TW202019965A - Method of treating multiple myeloma - Google Patents

Method of treating multiple myeloma Download PDF

Info

Publication number
TW202019965A
TW202019965A TW108125109A TW108125109A TW202019965A TW 202019965 A TW202019965 A TW 202019965A TW 108125109 A TW108125109 A TW 108125109A TW 108125109 A TW108125109 A TW 108125109A TW 202019965 A TW202019965 A TW 202019965A
Authority
TW
Taiwan
Prior art keywords
seq
amino acid
domain
acid sequence
antibody
Prior art date
Application number
TW108125109A
Other languages
Chinese (zh)
Inventor
馬可 安東尼 羅摩斯 雅哥
姆拉 梅漢
Original Assignee
美商安進公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商安進公司 filed Critical 美商安進公司
Publication of TW202019965A publication Critical patent/TW202019965A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The disclosure provides a method of treating multiple myeloma, the method comprising administering to a subject in need thereof a heterodimeric antibody that binds CD3 and CD38.

Description

治療多發性骨髓瘤之方法Treatment of multiple myeloma

多發性骨髓瘤係一種贅生性漿細胞病,其特徵在於骨髓(BM)微環境中的惡性漿細胞的選殖增殖、血液或尿中的單株蛋白和相關的器官功能障礙。多發性骨髓瘤占所有新癌症診斷的1%-2%,占血液惡性腫瘤死亡總數的約20%。這種疾病在男性和非裔美國人中略微更常見。儘管最近對骨髓瘤發病機制的理解的改進開發了新的治療方法並提高了生存率,多發性骨髓瘤仍然係無法治癒的癌症。Multiple myeloma is a neoplastic plasma cell disease characterized by the colonization and proliferation of malignant plasma cells in the bone marrow (BM) microenvironment, single protein in blood or urine, and related organ dysfunction. Multiple myeloma accounts for 1%-2% of all new cancer diagnoses, and accounts for about 20% of the total deaths from hematological malignancies. This disease is slightly more common in men and African Americans. Although recent improvements in the understanding of the pathogenesis of myeloma have developed new treatments and improved survival rates, multiple myeloma remains an incurable cancer.

除了BM檢查中10%或更多選殖漿細胞或經活檢證實的漿細胞瘤的證據,多發性骨髓瘤的診斷還需要存在一個或多個骨髓瘤定義事件(MDE)。MDE包括所謂的CRAB(高鈣血症、腎衰竭、貧血或溶骨性病變)特徵以及三種特異性生物標誌物:選殖性BM漿細胞 ≥ 60%,血清游離輕鏈(sFLC)比率 ≥ 100(前提係受累的sFLC水平 ≥ 100 mg/L),磁共振成像(MRI)顯示超過1個病灶(Rajkumar等人,2011)。腫瘤漿細胞中發生的一些遺傳異常在骨髓瘤的發病機制中起主要作用並確定疾病預後(Palumbo和Anderson,2011)。In addition to the evidence of 10% or more selection of plasma cells or plasma cell tumors confirmed by biopsy in the BM examination, the diagnosis of multiple myeloma also requires the presence of one or more myeloma-defined events (MDE). MDE includes so-called CRAB (hypercalcemia, renal failure, anemia or osteolytic lesions) characteristics and three specific biomarkers: colonized BM plasma cells ≥ 60%, serum free light chain (sFLC) ratio ≥ 100 (The premise is that the affected sFLC level is ≥ 100 mg/L). Magnetic resonance imaging (MRI) shows more than 1 lesion (Rajkumar et al., 2011). Some genetic abnormalities occurring in tumor plasma cells play a major role in the pathogenesis of myeloma and determine the prognosis of the disease (Palumbo and Anderson, 2011).

骨髓瘤細胞的不受控制的生長具有許多後果,包括骨骼破壞、BM衰竭、增加的血漿體積和黏度、正常免疫球蛋白生成的抑制和腎損傷(Durie,2011)。Uncontrolled growth of myeloma cells has many consequences, including bone destruction, BM failure, increased plasma volume and viscosity, inhibition of normal immunoglobulin production, and kidney damage (Durie, 2011).

有症狀(活動性)疾病應立即治療,而無症狀(悶抑性(smoldering))骨髓瘤僅需臨床觀察,因為早期常規化療治療尚無明顯益處。目前,研究性試驗正在評估免疫調節藥物延遲無症狀進展到症狀性骨髓瘤的能力。對於活動性骨髓瘤,目前的數據支持誘導治療方案(包括沙利度胺、來那度胺和/或硼替佐米)的啟用,然後對能夠耐受自體造血幹細胞移植(HSCT)調節方案的患者在其主要疾病應答後進行自體HSCT。對生理年齡(其可能與實際年齡不同)和並存病狀的存在的考慮驅動了治療選擇和藥物劑量的決定。例如,對於具有顯著並存病(包括心肺或肝損傷)的患者,適用不太密集的方法,以限制治療相關的死亡率和減輕治療中斷的風險。Symptomatic (active) disease should be treated immediately, while asymptomatic (smoldering) myeloma only requires clinical observation, because there is no obvious benefit from early conventional chemotherapy. Currently, research trials are evaluating the ability of immunomodulatory drugs to delay asymptomatic progression to symptomatic myeloma. For active myeloma, the current data support the introduction of induction therapy regimens (including thalidomide, lenalidomide, and/or bortezomib), and then to those that can tolerate autologous hematopoietic stem cell transplantation (HSCT) adjustment regimens Patients undergo autologous HSCT after their major disease response. The consideration of the physiological age (which may be different from the actual age) and the presence of coexisting conditions drive the choice of treatment and drug dosage. For example, for patients with significant comorbidities (including cardiopulmonary or liver injury), less intensive methods are applied to limit treatment-related mortality and reduce the risk of treatment interruption.

復發/難治性多發性骨髓瘤的治療呈現出特殊的治療挑戰,這係由於復發時疾病的異質性以及缺乏關於在疾病進展的各個時間點選擇挽救療法的明確的基於生物學的建議。隨著對影響固有和獲得性治療抗性的漿細胞的固有選殖異質性和基因組不穩定性的認識的增加,對最佳選擇和治療順序的鑒定變得至關重要。近年來,針對復發/難治性骨髓瘤,一些新藥(包括蛋白酶體抑制劑(卡非佐米(Carfilzomib)和伊沙佐米(Ixazomib)),沙利度胺衍生物泊馬度胺,以及組蛋白去乙醯化酶抑制劑帕比司他(panobinostat))已經獲得美國食品和藥物管理局(FDA)的批准,這增加了上述決定的複雜性。目前正在開發針對特定細胞傳訊通路的其他分子靶向療法,以及存活和增殖控制劑(包括PI3K/AKT/mTOR抑制劑、Hsp90抑制劑、細胞週期素依賴性激酶抑制劑,驅動蛋白紡錘體蛋白抑制劑)。儘管多發性骨髓瘤的管理取得了進展,但幾乎所有患者都不可避免地復發。骨髓瘤每次復發通常更加具有侵襲性,導致難治性疾病的發展,難治性疾病與更短的存活期相關(Dimopoulos等人,2015)。因此,需要額外的治療選擇。The treatment of relapsed/refractory multiple myeloma presents special treatment challenges due to the heterogeneity of the disease at the time of relapse and the lack of clear biological-based recommendations for choosing salvage therapy at various points in the progression of the disease. As awareness of the inherent colonization heterogeneity and genomic instability of plasma cells that affect innate and acquired treatment resistance increases, the identification of optimal selection and treatment sequence becomes critical. In recent years, some new drugs (including proteasome inhibitors (Carfilzomib and Ixazomib)), thalidomide derivatives pomalidomide, and groups for relapsed/refractory myeloma The protein deacetylase inhibitor panobinostat has been approved by the US Food and Drug Administration (FDA), which adds to the complexity of the above decision. Other molecular targeted therapies targeting specific cell communication pathways, as well as survival and proliferation control agents (including PI3K/AKT/mTOR inhibitors, Hsp90 inhibitors, cyclin-dependent kinase inhibitors, kinesin spindle protein inhibition) are currently being developed Agent). Despite the progress made in the management of multiple myeloma, almost all patients inevitably relapse. Each relapse of myeloma is usually more aggressive, leading to the development of refractory diseases that are associated with shorter survival times (Dimopoulos et al., 2015). Therefore, additional treatment options are required.

本揭露提供了治療有需要的受試者(例如患有復發/難治性多發性骨髓瘤的受試者)的多發性骨髓瘤之方法。該方法包括向受試者投與約0.05 mg至約200 mg的異二聚體抗體,該異二聚體抗體包含a) 包含第一Fc結構域和抗CD3 scFv的第一單體,該抗CD3 scFv包含 (i) scFv可變輕鏈結構域,其包含如SEQ ID NO: 15所示的vlCDR1、如SEQ ID NO: 16所示的vlCDR2、和如SEQ ID NO: 17所示的vlCDR3,(ii) scFv可變輕鏈結構域,其包含如SEQ ID NO: 11所示的vhCDR1、如SEQ ID NO: 12所示的vhCDR2、和如SEQ ID NO: 13所示的vhCDR3,其中使用結構域連接子(linker)將所述scFv共價附接至所述Fc結構域的N末端;b) 第二單體,該第二單體包含i) 抗CD38重鏈可變結構域,其包含如SEQ ID NO: 65所示的vhCDR1、如SEQ ID NO: 66所示的vhCDR2、和如SEQ ID NO: 67所示的vhCDR3,和ii) 包含第二Fc結構域的重鏈恒定結構域;以及c) 包含可變恒定結構域和抗CD38可變輕鏈結構域的輕鏈,該抗CD38可變輕鏈結構域包含如SEQ ID NO: 69所示的vlCDR1、如SEQ ID NO: 70所示的vlCDR2、和如SEQ ID NO: 71所示的vlCDR3。在各個方面,劑量係約0.05 mg、0.15 mg、0.45 mg、1.35 mg、4 mg、12 mg、36 mg、100 mg、或200 mg、或約36 mg至約200 mg。The present disclosure provides a method of treating multiple myeloma in a subject in need, such as a subject with relapsed/refractory multiple myeloma. The method includes administering to the subject about 0.05 mg to about 200 mg of heterodimeric antibody, the heterodimeric antibody comprising a) a first monomer comprising a first Fc domain and an anti-CD3 scFv, the anti- CD3 scFv comprises (i) a scFv variable light chain domain comprising vlCDR1 as shown in SEQ ID NO: 15, vlCDR2 as shown in SEQ ID NO: 16, and vlCDR3 as shown in SEQ ID NO: 17, (ii) scFv variable light chain domain comprising vhCDR1 as shown in SEQ ID NO: 11, vhCDR2 as shown in SEQ ID NO: 12, and vhCDR3 as shown in SEQ ID NO: 13, wherein the structure is used A domain linker covalently attaches the scFv to the N-terminus of the Fc domain; b) a second monomer comprising i) an anti-CD38 heavy chain variable domain comprising VhCDR1 as shown in SEQ ID NO: 65, vhCDR2 as shown in SEQ ID NO: 66, and vhCDR3 as shown in SEQ ID NO: 67, and ii) a heavy chain constant domain containing a second Fc domain; And c) a light chain comprising a variable constant domain and an anti-CD38 variable light chain domain, the anti-CD38 variable light chain domain comprising vlCDR1 as shown in SEQ ID NO: 69, as shown in SEQ ID NO: 70 Shown vlCDR2, and vlCDR3 shown in SEQ ID NO: 71. In various aspects, the dosage ranges from about 0.05 mg, 0.15 mg, 0.45 mg, 1.35 mg, 4 mg, 12 mg, 36 mg, 100 mg, or 200 mg, or about 36 mg to about 200 mg.

視需要,該方法包括在治療的第一週和第二週每週向受試者投與兩個劑量的異二聚體抗體,在治療的第三週和第四週每週向受試者投與一個劑量的異二聚體抗體,並從第5週開始到治療結束,每兩週投與一個劑量的異二聚體抗體。在各個方面,治療期(即,向受試者投與多個劑量的異二聚體抗體的時間)包括約6個月至約12個月,例如約8個月。在本揭露的一些方面,異二聚體抗體藉由靜脈內輸注經約30分鐘至約4小時投與。例如,視需要,第一劑量的異二聚體抗體經約四小時的時間投與,第二劑量的異二聚體抗體經約兩小時的時間投與,並且所有後續劑量經約30分鐘的時間投與。在一些方面,其中在治療期間向受試者投與多個劑量(即,兩種或更多種)異二聚體抗體,異二聚體抗體的劑量在治療期間至少增加一次。As needed, the method includes administering two doses of heterodimeric antibody to the subject weekly during the first and second weeks of treatment, and weekly to the subject during the third and fourth weeks of treatment A dose of heterodimeric antibody is administered, and from week 5 to the end of treatment, a dose of heterodimeric antibody is administered every two weeks. In various aspects, the treatment period (ie, the time at which multiple doses of heterodimeric antibody are administered to the subject) includes about 6 months to about 12 months, such as about 8 months. In some aspects of the disclosure, the heterodimeric antibody is administered by intravenous infusion over about 30 minutes to about 4 hours. For example, as needed, the first dose of heterodimeric antibody is administered in about four hours, the second dose of heterodimeric antibody is administered in about two hours, and all subsequent doses are administered in about 30 minutes Time to give. In some aspects, wherein multiple doses (ie, two or more) of heterodimeric antibody are administered to the subject during treatment, the dose of heterodimeric antibody is increased at least once during the treatment.

在一些方面,該方法還包括向受試者投與地塞米松。地塞米松係例如靜脈內或口服投與。如果靜脈內投與,則在投與異二聚體抗體之前一小時內將地塞米松視需要投與給受試者。合適的地塞米松劑量包括但不限於約8 mg或約4 mg。In some aspects, the method further includes administering dexamethasone to the subject. Dexamethasone is administered intravenously or orally, for example. If administered intravenously, dexamethasone is administered to the subject as needed within one hour before the administration of the heterodimeric antibody. Suitable dexamethasone doses include but are not limited to about 8 mg or about 4 mg.

在各個方面,受試者先前已經用抗CD38單特異性抗體例如達雷妥木單抗治療。在這方面,給受試者投與抗CD38單特異性抗體,並且在洗脫期後投與初始劑量的異二聚體抗體,該洗脫期足以將抗CD38單特異性抗體的全身濃度降低至0.2 μg/ml或更低,儘管在本揭露的所有方面都不需要這樣做。在洗脫期間不投與抗CD38單特異性抗體(即,抗CD38單特異性抗體治療結束,允許洗脫一段時間,然後投與異二聚體抗體的初始劑量)。在一些情況下,該方法包括在投與初始劑量的異二聚體抗體之前停止用抗CD38單特異性抗體治療至少12週(例如,約13-15週)(即,給受試者投與抗CD38單特異性抗體,然後在停止投與抗CD38單特異性抗體後至少12週的時間點投與初始劑量的異二聚體抗體)。在各個方面,先前用蛋白酶體抑制劑和/或免疫調節藥物治療受試者。In various aspects, the subject has previously been treated with an anti-CD38 monospecific antibody, such as daratumumab. In this regard, the subject is administered anti-CD38 monospecific antibody and the initial dose of heterodimeric antibody is administered after the washout period, which is sufficient to reduce the systemic concentration of anti-CD38 monospecific antibody To 0.2 μg/ml or lower, although this is not required in all aspects of this disclosure. No anti-CD38 monospecific antibody was administered during the elution (ie, anti-CD38 monospecific antibody treatment ended, the elution was allowed for a period of time, and then the initial dose of heterodimeric antibody was administered). In some cases, the method includes stopping treatment with the anti-CD38 monospecific antibody for at least 12 weeks (eg, about 13-15 weeks) before administering the initial dose of heterodimeric antibody (ie, administering to the subject Anti-CD38 monospecific antibody, then the initial dose of heterodimeric antibody is administered at a time point of at least 12 weeks after stopping the administration of anti-CD38 monospecific antibody). In various aspects, subjects were previously treated with proteasome inhibitors and/or immunomodulatory drugs.

