型。
在另一個範例中,在該DCI有效酬載的開始處的位元標誌可以指示該資訊類型。例如,如果該位元標誌指示“真”,則可以在DCI有效酬載中攜帶第一資訊類型,並且如果位元標誌指示“假”,則可以在DCI有效酬載中攜帶第二資訊類型。
在另一範例中,PDCCH解碼候選可指示該資訊類型。DCI有效酬載可以在搜尋空間中的PDCCH解碼候選的第一子集中攜帶第一資訊類型,並且DCI有效酬載可以在PDCCH解碼候選的第二子集中攜帶第二資訊類型。
在又一範例中,時間位置可指示該資訊類型。例如,DCI有效酬載可以在搜尋空間的第一時間實例中攜帶第一資訊類型,並且DCI有效酬載可以在第二時間實例中攜帶第二資訊類型。
在另一個範例中,可以基於傳輸塊大小,經由PDCCH或PDSCH來發送URLLC的傳輸塊。如果URLLC傳輸塊的傳輸塊大小小於臨界值,則WTRU可以在PDCCH中監視、嘗試解碼或接收傳輸塊。如果傳輸塊大小大於臨界值,則WTRU可以在可以由DCI排程的PDSCH中監視、嘗試解碼或接收傳輸塊。可以基於以下各項中的至少一項來確定該臨界值:WTRU覆蓋級別(例如,L1-RSRP或路徑損耗)、PDCCH的最大聚合級別、較高層配置、或WTRU能力。
RNTI可以用於確定哪個下鏈通道(例如,PDCCH或PDSCH)用於傳輸塊傳輸。用DCI的CRC加擾的第一RNTI可以指示在DCI中發送該傳輸塊,並且用DCI的CRC加擾的第二RNTI可以指示在DCI中發送該傳輸塊的PDSCH排程資訊。
儘管以上以特定組合描述了特徵和元件,但是本領域普通技術人員將理解,每個特徵或元件可以單獨使用或與其他特徵和元件進行任何組合。另外,在此所述的方法可以在結合在電腦可讀媒體中的電腦程式、軟體或韌體中實施,以由電腦或處理器執行。電腦可讀媒體的範例包括但不限於電子信號(藉由有線或無線連接傳輸)和電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(例如,內部硬碟和可移磁碟)、磁光媒體和光學媒體(例如,CD-ROM光碟和數位多功能光碟(DVD))。與軟體相關聯的處理器可用於實施用於WTRU、UE、終端、基地台、RNC和任何主機電腦中的射頻收發器。
CB、211、212、213、221、222、223、721 (a) 、722 (a) :碼塊
CBG、311、312、313、321、322、323、711、712、721、722、731、732、741、742:碼塊組
CCE:控制通道元素
DCI:下鏈控制資訊
DMI:下鏈監視指示
GC-PDCCH:群組公共實體下鏈控制通道
N2、N3、N4、N6、N11、S1、X2、Xn:介面
PDCCH:實體下鏈控制通道
PDSCH:實體下鏈共用通道
RB:資源塊
RBG:資源塊組
TB:傳輸塊
100:通信系統
102、102a、102b、102c、102d:無線傳輸/接收單元(WTRU)
104:無線電存取網路(RAN)
106:核心網路(CN)
108:公共交換電話網絡(PSTN)
110:網際網路
112:其他網路
114a、114b:基地台
116:空中介面
118:處理器
120:收發器
122:傳輸/接收元件
124:揚聲器/麥克風
126:小鍵盤
128:顯示器/觸控板
130:非可移記憶體
132:可移記憶體
134:電源
136:全球定位系統(GPS)晶片組
138:週邊設備
160a、160b、160c:e節點B
162:移動性管理實體(MME)
164:服務閘道(SGW)
166:封包資料網路(PDN)閘道(PGW)
180a、180b、180c:g節點B(gNB)
182a、182b:存取和移動性管理功能(AMF)
183a、183b:對話管理功能(SMF)
184a、184b:使用者平面功能(UPF)
185a、185b:資料網路(DN)
200:傳輸塊(TB)
210:第一CBG
220:第二CBG
300、710、720、730、740:PDSCH候選
310:第一TB
320:第二TB
410、420、430、440、450、460、510、520、530、540(a)、540(b) 、545、610、620、630、640:步驟
可以從以下結合附圖以範例方式給出的描述中獲得更詳細的理解,其中附圖中相同的附圖標記表示相同的元素,並且其中:
圖1A是示出了可以實施所揭露的一個或複數實施例的範例性通信系統的系統圖式;
圖1B是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例性無線傳輸/接收單元(WTRU)的系統圖式;
圖1C是示出了根據實施例的可以在圖1A所示的通信系統內部使用的範例性無線電存取網路(RAN)和範例性核心網路(CN)的系統圖式;
圖1D是示出了根據實施例的可以在圖1A所示的通信系統內部使用的另一個範例性RAN和另一個範例性CN的系統圖式;
圖2是PDSCH候選的範例,其中只有每個CBG的第一CB用於盲偵測;
圖3為PDSCH候選的範例,其中只有每個TB的第一CBG被用於盲偵測;
圖4是基於對時槽中盲解碼的CCE、CB、CBG及其相關聯的資源塊(RB)和資源塊組(RBG)的數量的聯合限制,對無PDCCH(PDCCH-less) PDSCH候選進行盲偵測的範例過程;
圖5是基於在群組公共PDCCH中接收的DMI標記來監視無PDCCH PDSCH的WTRU過程的範例;
圖6是應用於所配置的PDSCH候選子集的盲偵測的範例過程;
圖7是根據圖6的範例執行的盲偵測的範例,其中在DMI標誌的肯定指示之後監視四個PDSCH候選。
