TW202025169A - System for detecting abnormality of people flow using mobile communication sevice by machine learning and method thereof - Google Patents

System for detecting abnormality of people flow using mobile communication sevice by machine learning and method thereof Download PDF

Info

Publication number
TW202025169A
TW202025169A TW107146806A TW107146806A TW202025169A TW 202025169 A TW202025169 A TW 202025169A TW 107146806 A TW107146806 A TW 107146806A TW 107146806 A TW107146806 A TW 107146806A TW 202025169 A TW202025169 A TW 202025169A
Authority
TW
Taiwan
Prior art keywords
data
machine learning
module
flow
abnormal
Prior art date
Application number
TW107146806A
Other languages
Chinese (zh)
Other versions
TWI709144B (en
Inventor
黃明偉
林風
柯明淳
劉淑燕
陳宏宇
Original Assignee
國家災害防救科技中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家災害防救科技中心 filed Critical 國家災害防救科技中心
Priority to TW107146806A priority Critical patent/TWI709144B/en
Publication of TW202025169A publication Critical patent/TW202025169A/en
Application granted granted Critical
Publication of TWI709144B publication Critical patent/TWI709144B/en

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

The invention discloses a system for detecting abnormality of mobile communication people flow by machine learning and a method thereof. The system comprises a data reading module, a machine learning module, an anomaly detection module and a map marking module. The data reading module reads historical people flow data associated with a plurality of mobile communication devices from a grid and its adjacent grids. The machine learning module with a machine learning program performs machine learning on the historical people flow data to generate an estimate value of the people flow data of next time based on result of the machine learning. The anomaly detection module compares a difference value between the estimated value and an actual value of the people flow data for the next time, so that when the difference value is outside a threshold value, it is determined that the people flow data of the next time is abnormal people flow data. The map marking module automatically marks or warns an abnormal people flow area corresponding to the abnormal people flow data on an electronic map.

Description

依機器學習偵測行動通訊人流異常之系統及其方法 System and method for detecting abnormal flow of mobile communication people based on machine learning

本發明係關於一種人流異常偵測技術,特別是指一種依機器學習偵測行動通訊人流異常之系統及其方法。 The present invention relates to a technology for detecting anomalies in the flow of people, in particular to a system and method for detecting anomalies in the flow of mobile communications based on machine learning.

過往對於各種事件(如災害)之人流密度都是使用戶籍登記之資料進行統計,但此資料與實際之人流資料有相當大的差異。因此,為掌握實際之人流狀況,需透過錄影影像辨識或紅外線感測器等技術,唯此兩項技術仍有其缺點。 In the past, the population density of various events (such as disasters) was calculated based on the data registered by the user registration, but this data is quite different from the actual population data. Therefore, in order to grasp the actual flow of people, technologies such as video image recognition or infrared sensors are needed, but these two technologies still have their shortcomings.

在錄影影像辨識之技術中,可以較容易取得資料,但影像辨識技術需再加強,亦無法進行實際數量之統計,只能使用人流密度分類,且範圍侷限於小區域。 In the video image recognition technology, data can be easily obtained, but the image recognition technology needs to be strengthened, and the actual number cannot be counted. It can only use the crowd density classification, and the scope is limited to a small area.

另外,在紅外線感測器之技術中,透過感測器能確實記錄人流數量,但限制於特定之封閉空間,且範圍侷限於小區域。 In addition, in the infrared sensor technology, the number of people can be recorded through the sensor, but it is limited to a specific enclosed space, and the range is limited to a small area.

因此,如何提供不同於錄影影像辨識與紅外線感測器之技術,以新技術來快速及/或精準地偵測或判定人流資料或人流異常資料,實已成為本領域技術人員之一大研究課 題。 Therefore, how to provide technologies different from video image recognition and infrared sensors, using new technologies to quickly and/or accurately detect or determine the flow of people data or abnormal flow of people data, has become one of the major research courses for those skilled in the art. question.

本發明提供一種依機器學習偵測行動通訊人流異常之系統及其方法,可透過機器學習程式、異常偵測模組與地圖標定模組等協同運作,以偵測或判定(未來)下一時間的人流資料或人流異常資料。 The present invention provides a system and method for detecting abnormalities in mobile communication traffic based on machine learning. Machine learning programs, anomaly detection modules, and map identification modules can work together to detect or determine the next time (in the future) People flow data or abnormal flow data.

本發明之依機器學習偵測行動通訊人流異常之系統包括:一資料讀取模組,係自一網格與相鄰網格中讀取關聯於複數行動通訊裝置之歷史人流資料;一機器學習模組,係具有機器學習程式以將資料讀取模組所讀取之關聯於複數行動通訊裝置之歷史人流資料進行機器學習,以供機器學習程式依據機器學習之結果產生關聯於複數行動通訊裝置之下一時間的人流資料的預估值;一異常偵測模組,係比較機器學習程式所產生之下一時間的人流資料的預估值與實際值兩者之差異值,以於差異值在門檻值或其範圍之外時,由異常偵測模組判定下一時間的人流資料為人流異常資料;以及一地圖標定模組,係在電子地圖上自動標定或警示與異常偵測模組所判定之人流異常資料相應之人流異常區域。 The system of the present invention for detecting abnormal traffic flow in mobile communication based on machine learning includes: a data reading module that reads historical traffic data associated with a plurality of mobile communication devices from a grid and adjacent grids; and a machine learning The module is equipped with a machine learning program to perform machine learning on the historical traffic data related to the plural mobile communication devices read by the data reading module, so that the machine learning program can generate associations with the plural mobile communication devices according to the results of machine learning The estimated value of the flow of people data at the next time; an anomaly detection module that compares the difference between the estimated value of the flow of people data generated by the machine learning program and the actual value at the next time to determine the difference When it is outside the threshold value or its range, the abnormality detection module determines that the next-time pedestrian flow data is abnormal pedestrian flow data; and a location icon marking module is automatically calibrated on the electronic map or a warning and anomaly detection module The abnormal pedestrian flow area corresponding to the determined abnormal pedestrian flow data.

