TW202024671A - Crystallized glass substrate the hardness of the outermost surface at a pressed depth of 20 nm is 7.50 GPa to 9.50 GPa - Google Patents

Crystallized glass substrate the hardness of the outermost surface at a pressed depth of 20 nm is 7.50 GPa to 9.50 GPa Download PDF

Info

Publication number
TW202024671A
TW202024671A TW107147049A TW107147049A TW202024671A TW 202024671 A TW202024671 A TW 202024671A TW 107147049 A TW107147049 A TW 107147049A TW 107147049 A TW107147049 A TW 107147049A TW 202024671 A TW202024671 A TW 202024671A
Authority
TW
Taiwan
Prior art keywords
compressive stress
depth
component
mpa
crystallized glass
Prior art date
Application number
TW107147049A
Other languages
Chinese (zh)
Other versions
TWI817970B (en
Inventor
八木俊剛
小笠原康平
Original Assignee
日商小原股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商小原股份有限公司 filed Critical 日商小原股份有限公司
Priority to TW107147049A priority Critical patent/TWI817970B/en
Publication of TW202024671A publication Critical patent/TW202024671A/en
Application granted granted Critical
Publication of TWI817970B publication Critical patent/TWI817970B/en

Links

Images

Landscapes

  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention is a crystallized glass substrate having a compressive stress layer on the surface. When the depth corresponding to the surface compressive stress of the compressive stress layer being 0 MPa is set to the stress depth DOLzero, in the compressive stress layer, the gradient A of the surface compressive stress from the outermost surface to the depth of 6[mu]m is 50.0MPa/[mu]m to 110.0MPa/[mu]m, and the gradient B of the surface compressive stress from the depth of (the aforementioned stress depth DOLzero-10[mu]m) to the aforementioned stress depth DOLzero is 2.5MPa/[mu]m to 15.0MPa/[mu]m. The hardness of the aforementioned outermost surface at a pressed depth of 20 nm is 7.50 GPa to 9.50 GPa.

Description

結晶化玻璃基板Crystallized glass substrate

本發明係關於一種結晶化玻璃基板,於表面具有壓縮應力層。The invention relates to a crystallized glass substrate with a compressive stress layer on the surface.

在智慧型手機 、平板型PC(personal computer;個人電腦)等攜帶式電子機器使用有用於保護顯示器之玻璃蓋。此外,在車載用的光學機器亦使用有用於保護透鏡的保護鏡(protector)。進而,近年來亦被謀求利用於成為電子機器的外裝之殼體等。然後,為了讓這些機器能經受更嚴格的使用,具有更高的硬度的材料的要求逐漸增強。In portable electronic devices such as smart phones and tablet PCs (personal computers), glass covers are used to protect displays. In addition, a protective lens (protector) for protecting the lens is also used in the optical equipment for the vehicle. Furthermore, in recent years, it has also been sought to be used as an outer casing of an electronic device. Then, in order to allow these machines to withstand more rigorous use, the requirements for materials with higher hardness have gradually increased.

以往化學強化玻璃被用作為保護構件用途等材料。然而,由於以往的化學強化玻璃對於從玻璃表面垂直進入的裂縫非常弱,因此攜帶式機器掉落時發生許多損壞的事故而成為問題。進而,損壞時粉碎成碎粉飛散時則有受傷的危險。謀求在破壞時變成大的碎片。In the past, chemically strengthened glass was used as a material for protecting members. However, since conventional chemically strengthened glass is very weak to cracks that enter vertically from the glass surface, many damage accidents occur when the portable device is dropped, which becomes a problem. Furthermore, there is a risk of injury when it is crushed into pulverized powder when damaged. Seek to become large fragments when destroyed.

專利文獻1揭示了一種資訊記錄媒體用結晶化玻璃基板。該結晶化玻璃基板在施以化學強化的情況下無法獲得充分的壓縮應力值。 [先前技術文獻] [專利文獻]Patent Document 1 discloses a crystallized glass substrate for information recording media. When the crystallized glass substrate is chemically strengthened, a sufficient compressive stress value cannot be obtained. [Prior Technical Literature] [Patent Literature]

專利文獻1:日本特開2014-114200號公報。Patent Document 1: JP 2014-114200 A.

[發明所欲解決之課題][The problem to be solved by the invention]

本發明係鑑於上述問題點而成。本發明的目的在於獲得硬且不易破裂的結晶化玻璃基板。The present invention is made in view of the above-mentioned problems. The object of the present invention is to obtain a crystallized glass substrate that is hard and not easily broken.

為了解決上述課題,本發明人們致力研究反覆實驗的結果,發現可以獲得一種結晶化玻璃基板,係藉由混合酸進行化學強化,藉此可以提高壓縮應力層的表面壓縮應力並降低中心壓縮應力,耐衝撃性高且即使為衝擊所破壞亦難以碎裂(爆炸破壞),進而完成本發明。具體而言,本發明係提供以下內容。In order to solve the above-mentioned problems, the present inventors have devoted themselves to the results of repeated experiments and found that a crystallized glass substrate can be obtained, which is chemically strengthened by a mixed acid, thereby increasing the surface compressive stress of the compressive stress layer and reducing the central compressive stress. The impact resistance is high, and even if it is damaged by impact, it is difficult to break (explosive damage), and the present invention has been completed. Specifically, the present invention provides the following.