CB、211、212、213、221、222、223:碼塊
200:傳輸塊(TB)
210:第一碼塊組(CBG)
220:第二碼塊組(CBG)
Claims (16)
- 一種用於排程和接收一下鏈資料傳輸的方法,包括: 接收針對一個或複數實體下鏈共用通道(PDSCH)候選的一較高層配置,每個PDSCH候選與一個或複數碼塊(CB)或碼塊組(CBG)相關聯; 針對一群組公共實體下鏈控制通道(GC-PDCCH)上的一傳輸,監視一實體下鏈控制通道(PDCCH)搜尋空間,其中該傳輸包括一下鏈監視指示(DMI)標誌; 根據該DMI標誌,確定嘗試對與該PDSCH候選相關聯的一個或複數CB或CBG進行盲解碼; 將該CB或CBG與對嘗試盲解碼的CB或CBG的一總數的一個或複數聯合限制進行比較; 基於該一個或複數聯合限制,選擇對該CB或CBG的盲解碼將不超過該一個或複數聯合限制的一PDSCH候選子集;以及 嘗試對該所選擇的PDSCH候選子集中的一個或複數CB或CBG進行盲解碼。
- 如請求項1所述的方法,其中該一個或複數聯合限制是基於以下各項中的至少一項來確定的:一活動PDCCH候選數量、與該活動PDCCH候選數量相對應的一控制通道元素(CCE)數量、一活動PDSCH候選數量、或者與該活動PDSCH候選相對應的一盲解碼CB數量。
- 如請求項1所述的方法,其中該一個或複數聯合限制提供一時槽內嘗試盲解碼的CB或CBG的一總數。
- 如請求項1所述的方法,進一步包括基於由每個PDSCH候選的該CB或CBG覆蓋的資源塊(RB)或資源塊組(RBG)的一最大數量來選擇一PDSCH候選子集以進行盲解碼。
- 如請求項1所述的方法,其中選擇一PDSCH候選子集還基於以下之一:一載波的一索引、一頻寬部分(BWP)的一索引、該PDSCH候選的一索引、或者該PDSCH候選的一優先順序。
- 如請求項1所述的方法,其中嘗試盲解碼包括解碼與一PDSCH候選相關聯的一CBG的一第一CB,執行一迴圈冗餘碼(CRC)校驗,以及在該CRC校驗成功的情況下,解碼該CBG中的一後續CB。
- 如請求項1所述的方法,其中當針對該PDSCH候選中一預定數量的CB或CBG的盲偵測失敗時,中止對一單獨PDSCH候選的盲偵測。
- 如請求項1所述的方法,其中該DMI包括關於一個或複數活動PDSCH候選的一指示。
- 一種無線傳輸/接收單元(WTRU),該WTRU包括: 一處理器;以及 一接收器,該處理器和接收器被配置成: 接收針對一個或複數實體下鏈共用通道(PDSCH)候選的一較高層配置,每個PDSCH候選與一個或複數碼塊(CB)或碼塊組(CBG)相關聯; 針對在一群公共實體下鏈控制通道(GC-PDCCH)上的傳輸,監視一實體下鏈控制通道(PDCCH)搜尋空間,其中該傳輸包括一下鏈監視指示(DMI)標誌; 根據該DMI標誌,確定嘗試對該PDSCH候選的一個或複數CB或CBG進行盲解碼; 將該CB或CBG與對嘗試盲解碼的CB或CBG的總數的一個或複數聯合限制進行比較; 基於該一個或複數聯合限制,選擇對該CB或CBG的盲解碼將不超過該一個或複數聯合限制的一PDSCH候選子集;以及 嘗試對該所選擇的PDSCH候選子集中的一個或複數CB或CBG進行盲解碼。
- 如請求項9所述的WTRU,該WTRU還被配置成基於以下中的至少一個來確定該一個或複數聯合限制:一活動PDCCH候選數量、與該活動PDCCH候選的數量相對應的一控制通道元素(CCE)數量、一活動PDSCH候選數量、或者與該活動PDSCH候選相對應的一盲解碼CB數量。
- 如請求項9所述的WTRU,其中該一個或複數聯合限制提供了在一時槽內嘗試盲解碼的CB或CBG的一總數。
- 如請求項9所述的WTRU,該WTRU還被配置成基於由每個PDSCH候選的該CB或CBG覆蓋的資源塊(RB)或資源塊組(RBG)的一最大數量來選擇一PDSCH候選子集以進行盲解碼。
- 如請求項9所述的WTRU,該WTRU被配置成選擇PDSCH候選子集還基於以下之一:一載波的一索引、一頻寬部分(BWP)的一索引、該PDSCH候選的一索引、或該PDSCH候選的一優先順序。
- 如請求項9所述的WTRU,該WTRU被配置成解碼一PDSCH候選中的一CBG的一第一CB,執行一迴圈冗餘碼(CRC)校驗,並且在該CRC校驗成功的情況下,解碼該CBG中的一後續CB。
- 如請求項9所述的WTRU,其中當針對該PDSCH候選中一預定數量的CB或CBG的盲偵測失敗時,中止對一單獨PDSCH候選的盲偵測。
- 如請求項9所述的WTRU,其中該DMI包括關於一個或複數活動PDSCH候選的一指示。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862736900P | 2018-09-26 | 2018-09-26 | |
US62/736900 | 2018-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202025823A true TW202025823A (zh) | 2020-07-01 |
Family
ID=68165885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108134810A TW202025823A (zh) | 2018-09-26 | 2019-09-26 | 利用所配置的排程進行下鏈資料接收 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202025823A (zh) |
