TW202019993A - Curable compositions for forming light scattering layers - Google Patents

Curable compositions for forming light scattering layers Download PDF

Info

Publication number
TW202019993A
TW202019993A TW108129812A TW108129812A TW202019993A TW 202019993 A TW202019993 A TW 202019993A TW 108129812 A TW108129812 A TW 108129812A TW 108129812 A TW108129812 A TW 108129812A TW 202019993 A TW202019993 A TW 202019993A
Authority
TW
Taiwan
Prior art keywords
meth
curable composition
acrylate
phase
layer
Prior art date
Application number
TW108129812A
Other languages
Chinese (zh)
Inventor
伊凡 勞倫斯 史瓦玆
馬克 詹姆士 普賴瑞
布萊特 強納森 席特
功靚
海爾欣絲 梨索 黎屈葛
Original Assignee
美商3M新設資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商3M新設資產公司 filed Critical 美商3M新設資產公司
Publication of TW202019993A publication Critical patent/TW202019993A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Curable compositions include at least one fluoropolymer, at least one monofunctional (meth)acrylate, at least one difunctional (meth)acrylate, and at least one initiator. The curable composition, when cured, forms an optically-scattering layer including a matrix and phase separated microdomains. The matrix and the phase separated microdomains have different refractive indices, and the microdomains are on the order of or larger than the wavelengths of visible light.

Description

用於形成光散射層之可固化組成物 Curable composition for forming light scattering layer

本揭露係關於由可固化聚合組成物形成之光學光散射層。 The present disclosure relates to an optical light scattering layer formed of a curable polymer composition.

光學裝置日益變得更加複雜,並且涉及愈來愈多功能層。當光行經光學裝置之該等層時,該等層可用廣泛各式方式來改變光。舉例而言,光可經反射、折射、或吸收。光學裝置中常常包括層以用於多於一個目的。舉例而言,亦可要求用作間隔層以分離兩層(其係機械功能)之層提供光學功能(諸如透射或漫射光)。 Optical devices are becoming increasingly more complex and involve more and more multi-functional layers. As light travels through the layers of the optical device, the layers can change the light in a wide variety of ways. For example, light can be reflected, refracted, or absorbed. Layers are often included in optical devices for more than one purpose. For example, a layer used as a spacer layer to separate two layers (which are mechanical functions) may also be required to provide optical functions (such as transmitted or diffused light).

所利用之有機層的一個光學功能係用於光之漫射。舉例而言,光學裝置包括資訊顯示器,諸如液晶顯示器及背投影螢幕。這些裝置通常依賴光漫射之光學構造,以利於有效操作及增強可讀性。在不顯著損失前向散射光之强度的情況下,此類光漫射之構造藉由前向散射來自光源的光而在這些顯示器中承擔關鍵角色。此所得之散射、但透光率高的光藉由減少經散射或反射回至光源的入射光量而給予此類顯示器所欲之背景亮度。此「反向散射(backscattered)」光的消除或限制是設計這些光漫射構造的一個關鍵因素。漫射器可藉由添加額外漫射器組件至系統,或在一些情況下藉由將漫射性質併入現有組件中而併入光學系統中。 An optical function of the organic layer used is for light diffusion. For example, optical devices include information displays, such as liquid crystal displays and rear projection screens. These devices usually rely on optical construction of light diffusion to facilitate efficient operation and enhance readability. Without significantly compromising the intensity of forward scattered light, such light diffusion structures play a key role in these displays by forward scattering light from the light source. The resulting scattered, but high-transmittance light gives such displays the desired background brightness by reducing the amount of incident light that is scattered or reflected back to the light source. The elimination or limitation of this "backscattered" light is a key factor in the design of these light diffusion structures. The diffuser can be incorporated into the optical system by adding additional diffuser components to the system, or in some cases by incorporating diffuse properties into existing components.

添加額外組件至光學系統具有引入額外吸收及產生可反射光之額外界面的缺點,從而導致照明損失及其他形式的影像劣化。此外,在一些多層系統中,可能難以增加或不可能增加額外組件。 Adding additional components to the optical system has the disadvantage of introducing additional absorption and generating additional interfaces that can reflect light, resulting in loss of illumination and other forms of image degradation. In addition, in some multi-layer systems, it may be difficult or impossible to add additional components.

本揭露係關於由可固化聚合組成物形成之光學光散射層。本文所述係可固化組成物、用該等可固化組成物製備之物品、及形成光學物品之方法。 The present disclosure relates to an optical light scattering layer formed of a curable polymer composition. Described herein are curable compositions, articles made with these curable compositions, and methods of forming optical articles.

本揭露之可固化組成物包含至少一種氟聚合物、至少一種單官能(甲基)丙烯酸酯、至少一種雙官能(甲基)丙烯酸酯、及至少一種起始劑。在本揭露中,用語「可固化組成物(curable composition)」、「可固化油墨(curable ink)」、及「油墨(ink)」可互換使用,且係指可沉積在表面並固化的可固化組成物。即使可以將可固化組成物描述為油墨,但並不一定意指其已經或需要藉由印刷技術來塗佈。可固化組成物一般不含溶劑,且在室溫至60℃的溫度下具有小於30厘泊之黏度。 The curable composition of the present disclosure includes at least one fluoropolymer, at least one monofunctional (meth)acrylate, at least one difunctional (meth)acrylate, and at least one initiator. In this disclosure, the terms "curable composition", "curable ink", and "ink" are used interchangeably and refer to the curable composition that can be deposited on the surface and cured Composition. Even though the curable composition can be described as an ink, it does not necessarily mean that it has been or needs to be applied by printing techniques. The curable composition generally does not contain a solvent, and has a viscosity of less than 30 centipoise at room temperature to 60°C.

亦揭示的是物品。在一些實施例中,該等物品包含具有第一主表面及第二主表面之基材、及設置在該基材之該第一主表面上的光學散射層。該光學散射層包含基質及相分離微域,其中該基質及相該等分離微域具有不同的折射率,且其中該等微域大約為或大於可見光之波長。 Also revealed are items. In some embodiments, the articles include a substrate having a first major surface and a second major surface, and an optical scattering layer disposed on the first major surface of the substrate. The optical scattering layer includes a matrix and phase-separated microdomains, wherein the matrix and the phase-separated microdomains have different refractive indices, and wherein the microdomains are approximately or greater than the wavelength of visible light.

亦揭示製備物品之方法。在一些實施例中,該方法包含提供基材,其具有第一主表面及第二主表面;提供可固化組成物;在 該基材之該第一主表面之至少一部分上形成一層可固化組成物;及固化該層可固化組成物以形成經固化之光學散射層。該可固化組成物包含至少一種氟聚合物、至少一種單官能(甲基)丙烯酸酯、至少一種雙官能(甲基)丙烯酸酯、及至少一種起始劑。如上所述,該可固化組成物在室溫至60℃的溫度下一般具有小於30厘泊之黏度。該經固化之光學散射層包含基質及相分離微域,其中該基質及該等相分離微域具有不同的折射率,且其中該等微域大約為或大於可見光之波長。 Also disclosed are methods of making articles. In some embodiments, the method includes providing a substrate having a first major surface and a second major surface; providing a curable composition; A layer of curable composition is formed on at least a portion of the first major surface of the substrate; and the layer of curable composition is cured to form a cured optical scattering layer. The curable composition includes at least one fluoropolymer, at least one monofunctional (meth)acrylate, at least one difunctional (meth)acrylate, and at least one initiator. As mentioned above, the curable composition generally has a viscosity of less than 30 centipoise at a temperature of room temperature to 60°C. The cured optical scattering layer includes a matrix and phase-separated microdomains, wherein the matrix and the phase-separated microdomains have different refractive indices, and wherein the microdomains are approximately or greater than the wavelength of visible light.

10A‧‧‧基材層 10A‧‧‧Base layer

10B‧‧‧基材層 10B‧‧‧Base layer

10C‧‧‧基材層 10C‧‧‧Base layer

10D‧‧‧基材層 10D‧‧‧Substrate layer

10E‧‧‧基材層 10E‧‧‧Base layer

10F‧‧‧基材層 10F‧‧‧Base layer

10G‧‧‧基材層 10G‧‧‧Base layer

10H‧‧‧基材層 10H‧‧‧Base layer

10I‧‧‧基材層 10I‧‧‧Substrate layer

20A‧‧‧可固化組成物 20A‧‧‧curable composition

20B‧‧‧可固化組成物 20B‧‧‧curable composition

20C‧‧‧可固化組成物 20C‧‧‧curable composition

20F‧‧‧可固化組成物 20F‧‧‧curable composition

20G‧‧‧可固化組成物 20G‧‧‧curable composition

20H‧‧‧可固化組成物 20H‧‧‧curable composition

20I‧‧‧可固化組成物 20I‧‧‧curable composition

21D、22D、23D‧‧‧可固化組成物子層 21D, 22D, 23D‧‧‧curable composition sublayer

21E‧‧‧可固化組成物子層 21E‧‧‧curable composition sublayer

22E‧‧‧可固化組成物子層/表面子層 22E‧‧‧curable composition sublayer/surface sublayer

30A‧‧‧光化輻射 30A‧‧‧actinic radiation

30D‧‧‧光化輻射 30D‧‧‧actinic radiation

30E‧‧‧光化輻射 30E‧‧‧actinic radiation

30F、30F’‧‧‧光化輻射/輻射 30F, 30F’‧‧‧actinic radiation/radiation

30G‧‧‧光化輻射/輻射 30G‧‧‧actinic radiation/radiation

30H‧‧‧光化輻射 30H‧‧‧actinic radiation

30I‧‧‧光化輻射 30I‧‧‧actinic radiation

31B、32B、33B‧‧‧光化輻射 31B, 32B, 33B ‧‧‧actinic radiation

31C、32C、33C‧‧‧光化輻射 31C, 32C, 33C ‧‧‧actinic radiation

40A‧‧‧相分離微域 40A‧‧‧phase separation microdomain

40F、41F、42F‧‧‧相分離微域 40F, 41F, 42F‧‧‧‧phase separation microdomain

40G、41G、42G‧‧‧相分離微域 40G, 41G, 42G‧‧‧phase separated microdomain

40H‧‧‧相分離微域 40H‧‧‧phase separation microdomain

40I‧‧‧相分離微域 40I‧‧‧phase separation microdomain

41B、42B、43B‧‧‧相分離微域 41B, 42B, 43B‧‧‧phase separation microdomain

41C、42C、43C‧‧‧相分離微域 41C, 42C, 43C‧‧‧phase separation microdomain

41D、42D、43D‧‧‧相分離微域 41D, 42D, 43D‧‧‧phase separation microdomain

41E、42E‧‧‧相分離微域 41E, 42E‧‧‧phase separation microdomain

50A‧‧‧經固化基質 50A‧‧‧cured matrix

50B‧‧‧經固化基質 50B‧‧‧cured matrix

50C‧‧‧經固化基質 50C‧‧‧Cure matrix

50D‧‧‧經固化基質 50D‧‧‧cured matrix

50E‧‧‧經固化基質 50E‧‧‧cured matrix

50F、51F‧‧‧經固化基質 50F, 51F ‧‧‧ cured matrix

50G、51G‧‧‧經固化基質 50G, 51G‧‧‧ cured matrix

50H‧‧‧經固化基質 50H‧‧‧cured matrix

50I‧‧‧經固化基質 50I‧‧‧cured matrix

60F‧‧‧遮罩 60F‧‧‧Mask

70G‧‧‧光化輻射/光源/輻射 70G‧‧‧actinic radiation/light source/radiation

80H‧‧‧奈米粒子 80H‧‧‧Nano particles

90I‧‧‧工具膜 90I‧‧‧Tool film

100‧‧‧步驟 100‧‧‧Step

110‧‧‧步驟 110‧‧‧Step

I1、I2、I3‧‧‧強度 I 1 , I 2 , I 3 ‧‧‧ Intensity

結合隨附圖式來考量本揭露之各種實施例的下述實施方式可更完全瞭解本申請案。 The following implementations of the various embodiments disclosed in the present disclosure can be more fully understood in conjunction with the accompanying drawings.

圖1A顯示用於形成光學光散射物品的本揭露之程序的示意圖。 FIG. 1A shows a schematic diagram of the disclosed process for forming an optical light scattering article.

圖1B顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 FIG. 1B shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖1C顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 1C shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖1D顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 FIG. 1D shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖1E顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 FIG. 1E shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖1F顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 FIG. 1F shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖1G顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 FIG. 1G shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖1H顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 FIG. 1H shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖1I顯示用於形成光學光散射物品的本揭露之另一程序的示意圖。 FIG. 11 shows a schematic diagram of another process of the present disclosure for forming an optical light scattering article.

圖2顯示實例2之光學光散射層之光學顯微鏡視圖的剖面圖。 2 shows a cross-sectional view of an optical microscope view of the optical light scattering layer of Example 2. FIG.

圖3A顯示實例2之光學光散射層之AFM高度影像的剖面圖。 3A shows a cross-sectional view of the AFM height image of the optical light scattering layer of Example 2. FIG.

圖3B顯示實例2之光學光散射層之AFM-IR映射(AFM-IR map)的剖面圖。 3B shows a cross-sectional view of the AFM-IR map of the optical light scattering layer of Example 2. FIG.

圖3C顯示實例2之光學光散射層之AFM-IR映射的剖面圖。 3C shows a cross-sectional view of the AFM-IR mapping of the optical light scattering layer of Example 2. FIG.

圖3D顯示實例2之光學光散射層之AFM-IR影像比映射的剖面圖。 3D shows a cross-sectional view of the AFM-IR image ratio mapping of the optical light scattering layer of Example 2. FIG.

圖4顯示實例1之光學光散射層之光學顯微鏡影像的剖面圖。 4 shows a cross-sectional view of an optical microscope image of the optical light scattering layer of Example 1. FIG.

圖5A顯示實例1之光學光散射層之AFM高度影像的剖面圖。 5A shows a cross-sectional view of the AFM height image of the optical light scattering layer of Example 1. FIG.

圖5B顯示實例1之光學光散射層之AFM-IR映射的剖面圖。 5B shows a cross-sectional view of the AFM-IR mapping of the optical light scattering layer of Example 1. FIG.

圖5C顯示實例1之光學光散射層之AFM-IR映射的剖面圖。 5C shows a cross-sectional view of the AFM-IR mapping of the optical light scattering layer of Example 1. FIG.

圖5D顯示實例1之光學光散射層之AFM-IR影像比映射的剖面圖。 5D shows a cross-sectional view of the AFM-IR image ratio mapping of the optical light scattering layer of Example 1.

在以下所繪示實施例的說明中係參照隨附圖式,圖式中圖解說明可實施本揭露的各種實施例。應瞭解,該等實施例可經採用並可進行結構變更而不偏離本揭露之範疇。圖式非必然按比例繪製。在圖式中所使用的類似數字指稱類似組件。但是,將明白,在給定圖式中使用組件符號指稱組件,並非意圖限制在另一圖式中具有相同組件符號之組件。 In the description of the embodiments shown below, reference is made to the accompanying drawings, which illustrate various embodiments that can implement the present disclosure. It should be understood that these embodiments may be adopted and structural changes may be made without departing from the scope of this disclosure. The drawings are not necessarily drawn to scale. Similar numbers used in the drawings refer to similar components. However, it will be understood that the use of component symbols in a given drawing to refer to a component is not intended to limit the components to the same component symbol in another drawing.

光學裝置的複雜性增加讓滿足對使用於其中之材料的要求變得更加困難。具體而言,已發現有機聚合材料廣泛使用於光學裝置中,但是對這些聚合材料有日益嚴格的要求。 The increased complexity of optical devices makes it more difficult to meet the requirements for the materials used in them. In particular, organic polymeric materials have been found to be widely used in optical devices, but these polymeric materials have increasingly stringent requirements.

舉例而言,對於光學裝置中之廣泛範圍用途,諸如黏著劑、保護層、間隔層、及類似者而言,薄有機聚合膜係所欲的。隨著物品變得更加複雜,對於這些層的物理要求亦有所提高。舉例而言, 隨著光學裝置變得更加精巧,且同時經常包括更多層,而更加需要較薄的層。同時,因為層較薄,層亦需要更加精確。舉例而言,薄間隔層(具有1微米厚度)為了有效地作為間隔物而需為平整且沒有間隙及孔洞,以提供適當的間隔功能。此需要用精確且一致的方式來沉積有機層。已開發用來提供精確且一致之有機層沉積的其中一個方法是印刷技術。在印刷技術中,將聚合物或一經固化即會形成聚合物之可固化組成物印刷至基材表面以形成層。在可印刷聚合物的情況下,一般而言會加入溶劑以使聚合物變成能夠印刷的溶液或分散液。當使用聚合物時,在印刷以產生所欲之聚合層後,一般而言乾燥步驟是必要的。在一經固化會形成聚合物之可固化組成物的情況下,可固化組成物可包括或可不包括溶劑。接著使可固化組成物固化,一般而言是利用施加熱或輻射(諸如UV光),並且如果使用溶劑則亦可將該層乾燥。可使用廣泛各式印刷技術,而噴墨印刷尤其是所欲的,因為噴墨印刷具有極佳精密度。 For example, for a wide range of applications in optical devices, such as adhesives, protective layers, spacer layers, and the like, thin organic polymer films are desirable. As items become more complex, the physical requirements for these layers have also increased. For example, As optical devices become more sophisticated, and at the same time often include more layers, thinner layers are more needed. At the same time, because the layer is thinner, the layer also needs to be more precise. For example, a thin spacer layer (having a thickness of 1 micrometer) needs to be flat and free of gaps and holes in order to effectively function as a spacer to provide a proper spacer function. This requires the organic layer to be deposited in a precise and consistent manner. One method that has been developed to provide accurate and consistent organic layer deposition is printing technology. In printing technology, a polymer or a curable composition that forms a polymer upon curing is printed onto the surface of a substrate to form a layer. In the case of printable polymers, generally a solvent is added to make the polymer a printable solution or dispersion. When using polymers, after printing to produce the desired polymeric layer, generally a drying step is necessary. In the case of a curable composition that will form a polymer upon curing, the curable composition may or may not include a solvent. The curable composition is then cured, generally using heat or radiation (such as UV light), and the layer can also be dried if a solvent is used. A wide variety of printing techniques can be used, and inkjet printing is particularly desirable because inkjet printing has excellent precision.

此外,這些層不只必須供應其物理角色(黏著、保護、間隔、及類似者),其等亦必須提供必要之光學性質。變得日益重要的一個光學性質係光漫射。一般而言,光漫射已透過使用粒子而實現。將光漫射粒子分散在可聚合黏合劑內以形成可固化混合物,將可固化混合物設置於表面上並固化以形成層,該層具有懸浮於聚合基質中的光漫射粒子。 In addition, these layers must not only provide their physical roles (adhesion, protection, spacing, and the like), they must also provide the necessary optical properties. An optical property that is becoming increasingly important is light diffusion. In general, light diffusion has been achieved through the use of particles. The light-diffusing particles are dispersed in the polymerizable binder to form a curable mixture, and the curable mixture is placed on the surface and cured to form a layer having the light-diffusing particles suspended in the polymer matrix.

雖然此用於製備光漫射層之方法已被廣泛使用,但其具有嚴重的缺點及限制。添加預形成之粒子及填料可能會有問題,不僅 因為反向散射的複雜度,且因為添加此類粒子及填料使過濾程序更加困難,通常需要此程序來改善塗層之均勻性。此外,由於層已變得越來越薄,越來越多地使用諸如噴墨印刷的技術,以將可固化層設置於表面上,且由於預形成粒子傾向於堵塞印頭噴嘴,因此經預形成粒子填充之混合物的印刷可能非常困難。此外,雖然能夠以此方式製造均勻漫射層,也就是在該層整個區域具有相同漫射性質的層,但很難(如果有可能的話)以此方式產生選擇性漫射層。如本文中所使用,選擇性漫射層係指在層之不同區域中具有不同漫射性質的層。 Although this method for preparing a light diffusing layer has been widely used, it has serious disadvantages and limitations. Adding pre-formed particles and fillers may be problematic, not only Because of the complexity of backscattering, and because the addition of such particles and fillers makes the filtration process more difficult, this procedure is usually needed to improve the uniformity of the coating. In addition, as the layer has become thinner and thinner, techniques such as inkjet printing are increasingly used to place the curable layer on the surface, and because the preformed particles tend to clog the printhead nozzle, the Printing to form particle-filled mixtures can be very difficult. In addition, although a uniform diffusion layer can be manufactured in this way, that is, a layer having the same diffusion properties over the entire area of the layer, it is difficult (if possible) to produce a selective diffusion layer in this way. As used herein, a selective diffusion layer refers to a layer with different diffusion properties in different regions of the layer.

已使用其他技術來提供散射層,而無需使用用於光學應用之預形成粒子。 Other techniques have been used to provide the scattering layer without using pre-formed particles for optical applications.

Yang等人(US 2010/0259825)將兩種不相容之單體摻合成乳液、塗佈、然後固化以將其鎖在該形態。此並不允許在固化期間控制形態。相反地,在固化之前,藉由在施配之前改變混合量及/或混合速度來執行形態控制。乳液需要穩定劑及其他化學組分以維持穩定性並控制所形成之微域的大小,其可以減少兩相之間可能的折射率差異,且因此減少能夠實現之散射量。未展示出對這些相之大小的控制超過初始乳化。 Yang et al. (US 2010/0259825) blended two incompatible monomers into an emulsion, applied it, and then cured to lock it in this form. This does not allow control of morphology during curing. Conversely, before curing, morphology control is performed by changing the mixing amount and/or mixing speed before dispensing. Emulsions require stabilizers and other chemical components to maintain stability and control the size of the microdomains formed, which can reduce the possible refractive index difference between the two phases, and therefore reduce the amount of scattering that can be achieved. No control of the size of these phases beyond initial emulsification was shown.