本發明之依機器學習偵測行動通訊人流異常之方法包括:由一資料讀取模組自一網格與相鄰網格中讀取關聯於複數行動通訊裝置之歷史人流資料;由一機器學習模組之機器學習程式將資料讀取模組所讀取之關聯於複數行動通訊裝置之歷史人流資料進行機器學習,以供機器學習程式 依據機器學習之結果產生關聯於複數行動通訊裝置之下一時間的人流資料的預估值;由一異常偵測模組比較機器學習程式所產生之下一時間的人流資料的預估值與實際值兩者之差異值,以於差異值在門檻值或其範圍之外時,由異常偵測模組判定下一時間的人流資料為人流異常資料;以及由一地圖標定模組在電子地圖上自動標定或警示與異常偵測模組所判定之人流異常資料相應之人流異常區域。 The method for detecting abnormal traffic flow in mobile communication based on machine learning of the present invention includes: reading historical traffic flow data associated with a plurality of mobile communication devices from a grid and adjacent grids by a data reading module; learning by a machine The machine learning program of the module performs machine learning on the historical traffic data read by the data reading module associated with multiple mobile communication devices for the machine learning program According to the results of machine learning, the estimated value of the people flow data related to the plurality of mobile communication devices at a time is generated; an anomaly detection module compares the estimated value of the people flow data generated by the machine learning program with the actual value of the next time The difference between the two values, when the difference value is outside the threshold value or its range, the abnormality detection module determines that the pedestrian flow data at the next time is the abnormal pedestrian flow data; and the module is marked on the electronic map by a place icon Automatically calibrate or warn the abnormal pedestrian flow area corresponding to the abnormal pedestrian flow data determined by the abnormal detection module.

為讓本發明上述特徵與優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明。在以下描述內容中將部分闡述本發明之額外特徵及優點,且此等特徵及優點將部分自所述描述內容顯而易見,或可藉由對本發明之實踐習得。本發明之特徵及優點借助於在申請專利範圍中特別指出的元件及組合來認識到並達到。應理解,前文一般描述與以下詳細描述兩者均僅為例示性及解釋性的,且不欲約束本發明所主張之範圍。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, embodiments are specifically described below in conjunction with the accompanying drawings. In the following description, the additional features and advantages of the present invention will be partially explained, and these features and advantages will be partly obvious from the description, or can be learned by practicing the present invention. The features and advantages of the present invention are realized and achieved by means of the elements and combinations specifically pointed out in the scope of the patent application. It should be understood that the foregoing general description and the following detailed description are both illustrative and explanatory, and are not intended to limit the claimed scope of the present invention.

1‧‧‧依機器學習偵測行動通訊人流異常之系統 1‧‧‧A system for detecting anomalies in mobile communications based on machine learning

10‧‧‧資料讀取模組 10‧‧‧Data reading module

20‧‧‧資料處理模組 20‧‧‧Data Processing Module

30‧‧‧機器學習模組 30‧‧‧Machine Learning Module

31‧‧‧機器學習模型 31‧‧‧Machine Learning Model

32‧‧‧第一密度層 32‧‧‧First density layer

33‧‧‧第二密度層 33‧‧‧Second density layer

34‧‧‧LSTM(長短期記憶)層 34‧‧‧LSTM (Long Short Term Memory) layer

40‧‧‧異常偵測模組 40‧‧‧Anomaly Detection Module

41‧‧‧人流資料分析圖 41‧‧‧Analysis of the flow of people

50‧‧‧地圖標定模組 50‧‧‧Ground icon fixed module

51‧‧‧電子地圖 51‧‧‧electronic map

52‧‧‧異常區域地圖 52‧‧‧Anomalous area map

53‧‧‧地區名稱 53‧‧‧Region name

60‧‧‧顯示模組 60‧‧‧Display Module

A‧‧‧基地台 A‧‧‧Base station

B‧‧‧行動通訊裝置 B‧‧‧Mobile communication device

C1‧‧‧網格 C1‧‧‧Grid

C2‧‧‧相鄰網格 C2‧‧‧Adjacent grid

N‧‧‧網格圖 N‧‧‧Grid

R‧‧‧距離 R‧‧‧Distance

T‧‧‧時間範圍 T‧‧‧Time Range

S1至S5‧‧‧步驟 Steps S1 to S5‧‧‧

第1圖為本發明之依機器學習偵測行動通訊人流異常之系統的架構示意圖;第2A圖與第2B圖為本發明之不同表示方式之網格圖;第3A圖為本發明之一實施例中以例如深度神經網路(DNN)建構之機器學習模型;第3B圖為本發明之一實施例中以例如遞歸神經網路(RNN)建構之機器學習模型; 第4圖為本發明之一實施例之人流資料分析圖;第5圖為本發明之一實施例中在電子地圖上標定人流異常區域、異常區域地圖及地區名稱之示意圖;以及第6圖為本發明之依機器學習偵測行動通訊人流異常之方法的流程示意圖。 Figure 1 is a schematic diagram of the architecture of the system for detecting abnormalities in mobile communication based on machine learning of the present invention; Figures 2A and 2B are grid diagrams of different representations of the present invention; Figure 3A is an implementation of the present invention In the example, a machine learning model constructed by, for example, a deep neural network (DNN); Figure 3B is a machine learning model constructed by, for example, a recurrent neural network (RNN) in an embodiment of the present invention; Figure 4 is an analysis diagram of pedestrian flow data according to an embodiment of the present invention; Figure 5 is a schematic diagram of marking abnormal pedestrian flow areas, abnormal area maps and area names on an electronic map in an embodiment of the present invention; and Figure 6 shows The flow chart of the method for detecting abnormalities in mobile communication based on machine learning of the present invention.

以下藉由特定的具體實施形態說明本發明之實施方式,熟悉此技術之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效,亦可藉由其他不同的具體實施形態加以施行或應用。 The following describes the implementation of the present invention with specific specific embodiments. Those familiar with this technology can easily understand the other advantages and effects of the present invention from the contents disclosed in this specification, and can also be implemented by other different specific embodiments. Or apply.