在各種實施方式中,抗CD3 scFv包含可變重鏈結構域,該可變重鏈結構域包含與SEQ ID NO: 10所示胺基酸序列至少90%相同(例如,100%相同)的胺基酸序列。在各個方面,抗CD3 scFv包含可變重鏈結構域,該可變重鏈結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 10相比包含、視需要在CDR之外的區域包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。還視需要,抗CD3 scFv包含可變輕鏈結構域,該可變輕鏈結構域包含與SEQ ID NO: 14所示胺基酸序列至少90%相同(例如,100%相同)的胺基酸序列。在各個方面,抗CD3 scFv包含可變輕鏈結構域,該可變輕鏈結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 14相比包含、視需要在CDR之外的區域包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。例如,在各種實施方式中,抗CD3 scFv包含與SEQ ID NO: 18所示的胺基酸序列至少90%(例如100%相同)的胺基酸序列。在各個方面,抗CD3 scFv包含胺基酸序列,該胺基酸序列與SEQ ID NO: 18相比包含、視需要在CDR之外的區域包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。在本揭露的一些方面,scFv結構域連接子係帶電荷的連接子。視需要,抗CD38可變輕鏈結構域包含與SEQ ID NO: 68所示的胺基酸序列至少90%相同(例如,100%相同)的胺基酸序列和/或抗CD38重鏈可變結構域包含與SEQ ID NO: 64所示的胺基酸序列至少90%相同(例如,100%相同)的胺基酸序列。例如,抗CD38可變輕鏈結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 68相比包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代,和/或抗CD38重鏈可變結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 64相比包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。視需要,該等取代在CDR之外。例如,在各個方面,第一單體包含與SEQ ID NO: 335所示的胺基酸序列至少90%(例如100%相同)的胺基酸序列和/或第二單體包含與SEQ ID NO: 82所示的胺基酸序列至少90%相同(例如,100%相同)的胺基酸序列和/或輕鏈包含與SEQ ID NO: 84所示的胺基酸序列至少90%相同(例如,100%相同)的胺基酸序列。在一些實施方式中,異二聚體抗體的第一Fc結構域和第二Fc結構域包含一個或多個減少同二聚化的突變。在一些實施方式中,第一Fc結構域和所述第二Fc結構域包含選自以下群組的變體組,該群組由以下項組成:S364K/E357Q : L368D/K370S;L368D/K370S : S364K;L368E/K370S : S364K;T411T/E360E/Q362E : D401K;L368D/K370S : S364K/E357L和K370S : S364K/E357Q,其中S364K/E357Q : L368D/K370S代表較佳實施方式。在其他方面,所述第一和第二Fc結構域包含胺基酸取代E233P/L234V/L235A/G236del/S267K。視需要,重鏈恒定結構域包含胺基酸取代N208D/Q295E/N384D/Q418E/N421D。In various embodiments, the anti-CD3 scFv comprises a variable heavy chain domain comprising an amine that is at least 90% identical (eg, 100% identical) to the amino acid sequence shown in SEQ ID NO: 10 Acid sequence. In various aspects, the anti-CD3 scFv includes a variable heavy chain domain that includes an amino acid sequence that is included compared to SEQ ID NO: 10, optionally outside the CDR The region contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acid substitutions. If desired, the anti-CD3 scFv includes a variable light chain domain that includes an amino acid that is at least 90% identical (eg, 100% identical) to the amino acid sequence shown in SEQ ID NO: 14 sequence. In various aspects, the anti-CD3 scFv comprises a variable light chain domain comprising an amino acid sequence which is included compared to SEQ ID NO: 14, optionally outside the CDR The region contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acid substitutions. For example, in various embodiments, the anti-CD3 scFv comprises an amino acid sequence that is at least 90% (eg, 100% identical) to the amino acid sequence shown in SEQ ID NO: 18. In various aspects, the anti-CD3 scFv contains an amino acid sequence that includes 1,2,3,4,5,6,7 as compared to SEQ ID NO: 18, optionally outside the CDR , 8, 9, 10, 11, 12, 13, 14 or 15 amino acid substitutions. In some aspects of the disclosure, the scFv domain linker is a charged linker. If desired, the anti-CD38 variable light chain domain comprises an amino acid sequence that is at least 90% identical (eg, 100% identical) to the amino acid sequence shown in SEQ ID NO: 68 and/or the anti-CD38 heavy chain variable The domain comprises an amino acid sequence that is at least 90% identical (eg, 100% identical) to the amino acid sequence shown in SEQ ID NO: 64. For example, the anti-CD38 variable light chain domain comprises an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, SEQ ID NO: 68 11, 12, 13, 14, or 15 amino acid substitutions, and/or the anti-CD38 heavy chain variable domain comprises an amino acid sequence, which contains 1, 2, compared to SEQ ID NO: 64 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid substitutions. If necessary, such substitutions are outside the CDR. For example, in various aspects, the first monomer comprises an amino acid sequence at least 90% (eg, 100% identical) to the amino acid sequence shown in SEQ ID NO: 335 and/or the second monomer comprises the amino acid sequence of SEQ ID NO : The amino acid sequence shown in 82 is at least 90% identical (e.g., 100% identical) to the amino acid sequence and/or light chain comprising at least 90% identical to the amino acid sequence shown in SEQ ID NO: 84 (e.g. , 100% identical) amino acid sequence. In some embodiments, the first Fc domain and the second Fc domain of the heterodimeric antibody comprise one or more mutations that reduce homodimerization. In some embodiments, the first Fc domain and the second Fc domain comprise a variant group selected from the group consisting of S364K/E357Q: L368D/K370S; L368D/K370S: S364K; L368E/K370S: S364K; T411T/E360E/Q362E: D401K; L368D/K370S: S364K/E357L and K370S: S364K/E357Q, where S364K/E357Q: L368D/K370S represent preferred embodiments. In other aspects, the first and second Fc domains comprise amino acid substitutions E233P/L234V/L235A/G236del/S267K. If necessary, the heavy chain constant domain contains amino acid substitutions N208D/Q295E/N384D/Q418E/N421D.

相關申請的交叉引用和引用併入Cross-reference and incorporation of related applications

本申請要求2018年7月16日提交的美國臨時專利申請案號62/698,675的優先權,其內容藉由引用結合於此。This application claims priority from US Provisional Patent Application No. 62/698,675 filed on July 16, 2018, the contents of which are incorporated herein by reference.

該申請藉由引用併入2015年11月25日提交的國際專利公開案號WO 2016/086196;2015年11月25日提交的美國專利公開案號20160215063;2016年11月23日提交的國際專利公開案號WO 2017/091656;和2015年3月30日提交的美國專利號9,822,186,其全部內容藉由引用明確地併入本文,特別參考其中的附圖、圖例和申請專利範圍。This application is incorporated by reference into the International Patent Publication No. WO 2016/086196 filed on November 25, 2015; US Patent Publication No. 20160215063 filed on November 25, 2015; International Patent filed November 23, 2016 Publication No. WO 2017/091656; and US Patent No. 9,822,186 filed on March 30, 2015, the entire contents of which are expressly incorporated herein by reference, with particular reference to the drawings, legends, and patent application scope therein.

藉由引用整體併入的是與本文同時提交的電腦可讀核苷酸/胺基酸序列表,其鑒定如下:名為「52589_Seqlisting.txt」的ASCII(文本)檔,707,436位元組,創建於2019年7月15日。Incorporated by reference in its entirety is a computer-readable nucleotide/amino acid sequence listing submitted at the same time as this article. Its identification is as follows: an ASCII (text) file named "52589_Seqlisting.txt", 707,436 bytes, created On July 15, 2019.

本公開提供了治療有需要的受試者的多發性骨髓瘤的方法。該方法使用異二聚體抗體,該異二聚體抗體以這樣的方式共接合CD3和CD38,以將惡性細胞與T細胞暫態連接,從而誘導T細胞介導地殺死所結合惡性細胞。CD3靶向方法顯示出相當大的希望,但這種療法的共同副作用係細胞介素的相關產生,這通常導致毒性細胞介素釋放綜合症。因為雙特異性抗體的抗CD3結合結構域接合所有T細胞,所以產生高細胞介素的CD4 T細胞亞群被招募。此外,CD4 T細胞亞群包括調節性T細胞,其募集和擴增可潛在地導致免疫抑制並且對長期腫瘤抑制具有負面影響。減少細胞介素產生和可能地減少CD4 T細胞活化的一種可能方法係降低抗CD3結構域對CD3的親和力。然而,太大的親和力降低可能導致包含抗CD3結構域的治療劑的功效降低。雙特異性抗體對CD38的親和力也對抗體靶向表現CD38的細胞的功效有影響。本文所述的方法利用異二聚體抗體,其以這樣的方式結合CD3和CD38,以最大化靶細胞的破壞,同時減少不希望的副作用(例如,不受控制的細胞介素釋放)。The present disclosure provides a method of treating multiple myeloma in a subject in need. This method uses a heterodimeric antibody that co-joins CD3 and CD38 in such a way as to temporarily connect malignant cells with T cells, thereby inducing T cells to mediatedly kill the bound malignant cells. The CD3 targeting method shows considerable hope, but the common side effect of this therapy is the related production of cytokines, which usually leads to toxic cytokine release syndrome. Because the anti-CD3 binding domain of the bispecific antibody engages all T cells, a subpopulation of CD4 T cells that produce high interleukins is recruited. In addition, CD4 T cell subsets include regulatory T cells, whose recruitment and expansion can potentially lead to immunosuppression and have a negative impact on long-term tumor suppression. One possible way to reduce interleukin production and possibly reduce CD4 T cell activation is to reduce the affinity of the anti-CD3 domain for CD3. However, too much reduced affinity may result in reduced efficacy of anti-CD3 domain containing therapeutic agents. The affinity of the bispecific antibody for CD38 also has an effect on the efficacy of the antibody in targeting cells expressing CD38. The methods described herein utilize heterodimeric antibodies that bind CD3 and CD38 in such a way as to maximize the destruction of target cells while reducing undesirable side effects (eg, uncontrolled release of interleukins).

本文所述的異二聚體抗體使用不同的單體,該等單體含有胺基酸取代,該等胺基酸取代使異二聚體的形成相比於同二聚體「偏斜」,如下文更全面概述,外加「pI變體」(其允許異二聚體簡單純化與同二聚體分離)。異二聚體抗體視需要包含工程化的Fc結構域或變體Fc結構域,其在生產細胞中自組裝以產生異二聚體蛋白質。The heterodimeric antibodies described herein use different monomers that contain amino acid substitutions, which make the formation of heterodimers "skew" compared to homodimers, As outlined more fully below, plus "pI variants" (which allow simple purification of heterodimers and separation of homodimers). Heterodimeric antibodies optionally contain engineered Fc domains or variant Fc domains, which self-assemble in production cells to produce heterodimeric proteins.

下面描述該方法的各個方面。節標題的使用僅僅是為了便於閱讀,而不是旨在限制本身。整個文件旨在被視為統一的揭露,並且應理解,可以考慮本文描述的特徵的所有組合。異二聚體抗體 Various aspects of this method are described below. The use of section headings is for readability only, not to limit itself. The entire document is intended to be regarded as a unified disclosure, and it should be understood that all combinations of features described herein can be considered. Heterodimeric antibody

該方法包括向有需要的受試者投與異二聚體抗體,該異二聚體抗體包含a) 包含第一Fc結構域和抗CD3 scFv的第一單體。scFv包含可變重鏈、scFv連接子和可變輕鏈結構域。視需要,可變輕鏈的C末端附接至scFv連接子的N末端,該連接子的C末端附接至可變重鏈的N末端(N-vh-連接子-vl-C),雖然可以轉換組態(N-vl-連接子-vh-C)。因此,scFv的描繪和說明中具體包括的是任一取向的scFv。在多個方面,scFv結構域連接子係帶電荷的連接子。可以使用許多合適的scFv連接子,並且許多在附圖中列出。可採用帶電荷的scFv連接子以促進第一和第二單體之間的pI分離。即,藉由摻入帶電荷的scFv連接子,正的或負的(或者在對不同單體使用scFv的支架的情況下兩者),這允許包含帶電荷的連接子的單體改變pI而不進一步改變Fc結構域。The method includes administering a heterodimeric antibody to a subject in need, the heterodimeric antibody comprising a) a first monomer comprising a first Fc domain and an anti-CD3 scFv. scFv contains variable heavy chain, scFv linker and variable light chain domain. If necessary, the C-terminus of the variable light chain is attached to the N-terminus of the scFv linker, which is attached to the N-terminus of the variable heavy chain (N-vh-linker-vl-C), although Can change the configuration (N-vl-linker-vh-C). Therefore, the description and description of scFv specifically include scFv in any orientation. In various aspects, the scFv domain linker is a charged linker. Many suitable scFv linkers can be used, and many are listed in the figures. Charged scFv linkers can be used to promote pI separation between the first and second monomers. That is, by incorporating charged scFv linkers, positive or negative (or both in the case of using scFv scaffolds for different monomers), this allows monomers containing charged linkers to change pI while No further changes to the Fc domain.

使用結構域連接子將scFv共價附接至Fc結構域的N末端。「結構域連接子」將本文概述的任何兩個結構域連接在一起。如果希望,可以使用帶電荷的結構域連接子。帶電荷的結構域連接子也可以例如增加本揭露的單體的pI分離,並且因此附圖中包括的那些可以用於本文中利用連接子的任何實施方式中。A domain linker was used to covalently attach the scFv to the N-terminus of the Fc domain. The "domain linker" connects any two domains outlined in this article. If desired, charged domain linkers can be used. Charged domain linkers can also, for example, increase the pi separation of the disclosed monomers, and therefore those included in the drawings can be used in any of the embodiments that utilize linkers herein.

連接子肽可主要包括以下胺基酸殘基:Gly、Ser、Ala、或Thr。連接子肽應具有適於連接兩個分子的長度,使得它們相對於彼此呈現正確的構象,使得這兩個分子保持所希望的活性。在一個實施方式中,連接子長度為從約1至50個胺基酸,較佳的是長度為約1至30個胺基酸。在一個實施方式中,發現可以使用長度為1至20個胺基酸的連接子,在一些實施方式中使用從約5至約10個胺基酸。有用的連接子包括甘胺酸-絲胺酸聚合物(包括例如(GS)n、(GSGGS)n(SEQ ID NO: 332)、(GGGGS)n(SEQ ID NO: 333)、和(GGGS)n(SEQ ID NO: 334),其中n係至少一個(通常為從3至4)的整數),甘胺酸-丙胺酸聚合物,丙胺酸-絲胺酸聚合物和其他柔性連接子。可替代地,各種非蛋白質聚合物,包括但不限於聚乙二醇(PEG)、聚丙二醇、聚氧伸烷基、或聚乙二醇和聚丙二醇的共聚物可用作連接子。The linker peptide may mainly include the following amino acid residues: Gly, Ser, Ala, or Thr. The linker peptide should have a length suitable for connecting two molecules so that they assume the correct conformation with respect to each other so that the two molecules maintain the desired activity. In one embodiment, the linker is from about 1 to 50 amino acids in length, preferably about 1 to 30 amino acids in length. In one embodiment, it was found that a linker with a length of 1 to 20 amino acids can be used, and in some embodiments from about 5 to about 10 amino acids. Useful linkers include glycine-serine polymers (including, for example, (GS)n, (GSGGS)n (SEQ ID NO: 332), (GGGGS)n (SEQ ID NO: 333), and (GGGS) n (SEQ ID NO: 334), where n is at least one (usually an integer from 3 to 4), glycine-alanine polymer, alanine-serine polymer and other flexible linkers. Alternatively, various non-protein polymers, including but not limited to polyethylene glycol (PEG), polypropylene glycol, polyoxyalkylene, or copolymers of polyethylene glycol and polypropylene glycol can be used as linkers.

其他連接子序列可包括CL/CH1結構域的任何長度(但不包括CL/CH1結構域的所有殘基)的任何序列;例如,CL/CH1結構域的前5-12個胺基酸殘基。連接子可以衍生自免疫球蛋白輕鏈,例如Cκ或Cλ。連接子可以衍生自任何同種型的免疫球蛋白重鏈,包括例如Cγ1、Cγ2、Cγ3、Cγ4、Cα1、Cα2、Cδ、Cε、和Cμ。連接子序列還可以衍生自其他蛋白質,例如Ig樣蛋白質(例如,TCR、FcR、KIR),鉸鏈區衍生的序列和來自其他蛋白質的其他天然序列。Other linker sequences may include any sequence of any length of the CL/CH1 domain (but not including all residues of the CL/CH1 domain); for example, the first 5-12 amino acid residues of the CL/CH1 domain . The linker may be derived from an immunoglobulin light chain, such as Cκ or Cλ. The linker can be derived from any isotype of immunoglobulin heavy chain, including, for example, Cγ1, Cγ2, Cγ3, Cγ4, Cα1, Cα2, Cδ, Cε, and Cμ. Linker sequences can also be derived from other proteins, such as Ig-like proteins (eg, TCR, FcR, KIR), hinge region-derived sequences, and other natural sequences from other proteins.

抗CD3 scFv包含 (i) 包含如SEQ ID NO: 15所示的vlCDR1、如SEQ ID NO: 16所示的vlCDR2、和如SEQ ID NO: 17所示的vlCDR3的scFv可變輕鏈結構域,和 (ii) 包含如SEQ ID NO: 11所示的vhCDR1、如SEQ ID NO: 12所示的vhCDR2、和如SEQ ID NO: 13所示的vhCDR3的scFv可變重鏈結構域。視需要,抗CD3 scFv包含可變重鏈結構域,該可變重鏈結構域包含與SEQ ID NO: 10中所示的胺基酸序列至少90%相同(例如,91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在各個方面,抗CD3 scFv包含可變重鏈結構域,該可變重鏈結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 10相比包含、視需要在CDR之外的區域包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。還視需要,抗CD3 scFv包含可變輕鏈結構域,該可變輕鏈結構域包含與SEQ ID NO: 14中所示的胺基酸序列至少90%相同(例如,91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在各個方面,抗CD3 scFv包含可變輕鏈結構域,該可變輕鏈結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 14相比包含、視需要在CDR之外的區域包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。就此而言,在多個實施方式中,抗CD3 scFv包含SEQ ID NO: 10的可變重鏈結構域和SEQ ID NO: 14的可變輕鏈結構域。視需要,可變重和可變輕鏈結構域藉由包含序列GKPGSGKPGSGKPGSGKPGS(SEQ ID NO: 158)的scFv結構域連接子連接。就此而言,在多個實施方式中,抗CD3 scFv包含與SEQ ID NO: 18中所示的胺基酸序列至少90%相同(例如,91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在各個方面,抗CD3 scFv包含胺基酸序列,該胺基酸序列與SEQ ID NO: 18相比包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。在多個方面,引起與參考序列的百分比同一性小於100%的序列變異表示CDR序列外的修飾。在多個方面,scFv包含本文所示的、屬於抗CD3_H1.32_L1.47的序列。The anti-CD3 scFv comprises (i) a scFv variable light chain domain comprising vlCDR1 as shown in SEQ ID NO: 15, vlCDR2 as shown in SEQ ID NO: 16, and vlCDR3 as shown in SEQ ID NO: 17, And (ii) an scFv variable heavy chain domain comprising vhCDR1 shown in SEQ ID NO: 11, vhCDR2 shown in SEQ ID NO: 12, and vhCDR3 shown in SEQ ID NO: 13. If desired, the anti-CD3 scFv contains a variable heavy chain domain that contains at least 90% of the amino acid sequence shown in SEQ ID NO: 10 (eg, 91%, 92%, 93 %, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical) amino acid sequence. In various aspects, the anti-CD3 scFv includes a variable heavy chain domain that includes an amino acid sequence that is included compared to SEQ ID NO: 10, optionally outside the CDR The region contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acid substitutions. If desired, the anti-CD3 scFv contains a variable light chain domain that contains at least 90% of the amino acid sequence shown in SEQ ID NO: 14 (eg, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical) amino acid sequence. In various aspects, the anti-CD3 scFv comprises a variable light chain domain comprising an amino acid sequence which is included compared to SEQ ID NO: 14, optionally outside the CDR The region contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 amino acid substitutions. In this regard, in various embodiments, the anti-CD3 scFv comprises the variable heavy chain domain of SEQ ID NO: 10 and the variable light chain domain of SEQ ID NO: 14. If necessary, the variable heavy and variable light chain domains are connected by a scFv domain linker comprising the sequence GKPGSGKPGSGKPGSGKPGS (SEQ ID NO: 158). In this regard, in various embodiments, the anti-CD3 scFv comprises at least 90% identical to the amino acid sequence shown in SEQ ID NO: 18 (eg, 91%, 92%, 93%, 94%, 95% , 96%, 97%, 98%, 99%, or 100% identical) amino acid sequence. In various aspects, the anti-CD3 scFv comprises an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 compared to SEQ ID NO: 18 , 13, 14 or 15 amino acid substitutions. In various aspects, sequence variation that results in a percent identity with the reference sequence of less than 100% indicates a modification outside the CDR sequence. In various aspects, the scFv contains the sequences shown herein that belong to anti-CD3_H1.32_L1.47.