Young等人(US 9,093,666)亦描述兩種不同的環氧聚矽氧單體與不含聚矽氧之環脂族環氧單體及光起始劑混合的相分離溶液。在固化之前,所使用的環氧聚矽氧樹脂之一者與環脂族環氧樹脂不混溶,且在固化之前,使用攪拌來實現在0.5至20微米之範圍內的不同粒徑分布。將此層作為封裝層應用於兩個無機層之間,以增強OLED 裝置之光輸出耦合(light outcoupling)。在固化步驟期間,未展示出或討論對於相分離程度的控制。 Young et al. (US 9,093,666) also describe a phase separation solution in which two different epoxy polysiloxane monomers are mixed with cycloaliphatic epoxy monomers that do not contain polysiloxane and a photoinitiator. Before curing, one of the epoxy polysiloxane resins used is immiscible with cycloaliphatic epoxy resin, and before curing, stirring is used to achieve different particle size distributions in the range of 0.5 to 20 microns. Apply this layer as an encapsulation layer between two inorganic layers to enhance the OLED Light outcoupling of the device. During the curing step, the control of the degree of phase separation was not demonstrated or discussed.

Mazurek等人(US 8343633B2)使用溶解於不含聚矽氧之可輻射固化單體中的可輻射固化遙爪含聚矽氧單體。在此方法中,兩相在固化之前可彼此混溶,但在固化後相分離。在固化步驟期間,展示出對微域大小有一些程度的控制,儘管由於兩相含有可交聯的(甲基)丙烯酸酯部分,允許相之間發生交聯,從而限制漫射及相分離之程度。 Mazurek et al. (US 8343633B2) use a radiation-curable telechelic polysiloxane-containing monomer dissolved in a radiation-curable monomer that does not contain silicone. In this method, the two phases are miscible with each other before curing, but the phases separate after curing. During the curing step, it showed some degree of control over the size of the microdomains, although the two phases contained cross-linkable (meth)acrylate moieties, allowing cross-linking between the phases, thereby limiting diffusion and phase separation degree.

另一種已用於製備光漫射壓敏性黏著劑而不需使用添加粒子之技術係描述於美國專利第9,238,762號(Schaffer等人)中。在此申請案中,用光學清透壓敏性黏著劑基質將嵌段共聚物溶解於溶劑中。在溶劑乾燥之後,嵌段共聚物與用於壓敏性黏著劑的聚合物相分離。嵌段共聚物形成之微域大於可見光之波長,因而使可見光漫射。在乾燥步驟期間,未討論或展示出對於相分離程度的控制,且微域大小之分布在沿著該層的所有點處均相同。 Another technique that has been used to prepare light-diffusing pressure-sensitive adhesives without the use of added particles is described in US Patent No. 9,238,762 (Schaffer et al.). In this application, the block copolymer is dissolved in a solvent with an optically clear pressure-sensitive adhesive matrix. After the solvent is dried, the block copolymer is separated from the polymer used for the pressure-sensitive adhesive. The micro-domain formed by the block copolymer is larger than the wavelength of visible light, thus diffusing visible light. During the drying step, control of the degree of phase separation was not discussed or demonstrated, and the distribution of micro-domain size was the same at all points along the layer.

本揭露與此等的不同之處在於,不可聚合非晶形氟聚合物(一般而言係氟彈性體)係溶解於有機可輻射固化單體混合物中,以形成初始清透、可混溶之溶液。在固化時,氟聚合物相與甲基丙烯酸酯相相分離,提供允許充分光學散射的折射率之變化。由於聚合物在固化期間不會與單體共聚合,因此這允許對於充分相分離所需之散射進行更大量的控制。例如,已展示出藉由改變固化期間所使用之光強度而在固化步驟期間控制粒徑之能力,從而影響聚合速率。此外,令人意外的是,氟聚合物可溶解於(不含氟)(甲基)丙烯酸酯單體中, 兩種材料具有截然不同的化學結構。使用此類化學上不同的材料允許在相分離發生之後由組分之各者所提供之大的折射率差異。最後,在固化步驟期間控制相分離之能力允許使用所屬技術領域中熟知的圖案化方法在一層內產生多種不同的域大小,其在某些應用中可能是有益的。 The difference between this disclosure and these is that non-polymerizable amorphous fluoropolymer (generally fluoroelastomer) is dissolved in an organic radiation-curable monomer mixture to form an initial clear, miscible solution . Upon curing, the fluoropolymer phase is separated from the methacrylate phase, providing a change in refractive index that allows adequate optical scattering. Since the polymer will not copolymerize with the monomer during curing, this allows a greater amount of control over the scattering required for adequate phase separation. For example, the ability to control the particle size during the curing step has been demonstrated by changing the light intensity used during curing, thereby affecting the polymerization rate. In addition, it is surprising that the fluoropolymer can be dissolved in (non-fluorine) (meth)acrylate monomer, The two materials have very different chemical structures. The use of such chemically different materials allows for a large difference in refractive index provided by each of the components after phase separation occurs. Finally, the ability to control phase separation during the curing step allows the use of patterning methods well known in the art to produce a variety of different domain sizes within a layer, which may be beneficial in certain applications.

本揭露提供一種可固化組成物,其不含粒子且能夠形成光漫射層。可固化組成物包括氟聚合物及(甲基)丙烯酸酯以及自由基起始劑,並在固化之前形成均質之單相。一般而言,氟聚合物與(甲基)丙烯酸酯單體具有良好的混溶性,且因此未固化組成物層不含有富含氟碳化合物之微域,相反地,氟聚合物/(甲基)丙烯酸酯混合物係基本上均質且透明的。用語氟聚合物(fluoropolymer)及氟碳化合物(fluorocarbon)可互換使用,以指本揭露之含氟聚合物。在藉由UV輻照活化光起始劑時,在膜內產生自由基,其誘發(甲基)丙烯酸酯單體之聚合,且導致氟聚合物或聚(甲基)丙烯酸酯相分離成離散域,此係由於熵的減少及在兩個組分之間混合之自由能的增加。由於聚(甲基)丙烯酸酯與氟聚合物之間的折射率差異,相分離微域的形成導致光的前向散射(亦稱為「霧度(haze)」)增加。當光線經前向散射時,光經漫射,但在相同的大致入射方向上繼續。在反向散射中,光被引導回入射方向上。因此,在反向散射中,由於反射回光源而損失一些光強度。在前向散射中,僅少量光因反射而損失,因為大部分的光沿入射方向經透射,只是經漫射。這在使用點光源的情況下係所欲的,其將產生亮點及相鄰的無光點,來自點光源的光存在於亮點,且無光點 為沒有光透射之處。藉由使用前向散射漫射器,使來自點光源的光散佈在更大區域而消除亮點/無光點現象。所屬技術領域中具有通常知識者充分理解前向散射及反向散射。 The present disclosure provides a curable composition that does not contain particles and can form a light-diffusing layer. The curable composition includes a fluoropolymer and (meth)acrylate and a radical initiator, and forms a homogeneous single phase before curing. In general, fluoropolymers have good miscibility with (meth)acrylate monomers, and therefore the uncured composition layer does not contain microdomains rich in fluorocarbon compounds. Conversely, fluoropolymer/(methyl ) The acrylate mixture is substantially homogeneous and transparent. The terms fluoropolymer and fluorocarbon are used interchangeably to refer to the fluoropolymer disclosed herein. When the photoinitiator is activated by UV irradiation, free radicals are generated in the film, which induces the polymerization of (meth)acrylate monomers and causes the phase separation of fluoropolymer or poly(meth)acrylate into discrete Domain, this is due to a decrease in entropy and an increase in the free energy of mixing between the two components. Due to the difference in refractive index between the poly(meth)acrylate and the fluoropolymer, the formation of phase-separated microdomains leads to an increase in forward scattering of light (also known as "haze"). When light rays are scattered forward, the light diffuses, but continues in the same general direction of incidence. In backscattering, light is directed back in the direction of incidence. Therefore, in backscattering, some light intensity is lost due to reflection back to the light source. In forward scattering, only a small amount of light is lost due to reflection because most of the light is transmitted along the incident direction, but only diffused. This is desirable when using a point light source, which will produce bright spots and adjacent non-light spots, the light from the point light source exists in the bright spots, and there is no light spot There is no light transmission. By using the forward scattering diffuser, the light from the point light source is spread over a larger area to eliminate the bright spot/no light spot phenomenon. Those of ordinary skill in the art fully understand forward and backscatter.

光漫射層係藉由將可固化組成物設置於基材上並固化可固化組成物而製備,以形成具有基質及相分離微域的經固化有機層,其中基質及相分離微域具有不同的折射率。固化可混溶組成物以形成具有相分離域之經固化組成物的此程序有時被稱為PIPS(polymerization-induced phase separation,聚合誘發相分離)。在本申請案中,域大小足夠大以漫射可見光,換言之,其平均直徑大約為或大於可見光之波長(約400至700nm)。PIPS模型意味著可能預期基質會係具有氟聚合物之微域的交聯(甲基)丙烯酸酯基質。雖然這確實發生,如將於以下更詳細解釋,但所形成之經固化有機層遠比具有氟聚合物之微域的簡單交聯(甲基)丙烯酸酯基質複雜。已發現的是,經固化有機層包含三種不同組成類型或組成區中之至少一者。該等區之各者包含基質及相分離微域。第一區係其中基本上連續的基質包含交聯(甲基)丙烯酸酯基質及相分離富含氟碳化合物之微域的區,其中富含氟碳化合物之微域主要(若非基本上所有)係氟碳化合物。此實施例區係如上所述。第二區係其中基本上連續的基質包含交聯(甲基)丙烯酸酯基質、且相分離微域包含(甲基)丙烯酸酯材料以及氟聚合物的區。在這些實施例中,仍可將微域描述為富含氟聚合物之微域,但其包含氟聚合物之奈米域及交聯(甲基)丙烯酸酯之奈米域。第三區係其中基本上連續的基質包含富含氟碳化合物之域、且相分離微域富含 (甲基)丙烯酸酯的區,其中富含(甲基)丙烯酸酯之微域至少包含交聯(甲基)丙烯酸酯材料,且亦可含有氟聚合物。 The light diffusion layer is prepared by disposing the curable composition on the substrate and curing the curable composition to form a cured organic layer having a matrix and phase-separated microdomains, where the matrix and phase-separated microdomains have different The refractive index. This procedure of curing the miscible composition to form a cured composition having phase separation domains is sometimes referred to as PIPS (polymerization-induced phase separation). In the present application, the domain size is large enough to diffuse visible light, in other words, its average diameter is about or greater than the wavelength of visible light (about 400 to 700 nm). The PIPS model means that it may be expected that the matrix will be a cross-linked (meth)acrylate matrix with microdomains of fluoropolymer. Although this does occur, as will be explained in more detail below, the cured organic layer formed is far more complex than a simple crosslinked (meth)acrylate matrix with microdomains of fluoropolymer. It has been found that the cured organic layer contains at least one of three different composition types or composition regions. Each of these regions includes a matrix and phase-separated microdomains. The first zone is a zone in which the substantially continuous matrix contains a cross-linked (meth)acrylate matrix and phase-separated fluorocarbon-rich microdomains, wherein the fluorocarbon-rich microdomains are mainly (if not substantially all) It is a fluorocarbon compound. This embodiment is described above. The second zone is a zone where the substantially continuous matrix contains a cross-linked (meth)acrylate matrix, and the phase-separated microdomains contain (meth)acrylate material and a fluoropolymer. In these embodiments, the microdomain can still be described as a fluoropolymer-rich microdomain, but it includes the fluoropolymer nanodomain and the crosslinked (meth)acrylate nanodomain. The third zone is where the substantially continuous matrix contains fluorocarbon-rich domains and phase-separated microdomains are rich The (meth)acrylate region, in which (meth)acrylate-rich microdomains contain at least cross-linked (meth)acrylate materials, and may also contain fluoropolymers.

光學散射層包含上述區中之至少一者。在一些實施例中,光學散射層全部為一個區,且整體係基本上均勻的。在其他實施例中,光學散射層包含多於一個區。不同區的此現象不同於下述之選擇性漫射性質,且係指基質及相分離微域的組成。 The optical scattering layer includes at least one of the above regions. In some embodiments, the optical scattering layer is all one region, and the whole is substantially uniform. In other embodiments, the optical scattering layer contains more than one zone. This phenomenon in different regions is different from the selective diffusion property described below, and refers to the composition of the matrix and phase-separated microdomains.

本揭露之另一特徵係使用選擇性固化以產生選擇性漫射層之能力。如本文中所使用,選擇性漫射層係指在層之不同區域中具有不同漫射性質的層。此選擇性係在下文更詳細地描述且可以廣泛各式的方式實現,諸如藉由使用可變強度光源及遮罩技術。 Another feature of the present disclosure is the ability to use selective curing to create a selective diffusion layer. As used herein, a selective diffusion layer refers to a layer with different diffusion properties in different regions of the layer. This selectivity is described in more detail below and can be implemented in a wide variety of ways, such as by using variable intensity light sources and masking techniques.

本文揭示可固化組成物,其包含至少一種氟聚合物、至少一種單官能(甲基)丙烯酸酯、至少一種雙官能(甲基)丙烯酸酯、及至少一種起始劑。可固化組成物在室溫至60℃的溫度下一般具有小於30厘泊之黏度。此黏度允許藉由諸如噴墨印刷技術之技術來印刷可固化組成物,但是當然可以使用廣泛各式的塗佈技術來塗佈可固化組成物。 Disclosed herein is a curable composition comprising at least one fluoropolymer, at least one monofunctional (meth)acrylate, at least one difunctional (meth)acrylate, and at least one initiator. The curable composition generally has a viscosity of less than 30 centipoise at room temperature to 60°C. This viscosity allows the curable composition to be printed by techniques such as inkjet printing technology, but of course a wide variety of coating techniques can be used to apply the curable composition.

本文亦揭示含有製備自可固化組成物之經固化層的物品,其中經固化層包含基質及相分離微域,其中基質及相分離微域具有不同的折射率,且其中微域之至少一些者大約為或大於可見光之波長,因而能夠漫射可見光。此外,描述製備此類物品之方法。 Also disclosed herein is an article containing a cured layer prepared from a curable composition, wherein the cured layer includes a matrix and phase-separated microdomains, wherein the matrix and phase-separated microdomains have different refractive indices, and at least some of the microdomains It is approximately or greater than the wavelength of visible light, and therefore can diffuse visible light. In addition, a method of preparing such articles is described.

除非另有指明,否則說明書及申請專利範圍中用以表達特徵之大小、數量以及物理特性的所有數字,皆應理解為在所有情況下以「約(about)」一詞修飾之。因此,除非另有相反指示,否則在前 述說明書以及隨附申請專利範圍中所提出的數值參數係近似值,其可依據所屬技術領域中具有通常知識者運用本文所揭示之教示所欲獲得的所欲特性而有所不同。由端點表述的數值範圍包括在該範圍之內包含的所有數字(例如,1至5包括1、1.5、2、2.75、3、3.80、4、及5)以及該範圍內的任何範圍。 Unless otherwise specified, all numbers used to express the size, number and physical characteristics of features in the specification and patent application should be understood as modified by the word "about" in all cases. Therefore, unless otherwise indicated otherwise The numerical parameters proposed in the description and the accompanying patent application are approximate values, which can be different according to the desired characteristics of those skilled in the art using the teachings disclosed herein. The numerical range expressed by the endpoint includes all numbers included in the range (for example, 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within the range.

如本說明書以及隨附申請專利範圍中所使用,單數形「一(a/an)」以及「該(the)」涵蓋具有複數個係指物的實施例,除非內文明確另有所指。舉例而言,提及「一層(a layer)」時涵蓋具有一層、兩層或更多層之實施例。如本說明書以及隨附之申請專利範圍中所使用,除非內文明確另有所指,否則用語「或(or)」一般係以包括「及/或(and/or)」之含義使用。 As used in this specification and the scope of the accompanying patent applications, the singular forms "a" and "the" cover embodiments with plural referents unless the context clearly indicates otherwise. For example, reference to "a layer" covers embodiments with one, two, or more layers. As used in this specification and the accompanying patent application, unless the context clearly indicates otherwise, the term "or (or)" is generally used to include "and/or (and/or)".

如本文中所使用,用語「相鄰(adjacent)」係指緊鄰另一層的兩個層。相鄰之層可係彼此直接接觸,或有中介層。介於相鄰之層間沒有空的空間。 As used herein, the term "adjacent" refers to two layers next to another layer. Adjacent layers may be in direct contact with each other, or have an intervening layer. There is no empty space between adjacent floors.

可固化油墨組成物係「實質上不含溶劑(substantially solvent free)」或「不含溶劑(solvent free)」。如本文中所使用,「實質上不含溶劑」係指具有小於5wt-%、4wt-%、3wt-%、2wt-%、1wt-%及0.5wt-%的不可聚合(例如,有機)溶劑之可固化油墨組成物。溶劑濃度可藉由已知方法來決定,諸如氣相層析術(如ASTM D5403中所述)。用語「不含溶劑(solvent free)」意味著溶劑不存在於組成物中。應留意的是,無論可固化油墨組成物係實質上不含溶劑或不含溶劑,都未刻意添加溶劑。 The curable ink composition is "substantially solvent free" or "solvent free". As used herein, "substantially solvent-free" refers to non-polymerizable (eg, organic) solvents having less than 5wt-%, 4wt-%, 3wt-%, 2wt-%, 1wt-%, and 0.5wt-% The curable ink composition. The solvent concentration can be determined by known methods, such as gas chromatography (as described in ASTM D5403). The term "solvent free" means that the solvent is not present in the composition. It should be noted that no matter whether the curable ink composition is substantially solvent-free or solvent-free, no solvent is intentionally added.

一般而言,可固化油墨組成物係描述為「100%固體」。如本文中所使用,「100%固體(100% solids)」係指不含揮發性溶劑之可固化油墨組成物,使得所有沉積於表面上之質量皆保留在表面上,且沒有揮發性質量從塗層損失。 Generally speaking, the curable ink composition is described as "100% solids". As used herein, "100% solids" refers to a curable ink composition that does not contain volatile solvents, so that all the mass deposited on the surface remains on the surface, and there is no volatile mass from Coating loss.

如本文所使用,用語「聚合物(polymer)」係指為巨分子且可為均聚物或共聚物之材料。本文中所用之用語「均聚物(homopolymer)」係指為一種單體之反應產物的聚合材料。本文中所用之用語「共聚物(copolymer)」係指為至少兩種不同單體之反應產物的聚合材料。 As used herein, the term "polymer" refers to a material that is a macromolecule and can be a homopolymer or copolymer. The term "homopolymer" as used herein refers to a polymeric material that is the reaction product of a monomer. The term "copolymer" as used herein refers to a polymeric material that is the reaction product of at least two different monomers.

用語「Tg」及「玻璃轉移溫度(glass transition temperature)」可互換使用。除非另有指定,若經測量,Tg值係藉由微差掃描熱量法(Differential Scanning Calorimetry,DSC)以10℃/分的掃描速率所判定。一般而言,共聚物的Tg值非測量得到,而是使用熟知的Fox方程式計算得到,而該計算使用由單體供應商所提供的單體Tg值,如所屬技術領域中具有通常知識者所理解。 The terms "Tg" and "glass transition temperature" are used interchangeably. Unless otherwise specified, if measured, the Tg value is determined by differential scanning calorimetry (DSC) at a scan rate of 10°C/min. Generally speaking, the Tg value of the copolymer is not measured, but is calculated using the well-known Fox equation, and the calculation uses the monomer Tg value provided by the monomer supplier, as those with ordinary knowledge in the technical field understanding.

用語「室溫(room temperature)」及「環境溫度(ambient temperature)」可互換使用,且具有其習知意義,即係指20至25℃之溫度。 The terms "room temperature" and "ambient temperature" are used interchangeably and have their conventional meaning, which refers to a temperature of 20 to 25°C.

如本文中所使用,用語「有機(organic)」用來指經固化層,意指該層係製備自有機材料且不含無機材料。 As used herein, the term "organic" is used to refer to a cured layer, meaning that the layer is prepared from organic materials and contains no inorganic materials.

用語「氟聚合物(fluoropolymer)」或「氟化聚合物(fluorinated polymer)」可互換使用,且係指具有多個碳-氟鍵的基於氟 碳化合物之聚合物。氟聚合物係烴聚合物,其中氫原子(一般係許多氫原子、或甚至所有氫原子)已由氟原子置換。氟聚合物之實例係「氟彈性體(fluoroelastomer)」。氟彈性體係不含有大量結晶度的特殊用途之基於氟碳化合物的合成橡膠。 The terms "fluoropolymer" or "fluorinated polymer" are used interchangeably and refer to fluorine-based Carbon compound polymer. Fluoropolymers are hydrocarbon polymers in which hydrogen atoms (generally many hydrogen atoms, or even all hydrogen atoms) have been replaced by fluorine atoms. An example of a fluoropolymer is "fluoroelastomer". The fluoroelastomer system does not contain a large amount of crystallinity for special-purpose fluorocarbon-based synthetic rubber.

用語「(甲基)丙烯酸酯((meth)acrylate)」係指醇的單體丙烯酸酯或甲基丙烯酸酯。丙烯酸酯及甲基丙烯酸酯單體或寡聚物在本文統稱為「(甲基)丙烯酸酯((meth)acrylates)」。如本文中所使用,用語「基於(甲基)丙烯酸酯((meth)acrylate-based)」係指聚合組成物,其包含至少一種(甲基)丙烯酸酯單體並且可包含額外(甲基)丙烯酸酯或非(甲基)丙烯酸酯之可共聚合乙烯系不飽和單體。基於(甲基)丙烯酸酯之聚合物主要包含(也就是說大於50重量%)(甲基)丙烯酸酯單體。 The term "(meth)acrylate" refers to the monomeric acrylate or methacrylate of alcohol. Acrylate and methacrylate monomers or oligomers are collectively referred to herein as "(meth)acrylates". As used herein, the term "(meth)acrylate-based" refers to a polymeric composition that includes at least one (meth)acrylate monomer and may include additional (meth) Acrylate or non-(meth)acrylate copolymerizable ethylenically unsaturated monomer. The (meth)acrylate-based polymer mainly contains (that is, greater than 50% by weight) (meth)acrylate monomers.