第1圖為本發明之依機器學習偵測行動通訊人流異常之系統1的架構示意圖。如圖所示,依機器學習偵測行動通訊人流異常之系統1可包括彼此互相連接、傳遞資料或訊息之一資料讀取模組10、一資料處理模組20、一機器學習模組30、一異常偵測模組40、一地圖標定模組50與一顯示模組60等至少六個模組。 Figure 1 is a schematic diagram of the architecture of the system 1 for detecting abnormalities in mobile communication based on machine learning of the present invention. As shown in the figure, the system 1 for detecting abnormal flow of people in mobile communication based on machine learning may include a data reading module 10, a data processing module 20, a machine learning module 30, which are connected to each other and transmit data or messages. There are at least six modules including an anomaly detection module 40, a ground icon positioning module 50, and a display module 60.

上述六個模組可採用硬體、韌體、軟體或其組合之方式予以建構或組成。例如,資料讀取模組10可為硬體之資料讀取器或軟體之資料讀取程式,資料處理模組20可為硬體之資料處理器或軟體之資料處理程式,機器學習模組30可為軟體之機器學習程式,異常偵測模組40可為硬體之異常偵測器或軟體之異常偵測程式,地圖標定模組50可為軟體之地圖標定程式,顯示模組60可為硬體之顯示器、軟體之顯示程式或其組合。 The above six modules can be constructed or composed using hardware, firmware, software, or a combination thereof. For example, the data reading module 10 may be a hardware data reader or a software data reading program, the data processing module 20 may be a hardware data processor or a software data processing program, and the machine learning module 30 It can be a software machine learning program. The anomaly detection module 40 can be a hardware anomaly detector or a software anomaly detection program. The map icon setting module 50 can be a software map program. The display module 60 can be Hardware display, software display program or their combination.

第1圖之資料讀取模組10可自一網格C1與相鄰網格C2(見第2A圖與第2B圖)中讀取關聯於複數行動通訊裝置B之歷史人流資料,請參閱第3A圖與第3B圖所示歷史人流資料、或第4圖所示時間T00至T23之歷史人流資料。前述行動通訊裝置B可例如為智慧手機、智慧手錶、平板電腦或筆記型電腦等,且時間(如T00至T23...)可以不限單位,如每1分鐘、每10分鐘、每1小時或每1天等。 The data reading module 10 in Figure 1 can read historical traffic data associated with a plurality of mobile communication devices B from a grid C1 and an adjacent grid C2 (see Figures 2A and 2B). Please refer to page The historical traffic data shown in Figures 3A and 3B, or the historical traffic data from time T00 to T23 shown in Figure 4. The aforementioned mobile communication device B can be, for example, a smart phone, a smart watch, a tablet or a notebook computer, etc., and the time (such as T00 to T23...) can be in unlimited units, such as every 1 minute, every 10 minutes, every 1 hour Or wait every 1 day.

在網格資料填補上,第1圖之資料處理模組20能對資料讀取模組10所讀取之網格C1與相鄰網格C2的歷史人流資料進行資料處理;若網格C1與相鄰網格C2中所有時間之歷史人流資料皆缺漏,則以第一數值(例如0)填補所有時間之歷史人流資料;而若網格C1與相鄰網格C2中僅部分時間之歷史人流資料有缺漏,則以第二數值(例如平均值)填補部分時間之歷史人流資料。又,在時間範圍T上,資料處理模組20可以取前幾個小時之資料,且最小值(例如1)表示只取現在時間之資料,不取以前時間之資料。在空間範圍R上,資料處理模組20可以取網格C1之相鄰網格C2之資料,且最小值(例如0)表示只取網格C1之資料而不取相鄰網格C2之資料。 In terms of grid data filling, the data processing module 20 in Figure 1 can perform data processing on the historical pedestrian flow data of the grid C1 and the adjacent grid C2 read by the data reading module 10; if the grid C1 and The historical traffic data at all times in the adjacent grid C2 is missing, the first value (such as 0) is used to fill in the historical traffic data at all times; and if the historical traffic in the grid C1 and the adjacent grid C2 is only part of the time If the data is missing, the second value (for example, the average value) is used to fill in the historical flow data for part of the time. Moreover, in the time range T, the data processing module 20 can obtain the data of the previous few hours, and the minimum value (for example, 1) means that only the data of the current time is taken, and the data of the previous time is not taken. In the spatial range R, the data processing module 20 can take the data of the adjacent grid C2 of the grid C1, and the minimum value (for example, 0) means that only the data of the grid C1 is taken instead of the data of the adjacent grid C2 .

第1圖之機器學習模組30可具有機器學習程式,以將資料讀取模組10所讀取之關聯於複數行動通訊裝置B之歷史人流資料進行機器學習,以供機器學習程式依據機器學習之結果產生關聯於複數行動通訊裝置B之下一時間的人流資料的預估值,請參閱第3A圖與第3B圖所示下一時 間的人流資料、或第4圖所示下一時間T24的人流資料。下一時間可以表示下一時間點、下一時間段、或下一時槽(slot),例如下一個10分鐘或下一個1小時。 The machine learning module 30 in Fig. 1 may have a machine learning program to perform machine learning on the historical traffic data associated with the plural mobile communication device B read by the data reading module 10, so that the machine learning program can perform machine learning according to the machine learning. The result is an estimated value of the traffic data associated with the plural mobile communication device B at a time. Please refer to the next time shown in Figure 3A and Figure 3B The flow of people between time, or the flow of people at the next time T24 shown in Figure 4. The next time may represent the next time point, the next time period, or the next time slot, such as the next 10 minutes or the next 1 hour.

同時,機器學習模組30之機器學習程式亦可進一步建立複數網格C1之人流特性,以依據複數網格C1之人流特性預估複數區域之下一時間的人流資料或人流數量。 At the same time, the machine learning program of the machine learning module 30 can further establish the flow characteristics of the complex grid C1 to estimate the flow data or the number of people flow under the complex area at a time based on the flow characteristics of the complex grid C1.