「Fc」或「Fc區」或「Fc結構域」係指包含抗體恒定區的多肽,該抗體不包括第一恒定區免疫球蛋白結構域,並且在一些情況下是鉸鏈的一部分。因此,Fc結構域係指IgA、IgD和IgG的最後兩個恒定區免疫球蛋白結構域、IgE和IgM的最後三個恒定區免疫球蛋白結構域、和在該等結構域的N末端的柔性鉸鏈。對於IgA和IgM,Fc可以包括J鏈。對於IgG,Fc結構域包含免疫球蛋白結構域Cγ2和Cγ3(Cγ2和Cγ3)以及Cγ1(Cγ1)和Cγ2(Cγ2)之間的下鉸鏈區。異二聚體抗體較佳的是IgG抗體(其包括若干個亞類,包括但不限於IgG1、IgG2、IgG3、和IgG4)。儘管Fc區的邊界可以變化,人IgG重鏈Fc區通常定義為在其羧基末端包括殘基C226或P230,其中如在Kabat中根據歐洲索引進行編號。在一些實施方式中,對Fc區進行胺基酸修飾,例如,以改變與一種或多種FcγR受體或FcRn受體的結合。"Fc" or "Fc region" or "Fc domain" refers to a polypeptide that includes a constant region of an antibody that does not include an immunoglobulin domain of the first constant region and is part of a hinge in some cases. Therefore, the Fc domain refers to the last two constant region immunoglobulin domains of IgA, IgD and IgG, the last three constant region immunoglobulin domains of IgE and IgM, and the flexibility at the N-terminus of these domains Hinge. For IgA and IgM, Fc may include the J chain. For IgG, the Fc domain contains the immunoglobulin domains Cγ2 and Cγ3 (Cγ2 and Cγ3) and the lower hinge region between Cγ1 (Cγ1) and Cγ2 (Cγ2). The heterodimeric antibody is preferably an IgG antibody (which includes several subclasses, including but not limited to IgG1, IgG2, IgG3, and IgG4). Although the boundaries of the Fc region can vary, the human IgG heavy chain Fc region is generally defined as including residues C226 or P230 at its carboxy terminus, where it is numbered according to the European index as in Kabat. In some embodiments, amino acid modifications are made to the Fc region, for example, to alter binding to one or more FcγR receptors or FcRn receptors.

在多個方面,第一單體(即,第一Fc結構域和抗CD3 scFv)包含與SEQ ID NO: 335中所示的胺基酸序列至少90%相同(例如,與SEQ ID NO: 335中所示的胺基酸序列91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在多個方面,引起與參考序列的百分比同一性小於100%的序列變異表示CDR序列外的修飾。In various aspects, the first monomer (ie, the first Fc domain and the anti-CD3 scFv) comprises at least 90% identical amino acid sequence as shown in SEQ ID NO: 335 (eg, with SEQ ID NO: 335 The amino acid sequences shown in 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% are the same). In various aspects, sequence variation that results in a percent identity with the reference sequence of less than 100% indicates a modification outside the CDR sequence.

該方法的異二聚體抗體進一步包含b) 第二單體,該第二單體包含i) 抗CD38重鏈可變結構域和ii) 包含第二Fc結構域的重恒定結構域。抗CD38重鏈可變結構域包含以下CDR序列:如SEQ ID NO: 65所示的可變重鏈(vh)CDR1、如SEQ ID NO: 66所示的vhCDR2、和如SEQ ID NO: 67所示的vhCDR3。視需要,抗CD38重鏈可變結構域包含與SEQ ID NO: 64中所示的胺基酸序列至少90%相同(例如,與SEQ ID NO: 64中所示的胺基酸序列91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在各個方面,抗CD38可變重鏈結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 64相比包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。在多個方面,第二單體(即,抗CD38可變重鏈結構域和包含第二Fc結構域的重恒定結構域)包含與SEQ ID NO: 82中所示的胺基酸序列至少90%相同(例如,與SEQ ID NO: 82中所示的胺基酸序列91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在多個方面,引起與參考序列的百分比同一性小於100%的序列變異表示CDR序列外的修飾。The heterodimeric antibody of this method further comprises b) a second monomer comprising i) an anti-CD38 heavy chain variable domain and ii) a heavy constant domain comprising a second Fc domain. The anti-CD38 heavy chain variable domain comprises the following CDR sequences: variable heavy chain (vh) CDR as shown in SEQ ID NO: 65, vhCDR2 as shown in SEQ ID NO: 66, and as shown in SEQ ID NO: 67 VhCDR3 shown. If necessary, the anti-CD38 heavy chain variable domain contains at least 90% of the amino acid sequence shown in SEQ ID NO: 64 (for example, 91% of the amino acid sequence shown in SEQ ID NO: 64, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical) amino acid sequence. In various aspects, the anti-CD38 variable heavy chain domain comprises an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, compared to SEQ ID NO: 64 10, 11, 12, 13, 14 or 15 amino acid substitutions. In various aspects, the second monomer (ie, the anti-CD38 variable heavy chain domain and the heavy constant domain comprising the second Fc domain) comprises at least 90 amino acid sequences as shown in SEQ ID NO: 82 % Identical (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence shown in SEQ ID NO: 82 )'S amino acid sequence. In various aspects, sequence variation that results in a percent identity with the reference sequence of less than 100% indicates a modification outside the CDR sequence.

異二聚體抗體還包含c) 輕鏈,該輕鏈包含可變恒定結構域和抗CD38可變輕鏈(vl)結構域。抗CD38可變輕鏈結構域包含以下CDR:如SEQ ID NO: 69所示的vlCDR1、如SEQ ID NO: 70所示的vlCDR2、和如SEQ ID NO: 71所示的vlCDR3。視需要,抗CD38可變輕鏈結構域包含與SEQ ID NO: 68中所示的胺基酸序列至少90%相同(例如,與SEQ ID NO: 68中所示的胺基酸序列91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在各個方面,抗CD38可變輕鏈結構域包含胺基酸序列,該胺基酸序列與SEQ ID NO: 68相比包含1、2、3、4、5、6、7、8、9、10、11、12、13、14或15個胺基酸取代。在一些實施方式中,輕鏈(包含可變恒定結構域和抗CD38可變輕鏈結構域)包含與SEQ ID NO: 84中所示的胺基酸序列至少90%相同(例如,與SEQ ID NO: 84中所示的胺基酸序列91%、92%、93%、94%、95%、96%、97%、98%、99%、或100%相同)的胺基酸序列。在多個方面,引起與參考序列的百分比同一性小於100%的序列變異表示CDR序列外的修飾。The heterodimeric antibody also contains c) a light chain that contains a variable constant domain and an anti-CD38 variable light chain (vl) domain. The anti-CD38 variable light chain domain comprises the following CDRs: vlCDR1 as shown in SEQ ID NO: 69, vlCDR2 as shown in SEQ ID NO: 70, and vlCDR3 as shown in SEQ ID NO: 71. If desired, the anti-CD38 variable light chain domain contains at least 90% of the amino acid sequence shown in SEQ ID NO: 68 (for example, 91% of the amino acid sequence shown in SEQ ID NO: 68, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical) amino acid sequence. In various aspects, the anti-CD38 variable light chain domain comprises an amino acid sequence comprising 1, 2, 3, 4, 5, 6, 7, 8, 9, compared to SEQ ID NO: 68 10, 11, 12, 13, 14 or 15 amino acid substitutions. In some embodiments, the light chain (comprising a variable constant domain and an anti-CD38 variable light chain domain) comprises at least 90% identical amino acid sequence as shown in SEQ ID NO: 84 (eg, with SEQ ID NO: The amino acid sequence shown in 84: 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% are the same). In various aspects, sequence variation that results in a percent identity with the reference sequence of less than 100% indicates a modification outside the CDR sequence.

在較佳的實施方式中,異二聚體抗體包含含有抗CD3 scFv的第一單體,該抗CD3 scFv包含含有SEQ ID NO: 14的胺基酸序列的抗CD3可變輕鏈結構域和含有SEQ ID NO: 10的胺基酸序列的抗CD3可變重鏈結構域;第二單體,其包含含有SEQ ID NO: 64的胺基酸序列的抗CD38可變重鏈結構域,和含有SEQ ID NO: 68的胺基酸序列的可變輕鏈結構域的輕鏈。例如,在一個實施方式中,異二聚體抗體包含含有SEQ ID NO: 335的胺基酸序列的第一單體,含有SEQ ID NO: 82的胺基酸序列的第二單體,和含有SEQ ID NO: 84的胺基酸序列的輕鏈。In a preferred embodiment, the heterodimeric antibody comprises a first monomer containing an anti-CD3 scFv, the anti-CD3 scFv comprising an anti-CD3 variable light chain domain containing the amino acid sequence of SEQ ID NO: 14 and An anti-CD3 variable heavy chain domain containing the amino acid sequence of SEQ ID NO: 10; a second monomer comprising an anti-CD38 variable heavy chain domain containing the amino acid sequence of SEQ ID NO: 64, and The light chain of the variable light chain domain containing the amino acid sequence of SEQ ID NO: 68. For example, in one embodiment, the heterodimeric antibody comprises a first monomer containing the amino acid sequence of SEQ ID NO: 335, a second monomer containing the amino acid sequence of SEQ ID NO: 82, and containing The light chain of the amino acid sequence of SEQ ID NO: 84.

異二聚體抗體採用圖1A中稱為「開瓶器」的結構。「開瓶器」型式的一條重鏈含有scFv,並且另一條重鏈係「常規」Fab型式,包含可變重鏈和輕鏈。藉由使用促進異二聚體抗體形成的恒定區(例如,Fc結構域、CH1結構域和/或鉸鏈區)中的胺基酸變體將兩條鏈結合在一起。「開瓶器」格式具有若干個明顯的優點。依賴於兩種scFv構建體的抗體類似物通常具有穩定性和聚集問題,這藉由添加「常規」重鏈和輕鏈配對而在本揭露中得到緩解。另外,與依賴於兩條重鏈和兩條輕鏈的型式相反,重鏈和輕鏈的不正確配對(例如,重1與輕2配對等)不產生問題。The heterodimeric antibody adopts a structure called "opener" in FIG. 1A. One heavy chain of the "opener" type contains scFv, and the other heavy chain is a "regular" Fab type, which contains variable heavy and light chains. The two chains are joined together by the use of amino acid variants in a constant region (eg, Fc domain, CH1 domain, and/or hinge region) that promotes the formation of heterodimeric antibodies. The "opener" format has several obvious advantages. Antibody analogs that depend on two scFv constructs often have stability and aggregation problems, which are alleviated in the present disclosure by adding "regular" heavy and light chain pairs. In addition, in contrast to the version that relies on two heavy chains and two light chains, incorrect pairing of heavy chains and light chains (eg, heavy 1 and light 2 pairing, etc.) does not cause problems.

在多個方面,與野生型抗體結構域序列相比,異二聚體抗體包括促進異二聚體抗體形成(即,降低同二聚化)、調節抗體功能等的修飾。修飾通常集中在Fc結構域中(儘管這不是必需的)。藉由相對於天然序列的取代、缺失或插入的胺基酸位置提及修飾。例如,N434S或434S係相對於親本Fc多肽在位置434的絲胺酸的Fc結構域取代,其中根據EU索引編號。同樣,M428L/N434S定義了相對於親本Fc多肽具有取代M428L和N434S的Fc修飾。野生型胺基酸的同一性可以是未指明的,在這種情況下,前述變體稱為428L/434S。提供的取代的順序係任意的,也就是說,例如,428L/434S與M428L/N434S相同,等等。對於所討論的與抗體有關的所有位置,除非另外指出,胺基酸位置編號係根據EU索引進行。EU指數或如在Kabat或EU編號方案中的EU指數係指EU抗體的編號(Edelman 等人, 1969, Proc Natl Acad Sci USA [美國科學院院刊] 63: 78-85, 將其整體藉由引用併入本文)。修飾可以是添加、缺失、或取代。取代可包括天然存在的胺基酸,並且在某些情況下,可包括合成胺基酸。實例包括美國專利號6,586,207;國際專利公開案號WO 98/48032;WO 03/073238;US 2004-0214988A1;WO 05/35727A2;WO 05/74524A2;J. W. Chin 等人, (2002), Journal of the American Chemical Society [美國化學學會雜誌] 124: 9026-9027;J. W. Chin, 和P. G. Schultz, (2002), ChemBioChem [化學生物化學] 11: 1135-1137;J. W. Chin, 等人, (2002), PICAS United States of America [PICAS美利堅合眾國] 99: 11020-11024;和L. Wang, 和P. G. Schultz, (2002), Chem. [化學] 1-10, 均藉由引用整體併入。In various aspects, heterodimeric antibodies include modifications that promote heterodimeric antibody formation (ie, reduce homodimerization), modulate antibody function, etc. compared to wild-type antibody domain sequences. Modifications are usually concentrated in the Fc domain (although this is not required). The modification is mentioned by the amino acid position of the substitution, deletion or insertion relative to the natural sequence. For example, N434S or 434S is substituted with the Fc domain of serine at position 434 relative to the parent Fc polypeptide, which is numbered according to the EU index. Similarly, M428L/N434S defines Fc modifications that replace M428L and N434S relative to the parental Fc polypeptide. The identity of the wild-type amino acid may be unspecified, in which case the aforementioned variant is called 428L/434S. The order of replacement provided is arbitrary, that is, for example, 428L/434S is the same as M428L/N434S, and so on. For all positions in relation to the antibody in question, unless otherwise indicated, the amino acid position numbering is according to the EU index. The EU index or the EU index as in the Kabat or EU numbering scheme refers to the numbering of EU antibodies (Edelman et al., 1969, Proc Natl Acad Sci USA [Journal of the American Academy of Sciences] 63: 78-85, the entirety of which is cited by reference Incorporated into this article). Modifications can be additions, deletions, or substitutions. Substitutions can include naturally occurring amino acids, and in some cases, can include synthetic amino acids. Examples include US Patent No. 6,586,207; International Patent Publication Nos. WO 98/48032; WO 03/073238; US 2004-0214988A1; WO 05/35727A2; WO 05/74524A2; JW Chin et al., (2002), Journal of the American Chemical Society [Journal of the American Chemical Society] 124: 9026-9027; JW Chin, and PG Schultz, (2002), ChemBioChem [Chemical Biochemistry] 11: 1135-1137; JW Chin, et al., (2002), PICAS United States of America [PICAS United States of America] 99: 11020-11024; and L. Wang, and PG Schultz, (2002), Chem. [Chemistry] 1-10, all incorporated by reference.

有許多機制可用於產生異二聚體蛋白質。導致異二聚體產生的胺基酸變體被稱為「異二聚化變體」。異二聚化變體可包括空間變體(例如,下文描述的「杵臼(knobs and holes)」變體或「偏斜」變體和下文描述的「電荷對」變體)以及「pI變體」,該等變體允許同二聚體與異二聚體的分離純化。如國際專利公開案號WO 2014/145806中總體描述的(所述公開藉由引用以其整體併入本文並且特別用於討論「異二聚化變體」),異二聚化的有用機制包括如描述於WO 2014/145806中的「杵臼」(「KIH」;本文有時稱作「偏斜」變體)、「靜電轉向」或「電荷對」、描述於WO 2014/145806中的pI變體、和於WO 2014/145806和本文中概述的另外的常規Fc變體。There are many mechanisms that can be used to produce heterodimeric proteins. The amino acid variants that cause heterodimers are called "heterodimerization variants." Heterodimerization variants may include spatial variants (for example, the "knobs and holes" variants described below or "skew" variants and the "charge pair" variants described below) as well as the "pI variants" "These variants allow the separation and purification of homodimers and heterodimers. As described generally in International Patent Publication No. WO 2014/145806 (the disclosure is incorporated herein by reference in its entirety and specifically used to discuss "heterodimerization variants"), useful mechanisms for heterodimerization include As described in WO 2014/145806, the "peel and mortar" ("KIH"; sometimes referred to herein as the "skew" variant), "electrostatic steering" or "charge pair", the pI variation described in WO 2014/145806 , And additional conventional Fc variants outlined in WO 2014/145806 and herein.

有若干種基本機制可以導致異二聚體抗體的純化的簡化;一種依賴於使用pI變體,使得每種單體具有不同的pI,因此允許A-A、A-B和B-B二聚體蛋白的等電純化。可替代地,一些支架型式,例如「開瓶器」型式,也允許基於尺寸進行分離。也可能使相對於同二聚體「偏向」異二聚體的形成。因此,發現空間異二聚化變體和pI或電荷對變體的組合在本發明中特別有用。 pI(等電點)變體There are several basic mechanisms that can lead to the simplification of the purification of heterodimeric antibodies; one relies on the use of pI variants so that each monomer has a different pI, thus allowing isoelectric purification of AA, AB, and BB dimer proteins . Alternatively, some bracket styles, such as the "bottle opener" style, also allow for separation based on size. It is also possible to "bias" the formation of heterodimers relative to homodimers. Therefore, a combination of steric heterodimerization variants and pi or charge pair variants was found to be particularly useful in the present invention. pI (isoelectric point) variant

對於pI變體,可以將胺基酸修飾引入單體多肽的一種或兩種中;即,其中一種單體(本文簡稱為「單體A」)的pI可以遠離單體B工程化,或者單體A和B兩者都可以被改變,單體A的pI增加且單體B的pI減少。可以藉由去除或添加帶電荷的殘基(例如,中性胺基酸被帶正電荷或帶負電荷的胺基酸殘基替換,例如甘胺酸替換為麩胺酸)來完成任一種或兩種單體的pI變化,將帶電荷的殘基從正或負變為相反電荷(天冬胺酸變為離胺酸)或將帶電荷的殘基改變為中性殘基(例如,電荷的喪失;離胺酸變為絲胺酸)。許多該等變體示出於圖中。該等修飾在至少一種單體中產生pI的足夠變化,使得異二聚體可以與同二聚體分離。如熟悉該項技術者所理解的,這可以藉由使用「野生型」重鏈恒定區和變體區來實現,所述變體區已被工程化為增加或減少其pI(wt A-+B或wt A - -B),或藉由增加一個區域並減少其他區域(A+ -B-或A- B+)來實現。For pI variants, amino acid modifications can be introduced into one or both of the monomeric polypeptides; that is, the pI of one of the monomers (referred to herein as "monomer A") can be engineered away from monomer B, or single Both bodies A and B can be changed, the pI of monomer A increases and the pI of monomer B decreases. Either by removing or adding charged residues (for example, neutral amino acids are replaced by positively or negatively charged amino acid residues, for example, glycine is replaced by glutamate) or Changes in the pI of the two monomers, changing the charged residue from positive or negative to opposite charge (aspartic acid to ionic acid) or changing the charged residue to a neutral residue (for example, charge The loss of lysine to serine). Many such variations are shown in the figure. Such modifications produce sufficient changes in pi in at least one monomer so that the heterodimer can be separated from the homodimer. As understood by those skilled in the art, this can be achieved by using a "wild type" heavy chain constant region and a variant region that has been engineered to increase or decrease its pI(wt A-+ B or wt A--B), or by increasing one area and reducing other areas (A+ -B- or A- B+).