用語「可自由基聚合(free radically polymerizable)」及「乙烯系不飽和(ethylenically unsaturated)」可互換使用,且係指含有能夠經由自由基聚合機制聚合之碳-碳雙鍵的反應性基團。 The terms "free radically polymerizable" and "ethylenically unsaturated" are used interchangeably and refer to a reactive group containing a carbon-carbon double bond that can be polymerized via a radical polymerization mechanism.

如本文所用之用語「烴基(hydrocarbon group)」係指主要地或僅僅含有碳及氫原子之任何單價基團。烷基及芳基為烴基之實例。 The term "hydrocarbon group" as used herein refers to any monovalent group that contains mainly or only carbon and hydrogen atoms. Alkyl and aryl groups are examples of hydrocarbon groups.

用語「烷基(alkyl)」係指係烷烴自由基之單價基團,該烷烴係飽和烴。烷基可係線性、支鏈、環狀、或其組合,且一般具有1至20個碳原子。在一些實施例中,烷基含有1至18、1至12、1至10、1至8、1至6、或1至4個碳原子。烷基之實例包括但不限於甲 基、乙基、正丙基、異丙基、正丁基、異丁基、三級丁基、正戊基、正己基、環己基、正庚基、正辛基、及乙基己基。 The term "alkyl" refers to a monovalent group of an alkane radical, which is a saturated hydrocarbon. The alkyl group may be linear, branched, cyclic, or a combination thereof, and generally has 1 to 20 carbon atoms. In some embodiments, the alkyl group contains 1 to 18, 1 to 12, 1 to 10, 1 to 8, 1 to 6, or 1 to 4 carbon atoms. Examples of alkyl groups include but are not limited to Group, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tertiary butyl, n-pentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, and ethylhexyl.

用語「芳基(aryl)」係指係芳族且係碳環之單價基團。芳基可具有一至五個連接至或稠合至芳族環之環。其他環結構可為芳族環、非芳族環、或其組合。芳基之實例包括但不限於苯基、聯苯基、聯三苯基、蒽基、萘基、苊基(acenaphthyl)、蒽醌基(anthraquinonyl)、菲基、蒽基、芘基、苝基、及茀基。 The term "aryl" refers to a monovalent group that is aromatic and carbocyclic. The aryl group may have one to five rings connected to or fused to the aromatic ring. The other ring structure may be an aromatic ring, a non-aromatic ring, or a combination thereof. Examples of aryl groups include, but are not limited to, phenyl, biphenyl, triphenyl, anthracenyl, naphthyl, acenaphthyl, anthraquinonyl, phenanthrenyl, anthracenyl, pyrenyl, perylene , And Fu Ji.

用語「伸烷基(alkylene)」係指係烷烴自由基之二價基團。伸烷基可為直鏈、支鏈、環狀、或其組合。伸烷基經常具有1至20個碳原子。在一些實施例中,伸烷基含有1至18、1至12、1至10、1至8、1至6、或1至4個碳原子。伸烷基之基團中心可在同一碳原子上(即,亞烷基)或在不同碳原子上。 The term "alkylene" refers to a divalent radical of an alkane radical. The alkylene group may be linear, branched, cyclic, or a combination thereof. The alkylene group often has 1 to 20 carbon atoms. In some embodiments, the alkylene group contains 1 to 18, 1 to 12, 1 to 10, 1 to 8, 1 to 6, or 1 to 4 carbon atoms. The center of the alkylene group can be on the same carbon atom (ie, alkylene) or on a different carbon atom.

用語「雜伸烷基(heteroalkylene)」係指包括由硫基、氧基、或-NR-連接之至少兩個伸烷基之二價基團,其中R係烷基。雜伸烷基可為直鏈、支鏈、環狀、經烷基取代、或其組合。一些雜伸烷基係聚氧基伸烷基,其中雜原子為氧,諸如例如-CH2CH2(OCH2CH2)nOCH2CH2-。 The term "heteroalkylene" refers to a divalent group including at least two alkylene groups connected by a thio group, an oxy group, or -NR-, wherein R is an alkyl group. The heteroalkylene group may be linear, branched, cyclic, substituted with an alkyl group, or a combination thereof. Some heteroalkylene groups are polyoxyalkylene groups in which the heteroatom is oxygen, such as, for example, —CH 2 CH 2 (OCH 2 CH 2 ) n OCH 2 CH 2 —.

如本文所使用,用語「脂環族(alicyclic)」係指兼具脂族及環狀性質之基團,其含有一或多個可係飽和或不飽和之全碳環,但不具有芳族特性,並且可經一或多個烷基所取代。 As used herein, the term "alicyclic" refers to a group having both aliphatic and cyclic properties, which contains one or more fully carbocyclic rings that may be saturated or unsaturated, but does not have aromatic Characteristics, and can be substituted by one or more alkyl groups.

除非另有指明,否則「光學透明(optically transparent)」係指在可見光譜(約400至約700nm)之至少一部分內具有高透光率 的層、膜、或物品。一般而言,光學透明層、膜、或物品具有至少90%之光透射率。 Unless otherwise specified, "optically transparent" means having a high light transmittance in at least a portion of the visible spectrum (about 400 to about 700 nm) Layers, films, or articles. Generally speaking, an optically transparent layer, film, or article has a light transmittance of at least 90%.

除非另有指明,用語「光學清透的(optically clear)」係指在可見光光譜(約400至約700nm)之至少一部分內具有高透光率的層、膜、或物品,並且其呈現低霧度。一般而言,光學清透層、膜、或物品具有至少90%、通常至少95%之可見光透光率值,且具有5%或更低、通常2%或更低之霧度值。光透射率及霧度可使用「實例」一節中所述之技術來測量。 Unless otherwise specified, the term "optically clear" refers to a layer, film, or article that has a high light transmittance in at least a portion of the visible light spectrum (about 400 to about 700 nm) and exhibits low fog degree. Generally speaking, the optical clear layer, film, or article has a visible light transmittance value of at least 90%, usually at least 95%, and a haze value of 5% or less, usually 2% or less. Light transmittance and haze can be measured using the techniques described in the "Examples" section.

本文揭示可固化組成物、使用該等可固化組成物製備之物品、及製備使用該等可固化組成物之物品的方法。本揭露之可固化組成物提供一種用於選擇性製備光學散射層的方法。光學散射意指層前向散射可見光。如上所述,光學散射層係作用以漫射可見光的層。發生可見光的漫射係由於可固化組成物在固化時於基質內形成相分離微域,且基質及相分離微域具有不同的折射率。在本揭露中,相分離微域大約等於或大於可見光之波長。由於可見光通常被表徵為具有400至700奈米之波長,相分離微域通常係至少100nm或更大,常係100至4,000nm。微域「富含氟聚合物(fluoropolymer-rich)」,意指其在(甲基)丙烯酸酯之基質內具有高濃度的氟聚合物,但不一定係完全由氟聚合物組成;或「富含(甲基)丙烯酸酯((meth)acrylate-rich)」,意指其在富含氟聚合物之基質內具有高濃度的(甲基)丙烯酸酯,但不一定係完全由(甲基)丙烯酸酯組成。具有與周圍基質不同之折射率的微域之存在意指當通過基質之可見光遇到該微域時,可見光將由於此 折射率不匹配而被折射或散射,如司乃耳定律(Snell’s Law)所述。此散射常被稱為前向散射或霧度。如上所述,前向散射係所欲的,因為其導致漫射光之光強度損失極少。 This article discloses curable compositions, articles made using these curable compositions, and methods of making articles using these curable compositions. The curable composition disclosed herein provides a method for selectively preparing an optical scattering layer. Optical scattering means that the layer forward scatters visible light. As mentioned above, the optical scattering layer acts as a layer that diffuses visible light. The diffusion system in which visible light occurs is that the curable composition forms phase-separated microdomains in the matrix during curing, and the matrix and phase-separated microdomains have different refractive indexes. In the present disclosure, the phase-separated microdomain is approximately equal to or greater than the wavelength of visible light. Since visible light is usually characterized as having a wavelength of 400 to 700 nanometers, the phase-separated microdomain is usually at least 100 nm or larger, often 100 to 4,000 nm. Microdomain "fluoropolymer-rich" means that it has a high concentration of fluoropolymer in the (meth)acrylate matrix, but it does not necessarily consist entirely of fluoropolymer; or "rich "(Meth)acrylate-rich" means that it has a high concentration of (meth)acrylate in a fluoropolymer-rich matrix, but it is not necessarily entirely composed of (meth)acrylate Acrylic composition. The presence of a microdomain with a different refractive index from the surrounding matrix means that when visible light passing through the matrix encounters the microdomain, the visible light will The refractive index is mismatched and refracted or scattered, as described in Snell’s Law. This scattering is often referred to as forward scattering or haze. As mentioned above, forward scattering is desirable because it causes very little loss of light intensity of diffuse light.

在本揭露中,提供可固化組成物,其含有氟聚合物及可固化(甲基)丙烯酸酯單體。這些可固化組成物係光學透明或甚至光學清透的,因為氟聚合物與(甲基)丙烯酸酯單體具有高混溶性。可固化組成物亦具有相對低的黏度,允許將其以各種方法(包括噴墨印刷)塗佈。可固化組成物一經固化,可固化組成物即形成具有基質及相分離微域的經固化有機層,其中基質及相分離微域具有不同的折射率,且相分離微域之至少一些者大約為或大於可見光之波長(400至700nm)。在一些實施例中,相分離微域係在100至4,000nm之範圍內。本文亦揭示用於製備具有光學散射層之物品的方法。 In the present disclosure, a curable composition is provided, which contains a fluoropolymer and a curable (meth)acrylate monomer. These curable compositions are optically transparent or even optically clear because of the high miscibility of fluoropolymers with (meth)acrylate monomers. The curable composition also has a relatively low viscosity, allowing it to be applied by various methods including inkjet printing. Once the curable composition is cured, the curable composition forms a cured organic layer having a matrix and phase-separated microdomains, wherein the matrix and phase-separated microdomains have different refractive indices, and at least some of the phase-separated microdomains are approximately Or greater than the wavelength of visible light (400 to 700nm). In some embodiments, the phase-separated microdomains are in the range of 100 to 4,000 nm. This article also discloses a method for preparing an article having an optical scattering layer.

本文揭示可固化組成物。可固化組成物包含至少一種氟聚合物、至少一種單官能(甲基)丙烯酸酯、至少一種雙官能(甲基)丙烯酸酯、及至少一種起始劑。可固化組成物在室溫至60℃的溫度下一般具有小於30厘泊之黏度。一般而言,可固化組成物不含溶劑。在許多實施例中,可固化組成物係光學透明或甚至光學清透的。這些相對低黏度之組成物的一個優點在於其係可噴墨印刷的。可噴墨印刷意指組成物能夠經噴墨印刷且並不意指組成物必須經噴墨印刷或組成物已經過噴墨印刷。以此方式,可噴墨印刷之表達係可固化組成物之組成限制,且非程序限制。可以各種方式塗佈可噴墨印刷材料。 This article discloses curable compositions. The curable composition includes at least one fluoropolymer, at least one monofunctional (meth)acrylate, at least one difunctional (meth)acrylate, and at least one initiator. The curable composition generally has a viscosity of less than 30 centipoise at room temperature to 60°C. In general, the curable composition contains no solvent. In many embodiments, the curable composition is optically transparent or even optically clear. One advantage of these relatively low viscosity compositions is that they are inkjet printable. Inkjet printable means that the composition can be inkjet printed and does not mean that the composition must be inkjet printed or the composition has been inkjet printed. In this way, the inkjet printable expression is a compositional limit of the curable composition, and is not a program limit. The inkjet printable material can be applied in various ways.

可固化組成物包括至少一種氟聚合物。氟聚合物係具有多個碳-氟鍵的基於氟碳化合物之聚合物。其特徵在於對溶劑、酸、及鹼之高抗性。氟聚合物係烴聚合物,其中氫原子(一般係許多氫原子、或甚至所有氫原子)已由氟原子置換。 The curable composition includes at least one fluoropolymer. Fluoropolymers are fluorocarbon-based polymers with multiple carbon-fluorine bonds. It is characterized by high resistance to solvents, acids, and alkalis. Fluoropolymers are hydrocarbon polymers in which hydrogen atoms (generally many hydrogen atoms, or even all hydrogen atoms) have been replaced by fluorine atoms.

氟聚合物共享氟碳化合物的性質,其等不像烴會易受凡得瓦力的影響。因此,與氟碳化合物類似,氟聚合物因為碳-氟鍵的強度而非常穩定,碳-氟鍵係有機化學中最強的之一。其強度係氟的負電性透過在碳及氟原子上之部分電荷賦予部分離子特性之結果,其透過有利的共價交互作用縮短並強化鍵結。此外,多個碳-氟鍵增加在相同的孿位(geminal)碳上之其他鄰近的碳-氟鍵之強度及穩定性,因為碳具有更高的正部分電荷。再者,多個碳-氟鍵亦從誘發效應強化「骨架(skeletal)」碳-碳鍵。因此,飽和氟碳化合物比其對應的烴對應物及實際上任何其他有機化合物具有更佳的化學及熱穩定性。其通常不與大多數有機溶劑(例如,乙醇、丙酮、乙酸乙酯、及氯仿)混溶,但可與一些烴(例如,在一些情況下為己烷)混溶。其具有一般小於1.45之低折射率。 Fluoropolymers share the properties of fluorocarbons, and unlike hydrocarbons, they are susceptible to van der Waals forces. Therefore, similar to fluorocarbon compounds, fluoropolymers are very stable due to the strength of carbon-fluorine bonds, one of the strongest in organic chemistry of carbon-fluorine bonds. Its strength is the result of the electronegative nature of fluorine, which imparts partial ionic properties through the partial charge on the carbon and fluorine atoms, which shortens and strengthens the bond through favorable covalent interactions. In addition, multiple carbon-fluorine bonds increase the strength and stability of other adjacent carbon-fluorine bonds on the same geminal carbon because the carbon has a higher positive partial charge. Furthermore, multiple carbon-fluorine bonds also strengthen the "skeletal" carbon-carbon bond from the induced effect. Therefore, saturated fluorocarbon compounds have better chemical and thermal stability than their corresponding hydrocarbon counterparts and virtually any other organic compounds. It is generally not miscible with most organic solvents (eg, ethanol, acetone, ethyl acetate, and chloroform), but is miscible with some hydrocarbons (eg, hexane in some cases). It has a low refractive index generally less than 1.45.

本揭露之可固化組成物包含至少一種氟聚合物,基於100重量%的總可固化組成物,該至少一種氟聚合物佔1至20重量%。合適的氟聚合物之實例係包含60至70%氟含量的非晶形氟聚合物。氟含量意指可取代之氫原子的60至70%已被氟基置換。一種特別合適的氟聚合物類別係氟彈性體。氟彈性體係非晶形且不含有大量結晶度的特殊用途之基於氟碳化合物的合成橡膠。其具有廣泛的化學抗性及優 異性能,特別是在不同介質中的高溫應用。氟彈性體係按照ASTM D1418及ISO 1629命名而分類為FKM。這類彈性體係包含六氟丙烯(HFP)及二氟亞乙烯(VDF或VF2)之共聚物、四氟乙烯(TFE)、二氟亞乙烯(VDF)、及六氟丙烯(HFP)之三聚物、以及含有特用化學品(specialty)之全氟甲基乙烯基醚(PMVE)的家族。特別合適的氟彈性體係二氟亞乙烯(VDF)及六氟丙烯(HFP)之共聚物,諸如可以FC 2145、FC 2178、及FC 2211商購自3M Company,St.Paul,MN的材料。 The curable composition of the present disclosure includes at least one fluoropolymer, based on 100% by weight of the total curable composition, the at least one fluoropolymer accounts for 1 to 20% by weight. Examples of suitable fluoropolymers are amorphous fluoropolymers containing 60 to 70% fluorine content. The fluorine content means that 60 to 70% of the replaceable hydrogen atoms have been replaced by fluorine groups. A particularly suitable class of fluoropolymers are fluoroelastomers. Fluoroelastic systems are amorphous and do not contain a large amount of crystallinity. They are special-purpose fluorocarbon-based synthetic rubbers. It has a wide range of chemical resistance and excellent Different performance, especially in high temperature applications in different media. Fluoroelastic systems are classified as FKM according to ASTM D1418 and ISO 1629 designations. This type of elastic system includes the copolymerization of hexafluoropropylene (HFP) and difluoroethylene (VDF or VF2), tetrafluoroethylene (TFE), difluoroethylene (VDF), and hexafluoropropylene (HFP). Products, and a family of perfluoromethyl vinyl ethers (PMVE) containing specialty chemicals. Particularly suitable copolymers of fluoroelastomer systems difluoroethylene (VDF) and hexafluoropropylene (HFP), such as materials commercially available from 3M Company, St. Paul, MN, FC 2145, FC 2178, and FC 2211.

如上所述,氟聚合物通常與有機溶劑及流體具有低混溶性。在本揭露中,已觀察到,在可固化組成物中,氟聚合物與含有環狀部分之(甲基)丙烯酸酯單體具有高混溶性。事實上,在許多實施例中,可固化組成物係光學清透的。可使用的其他氟聚合物係描述於Jing等人(US 2006/0147177 A1)中。 As mentioned above, fluoropolymers generally have low miscibility with organic solvents and fluids. In the present disclosure, it has been observed that in the curable composition, the fluoropolymer has high miscibility with the (meth)acrylate monomer containing a cyclic portion. In fact, in many embodiments, the curable composition is optically clear. Other fluoropolymer systems that can be used are described in Jing et al. (US 2006/0147177 A1).

氟聚合物之一個所欲特徵係其具有與(甲基)丙烯酸酯基質不同的折射率,該(甲基)丙烯酸酯基質係藉由下文所述之(甲基)丙烯酸酯單體的聚合而形成。氟聚合物一般具有在1.40至1.41之範圍內的折射率。此折射率不同於一般在1.48至1.50之範圍內的(甲基)丙烯酸酯基質之折射率。 A desirable feature of fluoropolymer is that it has a different refractive index from the (meth)acrylate matrix, which is obtained by the polymerization of (meth)acrylate monomers described below form. Fluoropolymers generally have a refractive index in the range of 1.40 to 1.41. This refractive index is different from the refractive index of the (meth)acrylate matrix generally in the range of 1.48 to 1.50.

可固化組成物亦包括至少一種單官能(甲基)丙烯酸酯。廣泛範圍的單官能(甲基)丙烯酸酯係合適的。在一些實施例中,單官能(甲基)丙烯酸酯包含單官能甲基丙烯酸酯。在一些實施例中,甲基丙烯酸酯較丙烯酸酯更為所欲的,因為甲基丙烯酸酯聚合較緩慢,從而允許更受控的反應速度,且因此對所得膜之漫射性質具有更多控制。 實例包括但不限於丙烯醯胺類,諸如丙烯醯胺、甲基丙烯醯胺、N-甲基丙烯醯胺、N-乙基丙烯醯胺、N-羥乙基丙烯醯胺、二丙酮丙烯醯胺、N,N-二甲基丙烯醯胺、N,N-二乙基丙烯醯胺、N-乙基-N-胺乙基丙烯醯胺、N-乙基-N-羥乙基丙烯醯胺、N,N-二羥乙基丙烯醯胺、三級丁基丙烯醯胺、N,N-二甲基胺乙基丙烯醯胺、及N-辛基丙烯醯胺。合適的單官能(甲基)丙烯酸酯之實例包括脂環族甲基丙烯酸酯。脂環族化合物係兼具脂族及環狀的有機化合物。其等含有一或多個可係飽和或不飽和之全碳環,但不具有芳族特性。脂環族化合物可具有一或多個附接的脂族側鏈。在一些實施例中,脂環族化合物可包括一或多個雜原子。單環環烷烴及環烯烴包括環戊烷、環戊烯、環己烷、環己烯、環庚烷、環庚烯、環辛烷、環辛烯等。雙環烷烴及烯烴包括降莰烷、降莰烯、及降莰二烯(norbornadiene)。合適的脂環族(甲基)丙烯酸酯之實例包括3,3,5-三甲基環己基丙烯酸酯及甲基丙烯酸酯、1-金剛烷基丙烯酸酯及甲基丙烯酸酯、3,5-二甲基金剛烷基丙烯酸酯及甲基丙烯酸酯、以及異莰基丙烯酸酯及甲基丙烯酸酯。雜原子官能性脂環族(甲基)丙烯酸酯之實例包括丙烯酸四氫呋喃甲酯及甲基丙烯酸四氫呋喃甲酯。單官能(甲基)丙烯酸酯可以廣泛範圍的量存在。在一些實施例中,基於可固化組成物之可固化組分的總重量,單官能(甲基)丙烯酸酯包含60至95重量份。 The curable composition also includes at least one monofunctional (meth)acrylate. A wide range of monofunctional (meth)acrylates are suitable. In some embodiments, the monofunctional (meth)acrylate comprises monofunctional methacrylate. In some embodiments, methacrylate is more desirable than acrylate, because methacrylate polymerizes more slowly, allowing a more controlled reaction rate, and thus has more control over the diffusion properties of the resulting film . Examples include but are not limited to acrylamides, such as acrylamide, methacrylamide, N-methacrylamide, N-ethylacrylamide, N-hydroxyethylacrylamide, diacetone acrylamide Amine, N,N-dimethylacrylamide, N,N-diethylacrylamide, N-ethyl-N-amine ethylacrylamide, N-ethyl-N-hydroxyethylacrylamide Amine, N,N-dihydroxyethyl acrylamide, tertiary butyl acrylamide, N,N-dimethylamine ethyl acrylamide, and N-octyl acrylamide. Examples of suitable monofunctional (meth)acrylates include cycloaliphatic methacrylates. The alicyclic compound is an organic compound having both aliphatic and cyclic properties. They contain one or more full carbon rings that can be saturated or unsaturated, but do not have aromatic characteristics. The alicyclic compound may have one or more attached aliphatic side chains. In some embodiments, alicyclic compounds may include one or more heteroatoms. Monocyclic cycloalkanes and cycloolefins include cyclopentane, cyclopentene, cyclohexane, cyclohexene, cycloheptane, cycloheptene, cyclooctane, cyclooctene, and the like. Bicycloalkanes and alkenes include norbornane, norbornene, and norbornadiene. Examples of suitable alicyclic (meth)acrylates include 3,3,5-trimethylcyclohexyl acrylate and methacrylate, 1-adamantyl acrylate and methacrylate, 3,5- Dimethyladamantyl acrylate and methacrylate, and isobornyl acrylate and methacrylate. Examples of heteroatom-functional cycloaliphatic (meth)acrylates include methyl tetrahydrofuran acrylate and methyl tetrahydrofuran methacrylate. The monofunctional (meth)acrylate can be present in a wide range of amounts. In some embodiments, the monofunctional (meth)acrylate contains 60 to 95 parts by weight based on the total weight of the curable components of the curable composition.