第1圖之異常偵測模組40可比較機器學習程式所產生之下一時間的人流資料的預估值與實際值(觀測值)兩者之差異值,以於差異值在門檻值(見第4圖)或其範圍之外時,由異常偵測模組40判定下一時間的人流資料為人流異常資料。 The anomaly detection module 40 in Figure 1 can compare the difference between the estimated value and the actual value (observed value) of the flow data generated by the machine learning program at the next time, so that the difference value is at the threshold (see Fig. 4) or outside the range, the abnormality detection module 40 determines that the pedestrian flow data at the next time is abnormal pedestrian flow data.

第1圖之地圖標定模組50可在電子地圖51(見第5圖)上自動標定或警示與異常偵測模組40所判定之人流異常資料相應之人流異常區域(見第5圖所示深色或紅色的網格)與人流正常區域(見第5圖所示淺色或淡藍色的網格)。 The location icon marking module 50 in Figure 1 can automatically calibrate or warn on the electronic map 51 (see Figure 5) the abnormal pedestrian flow area corresponding to the abnormal pedestrian flow data determined by the abnormal detection module 40 (see Figure 5) Dark or red grid) and normal pedestrian flow areas (see the light or light blue grid shown in Figure 5).

第1圖之顯示模組60可依據地圖標定模組50在電子地圖51上所標定之人流異常區域自動顯示相應之異常區域地圖52或地區名稱53(見第5圖)。 The display module 60 in Fig. 1 can automatically display the corresponding abnormal area map 52 or the area name 53 according to the abnormal pedestrian flow area marked on the electronic map 51 by the map marking module 50 (see Fig. 5).

第2A圖與第2B圖為本發明之不同表示方式之網格圖N。如第2A圖、第2B圖與第1圖所示,資料讀取模組10可自一網格C1與相鄰網格C2中讀取關聯於複數行動通訊裝置B之歷史人流資料,一個網格C1可對應於至少二行動通訊裝置B與至少一基地台A,且至少二行動通訊裝置B可與至少一基地台A互相通訊。同時,一個網格C1具 有例如「(2R+1)x(2R+1)」之面積,R表示空間範圍(即距離,如0.5公里),2R+1表示網格C1之長度或寬度,T表示時間範圍(如第4圖所示歷史人流資料之時間T00至T23)。 Figures 2A and 2B are grid diagrams N of different representations of the present invention. As shown in Figures 2A, 2B and 1, the data reading module 10 can read historical traffic data associated with a plurality of mobile communication devices B from a grid C1 and an adjacent grid C2. Cell C1 can correspond to at least two mobile communication devices B and at least one base station A, and at least two mobile communication devices B can communicate with at least one base station A. At the same time, a grid C1 has For example, the area of "(2R+1)x(2R+1)", R represents the spatial range (i.e. distance, such as 0.5 km), 2R+1 represents the length or width of the grid C1, and T represents the time range (e.g. Figure 4 shows the time from T00 to T23 of historical traffic data).

第3A圖為本發明之一實施例中以例如深度神經網路(Deep Neural Network;DNN)建構之機器學習模型31,第3B圖為本發明之一實施例中以例如遞歸神經網路(Recurrent Neural Network;RNN)建構之機器學習模型31。 Figure 3A is a machine learning model 31 constructed by, for example, a deep neural network (DNN) in an embodiment of the present invention, and Figure 3B is a machine learning model 31 constructed by, for example, a recurrent neural network (Recurrent Neural Network) in an embodiment of the present invention. Neural Network; RNN) constructed machine learning model 31.

在本發明中,機器學習模組30可利用各種神經網路,例如深度神經網路(DNN)、遞歸神經網路(RNN)或卷積神經網路(Convolutionalneural network;CNN)建構出一機器學習模型31,以依據機器學習模型31產生機器學習程式。前述深度神經網路(DNN)可為深度全連接神經網路(Deep Fully-connected Neural Network),遞歸神經網路(RNN)可為具長短期記憶(Long Short-Term Memory;LSTM)之遞歸神經網路,卷積神經網路(CNN)可為具地圖影像輸入(map image input)或時間序列資料輸入(time sequence data input)之卷積神經網路。但是,本發明並不以此為限。 In the present invention, the machine learning module 30 can use various neural networks, such as deep neural network (DNN), recurrent neural network (RNN), or convolutional neural network (Convolutional neural network; CNN) to construct a machine learning The model 31 is used to generate a machine learning program according to the machine learning model 31. The aforementioned deep neural network (DNN) can be a Deep Fully-connected Neural Network, and a recurrent neural network (RNN) can be a recurrent neural network with Long Short-Term Memory (LSTM) Network, Convolutional Neural Network (CNN) can be a convolutional neural network with map image input (map image input) or time sequence data input (time sequence data input). However, the present invention is not limited to this.

例如,在第3A圖中,機器學習模組30可利用深度神經網路(DNN)建構出機器學習模型31,以將歷史人流資料依序通過第一密度層32與第二密度層33而產生下一時間的人流資料。而在第3B圖中,機器學習模組30可利用具長短期記憶(LSTM)之遞歸神經網路(RNN)建構出機器學習模型31,以將歷史人流資料通過複數LSTM層34而產生 下一時間的人流資料。 For example, in Figure 3A, the machine learning module 30 can use a deep neural network (DNN) to construct a machine learning model 31 to generate historical flow data through the first density layer 32 and the second density layer 33 sequentially. People flow data for the next time. In Figure 3B, the machine learning module 30 can use a recurrent neural network (RNN) with long short-term memory (LSTM) to construct a machine learning model 31 to generate historical human flow data through a complex LSTM layer 34 People flow data for the next time.