(構成1) 一種結晶化玻璃基板,係於表面具有壓縮應力層;將前述壓縮應力層的表面壓縮應力為0MPa時的深度設為應力深度DOLzero時,前述壓縮應力層之中,從最表面至6μm為止的深度的表面壓縮應力的梯度A為50.0MPa/μm至110.0MPa/μm;從(前述應力深度DOLzero-10μm)的深度至前述應力深度DOLzero為止的表面壓縮應力的梯度B為2.5MPa/μm至15.0MPa/μm;前述最表面的壓入深度20nm的硬度為7.50GPa至9.50GPa。 (構成2) 一種結晶化玻璃基板,係於表面具有壓縮應力層;將前述壓縮應力層的表面壓縮應力為0MPa時的深度設為應力深度DOLzero時,前述壓縮應力層之中,從最表面至6μm為止的深度的表面壓縮應力的梯度A為50.0MPa/μm至110.0MPa/μm;從(前述應力深度DOLzero-10μm)的深度至前述應力深度DOLzero為止的表面壓縮應力的梯度B為2.5MPa/μm至15.0MPa/μm;前述最表面的壓入深度100nm的硬度為8.00GPa至9.50GPa。 (構成3) 一種結晶化玻璃基板,係於表面具有壓縮應力層;將前述壓縮應力層的表面壓縮應力為0MPa時的深度設為應力深度DOLzero時,前述壓縮應力層之中,從最表面至6μm為止的深度的表面壓縮應力的梯度A為50.0MPa/μm至110.0MPa/μm;從(前述應力深度DOLzero-10μm)的深度至前述應力深度DOLzero為止的表面壓縮應力的梯度B為2.5MPa/μm至15.0MPa/μm;前述壓縮應力層的最表面的表面壓縮應力CS為900.0MPa至1200.0MPa。 (構成4) 如構成1或2所記載之結晶化玻璃基板,其中前述應力深度DOLzero為30.0μm至70.0μm;前述壓縮應力層的最表面的表面壓縮應力CS為870.0MPa至1150.0MPa;中心壓縮應力CT為35.0MPa至70.0MPa。 (構成5) 如構成1至4所記載之結晶化玻璃基板,其中換算為氧化物的重量%時含有:SiO2 成分40.0%至70.0%;Al2 O3 成分11.0%至25.0%;Na2 O成分5.0%至19.0%;K2 O成分0%至9.0%;由MgO成分以及ZnO成分所選擇之1種以上1.0%至18.0%;CaO成分0%至3.0%;以及TiO2 成分0.5%至12.0%。 (構成6) 如構成1至5所記載之結晶化玻璃基板,其中前述結晶化玻璃基板的厚度為0.1mm至1.0mm。(Configuration 1) A crystallized glass substrate having a compressive stress layer on the surface; when the depth at which the surface compressive stress of the compressive stress layer is 0 MPa is the stress depth DOLzero, the compressive stress layer is from the outermost surface to The gradient A of the surface compressive stress at a depth of up to 6μm is 50.0MPa/μm to 110.0MPa/μm; the gradient B of the surface compressive stress from the depth (the aforementioned stress depth DOLzero-10μm) to the aforementioned stress depth DOLzero is 2.5MPa/ μm to 15.0MPa/μm; the hardness of the indentation depth 20nm of the aforementioned outermost surface is 7.50GPa to 9.50GPa. (Configuration 2) A crystallized glass substrate having a compressive stress layer on the surface; when the depth at which the surface compressive stress of the compressive stress layer is 0 MPa is the stress depth DOLzero, the compressive stress layer is from the outermost surface to The gradient A of the surface compressive stress at a depth of up to 6μm is 50.0MPa/μm to 110.0MPa/μm; the gradient B of the surface compressive stress from the depth (the aforementioned stress depth DOLzero-10μm) to the aforementioned stress depth DOLzero is 2.5MPa/ μm to 15.0MPa/μm; the hardness of the indentation depth 100nm of the aforementioned outermost surface is 8.00GPa to 9.50GPa. (Configuration 3) A crystallized glass substrate having a compressive stress layer on the surface; when the depth at which the surface compressive stress of the compressive stress layer is 0 MPa is the stress depth DOLzero, the compressive stress layer is from the outermost surface to The gradient A of the surface compressive stress at a depth of up to 6μm is 50.0MPa/μm to 110.0MPa/μm; the gradient B of the surface compressive stress from the depth (the aforementioned stress depth DOLzero-10μm) to the aforementioned stress depth DOLzero is 2.5MPa/ μm to 15.0 MPa/μm; the surface compressive stress CS of the outermost surface of the compressive stress layer is 900.0 MPa to 1200.0 MPa. (Configuration 4) The crystallized glass substrate as described in Configuration 1 or 2, wherein the stress depth DOLzero is 30.0 μm to 70.0 μm; the surface compressive stress CS of the outermost surface of the compressive stress layer is 870.0 MPa to 1150.0 MPa; central compression The stress CT is 35.0MPa to 70.0MPa. (Constitution 5) The crystallized glass substrate as described in Compositions 1 to 4, when converted to oxide weight%, contains: SiO 2 component 40.0% to 70.0%; Al 2 O 3 component 11.0% to 25.0%; Na 2 O component 5.0% to 19.0%; K 2 O component 0% to 9.0%; one or more selected from MgO component and ZnO component 1.0% to 18.0%; CaO component 0% to 3.0%; and TiO 2 component 0.5% To 12.0%. (Configuration 6) The crystallized glass substrate as described in Configurations 1 to 5, wherein the thickness of the crystallized glass substrate is 0.1 mm to 1.0 mm.

藉由本發明可獲得硬且不易破裂之結晶化玻璃基板。With the present invention, a hard and hard to crack crystallized glass substrate can be obtained.

本發明的結晶化玻璃基板可用於電子機器的顯示器或透鏡的玻璃蓋、車載用的光學機器用透鏡保護鏡、外框構件或是殼體、光學透鏡材料、其它各種構件。The crystallized glass substrate of the present invention can be used for display or lens glass covers of electronic equipment, lens protection mirrors for optical equipment used in vehicles, outer frame members or housings, optical lens materials, and various other members.

以下對於本發明的結晶化玻璃基板的實施形態以及實施例進行詳細地說明,但本發明並不限於以下的實施形態以及實施例,可在本發明的目的的範圍內加入適當變更並實施。Hereinafter, embodiments and examples of the crystallized glass substrate of the present invention will be described in detail, but the present invention is not limited to the following embodiments and examples, and can be implemented with appropriate changes within the scope of the purpose of the present invention.

[結晶化玻璃基板] 本發明的結晶化玻璃基板係以結晶化玻璃作為母材(亦稱為結晶化玻璃母材),於表面具有壓縮應力層。壓縮應力層係可藉由將結晶化玻璃母材經離子交換處理而形成。壓縮應力層係從基板的最表面於內側以預定的厚度形成,壓縮應力係最表面為最高,朝向內側減少至零。[Crystalized Glass Substrate] The crystallized glass substrate of the present invention uses crystallized glass as a base material (also referred to as a crystallized glass base material), and has a compressive stress layer on the surface. The compressive stress layer can be formed by subjecting the crystallized glass base material to ion exchange treatment. The compressive stress layer is formed with a predetermined thickness from the outermost surface of the substrate on the inner side, and the compressive stress is the highest on the outermost surface and decreases to zero toward the inner side.

圖1係相對於本發明的結晶化玻璃基板的表面部分之壓縮應力層中從最表面的深度(μm)之壓縮應力(MPa)的變化之一例之圖。深度零表示最表面。最表面的壓縮應力(亦稱為最表面壓縮應力)以CS表示,當壓縮應力為0MPa時的壓縮應力層的深度(亦稱為應力深度)以DOLzero表示。圖1中,壓縮應力從最表面到內側急遽地(大的斜率)減少之後,壓縮應力緩慢地(以小的斜率)減少。Fig. 1 is a diagram showing an example of changes in the compressive stress (MPa) from the depth (μm) of the outermost surface in the compressive stress layer of the surface portion of the crystallized glass substrate of the present invention. A depth of zero indicates the outermost surface. The compressive stress of the outermost surface (also referred to as the uppermost surface compressive stress) is represented by CS, and the depth of the compressive stress layer (also referred to as stress depth) when the compressive stress is 0 MPa is represented by DOLzero. In Figure 1, after the compressive stress decreases sharply (large slope) from the outermost surface to the inner side, the compressive stress decreases slowly (with a small slope).

具體而言,從最表面至6μm為止的深度的壓縮應力的梯度A為50.0MPa/μm至110.0MPa/μm,較佳為60.0MPa/μm至105.0MPa/μm或是70.0MPa/μm至100.0MPa/μm。從(應力深度DOLzero-10μm)的深度至應力深度DOLzero為止的壓縮應力的梯度B為2.5MPa/μm至15.0MPa/μm,較佳為3.0MPa/μm至13.0MPa/μm或是3.5MPa/μm至12.0MPa/μm。圖1之中,從最表面至深度6μm的壓縮應力為CS1時,梯度A可以(CS-CS1)/6求得。距離應力深度DOLzero淺10μm的部位的壓縮應力為CS2時,梯度B可以CS2/10求得。Specifically, the compressive stress gradient A from the outermost surface to the depth of 6 μm is 50.0 MPa/μm to 110.0 MPa/μm, preferably 60.0 MPa/μm to 105.0 MPa/μm or 70.0 MPa/μm to 100.0 MPa /Μm. The compressive stress gradient B from the depth of (stress depth DOLzero-10μm) to the stress depth DOLzero is 2.5MPa/μm to 15.0MPa/μm, preferably 3.0MPa/μm to 13.0MPa/μm or 3.5MPa/μm To 12.0MPa/μm. In Figure 1, when the compressive stress from the outermost surface to a depth of 6μm is CS1, the gradient A can be obtained by (CS-CS1)/6. When the compressive stress of the part shallow 10 μm from the stress depth DOLzero is CS2, the gradient B can be obtained by CS2/10.

壓縮應力層的最表面的壓縮應力CS一般為870.0MPa至1200.0MPa,例如可為900.0MPa至1200.0MPa、930.MPa至1150.0MPa、950.0MPa至1100.0MPa或是960.0MPa至1050.0MPa。The compressive stress CS of the outermost surface of the compressive stress layer is generally 870.0 MPa to 1200.0 MPa, for example, 900.0 MPa to 1200.0 MPa, 930. MPa to 1150.0 MPa, 950.0 MPa to 1100.0 MPa, or 960.0 MPa to 1050.0 MPa.