亦可能使用含有呈乙烯基形式之不飽和性的單體。這些在所屬技術領域中係熟知的,以進行化學反應並交聯成(甲基)丙烯酸酯基質。含乙烯單體(其亦包括環狀部分)之較佳實例包括n-乙烯基 吡咯啶酮及n-乙烯基己內醯胺。基於可固化組成物之可固化組分的總重量,含乙烯單體之合適範圍包括1至20重量份。 It is also possible to use monomers containing unsaturation in the form of vinyl groups. These are well known in the art to perform chemical reactions and crosslink into (meth)acrylate matrices. Preferred examples of vinyl-containing monomers (which also include cyclic moieties) include n-vinyl Pyrrolidone and n-vinylcaprolactam. A suitable range of the vinyl-containing monomer includes 1 to 20 parts by weight based on the total weight of the curable components of the curable composition.

可固化組成物亦包括至少一種多官能(甲基)丙烯酸酯。在一些實施例中,多官能(甲基)丙烯酸酯包含雙官能(甲基)丙烯酸酯。在一些實施例中,雙官能(甲基)丙烯酸酯包含雙官能甲基丙烯酸酯。再次,正如單官能(甲基)丙烯酸酯,雙官能甲基丙烯酸酯可係特別合適的,因為彼等聚合較對應的丙烯酸酯緩慢,從而允許對聚合速率具有更多控制。合適的雙官能(甲基)丙烯酸酯之實例包括通式I之脂族(甲基)丙烯酸酯: The curable composition also includes at least one multifunctional (meth)acrylate. In some embodiments, the multifunctional (meth)acrylate comprises a bifunctional (meth)acrylate. In some embodiments, the bifunctional (meth)acrylate comprises bifunctional methacrylate. Again, as with monofunctional (meth)acrylates, bifunctional methacrylates can be particularly suitable because they polymerize more slowly than the corresponding acrylates, allowing more control over the polymerization rate. Examples of suitable bifunctional (meth)acrylates include aliphatic (meth)acrylates of general formula I:

H2C=CR2-(CO)-O-A-O-(CO)-R2C=CH2 式I其中R2係氫或甲基,(CO)係羰基C=O,且A係包含伸烷基或雜伸烷基的二價基團。伸烷基之實例包括具有4至20個碳原子者,且可包括環狀基團。雜伸烷基之實例包括聚氧化乙烯基、聚氧化丙烯基、及類似者。有用的多官能(甲基)丙烯酸酯之實例包括但不限於1,6-己二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、羥基三甲基乙酸新戊二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、雙酚A二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、聚(乙二醇)二(甲基)丙烯酸酯、聚丁二烯二(甲基)丙烯酸酯、聚胺甲酸酯二(甲基)丙烯酸酯、甘油三(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、參(2-羥乙基)異氰脲酸酯三 丙烯酸酯、新戊四醇三(甲基)丙烯酸酯及新戊四醇四(甲基)丙烯酸酯、二三羥甲基丙烷四(甲基)丙烯酸酯、二新戊四醇五(甲基)丙烯酸酯、二新戊四醇六(甲基)丙烯酸酯、以及乙氧基化及丙氧基化版本、及其混合物。 H 2 C=CR2-(CO)-OAO-(CO)-R2C=CH 2 Formula I where R2 is hydrogen or methyl, (CO) is carbonyl C=O, and A contains alkylene or heteroalkylene Divalent group. Examples of the alkylene group include those having 4 to 20 carbon atoms, and may include cyclic groups. Examples of heteroalkylene groups include polyoxyethylene groups, polyoxypropylene groups, and the like. Examples of useful polyfunctional (meth)acrylates include, but are not limited to, 1,6-hexanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, propylene glycol di(meth)acrylate Base) acrylate, ethylene glycol di(meth)acrylate, hydroxytrimethylacetate neopentyl glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, bisphenol A di( Methacrylate, tricyclodecane dimethanol di(meth)acrylate, poly(ethylene glycol) di(meth)acrylate, polybutadiene di(meth)acrylate, polycarbamic acid Ester di(meth)acrylate, glycerol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, ginseng (2-hydroxyethyl) isocyanurate triacrylate, neopentyl Tetraol tri(meth)acrylate, neopentyl tetraol (meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, di Neopentaerythritol hexa(meth)acrylate, as well as ethoxylated and propoxylated versions, and mixtures thereof.

多官能(甲基)丙烯酸酯或交聯劑可以廣泛範圍的量存在。在一些實施例中,基於可固化組成物之可固化組分的總重量,多官能(甲基)丙烯酸酯佔1至20重量份。交聯劑或多種交聯劑的量及特性可有變化,但一般交聯劑的總量係以至少5重量%的量存在。重量%是指可固化油墨組成物之全部可固化組分的重量%。 The multifunctional (meth)acrylate or crosslinking agent can be present in a wide range of amounts. In some embodiments, the multifunctional (meth)acrylate accounts for 1 to 20 parts by weight based on the total weight of the curable components of the curable composition. The amount and characteristics of the cross-linking agent or cross-linking agents may vary, but generally the total amount of cross-linking agent is present in an amount of at least 5% by weight. The wt% refers to the wt% of all curable components of the curable ink composition.

可固化組成物亦包含至少一種起始劑。一般而言,起始劑係光起始劑,意指起始劑係藉由光(一般係紫外(ultraviolet,UV)光)來活化。光起始劑對於(甲基)丙烯酸酯聚合技術領域中具有通常知識者而言係充分瞭解的。 The curable composition also contains at least one initiator. In general, the initiator is a photo-initiator, which means that the initiator is activated by light (generally ultraviolet (UV) light). The photoinitiator is well understood by those having ordinary knowledge in the technical field of (meth)acrylate polymerization.

可用的光起始劑包括已知為可用於自由基光固化多官能(甲基)丙烯酸酯者。例示性光起始劑包括安息香及其衍生物,諸如α-甲基安息香;α-苯基安息香;α-烯丙基安息香;α苄基安息香;安息香醚,諸如二苯乙二酮二甲基縮酮(例如,來自IGM Resins USA Inc.,St.Charles,IL的「OMNIRAD BDK」)、安息香甲基醚、安息香乙基醚、安息香正丁基醚;苯乙酮及其衍生物,諸如2-羥基-2-甲基-1-苯基-1-丙酮(例如可以商標名稱OMNIRAD 1173購自IGM Resins USA Inc.,St.Charles,IL)及1-羥基環己基苯基酮(例如可以商標名稱OMNIRAD 184購自IGM Resins USA Inc.,St.Charles,II);2-甲基 -1-[4-(甲硫基)苯基]-2-(4-嗎啉基)-1-丙酮(例如可以商標名稱OMNIRAD 907購自IGM Resins USA Inc.,St.Charles,IL);2-苄基-2-(二甲基胺基)-1-[4-(4-嗎啉基)苯基]-1-丁酮(例如可以商標名稱OMNIRAD 369購自IGM Resins USA Inc.,St.Charles,IL);及氧化膦衍生物,諸如乙基-2,4,6-三甲基苯甲醯基苯基亞膦酸酯(例如可以商標名稱TPO-L購自IGM Resins USA Inc.,St.Charles,IL)及雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦(例如可以商標名稱OMNIRAD 819購自IGM Resins USA Inc.,St.Charles,IL)。 Useful photoinitiators include those known to be useful for free radical photocuring of multifunctional (meth)acrylates. Exemplary photoinitiators include benzoin and its derivatives, such as α-methyl benzoin; α-phenyl benzoin; α-allyl benzoin; α-benzyl benzoin; benzoin ethers, such as benzophenone dimethyl Ketals (for example, "OMNIRAD BDK" from IGM Resins USA Inc., St. Charles, IL), benzoin methyl ether, benzoin ethyl ether, benzoin n-butyl ether; acetophenone and its derivatives, such as 2 -Hydroxy-2-methyl-1-phenyl-1-acetone (e.g. available from IGM Resins USA Inc., St. Charles, IL under the trade name OMNIRAD 1173) and 1-hydroxycyclohexyl phenyl ketone (e.g. a trademark) The name OMNIRAD 184 was purchased from IGM Resins USA Inc., St. Charles, II); 2-methyl -1-[4-(methylthio)phenyl]-2-(4-morpholinyl)-1-acetone (for example, it can be purchased from IGM Resins USA Inc., St. Charles, IL under the trade name OMNIRAD 907); 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone (for example, it can be purchased from IGM Resins USA Inc. under the trade name OMNIRAD 369 St. Charles, IL); and phosphine oxide derivatives, such as ethyl-2,4,6-trimethylbenzylphenylphosphinate (for example, available from IGM Resins USA Inc under the trade name TPO-L ., St. Charles, IL) and bis(2,4,6-trimethylbenzyl)-phenylphosphine oxide (e.g. available from IGM Resins USA Inc., St. Charles, IL under the trade name OMNIRAD 819 ).

其他可用的光起始劑包括例如新戊偶姻乙基醚(pivaloin ethyl ether)、大茴香偶姻乙基醚(anisoin ethyl ether)、蒽醌類(例如蒽醌、2-乙基蒽醌、1-氯蒽醌、1,4-二甲基蒽醌、1-甲氧基蒽醌、或苯并蒽醌(benzanthraquinone))、鹵甲基三

Figure 108129812-A0202-12-0022-26
類、二苯基酮及其衍生物、錪鎓鹽類及鋶鹽類、鈦錯合物(諸如雙(η-2,4-環戊二烯-1-基)-雙[2,6-二氟-3-(1H-吡咯-1-基)苯基]鈦,例如可以商標名稱CGI 784DC購自BASF,Florham Park,NJ);鹵甲基硝基苯類(例如4-溴甲基硝基苯)、及光起始劑的組合,其中一個組分係單-或雙-醯基膦氧化物(例如可以商標名稱IRGACURE 1700、IRGACURE 1800、及IRGACURE 1850購自BASF,Florham Park,NJ、以及以商標名稱OMNIRAD 4265購自IGM Resins USA Inc.,St.Charles,IL)。 Other useful photoinitiators include, for example, pivaloin ethyl ether, anisoin ethyl ether, anthraquinones (e.g. anthraquinone, 2-ethylanthraquinone, 1-chloroanthraquinone, 1,4-dimethylanthraquinone, 1-methoxyanthraquinone, or benzanthraquinone (benzanthraquinone), halomethyl tri
Figure 108129812-A0202-12-0022-26
, Diphenyl ketone and its derivatives, phosphonium salts and osmium salts, titanium complexes (such as bis(η-2,4-cyclopentadien-1-yl)-bis[2,6- Difluoro-3-(1H-pyrrol-1-yl)phenyl] titanium, available for example under the trade name CGI 784DC from BASF, Florham Park, NJ); halomethylnitrobenzenes (eg 4-bromomethylnitrate Benzene), and a combination of photoinitiators, one of which is a mono- or bis-acylphosphine oxide (for example, under the trade names IRGACURE 1700, IRGACURE 1800, and IRGACURE 1850 from BASF, Florham Park, NJ, And purchased from IGM Resins USA Inc., St. Charles, IL under the trade name OMNIRAD 4265).

通常,相對於100重量份的總反應性組分,光起始劑之用量係0.01至5重量份,更一般地係0.1至0.5重量份。 Generally, the photoinitiator is used in an amount of 0.01 to 5 parts by weight, more generally 0.1 to 0.5 parts by weight, relative to 100 parts by weight of the total reactive components.

可固化組成物可包括額外可選的添加劑。可選的添加劑可係反應性或非反應性的。較高的少數相與多數相之間的折射率差異(△n)會增加膜的霧度及散射力。這將能夠使用較少的氟聚合物,以達到與具有較小(△n)之較大量氟聚合物相同的光學效果。較少的氟聚合物會使得油墨配方的黏度較低,其亦將有利於噴墨性能。金屬氧化物奈米粒子將尤其可用於增加聚(甲基)丙烯酸酯基質相之折射率。 The curable composition may include additional optional additives. Optional additives can be reactive or non-reactive. The higher refractive index difference (△n) between the minority and majority phases will increase the haze and scattering power of the film. This will enable the use of less fluoropolymer to achieve the same optical effect as a larger amount of fluoropolymer with a smaller (Δn). Less fluoropolymer will make the viscosity of the ink formulation lower, which will also benefit inkjet performance. Metal oxide nanoparticles will be particularly useful for increasing the refractive index of the poly(meth)acrylate matrix phase.

廣泛範圍的金屬氧化物奈米粒子係合適的,但如上所述,由於所欲的是提升可固化油墨組成物之折射率,故具有高折射率之金屬氧化物奈米粒子係所欲的。合適的金屬氧化物奈米粒子之實例包括鈦、鋁、鉿、鋅、錫、鈰、釔、銦、銻、及鋯之金屬氧化物、以及混合金屬氧化物,諸如例如氧化銦錫。在此背景下,高折射率係指2.0或更高之折射率。更為所欲的金屬氧化物奈米粒子中係鈦、鋁、及鋯之金屬氧化物奈米粒子。因其高折射率而特別合適的係常被稱為二氧化鈦奈米粒子的氧化鈦之奈米粒子。在許多情況下,使用單一類型的金屬氧化物奈米粒子,但亦可使用金屬氧化物奈米粒子之混合物。 A wide range of metal oxide nanoparticles are suitable, but as described above, since it is desired to increase the refractive index of the curable ink composition, metal oxide nanoparticles having a high refractive index are desirable. Examples of suitable metal oxide nanoparticles include metal oxides of titanium, aluminum, hafnium, zinc, tin, cerium, yttrium, indium, antimony, and zirconium, and mixed metal oxides, such as, for example, indium tin oxide. In this context, high refractive index refers to a refractive index of 2.0 or higher. More desirable metal oxide nanoparticles are metal oxide nanoparticles of titanium, aluminum, and zirconium. Nanoparticles of titanium oxide, often referred to as titanium dioxide nanoparticles, are particularly suitable because of their high refractive index. In many cases, a single type of metal oxide nanoparticles is used, but a mixture of metal oxide nanoparticles can also be used.

如前所述,此類粒子之大小經選擇以避免顯著的可見光散射。經表面處理之金屬氧化物奈米粒子可係(例如,未經締合的)一次粒徑或締合粒徑大於1nm、5nm、或10nm之粒子。一次或締合粒徑通常小於100nm、75nm、或50nm。一般而言,一次或締合粒徑小於40nm、30nm、或20nm。所欲的是奈米粒子係未經締合的,且隨時間保持未經締合。其等之測量可基於穿透式電子顯微鏡 (transmission electron microscopy,TEM)或動態光散射(dynamic light scattering,DLS)。 As mentioned earlier, the size of such particles is selected to avoid significant visible light scattering. The surface-treated metal oxide nanoparticles may be (eg, unassociated) particles with a primary particle size or an associated particle size greater than 1 nm, 5 nm, or 10 nm. The primary or associated particle size is usually less than 100 nm, 75 nm, or 50 nm. Generally speaking, the primary or associated particle size is less than 40 nm, 30 nm, or 20 nm. The desire is that the nanoparticles are unassociated and remain unassociated over time. The equivalent measurement can be based on a transmission electron microscope (transmission electron microscopy, TEM) or dynamic light scattering (dynamic light scattering, DLS).

氧化鋯及二氧化鈦奈米粒子可具有5至50nm、或5至15nm、或8nm至12nm之粒徑。合適的氧化鋯(二氧化鋯之奈米粒子)可以商標名稱「Nalco OOSSOO8」購自Nalco Chemical Co.、及以商標名稱「Buhler zirconia Z-WO sol」購自Buhler AG Uzwil,Switzerland。二氧化鈦奈米粒子(二氧化鈦之奈米粒子)係特別合適的。含有銳鈦礦及板鈦礦晶體結構之混合物的二氧化鈦奈米粒子可以「NTB-1」商購自Showa Denko Corp.,Japan。 The zirconia and titania nanoparticles may have a particle size of 5 to 50 nm, or 5 to 15 nm, or 8 nm to 12 nm. Suitable zirconia (zirconium dioxide nanoparticles) is available from Nalco Chemical Co. under the trade name "Nalco OOSSOO8" and from Buhler AG Uzwil, Switzerland under the trade name "Buhler zirconia Z-WO sol". Nanoparticles of titanium dioxide (nanoparticles of titanium dioxide) are particularly suitable. Titanium dioxide nanoparticles containing a mixture of anatase and brookite crystal structures are commercially available as "NTB-1" from Showa Denko Corp., Japan.

奈米粒子較佳地係經表面處理以改善與有機基質材料之相容性,且使奈米粒子於可固化油墨組成物中保持非締合、非黏聚、或其組合。用於產生經表面處理之奈米粒子的表面處理係包含至少兩種矽烷官能表面處理劑之矽烷表面處理劑。 Nanoparticles are preferably surface treated to improve compatibility with organic matrix materials, and to keep the nanoparticles non-associative, non-cohesive, or combinations thereof in the curable ink composition. The surface treatment for producing surface-treated nanoparticles is a silane surface treatment agent containing at least two silane-functional surface treatment agents.

另一種特別合適之可選的添加劑係助黏劑。助黏劑係用作為添加劑或底漆以促進塗層、油墨、或黏著劑對所關注基材之黏著性。助黏劑通常對基材及所施加的塗層、油墨、或黏著劑具有親和力。合適的助黏劑係矽烷官能化合物、鈦酸鹽、及鋯酸鹽。合適的鈦酸鹽和鋯酸鹽的例子包括丁氧化鈦或丁氧化鋯。一般而言,如果有使用,助黏劑包含矽烷官能化合物。有時矽烷官能助黏劑稱為偶合劑,因為其等在化合物之各端具有不同的官能性,因而可發揮偶合不同表面(諸如無機表面及有機表面)的作用。廣泛各式矽烷助黏劑皆是合適的,例如來自Momentive Performance Materials之(甲基)丙烯酸酯官 能烷氧基矽烷SILQUEST A-174。利用這類型的助黏劑,烷氧基矽烷官能性會與無機表面交互作用,且(甲基)丙烯酸酯官能性會與可固化油墨組成物共聚合。合適的矽烷偶合劑之其他實例包括十八基三甲氧基矽烷、異辛基三甲氧基矽烷、十六基三甲氧基矽烷、己基三甲氧基矽烷、甲基三甲氧基矽烷、六甲基二矽氮烷、六甲基二矽氧烷、胺基丙基三甲氧基矽烷、3-巰基丙基三甲氧基矽烷、環氧丙氧基丙基三甲氧基矽烷、3-丙烯醯氧基丙基三甲氧基矽烷、及類似者。 Another particularly suitable optional additive is an adhesion promoter. Adhesion promoters are used as additives or primers to promote the adhesion of coatings, inks, or adhesives to the substrate of interest. Adhesion promoters usually have an affinity for the substrate and the applied coating, ink, or adhesive. Suitable adhesion promoters are silane-functional compounds, titanates, and zirconates. Examples of suitable titanates and zirconates include titanium butyrate or zirconium butyrate. In general, if used, adhesion promoters contain silane-functional compounds. Sometimes silane-functional adhesion promoters are called coupling agents, because they have different functionalities at each end of the compound, so they can play the role of coupling different surfaces (such as inorganic surfaces and organic surfaces). A wide range of silane adhesion promoters are suitable, such as (meth)acrylate from Momentive Performance Materials Can alkoxy silane SILQUEST A-174. With this type of adhesion promoter, alkoxysilane functionality will interact with the inorganic surface, and (meth)acrylate functionality will copolymerize with the curable ink composition. Other examples of suitable silane coupling agents include octadecyltrimethoxysilane, isooctyltrimethoxysilane, hexadecyltrimethoxysilane, hexyltrimethoxysilane, methyltrimethoxysilane, hexamethyldimethoxysilane Silazane, hexamethyldisilazane, aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, 3-propenyloxypropylene Trimethoxysilane, and the like.

可用的添加劑可包含所屬技術領域中已知的含有官能基之聚合物,諸如環氧基、烯丙氧基、(甲基)丙烯酸酯基、(甲基)丙烯醯胺基、環氧化物、環硫化物、乙烯基、羥基、氰基酯、乙醯氧基、硫醇、矽醇、羧酸、胺基、酚、醛、烷基鹵化物、桂皮酸酯、疊氮、氮丙啶、烯烴、胺甲酸酯、醯亞胺、醯胺、炔烴、乙烯系不飽和基團、乙烯基醚基團、及其任何衍生物及任何組合。替代地,聚合物添加劑可係非反應性的,諸如可使用聚(甲基丙烯酸甲酯)、聚(乙烯醇縮丁醛)、聚(丙烯酸)、聚(乙烯醇)、及其他者。這些聚合物亦可包括共聚物,也就是說,聚合物在聚合期間係由多於一種類型之單體單元製成。共聚物可含有不同架構,諸如線性、星形、接枝、隨機、或嵌段共聚物。 Useful additives may include polymers containing functional groups known in the art, such as epoxy groups, allyloxy groups, (meth)acrylate groups, (meth)acrylamide groups, epoxides, Episulfide, vinyl, hydroxyl, cyanoester, acetoxy, thiol, silanol, carboxylic acid, amine, phenol, aldehyde, alkyl halide, cinnamic acid ester, azide, aziridine, Olefin, urethane, amide imine, amide, alkyne, ethylenically unsaturated group, vinyl ether group, and any derivatives and any combination thereof. Alternatively, the polymer additive may be non-reactive, such as poly(methyl methacrylate), poly(vinyl butyral), poly(acrylic acid), poly(vinyl alcohol), and others may be used. These polymers may also include copolymers, that is, the polymer is made from more than one type of monomer unit during polymerization. Copolymers can contain different architectures, such as linear, star, graft, random, or block copolymers.