因此,在多個方面,異二聚體抗體在一個或多個恒定區中包含一個或多個修飾以藉由將胺基酸取代(「pI變體」或「pI取代」)摻入一種或兩種單體中來改變異二聚體蛋白質的至少一種(如果不是兩種)單體的等電點(pI)以形成「pI抗體」。如果兩種單體的pI相差少至0.1個pH單位,則0.2、0.3、0.4和0.5或更大都是合適的,可以實現異二聚體與兩種同二聚體的分離。Thus, in various aspects, a heterodimeric antibody includes one or more modifications in one or more constant regions to incorporate an amino acid substitution ("pI variant" or "pI substitution") into one or Of the two monomers, the isoelectric point (pI) of at least one (if not both) monomer of the heterodimeric protein is changed to form a "pI antibody." If the pi of the two monomers differ by as little as 0.1 pH units, then 0.2, 0.3, 0.4, and 0.5 or greater are suitable, and separation of the heterodimer from the two homodimers can be achieved.

為了實現良好分離,包括在每種或兩種單體上的pI變體的數量部分取決於組分的起始pI,例如,抗CD3 scFv和抗CD38 Fab的起始pI。即,為了確定要工程化的單體或「方向」(例如更正或更負),計算兩個結構域的Fv序列並由此做出決定。不同的Fv將具有可被利用的不同起始pI。在一些實施方式中,使用美國專利公開案號2014/0370013的圖19中的圖表,基於變體重鏈恒定結構域計算pI的變化。可替代地,可以比較每種單體的pI。通常,將pI工程化為導致每種單體的總pI差異為至少約0.1 log,較佳的是0.2至0.5。To achieve good separation, the number of pI variants included on each or both monomers depends in part on the starting pI of the component, for example, the starting pI of anti-CD3 scFv and anti-CD38 Fab. That is, in order to determine the monomer or "direction" to be engineered (eg, correction or negative), the Fv sequences of the two domains are calculated and a decision is made accordingly. Different Fvs will have different starting pis that can be utilized. In some embodiments, using the graph in FIG. 19 of US Patent Publication No. 2014/0370013, the change in pI is calculated based on the variable weight chain constant domain. Alternatively, the pi of each monomer can be compared. Generally, the pI is engineered to result in a total pI difference for each monomer of at least about 0.1 log, preferably 0.2 to 0.5.

pI變體的較佳的組合示出於圖10中。該等變化相對於IgG1示出,但所有同種型以及同種型雜合體都可以藉由這種方式改變。在重鏈恒定結構域來自IgG2-4的情況下,也可以使用R133E和R133Q。A preferred combination of pI variants is shown in FIG. These changes are shown relative to IgG1, but all isotypes and isotype hybrids can be changed in this way. In the case where the heavy chain constant domain is derived from IgG2-4, R133E and R133Q can also be used.

在一個實施方式中,Fab單體(陰性側)包含取代208D/295E/384D/418E/421D(N208D/Q295E/N384D/Q418E/N421D(當相對於人IgG1時))且scFv單體(陽性側)包含帶正電荷的scFv連接子,包括(GKPGS)4In one embodiment, the Fab monomer (negative side) contains substitutions 208D/295E/384D/418E/421D (N208D/Q295E/N384D/Q418E/N421D (when relative to human IgG1)) and the scFv monomer (positive side) ) Contains positively charged scFv linkers, including (GKPGS) 4 .

調節pI的修飾也可以在輕鏈中進行。用於降低輕鏈pI的胺基酸取代包括但不限於K126E、K126Q、K145E、K145Q、N152D、S156E、K169E、S202E、K207E和在輕鏈的C末端添加DEDE肽。基於恒定λ輕鏈的該類別的變化包括R108Q、Q124E、K126Q、N138D、K145T和Q199E處的一個或多個取代。此外,還可以增加輕鏈的pI。 偏斜/空間變體Modifications that regulate pI can also be made in the light chain. Amino acid substitutions for reducing the light chain pI include, but are not limited to, K126E, K126Q, K145E, K145Q, N152D, S156E, K169E, S202E, K207E, and the addition of DEDE peptides at the C-terminus of the light chain. Changes in this category based on constant lambda light chains include one or more substitutions at R108Q, Q124E, K126Q, N138D, K145T, and Q199E. In addition, the pI of the light chain can also be increased. Skew/spatial variant

存在許多合適的異二聚化偏斜變體組對。該等變體以「組」「對」的形式出現。即,對中的一組摻入到第一單體中,並且對的另一組摻入到第二單體中。應注意,該等組不一定表現為「杵臼」變體(其中一個單體上的殘基與另一個單體上的殘基之間具有一對一的對應);即,該等組對在兩個單體之間形成了介面,促進異二聚體的形成並阻礙同二聚體的形成,使得在生物條件下自發形成的異二聚體的百分比超過90%,而不是預期的50%(25%同二聚體A/A : 50%異二聚體A/B : 25%同二聚體B/B)。There are many suitable heterodimerization skew variant pairs. These variants appear in the form of "groups" and "pairs." That is, one group of the pair is incorporated into the first monomer, and the other group of the pair is incorporated into the second monomer. It should be noted that these groups do not necessarily appear to be "pestle and mortar" variants (there is a one-to-one correspondence between the residue on one monomer and the residue on the other monomer); An interface is formed between the two monomers, which promotes the formation of heterodimers and hinders the formation of homodimers, so that the percentage of spontaneously formed heterodimers under biological conditions exceeds 90% instead of the expected 50% (25% homodimer A/A: 50% heterodimer A/B: 25% homodimer B/B).

在一些實施方式中,藉由添加空間變體促進異二聚體的形成。即,藉由改變每條重鏈中的胺基酸,不同的重鏈更可能聯合以形成異二聚體結構而不是形成具有相同Fc胺基酸序列的同二聚體。圖9中包括空間變體的合適實例。In some embodiments, the formation of heterodimers is promoted by adding spatial variants. That is, by changing the amino acid in each heavy chain, different heavy chains are more likely to combine to form a heterodimer structure rather than forming a homodimer with the same Fc amino acid sequence. Suitable examples of spatial variants are included in FIG. 9.

也可視需要使用本領域通常稱為「杵臼」的一種機制,其指的是產生空間影響以促進異二聚體形成且不利於同二聚體形成的胺基酸工程化。這進一步描述於美國專利公開案號20130205756, Ridgway 等人, Protein Engineering [蛋白質工程] 9(7): 617 (1996);Atwell 等人, J. Mol. Biol. [分子生物學雜誌] 1997 270: 26;美國專利號8,216,805,將其全部以其整體藉由引用併入本文。附圖鑒別了許多依賴於「杵臼」的「單體A - 單體B」對。此外,如描述於Merchant 等人, Nature Biotech. [自然生物技術] 16: 677 (1998),該等「杵臼」突變可以與二硫鍵組合,使形成偏向異二聚化。A mechanism commonly referred to in the art as "pestle and mortar" can also be used as needed, which refers to the engineering of amino acids that produce steric effects to promote heterodimer formation and are not conducive to homodimer formation. This is further described in US Patent Publication No. 20130205756, Ridgway et al., Protein Engineering [protein engineering] 9(7): 617 (1996); Atwell et al., J. Mol. Biol. [Journal of Molecular Biology] 1997 270: 26; US Patent No. 8,216,805, which is incorporated by reference in its entirety. The figure identifies many "monomer A-monomer B" pairs that depend on the "mortar". In addition, as described in Merchant et al., Nature Biotech. [Natural Biotech] 16: 677 (1998), these "pestle and mortar" mutations can be combined with disulfide bonds to form biased heterodimerization.

發現用於生成異二聚體的另一種機制有時被稱為「靜電轉向」,如描述於Gunasekaran 等, J. Biol. Chem. [生物化學雜誌] 285(25): 19637 (2010)中,將其整體藉由引用併入本文。這有時在本文中稱為「電荷對」。在該實施方式中,靜電用於使形成偏向異二聚化。如熟悉該項技術者將理解的,該等也可能對pI有影響,並且因此對純化也有影響,並且因此在某些情況下也可以考慮pI變體。然而,由於產生該等以強制異二聚化並且不用作純化工具,因此它們被歸類為「空間變體」。該等包括但不限於D221E/P228E/L368E,與D221R/P228R/K409R配對(即,該等係單體對應組);和C220E/P228E/368E,與C220R/E224R/P228R/K409R配對。It was discovered that another mechanism for generating heterodimers is sometimes referred to as "electrostatic turning", as described in Gunasekaran et al., J. Biol. Chem. [Journal of Biochemistry] 285(25): 19637 (2010), The entirety is incorporated by reference. This is sometimes referred to as a "charge pair" in this article. In this embodiment, static electricity is used to bias the formation of heterodimerization. As those skilled in the art will understand, these may also have an effect on pI, and therefore purification, and therefore pI variants may also be considered in some cases. However, since these are produced to force heterodimerization and are not used as purification tools, they are classified as "spatial variants". These include, but are not limited to, D221E/P228E/L368E, paired with D221R/P228R/K409R (ie, the corresponding group of these monomers); and C220E/P228E/368E, paired with C220R/E224R/P228R/K409R.

另外的單體A和單體B變體可以任何量視需要和獨立地與其他變體組合,例如本文概述的pI變體或美國專利公開案號2012/0149876的圖37中示出的其他空間變體,該圖和圖例及其SEQ ID NO藉由引用明確地併入本文。The additional monomer A and monomer B variants can be combined with other variants as desired and independently, such as the pI variants outlined herein or other spaces shown in FIG. 37 of US Patent Publication No. 2012/0149876 Variants, the figure and the legend and its SEQ ID NO are expressly incorporated herein by reference.

在一些實施方式中,本文概述的空間變體可以視需要和獨立地與任何pI變體(或其他變體,例如Fc變體,FcRn變體等)一起摻入一種或兩種單體中,並且可以獨立地和視需要包括於本發明的蛋白質中或自本發明的蛋白質排除。In some embodiments, the spatial variants outlined herein can be incorporated into one or two monomers together with any pI variant (or other variants, such as Fc variants, FcRn variants, etc.) as needed and independently, And can be included in or excluded from the protein of the present invention independently and as necessary.

合適的偏斜變體列表可發現於圖9和圖12中。在許多實施方式中特別有用的是如下組對,包括但不限於,S364K/E357Q : L368D/K370S;L368D/K370S : S364K;L368E/K370S : S364K;T411T/E360E/Q362E : D401K;L368D/K370S : S364K/E357L和K370S : S364K/E357Q。就命名而言,「S364K/E357Q : L368D/K370S」對意指其中一個單體具有雙變體組S364K/E357Q,並且另一個單體具有雙變體組L368D/K370S。 用於調整功能的另外的Fc變體A list of suitable skewed variants can be found in Figures 9 and 12. Particularly useful in many embodiments are the following pairs, including but not limited to, S364K/E357Q: L368D/K370S; L368D/K370S: S364K; L368E/K370S: S364K; T411T/E360E/Q362E: D401K; L368D/K370S: S364K/E357L and K370S: S364K/E357Q. In terms of naming, the "S364K/E357Q: L368D/K370S" pair means that one of the monomers has the double variant group S364K/E357Q and the other monomer has the double variant group L368D/K370S. Additional Fc variants for function adjustment

存在許多有用的Fc胺基酸修飾,其可以由於各種原因而製備,包括但不限於,改變與一種或多種FcγR受體的結合、改變與FcRn受體的結合等。There are many useful Fc amino acid modifications that can be prepared for various reasons, including, but not limited to, changing the binding to one or more FcγR receptors, changing the binding to FcRn receptors, and so on.

可以進行許多有用的Fc取代以改變與一種或多種FcγR受體的結合。導致增加的結合以及降低的結合的取代可能是有用的。例如,已知增加與FcγRIIIa的結合通常導致ADCC增加(抗體依賴性細胞介導的細胞毒性;細胞介導的反應,其中表現FcγR的非特異性細胞毒性細胞識別靶標細胞上的結合抗體並且隨後引起靶標細胞的裂解)。類似地,在某些情況下,與FcγRIIb(抑制性受體)的結合降低也是有益的。發現本發明中有用的胺基酸取代包括美國專利公開案號2006/0024298(特別是圖41)、2006/0121032、2006/0235208、2007/0148170中列出的那些,所述公開全部藉由引用明確地併入本文,並且特別是其中揭露的變體。可以使用的特定變體包括但不限於236A、239D、239E、332E、332D、239D/332E、267D、267E、328F、267E/328F、236A/332E、239D/332E/330Y、239D、332E/330L、243A、243L、264A、264V和299T。Many useful Fc substitutions can be made to alter the binding to one or more FcyR receptors. Substitutions that lead to increased binding as well as decreased binding may be useful. For example, it is known that increased binding to FcγRIIIa generally leads to increased ADCC (antibody-dependent cell-mediated cytotoxicity; a cell-mediated response in which non-specific cytotoxic cells that exhibit FcγR recognize the binding antibody on the target cell and subsequently cause Lysis of target cells). Similarly, in some cases, reduced binding to FcyRIIb (inhibitory receptor) is also beneficial. Amino acid substitutions found useful in the present invention include those listed in US Patent Publication Nos. 2006/0024298 (especially FIG. 41), 2006/0121032, 2006/0235208, 2007/0148170, all of which are cited by reference Incorporated expressly in this article, and in particular the variants disclosed therein. Specific variants that can be used include, but are not limited to 236A, 239D, 239E, 332E, 332D, 239D/332E, 267D, 267E, 328F, 267E/328F, 236A/332E, 239D/332E/330Y, 239D, 332E/330L, 243A, 243L, 264A, 264V and 299T.

此外,發現另外的Fc取代,其可用於增加與FcRn受體的結合和增加血清半衰期,如美國專利公開案號2009/0163699中具體揭露的,所述公開藉由引用以其整體併入本文,所述取代包括但不限於434S、434A、428L、308F、259I、428L/434S、259I/308F、436I/428L、436I或V/434S、436V/428L和259I/308F/428L。In addition, additional Fc substitutions were found, which can be used to increase binding to FcRn receptors and increase serum half-life, as specifically disclosed in US Patent Publication No. 2009/0163699, which is incorporated herein by reference in its entirety, Such substitutions include but are not limited to 434S, 434A, 428L, 308F, 259I, 428L/434S, 259I/308F, 436I/428L, 436I or V/434S, 436V/428L and 259I/308F/428L.

另一類別的功能性變體係「FcγR消融變體」或「Fc敲除(FcKO或KO)」變體。對於一些治療應用,期望減少或去除Fc結構域與一種或多種或全部Fcγ受體(例如,FcγR1、FcγRIIa、FcγRIIb、FcγRIIIa等)的正常結合,以避免另外的作用機制。即,例如,特別是在使用單價結合CD3的雙特異性抗體時,可能希望消融FcγRIIIa結合以消除或顯著降低ADCC活性。考慮任何水平的降低(例如,結合或活性降低50%、60%、70%、80%、90%、或100%)。消融變體修飾的實例描繪於圖11中,並且每個可以獨立地和視需要包括或排除,較佳的方面利用選自以下群組的消融變體,該群組由以下項組成:G236R/L328R、E233P/L234V/L235A/G236del/S239K、E233P/L234V/L235A/G236del/S267K、E233P/L234V/L235A/G236del/S239K/A327G、E233P/L234V/L235A/G236del/S267K/A327G和E233P/L234V/L235A/G236del。應注意,本文引用的消融變體消除FcγR結合,但通常不消除FcRn結合。 另外的抗體考慮Another class of functional variants are "FcγR ablation variants" or "Fc knockout (FcKO or KO)" variants. For some therapeutic applications, it is desirable to reduce or remove the normal binding of the Fc domain to one or more or all Fcγ receptors (eg, FcγR1, FcγRIIa, FcγRIIb, FcγRIIIa, etc.) to avoid additional mechanisms of action. That is, for example, particularly when using bivalent antibodies that monovalently bind to CD3, it may be desirable to ablate FcγRIIIa binding to eliminate or significantly reduce ADCC activity. Consider any level of reduction (eg, 50%, 60%, 70%, 80%, 90%, or 100% reduction in binding or activity). Examples of ablation variant modifications are depicted in FIG. 11 and each can be included or excluded independently and as needed. The preferred aspect utilizes ablation variants selected from the group consisting of the following: G236R/ L328R, E233P/L234V/L235A/G236del/S239K, E233P/L234V/L235A/G236del/S267K, E233P/L234V/L235A/G236del/S239K/A327G, E233P/L234V/L235A/G236del/S267K/A327G and E233P/L234V L235A/G236del. It should be noted that the ablation variants cited herein eliminate FcγR binding, but generally do not eliminate FcRn binding. Additional antibody considerations

本揭露考慮了在該方法中使用其他異二聚體抗體。例如,可變重和輕序列,以及上文描述的scFv序列(和包含該等可變重和輕序列的Fab序列)能以其他型式使用,例如國際專利公開案號2014/145806的圖2中描繪的那些(其圖、格式和圖例藉由引用明確地併入本文),連同圖1A和1B。此外,CD3結合區和CD38結合區的胺基酸序列(例如,CDR序列、可變輕鏈和可變重鏈序列、和/或全長重鏈和輕鏈序列)在一併提供的序列表中提供並總結在圖22中。本文考慮了圖22中引用的序列的任何組合,只要所得的異二聚體抗體與CD3和CD38兩者接合。抗CD3/抗CD38抗體進一步參考國際專利公開案號WO 2016/086196;美國專利公開案號20160215063;國際專利公開案號WO 2017/091656;和美國專利號9,822,186進行描述,所述參考以其整體藉由引用併入本文,並且特別是關於抗CD3/抗CD38抗體及其胺基酸和核酸序列、序列表和圖的說明。This disclosure considers the use of other heterodimeric antibodies in this method. For example, variable heavy and light sequences, as well as the scFv sequence described above (and Fab sequences containing such variable heavy and light sequences) can be used in other forms, such as in Figure 2 of International Patent Publication No. 2014/145806 Those depicted (the figures, formats and legends of which are expressly incorporated herein by reference), together with FIGS. 1A and 1B. In addition, the amino acid sequences of the CD3 binding region and the CD38 binding region (for example, CDR sequences, variable light chain and variable heavy chain sequences, and/or full-length heavy chain and light chain sequences) are provided in the sequence listing provided together Provided and summarized in Figure 22. This article considers any combination of the sequences cited in Figure 22, as long as the resulting heterodimeric antibody is conjugated to both CD3 and CD38. Anti-CD3/anti-CD38 antibodies are further described with reference to International Patent Publication No. WO 2016/086196; U.S. Patent Publication No. 20160215063; International Patent Publication No. WO 2017/091656; and U.S. Patent No. 9,822,186 are described, the reference is borrowed in its entirety Incorporated herein by reference, and in particular regarding the description of anti-CD3/anti-CD38 antibodies and their amino acid and nucleic acid sequences, sequence listings and figures.