以曲線分析所求得之壓縮深度DOLzero可為30.0μm至70.0μm,例如可為35.0μm至60.0μm或是38.0μm至58.0μm。The compression depth DOLzero obtained by curve analysis may be 30.0 μm to 70.0 μm, for example, it may be 35.0 μm to 60.0 μm or 38.0 μm to 58.0 μm.

以直線分析所求得之壓縮深度DOL可為40.0μm至80.0μm,例如可為45.0μm至75.0μm或是50.0μm至70.0μm。The compression depth DOL obtained by linear analysis may be 40.0 μm to 80.0 μm, for example, it may be 45.0 μm to 75.0 μm or 50.0 μm to 70.0 μm.

以曲線分析所求得之中心應力CT可為35.0MPa至70.0MPa,例如可為38.0MPa至65.0MPa或是40.0MPa至60.0MPa。The central stress CT obtained by curve analysis may be 35.0 MPa to 70.0 MPa, for example, it may be 38.0 MPa to 65.0 MPa or 40.0 MPa to 60.0 MPa.

結晶化玻璃基板的壓入深度20nm的硬度較佳為7.50GPa至9.50GPa,更佳為7.80GPa至9.30GPa,又更佳為8.00GPa至9.10GPa。 結晶化玻璃基板從最表面壓入至深度50nm為止時的硬度(壓入深度50nm的硬度)較佳為7.50GPa至9.50GPa,更佳為7.80GPa至9.30GPa,又更佳為8.00GPa至9.10GPa。 結晶化玻璃基板的壓入深度100nm的硬度較佳為8.00GPa至9.50GPa,更佳為8.30GPa至9.30GPa,又更佳為8.50GPa至9.10GPa。 結晶化玻璃基板的壓入深度20nm的硬度較佳為8.00GPa至9.50GPa,更佳為8.30GPa至9.30GPa,又更佳為8.50GPa至9.10GPa。 上述的硬度可以實施例中記載的方法求出。The hardness of the indentation depth of 20 nm of the crystallized glass substrate is preferably 7.50 GPa to 9.50 GPa, more preferably 7.80 GPa to 9.30 GPa, and still more preferably 8.00 GPa to 9.10 GPa. The hardness when the crystallized glass substrate is pressed from the outermost surface to a depth of 50 nm (hardness at a depth of 50 nm) is preferably 7.50 GPa to 9.50 GPa, more preferably 7.80 GPa to 9.30 GPa, and still more preferably 8.00 GPa to 9.10 GPa. The hardness at an indentation depth of 100 nm of the crystallized glass substrate is preferably 8.00 GPa to 9.50 GPa, more preferably 8.30 GPa to 9.30 GPa, and still more preferably 8.50 GPa to 9.10 GPa. The hardness of the crystallized glass substrate at an indentation depth of 20 nm is preferably 8.00 GPa to 9.50 GPa, more preferably 8.30 GPa to 9.30 GPa, and still more preferably 8.50 GPa to 9.10 GPa. The above-mentioned hardness can be obtained by the method described in the Examples.

壓縮應力層若具有上述的應力梯度A、B、以及硬度以及/或者最表面壓縮應力CS,則基板難以破壞。應力深度、應力梯度、硬度、最表面壓縮應力以及中心應力係可藉由調整組成、基板的厚度以及化學強化條件來調整。If the compressive stress layer has the above-mentioned stress gradients A, B, hardness, and/or the outermost surface compressive stress CS, the substrate is difficult to break. The stress depth, stress gradient, hardness, surface compressive stress, and central stress system can be adjusted by adjusting the composition, the thickness of the substrate, and the chemical strengthening conditions.

結晶化玻璃基板的厚度的下限較佳為0.10mm以上,更佳為0.30mm以上,更佳為0.40mm以上,又更佳為0.50mm以上;結晶化玻璃基板的厚度的上限較佳為1.00mm以下,更佳為0.90mm以下,更佳為0.70mm以下,又更佳為0.60mm以下。The lower limit of the thickness of the crystallized glass substrate is preferably 0.10 mm or more, more preferably 0.30 mm or more, more preferably 0.40 mm or more, and still more preferably 0.50 mm or more; the upper limit of the thickness of the crystallized glass substrate is preferably 1.00 mm Below, it is more preferably 0.90 mm or less, more preferably 0.70 mm or less, and still more preferably 0.60 mm or less.

結晶化玻璃係具有結晶相與玻璃相之材料,不同於非晶質固體。一般而言,結晶化玻璃的結晶相可以使用X光繞射分析的X光繞射圖形中出現的波峰的角度以及根據需要使用TEMEDX(Transmission electron microscopy energy-dispersive X-ray spectroscopy;穿透式電子顯微鏡X射線能量散布分析)來判別。Crystallized glass is a material with a crystalline phase and a glass phase, which is different from amorphous solids. Generally speaking, the crystalline phase of crystallized glass can use the angle of the peak appearing in the X-ray diffraction pattern of X-ray diffraction analysis and TEMEDX (Transmission electron microscopy energy-dispersive X-ray spectroscopy; Microscope X-ray energy dispersion analysis) to distinguish.

結晶化玻璃例如作為結晶相而含有由MgAl2 O4 、MgTi2 O4 、MgTi2 O5 、Mg2 TiO4 、Mg2 SiO­、MgAl2 Si2 O8 、Mg2 Al4 Si5 O18 、Mg2 TiO5 、MgSiO3 、NaAlSiO4 、FeAl2 O4 以及這些固溶體中所選擇之1種以上。The crystallized glass contains, for example, MgAl 2 O 4 , MgTi 2 O 4 , MgTi 2 O 5 , Mg 2 TiO 4 , Mg 2 SiO, MgAl 2 Si 2 O 8 , Mg 2 Al 4 Si 5 O 18 and One or more selected from Mg 2 TiO 5 , MgSiO 3 , NaAlSiO 4 , FeAl 2 O 4 and these solid solutions.

結晶化玻璃中之平均結晶徑例如可為4nm至15nm、5nm至13nm或是6nm至10nm。若平均結晶徑小則可易於將研磨後的表面粗糙度Ra平順地加工至數Å等級。此外,透光率變高。The average crystal diameter in the crystallized glass can be, for example, 4 nm to 15 nm, 5 nm to 13 nm, or 6 nm to 10 nm. If the average crystal diameter is small, the polished surface roughness Ra can be smoothly processed to the order of several Å. In addition, the light transmittance becomes higher.

構成結晶化玻璃之各成分的組成範圍如下所述。本說明書之中,各成分的含量只要沒有特別說明的情況下,皆以換算為氧化物的重量%來表示。在此,所謂「換算為氧化物」係指假設結晶化玻璃構成成分全部被分解變成氧化物的情況下,將該氧化物的總重量設為100重量%時,將結晶化玻璃中所含有之各成分的氧化物的量以重量%來表記。The composition range of each component constituting the crystallized glass is as follows. In this specification, unless otherwise specified, the content of each component is expressed in weight% converted to oxide. Here, the term "converted to oxides" means that assuming that all components of the crystallized glass are decomposed into oxides, when the total weight of the oxides is set to 100% by weight, the crystallized glass contains The amount of oxide of each component is expressed in% by weight.

作為母材之結晶化玻璃,較佳為以換算為氧化物的重量%時含有:SiO2 成分40.0%至70.0%;Al2 O3 成分11.0%至25.0%;Na2 O成分5.0%至19.0%;K2 O成分0%至9.0%;由MgO成分以及ZnO成分所選擇之1種以上1.0%至18.0%;CaO成分0%至3.0%;以及TiO2 成分0.5%至12.0%。The crystallized glass as the base material preferably contains: SiO 2 component 40.0% to 70.0%; Al 2 O 3 component 11.0% to 25.0%; Na 2 O component 5.0% to 19.0 when converted to oxide weight% %; K 2 O component 0% to 9.0%; one or more selected from MgO component and ZnO component 1.0% to 18.0%; CaO component 0% to 3.0%; and TiO 2 component 0.5% to 12.0%.