其他可選的添加劑包括熱穩定劑、紫外光穩定劑、自由基清除劑、鏈轉移劑、光敏劑、及其組合。合適的市售紫外光穩定劑之實例包括二苯基酮型紫外線吸收劑,其可以商標名稱「UVINOL 400」購自BASF Corp.,Parsippany,NJ;及以商標名稱「TINUVIN 900」及「TINUVIN 1130」購自BASF,Tarrytown,NY。相對於可聚 合前驅物的整個重量,在可聚合前驅物中紫外光穩定劑之適合濃度的實例範圍從大約0.1wt.%至大約10wt.%,特別適合的總濃度範圍從大約1wt.%至大約5wt.%。 Other optional additives include heat stabilizers, ultraviolet light stabilizers, free radical scavengers, chain transfer agents, photosensitizers, and combinations thereof. Examples of suitable commercially available ultraviolet light stabilizers include diphenyl ketone type ultraviolet absorbers, which can be purchased from BASF Corp., Parsippany, NJ under the trade name "UVINOL 400"; and under the trade names "TINUVIN 900" and "TINUVIN 1130 ”Purchased from BASF, Tarrytown, NY. Relative to polymerizable The total weight of the combined precursors, examples of suitable concentrations of ultraviolet light stabilizers in the polymerizable precursor range from about 0.1wt.% to about 10wt.%, particularly suitable total concentration range from about 1wt.% to about 5wt. %.

適合的自由基清除劑的實例包括受阻胺光穩定劑(hindered amine light stabilizer,HALS)化合物、羥基胺、立體受阻酚、以及其組合。合適的市售HALS化合物之實例包括以商標名稱「TINUVIN 123」及「TINUVIN 292」自BASF販售者。在可聚合前驅物中的自由基清除劑之合適濃度的實例範圍係前驅物溶液之約0.05wt.%至約0.25wt.%。 Examples of suitable free radical scavengers include hindered amine light stabilizer (HALS) compounds, hydroxylamines, stereo hindered phenols, and combinations thereof. Examples of suitable commercially available HALS compounds include those sold by BASF under the trade names "TINUVIN 123" and "TINUVIN 292". An example range of suitable concentrations of free radical scavenger in the polymerizable precursor ranges from about 0.05 wt.% to about 0.25 wt.% of the precursor solution.

本文中亦揭示物品。物品包含基材,其具有第一主表面及第二主表面;及光學散射層,其在該基材之第一主表面上,其中該光學散射層。光學散射層散射可見光。藉由固化上述可固化組成物來製備光學散射層。以下更詳細地描述光學散射層。 Articles are also revealed in this article. The article includes a substrate having a first major surface and a second major surface; and an optical scattering layer on the first major surface of the substrate, wherein the optical scattering layer. The optical scattering layer scatters visible light. The optical scattering layer is prepared by curing the above curable composition. The optical scattering layer is described in more detail below.

廣泛範圍的基材皆適用於本揭露之物品。包括在物品中的基材可含有聚合材料、玻璃材料、陶瓷材料、含金屬材料(例如金屬或金屬氧化物)、或其組合。基材可包括多層的材料,諸如支撐層、底漆層、硬塗層、裝飾性設計、及類似者。基材可永久地或暫時地附接至黏著劑層。例如,可暫時附接離型襯墊,然後將其移除,以將黏著劑層附接至另一基材。 A wide range of substrates are suitable for the items disclosed. The substrate included in the article may contain a polymeric material, a glass material, a ceramic material, a metal-containing material (such as a metal or metal oxide), or a combination thereof. The substrate may include multiple layers of materials, such as support layers, primer layers, hard coats, decorative designs, and the like. The substrate can be permanently or temporarily attached to the adhesive layer. For example, the release liner may be temporarily attached and then removed to attach the adhesive layer to another substrate.

基材可具有各種功能,諸如例如提供可撓性、封裝、障壁、剛性、強度或支撐、反射性、抗反射性、偏振、或透射性(例如對於不同波長具有選擇性)。即,基材可係可撓的或剛性的;具有反 射性的或非反射性的;視覺上清透的、彩色但具有透射性的、具有圖形的(即具有印刷影像或標記)、或不透明的(例如非透射性的);及偏振的或非偏振的。 The substrate may have various functions, such as, for example, providing flexibility, encapsulation, barriers, rigidity, strength or support, reflectivity, anti-reflection, polarization, or transmissivity (eg, selective for different wavelengths). That is, the base material can be flexible or rigid; Radiant or non-reflective; visually clear, color but transmissive, graphical (ie with printed images or markings), or opaque (eg non-transmissive); and polarized or non-reflective Polarized.

例示性基材包括但不限於電子顯示器(諸如液晶、無機(LED)、或有機發光二極體(OLED)顯示器)之外表面、窗或鑲嵌玻璃(glazing)之外表面、光學組件(諸如反射器、偏振器、繞射光柵、鏡、或透鏡)之外表面、另一膜(諸如圖形或裝飾性膜或另一光學膜)、或類似者。 Exemplary substrates include, but are not limited to, external surfaces of electronic displays (such as liquid crystal, inorganic (LED), or organic light-emitting diode (OLED) displays), external surfaces of windows or glazing, optical components (such as reflective The outer surface of the polarizer, polarizer, diffraction grating, mirror, or lens), another film (such as a graphic or decorative film or another optical film), or the like.

聚合基材之代表性實例包括含有聚碳酸酯、聚酯(例如聚對苯二甲酸乙二酯及聚萘二甲酸乙二酯)、聚胺甲酸酯、聚(甲基)丙烯酸酯(例如聚甲基丙烯酸甲酯)、聚乙烯醇、聚烯烴(諸如聚乙烯及聚丙烯)、聚氯乙烯、聚醯亞胺、三乙酸纖維素、丙烯腈-丁二烯-苯乙烯共聚物、及類似者的聚合基材。 Representative examples of polymeric substrates include polycarbonates, polyesters (e.g. polyethylene terephthalate and polyethylene naphthalate), polyurethanes, poly(meth)acrylates (e.g. (Polymethyl methacrylate), polyvinyl alcohol, polyolefins (such as polyethylene and polypropylene), polyvinyl chloride, polyimide, cellulose triacetate, acrylonitrile-butadiene-styrene copolymer, and Similar to the polymeric substrate.

基材亦可包括無機層。無機層可由各種材料製備,包括金屬、金屬氧化物、金屬氮化物、金屬氮氧化物、金屬碳化物、金屬硼氧化物、及其組合。廣泛範圍的金屬皆適用於金屬氧化物、金屬氮化物、及金屬氮氧化物中,特別合適的金屬包括Al、Zr、Si、Zn、Sn、及Ti。一種特別合適的無機障壁層材料係氮化矽。在一些實施例中,無機層提供封裝及障壁功能,以阻止水及氧進入顯示裝置。 The substrate may also include an inorganic layer. The inorganic layer may be prepared from various materials, including metals, metal oxides, metal nitrides, metal oxynitrides, metal carbides, metal boron oxides, and combinations thereof. A wide range of metals are suitable for metal oxides, metal nitrides, and metal oxynitrides. Particularly suitable metals include Al, Zr, Si, Zn, Sn, and Ti. A particularly suitable material for the inorganic barrier layer is silicon nitride. In some embodiments, the inorganic layer provides encapsulation and barrier functions to prevent water and oxygen from entering the display device.

本揭露之物品可包括在較大的物品及裝置中。在一些實施例中,可將具有光散射塗層之基材併入顯示裝置中。 The disclosed items can be included in larger items and devices. In some embodiments, a substrate with a light-scattering coating can be incorporated into a display device.

本揭露之物品包括光學散射層。光學散射層係藉由上述可固化組成物之固化來製備。經固化之光學散射層包含具有材料之微域的基質,該材料不同於基質之材料。已發現基質及微域之組成較藉由PIPS(聚合誘發相分離)模型所預期的更為複雜。在PIPS模型中,可以預期可固化組成物(包含彼此混溶的氟聚合物及(甲基)丙烯酸酯單體,且因此係光學清透流體)一經固化會形成在交聯(甲基)丙烯酸酯基質內的氟聚合物之微域。雖然這確實在固化時發生,但所得基質及微域之組成複雜得多。 The article of the present disclosure includes an optical scattering layer. The optical scattering layer is prepared by curing the above curable composition. The cured optical scattering layer contains a matrix with microdomains of material, which is different from the material of the matrix. The composition of the matrix and microdomains has been found to be more complicated than expected by the PIPS (polymerization induced phase separation) model. In the PIPS model, it is expected that curable compositions (including fluoropolymers and (meth)acrylate monomers that are miscible with each other, and therefore optically clear fluids) will form in cross-linked (meth)acrylic acid once cured The microdomains of the fluoropolymer in the ester matrix. Although this does occur during curing, the composition of the resulting matrix and microdomains is much more complex.

光學散射層具有三種不同類型區中之至少一者。該等區之各者包含基質及相分離微域,其中基質及相分離微域具有不同的折射率,且其中微域大約為或大於可見光之波長。一般而言,可見光之波長係在400至700奈米之範圍內。通常,相分離微域的平均直徑係100至4,000奈米、或400至2,000奈米、或400至1,000奈米、或甚至400至700奈米。第一類型區係其中基本上連續的基質包含交聯(甲基)丙烯酸酯基質及相分離富含氟碳化合物之微域的區。第二類型區係其中基本上連續的基質包含交聯(甲基)丙烯酸酯基質、且相分離微域包含(甲基)丙烯酸酯材料以及氟聚合物的區。在這些實施例中,仍可將微域描述為富含氟聚合物之微域,但其包含氟聚合物之奈米域及交聯(甲基)丙烯酸酯之奈米域。第三類型區係其中基本上連續的基質包含富含氟碳化合物之域及相分離富含(甲基)丙烯酸酯之微域的區,其中富含(甲基)丙烯酸酯之微域至少包含交聯(甲基)丙烯酸酯材料,且亦可含有氟聚合物。 The optical scattering layer has at least one of three different types of regions. Each of these regions includes a matrix and phase-separated microdomains, where the matrix and phase-separated microdomains have different refractive indices, and wherein the microdomains are approximately or greater than the wavelength of visible light. Generally speaking, the wavelength of visible light is in the range of 400 to 700 nm. Generally, the average diameter of the phase-separated microdomain is 100 to 4,000 nanometers, or 400 to 2,000 nanometers, or 400 to 1,000 nanometers, or even 400 to 700 nanometers. The first type of zone is a zone in which the substantially continuous matrix contains a cross-linked (meth)acrylate matrix and phase-separated fluorocarbon-rich microdomains. The second type of zone is a zone in which a substantially continuous matrix contains a cross-linked (meth)acrylate matrix and the phase-separated microdomains contain a (meth)acrylate material and a fluoropolymer. In these embodiments, the microdomain can still be described as a fluoropolymer-rich microdomain, but it includes the fluoropolymer nanodomain and the crosslinked (meth)acrylate nanodomain. The third type is a region in which the substantially continuous matrix contains fluorocarbon-rich domains and phase-separated (meth)acrylate-rich microdomains, wherein the (meth)acrylate-rich microdomains contain at least Cross-linked (meth)acrylate materials, and may also contain fluoropolymers.

光學散射層包含上述類型區中之至少一者。在一些實施例中,光學散射層僅包含一種類型區,且整體係基本上均勻的。在其他實施例中,光學散射層包含多於一種類型區。 The optical scattering layer includes at least one of the aforementioned types of regions. In some embodiments, the optical scattering layer includes only one type of region, and the entire system is substantially uniform. In other embodiments, the optical scattering layer contains more than one type of region.

在一些實施例中,光學散射層包含經固化之交聯(甲基)丙烯酸酯基質,其具有富含氟聚合物之微域。在一些實施例中,富含氟聚合物之微域基本上包含所有氟聚合物(第1類型區)。在其他實施例中,富含氟聚合物之微域包含(甲基)丙烯酸酯材料以及氟聚合物(第2類型區)。在這些實施例中,富含氟聚合物之微域包含氟聚合物之奈米域及交聯(甲基)丙烯酸酯之奈米域。在一些實施例中,光學散射層可包含第1類型區及第2類型區。 In some embodiments, the optical scattering layer includes a cured cross-linked (meth)acrylate matrix with microdomains rich in fluoropolymer. In some embodiments, the fluoropolymer-rich microdomains contain substantially all fluoropolymer (type 1 zone). In other embodiments, the fluoropolymer-rich microdomains include (meth)acrylate material and fluoropolymer (type 2 region). In these embodiments, the fluoropolymer-rich microdomains include fluoropolymer nanodomains and crosslinked (meth)acrylate nanodomains. In some embodiments, the optical scattering layer may include a type 1 region and a type 2 region.

在又其他實施例中,經固化之光散射層包含其中基本上連續的基質富含氟碳化合物、且相分離微域富含(甲基)丙烯酸酯的區(第3類型區)。一般而言,當存在第3類型區時,亦存在第1類型區、第2類型區、或第1類型區與第2類型區之組合。由於氟碳化合物係以可固化組成物的次要組分(小於50重量%)存在,因此不存在足夠的氟碳化合物以在整個經固化有機層形成連續域,而是第3類型區存在於經固化之光散射層的局部區域中。 In still other embodiments, the cured light scattering layer includes a region (type 3 region) in which the substantially continuous matrix is rich in fluorocarbon compounds and the phase-separated microdomains are rich in (meth)acrylate. Generally speaking, when there is a third type area, there is also a first type area, a second type area, or a combination of the first type area and the second type area. Since the fluorocarbon compound exists as a secondary component (less than 50% by weight) of the curable composition, there is not enough fluorocarbon compound to form a continuous domain throughout the cured organic layer, but the type 3 region exists in In the localized area of the cured light scattering layer.

如上文所述,並未預期在經固化之光散射層中產生三種不同類型區。PIPS模型提出一種用於自含有氟碳化合物及(甲基)丙烯酸酯材料之可固化組成物形成經固化之光散射層的相對簡單的程序。令人稍顯意外的是,氟碳化合物聚合物及(甲基)丙烯酸酯單體係可混溶的,因為氟碳化合物聚合物及(甲基)丙烯酸酯聚合物通常係彼此不 相容的。然而,由於在形成交聯聚(甲基丙烯酸酯)基質之前此兩種材料可彼此混溶,但氟聚合物不與交聯聚(甲基丙烯酸酯)基質混溶,因此推測在藉由聚合而形成(甲基)丙烯酸酯基質時,會形成氟聚合物域。希望可以控制該等域之大小,使得其係具有100至4,000奈米、或400至2,000奈米、或400至1,000奈米、或甚至400至700奈米之平均直徑的微域。如上所述,經固化之光學散射層遠比PIPS模型所提出的複雜。 As mentioned above, it is not expected to produce three different types of regions in the cured light scattering layer. The PIPS model proposes a relatively simple procedure for forming a cured light scattering layer from a curable composition containing a fluorocarbon compound and (meth)acrylate material. Surprisingly, the fluorocarbon polymer and the (meth)acrylate single system are miscible, because the fluorocarbon polymer and the (meth)acrylate polymer are usually incompatible with each other. compatible. However, since the two materials are miscible with each other before forming the cross-linked poly(methacrylate) matrix, but the fluoropolymer is not miscible with the cross-linked poly(methacrylate) matrix, it is presumed that by polymerization When the (meth)acrylate matrix is formed, fluoropolymer domains are formed. It is desirable to control the size of these domains so that they are micro-domains with an average diameter of 100 to 4,000 nanometers, or 400 to 2,000 nanometers, or 400 to 1,000 nanometers, or even 400 to 700 nanometers. As mentioned above, the cured optical scattering layer is much more complicated than that proposed by the PIPS model.

已顯示經固化之光學散射層(無論其僅含有一種類型區或含有多於一種類型區)係光學散射層。光學散射層能夠根據需要前向散射可見光,其藉由以下事實證明:當如「實例」一節中所述進行測量時,經固化之光散射層具有5%或更高的霧度值。 It has been shown that the cured optical scattering layer (whether it contains only one type area or contains more than one type area) is an optical scattering layer. The optical scattering layer can forward-scatter visible light as needed, as evidenced by the fact that the cured light-scattering layer has a haze value of 5% or higher when measured as described in the “Examples” section.

使用結合原子力顯微鏡(Atomic Force Microscopy,AFM)與紅外光譜術(IR)之相對新的技術來偵測經固化之光學散射層的複雜性,即層內至多三種不同類型區的存在。此新技術縮寫為AFM-IR。AFM-IR(基於光熱誘發之共振效應(photothermal induced resonance effect,PTIR)的技術)係用於奈米尺度表徵的原子力顯微鏡(AFM)及紅外光譜術(IR)之組合。同時提供次50nm特徵之形貌及化學資訊。AFM-IR技術使用尖銳、塗佈金之AFM針尖,以偵測由吸收IR輻射之短(10奈秒)脈衝所造成的樣本之快速熱膨脹。當單色雷射輻射接近激發樣本中分子振動的IR頻率時,光經吸收並誘發與AFM針尖接觸之樣本的快速熱膨脹。此導致AFM針尖之同時撓曲,並造成懸臂在熱消散時在其自然撓曲共振頻率處「衰蕩(ring down)」。懸臂的這些 動作係藉由從懸臂頂部反射出來的第二雷射光束「偵測」,且此信號係使用位置靈敏光偵測器來測量。懸臂中所誘發之共振振幅與由樣本吸收之IR輻射量成正比。因此,當在IR指紋區上調諧IR雷射時,藉由測量衰蕩振幅而產生AFM-IR光譜。此外,IR雷射可經微調成固定波數,使得當AFM針尖掃描樣本時,可測量隨位置變動之IR吸收。因此,產生化學組成映射,其顯示整個樣本之化學組分的分布。 A relatively new technique combining Atomic Force Microscopy (AFM) and Infrared Spectroscopy (IR) is used to detect the complexity of the cured optical scattering layer, ie the presence of up to three different types of regions within the layer. This new technology is abbreviated as AFM-IR. AFM-IR (technology based on photothermal induced resonance effect (PTIR)) is a combination of atomic force microscopy (AFM) and infrared spectroscopy (IR) for nanoscale characterization. At the same time, it provides the morphology and chemical information of the second 50nm features. AFM-IR technology uses a sharp, gold-coated AFM tip to detect rapid thermal expansion of the sample caused by short (10 nanosecond) pulses absorbing IR radiation. When monochromatic laser radiation approaches the IR frequency that excites molecular vibrations in the sample, the light is absorbed and induces rapid thermal expansion of the sample in contact with the AFM needle tip. This causes the tip of the AFM to flex at the same time, and causes the cantilever to "ring down" at its natural flex resonance frequency when the heat dissipates. Cantilever The motion is "detected" by the second laser beam reflected from the top of the cantilever, and this signal is measured using a position sensitive light detector. The resonance amplitude induced in the cantilever is proportional to the amount of IR radiation absorbed by the sample. Therefore, when tuning the IR laser on the IR fingerprint area, the AFM-IR spectrum is generated by measuring the ringing amplitude. In addition, the IR laser can be fine-tuned to a fixed wavenumber, so that when the AFM tip scans the sample, it can measure the IR absorption that varies with the position. Therefore, a chemical composition map is generated, which shows the distribution of the chemical composition of the entire sample.

本文亦揭示製備物品之方法。在一些實施例中,該方法包含提供基材,其具有第一主表面及第二主表面;提供可固化組成物;在該基材之該第一主表面之至少一部分上形成一層可固化組成物;及固化該層可固化組成物以形成經固化之交聯光學散射層。可固化組成物已描述於上並包含至少一種氟聚合物、至少一種單官能(甲基)丙烯酸酯、至少一種雙官能(甲基)丙烯酸酯、及至少一種起始劑,其中可固化組成物在室溫至60℃的溫度下一般具有小於30厘泊之黏度。經固化之交聯層包含(甲基)丙烯酸酯基質及富含氟聚合物之微域,其中微域大約為或大於可見光之波長。通常,微域係在100至4,000奈米之範圍內,在一些實施例中,在400至2,000奈米、400至1,000奈米、或甚至400至700奈米之範圍內。 This article also discloses a method of preparing articles. In some embodiments, the method includes providing a substrate having a first major surface and a second major surface; providing a curable composition; forming a layer of curable composition on at least a portion of the first major surface of the substrate And curing the layer curable composition to form a cured cross-linked optical scattering layer. The curable composition has been described above and contains at least one fluoropolymer, at least one monofunctional (meth)acrylate, at least one difunctional (meth)acrylate, and at least one initiator, wherein the curable composition It generally has a viscosity of less than 30 centipoise at room temperature to 60°C. The cured cross-linked layer includes a (meth)acrylate matrix and fluoropolymer-rich microdomains, where the microdomains are approximately or greater than the wavelength of visible light. Typically, the microdomain is in the range of 100 to 4,000 nanometers, in some embodiments, in the range of 400 to 2,000 nanometers, 400 to 1,000 nanometers, or even 400 to 700 nanometers.

可固化組成物之層的形成可以廣泛各式的塗佈、印刷、或其他圖案化技術進行。印刷技術係特別合適的,因為這些技術為層的形成提供優異的控制。合適的印刷技術之實例包括網版印刷、噴墨印刷、柔版印刷、凹版印刷、平版印刷、針頭點膠(needle dispensing)、及區塊式塗佈(patch coating)。在一些實施例中,可固化組成物係藉由 噴墨印刷來塗佈。一般而言,所形成之層具有1至76微米之厚度,在一些實施例中,具有1至51微米、或甚至1至25微米之厚度。 The formation of the layer of the curable composition can be performed by a wide variety of coating, printing, or other patterning techniques. The printing technique is particularly suitable because these techniques provide excellent control of the layer formation. Examples of suitable printing techniques include screen printing, inkjet printing, flexographic printing, gravure printing, lithographic printing, needle dispensing, and patch coating. In some embodiments, the curable composition is Inkjet printing to apply. In general, the formed layer has a thickness of 1 to 76 microns, and in some embodiments, a thickness of 1 to 51 microns, or even 1 to 25 microns.