在上述第3A圖與第3B圖中,歷史人流資料可包括第3A圖至第3B圖所示公式「(2R+1)x(2R+1)x T」之範圍的人流資料,下一時間的人流資料可包括第3A圖至第3B圖所示公式「(2R+1)x(2R+1)x(T+1)」之下一時間的人流資料。R表示空間範圍(即距離),2R+1表示網格C1之長度或寬度,T表示時間範圍(如第4圖所示歷史人流資料之時間T00至T23),歷史人流資料表示已知或已計算之人流資料,且下一時間(如第4圖之時間T24)之人流資料表示未知、待計算或待預估之人流資料。 In the above figures 3A and 3B, the historical flow data can include the flow data within the range of the formula "(2R+1)x(2R+1)x T" shown in Figure 3A to Figure 3B. The next time The flow data of may include the flow data of the time under the formula "(2R+1)x(2R+1)x(T+1)" shown in Figure 3A to Figure 3B. R represents the spatial range (i.e. distance), 2R+1 represents the length or width of the grid C1, T represents the time range (such as the time T00 to T23 of the historical traffic data shown in Figure 4), the historical traffic data indicates the known or already The calculated flow data, and the flow data at the next time (such as time T24 in Figure 4) represents the flow data that is unknown, to be calculated or to be estimated.

第4圖為本發明之一實施例之人流資料分析圖41。如第4圖所示,第1圖之異常偵測模組40可對歷史人流資料(如時間T00至T23之人流資料)進行分析,以依據歷史人流資料之分析結果建立包括「預估值」、「正常(即人流正常資料)」、「異常(即人流異常資料)」與「門檻值」之人流資料分析圖41。又,異常偵測模組40亦可依據歷史人流資料之分析結果設定門檻值,且門檻值可隨著歷史人流資料之時間或人數(人流數量)的變化而改變。 Figure 4 is a data analysis diagram 41 of the flow of people according to an embodiment of the present invention. As shown in Figure 4, the anomaly detection module 40 in Figure 1 can analyze historical traffic data (such as traffic data from time T00 to T23) to create an "estimated value" based on the analysis result of the historical traffic data , "Normal (i.e. normal flow of people data)", "Abnormal (i.e. abnormal flow of people data)" and "Threshold" data analysis chart 41. In addition, the anomaly detection module 40 can also set a threshold value based on the analysis result of the historical traffic data, and the threshold value can be changed with the time of the historical traffic data or the number of people (the number of people).

同時,第1圖之異常偵測模組40可比較機器學習程式所產生之下一時間(如時間T24)的人流資料的預估值與實際值(觀測值)兩者之差異值,以於差異值在門檻值或其範圍之外時,由異常偵測模組40判定下一時間的人流資料為「異常(即人流異常資料)」。 At the same time, the anomaly detection module 40 in Figure 1 can compare the difference between the estimated value and the actual value (observed value) of the pedestrian flow data generated by the machine learning program at the next time (such as time T24) to When the difference value is outside the threshold value or its range, the abnormality detection module 40 determines that the pedestrian flow data at the next time is "abnormal (that is, abnormal pedestrian flow data)".

第5圖為本發明之一實施例中在電子地圖51上標定人 流異常區域(見深色或紅色的網格)、異常區域地圖52及地區名稱53之示意圖。 Figure 5 shows the marking of people on the electronic map 51 in one embodiment of the present invention Schematic diagram of abnormal flow area (see dark or red grid), abnormal area map 52 and area name 53.

如圖所示,第1圖之地圖標定模組50可在第5圖之電子地圖51上自動標定與異常偵測模組40所判定之人流異常資料相應之人流異常區域(見深色或紅色的網格)與人流正常區域(見淺色或淡藍色的網格),且每一網格可具有例如0.25平方公里(km2)。同時,第1圖之顯示模組60可依據地圖標定模組50在第5圖之電子地圖51上所標定之人流異常區域自動顯示相應之異常區域地圖52或地區名稱53。 As shown in the figure, the location icon marking module 50 in Figure 1 can automatically calibrate the abnormal pedestrian flow area corresponding to the abnormal pedestrian flow data determined by the abnormal detection module 40 on the electronic map 51 in Figure 5 (see dark or red Grid) and normal pedestrian flow areas (see light-colored or light-blue grids), and each grid may have, for example, 0.25 square kilometers (km 2 ). At the same time, the display module 60 in FIG. 1 can automatically display the corresponding abnormal area map 52 or the area name 53 based on the abnormal pedestrian flow area marked on the electronic map 51 in the fifth diagram by the map-marking module 50.

第6圖為本發明之依機器學習偵測行動通訊人流異常之方法的流程示意圖,請一併參閱第1圖至第5圖。同時,本發明依機器學習偵測行動通訊人流異常之方法的主要技術內容如下,其餘技術內容如同上述第1圖至第5圖之詳細說明,於此不再重覆敘述。 Figure 6 is a schematic flow chart of the method for detecting abnormal traffic in mobile communication based on machine learning of the present invention. Please refer to Figures 1 to 5 together. At the same time, the main technical content of the method of the present invention for detecting abnormal traffic in mobile communication based on machine learning is as follows, and the remaining technical content is the same as the detailed description of the above-mentioned Figures 1 to 5, and will not be repeated here.

如第6圖之步驟S1所示,由一資料讀取模組10自一網格C1與相鄰網格C2中讀取關聯於複數行動通訊裝置B之歷史人流資料。 As shown in step S1 in FIG. 6, a data reading module 10 reads historical traffic data associated with a plurality of mobile communication devices B from a grid C1 and an adjacent grid C2.

在此步驟中,亦可由一資料處理模組20對資料讀取模組10所讀取之歷史人流資料進行資料處理,其中,若網格C1與相鄰網格C2中所有時間之歷史人流資料皆缺漏,則以第一數值(如0)填補所有時間之歷史人流資料,而若網格C1與相鄰網格C2中僅部分時間之歷史人流資料有缺漏,則以第二數值(如平均值)填補部分時間之歷史人流資料。 In this step, a data processing module 20 can also perform data processing on the historical people flow data read by the data reading module 10, where, if the historical people flow data in the grid C1 and the adjacent grid C2 at all times If there is any missing, the first value (such as 0) is used to fill in the historical traffic data at all times. If the historical traffic data of only part of the time in the grid C1 and the adjacent grid C2 is missing, the second value (such as average Value) to fill in historical traffic data for part of the time.