關於CD3結合,異二聚體抗體可包含對CD3具有中或「中等」親和力的抗CD3抗原結合結構域(其也結合CD38)。就此而言,異二聚體抗體與CD3結合的親和力(KD)為約15-50 nM(例如,約16-50 nM、15-45 nM、約20-40 nM、約25-40 nM、或約30-40 nM),視需要,使用美國專利公開案號20160215063和國際專利公開案號WO 2017/091656中描述的測定法測量親和力,所述公開藉由引用併入本文。With regard to CD3 binding, the heterodimeric antibody may comprise an anti-CD3 antigen binding domain with medium or "moderate" affinity for CD3 (which also binds CD38). In this regard, the affinity (KD) of the heterodimeric antibody to CD3 is about 15-50 nM (eg, about 16-50 nM, 15-45 nM, about 20-40 nM, about 25-40 nM, or Approximately 30-40 nM), if necessary, the affinity is measured using the assay described in US Patent Publication No. 20160215063 and International Patent Publication No. WO 2017/091656, which publication is incorporated herein by reference.

在另一個方面,該方法的異二聚體抗體包含抗CD3抗原結合結構域,其係CD3的「強」或「高親和力」結合劑(例如,一個實例係描繪為H1.30_L1.47(視需要包括適當的帶電荷的連接子)的重鏈和輕鏈可變結構域)並且還結合CD38。在多個實施方式中,抗體構建體以約3-15 nM(例如,3-10 nM或4-7 nM)的親和力(KD)結合CD3,視需要,使用美國專利公開案號20160215063和國際專利公開案號WO 2017/091656中描述的測定法測量親和力,所述公開藉由引用併入本文。在其他實施方式中,該方法採用包含抗CD3抗原結合結構域的異二聚體抗體,該抗CD3抗原結合結構域係CD3的「輕」或「低親和力」結合劑。就此而言,視需要異二聚體抗體與CD3結合的親和力(KD)為約51 nM或更多(例如,約51-100 nM),視需要,使用美國專利公開案號20160215063和國際專利公開案號WO 2017/091656中描述的測定法測量親和力,所述公開藉由引用併入本文。In another aspect, the heterodimeric antibody of the method comprises an anti-CD3 antigen binding domain, which is a "strong" or "high affinity" binding agent for CD3 (for example, an example is depicted as H1.30_L1.47 (see The heavy chain and light chain variable domains need to include appropriate charged linkers) and also bind CD38. In various embodiments, the antibody construct binds CD3 with an affinity (KD) of about 3-15 nM (eg, 3-10 nM or 4-7 nM), using US Patent Publication No. 20160215063 and international patents as needed The assay described in Publication No. WO 2017/091656 measures affinity, which publication is incorporated herein by reference. In other embodiments, the method uses a heterodimeric antibody comprising an anti-CD3 antigen binding domain that is a "light" or "low affinity" binding agent for CD3. In this regard, the affinity of the heterodimeric antibody to CD3 (KD) is about 51 nM or more (for example, about 51-100 nM) as needed, and US Patent Publication No. 20160215063 and International Patent Publication are used as needed The assay described in case number WO 2017/091656 measures affinity, and the disclosure is incorporated herein by reference.

雙特異性抗體對CD38的親和力也對抗體靶向表現CD38的細胞的功效有影響。對CD38具有「中等」或「低」親和力的雙特異性抗體能夠在體外和體內有效殺死靶標細胞,同時具有降低的毒性譜。在多個實施方式中,對CD38證明「高」親和力的雙特異性抗體以例如低於1 nM的親和力(KD)結合CD38;對CD38證明「中等」或「中」親和力的雙特異性抗體以例如約1-10 nM(例如2-8 nM或3-7 nM)的親和力(KD)結合CD38;對CD38證明「低」或「輕」親和力的雙特異性抗體以例如約11 nM或更多(例如11-100 nM)的親和力(KD)結合CD38,全部親和力視需要使用美國專利公開案號20160215063和國際專利公開案號WO 2017/091656中所示的方法測量,所述公開藉由引用併入本文。The affinity of the bispecific antibody for CD38 also has an effect on the efficacy of the antibody in targeting cells expressing CD38. Bispecific antibodies with "moderate" or "low" affinity for CD38 can effectively kill target cells in vitro and in vivo, while having a reduced toxicity profile. In various embodiments, bispecific antibodies that demonstrate "high" affinity for CD38 bind to CD38 with an affinity (KD) of, for example, less than 1 nM; bispecific antibodies that demonstrate "moderate" or "medium" affinity for CD38 For example, an affinity (KD) of about 1-10 nM (eg, 2-8 nM or 3-7 nM) binds CD38; bispecific antibodies that demonstrate "low" or "light" affinity for CD38, for example, about 11 nM or more (Eg 11-100 nM) affinity (KD) combined with CD38, the full affinity is measured using the method shown in US Patent Publication No. 20160215063 and International Patent Publication No. WO 2017/091656, which is incorporated by reference and Into this article.

通常,特異性結合可以展現為,例如,抗體對抗原具有至少約10-4 M、至少約10-5 M、至少約10-6 M、至少約10-7 M、至少約10-8 M、至少約10-9 M,可替代地至少約10-10 M、至少約10-11 M、至少約10-12 M或更高的KD,其中KD係指特定抗體-抗原相互作用的解離速率。典型地,特異性結合抗原的抗體相對於抗原具有對照分子的20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多倍的KD。同樣,特定抗原的特異性結合可以展現為,例如,相對於對照,抗體對抗原具有如下抗原或表位KA或Ka:至少20倍、50倍、100倍、500倍、1000倍、5,000倍、10,000倍或更多,其中KA或Ka係指特定抗體-抗原相互作用的解離率。Generally, specific binding can be exhibited as, for example, an antibody has at least about 10 -4 M, at least about 10 -5 M, at least about 10 -6 M, at least about 10 -7 M, at least about 10 -8 M, A KD of at least about 10 -9 M, alternatively at least about 10 -10 M, at least about 10 -11 M, at least about 10 -12 M or higher, where KD refers to the rate of dissociation of a particular antibody-antigen interaction. Typically, an antibody that specifically binds to an antigen has a KD that is 20-fold, 50-fold, 100-fold, 500-fold, 1000-fold, 5,000-fold, 10,000-fold, or more than the control molecule relative to the antigen. Similarly, the specific binding of a specific antigen can be exhibited as, for example, relative to a control, the antibody has the following antigen or epitope KA or Ka for the antigen: at least 20-fold, 50-fold, 100-fold, 500-fold, 1000-fold, 5,000-fold, 10,000 times or more, where KA or Ka refers to the dissociation rate of a specific antibody-antigen interaction.

視需要,異二聚體抗體在位置220處包含半胱胺酸取代絲胺酸;通常,這係在異二聚體抗體的「scFv單體」側,儘管它也可以在「Fab單體」側或兩者上,以減少二硫化物的形成。本文序列中具體包括該等取代的半胱胺酸中的一個或兩個(C220S)。 片段If desired, the heterodimeric antibody contains cysteine substituted serine at position 220; usually, this is on the "scFv monomer" side of the heterodimeric antibody, although it can also be on the "Fab monomer" Side or both to reduce disulfide formation. The sequences herein specifically include one or both of these substituted cysteines (C220S). Snippet

本揭露還考慮使用抗體片段(與構成抗體的天然生物形式的全長抗體不同,所述抗體片段包括可變區和恒定區,所述區通常包括Fab和Fc結構域以及視需要的額外抗原結合結構域,例如scFv)。抗體片段含有至少一個恒定結構域,其可以被工程化以產生異二聚體,例如pI工程化。可以使用的其他抗體片段包括含有一個或多個已經過pI工程化的本發明的CH1、CH2、CH3、鉸鏈和CL結構域的片段。 嵌合/人源化The present disclosure also considers the use of antibody fragments (unlike the full-length antibodies that make up the natural biological form of the antibody, the antibody fragments include variable and constant regions, which usually include Fab and Fc domains and optionally additional antigen binding structures Domain, such as scFv). Antibody fragments contain at least one constant domain, which can be engineered to produce heterodimers, such as pi engineering. Other antibody fragments that can be used include fragments containing one or more CH1, CH2, CH3, hinge, and CL domains of the invention that have been pi engineered. Chimerism/Humanization

異二聚體抗體可以是來自不同物種的混合物,例如嵌合抗體和/或人源化抗體。通常,「嵌合抗體」和「人源化抗體」均指組合來自一種以上物種的區域的抗體。例如,「嵌合抗體」傳統上包含來自小鼠(或在一些情況下為大鼠)和來自人的一個或多個恒定區的一個或多個可變區。「人源化抗體」通常是指非人抗體,其具有與人抗體中發現的序列交換的可變域框架區。通常,在人源化抗體中,除CDR之外的整個抗體由人起源的多核苷酸編碼或與這種抗體相同(其CDR內除外)。CDR(部分或全部由源自非人生物體的核酸編碼)被接枝到人抗體可變區的β-折疊框架中以產生抗體,其特異性由接枝的CDR決定。這種抗體的產生描述於例如國際專利公開案號WO 92/11018, Jones, 1986, Nature [自然] 321: 522-525,和Verhoeyen 等人, 1988, Science [科學] 239: 1534-1536,所述公開均藉由引用整體併入。通常需要選擇的受體框架殘基向相應的供體殘基的「回復突變」,以重新獲得在初始接枝的構建體中喪失的親和力(美國專利號5530101;5585089;5693761;5693762;6180370;5859205;5821337;6054297;和6407213,均藉由引用整體併入)。人源化抗體還包含免疫球蛋白(典型地是人免疫球蛋白)恒定區的至少一部分,並且因此典型地包含人Fc區。使用具有基因工程化免疫系統的小鼠也可以產生人源化抗體。Roque 等人, 2004, Biotechnol. Prog. [生物技術進展] 20: 639-654, 藉由引用整體併入。用於人源化和重組態非人抗體的多種技術和方法係本領域熟知的(參見Tsurushita和Vasquez, 2004, Humanization of Monoclonal Antibodies[單株抗體的人源化], Molecular Biology of B Cells [B細胞的分子生物學], 533-545, Elsevier Science(愛思唯爾科學出版社)(美國),和其中引用的參考文獻,全部藉由引用併入本文)。人源化方法包括但不限於描述於Jones 等人, 1986, Nature [自然] 321: 522-525;Riechmann 等人,1988; Nature [自然] 332: 323-329;Verhoeyen 等人, 1988, Science [科學], 239: 1534-1536; Queen 等人, 1989, Proc Natl Acad Sci, USA [美國科學院院刊] 86: 10029-33;He 等人, 1998, J. Immunol. [免疫學雜誌] 160: 1029-1035;Carter 等人, 1992, Proc Natl Acad Sci USA [美國科學院院刊] 89: 4285-9, Presta 等人, 1997, Cancer Res. [癌症研究] 57(20): 4593-9;Gorman 等人, 1991, Proc. Natl. Acad. Sci. USA [美國科學院院刊] 88: 4181-4185;O'Connor 等人, 1998, Protein Eng [蛋白質工程] 11: 321-8的方法,全部藉由引用併入本文。降低非人抗體可變區的免疫原性的人源化或其他方法可包括表面重修方法,如例如描述於Roguska 等人, 1994, Proc. Natl. Acad. Sci. USA [美國科學院院刊] 91: 969-973中,藉由引用整體併入。治療方案 The heterodimeric antibody may be a mixture from different species, such as chimeric antibodies and/or humanized antibodies. Generally, both "chimeric antibodies" and "humanized antibodies" refer to antibodies that combine regions from more than one species. For example, a "chimeric antibody" traditionally contains one or more variable regions from one (or in some cases, rats) and one or more constant regions from humans. "Humanized antibodies" generally refer to non-human antibodies that have variable domain framework regions that are exchanged with sequences found in human antibodies. Generally, in humanized antibodies, the entire antibody except the CDR is encoded by a polynucleotide of human origin or is the same as such antibody (except within its CDR). CDRs (partially or wholly encoded by nucleic acids derived from non-human organisms) are grafted into the β-sheet framework of the variable regions of human antibodies to produce antibodies whose specificity is determined by the grafted CDRs. The production of such antibodies is described in, for example, International Patent Publication No. WO 92/11018, Jones, 1986, Nature [Natural] 321: 522-525, and Verhoeyen et al., 1988, Science [Science] 239: 1534-1536. The disclosures are incorporated by reference in their entirety. It is usually necessary to "back-mutate" the selected acceptor framework residues to the corresponding donor residues in order to regain the lost affinity in the initially grafted construct (US Patent Nos. 5530101; 5585089; 5693861; 5693762; 6180370; 5859205; 5821337; 6054297; and 6407213, both of which are incorporated by reference in their entirety). Humanized antibodies also comprise at least a portion of the constant region of an immunoglobulin (typically human immunoglobulin), and therefore typically a human Fc region. Humanized antibodies can also be produced using mice with genetically engineered immune systems. Roque et al., 2004, Biotechnol. Prog. [Biotechnology Progress] 20: 639-654, incorporated by reference in its entirety. Various techniques and methods for humanizing and reconfiguring non-human antibodies are well known in the art (see Tsurushita and Vasquez, 2004, Humanization of Monoclonal Antibodies [Molecularization of Monoclonal Antibodies], Molecular Biology of B Cells [ Molecular Biology of B Cells], 533-545, Elsevier Science (Elsevier Science Press) (USA), and references cited therein, all of which are incorporated herein by reference). Humanization methods include but are not limited to those described in Jones et al., 1986, Nature [Natural] 321: 522-525; Riechmann et al., 1988; Nature [Natural] 332: 323-329; Verhoeyen et al., 1988, Science [ Science], 239: 1534-1536; Queen et al., 1989, Proc Natl Acad Sci, USA [Proceedings of the American Academy of Sciences] 86: 10029-33; He et al., 1998, J. Immunol. [Journal of Immunology] 160: 1029-1035; Carter et al., 1992, Proc Natl Acad Sci USA [Proceedings of the American Academy of Sciences] 89: 4285-9, Presta et al., 1997, Cancer Res. [Cancer Research] 57(20): 4593-9; Gorman Et al., 1991, Proc. Natl. Acad. Sci. USA [Proceedings of the American Academy of Sciences] 88: 4181-4185; O’Connor et al., 1998, Protein Eng [Protein Engineering] 11: 321-8, all borrowed Incorporated by reference. Humanization or other methods to reduce the immunogenicity of variable regions of non-human antibodies may include surface resurfacing methods, as described, for example, in Roguska et al., 1994, Proc. Natl. Acad. Sci. USA [Proceedings of the American Academy of Sciences] 91 : 969-973, incorporated by reference in its entirety. treatment solutions

將異二聚體抗體投與給有需要的受試者,例如患有多發性骨髓瘤的人類受試者,例如復發/難治性多發性骨髓瘤。復發性骨髓瘤的特徵在於先前應答後的疾病復發。發訊號通知疾病的實驗室和放射學標準的實例包括但不限於血清或尿單株蛋白(M蛋白)增加 ≥ 25%或來自最低點的涉及和未涉及的無血清輕鏈之間 ≥ 25%的差異,或新的漿細胞瘤或高鈣血症的發展。Sonneveld等人., Haematologica [血液病學]. 2016年四月; 101(4): 396-406。在非分泌性疾病患者中,復發的特徵在於骨髓漿細胞的增加。復發性疾病的訊號的特徵還在於一個或多個CRAB標準的出現或再現或快速且一致的生化復發。難治性骨髓瘤係對治療無應答的骨髓瘤。復發/難治性多發性骨髓瘤係指先前對先前療法至少產生最小應答的患者中在治療時或在最後治療的60天內變得無應答或進展的疾病。Sonneveld, 如上述; Anderson 等人., Leukemia. 2008;22(2): 231-239。Heterodimer antibodies are administered to subjects in need, such as human subjects with multiple myeloma, such as relapsed/refractory multiple myeloma. Recurrent myeloma is characterized by a relapse of the disease after a previous response. Examples of laboratory and radiological criteria for signaling diseases include but are not limited to serum or urine single protein (M protein) increase ≥ 25% or ≥ 25% from involved and uninvolved serum-free light chains from the lowest point Differences, or the development of new plasmacytomas or hypercalcemia. Sonneveld et al., Haematologica [Hematology]. April 2016; 101(4): 396-406. In patients with non-secretory diseases, the recurrence is characterized by an increase in bone marrow plasma cells. The signs of recurrent disease are also characterized by the appearance or recurrence of one or more CRAB criteria or rapid and consistent biochemical relapse. Refractory myeloma is a myeloma that does not respond to treatment. Relapsed/refractory multiple myeloma refers to a disease that becomes unresponsive or progresses at the time of treatment or within 60 days of the last treatment among patients who have previously produced at least a minimal response to previous therapy. Sonneveld, as mentioned above; Anderson et al., Leukemia. 2008; 22(2): 231-239.

本揭露的方法包括向受試者投與約0.05 mg至約200 mg的異二聚體抗體的劑量。在各種實施方式中,劑量為約0.5 mg至約200 mg、約0.5至約150 mg、約1 mg至約150 mg、約10 mg至約100 mg、約10 mg至約200 mg、約4 mg至約200 mg、約12 mg至約200 mg、約12 mg至約100 mg、約36 mg至約200 mg、約36 mg至約100 mg或約100 mg至約200 mg。在該方法的各個方面,投與給受試者的劑量為約0.05 mg、約0.15 mg、約0.45 mg、約1.35 mg、約4 mg、約12 mg、約36 mg、約100 mg、或約200 mg。The method of the present disclosure includes administering a dose of about 0.05 mg to about 200 mg of heterodimeric antibody to the subject. In various embodiments, the dosage is about 0.5 mg to about 200 mg, about 0.5 to about 150 mg, about 1 mg to about 150 mg, about 10 mg to about 100 mg, about 10 mg to about 200 mg, about 4 mg To about 200 mg, about 12 mg to about 200 mg, about 12 mg to about 100 mg, about 36 mg to about 200 mg, about 36 mg to about 100 mg, or about 100 mg to about 200 mg. In various aspects of the method, the dose administered to the subject is about 0.05 mg, about 0.15 mg, about 0.45 mg, about 1.35 mg, about 4 mg, about 12 mg, about 36 mg, about 100 mg, or about 200 mg.