可固化組成物之固化係藉由使存在於可固化組成物中之起始劑活化而起始自由基聚合來進行。一般而言,起始劑係通常藉由UV或可見光活化的光起始劑。UV光可透過各種不同來源(諸如燈)來供應。用於固化的輻射源可係「內部的(internal)」(例如,如果將塗層塗佈在顯示器上,則顯示器子像素本身可用於固化)或外部的(雷射、一排UV黑光燈泡、UV-LED燈等)。若使用內部光源,則可將紅色、綠色、或藍色光敏劑連同標準自由基起始劑添加至樹脂中。在顯示器上的一系列紅色、綠色、或藍色閃光可用以固化各子像素之上的油墨,假定可見光光敏劑之吸光度未重疊。各顏色閃光可具有對應於各子像素散射層所需之固化速度的不同強度。可使用全面式UV整面曝光(blanket UV flood exposure),以完成不在子像素正上方之塗層區域的固化。 The curing of the curable composition is performed by activating the initiator present in the curable composition to initiate free radical polymerization. In general, initiators are photoinitiators that are usually activated by UV or visible light. UV light can be supplied through a variety of different sources, such as lamps. The radiation source used for curing can be "internal" (for example, if the coating is applied to a display, the display sub-pixel itself can be used for curing) or external (laser, a row of UV black light bulbs, UV-LED lights, etc.). If an internal light source is used, red, green, or blue photosensitizers can be added to the resin along with standard free radical initiators. A series of red, green, or blue flashes on the display can be used to cure the ink above each sub-pixel, assuming that the absorbance of the visible light photosensitizer does not overlap. The flashes of each color may have different intensities corresponding to the required curing speed of each sub-pixel scattering layer. A blanket UV flood exposure can be used to complete the curing of the coating area not directly above the sub-pixel.

若使用外部光源,則可使用光柵掃描、直寫雷射、或用光罩之UV源整面曝光技術。如果使用雷射進行圖案化,雷射可根據需要具有不同的波長或強度,以產生散射層。可使用雷射以一角度照射膜,以在膜內產生散射粒子錐體,而非散射粒子柱體。在UV源整面曝光中,可使用三個不同的光罩,其中各光罩含有分別對應於紅色、綠色、或藍色子像素之位置的開口窗。也許用於OLED顯示器中三種不同發射染料之蒸發的相同精細金屬遮罩亦可用作相分離油墨的光罩。然後,根據需要可將不同的輻射強度用於每次曝光。 If you use an external light source, you can use raster scanning, direct writing laser, or UV light source full-face exposure technology with a photomask. If a laser is used for patterning, the laser can have different wavelengths or intensities as needed to create a scattering layer. A laser can be used to illuminate the film at an angle to create a cone of scattering particles within the film instead of a cylinder of scattering particles. In the whole-surface exposure of the UV source, three different masks can be used, where each mask contains opening windows corresponding to the positions of the red, green, or blue sub-pixels, respectively. Perhaps the same fine metal mask used for the evaporation of three different emitting dyes in OLED displays can also be used as a mask for phase-separated inks. Then, different radiation intensities can be used for each exposure as needed.

固化可在層之選擇性子區段中進行,或者可以固化整個層。在一些實施例中,固化包含對層之選定區域進行圖案式(pattern-wise)固化,使得該層包含一系列的微域。此圖案式固化可藉由選擇性輻照、或透過遮罩之使用來進行。選擇性照射可以各種方式進行。例如,在不同點處的不同強度之輻照可給出可變輻照,或者可在選擇區域中用雷射或類似光源進行用輻照源之選擇區域的輻照,隨後用常規光源固化表面區域之其餘部分。可將一層可固化組成物配方以單一膜用於裝置的整個區域上方,或者例如,三種不同噴墨列印頭可將三種不同的油墨配方沉積於各R、G、及B子像素上方。可微調三種配方之各者以校正各發射波長之缺陷。 The curing can be performed in selective subsections of the layer, or the entire layer can be cured. In some embodiments, curing includes pattern-wise curing selected areas of the layer such that the layer contains a series of microdomains. This pattern curing can be performed by selective irradiation or through the use of a mask. Selective irradiation can be performed in various ways. For example, irradiation of different intensities at different points can give variable irradiation, or laser or similar light sources can be used to irradiate a selected area of the irradiation source in a selected area, followed by curing the surface with a conventional light source The rest of the area. A layer of curable composition formulation can be used as a single film over the entire area of the device, or for example, three different inkjet print heads can deposit three different ink formulations over each R, G, and B sub-pixel. Each of the three formulas can be fine-tuned to correct the defects of each emission wavelength.

在可固化組成物沉積之後,可使用第一(低)輻射強度來形成散射域並將其鎖入交聯基質。可使用第二輻射脈衝(具有較高強度)來完成剩餘丙烯酸酯單體的固化。較高的強度可能亦會導致相分離之氟聚合物域,但這些域極小而會被視為光學不顯著的。亦可考慮此類域大小之多峰或梯度分布的其他用途,諸如用於某種程度之光轉向(light steering)或光學聚焦。 After the curable composition is deposited, the first (low) radiation intensity can be used to form the scattering domain and lock it into the cross-linked matrix. The second radiation pulse (with higher intensity) can be used to complete the curing of the remaining acrylate monomer. Higher intensity may also lead to phase-separated fluoropolymer domains, but these domains are extremely small and are considered optically insignificant. Other uses of such domain-sized multi-peaks or gradient distributions can also be considered, such as for some degree of light steering or optical focusing.

聚合一經起始,即形成光學散射層。如上所述,可在層中形成三種不同類型區。光學散射層包括基質及相分離微域。微域可富含氟聚合物或富含(甲基)丙烯酸酯。在不受理論之束縛下,由於認為微域之形成係受限於漫射,交聯聚(甲基)丙烯酸酯基質形成的速度可直接影響微域之大小。由於聚(甲基)丙烯酸酯基質之固化速度可直接受到改變固化輻射之強度的影響,吾人預期能夠使用不同光強度來 圖案化不同的散射水平。例如,可使用低光強度以在層之一個區域中產生大的氟聚合物或丙烯酸酯微域,且可使用高光強度在層之另一區域中產生小的氟聚合物或(甲基)丙烯酸酯微域。在層區域之各者中,不同的域大小將導致霧度及光學散射的變化。根據米氏理論(Mie theory),假設粒子小於光的波長,則散射光的強度與兩相之間的折射率差異的平方及分散相半徑的六次方成比例。影響固化速度的其他方式包括改變用於樹脂混合物中之(甲基)丙烯酸酯單體的官能性、黏度、及分子量。以此方式,當選擇性地進行固化時,即可固化組成物層之不同區之輻射曝光不同,則微域的形成同樣不同。換言之,選擇性固化可產生在層上不同點處具有不同微域之光漫射層。對於基於粒子的光漫射層或對於美國專利第9,238,762號(Schaffer等人)中所述之光漫射層,此選擇性是不可能的,因為這些光漫射層在層的所有點處是相同的。 Once polymerization starts, an optical scattering layer is formed. As mentioned above, three different types of regions can be formed in the layer. The optical scattering layer includes a matrix and phase-separated microdomains. The microdomains can be rich in fluoropolymers or rich in (meth)acrylates. Without being bound by theory, since it is believed that the formation of microdomains is limited by diffusion, the speed of formation of the cross-linked poly(meth)acrylate matrix can directly affect the size of the microdomains. Since the curing speed of the poly(meth)acrylate matrix can be directly affected by changing the intensity of the curing radiation, we expect to be able to use different light intensities to Pattern different levels of scattering. For example, low light intensity can be used to produce large fluoropolymer or acrylate microdomains in one area of the layer, and high light intensity can be used to produce small fluoropolymer or (meth)acrylic acid in another area of the layer Ester microdomains. In each of the layer regions, different domain sizes will cause changes in haze and optical scattering. According to Mie theory, assuming that particles are smaller than the wavelength of light, the intensity of scattered light is proportional to the square of the difference in refractive index between the two phases and the sixth power of the radius of the dispersed phase. Other ways to affect the curing speed include changing the functionality, viscosity, and molecular weight of the (meth)acrylate monomer used in the resin mixture. In this way, when selective curing is performed, the radiation exposure of different regions of the cured composition layer is different, and the formation of microdomains is also different. In other words, selective curing can produce light diffusing layers with different microdomains at different points on the layer. For particle-based light diffusing layers or for the light diffusing layers described in US Patent No. 9,238,762 (Schaffer et al.), this selectivity is not possible because these light diffusing layers are at all points of the layer identical.

可藉由圖1A至圖1I進一步理解本揭露之方法。圖1A至圖1I繪示可用以產生本揭露之光學散射層的廣泛範圍的固化方法。應注意的是,圖意圖係說明性的且未依比例。 The method of the present disclosure can be further understood through FIGS. 1A to 1I. 1A to 1I illustrate a wide range of curing methods that can be used to produce the optical scattering layer of the present disclosure. It should be noted that the figures are intended to be illustrative and not to scale.

圖1A顯示可固化層,其包含基材層10A,其中可固化組成物20A係設置於該基材層上。使可固化組成物暴露於光化輻射30A。光化輻射一般係UV光,且其使可固化組成物20A固化,以形成具有相分離微域40A的經固化基質50AFIG. 1A shows a curable layer including a substrate layer 10A , wherein the curable composition 20A is disposed on the substrate layer. The curable composition was exposed to actinic radiation 30A . Actinic radiation is generally UV light, and it cures the curable composition 20A to form a cured matrix 50A with phase-separated microdomains 40A .

圖1B顯示可固化層,其包含基材層10B,其中可固化組成物20B係設置於該基材層上。使可固化組成物暴露於不同強度 (顯示為I1、I2、及I3)的光化輻射31B、32B、33B。光化輻射31B具有強度I1,光化輻射32B具有強度I2,且光化輻射33B具有強度I3,其中光化輻射之相對強度係:I1<I2<I3。光化輻射一般係UV光,且其使可固化組成物20B固化,以形成具有相分離微域41B、42B、43B的經固化基質50B。相分離微域41B、42B、43B的大小係顯示為不同的。雖然相分離微域41B、42B、43B係不同的,但應注意的是,大小係代表性的且未依比例。 FIG. 1B shows a curable layer including a substrate layer 10B , wherein the curable composition 20B is disposed on the substrate layer. The curable composition is exposed to actinic radiation 31B, 32B, and 33B of different intensities (shown as I 1 , I 2 , and I 3 ). Actinic radiation 31B has an intensity I 1 , actinic radiation 32B has an intensity I 2 , and actinic radiation 33B has an intensity I 3 , where the relative intensity of actinic radiation is: I 1 <I 2 <I 3 . Actinic radiation is generally UV light, and it cures the curable composition 20B to form a cured matrix 50B having phase separated microdomains 41B, 42B, and 43B . The sizes of the phase-separated microdomains 41B, 42B, and 43B are shown to be different. Although the phase-separated microdomains 41B, 42B, and 43B are different, it should be noted that the size is representative and not proportional.

圖1C顯示可固化層,其包含基材層10C,其中可固化組成物20C係設置於該基材層上。使可固化組成物暴露於不同強度的光化輻射31C、32C、33C。光化輻射31C的強度低於光化輻射32C的強度,且光化輻射33C的強度低於光化輻射32C的強度,並可與光化輻射31C的強度相同或可不同。光化輻射一般係UV光,且其使可固化組成物20C固化,以形成具有相分離微域41C、42C、43C的經固化基質50C。相分離微域41C、42C、43C的大小係顯示為不同的。雖然相分離微域41C、42C、43C係不同的,但應注意的是,大小係代表性的且未依比例。 FIG. 1C shows a curable layer including a substrate layer 10C , wherein the curable composition 20C is disposed on the substrate layer. The curable composition is exposed to actinic radiation 31C, 32C, and 33C of different intensities. The intensity of actinic radiation 31C is lower than the intensity of actinic radiation 32C , and the intensity of actinic radiation 33C is lower than that of actinic radiation 32C , and may be the same as or may be different from the intensity of actinic radiation 31C . Actinic radiation is generally UV light, and it cures the curable composition 20C to form a cured matrix 50C with phase separated microdomains 41C, 42C, and 43C . The sizes of the phase-separated microdomains 41C, 42C, and 43C are shown to be different. Although the phase-separated microdomains 41C, 42C, and 43C are different, it should be noted that the size is representative and not proportional.

圖1D顯示可固化層,其包含基材層10D,其中包含可固化組成物子層21D、22D、23D之可固化組成物層係設置於該基材層上。在此實施例中,可固化組成物子層可代表例如不同黏度之可固化組成物。為了清楚起見而顯示三個子層,但應理解的是,廣泛範圍的子層係可能的。子層可藉由在整個膜主體中接收的光強度梯度來產生。例如,含有吸收紫外線輻射之分子(諸如紫外線吸收劑)的膜 在膜之頂部上相較於膜之底部,可接收較高的光強度。使可固化組成物暴露於光化輻射30D。光化輻射一般係UV光,且其使可固化組成物子層21D、22D、23D固化,以形成具有相分離微域41D、42D、43D的經固化基質50D。相分離微域41D、42D、43D的大小係顯示為不同的。雖然相分離微域41D、42D、43D係不同的,但應注意的是,大小係代表性的且未依比例。 FIG. 1D shows a curable layer including a base material layer 10D , wherein the curable composition layers including the curable composition sublayers 21D, 22D, and 23D are disposed on the base material layer. In this embodiment, the curable composition sublayer may represent, for example, curable compositions with different viscosities. Three sub-layers are shown for clarity, but it should be understood that a wide range of sub-layer systems are possible. Sublayers can be generated by the intensity gradient of light received throughout the film body. For example, a film containing molecules that absorb ultraviolet radiation (such as an ultraviolet absorber) can receive a higher light intensity on the top of the film than on the bottom of the film. The curable composition is exposed to actinic radiation 30D . Actinic radiation is generally UV light, and it cures the curable composition sublayers 21D, 22D, and 23D to form a cured matrix 50D with phase-separated microdomains 41D, 42D, and 43D . The sizes of the phase-separated microdomains 41D, 42D, and 43D are shown to be different. Although the phase-separated microdomains 41D, 42D, and 43D are different, it should be noted that the size is representative and not to scale.

圖1E顯示可固化層,其包含基材層10E,其中包含可固化組成物子層21E22E之可固化組成物層係設置於該基材層上。在此實施例中,可固化組成物子層係不同的,因為表面子層22E係暴露於氧氣氛,因為可固化物品不存在於惰性氣氛(諸如氮)中。使可固化組成物暴露於光化輻射30E。光化輻射一般係UV光,且其使可固化組成物子層21E22E固化,以形成具有相分離微域41E42E的經固化基質50E。預期在表面子層22E中之氧的存在會阻礙此子層中的聚合速率。相分離微域41E42E的大小係顯示為不同的。雖然相分離微域41E42E係不同的,但應注意的是,大小係代表性的且未依比例。 FIG. 1E shows a curable layer including a base material layer 10E , and a curable composition layer including curable composition sublayers 21E and 22E is disposed on the base material layer. In this embodiment, the curable composition sublayer is different because the surface sublayer 22E is exposed to an oxygen atmosphere because the curable article is not present in an inert atmosphere (such as nitrogen). The curable composition is exposed to actinic radiation 30E . Actinic radiation is generally UV light, and it cures the curable composition sublayers 21E and 22E to form a cured matrix 50E with phase-separated microdomains 41E and 42E . It is expected that the presence of oxygen in the surface sublayer 22E will hinder the polymerization rate in this sublayer. The size of the phase-separated microdomains 41E and 42E are shown to be different. Although the phase-separated microdomains 41E and 42E are different, it should be noted that the size is representative and not to scale.

圖1F顯示可固化層,其包含基材層10F,其中可固化組成物20F係設置於該基材層上。可固化組成物20F的一部分被遮罩60F阻擋。使可固化組成物暴露於光化輻射30F。由於遮罩60F,僅一部分的可固化組成物20F接收光化輻射30F。光化輻射一般係UV光,且其使可固化組成物20F固化,以形成經固化基質50F,其中該固化基質在接收輻射30F的區域中具有相分離微域40F。移除遮罩60F, 並使組成物暴露於光化輻射30F’。光化輻射30F’可與光化輻射30F相同或不同。光化輻射一般係UV光,且其使未固化的可固化組成物固化,以形成經固化基質51F,其中該固化基質在接收輻射30F’的區域中具有相分離微域41F42FFIG. 1F shows a curable layer including a substrate layer 10F , wherein the curable composition 20F is disposed on the substrate layer. A part of the curable composition 20F is blocked by the mask 60F . The curable composition was exposed to actinic radiation 30F . Due to the mask 60F , only a part of the curable composition 20F receives actinic radiation 30F . Actinic radiation is generally UV light, and it cures the curable composition 20F to form a cured matrix 50F , where the cured matrix has phase-separated microdomains 40F in the area that receives radiation 30F . Remove the mask 60F and expose the composition to actinic radiation 30F' . Actinic radiation 30F' may be the same as or different from actinic radiation 30F . Actinic radiation is generally UV light, and it cures the uncured curable composition to form a cured matrix 51F , where the cured matrix has phase-separated microdomains 41F and 42F in the area that receives radiation 30F' .

圖1G顯示可固化層,其包含基材層10G,其中可固化組成物20G係設置於該基材層上。使可固化組成物20G之一部分暴露於光化輻射70G。光化輻射70G可係例如雷射。因為光源70G狹窄,僅一部分的可固化組成物20G接收光化輻射。光化輻射使可固化組成物20G固化,以形成經固化基質50G,其中該固化基質在接收輻射70G的區域中具有相分離微域40G。使組成物暴露於光化輻射30G。光化輻射30G一般係UV光的整面曝光,且其使未固化的可固化組成物固化,以形成經固化基質51G,其中該固化基質在接收輻射30G的區域中具有相分離微域41G42GFIG. 1G shows a curable layer including a base material layer 10G , wherein the curable composition 20G is disposed on the base material layer. A part of the curable composition 20G is exposed to actinic radiation 70G . The actinic radiation 70G may be a laser, for example. Because the light source 70G is narrow, only a part of the curable composition 20G receives actinic radiation. Actinic radiation cures the curable composition 20G to form a cured matrix 50G , where the cured matrix has phase-separated microdomains 40G in the region that receives radiation 70G . Expose the composition to actinic radiation 30G . Actinic radiation 30G is generally exposed to the entire surface of UV light, and it cures the uncured curable composition to form a cured matrix 51G , where the cured matrix has phase-separated microdomains 41G and 30G in the region that receives radiation 30G . 42G .

圖1H顯示可固化層,其包含基材層10H,其中可固化組成物20H係設置於該基材層上。可固化組成物20H含有奈米粒子80H。使可固化組成物20H暴露於光化輻射30H。光化輻射一般係UV光,且其使可固化組成物20H固化,以形成具有相分離微域40H的經固化基質50H。該等奈米粒子之表面可經工程化以作為成核相分離之晶種,或其可用於其他功能,諸如修改折射率。 FIG. 1H shows a curable layer including a substrate layer 10H , wherein the curable composition 20H is disposed on the substrate layer. The curable composition 20H contains nanoparticles 80H . The curable composition 20H is exposed to actinic radiation 30H . Actinic radiation is generally UV light, and it cures the curable composition 20H to form a cured matrix 50H with phase-separated microdomains 40H . The surface of these nanoparticles can be engineered as seed crystals for nucleation phase separation, or it can be used for other functions, such as modifying the refractive index.

圖1I顯示可固化層,其包含基材層10I,其中可固化組成物20I係設置於該基材層上。工具膜90I在一表面中具有微結構化圖案。在步驟100中,使工具膜90I接觸可固化組成物20I以形成層壓構 造。使可固化組成物暴露於光化輻射30I。光化輻射一般係UV光,且其使可固化組成物20I固化,以形成具有相分離微域40I的經固化基質50I。接著,在步驟110中移除工具膜90I,以產生具有經固化基質50I及相分離微域40I的結構化經固化層。 FIG. 1I shows a curable layer, which includes a substrate layer 10I , wherein the curable composition 20I is disposed on the substrate layer. The tool film 90I has a microstructured pattern in a surface. In step 100 , the tool film 90I is brought into contact with the curable composition 20I to form a laminated structure. The curable composition is exposed to actinic radiation 30I . Actinic radiation is generally UV light, and it cures the curable composition 20I to form a cured matrix 50I with phase-separated microdomains 40I . Next, the tool film 90I is removed in step 110 to produce a structured cured layer having a cured matrix 50I and phase separated microdomains 40I .

本揭露包括下列實施例: This disclosure includes the following embodiments:

其中一些實施例係可固化組成物。實施例1包括一種可固化組成物,其包含:至少一種氟聚合物;至少一種單官能(甲基)丙烯酸酯;至少一種雙官能(甲基)丙烯酸酯;及至少一種起始劑。 Some of these embodiments are curable compositions. Example 1 includes a curable composition comprising: at least one fluoropolymer; at least one monofunctional (meth)acrylate; at least one difunctional (meth)acrylate; and at least one initiator.

實施例2係實施例1之可固化組成物,其中該可固化組成物不含溶劑,且在室溫至60℃的溫度下具有小於30厘泊之黏度。 Embodiment 2 is the curable composition of embodiment 1, wherein the curable composition does not contain a solvent and has a viscosity of less than 30 centipoise at a temperature of room temperature to 60°C.

實施例3係實施例1或2之可固化組成物,其中該至少一種單官能(甲基)丙烯酸酯包含單官能脂環族(甲基)丙烯酸酯。 Embodiment 3 is the curable composition of embodiment 1 or 2, wherein the at least one monofunctional (meth)acrylate comprises a monofunctional alicyclic (meth)acrylate.

實施例4係實施例1至3中任一者之可固化組成物,其中該至少一種單官能(甲基)丙烯酸酯包含單官能脂環族甲基丙烯酸酯。 Embodiment 4 is the curable composition of any one of embodiments 1 to 3, wherein the at least one monofunctional (meth)acrylate comprises a monofunctional alicyclic methacrylate.