如第6圖之步驟S2所示,由一機器學習模組30之機器學習程式將資料讀取模組10所讀取之關聯於複數行動通訊裝置B之歷史人流資料進行機器學習,以供機器學習程式依據機器學習之結果產生關聯於複數行動通訊裝置B之下一時間的人流資料的預估值。 As shown in step S2 in Figure 6, the machine learning program of a machine learning module 30 performs machine learning on the historical traffic data read by the data reading module 10 and associated with the plural mobile communication device B for the machine The learning program generates an estimated value of people flow data related to the plurality of mobile communication devices B at a time according to the results of the machine learning.

如第6圖之步驟S3所示,由一異常偵測模組40比較機器學習程式所產生之下一時間的人流資料的預估值與實際值(觀測值)兩者之差異值,以於差異值在門檻值或其範圍之外時,由異常偵測模組40判定下一時間的人流資料為人流異常資料。 As shown in step S3 in Fig. 6, an anomaly detection module 40 compares the difference between the estimated value of the next-time pedestrian flow data generated by the machine learning program and the actual value (observed value) to When the difference value is outside the threshold value or its range, the abnormality detection module 40 determines that the pedestrian flow data at the next time is abnormal pedestrian flow data.

在此步驟中,亦可由異常偵測模組40對歷史人流資料進行分析,以依據歷史人流資料之分析結果設定門檻值,且門檻值可隨著歷史人流資料之時間或人數(人流數量)的變化而改變。 In this step, the anomaly detection module 40 can also analyze the historical people flow data to set a threshold value based on the analysis result of the historical people flow data, and the threshold value can be based on the time or the number of people (the number of people flow) of the historical people flow data. Change and change.

如第6圖之步驟S4所示,由一地圖標定模組50在電子地圖51上自動標定或警示與異常偵測模組40所判定之人流異常資料相應之人流異常區域。 As shown in step S4 in FIG. 6, the location icon marking module 50 automatically marks or warns the abnormal pedestrian flow area corresponding to the abnormal pedestrian flow data determined by the abnormality detection module 40 on the electronic map 51.

如第6圖之步驟S5所示,由一顯示模組60依據地圖標定模組50在電子地圖51上所標定之人流異常區域自動顯示相應之異常區域地圖52或地區名稱53。 As shown in step S5 in FIG. 6, a display module 60 automatically displays the corresponding abnormal area map 52 or area name 53 based on the abnormal pedestrian flow area marked on the electronic map 51 by the local icon marking module 50.

綜上,本發明之依機器學習偵測行動通訊人流異常之系統及其方法可具有下列特色、優點或技術功效: In summary, the system and method for detecting abnormal traffic in mobile communication based on machine learning of the present invention can have the following characteristics, advantages or technical effects:

一、本發明可透過機器學習程式、異常偵測模組與地圖標定模組等協同運作,以快速及/或精準地偵測或判定 (未來)下一時間的人流資料或人流異常資料。 1. The present invention can cooperate with machine learning programs, anomaly detection modules, and map identification modules to quickly and/or accurately detect or determine (Future) Crowd flow data or abnormal flow data at the next time.

二、本發明利用行動通訊裝置之普及性(幾乎人手一機),可以大範圍地掌握關聯於複數行動通訊裝置之人流的分布狀態。 2. The present invention makes use of the popularity of mobile communication devices (almost one device per person), and can grasp the distribution status of the flow of people associated with multiple mobile communication devices on a large scale.

三、本發明透過行動通訊裝置之巨量資料擷取出人流資料,藉由機器學習模組(機器學習程式)自動研判人流資料之時間或區域是否異常,以自動標定或警示人流異常區域,提升對於各種事件(如緊急災害事件)之人流異常資料的反應效率。 3. The present invention uses the huge amount of data from the mobile communication device to extract the flow data, and the machine learning module (machine learning program) automatically determines whether the time or area of the flow data is abnormal, so as to automatically mark or warn the abnormal area of the flow, and improve the Response efficiency of abnormal data on the flow of people in various events (such as emergency disaster events).

四、本發明可應用任何需要偵測人流異常資料之事件上,例如地震、風災、水災等緊急災害之事件,或者集會、遊行、選舉、音樂會等一般活動之事件。 4. The present invention can be applied to any event that requires the detection of abnormal data on the flow of people, such as emergency disasters such as earthquakes, wind disasters, and floods, or general events such as gatherings, parades, elections, and concerts.

上述實施形態僅例示性說明本發明之原理、特點及其功效,並非用以限制本發明之可實施範疇,任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施形態進行修飾與改變。任何運用本發明所揭示內容而完成之等效改變及修飾,均仍應為申請專利範圍所涵蓋。因此,本發明之權利保護範圍,應如申請專利範圍所列。 The above embodiments are only illustrative of the principles, features and effects of the present invention, and are not intended to limit the scope of implementation of the present invention. Anyone who is familiar with the art can comment on the above without departing from the spirit and scope of the present invention. Modifications and changes to the implementation form. Any equivalent changes and modifications made by using the contents disclosed in the present invention should still be covered by the scope of the patent application. Therefore, the protection scope of the present invention should be as listed in the scope of patent application.