在可替代的方面,單劑量的異二聚體抗體為至少約0.05 mg、至少約0.15 mg、至少約0.45 mg、至少約1.35 mg、至少約4 mg、至少約12 mg、至少約36 mg或至少約100 mg。在各個方面,單劑量的異二聚體抗體不超過約200 mg(例如,不超過約100 mg或不超過約36 mg)。應當理解,可以藉由多次投與(即,分次劑量)來投與單劑量,使得多次投與組合為本文所述的劑量。例如,多次投與(例如,兩次或多次注射)組合為至少約0.05 mg、至少約0.15 mg、至少約0.45 mg、至少約1.35 mg、至少約4 mg、至少約12 mg、至少約36 mg或至少約100 mg。在各個方面,單劑量異二聚體抗體的多次投與組合為不超過約200 mg(例如,不超過約100 mg或不超過約36 mg)。In an alternative aspect, the single-dose heterodimeric antibody is at least about 0.05 mg, at least about 0.15 mg, at least about 0.45 mg, at least about 1.35 mg, at least about 4 mg, at least about 12 mg, at least about 36 mg, or At least about 100 mg. In various aspects, a single dose of heterodimeric antibody does not exceed about 200 mg (eg, does not exceed about 100 mg or does not exceed about 36 mg). It should be understood that a single dose can be administered by multiple administrations (ie, divided doses), such that the multiple administration combination is the dose described herein. For example, multiple administrations (eg, two or more injections) combine at least about 0.05 mg, at least about 0.15 mg, at least about 0.45 mg, at least about 1.35 mg, at least about 4 mg, at least about 12 mg, at least about 36 mg or at least about 100 mg. In various aspects, the multiple-dose combination of single-dose heterodimeric antibodies is no more than about 200 mg (eg, no more than about 100 mg or no more than about 36 mg).

在該方法的各個方面,在治療過程中調整劑量。例如,受試者在一次或多次投與時投與初始劑量,並且在一次或多次後續投與中使用更高劑量。換句話說,本揭露考慮在治療過程中至少一次增加異二聚體抗體的劑量。或者,可以在治療過程中減少劑量,使得隨著治療的進行,異二聚體抗體的量減少。In various aspects of the method, the dosage is adjusted during the treatment. For example, the subject administers the initial dose at one or more doses and uses a higher dose in one or more subsequent doses. In other words, the present disclosure considers increasing the dose of heterodimeric antibody at least once during the course of treatment. Alternatively, the dose can be reduced during the treatment so that as the treatment progresses, the amount of heterodimeric antibody decreases.

本公開考慮了一種方法,其中在治療期間投與多個(即,兩個或更多個)劑量的異二聚體抗體。各劑量可以任何間隔投與,例如每週一次,每週兩次,每週三次,每週四次或每週五次。可以每兩週,每三週或每四週投與單獨劑量。換言之,在一些方面,在給受試者的異二聚體抗體投與之間經過兩個星期的等待期。劑量投與之間的等待期在治療期間不需要一致。換言之,可以在治療過程中調整劑量之間的間隔。在一些方面,該方法包括在治療的第一週和第二週每週向受試者投與兩個劑量的異二聚體抗體(即,第1週和第2週每週兩次),在治療的第三週和第四週每週向受試者投與一個劑量的異二聚體抗體(即,第3週和第4週每週一次),並且從第5週開始到治療結束每兩週投與一個劑量的異二聚體抗體(即,從第5週開始到治療結束,劑量間隔為兩週的等待期)。雖然不希望受任何特定理論的束縛,但第一次投與的劑量之間的較短間隔(例如,每週兩個劑量)促進了快速的靶細胞清除。增加如本文所述的劑量間隔可維持細胞清除,同時使與免疫療法相關的不希望的副作用最小化。或者,在各個方面,該方法包括在治療的第1-4週每週投與一個劑量的異二聚體抗體,並且視需要從第5週開始至治療結束每兩週投與一個劑量的異二聚體抗體。The present disclosure contemplates a method in which multiple (ie, two or more) doses of heterodimeric antibody are administered during treatment. The doses can be administered at any interval, for example, once a week, twice a week, three times a week, four times a week or five times a week. Individual doses can be administered every two weeks, every three weeks or every four weeks. In other words, in some aspects, a two-week waiting period elapses between administration of the heterodimeric antibody to the subject. The waiting period between dose administration need not be consistent during treatment. In other words, the interval between doses can be adjusted during treatment. In some aspects, the method includes administering two doses of heterodimeric antibody to the subject each week during the first and second weeks of treatment (ie, twice a week in Week 1 and Week 2), A dose of heterodimeric antibody is administered to the subject weekly during the third and fourth weeks of treatment (ie, once a week in weeks 3 and 4), and from week 5 to the end of treatment A dose of heterodimeric antibody is administered every two weeks (ie, from the 5th week to the end of treatment with a two-week waiting period between doses). Although not wishing to be bound by any particular theory, the shorter interval between the first dose administered (eg, two doses per week) promotes rapid target cell clearance. Increasing the dosage interval as described herein can maintain cell clearance while minimizing undesirable side effects associated with immunotherapy. Alternatively, in various aspects, the method includes administering a dose of heterodimeric antibody weekly during the first 1-4 weeks of treatment, and if necessary, administering a dose of heterodimeric antibody every two weeks from week 5 to the end of treatment Dimer antibody.

多個劑量的異二聚體抗體經例如三個月至約18個月、或約三個月至約12個月、或約三個月至約九個月、或約三個月至約六個月、或約三個月至約八個月、或約六個月至約18個月、或約六個月至約12個月、或約八個月至約12個月、或約六個月至約八個月、或約八個月至約12個月(例如,約八個月)的治療期投與。視需要,多個(即,兩個或更多個)劑量的異二聚體抗體經約12週至約52週、或約12週至約36週、或約24週至約32週的治療期投與,其中每週兩次、每週一次、每兩週一次或每四週一次投與劑量。Multiple doses of heterodimeric antibody over, for example, three months to about 18 months, or about three months to about 12 months, or about three months to about nine months, or about three months to about six Months, or about three months to about eight months, or about six months to about 18 months, or about six months to about 12 months, or about eight months to about 12 months, or about six The treatment period is from about one month to about eight months, or from about eight months to about 12 months (eg, about eight months). If desired, multiple (ie, two or more) doses of heterodimeric antibody are administered over a treatment period of about 12 weeks to about 52 weeks, or about 12 weeks to about 36 weeks, or about 24 weeks to about 32 weeks , Where the dose is administered twice a week, once a week, once every two weeks or once every four weeks.

「治療」多發性骨髓瘤意味著實現對疾病的任何陽性治療應答。例如,陽性治療應答包括疾病中的一種或多種以下改善:(1) 贅生性細胞數量減少;(2) 贅生性細胞死亡增加;(3) 贅生性細胞存活的抑制;(4) 腫瘤細胞的副蛋白產生的減少;(5) 腫瘤生長的抑制(即,在一定程度上減慢,較佳的是停止);(6) 提高的患者存活率;以及 (7) 與疾病或病症相關的一種或多種症狀有所緩解。可以使用諸如磁共振成像(MRI)掃描、x射線照相成像、電腦斷層掃描(CT)掃描、骨骼掃描成像、內視鏡檢查和腫瘤活檢取樣(包括骨髓穿刺(BMA)和循環中腫瘤細胞的計數)的篩選技術來針對腫瘤形態變化(即,總體腫瘤負荷,腫瘤大小等)評估腫瘤應答。不需要完全的治療應答(即,沒有臨床可檢測的疾病,任何先前異常的射線照相研究、骨髓和腦脊液(CSF)或異常單株蛋白的正常化);預期任何程度的改善。在實例中列出了與疾病治療和改善相關的各種其他參數。"Treatment" multiple myeloma means achieving any positive treatment response to the disease. For example, a positive treatment response includes one or more of the following improvements in the disease: (1) a reduction in the number of neoplastic cells; (2) an increase in neoplastic cell death; (3) an inhibition of neoplastic cell survival; (4) an accessory tumor cell Reduced protein production; (5) Inhibition of tumor growth (ie, slowed to a certain extent, preferably stopped); (6) Increased patient survival; and (7) One or a disease or condition-related Various symptoms have been relieved. Can use methods such as magnetic resonance imaging (MRI) scans, x-ray imaging, computed tomography (CT) scans, bone scan imaging, endoscopy, and tumor biopsy sampling (including bone marrow aspiration (BMA) and circulating tumor cell count )'S screening technology to assess tumor response to changes in tumor morphology (ie, overall tumor burden, tumor size, etc.). A complete treatment response is not required (ie, there is no clinically detectable disease, any previous abnormal radiographic studies, normalization of bone marrow and cerebrospinal fluid (CSF), or abnormal individual protein); any degree of improvement is expected. Various other parameters related to disease treatment and improvement are listed in the examples.

異二聚體抗體可以藉由任何合適的方式投與給受試者,例如藉由靜脈內、動脈內、淋巴管內、鞘內、腦內、腹膜內、腦脊髓內、皮內、皮下、關節內、滑膜內、口服、局部或吸入途徑。例如,異二聚體抗體可以藉由靜脈內投與作為推注投與或藉由連續輸注投與一段時間。在各個方面,該方法包括藉由靜脈內輸注約30分鐘至約四小時的時間投與異二聚體抗體。視需要,在隨後的投與中減少輸注時間。例如,在一個實施方式中,第一劑量的異二聚體抗體經約四小時的時間投與,隨後的劑量經兩小時或更短的時間投與。在這方面,第一劑量的異二聚體抗體視需要經約四小時的時間投與,第二劑量的異二聚體抗體視需要經約兩小時的時間投與,並且隨後的劑量視需要經約30分鐘的時間投與。Heterodimeric antibodies can be administered to the subject by any suitable means, for example, by intravenous, intraarterial, intralymphatic, intrathecal, intracerebral, intraperitoneal, intracerebrospinal, intradermal, subcutaneous, Intra-articular, intra-synovial, oral, topical or inhalation route. For example, the heterodimeric antibody can be administered as a bolus injection by intravenous administration or by continuous infusion for a period of time. In various aspects, the method includes administering the heterodimeric antibody by intravenous infusion for a period of about 30 minutes to about four hours. If necessary, reduce the infusion time during subsequent administration. For example, in one embodiment, the first dose of heterodimeric antibody is administered over a period of about four hours, and the subsequent dose is administered over a period of two hours or less. In this regard, the first dose of heterodimeric antibody is administered over a period of about four hours as needed, the second dose of heterodimeric antibody is administered over a period of about two hours as needed, and the subsequent dose is administered as required It will be administered after about 30 minutes.

在某些情況下,受試者先前已接受過多發性骨髓瘤的治療。例如,先前可以已經給受試者投與免疫調節藥物(沙利度胺、來那度胺、泊馬度胺)、蛋白酶體抑制劑(例如泊馬度胺、硼替佐米或卡非佐米)、地塞米松、多柔比星或其組合。視需要,受試者先前用抗CD38單特異性抗體例如達雷妥木單抗(DARZALEX®)治療。在各種實施方式中,受試者在先前的抗CD38單特異性抗體治療情況下復發或難治。當患者已經用抗CD38單特異性抗體治療時,較佳的是在洗脫期後投與初始劑量的異二聚體抗體,該洗脫期足以將抗CD38單特異性抗體的全身濃度降低至0.2 μg/ml或更低。換句話說,該方法包括在先前投與抗CD38單特異性抗體和投與異二聚體抗體之間的等待期。在各種實施方式中,該方法包括在投與初始劑量的異二聚體抗體之前停止用抗CD38單特異性抗體治療至少12週(例如,約13至約15週)。組成物 In some cases, the subject has previously received treatment for multiple myeloma. For example, subjects may have previously been administered immunomodulatory drugs (thalidomide, lenalidomide, pomalidomide), proteasome inhibitors (eg, pomalidomide, bortezomib, or carfilzomib) ), dexamethasone, doxorubicin or a combination thereof. If necessary, the subject was previously treated with an anti-CD38 monospecific antibody such as daratumumab (DARZALEX®). In various embodiments, the subject relapses or is refractory to previous anti-CD38 monospecific antibody treatment. When the patient has been treated with anti-CD38 monospecific antibody, it is preferable to administer the initial dose of heterodimeric antibody after the elution period, which is sufficient to reduce the systemic concentration of anti-CD38 monospecific antibody to 0.2 μg/ml or lower. In other words, the method includes a waiting period between previous administration of anti-CD38 monospecific antibody and administration of heterodimeric antibody. In various embodiments, the method includes stopping treatment with the anti-CD38 monospecific antibody for at least 12 weeks (eg, about 13 to about 15 weeks) prior to the administration of the initial dose of heterodimeric antibody. Composition

藉由將具有所需純度的抗體與視需要的藥學上可接受的載體、賦形劑或穩定劑(Remington's Pharmaceutical Sciences 16th edition[雷明頓藥物科學第16版], Osol, A.編輯[1980])混合,製備異二聚體抗體的配製物用於以凍乾配製物或水溶液的形式儲存。可接受的載體、賦形劑或穩定劑在所採用的劑量和濃度下對受體無毒,並且包括緩衝液(如磷酸鹽、檸檬酸鹽和其他有機酸;抗氧化劑,包括抗壞血酸和甲硫胺酸; 防腐劑(如十八烷基二甲基苄基氯化銨;六甲基氯化銨;氯化苄烷銨、氯化本索寧;苯酚、丁基或苄醇;烷基對羥基苯甲酸酯,如甲基對羥基苯甲酸酯或丙基對羥基苯甲酸酯;兒茶酚;間苯二酚;環己醇;3-戊醇;和間甲酚);低分子量(少於約10個殘基)多肽;蛋白質,如血清白蛋白、明膠或免疫球蛋白;    親水性聚合物,如聚乙烯吡咯啶酮;胺基酸,如甘胺酸、麩醯胺酸、天冬醯胺、組胺酸、精胺酸、或離胺酸;單糖、二糖和其他碳水化合物,包括葡萄糖、甘露糖、或糊精;螯合劑,如EDTA;糖類,如蔗糖、甘露醇、海藻糖或山梨糖醇;成鹽反離子,如鈉;金屬錯合物(例如Zn-蛋白質錯合物);和/或非離子表面活性劑,如TWEENTM 、PLURONICSTM 或聚乙二醇(PEG)。By combining antibodies with the required purity and optionally pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition [Remington Pharmaceutical Sciences 16th edition], Osol, A. Editor [1980] ) Mix to prepare a heterodimeric antibody formulation for storage in the form of a lyophilized formulation or an aqueous solution. Acceptable carriers, excipients or stabilizers are non-toxic to the recipient at the doses and concentrations employed and include buffers (such as phosphates, citrates and other organic acids; antioxidants, including ascorbic acid and methionine Acid; preservatives (eg octadecyl dimethyl benzyl ammonium chloride; hexamethyl ammonium chloride; benzalkonium chloride, bensonin chloride; phenol, butyl or benzyl alcohol; alkyl para-hydroxy Parabens, such as methyl paraben or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (Less than about 10 residues) polypeptide; protein, such as serum albumin, gelatin, or immunoglobulin; hydrophilic polymer, such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, Asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates, including glucose, mannose, or dextrin; chelating agents, such as EDTA; sugars, such as sucrose, mannose Alcohol, trehalose, or sorbitol; salt-forming counterions, such as sodium; metal complexes (eg, Zn-protein complexes); and/or nonionic surfactants, such as TWEEN , PLURONICS ™, or polyethylene dioxide Alcohol (PEG).

配製物還可含有一種以上的活性劑,較佳的是一種或多種不會相互產生不利影響的活性劑。例如,可能需要提供具有其他特異性的抗體。可替代地或另外地,組成物可以包含細胞毒性劑、細胞介素、生長抑制劑和/或小分子拮抗劑。此類分子合適地以對預期目的有效的量組合存在。聯合療法 The formulation may also contain more than one active agent, preferably one or more active agents that do not adversely affect each other. For example, it may be necessary to provide antibodies with other specificities. Alternatively or additionally, the composition may contain cytotoxic agents, cytokines, growth inhibitors, and/or small molecule antagonists. Such molecules are suitably present in combination in amounts effective for the intended purpose. Combination therapy

視需要,異二聚體抗體係治療方案的一部分,該治療方案包括投與一種或多種其他治療劑、放射療法、幹細胞移植等。As needed, part of a heterodimer anti-system treatment regimen, which includes administration of one or more other therapeutic agents, radiation therapy, stem cell transplantation, and the like.

本揭露的方法視需要還包括向受試者投與地塞米松(dexamethasone)。地塞米松可以藉由任何途徑投與,例如本文所述的途徑。較佳的是,地塞米松藉由靜脈內或口服投與。當靜脈內投與地塞米松時,在投與異二聚體抗體之前一小時內視需要將其投與給受試者。地塞米松視需要以約8 mg或約4 mg的量投與。The method of the present disclosure may further include administering dexamethasone to the subject as needed. Dexamethasone can be administered by any route, such as the route described herein. Preferably, dexamethasone is administered intravenously or orally. When dexamethasone is administered intravenously, the heterodimeric antibody is administered to the subject as needed within one hour before administration. Dexamethasone is administered in an amount of about 8 mg or about 4 mg as needed.

在各種實施方式中,本揭露的方法還包括投與化學治療劑。DNA損傷性化學治療劑的非限制性實例包括拓撲異構酶I抑制劑(例如,伊立替康(irinotecan)、托泊替康(topotecan)、喜樹鹼及其類似物或代謝物,和多柔比星);拓撲異構酶II抑制劑(如依託泊苷(etoposide)、替尼泊苷(teniposide)和柔紅黴素(daunorubicin));烷基化劑(例如,美法侖(melphalan)、苯丁酸氮芥(chlorambucil)、白消安(busulfan)、噻替派(thiotepa)、異環磷醯胺(ifosfamide)、卡莫司汀(carmustine)、洛莫司汀(lomustine)、司莫司汀(semustine)、鏈脲黴素(streptozocin)、胺烯咪胺(decarbazine)、胺甲喋呤(methotrexate)、絲裂黴素C(mitomycin C)和環磷醯胺(cyclophosphamide));DNA嵌入劑(如順鉑、奧沙利鉑(oxaliplatin)和卡鉑);DNA嵌入劑和自由基生成劑(如博來黴素(bleomycin));和核苷模擬物(例如,5-氟脲嘧啶(5-fluorouracil )、卡培他濱(capecitibine)、吉西他濱(gemcitabine)、氟達拉濱(fludarabine)、阿糖胞苷(cytarabine)、巰基嘌呤(mercaptopurine),硫鳥嘌呤(thioguanine,)、噴司他丁(pentostatin)和羥基脲)。In various embodiments, the method of the present disclosure also includes administering a chemotherapeutic agent. Non-limiting examples of DNA damaging chemotherapeutic agents include topoisomerase I inhibitors (eg, irinotecan, topotecan, camptothecin and its analogs or metabolites, and many (Rubicin); topoisomerase II inhibitors (such as etoposide, teniposide, and daunorubicin); alkylating agents (eg, melphalan ), chlorambucil, busulfan, thiotepa, ifosfamide, carmustine, lomustine, Semustine, streptozocin, decarbazine, methotrexate, mitomycin C, and cyclophosphamide) ; DNA intercalator (such as cisplatin, oxaliplatin (oxaliplatin) and carboplatin); DNA intercalator and free radical generator (such as bleomycin (bleomycin)); and nucleoside mimics (for example, 5- 5-fluorouracil, capecitibine, gemcitabine, fludarabine, cytarabine, mercaptopurine, thioguanine, ), pentostatin and hydroxyurea).