實施例5係實施例1至4中任一者之可固化組成物,其中該至少一種雙官能(甲基)丙烯酸酯包含雙官能脂族(甲基)丙烯酸酯。 Embodiment 5 is the curable composition of any one of embodiments 1 to 4, wherein the at least one difunctional (meth)acrylate comprises a bifunctional aliphatic (meth)acrylate.

實施例6係實施例1至5中任一者之可固化組成物,其中該至少一種雙官能(甲基)丙烯酸酯包含雙官能脂族甲基丙烯酸酯。 Embodiment 6 is the curable composition of any one of embodiments 1 to 5, wherein the at least one difunctional (meth)acrylate comprises a bifunctional aliphatic methacrylate.

實施例7係實施例1至6中任一者之可固化組成物,其中基於該可固化組成物之該等可固化組分的總重量,該雙官能(甲基)丙烯酸酯佔1至20重量份。 Embodiment 7 is the curable composition of any one of embodiments 1 to 6, wherein the bifunctional (meth)acrylate accounts for 1 to 20 based on the total weight of the curable components of the curable composition Parts by weight.

實施例8係實施例1至7中任一者之可固化組成物,其中基於100重量%的總可固化組成物,該至少一種氟聚合物佔1至20重量%。 Embodiment 8 is the curable composition of any one of embodiments 1 to 7, wherein the at least one fluoropolymer accounts for 1 to 20% by weight based on 100% by weight of the total curable composition.

實施例9係實施例1至8中任一者之可固化組成物,其中該至少一種氟聚合物包含非晶形氟聚合物,該非晶形氟聚合物包含60至70%的氟含量。 Embodiment 9 is the curable composition of any one of embodiments 1 to 8, wherein the at least one fluoropolymer comprises an amorphous fluoropolymer, and the amorphous fluoropolymer comprises a fluorine content of 60 to 70%.

實施例10係實施例1至9中任一者之可固化組成物,其中該至少一種氟聚合物包含氟彈性體。 Embodiment 10 is the curable composition of any one of embodiments 1 to 9, wherein the at least one fluoropolymer comprises fluoroelastomer.

實施例11係實施例1至10中任一者之可固化組成物,其進一步包含至少一種可共聚乙烯基單體。 Embodiment 11 is the curable composition of any one of embodiments 1 to 10, which further comprises at least one copolymerizable vinyl monomer.

實施例12係實施例11之可固化組成物,其中該可共聚乙烯基單體包含N-乙烯基吡咯啶酮或N-乙烯基己內醯胺單體。 Embodiment 12 is the curable composition of embodiment 11, wherein the copolymerizable polyvinyl monomer comprises N-vinylpyrrolidone or N-vinylcaprolactam monomer.

實施例13係實施例1至12中任一者之可固化組成物,其進一步包含至少一種選自下列之添加劑:金屬氧化物奈米粒子、助黏劑、功能性聚合物、熱穩定劑、紫外光穩定劑、自由基清除劑、鏈轉移劑、光敏劑、及其組合。 Embodiment 13 is the curable composition of any one of embodiments 1 to 12, further comprising at least one additive selected from the group consisting of metal oxide nanoparticles, adhesion promoters, functional polymers, heat stabilizers, Ultraviolet light stabilizer, free radical scavenger, chain transfer agent, photosensitizer, and combinations thereof.

亦揭示的是物品。實施例14包括一種物品,其包含:基材,其具有第一主表面及第二主表面;及光學散射層,其在該基材之第一主表面上,其中該光學散射層係製備自可固化組成物,其中該可固化組成物包含:至少一種氟聚合物;至少一種單官能(甲基)丙烯酸酯;至少一種雙官能(甲基)丙烯酸酯;及至少一種起始劑;且其中 該光學散射層包含基質及相分離微域,其中該基質及該等相分離微域具有不同的折射率,且其中該等微域大約為或大於可見光之波長。 Also revealed are items. Embodiment 14 includes an article comprising: a substrate having a first main surface and a second main surface; and an optical scattering layer on the first main surface of the substrate, wherein the optical scattering layer is prepared from A curable composition, wherein the curable composition comprises: at least one fluoropolymer; at least one monofunctional (meth)acrylate; at least one difunctional (meth)acrylate; and at least one initiator; and wherein The optical scattering layer includes a matrix and phase-separated microdomains, wherein the matrix and the phase-separated microdomains have different refractive indices, and wherein the microdomains are approximately or greater than the wavelength of visible light.

實施例15係實施例14之物品,其中該光學散射層具有三種類型區中之至少一者,其中:該第一類型區包含(甲基)丙烯酸酯基質,該(甲基)丙烯酸酯基質具有富含氟碳化合物之相分離微域;該第二類型區包含(甲基)丙烯酸酯基質,該(甲基)丙烯酸酯基質具有富含氟碳化合物之相分離微域,其中該等富含氟碳化合物之相分離微域進一步包含富含(甲基)丙烯酸酯之奈米域;且該第三類型區包含富含氟碳化合物之基質,該富含氟碳化合物之基質具有富含(甲基)丙烯酸酯之相分離微域。 Embodiment 15 is the article of embodiment 14, wherein the optical scattering layer has at least one of three types of regions, wherein: the first type region includes a (meth)acrylate matrix, and the (meth)acrylate matrix A phase separation microdomain with a fluorocarbon-rich compound; the second type region includes a (meth)acrylate matrix with a phase separation microdomain with a fluorocarbon-rich compound, wherein the rich The fluorocarbon-containing phase-separated microdomain further includes a (meth)acrylate-rich nanodomain; and the third type region includes a fluorocarbon-rich matrix, the fluorocarbon-rich matrix has a rich Phase separation microdomains of (meth)acrylate.

實施例16係實施例15之物品,其中該光學散射層包含該三種類型區中之至少兩者。 Embodiment 16 is the article of embodiment 15, wherein the optical scattering layer includes at least two of the three types of regions.

實施例17係實施例15之物品,其中該光學散射層包含三種類型區。 Embodiment 17 is the article of embodiment 15, wherein the optical scattering layer includes three types of regions.

實施例18係實施例14至17中任一者之物品,其中該等相分離微域之至少一些者包含富含氟碳化合物之微域。 Embodiment 18 is the article of any one of embodiments 14 to 17, wherein at least some of the phase-separated microdomains include fluorocarbon-rich microdomains.

實施例19係實施例14至18中任一者之物品,其中該等相分離微域係100至4,000奈米。 Embodiment 19 is the article of any of embodiments 14 to 18, wherein the phase-separated microdomains are 100 to 4,000 nanometers.

實施例20係實施例14至18中任一者之物品,其中該等相分離微域係400至2,000奈米。 Embodiment 20 is the article of any one of embodiments 14 to 18, wherein the phase-separated microdomains are 400 to 2,000 nanometers.

實施例21係實施例14至18中任一者之物品,其中該等相分離微域係400至1,000奈米。 Embodiment 21 is the article of any one of embodiments 14 to 18, wherein the phase-separated microdomains are 400 to 1,000 nanometers.

實施例22係實施例14至18中任一者之物品,其中該等相分離微域係400至700奈米。 Embodiment 22 is the article of any of embodiments 14 to 18, wherein the phase-separated microdomains are 400 to 700 nanometers.

實施例23係實施例14至22中任一者之物品,其中包含相分離微域的該光學散射層包含具有不同濃度的相分離微域、不同大小的相分離微域、或其組合之區域。 Embodiment 23 is the article of any one of embodiments 14 to 22, wherein the optical scattering layer containing phase-separated microdomains includes regions with different concentrations of phase-separated microdomains, different-sized phase-separated microdomains, or a combination thereof .

實施例24係實施例23之物品,其中該光學散射層包含具有不同濃度的相分離微域、不同大小的相分離微域、或其組合之區域,包含穿過該層之厚度的濃度差異。 Embodiment 24 is the article of embodiment 23, wherein the optical scattering layer includes regions with different concentrations of phase-separated microdomains, different-sized phase-separated microdomains, or a combination thereof, including the concentration difference across the thickness of the layer.

實施例25係實施例23之物品,其中該光學散射層包含具有不同濃度的相分離微域、不同大小的相分離微域、或其組合之區域,包含該層之長度及寬度區域中的濃度差異。 Embodiment 25 is the article of embodiment 23, wherein the optical scattering layer includes regions with different concentrations of phase-separated microdomains, different-sized phase-separated microdomains, or a combination thereof, including the concentration in the length and width regions of the layer difference.

實施例26係實施例14至25中任一者之物品,其中該光學散射層具有1至76微米之厚度。 Embodiment 26 is the article of any of embodiments 14 to 25, wherein the optical scattering layer has a thickness of 1 to 76 microns.

實施例27係實施例14至25中任一者之物品,其中該光學散射層具有1至51微米之厚度。 Embodiment 27 is the article of any one of embodiments 14 to 25, wherein the optical scattering layer has a thickness of 1 to 51 microns.

實施例28係實施例14至25中任一者之物品,其中該光學散射層具有1至25微米之厚度。 Embodiment 28 is the article of any one of embodiments 14 to 25, wherein the optical scattering layer has a thickness of 1 to 25 microns.

實施例29係實施例14至28中任一者之物品,其中該物品包含顯示物品。 Embodiment 29 is the article of any one of embodiments 14 to 28, wherein the article includes a display article.

實施例30係實施例14至29中任一者之物品,其中該光學散射層包含結構化表面。 Embodiment 30 is the article of any of embodiments 14 to 29, wherein the optical scattering layer includes a structured surface.

實施例31係實施例30之物品,其中該結構化表面包含微結構化表面。 Embodiment 31 is the article of embodiment 30, wherein the structured surface comprises a microstructured surface.

亦揭示製備物品之方法。實施例32包括一種製備物品之方法,該方法包含:提供基材,其具有第一主表面及第二主表面;提供可固化組成物,其包含:至少一種氟聚合物;至少一種單官能(甲基)丙烯酸酯;至少一種雙官能(甲基)丙烯酸酯;及至少一種起始劑;在該基材之該第一主表面之至少一部分上形成一層可固化組成物;固化該層可固化組成物以形成經固化之光學散射層,其包含:在該基材之第一主表面上的光學散射層,其中該光學散射層包含基質及相分離微域,其中該基質及該等相分離微域具有不同的折射率,且其中該等微域大約為或大於可見光之波長。 Also disclosed are methods of making articles. Embodiment 32 includes a method of preparing an article, the method comprising: providing a substrate having a first main surface and a second main surface; providing a curable composition comprising: at least one fluoropolymer; at least one monofunctional ( Meth)acrylate; at least one bifunctional (meth)acrylate; and at least one initiator; forming a layer of curable composition on at least a portion of the first major surface of the substrate; curing the layer curable Composition to form a cured optical scattering layer, comprising: an optical scattering layer on a first major surface of the substrate, wherein the optical scattering layer includes a matrix and phase-separated microdomains, wherein the matrix and the phases are separated The micro-domains have different refractive indexes, and the micro-domains are approximately or greater than the wavelength of visible light.

實施例33係實施例32之方法,其中該可固化組成物不含溶劑,且在室溫至60℃的溫度下具有小於30厘泊之黏度。 Embodiment 33 is the method of embodiment 32, wherein the curable composition contains no solvent and has a viscosity of less than 30 centipoise at a temperature of room temperature to 60°C.

實施例34係實施例32或33之方法,其中在該基材之該第一主表面之至少一部分上形成一層可固化組成物包含印刷該可固化組成物。 Embodiment 34 is the method of embodiment 32 or 33, wherein forming a layer of curable composition on at least a portion of the first major surface of the substrate comprises printing the curable composition.

實施例35係實施例34之方法,其中印刷包含噴墨印刷。 Embodiment 35 is the method of embodiment 34, wherein printing comprises inkjet printing.

實施例36係實施例32至35中任一者之方法,其中該等相分離微域係100至4,000奈米。 Embodiment 36 is the method of any one of embodiments 32 to 35, wherein the phase-separated microdomains are 100 to 4,000 nanometers.

實施例37係實施例32至35中任一者之方法,其中該等相分離微域係400至2,000奈米。 Embodiment 37 is the method of any one of embodiments 32 to 35, wherein the phase-separated microdomains are 400 to 2,000 nm.

實施例38係實施例32至35中任一者之方法,其中該等相分離微域係400至1,000奈米。 Embodiment 38 is the method of any one of embodiments 32 to 35, wherein the phase-separated microdomains are 400 to 1,000 nanometers.

實施例39係實施例32至35中任一者之方法,其中該等相分離微域係400至700奈米。 Embodiment 39 is the method of any one of embodiments 32 to 35, wherein the phase-separated microdomains are 400 to 700 nm.

實施例40係實施例32至39中任一者之方法,其中固化包含對層之選定區域進行圖案式固化,使得該層包含一系列的相分離微域。 Embodiment 40 is the method of any one of embodiments 32 to 39, wherein curing includes pattern curing the selected regions of the layer so that the layer includes a series of phase-separated microdomains.

實施例41係實施例40之方法,其中圖案式固化包含使該層的不同區域暴露於不同強度的輻照。 Embodiment 41 is the method of embodiment 40, wherein pattern curing includes exposing different regions of the layer to different levels of radiation.

實施例42係實施例40之方法,其中圖案式固化包含在該層之一部分上方採用光罩於、及使該層暴露於輻照。 Embodiment 42 is the method of embodiment 40, wherein pattern curing includes applying a photomask over a portion of the layer and exposing the layer to radiation.

實施例43係實施例42之方法,其進一步包含移除該光罩、及使該層暴露於輻照,其中該輻射與該光罩就位時所採用的輻照不同。 Embodiment 43 is the method of embodiment 42, further comprising removing the reticle and exposing the layer to irradiation, wherein the radiation is different from the irradiation used when the reticle is in place.

實施例44係實施例40之方法,其中圖案式固化包含採用雷射以固化該層之選定區域。 Embodiment 44 is the method of embodiment 40, wherein the pattern curing includes using a laser to cure selected areas of the layer.

實施例45係實施例44之方法,其進一步包含藉由暴露於輻照來固化該層之其餘部分。 Embodiment 45 is the method of embodiment 44, further comprising curing the rest of the layer by exposure to radiation.

實施例46係實施例32至45中任一者之方法,其中該經固化之光學散射層具有1至76微米之厚度。 Embodiment 46 is the method of any one of embodiments 32 to 45, wherein the cured optical scattering layer has a thickness of 1 to 76 microns.

實施例47係實施例32至45中任一者之方法,其中該經固化之光學散射層具有1至51微米之厚度。 Embodiment 47 is the method of any one of embodiments 32 to 45, wherein the cured optical scattering layer has a thickness of 1 to 51 microns.

實施例48係實施例32至45中任一者之方法,其中該經固化之光學散射層具有1至25微米之厚度。 Embodiment 48 is the method of any one of embodiments 32 to 45, wherein the cured optical scattering layer has a thickness of 1 to 25 microns.

實例Examples

製備可固化油墨組成物。將材料施加至基材,並且如下列實例中所示評估物理、光學及機械性質。這些實例僅用於闡釋之目的,並非意圖限制隨附申請專利範圍之範疇。實例及說明書其餘部分中之所有份數、百分比、比率等皆依重量計,除非另有說明。所使用之溶劑及其他試劑係得自Sigma-Aldrich Chemical Company,St.Louis,Missouri,除非另有註明。本文中使用下列縮寫:nm=奈米;mm=毫米;cm=公分;um=微米;m=公尺;N=牛頓;mW=毫瓦;min=分鐘;K=1,000(即,15KDa=15,000道耳頓分子量);Hz=赫茲;cPs=厘泊;mol=莫耳;℃=攝氏度數;T=透射率;H=霧度;C=清晰度,avg=平均,且stdev=標準偏差。用語wt%及重量%可互換使用。 Preparation of curable ink composition. The material was applied to the substrate, and the physical, optical, and mechanical properties were evaluated as shown in the following examples. These examples are for illustrative purposes only and are not intended to limit the scope of the accompanying patent application. All parts, percentages, ratios, etc. in the examples and the rest of the description are by weight unless otherwise stated. The solvents and other reagents used were obtained from Sigma-Aldrich Chemical Company, St. Louis, Missouri, unless otherwise noted. The following abbreviations are used in this article: nm=nanometer; mm=millimeter; cm=centimeter; um=micrometer; m=meter; N=Newton; mW=milliwatt; min=minute; K=1,000 (ie, 15KDa=15,000 Dalton molecular weight); Hz=Hertz; cPs=centipoise; mol=mole; ℃=degrees Celsius; T=transmittance; H=haze; C=sharpness, avg=average, and stdev=standard deviation. The terms wt% and weight% are used interchangeably.

Figure 108129812-A0202-12-0044-1
Figure 108129812-A0202-12-0044-1

Figure 108129812-A0202-12-0045-2
Figure 108129812-A0202-12-0045-2

測試方法testing method 樣本製備 Sample preparation

使用繞線棒(型號:RDS10,RDS Specialties,Webster,NY)將用於光學測試之塗層製造於基材S1上。在使用具有整合式N2吹掃之CA-3200 UV-LED固化室(λ=365至400nm,Clearstone Technologies Inc.,Hopkins,MN)進行塗佈之後,立即執行膜之紫外線(UV)固化。 A winding bar (model: RDS10, RDS Specialties, Webster, NY) was used to manufacture the coating for optical testing on the substrate S1. Immediately after coating with a CA-3200 UV-LED curing chamber (λ=365 to 400 nm, Clearstone Technologies Inc., Hopkins, MN) with integrated N2 purge, ultraviolet (UV) curing of the film was performed.

樣本係藉由將樹脂夾在兩片經底塗的PET(S1)基材之間來製備。接著將S1/樹脂/S1堆疊置於用不同厚度的鉻圖案化的光罩(IG1)上,以在UV輻照穿過遮罩時實現跨樣本之數個離散強度水平。將另一片原玻璃(bare glass)置於S1/樹脂/S1堆疊的頂部上方,然後將整個構造夾緊以與黏合劑夾緊密接觸。將一片厚的黑色塑膠置於夾合構造的頂部上,以防止UV在固化期間從固化室頂部背向反射。透過光罩執行固化30分鐘,接著在沒有光罩的情況下以95.6mW/cm2的 UV強度進行15分鐘的整面曝光。如表4及表5中所記述,用輻射計(UV PowerPuck II,Electronic Instrumentation and Technology Inc.,Sterling,VA)測量通過光罩區域之各者的光強度。 The sample was prepared by sandwiching the resin between two pieces of base PET (S1) substrate. The S1/resin/S1 stack is then placed on a reticle (IG1) patterned with chromium of different thicknesses to achieve several discrete intensity levels across the sample when UV radiation passes through the reticle. Place another piece of bare glass over the top of the S1/Resin/S1 stack, and then clamp the entire construction in close contact with the adhesive clamp. A thick piece of black plastic is placed on top of the sandwich structure to prevent UV reflection from the top of the curing chamber during curing. Curing was performed through the photomask for 30 minutes, followed by 15-minute full-face exposure with a UV intensity of 95.6 mW/cm 2 without a photomask. As described in Table 4 and Table 5, a light meter (UV PowerPuck II, Electronic Instrumentation and Technology Inc., Sterling, VA) was used to measure the light intensity passing through each of the photomask regions.

測試方法1:透射率、霧度、清晰度、及b*測量 Test Method 1: Transmittance, haze, clarity, and b* measurement

使用霧度計(BYK Gardiner,商標名稱「BYK HAZEGARD Plus,Columbia,MD」)基於ASTM D1003-13進行透射率、霧度、清晰度之平均%、及b*的測量。結果係記錄於表5。 Using a haze meter (BYK Gardiner, brand name "BYK HAZEGARD Plus, Columbia, MD") based on ASTM D1003-13, transmittance, haze, average% of clarity, and b* were measured. The results are recorded in Table 5.

測試方法2:黏度測試 Test Method 2: Viscosity test

將17mL的各油墨配方裝入黏度計(BOHLIN VISCO 88,Malvern Instruments Ltd,Malvern,UK)上的25mm直徑雙隙同軸同心圓筒裝置(DIN 53019)中。配備於雙隙單元的熱夾套讓循環水流分別加熱至25℃及35℃。在進行各測量之前,使系統平衡30分鐘。以100Hz的間隔將剪切速率自100提升至1000Hz,並重複測量三次。採取所有數據點之平均值及標準偏差作為黏度,單位為厘泊。結果係記錄於表3。 17 mL of each ink formulation was loaded into a 25 mm diameter double gap coaxial concentric cylinder device (DIN 53019) on a viscometer (BOHLIN VISCO 88, Malvern Instruments Ltd, Malvern, UK). The thermal jacket equipped with the double-gap unit heats the circulating water flow to 25°C and 35°C, respectively. Before making each measurement, the system was allowed to equilibrate for 30 minutes. Raise the shear rate from 100 to 1000 Hz at 100 Hz intervals and repeat the measurement three times. Take the average and standard deviation of all data points as the viscosity, the unit is centipoise. The results are recorded in Table 3.

測試方法3:原子力顯微鏡測量(AFM) Test Method 3: Atomic Force Microscope Measurement (AFM)

使用Leica EM UC6切片機在室溫下將在基材S1之間的固化樹脂樣本剖面切割。使用原子力顯微鏡對相分離油墨塗層之剖面進行成像。成像係在以輕敲模式(tapping mode)操作之Bruker Dimension Icon顯微鏡(Bruker Nano Inc.,112 Robin Hill Road,Santa Barbara,CA 93117)上,在空氣中在環境條件下執行。在操作期間,使用具有鋁背側塗層的Bruker OTESPA矽懸臂針尖(標稱彈性常數=40N/m,標稱頻率=300kHz,標稱針尖半徑=8nm)。影像大小係20×20微米,具有1024×1024個數據點。在各光強度下對每個樣本的3個影像進行域大小分析。使用Nanoscope Analysis v1.7(Bruker,Santa Barbara,CA)軟體,以精確測量各次測量之域大小。平均值及標準偏差係記錄並表列於表4。 A Leica EM UC6 microtome was used to cut the cross-section of the cured resin sample between the substrates S1 at room temperature. An atomic force microscope was used to image the cross-section of the phase-separated ink coating. The imaging system is in Bruker operating in tapping mode Dimension Icon microscope (Bruker Nano Inc., 112 Robin Hill Road, Santa Barbara, CA 93117) was performed under ambient conditions in the air. During operation, a Bruker OTESPA silicon cantilever tip with an aluminum backside coating (nominal spring constant = 40 N/m, nominal frequency = 300 kHz, nominal tip radius = 8 nm) was used. The image size is 20×20 microns, with 1024×1024 data points. Perform domain size analysis on the three images of each sample at each light intensity. Use Nanoscope Analysis v1.7 (Bruker, Santa Barbara, CA) software to accurately measure the size of each measurement. The average and standard deviation are recorded and listed in Table 4.