SiO2 成分更佳為含有45.0%至65.0%,又更佳為含有50.0%至60.0%。 Al2 O3 成分更佳為含有13.0%至23.0%。 Na2 O成分更佳為含有8.0%至16.0%。亦可含有9.0%以上或是10.5%以上。 K2 O成分更佳為含有0.1%至7.0%,又更佳為含有1.0%至5.0%。 由MgO成分以及ZnO成分所選擇之1種以上更佳為含有2.0%至15.0%,又更佳為含有3.0%至13.0%,尤佳為含有5.0%至11.0%。由MgO成分以及ZnO成分所選擇之1種以上亦可為單獨MgO成分、單獨ZnO成分或是該兩者,但較佳為僅有MgO成分。 CaO成分更佳為含有0.01%至3.0%,又更佳為含有0.1%至2.0%。 TiO2 成分更佳為含有1.0%至10.0%,又更佳為含有2.0%至8.0%。 結晶化玻璃可含有0.01%至3.0%(較佳為0.03%至2.0%,又更佳為0.05%至1.0%)之由Sb2 O3 成分、SnO2 成分以及CeO2 成分所選擇之1種以上。 可將上述的調配量適當組合。The SiO 2 component is more preferably 45.0% to 65.0%, and still more preferably 50.0% to 60.0%. The Al 2 O 3 component more preferably contains 13.0% to 23.0%. More preferably, the Na 2 O component contains 8.0% to 16.0%. It may also contain 9.0% or more or 10.5% or more. The K 2 O component is more preferably 0.1% to 7.0%, and still more preferably 1.0% to 5.0%. One or more selected from the MgO component and the ZnO component more preferably contains 2.0% to 15.0%, still more preferably contains 3.0% to 13.0%, and particularly preferably contains 5.0% to 11.0%. One or more selected from the MgO component and the ZnO component may be the MgO component alone, the ZnO component alone, or both, but it is preferable to have only the MgO component. The content of CaO is more preferably 0.01% to 3.0%, and still more preferably 0.1% to 2.0%. The content of the TiO 2 component is more preferably 1.0% to 10.0%, and even more preferably 2.0% to 8.0%. The crystallized glass may contain 0.01% to 3.0% (preferably 0.03% to 2.0%, and more preferably 0.05% to 1.0%) of one selected from Sb 2 O 3 , SnO 2 and CeO 2 the above. The above-mentioned compounding amounts can be appropriately combined.

由SiO2 成分、Al2 O3 成分、Na2 O成分、MgO成分以及ZnO成分所選擇之1種以上,可加上TiO2 成分為90%以上,較佳為95%以上,更佳為98%以上,又更佳為98.5%以上。 由SiO2 成分、Al2 O3 成分、Na2 O成分、K2 O成分、MgO成分以及ZnO成分所選擇之1種以上,可加上CaO成分、TiO2 成分以及由Sb2 O3 成分、SnO2 成分以及CeO2 成分所選擇之1種以上為90%以上,較佳為95%以上,更佳為98%以上,又更佳為99%以上。亦可以這些成分佔100%。One or more selected from SiO 2 component, Al 2 O 3 component, Na 2 O component, MgO component, and ZnO component, plus 90% or more of TiO 2 component, preferably 95% or more, more preferably 98 % Or more, and more preferably 98.5% or more. One or more selected from SiO 2 component, Al 2 O 3 component, Na 2 O component, K 2 O component, MgO component, and ZnO component. CaO component, TiO 2 component and Sb 2 O 3 component can be added. The selected one or more of the SnO 2 component and the CeO 2 component is 90% or more, preferably 95% or more, more preferably 98% or more, and still more preferably 99% or more. These ingredients can also account for 100%.

結晶化玻璃在不損及本發明的功效的範圍內,可含有或不含ZrO2 成分。調配量可為0%至5.0%、0%至3.0%或是0%至2.0%。 此外,結晶化玻璃在不損及本發明的功效的範圍內,亦可各自含有或不含B2 O3 成分、P2 O5 成分、BaO成分、FeO成分、SnO2 成分、Li2 O成分、SrO成分、La2 O3 成分、Y2 O3 成分、Nb2 O5 成分、Ta2 O5 成分、WO3 成分、TeO2 成分、Bi2 O3 成分。調配量可各為0%至2.0%、0以上小於2.0%或是0%至1.0%。The crystallized glass may contain or not contain ZrO 2 as long as it does not impair the effectiveness of the present invention. The blending amount can be 0% to 5.0%, 0% to 3.0%, or 0% to 2.0%. In addition, the crystallized glass may contain or not contain B 2 O 3 components, P 2 O 5 components, BaO components, FeO components, SnO 2 components, and Li 2 O components, within the range that does not impair the effectiveness of the present invention. , SrO component, La 2 O 3 component, Y 2 O 3 component, Nb 2 O 5 component, Ta 2 O 5 component, WO 3 component, TeO 2 component, Bi 2 O 3 component. The blending amount can be 0% to 2.0%, 0 or more and less than 2.0%, or 0% to 1.0%.

本發明的結晶化玻璃,作為澄清劑,除了Sb2 O3 成分、SnO2 成分、CeO2 成分以外,亦可含有或不含As2 O3 成分、以及由F、Cl、NOx、SOx的群組中所選擇之一種或是二種以上。其中,澄清劑的含量上限較佳為0.5%以下,更佳為0.2%以下,特佳為0.1%以下。The crystallized glass of the present invention, as a fining agent, in addition to the Sb 2 O 3 component, the SnO 2 component, and the CeO 2 component, it may also contain or not contain the As 2 O 3 component and the group consisting of F, Cl, NOx, and SOx One or more than two selected in the group. Among them, the upper limit of the content of the clarifying agent is preferably 0.5% or less, more preferably 0.2% or less, and particularly preferably 0.1% or less.

此外,作為母材之結晶化玻璃,較佳為以換算為氧化物的莫耳%含有:SiO2 成分43.0莫耳%至73.0莫耳%;Al2 O3 成分4.0莫耳%至18.0莫耳%;Na2 O成分5.0莫耳%至19.0莫耳%;K2 O成分0莫耳%至9.0莫耳%;由MgO成分以及ZnO成分所選擇之1種以上2.0莫耳%至22.0莫耳%;CaO成分0莫耳%至3.0莫耳%;以及TiO2 成分0.5莫耳%至11.0莫耳%。 由SiO2 成分、Al2 O3 成分、Na2 O成分、MgO成分以及ZnO成分所選擇之1種以上係可加上TiO2 成分為90莫耳%以上,較佳為95莫耳%以上,更佳為98莫耳%以上,又更佳為99莫耳%以上。In addition, the crystallized glass as the base material preferably contains SiO 2 component 43.0 mol% to 73.0 mol%; Al 2 O 3 component 4.0 mol% to 18.0 mol% in mole% converted to oxides. %; Na 2 O component 5.0 mol% to 19.0 mol%; K 2 O component 0 mol% to 9.0 mol%; 1 or more selected from MgO component and ZnO component 2.0 mol% to 22.0 mol% %; CaO component 0 mol% to 3.0 mol%; and TiO 2 component 0.5 mol% to 11.0 mol%. One or more selected from SiO 2 component, Al 2 O 3 component, Na 2 O component, MgO component, and ZnO component can add TiO 2 component at 90 mol% or more, preferably 95 mol% or more, More preferably, it is 98 mol% or more, and still more preferably 99 mol% or more.

本發明的結晶化玻璃只要在不損及本發明的結晶化玻璃的特性的範圍內可根據需要而添加未在上述之其它成分。例如,本發明的結晶化玻璃(以及基板)可為無色透明,但在不損及結晶化玻璃的特性的範圍內亦可對玻璃著色。As long as the crystallized glass of the present invention does not impair the characteristics of the crystallized glass of the present invention, other components not mentioned above may be added as necessary. For example, the crystallized glass (and substrate) of the present invention may be colorless and transparent, but the glass may be colored within a range that does not impair the characteristics of the crystallized glass.