破壞細胞複製的化學治療劑包括:紫杉醇(paclitaxel,)、多西他賽(docetaxel)和相關類似物;長春新鹼、長春鹼和相關類似物;沙利度胺(thalidomide)、來那度胺(lenalidomide)和相關類似物(例如CC-5013和CC-4047);酪胺酸蛋白激酶抑制劑(例如,甲磺酸伊馬替尼和吉非替尼);蛋白酶體抑制劑(如硼替佐米(bortezomib)、CEP-18770、MG132、肽乙烯基碸、肽環氧酮(如環氧酶素(epoxomicin)和卡非佐米(carfilzomib)),β-內酯抑制劑(如乳孢素(lactacystin)、MLN 519、NPI-0052、Salinosporamide A),與金屬產生二硫代胺基甲酸鹽錯合物的化合物(如雙硫侖(Disulfiram)),以及某些抗氧化劑(如表沒食子兒茶素-3-沒食子酸酯、兒茶素-3-沒食子酸酯和Salinosporamide A);NF-κB抑制劑(包括IκB激酶抑制劑);抗體(例如,曲妥珠單抗(trastuzumab)、利妥昔單抗(rituximab)、西妥昔單抗(cetuximab)和貝伐單抗(bevacizumab)),其與癌症中過表現的蛋白質結合,從而下調細胞複製;以及已知在癌症中上調的、過表現的或活化的蛋白質或酶(對其的抑制作用下調細胞複製)的其他抑制劑。Chemotherapeutic agents that disrupt cell replication include: paclitaxel, docetaxel, and related analogs; vincristine, vinblastine, and related analogs; thalidomide, lenalidomide (lenalidomide) and related analogs (eg CC-5013 and CC-4047); tyrosine protein kinase inhibitors (eg imatinib mesylate and gefitinib); proteasome inhibitors (eg bortezomib (bortezomib), CEP-18770, MG132, peptide vinyl sock, peptide epoxy ketone (such as epoxomicin and carfilzomib), β-lactone inhibitor (such as lactosporin ( lactacystin), MLN 519, NPI-0052, Salinosporamide A), compounds that produce dithiocarbamate complexes with metals (such as disulfiram), and certain antioxidants (such as tableware) Catechin-3-gallate, catechin-3-gallate and Salinosporamide A); NF-κB inhibitors (including IκB kinase inhibitors); antibodies (eg, trastuzumab Trastuzumab, rituximab, cetuximab, and bevacizumab), which bind to overexpressed proteins in cancer, thereby downregulating cell replication; and known Other inhibitors of up-regulated, over-expressed or activated proteins or enzymes in cancer whose inhibition down-regulates cell replication.

治療方案可以包括投與其他抗體治療劑,例如依洛妥珠單抗(針對SLAMF7的人源化單株抗體;Tai等人., Blood, 2008;112: 1329-37);靶向CD38的達雷妥木單抗(daratumumab)、MOR202和艾薩妥昔單抗(isatuximab);靶向CD138的nBT062-SMCC-DM1、nBT062-SPDB-DM4和nBT062-SPP-DM1;靶向CD40的魯卡妥木單抗(lucatumumab)(也稱為HCD122)和達塞妥珠單抗(dacetuzumab)(也稱為SGN-40);靶向CD56的Lorvotuzumab。關於用於治療多發性骨髓瘤的抗體治療劑的綜述,參見例如Tandon等人., Oncology & Hematology Review[腫瘤學和血液學評論], 2015;11(2): 115-21和Sondergeld等人., Clinical Advances in Hematology & Oncology [血液學和腫瘤學的臨床進展], 2015; 13(9), 599,兩者均藉由引用併入。The treatment regimen may include administration of other antibody therapeutics, such as erlotuzumab (humanized monoclonal antibody against SLAMF7; Tai et al., Blood, 2008; 112: 1329-37); CD38 targeting Daratumumab, MOR202, and isatuximab; nBT062-SMCC-DM1, nBT062-SPDB-DM4, and nBT062-SPP-DM1 targeting CD138; lucatol targeting CD40 Lucatumumab (also known as HCD122) and dacetuzumab (also known as SGN-40); Lorvotuzumab targeting CD56. For a review of antibody therapeutics for the treatment of multiple myeloma, see, for example, Tandon et al., Oncology & Hematology Review [2015, 11(2): 115-21 and Sondergeld et al. , Clinical Advances in Hematology & Oncology, 2015; 13(9), 599, both of which are incorporated by reference.

在一些實施方式中,異二聚體抗體在用Velcade®(硼替佐米)、ThalomidTM (沙利度胺)、ArediaTM (帕米膦酸鹽)或ZometaTM (唑來膦酸)治療之前、同時或之後投與。In some embodiments, the heterodimeric antibody is prior to treatment with Velcade® (bortezomib), Thalomid (thalidomide), Aredia (pamidronate), or Zometa (zoledronic acid) , At the same time or later.

所有引用的參考文獻均藉由引用整體併入本文。儘管以上為了說明的目的描述了本發明的特定實施方式,但是熟悉該項技術者將理解,在不脫離所附申請專利範圍中描述的本發明的情況下,可以進行細節的許多變化。實例 All cited references are incorporated by reference in their entirety. Although specific embodiments of the present invention have been described above for illustrative purposes, those skilled in the art will understand that many changes can be made in details without departing from the invention described in the scope of the appended patent applications. Examples

提供該實例以進一步說明本揭露的方法的各方面。該實例並不意味著將本發明限制於任何特定的應用或操作理論。臨床前研究 This example is provided to further illustrate various aspects of the disclosed method. This example is not meant to limit the invention to any particular application or theory of operation. Preclinical studies

異二聚體抗體(以下稱為「Ab-A」)(其包含第一單體、第二單體和輕鏈,該第一單體包含SEQ ID NO: 335的胺基酸序列,該第二單體包含SEQ ID NO: 82的胺基酸序列,該輕鏈包含SEQ ID NO: 84的胺基酸序列)係一種高度特異性和有效的分子,能夠誘導人類T細胞殺死多種CD38陽性腫瘤細胞系,半最大有效濃度(EC50)在0.65 ± 0.3 ng/mL至21.77 ± 5.22 ng/mL(5.2 pM至174.2 pM)範圍內。在針對人癌細胞的食蟹猴T細胞或食蟹猴B細胞的情況下,Ab-A的效力在2.17 ± 0.4 ng/mL至12.33 ± 0.68 ng/mL(17.6 pM至98.46 pM)的範圍內。針對CD38陽性細胞的細胞毒性的EC50值在腫瘤細胞系之間變化,最敏感和最不敏感的細胞系之間的差異為33.5倍。然而,這種比較基於在不同條件下進行的測定,包括不同的效應細胞(外周血單核細胞(PBMC)相比於純化的T細胞)、不同的讀數(基於流動相比於螢光素酶)和來自多種適應症的細胞系(多發性骨髓瘤、急性髓性白血病、B細胞淋巴瘤、組織細胞性淋巴瘤)。當測定條件在具有不同CD38表面表現水平的四種多發性骨髓瘤細胞系中標準化時,最敏感和最不敏感的多發性骨髓瘤細胞系之間的差異要窄得多,係4倍。Heterodimeric antibody (hereinafter referred to as "Ab-A") (which includes a first monomer, a second monomer, and a light chain, the first monomer includes the amino acid sequence of SEQ ID NO: 335, the first The second monomer contains the amino acid sequence of SEQ ID NO: 82, and the light chain contains the amino acid sequence of SEQ ID NO: 84) is a highly specific and effective molecule that can induce human T cells to kill multiple CD38 positive For tumor cell lines, the half-maximum effective concentration (EC50) is in the range of 0.65 ± 0.3 ng/mL to 21.77 ± 5.22 ng/mL (5.2 pM to 174.2 pM). In the case of cynomolgus monkey T cells or cynomolgus monkey B cells against human cancer cells, the efficacy of Ab-A is in the range of 2.17 ± 0.4 ng/mL to 12.33 ± 0.68 ng/mL (17.6 pM to 98.46 pM) . The EC50 value for cytotoxicity against CD38 positive cells varies between tumor cell lines, and the difference between the most sensitive and least sensitive cell lines is 33.5 times. However, this comparison is based on measurements performed under different conditions, including different effector cells (peripheral blood mononuclear cells (PBMC) compared to purified T cells), different readings (based on flow compared to luciferase ) And cell lines from multiple indications (multiple myeloma, acute myeloid leukemia, B-cell lymphoma, histiocytic lymphoma). When the measurement conditions were standardized in four multiple myeloma cell lines with different CD38 surface expression levels, the difference between the most sensitive and the least sensitive multiple myeloma cell lines was much narrower, four-fold.

Ab-A在CD38陽性靶細胞存在下有效地接合和激活人T細胞,導致靶裂解伴隨著T細胞標誌物CD69、CD25和CD38的表現增加、T細胞大小增加、T細胞擴增和促炎性細胞介素IFN-γ和TNF-α釋放。用食蟹猴T細胞觀察到或在用食蟹猴PBMC進行的自體B細胞耗損測定中觀察到類似的T細胞活化,並且來自體外 研究的數據證明食蟹猴係用於毒性測試的藥理學相關動物物種。然而,食蟹猴T細胞表現顯著高於人T細胞的CD38水平。雖然在人T細胞重定向裂解測定中觀察到T細胞擴增,但在使用食蟹猴PBMC的類似測定過程中T細胞數量減少或保持恒定,表明Ab-A對兩個物種之間的T細胞的差異效應。Ab-A effectively engages and activates human T cells in the presence of CD38 positive target cells, resulting in target lysis accompanied by increased expression of T cell markers CD69, CD25, and CD38, increased T cell size, T cell expansion, and proinflammatory Cytokines IFN-γ and TNF-α are released. Similar T cell activation was observed with cynomolgus monkey T cells or in autologous B cell depletion assays with cynomolgus monkey PBMC, and data from in vitro studies demonstrated the pharmacology of the cynomolgus monkey line for toxicity testing Related animal species. However, cynomolgus monkey T cells performed significantly higher than the CD38 level of human T cells. Although T cell expansion was observed in the human T cell redirected lysis assay, the number of T cells decreased or remained constant during a similar assay using cynomolgus monkey PBMC, indicating that Ab-A has no effect on T cells between two species Difference effect.

可溶性CD38以非常不同的濃度存在於兩個物種中:在多發性骨髓瘤患者中,平均sCD38濃度為0.39 ng/mL(與健康個體的0.085 ng/mL相比),其中最大檢測值為2.82 ng/mL(n = 44),而在食蟹猴中,血清sCD38濃度範圍為從0到247.8 ng/mL。在體外 ,Ab-A誘導的重定向裂解不受2 ng/mL濃度的可溶性人CD38的影響。濃度為200 ng/mL的可溶性食蟹猴CD38誘導Ab-A的重定向裂解EC50適度增加2倍。因此,多發性骨髓瘤患者的sCD38水平不太可能干擾Ab-A活性。此外,在Ab-A存在下在沒有靶細胞情況下,200 ng/mL濃度的sCD38對T細胞活化沒有影響,這表明患者中常見的sCD38濃度不足以觸發Ab-A介導的T細胞活化。Soluble CD38 is present in two species at very different concentrations: in patients with multiple myeloma, the average sCD38 concentration is 0.39 ng/mL (compared to 0.085 ng/mL in healthy individuals), with a maximum detection value of 2.82 ng /mL (n = 44), while in cynomolgus monkeys, the serum sCD38 concentration ranged from 0 to 247.8 ng/mL. In vitro , Ab-A-induced redirected lysis is not affected by soluble human CD38 at a concentration of 2 ng/mL. The soluble cynomolgus monkey CD38 at a concentration of 200 ng/mL induced a moderately 2-fold increase in the redirected lysis EC50 of Ab-A. Therefore, sCD38 levels in patients with multiple myeloma are unlikely to interfere with Ab-A activity. In addition, in the absence of target cells in the presence of Ab-A, sCD38 at a concentration of 200 ng/mL had no effect on T cell activation, suggesting that the common sCD38 concentration in patients was insufficient to trigger Ab-A-mediated T cell activation.

在存在CD38陽性靶細胞的情況下,Ab-A誘導T細胞產生促炎細胞介素,包括TNF-α和IFN-γ。評估地塞米松對Ab-A活性的影響。在地塞米松和增加濃度的Ab-A存在下,將人T細胞與KMS-12-BM luc MM靶細胞以1的E : T比率共培養。用逐漸降低濃度(開始於230 ng/mL,24小時後終止於12.6 ng/mL,相當於20 mg口服地塞米松劑量後24小時人受試者中的血清濃度)的地塞米松預處理效應細胞和靶細胞。然後用Ab-A以1的E : T比率以12.6 ng/mL的連續濃度地塞米松進行重定向裂解測定。在該等臨床相關條件下,在存在或不存在地塞米松的情況下KMS-12-BM luc MM靶細胞的殺傷曲線看起來非常相似。當E : T比率為1時,Ab-A靶標裂解EC50增加不到2倍,但IFN-γ和TNF-α細胞介素水平降低超過85%。參見圖21。數據表明,口服投與地塞米松後24小時可投與Ab-A,對Ab-A的效力影響有限,但具有較低細胞介素釋放的可能益處。In the presence of CD38-positive target cells, Ab-A induces T cells to produce proinflammatory interleukins, including TNF-α and IFN-γ. Evaluate the effect of dexamethasone on Ab-A activity. Human T cells were co-cultured with KMS-12-BM luc MM target cells at an E:T ratio of 1 in the presence of dexamethasone and increasing concentrations of Ab-A. Pretreatment effect of dexamethasone with a gradually decreasing concentration (starting at 230 ng/mL, ending at 24 hours and ending at 12.6 ng/mL, which is equivalent to the serum concentration in human subjects at 24 hours after a 20 mg oral dexamethasone dose) Cells and target cells. The redirected lysis assay was then performed with Ab-A at an E:T ratio of 1 at a continuous concentration of 12.6 ng/mL dexamethasone. Under these clinically relevant conditions, the killing curves of KMS-12-BM luc MM target cells in the presence or absence of dexamethasone look very similar. When the E:T ratio is 1, the Ab-A target cleavage EC50 increases less than 2-fold, but the levels of IFN-γ and TNF-α cytokines decrease by more than 85%. See Figure 21. The data shows that Ab-A can be administered 24 hours after oral administration of dexamethasone, which has a limited impact on the efficacy of Ab-A, but has the potential benefit of lower cytokine release.

Ab-A的體內 功效由顯示其在補充有人T細胞的MOLM-13 luc原位小鼠異種移植模型中的抗腫瘤作用的數據支持。用Ab-A治療顯著延長了攜帶已建立的原位MOLM-13 luc腫瘤的小鼠的存活。將NOD Scidγ(NSG)免疫受損小鼠原位移植表現CD38的MOLM-13 luc腫瘤細胞,並在2天後腹膜內注射人T細胞。從第5天起每隔7天藉由靜脈內推注以0.01 mg/kg、0.1 mg/kg或1 mg/kg投與Ab-A,持續35天。存活數據以圖形方式呈現在Kaplan-Meier圖中。與載體治療的對照組(22.0天)相比,Ab-A投與導致中值存活期延長(在0.01 mg/kg、0.1 mg/kg和1 mg/kg劑量水平下分別為37.5天、36天和37天)。存活的組間比較(使用關於作為對照的載體的對數秩檢驗)證明Ab-A誘導的存活延長具有高度統計學顯著性(p < 0.0001)。注意到缺乏劑量應答,因為在0.01 mg/kg的最低劑量下觀察到最大效果。使用全體生物發光(BLI)成像監測腫瘤生長。在第4天投與第一劑量後一週,與載體對照動物相比,代表性BLI圖像顯示在所有治療組中後肢和脊柱區域中的腫瘤明顯消除。到第22天,0.01 mg/kg、0.1 mg/kg和1.0 mg/kg Ab-A劑量水平的腫瘤生長抑制(TGI)分別為98%、93%和99%,並且未觀察到明顯的體重減輕。The in vivo efficacy of Ab-A is supported by data showing its antitumor effect in a MOLM-13 luc orthotopic mouse xenograft model supplemented with human T cells. Treatment with Ab-A significantly prolonged the survival of mice carrying established MOLM-13 luc tumors in situ. NOD Scidγ (NSG) immunocompromised mice were orthotopically transplanted with MOLM-13 luc tumor cells expressing CD38 and injected intraperitoneally with human T cells 2 days later. Ab-A was administered at 0.01 mg/kg, 0.1 mg/kg, or 1 mg/kg by intravenous bolus every 7 days from day 5 for 35 days. The survival data is presented graphically in the Kaplan-Meier chart. Compared with vehicle-treated control group (22.0 days), Ab-A administration resulted in prolonged median survival (37.5 days and 36 days at 0.01 mg/kg, 0.1 mg/kg, and 1 mg/kg dose levels, respectively) And 37 days). The comparison of survival between groups (using the log rank test for the vector as a control) demonstrated that Ab-A-induced prolongation of survival was highly statistically significant (p <0.0001). Note the lack of dose response because the maximum effect is observed at the lowest dose of 0.01 mg/kg. Whole bioluminescence (BLI) imaging was used to monitor tumor growth. One week after the first dose was administered on Day 4, compared to vehicle control animals, representative BLI images showed that tumors in the hindlimb and spine areas were clearly eliminated in all treatment groups. By day 22, tumor growth inhibition (TGI) at the dose levels of 0.01 mg/kg, 0.1 mg/kg, and 1.0 mg/kg Ab-A was 98%, 93%, and 99%, respectively, and no significant weight loss was observed .