測試方法4:原子力顯微鏡-紅外光譜術(AFM-IR) Test Method 4: Atomic Force Microscope-Infrared Spectroscopy (AFM-IR)

將樣本冷凍切片以獲得250nm之剖面載玻片,以用於AFM-IR研究。使用Leica超薄切片機EM UC7單元在-40℃下執行冷凍切片。接著將剖面切片轉移至10mm×10mm之ZnS單晶平面上以用於AFM-IR測試。 The samples were frozen and sectioned to obtain 250 nm cross-section slides for AFM-IR studies. Frozen sectioning was performed at -40°C using the Leica ultrathin microtome EM UC7 unit. Then, the cross-sectional slices were transferred to a 10 mm×10 mm ZnS single crystal plane for AFM-IR testing.

使用nanoIR2-FS平台(Bruker Anasys,Santa Barbara,CA)進行AFM-IR實驗。使用具有20nm之標稱針尖半徑的塗佈金之SiN AFM針尖(Anasys Instruments)以接觸模式檢查薄剖面切片。微調IR雷射之重複率以匹配AFM懸臂之第2接觸共振以增強敏感度。所有測量皆在環境條件下進行。 A nano-IR2-FS platform (Bruker Anasys, Santa Barbara, CA) was used for AFM-IR experiments. Thin-section slices were examined in contact mode using a gold-coated SiN AFM tip (Anasys Instruments) with a nominal tip radius of 20 nm. Fine-tune the repetition rate of the IR laser to match the second contact resonance of the AFM cantilever to enhance sensitivity. All measurements are made under ambient conditions.

膜樣本之剖面係在兩個特徵雷射頻率1730cm-1及1210cm-1處進行IR映射,其分別係甲基丙烯酸酯及氟彈性體之特徵IR吸收帶。 The cross - sections of the film samples are IR mapped at two characteristic laser frequencies of 1730 cm -1 and 1210 cm -1 , which are characteristic IR absorption bands of methacrylate and fluoroelastomer, respectively.

實例Examples 配方 formula

產生在甲基丙烯酸酯單體之各者中的純氟彈性體之儲備溶液。將氟彈性體片從較大塊切割成2×2mm之小正方形,並將其添加至在琥珀色小瓶中的純甲基丙烯酸酯單體之各者中。將小瓶置於滾筒上兩天或直到形成清透的均質溶液。從儲備溶液瓶中取出等分試樣並將其與其他組分混合。80:20 mol:mol比之單官能性單體:雙官能性單體係用於大部分實例之配方的可光固化部分。相對於氟聚合物/單體溶液之總重量添加光起始劑(PH1)及間隔珠(B1)。將溶液超音波處理30分鐘或直到形成均質摻合物。用於各實例之配方請參見表2。 Produce a stock solution of pure fluoroelastomer in each of the methacrylate monomers. The fluoroelastomer sheet was cut from a larger block into small squares of 2×2 mm, and added to each of the pure methacrylate monomers in an amber vial. Place the vial on the roller for two days or until a clear homogeneous solution is formed. Remove an aliquot from the stock solution bottle and mix it with other components. 80:20 mol:mol ratio of mono-functional monomer: bi-functional mono-system is used in the photo-curable part of the formulation of most examples. The photoinitiator (PH1) and spacer beads (B1) were added relative to the total weight of the fluoropolymer/monomer solution. The solution was sonicated for 30 minutes or until a homogeneous blend was formed. See Table 2 for the recipes used in each example.

Figure 108129812-A0202-12-0048-3
Figure 108129812-A0202-12-0048-3

Figure 108129812-A0202-12-0049-4
Figure 108129812-A0202-12-0049-4

Figure 108129812-A0202-12-0049-5
Figure 108129812-A0202-12-0049-5

Figure 108129812-A0202-12-0050-6
Figure 108129812-A0202-12-0050-6

AFM及AFM-IR影像 AFM and AFM-IR images

圖2及圖4分別顯示在實例2及實例1中產生之膜的剖面之光學顯微照片,並經由測試方法3:原子力顯微鏡分析。原子力顯微鏡IR映射清楚地顯示甲基丙烯酸酯及氟聚合物的空間分布,其證實明顯的相分離。AFM-IR技術係用於映射此剖面之30μm×30μm區域上的化學組分,同時將IR雷射的頻率分別固定在1730cm-1及1210 cm-1。在圖3B及圖3C中描繪在1730cm-1及1210cm-1處的IR映射。圖3A顯示與IR映射同時獲得的AFM形貌映射。圖3B及圖3C清楚地識別氟聚合物相與甲基丙烯酸酯相之間明顯的化學分離。圖3B中之影像基質在數據標度上顏色較淡,指示此區域在1730cm-1處的IR吸收較高,其對應於甲基丙烯酸酯相中的C=O(羰基化學部分)伸展模式。圖3C將這些微域識別為在1210cm-1處具有較高的IR吸收,其對應於氟彈性體相中的C-F伸展模式。圖3B與圖3C之間的此顏色反轉意味著基質富含甲基丙烯酸酯,而微域富含氟彈性體。此外,對富含氟彈性體之微域內部的仔細觀察顯露出甲基丙烯酸酯相的奈米域,其指示更複雜的相分離現象。為了消除形貌引發的影像假影,計算IR映射之吸收強度比。使用nanoIR2-FS設備(Bruker Anasys,Santa Barbara,CA)的內建軟體計算IR映射的吸收強度比。針對映射上之每一像素計算兩個IR雷射頻率下的吸收比。圖3D顯示1210cm-1映射與1730cm-1映射的吸收強度比。大幅提高之對比度清楚地描繪甲基丙烯酸酯及氟聚合物的相分離形態。類似地,圖5顯示實例1之形貌映射及化學映射。如兩個IR映射(圖5B及圖5C)及影像比(圖5D)中所示,球形的富含甲基丙烯酸酯之域分散在富含氟彈性體的基質中,其與圖3中之相分離形態完全相反。 2 and 4 show optical micrographs of the cross-sections of the films produced in Example 2 and Example 1, respectively, and were analyzed by Test Method 3: Atomic Force Microscope. Atomic force microscope IR mapping clearly shows the spatial distribution of methacrylate and fluoropolymer, which confirms the obvious phase separation. AFM-IR technology is used to map the chemical composition on the 30μm×30μm area of this profile, and at the same time fix the frequency of the IR laser at 1730cm -1 and 1210 cm -1 respectively . The IR mapping at 1730 cm -1 and 1210 cm -1 is depicted in FIGS. 3B and 3C. Figure 3A shows the AFM topography map obtained simultaneously with the IR map. Figures 3B and 3C clearly identify the obvious chemical separation between the fluoropolymer phase and the methacrylate phase. The image matrix in FIG. 3B has a lighter color on the data scale, indicating that this region has higher IR absorption at 1730 cm -1 , which corresponds to the C=O (carbonyl chemical moiety) stretching mode in the methacrylate phase. Figure 3C identifies these microdomains as having a higher IR absorption at 1210 cm -1 , which corresponds to the CF extension mode in the fluoroelastomer phase. This color inversion between Figure 3B and Figure 3C means that the matrix is rich in methacrylate and the microdomain is rich in fluoroelastomer. In addition, careful observation of the inside of the microdomains of the fluoroelastomer revealed the nanodomains of the methacrylate phase, which indicates a more complicated phase separation phenomenon. In order to eliminate image artifacts caused by topography, the absorption intensity ratio of the IR map is calculated. The built-in software of nanoIR2-FS equipment (Bruker Anasys, Santa Barbara, CA) was used to calculate the absorption intensity ratio of IR mapping. The absorption ratio at two IR laser frequencies is calculated for each pixel on the map. Figure 3D shows the ratio of the absorption intensity of the 1210 cm -1 map to the 1730 cm -1 map. The greatly improved contrast clearly depicts the phase separation morphology of methacrylate and fluoropolymer. Similarly, Figure 5 shows the topography map and chemical map of Example 1. As shown in the two IR maps (Figures 5B and 5C) and the image ratio (Figure 5D), the spherical methacrylate-rich domains are dispersed in the fluoroelastomer-rich matrix, which is the same as in Figure 3 The phase separation pattern is completely opposite.

10A‧‧‧基材層 10A‧‧‧Base layer

20A‧‧‧可固化組成物 20A‧‧‧curable composition

30A‧‧‧光化輻射 30A‧‧‧actinic radiation

40A‧‧‧相分離微域 40A‧‧‧phase separation microdomain

50A‧‧‧經固化基質 50A‧‧‧cured matrix

Claims (24)

一種可固化組成物,其包含: A curable composition comprising: 至少一種氟聚合物; At least one fluoropolymer; 至少一種單官能(甲基)丙烯酸酯; At least one monofunctional (meth)acrylate; 至少一種雙官能(甲基)丙烯酸酯;及 At least one bifunctional (meth)acrylate; and 至少一種起始劑。 At least one initiator. 如請求項1之可固化組成物,其中該可固化組成物不含溶劑,且在室溫至60℃的溫度下具有小於30厘泊之黏度。 The curable composition according to claim 1, wherein the curable composition does not contain a solvent and has a viscosity of less than 30 centipoise at a temperature of room temperature to 60°C. 如請求項1之可固化組成物,其中該至少一種單官能(甲基)丙烯酸酯包含單官能脂環族(甲基)丙烯酸酯。 The curable composition according to claim 1, wherein the at least one monofunctional (meth)acrylate comprises a monofunctional alicyclic (meth)acrylate. 如請求項1之可固化組成物,其中該至少一種單官能(甲基)丙烯酸酯包含單官能脂環族甲基丙烯酸酯。 The curable composition of claim 1, wherein the at least one monofunctional (meth)acrylate comprises a monofunctional alicyclic methacrylate. 如請求項1之可固化組成物,其中該至少一種雙官能(甲基)丙烯酸酯包含雙官能脂族(甲基)丙烯酸酯。 The curable composition of claim 1, wherein the at least one difunctional (meth)acrylate comprises a difunctional aliphatic (meth)acrylate. 如請求項1之可固化組成物,其中該至少一種雙官能(甲基)丙烯酸酯包含雙官能脂族甲基丙烯酸酯。 The curable composition of claim 1, wherein the at least one difunctional (meth)acrylate comprises a difunctional aliphatic methacrylate. 如請求項1之可固化組成物,其中基於該可固化組成物之可固化組分的總重量,該雙官能(甲基)丙烯酸酯佔1至20重量份。 The curable composition according to claim 1, wherein the bifunctional (meth)acrylate accounts for 1 to 20 parts by weight based on the total weight of the curable components of the curable composition. 如請求項1之可固化組成物,其中基於100重量%的總可固化組成物,該至少一種氟聚合物佔1至20重量%。 The curable composition according to claim 1, wherein the at least one fluoropolymer accounts for 1 to 20% by weight based on 100% by weight of the total curable composition. 如請求項1之可固化組成物,其中該至少一種氟聚合物包含非晶形氟聚合物,該非晶形氟聚合物包含60至70%的氟含量。 The curable composition according to claim 1, wherein the at least one fluoropolymer contains an amorphous fluoropolymer, and the amorphous fluoropolymer contains a fluorine content of 60 to 70%. 如請求項1之可固化組成物,其中該至少一種氟聚合物包含氟 彈性體。 The curable composition of claim 1, wherein the at least one fluoropolymer contains fluorine Elastomer. 如請求項1之可固化組成物,其進一步包含至少一種可共聚乙烯基單體。 The curable composition according to claim 1, further comprising at least one copolymerizable vinyl monomer. 如請求項11之可固化組成物,其中該可共聚乙烯基單體包含N-乙烯基吡咯啶酮或N-乙烯基己內醯胺單體。 The curable composition according to claim 11, wherein the copolymerizable polyvinyl monomer comprises N-vinylpyrrolidone or N-vinylcaprolactam monomer. 一種物品,其包含: An article that contains: 基材,其具有第一主表面及第二主表面;及 A substrate having a first main surface and a second main surface; and 光學散射層,其在該基材之第一主表面上,其中該光學散射層係製備自可固化組成物,其中該可固化組成物包含: An optical scattering layer on the first main surface of the substrate, wherein the optical scattering layer is prepared from a curable composition, wherein the curable composition includes: 至少一種氟聚合物; At least one fluoropolymer; 至少一種單官能(甲基)丙烯酸酯; At least one monofunctional (meth)acrylate; 至少一種雙官能(甲基)丙烯酸酯;及 At least one bifunctional (meth)acrylate; and 至少一種起始劑;且其中該光學散射層包含基質及相分離微域,其中該基質及該等相分離微域具有不同的折射率,且其中該等微域大約為或大於可見光之波長。 At least one initiator; and wherein the optical scattering layer includes a matrix and phase-separated microdomains, wherein the matrix and the phase-separated microdomains have different refractive indices, and wherein the microdomains are approximately or greater than the wavelength of visible light. 如請求項13之物品,其中該光學散射層具有三種類型區中之至少一者,其中: The article of claim 13, wherein the optical scattering layer has at least one of three types of regions, wherein: 該第一類型區包含(甲基)丙烯酸酯基質,該(甲基)丙烯酸酯基質具有富含氟碳化合物之相分離微域; The first type zone contains a (meth)acrylate matrix, the (meth)acrylate matrix has phase separation microdomains rich in fluorocarbon compounds; 該第二類型區包含(甲基)丙烯酸酯基質,該(甲基)丙烯酸酯基質具有富含氟碳化合物之相分離微域,其中該等富含氟碳化合物之相分離微域進一步包含富含(甲基)丙烯酸酯之奈米域;且 The second type region includes a (meth)acrylate matrix having phase separation microdomains rich in fluorocarbon compounds, wherein the phase separation microdomains rich in fluorocarbon compounds further include rich Nano domains containing (meth)acrylate; and 該第三類型區包含富含氟碳化合物之基質,該富含氟碳化合物之基質具有富含(甲基)丙烯酸酯之相分離微域。 The third type zone contains a fluorocarbon-rich matrix that has phase separation microdomains rich in (meth)acrylate. 如請求項14之物品,其中該光學散射層包含該三種類型區中之至少兩者。 The article of claim 14, wherein the optical scattering layer includes at least two of the three types of regions. 如請求項13之物品,其中該等相分離微域係100至4,000奈米。 The article of claim 13, wherein the phase-separated microdomains are 100 to 4,000 nanometers. 如請求項13之物品,其中包含相分離微域的該光學散射層包含具有不同濃度的相分離微域、不同大小的相分離微域、或其組合之區域。 The article of claim 13, wherein the optical scattering layer containing phase-separated micro-domains includes regions with different concentrations of phase-separated micro-domains, phase-separated micro-domains of different sizes, or a combination thereof. 如請求項13之物品,其中該光學散射層具有1至76微米之厚度。 The article of claim 13, wherein the optical scattering layer has a thickness of 1 to 76 microns. 如請求項13之物品,其中該物品包含顯示物品。 An item as in claim 13, wherein the item includes a display item. 如請求項13之物品,其中該光學散射層包含結構化表面。 The article of claim 13, wherein the optical scattering layer includes a structured surface. 一種製備物品之方法,其包含: A method of preparing an article, comprising: 提供基材,其具有第一主表面及第二主表面; Provide a substrate having a first main surface and a second main surface; 提供可固化組成物,其包含: Provide a curable composition comprising: 至少一種氟聚合物; At least one fluoropolymer; 至少一種單官能(甲基)丙烯酸酯; At least one monofunctional (meth)acrylate; 至少一種雙官能(甲基)丙烯酸酯;及 At least one bifunctional (meth)acrylate; and 至少一種起始劑,其中該可固化組成物在室溫至60℃的溫度下具有小於30厘泊之黏度, At least one initiator, wherein the curable composition has a viscosity of less than 30 centipoise at a temperature of room temperature to 60°C, 在該基材之該第一主表面之至少一部分上形成一層可固化組成物; Forming a layer of curable composition on at least a portion of the first major surface of the substrate; 固化該層可固化組成物以形成經固化之光學散射層,該經固化之光學散射層包含: Curing the layer of the curable composition to form a cured optical scattering layer, the cured optical scattering layer comprising: 光學散射層,其在該基材之第一主表面上,其中該光學散射層包含基質及相分離微域,其中該基質及該等相分離微域 具有不同的折射率,且其中該等微域大約為或大於可見光之波長。 An optical scattering layer on the first main surface of the substrate, wherein the optical scattering layer includes a matrix and phase-separated microdomains, wherein the matrix and the phase-separated microdomains It has different refractive indexes, and the micro-domains are approximately or greater than the wavelength of visible light. 如請求項21之方法,其中該等相分離微域具有在100至4,000奈米之範圍內的大小。 The method of claim 21, wherein the phase-separated microdomains have a size in the range of 100 to 4,000 nanometers. 如請求項21之方法,其中固化包含對層之選定區域進行圖案式(pattern-wise)固化,使得該層包含一系列的相分離微域。 The method of claim 21, wherein curing comprises pattern-wise curing selected areas of the layer such that the layer contains a series of phase-separated microdomains. 如請求項21之方法,其中該經固化之光學散射層具有1至76微米之厚度。 The method of claim 21, wherein the cured optical scattering layer has a thickness of 1 to 76 microns.
TW108129812A 2018-08-22 2019-08-21 Curable compositions for forming light scattering layers TW202019993A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862721198P 2018-08-22 2018-08-22
US62/721,198 2018-08-22

Publications (1)

Publication Number Publication Date
TW202019993A true TW202019993A (en) 2020-06-01

Family

ID=68234025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129812A TW202019993A (en) 2018-08-22 2019-08-21 Curable compositions for forming light scattering layers

Country Status (4)

Country Link
KR (1) KR102787082B1 (en)
CN (1) CN112585221B (en)
TW (1) TW202019993A (en)
WO (1) WO2020039304A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230086238A (en) * 2021-12-08 2023-06-15 엘지디스플레이 주식회사 Display device
CN115895530A (en) * 2023-01-06 2023-04-04 西安思摩威新材料有限公司 Light modulation packaging composition for OLED, packaging film and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006593A (en) * 1988-06-16 1991-04-09 E. I. Du Pont De Nemours And Company Catenated polymer systems
JP2653182B2 (en) * 1988-09-06 1997-09-10 ダイキン工業株式会社 Solid polymer substance, its production method and application
JPH04363352A (en) * 1990-10-13 1992-12-16 Daikin Ind Ltd Crosslinking composition
EP0481372A3 (en) * 1990-10-13 1992-05-20 Daikin Industries, Limited Crosslinkable composition
US5859144A (en) * 1995-09-29 1999-01-12 Nippon Mektron, Limited Process for producing rubber compound
US5804301A (en) * 1996-01-11 1998-09-08 Avery Dennison Corporation Radiation-curable coating compositions
US6306563B1 (en) * 1999-06-21 2001-10-23 Corning Inc. Optical devices made from radiation curable fluorinated compositions
US20060147177A1 (en) 2004-12-30 2006-07-06 Naiyong Jing Fluoropolymer coating compositions with olefinic silanes for anti-reflective polymer films
US7998587B2 (en) 2007-10-31 2011-08-16 3M Innovative Properties Company Method of modifying light with silicone (meth)acrylate copolymers
KR101633130B1 (en) * 2007-11-08 2016-06-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Optical adhesive with diffusive properties
TW201037405A (en) 2009-04-14 2010-10-16 Dayu Optoelectronics Co Ltd Composite brightness enhancement film having two-phase hazing layer
EP2383817A1 (en) 2010-04-29 2011-11-02 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Light-emitting device and method for manufacturing the same
WO2012082706A2 (en) * 2010-12-16 2012-06-21 3M Innovative Properties Company Methods for preparing optically clear adhesives and coatings

Also Published As

Publication number Publication date
KR102787082B1 (en) 2025-03-25
CN112585221B (en) 2022-10-25
KR20210047877A (en) 2021-04-30
WO2020039304A1 (en) 2020-02-27
CN112585221A (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6683374B2 (en) Antireflection film and display device
JP6609093B2 (en) Hard coat film, polarizing plate and image display device
JP6732015B2 (en) Anti-reflection film
JP6651609B2 (en) Low refraction layer and antireflection film containing the same
JP6494654B2 (en) Resin film and method for producing resin film
JP6727574B2 (en) Photocurable coating composition, low refractive layer and antireflection film
KR101951864B1 (en) Anti-reflective film and display device
CN102985498B (en) Curable resin composition for hardcoat layer, process for production of hardcoat film, hardcoat film, polarizing plate, and display panel
CN101981472A (en) Antiglare film and preparation method thereof
CN103823259B (en) Optical sheet
TWI726966B (en) Optical film, polarizing plate and image display device
CN106967370B (en) Color conversion film and preparation method thereof
CN103460079A (en) Antireflection film, polarizing plate, and image display device
US20230165118A1 (en) Curable Compositions for Forming Light Scattering Layers
TW201213841A (en) Hard coat film, polarizing plate, image display device, and method for manufacturing hard coat film
TW200819508A (en) Coating composition for forming low-refractive-index layer, antireflective film using the same, and image display device comprising the antireflective film
KR20170065459A (en) Anti-reflective film
JP2018533065A (en) Antireflection film and display device
CN1550851A (en) Light-diffusing layer, light-diffusing film, and light-diffusing adhesive sheet
TW200930569A (en) Optical laminates, polarizing plates and image display devices
TW200808927A (en) Optical article having an antistatic fluorochemical surface layer
TW202019993A (en) Curable compositions for forming light scattering layers
JP2012068273A (en) Light diffusion element, polarizer with light diffusion element, liquid crystal display device using the same, and light diffusion element manufacturing method
CN101910877B (en) Optical sheet
CN101910880B (en) Optical sheet