1‧‧‧依機器學習偵測行動通訊人流異常之系統 1‧‧‧A system for detecting anomalies in mobile communications based on machine learning

10‧‧‧資料讀取模組 10‧‧‧Data reading module

20‧‧‧資料處理模組 20‧‧‧Data Processing Module

30‧‧‧機器學習模組 30‧‧‧Machine Learning Module

40‧‧‧異常偵測模組 40‧‧‧Anomaly Detection Module

50‧‧‧地圖標定模組 50‧‧‧Ground icon fixed module

60‧‧‧顯示模組 60‧‧‧Display Module

A‧‧‧基地台 A‧‧‧Base station

B‧‧‧行動通訊裝置 B‧‧‧Mobile communication device

C1‧‧‧網格 C1‧‧‧Grid

C2‧‧‧相鄰網格 C2‧‧‧Adjacent grid

Claims (11)

一種依機器學習偵測行動通訊人流異常之系統,包括:一資料讀取模組,係自一網格與相鄰網格中讀取關聯於複數行動通訊裝置之歷史人流資料;一機器學習模組,係具有機器學習程式以將該資料讀取模組所讀取之關聯於該複數行動通訊裝置之歷史人流資料進行機器學習,以供該機器學習程式依據該機器學習之結果產生關聯於該複數行動通訊裝置之下一時間的人流資料的預估值;一異常偵測模組,係比較該機器學習程式所產生之該下一時間的人流資料的預估值與實際值兩者之差異值,以於該差異值在門檻值或其範圍之外時,由該異常偵測模組判定該下一時間的人流資料為人流異常資料;以及一地圖標定模組,係在電子地圖上自動標定或警示與該異常偵測模組所判定之該人流異常資料相應之人流異常區域。 A system for detecting abnormal human flow in mobile communication based on machine learning includes: a data reading module that reads historical human flow data associated with a plurality of mobile communication devices from a grid and adjacent grids; and a machine learning module The group is equipped with a machine learning program to perform machine learning on the historical traffic data associated with the plurality of mobile communication devices read by the data reading module, so that the machine learning program generates a correlation with the machine learning result based on the machine learning result. The estimated value of people flow data at one time under multiple mobile communication devices; an anomaly detection module that compares the difference between the estimated value and actual value of the next time people flow data generated by the machine learning program Value, when the difference value is outside the threshold value or its range, the abnormality detection module determines that the pedestrian flow data at the next time is abnormal pedestrian flow data; and a location-based identification module is automatically displayed on the electronic map Mark or warn the abnormal pedestrian flow area corresponding to the abnormal data of the pedestrian flow determined by the abnormal detection module. 如申請專利範圍第1項所述之系統,其中,該網格係對應於至少二行動通訊裝置與至少一基地台,且該至少二行動通訊裝置與該至少一基地台互相通訊。 The system according to claim 1, wherein the grid corresponds to at least two mobile communication devices and at least one base station, and the at least two mobile communication devices communicate with the at least one base station. 如申請專利範圍第1項所述之系統,更包括一資料處理模組,係對該資料讀取模組所讀取之該網格與相鄰網格的該歷史人流資料進行資料處理,其中,若該網格與相鄰網格中所有時間之該歷史人流資料皆缺漏, 則以第一數值填補該所有時間之該歷史人流資料,而若該網格與相鄰網格中僅部分時間之該歷史人流資料有缺漏,則以第二數值填補該部分時間之該歷史人流資料。 For example, the system described in item 1 of the scope of patent application further includes a data processing module for processing the historical traffic data of the grid and adjacent grids read by the data reading module, wherein , If the historical traffic data at all times in the grid and adjacent grids are missing, The first value is used to fill in the historical traffic data at all times, and if the historical traffic data for only part of the time in the grid and adjacent grids is missing, the second value is used to fill in the historical traffic data at that part of the time data. 如申請專利範圍第1項所述之系統,其中,該機器學習模組更建立複數網格之人流特性,以依據該複數網格之人流特性預估複數區域之下一時間的人流資料或人流數量。 The system described in item 1 of the scope of patent application, wherein the machine learning module further establishes the flow characteristics of the complex grid to estimate the flow of people or the flow of people at a time under the complex area based on the flow characteristics of the complex grid Quantity. 如申請專利範圍第1項所述之系統,其中,該機器學習模組係利用深度神經網路(DNN)、遞歸神經網路(RNN)或卷積神經網路(CNN)建構出一機器學習模型,以依據該機器學習模型產生該機器學習程式。 Such as the system described in item 1 of the scope of patent application, wherein the machine learning module uses deep neural network (DNN), recurrent neural network (RNN) or convolutional neural network (CNN) to construct a machine learning Model to generate the machine learning program according to the machine learning model. 如申請專利範圍第1項所述之系統,其中,該異常偵測模組更對該歷史人流資料進行分析,以依據該歷史人流資料之分析結果設定該門檻值,且該門檻值隨著該歷史人流資料之時間或人數的變化而改變。 For example, the system described in item 1 of the scope of patent application, wherein the anomaly detection module further analyzes the historical traffic data to set the threshold value according to the analysis result of the historical traffic data, and the threshold value follows the The historical flow of people data changes according to the time or number of people. 如申請專利範圍第1項所述之系統,更包括一顯示模組,係依據該地圖標定模組在該電子地圖上所標定之該人流異常區域自動顯示相應之異常區域地圖或地區名稱。 The system described in item 1 of the scope of patent application further includes a display module, which automatically displays the corresponding abnormal area map or area name based on the abnormal pedestrian flow area marked on the electronic map by the local icon positioning module. 一種依機器學習偵測行動通訊人流異常之方法,包括:由一資料讀取模組自一網格與相鄰網格中讀取關聯於複數行動通訊裝置之歷史人流資料;由一機器學習模組之機器學習程式將該資料讀取 模組所讀取之關聯於該複數行動通訊裝置之歷史人流資料進行機器學習,以供該機器學習程式依據該機器學習之結果產生關聯於該複數行動通訊裝置之下一時間的人流資料的預估值;由一異常偵測模組比較該機器學習程式所產生之該下一時間的人流資料的預估值與實際值兩者之差異值,以於該差異值在門檻值或其範圍之外時,由該異常偵測模組判定該下一時間的人流資料為人流異常資料;以及由一地圖標定模組在電子地圖上自動標定或警示與該異常偵測模組所判定之該人流異常資料相應之人流異常區域。 A method for detecting abnormal traffic flow in mobile communication based on machine learning includes: reading historical traffic data associated with a plurality of mobile communication devices from a grid and adjacent grids by a data reading module; and a machine learning model The group’s machine learning program reads the data The historical traffic data associated with the plurality of mobile communication devices read by the module is subjected to machine learning, so that the machine learning program generates a prediction of the traffic data related to the plurality of mobile communication devices at a time based on the results of the machine learning. Estimate; compare the difference between the estimated value and the actual value of the next time flow data generated by the machine learning program by an anomaly detection module, so that the difference is within the threshold or its range When outside, the abnormality detection module determines that the next-time pedestrian flow data is abnormal data; and is automatically calibrated or warned on the electronic map by a local icon marking module and the pedestrian flow determined by the abnormality detection module The abnormal pedestrian flow area corresponding to the abnormal data. 如申請專利範圍第8項所述之方法,更包括由一資料處理模組對該資料讀取模組所讀取之該網格與相鄰網格的該歷史人流資料進行資料處理,其中,若該網格與相鄰網格中所有時間之該歷史人流資料皆缺漏,則以第一數值填補該所有時間之該歷史人流資料,而若該網格與相鄰網格中僅部分時間之該歷史人流資料有缺漏,則以第二數值填補該部分時間之該歷史人流資料。 For example, the method described in item 8 of the scope of patent application further includes data processing by a data processing module on the grid and the historical pedestrian flow data of adjacent grids read by the data reading module, wherein: If the historical traffic data at all times in the grid and adjacent grids are missing, the first value is used to fill in the historical traffic data at all times, and if the grid and adjacent grids are only part of the time If the historical traffic data is missing, the second value will be used to fill in the historical traffic data for that part of the time. 如申請專利範圍第8項所述之方法,更包括由該異常偵測模組對該歷史人流資料進行分析,以依據該歷史人流資料之分析結果設定該門檻值,且該門檻值隨著該歷史人流資料之時間或人數的變化而改變。 For example, the method described in item 8 of the scope of patent application further includes analyzing the historical traffic data by the anomaly detection module to set the threshold value based on the analysis result of the historical traffic data, and the threshold value follows the The historical flow of people data changes according to the time or number of people. 如申請專利範圍第8項所述之方法,更包括由一顯示模組依據該地圖標定模組在該電子地圖上所標定之該人流異常區域自動顯示相應之異常區域地圖或地區名稱。 The method described in item 8 of the scope of patent application further includes that a display module automatically displays the corresponding abnormal area map or area name according to the abnormal pedestrian flow area marked on the electronic map by the local icon positioning module.
TW107146806A 2018-12-24 2018-12-24 System for detecting abnormality of people flow using mobile communication service by machine learning and method thereof TWI709144B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107146806A TWI709144B (en) 2018-12-24 2018-12-24 System for detecting abnormality of people flow using mobile communication service by machine learning and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107146806A TWI709144B (en) 2018-12-24 2018-12-24 System for detecting abnormality of people flow using mobile communication service by machine learning and method thereof