WO (1) | WO2020069165A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210360653A1 (en) * | 2020-05-15 | 2021-11-18 | Qualcomm Incorporated | Semi-persistent scheduling reception configurations for multiple downlink shared channels |
US11695501B2 (en) * | 2020-07-10 | 2023-07-04 | Qualcomm Incorporated | Adaptive control channel blind detection limits |
CN114760705A (zh) * | 2021-01-08 | 2022-07-15 | 大唐移动通信设备有限公司 | 接收pdsch的方法、装置及处理器可读存储介质 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10306615B2 (en) * | 2015-12-09 | 2019-05-28 | Mediatek Inc. | Control-less data transmission for narrow band internet of things |
-
2019
- 2019-09-26 WO PCT/US2019/053211 patent/WO2020069165A1/en active Application Filing
- 2019-09-26 TW TW108134810A patent/TW202025823A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
WO2020069165A1 (en) | 2020-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI849366B (zh) | 無線傳輸/接收單元(wtru)以及用於nr sl多次通道pscch傳輸的方法 | |
TWI745858B (zh) | 實體上鏈共享頻道傳輸的裝置及方法 | |
TWI726443B (zh) | 多傳輸/接收點傳輸方法及裝置 | |
CN113544989B (zh) | 侧链路反馈信道 | |
CN111527722B (zh) | 用于物理下行链路控制信道(pdcch)候选确定的方法 | |
TWI826953B (zh) | 無線傳輸/接收單元及由其執行的方法 | |
US20210144743A1 (en) | Wireless Communications For Scheduling Transmissions | |
RU2767776C2 (ru) | Способы идентификации ресурсов физического канала управления нисходящей линии связи новой радиосети, который был высвобожден для приоритетного использования связью с повышенной надежностью и малым временем задержки | |
CN112740592B (zh) | 用于harq增强的方法和装置 | |
TWI767952B (zh) | 無線傳輸/接收單元(wtru)及用於解碼資料的方法 | |
TWI770060B (zh) | 可撓無線電服務5g nr資料傳輸 | |
TW202102032A (zh) | Nr sl psfch 傳輸及監視 | |
CN112740611A (zh) | 用于突发传输的方法和装置 | |
CN118540038A (zh) | 下行链路通信中的可靠性增强 | |
TW201941650A (zh) | Noma排程及傳輸 | |
WO2018231621A1 (en) | Group-common physical downlink control channels for wireless communication | |
JP2023534432A (ja) | 柔軟な非周期的srs送信のための方法及び装置 | |
JP2024502443A (ja) | 低減された能力のwtruのための低減された帯域幅のための方法、装置、及びシステム | |
TW202025823A (zh) | 利用所配置的排程進行下鏈資料接收 | |
TW201907743A (zh) | 無上鏈許可上鏈傳輸 | |
TW202350003A (zh) | 用於賦能多個胞元的單一下行鏈路控制資訊(dci)排程的方法及設備 | |
KR20240146047A (ko) | 다수의 셀의 단일 다운링크 제어 정보(dci) 스케줄링을 가능하게 하는 방법 및 장치 | |
EP4409775A1 (en) | Systems and methods for acquiring ssb missed due to listen before talk (lbt) failures in 5g new radio networks operating in unlicensed bands (nr u) | |
CN118765533A (zh) | 用于实现多个小区的单个下行链路控制信息(dci)调度的方法和装置 |