進而,Pb、Th、Tl、Os、Be以及Se的各成分,由於近年來傾向避免使用有害的化學物質,因此較佳為實質上不含有這些成分。Furthermore, since the respective components of Pb, Th, Tl, Os, Be, and Se tend to avoid the use of harmful chemical substances in recent years, it is preferable that these components are not contained substantially.

[製造方法] 本發明的結晶化玻璃基板可以以下的方法製作。亦即,將原料均勻混合且熔解成形而製造原料玻璃。繼而將該原料玻璃結晶化並製作結晶化玻璃母材。進而將結晶化玻璃母材進行化學強化。[Manufacturing method] The crystallized glass substrate of the present invention can be produced by the following method. That is, the raw materials are uniformly mixed and melted and molded to produce raw glass. Then, the raw glass is crystallized to produce a crystallized glass base material. Furthermore, the crystallized glass base material is chemically strengthened.

對原料玻璃進行熱處理並在玻璃內部析出結晶。該熱處理可以1階段或是2階段的溫度進行熱處理。 2階段熱處理中,首先藉由以第1溫度來熱處理而進行核形成步驟,在該核形成步驟之後,藉由以較核形成步驟更高的第2溫度來熱處理而進行結晶成長步驟。 1階段熱處理中,以1階段的溫度來連續地進行核形成步驟與結晶成長步驟。一般來說,升溫至預定的熱處理溫度為止,在到達該熱處理溫度之後保持該溫度一定時間,之後降溫。 2階段熱處理的第1溫度較佳為600℃至750℃。第1溫度下的保持時間較佳為30分至2000分,更佳為180分至1440分。 2階段熱處理的第2溫度較佳為650℃至850℃。第2溫度下的保持時間較佳為30分至600分,更佳為60分至300分。 以1階段的溫度進行熱處理的情況下,熱處理的溫度較佳為600℃至800℃,更佳為630℃至770℃。此外,熱處理的溫度下的保持時間較佳為30分至500分,更佳為60分至300分。The raw glass is heat-treated and crystals are precipitated inside the glass. This heat treatment can be performed at a temperature of one stage or two stages. In the two-stage heat treatment, first, a nucleation step is performed by heat treatment at a first temperature, and after the nucleation step, a crystal growth step is performed by heat treatment at a second temperature higher than the nucleation step. In the one-stage heat treatment, the nucleation step and the crystal growth step are continuously performed at the temperature of one stage. Generally, the temperature is raised to a predetermined heat treatment temperature, and after the heat treatment temperature is reached, the temperature is maintained for a certain period of time, and then the temperature is lowered. The first temperature of the two-stage heat treatment is preferably 600°C to 750°C. The holding time at the first temperature is preferably 30 minutes to 2000 minutes, more preferably 180 minutes to 1440 minutes. The second temperature of the two-stage heat treatment is preferably 650°C to 850°C. The holding time at the second temperature is preferably 30 minutes to 600 minutes, more preferably 60 minutes to 300 minutes. When the heat treatment is performed at a one-step temperature, the temperature of the heat treatment is preferably 600°C to 800°C, more preferably 630°C to 770°C. In addition, the holding time at the temperature of the heat treatment is preferably 30 minutes to 500 minutes, more preferably 60 minutes to 300 minutes.

例如可使用磨削以及研磨加工的手段等,由結晶化玻璃母材製作薄板狀結晶化玻璃母材。For example, grinding and polishing can be used to produce a thin plate-like crystallized glass base material from the crystallized glass base material.

之後,藉由化學強化法而離子交換,藉此在結晶化玻璃母材形成壓縮應力層。After that, ion exchange is performed by a chemical strengthening method, thereby forming a compressive stress layer on the crystallized glass base material.

將結晶化玻璃母材以鉀鹽與鈉鹽的混合熔融鹽(混合浴)進行化學強化,進而接續混合浴以鉀鹽的單獨的混合熔融鹽(單獨浴)進行化學強化。具體而言,例如將結晶化玻璃母材接觸或是浸漬於含有鉀或是鈉的鹽,例如接觸或是浸漬於將硝酸鉀(KNO3 )與硝酸鈉(NaNO3 )等混合鹽或是複合鹽加熱至350℃至600℃(較佳為380℃至570℃,更佳為400℃至500℃,又更佳為430℃至490℃)的熔融鹽中100分以上,例如200分至800分,較佳為300分至700分,又更佳為450分至550分。鉀鹽與鈉鹽的混合比率例如以重量比為1:1至50:1、1.5:1至30:1或是2:1至20:1或是3:1至15:1。進而,較佳為繼續接觸或是浸漬於含有鉀之鹽,例如接觸或是浸漬於將硝酸鉀(KNO3 )加熱至380℃至550℃(更佳為400℃至500℃,又更佳為430℃至490℃)的熔融鹽中短時間,例如1分以上、3分至40分、4分至30分或是5分至20分。像這樣藉由化學強化,存在於表面附近的成分與熔融鹽所含有成分進行離子交換反應。該結果於表面部形成壓縮應力層。 [實施例]The crystallized glass base material is chemically strengthened with a mixed molten salt of potassium salt and sodium salt (mixed bath), and the mixed bath is further chemically strengthened with a separate mixed molten salt of potassium salt (separate bath). Specifically, for example, contacting or immersing the crystallized glass base material in a salt containing potassium or sodium, for example, contacting or immersing in a mixed salt such as potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) or a composite The salt is heated to 350°C to 600°C (preferably 380°C to 570°C, more preferably 400°C to 500°C, and more preferably 430°C to 490°C) in the molten salt for 100 minutes or more, for example, 200 minutes to 800°C The points are preferably 300 to 700 points, and more preferably 450 to 550 points. The mixing ratio of potassium salt and sodium salt is, for example, a weight ratio of 1:1 to 50:1, 1.5:1 to 30:1, 2:1 to 20:1, or 3:1 to 15:1. Furthermore, it is preferable to continue contacting or immersing in a salt containing potassium, such as contacting or immersing in heating potassium nitrate (KNO 3 ) to 380°C to 550°C (more preferably 400°C to 500°C, and more preferably 430°C to 490°C) for a short time in molten salt, such as 1 minute or more, 3 minutes to 40 minutes, 4 minutes to 30 minutes, or 5 minutes to 20 minutes. In this way, by chemical strengthening, the component existing near the surface and the component contained in the molten salt undergo an ion exchange reaction. As a result, a compressive stress layer is formed on the surface. [Example]

實施例1、2 作為結晶化玻璃的各成分的原料而選定各自相當的氧化物、氫氧化物、碳酸鹽、硝酸鹽、氟化物、氯化物、偏燐氧化合物等的原料,將這些原料以成為以下的組成的比率的方式秤量並均勻混合。 (換算為氧化物的重量%) SiO2 成分54%、Al2 O3 成分18%、Na2 O成分12%、K2 O成分2%、MgO成分8%、CaO成分1%、TiO2 成分5%、Sb2 O3 成分0.1%。Examples 1 and 2 As the raw materials for each component of crystallized glass, the corresponding raw materials for oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, and partial oxide compounds were selected, and these raw materials were Weigh it so that it becomes the ratio of the following composition, and mix it uniformly. (Calculated as weight% of oxide) SiO 2 component 54%, Al 2 O 3 component 18%, Na 2 O component 12%, K 2 O component 2%, MgO component 8%, CaO component 1%, TiO 2 component 5%, 0.1% of Sb 2 O 3 content.

繼而,將混合之原料投入鉑坩堝中熔融。之後,將熔融之玻璃攪拌並均質化後澆鑄至模具中,緩冷並製作原料玻璃。Then, put the mixed raw materials into a platinum crucible to melt. After that, the molten glass is stirred and homogenized, and then cast into a mold, slowly cooled to produce raw glass.