Publications (2)

Publication Number Publication Date
TW202025169A true TW202025169A (en) 2020-07-01
TWI709144B TWI709144B (en) 2020-11-01

Family

ID=73005003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146806A TWI709144B (en) 2018-12-24 2018-12-24 System for detecting abnormality of people flow using mobile communication service by machine learning and method thereof

Country Status (1)

Country Link
TW (1) TWI709144B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901725B (en) * 2005-07-19 2010-09-01 深圳市建恒测控股份有限公司 Statistic system and method for crowd short-term density
TWI420080B (en) * 2010-11-05 2013-12-21 Mitac Int Corp Navigation system for emergency rescue and navigation method thereof
CN104899650B (en) * 2015-05-26 2017-02-15 成都中科大旗软件有限公司 Method for predicting tourist flow volume of tourist attraction on basis of multi-source data analysis
CN108010268A (en) * 2017-12-08 2018-05-08 武汉理工大学 A kind of anti-based on base station location tramples accident real time early warning method

Also Published As

Publication number Publication date
TWI709144B (en) 2020-11-01

Similar Documents

Publication Publication Date Title
Lau et al. Sensor fusion for public space utilization monitoring in a smart city
CN109858389B (en) Vertical ladder people counting method and system based on deep learning
US10643328B2 (en) Computer system, and method and program for diagnosing objects
Yang et al. ImgSensingNet: UAV vision guided aerial-ground air quality sensing system
Ceccarini et al. On exploiting data visualization and IoT for increasing sustainability and safety in a smart campus
Dumbliauskas et al. Application of Google-based data for travel time analysis: Kaunas city case study
CN107360257A (en) A kind of Quality Tracing of Agricultural Product system based on sensor network
Qiang et al. The impact of Hurricane Katrina on urban growth in Louisiana: an analysis using data mining and simulation approaches
CN114511784A (en) Environment monitoring and early warning method, device, equipment and storage medium
CN106249707A (en) Information Collection System, information collecting terminal device, information collecting server device and formation gathering method
CN112764427B (en) Relay unmanned aerial vehicle inspection system
CN111783295B (en) Dynamic identification and prediction evaluation method and system for urban community specific human behavior chain
CN113822460A (en) Traffic flow prediction method and device, electronic equipment and storage medium
Li et al. Multi-view crowd congestion monitoring system based on an ensemble of convolutional neural network classifiers
CN115759868A (en) Forest inspection personnel management method, intelligent terminal and storage medium
Hiremath et al. A Smart App for Pothole Detection Using Yolo Model
Park et al. CROOD: Estimating crude building occupancy from mobile device connections without ground-truth calibration
JP2024040203A (en) Person detection device, person tracking apparatus, person tracking system, person detection method, person tracking method, person detection program and person tracking program
TWI709144B (en) System for detecting abnormality of people flow using mobile communication service by machine learning and method thereof
KR102157201B1 (en) System and method for determining disastrous based on image and accident record analysis
CN110248308A (en) The Intelligent campus LBS positioning system merged based on visible light and WIFI
CN106932841A (en) Environment monitoring device, navigation equipment and navigation Service end
US20230370570A1 (en) Data transmission device, data transmission method, information processing device, information processing method, and program
CN114646735A (en) Carbon dioxide concentration monitoring system in air
Rodrigues et al. Fusion data tracking system (fits)