為了核形成以及結晶化,對於所獲得之原料玻璃施以1階段的熱處理(650℃至730℃、5小時)而製作作為母材之結晶化玻璃。對於所獲得之結晶化玻璃,藉由200kV電場發射型穿透式電子顯微鏡FE-TEM(日本電子製JEM2100F)進行分析的結果,觀察到平均結晶徑6nm至9nm的析出結晶。進而確認電子繞射圖像所致之晶格圖像,藉由EDX( energy-dispersion X-ray analysis;X射線能量散布分析)進行分析,確認到MgAl2 O4 、MgTi2 O4 的結晶相。平均結晶徑係使用穿透式電子顯微鏡求出180×180nm2 的範圍內的結晶粒子的結晶徑而計算平均值所求得。For nucleation and crystallization, a one-stage heat treatment (650°C to 730°C, 5 hours) is applied to the obtained raw glass to produce crystallized glass as a base material. The obtained crystallized glass was analyzed by a 200kV field emission type transmission electron microscope FE-TEM (JEM2100F manufactured by JEOL Ltd.), and as a result, precipitated crystals with an average crystal diameter of 6 nm to 9 nm were observed. Furthermore, the lattice image caused by the electron diffraction image was confirmed and analyzed by EDX (energy-dispersion X-ray analysis; X-ray energy dispersion analysis), and the crystal phases of MgAl 2 O 4 and MgTi 2 O 4 were confirmed . The average crystal diameter is determined by using a transmission electron microscope to obtain the crystal diameter of the crystal particles in the range of 180×180 nm 2 and calculate the average value.

對於製作之結晶化玻璃母材進行切割以及磨削,以成為厚度0.61mm以及0.54mm的基板的方式進行面對面平行研磨。結晶化玻璃母材為無色透明。The prepared crystallized glass base material is cut and ground, and face-to-face parallel grinding is performed so that it becomes a substrate with a thickness of 0.61mm and 0.54mm. The base material of crystallized glass is colorless and transparent.

在面對面平行研磨之結晶化玻璃母材進行化學強化,獲得結晶化玻璃基板。具體而言,實施例1中,在KNO3 :NaNO3 =3:1(重量比)的混合比率的KNO3 與NaNO3 的混合熔融鹽中以460℃浸漬500分之後,在僅有KNO3 的熔融鹽中以460℃浸漬15分。實施例2中,除了將KNO3 與NaNO3 的混合比率改為KNO3 :NaNO3 =10:1(重量比)以外係與實施例1同樣的方式進行化學強化。Chemical strengthening is performed on the crystallized glass base material that is ground in parallel to obtain a crystallized glass substrate. Specifically, in Example 1, after being immersed in a mixed molten salt of KNO 3 and NaNO 3 at a mixing ratio of KNO 3 :NaNO 3 =3:1 (weight ratio) at 460°C for 500 minutes, only KNO 3 Soaked in molten salt at 460°C for 15 minutes. In Example 2, the chemical strengthening was performed in the same manner as in Example 1, except that the mixing ratio of KNO 3 and NaNO 3 was changed to KNO 3 :NaNO 3 =10:1 (weight ratio).

對於所獲得之基板進行以下的評價。 (1)使用折原製作所製造的玻璃表面應力計FSM-6000LE,對結晶化玻璃基板的壓縮應力層的厚度(應力深度DOLzero)與該壓縮應力層的從最表面至DOLzero為止的表面壓縮應力值進行測定。以試料的折射率1.54、光學彈性常數29.658[(nm/cm)/MPa]算出。求得從最表面至6μm為止的深度的表面壓縮應力的梯度A(MPa/μm)與從(應力深度DOLzero-10μm)的深度至應力深度DOLzero為止的表面壓縮應力的梯度B(MPa/μm)。中心壓縮應力值(CT)係藉由曲線分析(Curve analysis)所求得。進而,藉由直線分析亦求得壓縮應力層的厚度(應力深度DOL)。結果如表1所示。The following evaluations were performed on the obtained substrate. (1) Using the glass surface stress meter FSM-6000LE manufactured by Orihara Manufacturing Co., Ltd., the thickness of the compressive stress layer (stress depth DOLzero) of the crystallized glass substrate and the surface compressive stress value of the compressive stress layer from the outermost surface to DOLzero were measured. Determination. Calculated with the refractive index of the sample 1.54 and the optical elastic constant 29.658 [(nm/cm)/MPa]. Obtain the surface compressive stress gradient A (MPa/μm) from the outermost surface to the depth of 6μm and the surface compressive stress gradient B (MPa/μm) from the depth (stress depth DOLzero-10μm) to the stress depth DOLzero . The central compressive stress (CT) is obtained by curve analysis (Curve analysis). Furthermore, the thickness of the compressive stress layer (stress depth DOL) is also obtained by linear analysis. The results are shown in Table 1.

(2)使用Bruker公司製造的奈米壓痕系統(Nano-indentation system)(TI Premier),測定基板的從最表面壓入至深度20nm、50nm、100nm、200nm為止時的硬度。結果如表1所示。(2) Using the Nano-indentation system (TI Premier) manufactured by Bruker, the hardness of the substrate was measured when it was indented from the outermost surface to depths of 20 nm, 50 nm, 100 nm, and 200 nm. The results are shown in Table 1.

(3)對於結晶化玻璃基板,係以以下的方法使用砂紙進行落球試驗。該落球試驗係模擬落下到瀝青上。 在大理石的基台上鋪上粗糙度#180的砂紙,並放置結晶化玻璃基板(長15cm×寬7cm)。然後,將16.5g的SUS(Steel Special Use Stainless;不鏽鋼)製鐵球由距離基板10mm(1cm)的高度落下至基板。落下後,若基板未被破壞,則將高度提高10mm(1cm),繼續同樣的試驗直到破壞為止。破壞後,觀察碎片的狀態。結果如表2所示。未破壞時以○表示,破壞時以×表示。(3) For the crystallized glass substrate, a ball drop test was performed using sandpaper by the following method. The falling ball test system simulates falling onto the pitch. Spread sandpaper with roughness #180 on the marble base, and place a crystallized glass substrate (length 15 cm x width 7 cm). Then, 16.5 g of SUS (Steel Special Use Stainless) iron balls were dropped onto the substrate from a height of 10 mm (1 cm) from the substrate. After falling, if the substrate is not damaged, increase the height by 10 mm (1 cm), and continue the same test until it fails. After destruction, observe the state of the fragments. The results are shown in Table 2. It is indicated by ○ when it is not broken, and × when it is broken.

對碎片的狀態以以下的基準進行評價。結果如表2所示。 A:1 cm2 以上的碎片為4個以上,或是10 cm2 以上的碎片為1個以上。 B:1 cm2 以上的碎片為1個至3個。 C:1 cm2 以上的碎片為0個(全部為小於1 cm2 的細小碎片)。 從表2可知,本發明的基板硬且難以破壞,即使破壞亦難以碎裂。The state of the fragments was evaluated based on the following criteria. The results are shown in Table 2. A: There are 4 or more fragments of 1 cm 2 or more, or 1 or more fragments of 10 cm 2 or more. B: There are 1 to 3 fragments of 1 cm 2 or more. C: There are zero fragments of 1 cm 2 or more (all are small fragments of less than 1 cm 2 ). It can be seen from Table 2 that the substrate of the present invention is hard and difficult to break, and even if broken, it is hard to break.

比較例1、2 比較例1、2中係使用非晶質玻璃。 作為玻璃的各成分的原料而選定各自相當的氧化物、氫氧化物、碳酸鹽、硝酸鹽、氟化物、氯化物、偏燐氧化合物等的原料,將這些原料以成為以下的組成的比率的方式秤量並均勻混合。 (比較例1的換算為氧化物的重量%) SiO2 成分62.4%、Al2 O3 成分21%、Na2 O成分12%、K2 O成分0.1%、MgO成分1.5%、B2 O3 成分2.9%、Sb2 O3 成分0.1%。 (比較例2的換算為氧化物的重量%) SiO2 成分62.2%、Al2 O3 成分16%、Na2 O成分8.3%、K2 O成分5.7%、MgO成分4.8%、B2 O3 成分2.9%、Sb2 O3 成分0.1%。Comparative Examples 1 and 2 In Comparative Examples 1 and 2, amorphous glass was used. As the raw materials for each component of the glass, select the corresponding raw materials such as oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, and partial oxide compounds, and set these raw materials to the following composition ratios Method of weighing and mixing evenly. (Comparative example 1 is converted to oxide weight%) SiO 2 component 62.4%, Al 2 O 3 component 21%, Na 2 O component 12%, K 2 O component 0.1%, MgO component 1.5%, B 2 O 3 The composition is 2.9%, and the composition of Sb 2 O 3 is 0.1%. (Comparative Example 2 is converted to oxide weight%) SiO 2 component 62.2%, Al 2 O 3 component 16%, Na 2 O component 8.3%, K 2 O component 5.7%, MgO component 4.8%, B 2 O 3 The composition is 2.9%, and the composition of Sb 2 O 3 is 0.1%.

繼而,將混合之原料投入鉑坩堝中熔融。之後,將熔融之玻璃攪拌並均質化後澆鑄至模具中,緩冷並製作原料玻璃。Then, put the mixed raw materials into a platinum crucible to melt. After that, the molten glass is stirred and homogenized, and then cast into a mold, slowly cooled to produce raw glass.

對所獲得之原料玻璃進行退火處理並除去殘留在玻璃的畸變。對於製作之非晶質玻璃母材進行切割以及磨削,以成為厚度0.66mm的方式進行面對面平行研磨。非晶質玻璃母材為無色透明。The obtained raw glass is annealed and the distortion remaining in the glass is removed. Cut and grind the produced amorphous glass base material, and perform face-to-face parallel grinding so that the thickness becomes 0.66mm. The base material of amorphous glass is colorless and transparent.

在面對面平行研磨之非晶質玻璃母材進行化學強化,獲得非晶質玻璃基板。具體而言,比較例1中,在KNO3 :NaNO3 =2:1(重量比)的混合比率的KNO3 與NaNO3 的混合熔融鹽中以450℃浸漬300分之後,在僅有KNO3 的熔融鹽中以450℃浸漬15分。比較例2中,在KNO3 :NaNO3 =1:1(重量比)的混合比率的KNO3 與NaNO3 的混合熔融鹽中以450℃浸漬500分之後,在僅有KNO3 的熔融鹽中以410℃浸漬15分。Chemical strengthening is performed on the amorphous glass base material that is ground in parallel to obtain an amorphous glass substrate. Specifically, in Comparative Example 1, after being immersed in a mixed molten salt of KNO 3 and NaNO 3 at a mixing ratio of KNO 3 :NaNO 3 =2:1 (weight ratio) at 450°C for 300 minutes, only KNO 3 Soak in the molten salt at 450°C for 15 minutes. In Comparative Example 2, after being immersed in a mixed molten salt of KNO 3 and NaNO 3 at a mixing ratio of KNO 3 :NaNO 3 = 1:1 (weight ratio) at 450° C. for 500 minutes, in a molten salt containing only KNO 3 Soak at 410°C for 15 minutes.

對於所獲得之基板進行以下的評價。 (1)使用折原製作所製造的玻璃表面應力計FSM-6000LE,對非晶質玻璃基板的壓縮應力層的厚度(應力深度DOLzero)與該壓縮應力層的從最表面至DOLzero為止的表面壓縮應力值進行測定。比較例1中以試料的折射率1.50、光學彈性常數30.3[(nm/cm)/MPa]算出。比較例2中以試料的折射率1.51、光學彈性常數28.2[(nm/cm)/MPa]算出。求得從最表面至6μm為止的深度的表面壓縮應力的梯度A(MPa/μm)與從(應力深度DOLzero-10μm)的深度至應力深度DOLzero為止的表面壓縮應力的梯度B(MPa/μm)。中心壓縮應力值(CT)係藉由曲線分析所求得。進而,藉由直線分析亦求得壓縮應力層的厚度(應力深度DOL)。結果如表1所示。The following evaluations were performed on the obtained substrate. (1) Using the glass surface stress meter FSM-6000LE manufactured by Orihara Manufacturing Co., Ltd., the thickness of the compressive stress layer (stress depth DOLzero) of the amorphous glass substrate and the surface compressive stress value of the compressive stress layer from the outermost surface to DOLzero Perform the measurement. In Comparative Example 1, it was calculated with the refractive index of the sample 1.50 and the optical elastic constant 30.3 [(nm/cm)/MPa]. In Comparative Example 2, it was calculated with the refractive index of the sample 1.51 and the optical elastic constant 28.2 [(nm/cm)/MPa]. Obtain the surface compressive stress gradient A (MPa/μm) from the outermost surface to the depth of 6μm and the surface compressive stress gradient B (MPa/μm) from the depth (stress depth DOLzero-10μm) to the stress depth DOLzero . The central compressive stress (CT) is obtained by curve analysis. Furthermore, the thickness of the compressive stress layer (stress depth DOL) is also obtained by linear analysis. The results are shown in Table 1.

(2)與實施例1、2同樣的方式測定壓入硬度。結果如表1所示。(2) The indentation hardness was measured in the same manner as in Examples 1 and 2. The results are shown in Table 1.

(3)與實施例1、2同樣的方式實施落球試驗。結果如表2所示。(3) The falling ball test was carried out in the same manner as in Examples 1 and 2. The results are shown in Table 2.

[表1]   實施例1 實施例2 比較例1 比較例2 材料厚度 [mm] 0.61 0.54 0.66 0.66 CS [MPa] 993.3 1027.8 841.5 828.7 CT [MPa] 43.9 55.4 67.9 33.0 DOLzero [μm] 54.0 41.5 75.7 62.3 最表面 至6μm [ΔMPa] 567.3 453.7 225.8 486.8 梯度A 94.6 75.6 37.6 81.1 DOLzero-10 至 DOLzero [ΔMPa] 42.8 95.5 33.1 20.6 梯度B 4.3 9.6 3.3 2.1 藉由直線分析之DOL [μm] 64.0 57.3 84.0 90.4 硬度 壓入深度20nm [GPa] 8.44 8.94 6.94 7.08 硬度 壓入深度50nm [GPa] 8.75 8.72 7.45 7.13 硬度 壓入深度100nm [GPa] 8.81 8.75 7.60 7.13 硬度 壓入深度200nm [GPa] 8.94 8.83 8.03 7.50 [Table 1] Example 1 Example 2 Comparative example 1 Comparative example 2 Material thickness [mm] 0.61 0.54 0.66 0.66 CS [MPa] 993.3 1027.8 841.5 828.7 CT [MPa] 43.9 55.4 67.9 33.0 DOLzero [μm] 54.0 41.5 75.7 62.3 The most surface to 6μm [ΔMPa] 567.3 453.7 225.8 486.8 Gradient A 94.6 75.6 37.6 81.1 DOLzero-10 to DOLzero [ΔMPa] 42.8 95.5 33.1 20.6 Gradient B 4.3 9.6 3.3 2.1 DOL by straight line analysis [μm] 64.0 57.3 84.0 90.4 Hardness indentation depth 20nm [GPa] 8.44 8.94 6.94 7.08 Hardness indentation depth 50nm [GPa] 8.75 8.72 7.45 7.13 Hardness indentation depth 100nm [GPa] 8.81 8.75 7.60 7.13 Hardness indentation depth 200nm [GPa] 8.94 8.83 8.03 7.50

[表2]   實施例1 實施例2 比較例1 比較例2 鋼球落下試驗結果 (mm) 10 20 30 × 40 ×   50     60     70     80 × ×     碎片的狀態 A A C A [Table 2] Example 1 Example 2 Comparative example 1 Comparative example 2 Steel ball drop test result (mm) 10 20 30 × 40 × 50 60 70 80 × × Fragmented state A A C A

儘管在上述已詳細地說明了若干本發明的實施形態以及/或者實施例,但所屬技術領域中具有通常知識者在實質上不脫離本發明的新穎的教示以及功效容易對這些例示之實施形態以及/或者實施例施加許多的變更。因此,這些許多的變更係包含在本發明的範圍內。 該說明書中記載的文獻的內容全部引用至此。Although a number of embodiments and/or embodiments of the present invention have been described in detail above, those with ordinary knowledge in the technical field will not deviate from the novel teachings and effects of the present invention in substance, and it is easy for those exemplified embodiments and / Or the embodiment imposes many changes. Therefore, these many changes are included in the scope of the present invention. The contents of the documents described in this specification are all quoted here.

無。no.

圖1係表示本發明的結晶化玻璃基板相對於從最表面起算的深度之壓縮應力的變化之一例之圖。Fig. 1 is a diagram showing an example of the change in the compressive stress of the crystallized glass substrate of the present invention with respect to the depth from the outermost surface.

Claims (6)

一種結晶化玻璃基板,係於表面具有壓縮應力層; 將前述壓縮應力層的表面壓縮應力為0MPa時的深度設為應力深度DOLzero時,前述壓縮應力層之中,從最表面至6μm為止的深度的表面壓縮應力的梯度A為50.0MPa/μm至110.0MPa/μm,從前述應力深度DOLzero-10μm的深度至前述應力深度DOLzero為止的表面壓縮應力的梯度B為2.5MPa/μm至15.0MPa/μm,前述最表面的壓入深度20nm的硬度為7.50GPa至9.50GPa。A crystallized glass substrate with a compressive stress layer on the surface; When the depth when the surface compressive stress of the compressive stress layer is 0 MPa is the stress depth DOLzero, the gradient A of the surface compressive stress from the outermost surface to the depth of 6 μm in the compressive stress layer is 50.0 MPa/μm to 110.0 MPa/μm, the surface compressive stress gradient B from the stress depth DOLzero-10 μm to the stress depth DOLzero is 2.5 MPa/μm to 15.0 MPa/μm, and the hardness at the indentation depth of the outermost surface at 20 nm is 7.50 GPa To 9.50GPa. 一種結晶化玻璃基板,係於表面具有壓縮應力層; 將前述壓縮應力層的表面壓縮應力為0MPa時的深度設為應力深度DOLzero時,前述壓縮應力層之中,從最表面至6μm為止的深度的表面壓縮應力的梯度A為50.0MPa/μm至110.0MPa/μm,從前述應力深度DOLzero-10μm的深度至前述應力深度DOLzero為止的表面壓縮應力的梯度B為2.5MPa/μm至15.0MPa/μm,前述最表面的壓入深度100nm的硬度為8.00GPa至9.50GPa。A crystallized glass substrate with a compressive stress layer on the surface; When the depth when the surface compressive stress of the compressive stress layer is 0 MPa is the stress depth DOLzero, the gradient A of the surface compressive stress from the outermost surface to the depth of 6 μm in the compressive stress layer is 50.0 MPa/μm to 110.0 MPa/μm, the surface compressive stress gradient B from the stress depth DOLzero-10 μm to the stress depth DOLzero is 2.5 MPa/μm to 15.0 MPa/μm, and the hardness at the indentation depth of the outermost surface at 100 nm is 8.00 GPa To 9.50GPa. 一種結晶化玻璃基板,係於表面具有壓縮應力層; 將前述壓縮應力層的表面壓縮應力為0MPa時的深度設為應力深度DOLzero時,前述壓縮應力層之中,從最表面至6μm為止的深度的表面壓縮應力的梯度A為50.0MPa/μm至110.0MPa/μm,從前述應力深度DOLzero-10μm的深度至前述應力深度DOLzero為止的表面壓縮應力的梯度B為2.5MPa/μm至15.0MPa/μm; 前述壓縮應力層的最表面的表面壓縮應力CS為900.0MPa至1200.0MPa。A crystallized glass substrate with a compressive stress layer on the surface; When the depth when the surface compressive stress of the compressive stress layer is 0 MPa is the stress depth DOLzero, the gradient A of the surface compressive stress from the outermost surface to the depth of 6 μm in the compressive stress layer is 50.0 MPa/μm to 110.0 MPa/μm, the surface compressive stress gradient B from the depth of the aforementioned stress depth DOLzero-10μm to the aforementioned stress depth DOLzero is 2.5MPa/μm to 15.0MPa/μm; The surface compressive stress CS of the outermost surface of the compressive stress layer is 900.0 MPa to 1200.0 MPa. 如請求項1或2所記載之結晶化玻璃基板,其中前述應力深度DOLzero為30.0μm至70.0μm; 前述壓縮應力層的最表面的表面壓縮應力CS為870.0MPa至1150.0MPa; 中心壓縮應力CT為35.0MPa至70.0MPa。The crystallized glass substrate according to claim 1 or 2, wherein the aforementioned stress depth DOLzero is 30.0 μm to 70.0 μm; The surface compressive stress CS of the outermost surface of the aforementioned compressive stress layer is 870.0 MPa to 1150.0 MPa; The central compressive stress CT is 35.0MPa to 70.0MPa. 如請求項1至3中任一項所記載之結晶化玻璃基板,其中換算為氧化物的重量%時含有: SiO2 成分40.0%至70.0%; Al2 O3 成分11.0%至25.0%; Na2 O成分5.0%至19.0%; K2 O成分0%至9.0%; 由MgO成分以及ZnO成分所選擇之1種以上1.0%至18.0%; CaO成分0%至3.0%;以及 TiO2 成分0.5%至12.0%。The crystallized glass substrate as described in any one of claims 1 to 3, wherein when converted into weight% of oxide, it contains: SiO 2 component 40.0% to 70.0%; Al 2 O 3 component 11.0% to 25.0%; Na 2 O component 5.0% to 19.0%; K 2 O component 0% to 9.0%; 1 or more selected from MgO component and ZnO component 1.0% to 18.0%; CaO component 0% to 3.0%; and TiO 2 component 0.5 % To 12.0%. 如請求項1至3中任一項所記載之結晶化玻璃基板,其中前述結晶化玻璃基板的厚度為0.1mm至1.0mm。The crystallized glass substrate according to any one of claims 1 to 3, wherein the thickness of the crystallized glass substrate is 0.1 mm to 1.0 mm.
TW107147049A 2018-12-26 2018-12-26 Crystallized glass substrate TWI817970B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107147049A TWI817970B (en) 2018-12-26 2018-12-26 Crystallized glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107147049A TWI817970B (en) 2018-12-26 2018-12-26 Crystallized glass substrate

Publications (2)

Publication Number Publication Date
TW202024671A true TW202024671A (en) 2020-07-01
TWI817970B TWI817970B (en) 2023-10-11

Family

ID=73004955

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147049A TWI817970B (en) 2018-12-26 2018-12-26 Crystallized glass substrate

Country Status (1)

Country Link
TW (1) TWI817970B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079309B2 (en) * 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
KR20180098546A (en) * 2016-01-21 2018-09-04 에이지씨 가부시키가이샤 Chemically strengthened glass and method for manufacturing chemically strengthened glass
CN110267924B (en) * 2017-02-24 2021-12-31 株式会社小原 Crystallized glass

Also Published As

Publication number Publication date
TWI817970B (en) 2023-10-11

Similar Documents

Publication Publication Date Title
TWI796316B (en) crystallized glass
KR20160143537A (en) Crystallized glass and crystallized glass substrate
CN110799465B (en) Crystallized glass substrate
US11926554B2 (en) Crystallized glass substrate
JP7136947B2 (en) crystallized glass substrate
TW202024671A (en) Crystallized glass substrate the hardness of the outermost surface at a pressed depth of 20 nm is 7.50 GPa to 9.50 GPa
TWI768037B (en) Crystallized glass substrate
TWI787331B (en) Crystallized glass substrate
US11926562B2 (en) Crystallized glass substrate
US11926563B2 (en) Crystallized glass substrate
US11926559B2 (en) Crystallized glass substrate
CN116018327A (en) Reinforced crystallized glass