此外,Ab-A顯示在食蟹猴中在體內 具有藥理學活性,如Ab-A誘導的外周B細胞的耗損、T細胞的活化和外周T細胞的耗損所示。Ab-A在使用食蟹猴PBMC的自體重定向裂解測定中在體外 觸發B細胞耗損。為了監測Ab-A的體內 藥效學,在第1天單劑量10 μg/kg後(n = 3/組)的第2天、第5天、第8天和第11天以150 μg/kg的劑量靜脈內推注投與後,還在食蟹猴中評估外周B細胞的命運。在投與第一劑量後觀察到外周B細胞的減少,在第5天投與劑量之前水平朝基線返回。到第11天,觀察到與給藥前水平相比外周B細胞數量的顯著平均降低95.5%。在1隻動物中,B細胞數量在第11天後恢復,並且這種恢復伴隨著Ab-A血清水平的降低。在Ab-A的第二食蟹猴研究中,還觀察到第4天外周B細胞數量和T細胞活化的劑量依賴性短暫降低,證實Ab-A在食蟹猴中具有體內 活性並觸發T細胞活化和CD38陽性細胞耗損,都是Ab-A細胞募集作用機制的預期結果。在食蟹猴毒理學研究中,Ab-A不影響神經、呼吸或心血管安全藥理學參數。表現分析鑒定出造血/淋巴樣細胞和組織係最強表現CD38,並且食蟹猴的安全性評價與該表現模式一致。In addition, Ab-A was shown to have pharmacological activity in vivo in cynomolgus monkeys, as shown by Ab-A-induced depletion of peripheral B cells, activation of T cells, and depletion of peripheral T cells. Ab-A triggers B cell depletion in vitro in an auto-redirected lysis assay using cynomolgus monkey PBMC. In order to monitor the in vivo pharmacodynamics of Ab-A, a single dose of 10 μg/kg on day 1 (n = 3/group) was used at 150 μg/kg on day 2, day 5, day 8, and day 11 After intravenous bolus injection, the fate of peripheral B cells was also evaluated in cynomolgus monkeys. A decrease in peripheral B cells was observed after the first dose was administered, and the level returned to baseline before the dose was administered on the fifth day. By day 11, a significant average reduction of 95.5% of peripheral B-cell numbers compared to pre-dose levels was observed. In 1 animal, the number of B cells recovered after day 11 and this recovery was accompanied by a decrease in Ab-A serum levels. In the second cynomolgus monkey study of Ab-A, a dose-dependent transient decrease in the number of peripheral B cells and T cell activation on day 4 was also observed, confirming that Ab-A has in vivo activity in cynomolgus monkeys and triggers T cells Activation and CD38-positive cell depletion are both expected results of the mechanism of Ab-A cell recruitment. In cynomolgus monkey toxicology studies, Ab-A does not affect neurological, respiratory, or cardiovascular safety pharmacological parameters. Performance analysis identified the strongest expression of CD38 in hematopoietic/lymphoid cells and tissue lines, and the safety assessment of cynomolgus monkeys was consistent with this performance pattern.

在若干個體外體內 研究中證明了Ab-A的功效和特異性,並且食蟹猴被證實為用於評估安全性的相關物種。臨床研究 Demonstrated the efficacy and specificity of the Ab-A a number of studies in vitro and in vivo, cynomolgus and related species has proven to be used to assess safety. Clinical research

受試者將參加劑量探索群組,使用貝葉斯邏輯回歸模型(BLRM)評估不同劑量的Ab-A在復發或難治性多發性骨髓瘤患者中的最大耐受劑量(MTD)、安全性、耐受性、PK和PD。Ab-A最初將作為靜脈內輸注如下投與:第1週和第2週每週兩次,第3週和第4週每週一次,第5週及其後每隔一週一次。可替代的給藥方案如下:在第1週、第2週、第3週和第4週每週一次,並且在第5週及之後每隔一週一次。劑量探索群組的計畫劑量水平(每次輸注劑量)如下:0.05 mg、0.15 mg、0.45 mg、1.35 mg、4 mg、12 mg、36 mg、100 mg和200 mg。除非存在預先給藥的禁忌症,否則在Ab-A開始前1小時內用IV地塞米松預先給藥;最初的預先給藥將包含8 mg地塞米松,如果治療耐受性良好,劑量減少至4 mg。Subjects will participate in a dose-exploration cohort, using Bayesian logistic regression model (BLRM) to evaluate the maximum tolerated dose (MTD), safety, and safety of different doses of Ab-A in patients with relapsed or refractory multiple myeloma Tolerance, PK and PD. Ab-A will initially be administered as an intravenous infusion as follows: twice a week for weeks 1 and 2, once a week for weeks 3 and 4, once every other week for weeks 5 and thereafter. Alternative dosing regimens are as follows: once a week in week 1, week 2, week 3 and week 4, and every other week in week 5 and thereafter. The planned dose levels (dose per infusion) of the dose exploration group are as follows: 0.05 mg, 0.15 mg, 0.45 mg, 1.35 mg, 4 mg, 12 mg, 36 mg, 100 mg, and 200 mg. Unless there are contraindications for pre-administration, pre-administer IV dexamethasone within 1 hour before the start of Ab-A; the initial pre-administration will contain 8 mg dexamethasone, if the treatment is well tolerated, the dose will be reduced To 4 mg.

在治療過程中測量各種參數,包括生命體征,肝臟化學,血液學參數,腎功能和相關的不良事件(AE)。還可以進行最小殘留病(MRD)評估。MRD評估可以利用例如來自骨髓和/或血液的樣本的下一代測序(NGS)和/或使用骨髓的流式細胞術。可以在治療前(基線),一輪或多輪治療後和/或在遵循IMWG指南確定完全緩解後進行評估。細胞介素釋放綜合症(CRS)(由與CD3接合相關的細胞介素過量產生)與發燒、寒顫、疲勞、乏力、頭痛、精神狀態改變、言語障礙、震顫、辨距困難、步態異常、癲癇發作、呼吸困難、呼吸急促、低氧血症、心動過速、低血壓、噁心、嘔吐、轉胺酶升高、高膽紅素血症、出血、低纖維蛋白原血症、D-二聚體升高和/或皮疹相關。該等症狀將受到監控。CRS評級如下:1級,症狀不會危及生命,只需要對症治療(如發燒,噁心,疲勞,頭痛,肌痛,乏力);2級,症狀需要並對適應中度干預(氧氣需求 < 40%,或低血壓對流體或低劑量的1種血管加壓劑應答,或2級器官毒性或3級轉胺酶升高符合CTCAE標準)有應答;3級,症狀需要並地積極干預(氧氣需求 ≥ 40%,或低血壓需要高劑量或多種血管加壓劑,或3級器官毒性或4級轉胺酶的低血壓/CTCAE標準)有應答;和4級,危及生命的症狀(根據CTCAE標準要求呼吸機支持或4級器官毒性(不包括轉胺酶升高))。在各個方面,受試者經歷很少或沒有CRS症狀(例如,受試者經歷2級、1級或無CRS。Various parameters are measured during treatment, including vital signs, liver chemistry, hematological parameters, renal function and related adverse events (AE). Evaluation of minimal residual disease (MRD) is also possible. MRD evaluation can utilize, for example, next generation sequencing (NGS) of samples from bone marrow and/or blood and/or flow cytometry using bone marrow. Evaluation can be performed before treatment (baseline), after one or more rounds of treatment, and/or after the IMWG guidelines are followed to determine complete remission. Cytokine Release Syndrome (CRS) (excessive production of cytokines associated with CD3 conjugation) and fever, chills, fatigue, fatigue, headache, mental state changes, speech disorders, tremor, difficulty in distinguishing distance, abnormal gait, Seizures, dyspnea, shortness of breath, hypoxemia, tachycardia, hypotension, nausea, vomiting, elevated transaminases, hyperbilirubinemia, bleeding, hypofibrinogenemia, D-di Elevated aggregates are associated with rashes. These symptoms will be monitored. The CRS ratings are as follows: Level 1, the symptoms are not life-threatening and only require symptomatic treatment (such as fever, nausea, fatigue, headache, myalgia, and fatigue); Level 2, the symptoms require and moderate intervention for adaptation (oxygen demand <40% , Or hypotension in response to fluids or low doses of a vasopressor, or grade 2 organ toxicity or grade 3 transaminase elevation meets CTCAE standards); grade 3, symptoms require concurrent active intervention (oxygen demand ≥ 40%, or hypotension requires high doses or multiple vasopressors, or grade 3 organ toxicity or grade 4 transaminase hypotension/CTCAE standard) response; and grade 4, life-threatening symptoms (according to CTCAE standard) Requires ventilator support or grade 4 organ toxicity (excluding elevated transaminase)). In various aspects, the subject experienced little or no symptoms of CRS (eg, the subject experienced grade 2, grade 1, or no CRS.

確定按照國際骨髓瘤工作組(International Myeloma Working Group,IMWG)應答標準(嚴格[s]完全應答[CR],CR,非常好[VG]部分應答[PR],PR)的總體應答率(ORR)、應答持續時間、進展時間、無進展存活和總體存活的方法係本領域已知的。完全應答(CR)的特徵在於,例如,對血清和尿的陰性免疫固定和任何軟組織漿細胞瘤的消失和骨髓中 < 5%漿細胞。嚴格的完全應答的特徵在於如上定義的CR以及正常FLC比率和藉由免疫組織化學或免疫螢光在骨髓中不存在選殖細胞。VGPR的特徵在於例如藉由免疫固定可檢測的血清和尿M蛋白,但不能藉由電泳檢測,或血清M蛋白減少 > 90%加尿M蛋白水平 < 100 mg/24 h。PR的特徵在於,例如,血清M蛋白減少 > 50%,24小時尿M蛋白減少 > 90%或 < 200 mg/24 h;如果血清和尿M蛋白不可測量,則需要受累和未受累的FLC水平之間的差異降低 > 50%來代替M蛋白標準;如果血清和尿M蛋白不可測量,並且血清自由光測定也不可測量,則需要 > 50%的漿細胞減少來代替M蛋白,條件係基線骨髓漿細胞百分比 > 30%;如果存在於基線,則軟組織漿細胞瘤的尺寸減小 > 50%。參見,例如,國際骨髓瘤工作組(IMWG)多發性骨髓瘤的統一應答標準可在以下位置獲得:imwg.myeloma.org/international-myeloma-working-group-imwg-uniform-response-criteria-for-multiple-myeloma/。本揭露考慮改進任何該等參數,以及足以實現至少PR、至少VGPR、CR或sCR的較佳的是改進。Determine the overall response rate (ORR) according to the International Myeloma Working Group (IMWG) response criteria (strict [s] complete response [CR], CR, very good [VG] partial response [PR], PR) The methods of response duration, progression time, progression-free survival and overall survival are known in the art. A complete response (CR) is characterized by, for example, negative immunofixation to serum and urine and the disappearance of any soft tissue plasmacytoma and <5% plasma cells in the bone marrow. The strict complete response is characterized by the CR as defined above and the normal FLC ratio and the absence of colonized cells in the bone marrow by immunohistochemistry or immunofluorescence. VGPR is characterized by, for example, the detection of serum and urinary M proteins by immunofixation, but not by electrophoresis, or a reduction of serum M protein >90% plus urine M protein levels <100 mg/24 h. PR is characterized by, for example, a reduction in serum M protein >50% and a 24-hour reduction in urine M protein >90% or <200 mg/24 h; if serum and urine M proteins are not measurable, then FLC levels that are involved and unaffected are required The difference between them is reduced by >50% to replace the M protein standard; if serum and urine M proteins are not measurable, and serum free photometry is not measurable, then a >50% reduction in plasma cells is required to replace the M protein, the condition is baseline bone marrow The percentage of plasma cells is> 30%; if present at baseline, the size of the soft tissue plasma cell tumor is reduced by> 50%. See, for example, the International Myeloma Working Group (IMWG) unified response criteria for multiple myeloma can be obtained at: imwg.myeloma.org/international-myeloma-working-group-imwg-uniform-response-criteria-for- multiple-myeloma/. The present disclosure considers improvement of any of these parameters, and preferably improvement sufficient to achieve at least PR, at least VGPR, CR, or sCR.

[圖1A]和[1B]描繪了若干種形式的異二聚體抗體。描繪了兩種形式的「開瓶器(bottle opener)」型式,一種具有包含scFv的抗CD3抗原結合結構域和包含Fab的抗CD38抗原結合結構域,並且另一種具有該等的顛倒。示出了所有mAb-Fv、mAb-scFv、中心scFv和中心Fv型式。此外,示出了其中一個單體僅包含Fc結構域的「單臂」型式,為單臂中心scFv和單臂中心Fv兩者。還示出了雙scFv型式。[Figure 1A] and [1B] depict several forms of heterodimeric antibodies. Two forms of "bottle opener" versions are depicted, one with an anti-CD3 antigen-binding domain containing scFv and an anti-CD38 antigen-binding domain containing Fab, and the other with these reversed. All mAb-Fv, mAb-scFv, center scFv and center Fv types are shown. In addition, the "single-arm" version in which one of the monomers contains only the Fc domain is shown as both the single-arm center scFv and the single-arm center Fv. The double scFv version is also shown.

[圖2]描繪了「高-中#1」抗CD3_H1.32_L1.47構建體的序列,包括可變重鏈和輕鏈結構域(CDR加底線),以及單獨的vl和vhCDR,以及具有帶電荷的連接子(加雙底線)的scFv構建體。與圖中描繪的所有序列一樣,根據需要,該帶電荷的連接子可以被不帶電荷的連接子或不同的帶電荷的連接子取代。[Figure 2] depicts the sequence of the "高-中#1" anti-CD3_H1.32_L1.47 construct, including the variable heavy and light chain domains (CDR plus bottom line), as well as the separate vl and vhCDR, and the band The scFv construct of the charge linker (plus double bottom line). As with all sequences depicted in the figure, this charged linker can be replaced with an uncharged linker or a different charged linker, as needed.

[圖3]描繪了中CD38: OKT10_H1L1.24構建體的序列,包括可變重鏈和輕鏈結構域(CDR加底線),以及單獨的vl和vhCDR,以及具有帶電荷的連接子(雙底線)的scFv構建體。[Figure 3] depicts the sequence of the CD38: OKT10_H1L1.24 construct, including variable heavy and light chain domains (CDR plus bottom line), as well as individual vl and vhCDR, and a charged linker (double bottom line ) ScFv construct.

[圖4]描繪了低CD38: OKT10_H1L1構建體的序列,包括可變重鏈和輕鏈結構域(CDR加底線),以及單獨的vl和vhCDR,以及具有帶電荷的連接子(加雙底線)的scFv構建體。[Figure 4] depicts the sequence of the low CD38: OKT10_H1L1 construct, including the variable heavy and light chain domains (CDR plus bottom line), as well as the individual vl and vhCDR, and the charged linker (plus double bottom line) The scFv construct.

[圖5]描繪了XENP18971的序列。[Figure 5] depicts the sequence of XENP18971.

[圖6]描繪了XENP18969的序列。[Figure 6] depicts the sequence of XENP18969.

[圖7]描繪了人CD3 ε的序列(SEQ ID NO: 130)。[Figure 7] depicts the sequence of human CD3 epsilon (SEQ ID NO: 130).

[圖8]描繪了人CD38蛋白質的全長(SEQ ID NO:131)和胞外結構域(ECD;SEQ ID NO: 132)。[FIG. 8] Depicts the full-length of human CD38 protein (SEQ ID NO: 131) and extracellular domain (ECD; SEQ ID NO: 132).

[圖9A-9E]描繪了有用的異二聚化變體組對(包括偏斜(skew)變體和pI變體)。[Figures 9A-9E] depict useful pairs of heterodimerization variants (including skew variants and pI variants).

[圖10]描繪了電子等排(isosteric)變體抗體恒定區及其各自取代的列表。pI_(-)指示較低pI的變體,而pI_(+)指示較高pI的變體。該等可以視需要且獨立地與本發明的其他異二聚化變體(以及如本文所概述的其他變體類型)組合。[Fig. 10] A list of isosteric variant antibody constant regions and their respective substitutions is depicted. pI_(-) indicates a lower pI variant, and pI_(+) indicates a higher pI variant. These can be combined with other heterodimerization variants of the invention (as well as other variant types as outlined herein) as needed and independently.

[圖11]描繪了消融FcγR結合的有用消融變體(有時稱為「敲除」或「KO」變體)。[Figure 11] Depicts useful ablation variants of ablation of Fc[gamma]R binding (sometimes referred to as "knockout" or "KO" variants).

[圖12]顯示了本發明的兩個實施方式。[Fig. 12] Two embodiments of the present invention are shown.

[圖13A]和[13B]描繪了許多帶電荷的scFv連接子,其可用於增加或降低利用一種或多種scFv作為組分的異二聚體抗體的pI。具有單個電荷的單個先前技術scFv連接子被稱為「惠特洛(Whitlow)」,來自Whitlow等人, Protein Engineering [蛋白質工程] 6(8): 989-995 (1993)。應注意,該連接子用於減少scFv中的聚集和增強蛋白水解穩定性。[FIG. 13A] and [13B] depict many charged scFv linkers, which can be used to increase or decrease the pi of a heterodimeric antibody using one or more scFv as a component. A single prior art scFv linker with a single charge is called "Whitlow" from Whitlow et al., Protein Engineering [Protein Engineering] 6(8): 989-995 (1993). It should be noted that this linker is used to reduce aggregation in scFv and enhance proteolytic stability.

[圖14]描繪了工程化異二聚體-偏斜Fc變體、連同異二聚體產率(藉由HPLC-CIEX確定)和熱穩定性(藉由DSC確定)的列表。未確定的熱穩定性由「n.d」指示。[Fig. 14] A list of engineered heterodimer-skew Fc variants, together with heterodimer yield (determined by HPLC-CIEX) and thermal stability (determined by DSC) is depicted. Undetermined thermal stability is indicated by "n.d".

[圖15A-15B]描繪了穩定性優化的人源化抗CD3變體scFv。相對於H1_L1.4 scFv序列給出取代。胺基酸編號係卡巴特(Kabat)編號。[Figures 15A-15B] Depicted stability optimized humanized anti-CD3 variant scFv. The substitution is given relative to the H1_L1.4 scFv sequence. The amino acid number is the Kabat number.

[圖16A-16B]描繪了穩定性優化的人源化抗CD3變體scFv的胺基酸序列。CDR加底線。對於每個重鏈/輕鏈組合,列出了四個序列:(i) 具有C末端6xHis標籤的scFv,(ii) 僅scFv,(iii) 僅VH,(iv) 僅VL。[Figures 16A-16B] Depicts the amino acid sequence of stability optimized humanized anti-CD3 variant scFv. CDR plus bottom line. For each heavy/light chain combination, four sequences are listed: (i) scFv with C-terminal 6xHis tag, (ii) scFv only, (iii) VH only, (iv) VL only.

[圖17]描繪了XENP18971的序列。[Figure 17] depicts the sequence of XENP18971.

[圖18]描繪了XENP18969的序列。[Figure 18] depicts the sequence of XENP18969.

[圖19]顯示實施方式的可能組合的矩陣。「A」意指所引用的CD3序列的CDR可以與左側的CD38構建體的CDR組合。即,例如對於左上角的儲存格(cell),來自可變重鏈CD3 H1.30序列的vhCDR和來自CD3 L1.47序列的可變輕鏈的vlCDR可以與來自CD38 OKT10 H1.77序列的vhCDR和來自OKT10L1.24序列的vlCDR組合。「B」意指來自CD3構建體的CDR可以與來自CD38構建體的可變重鏈和輕鏈結構域組合。即,例如對於左上角的儲存格,來自可變重鏈CD3 H1.30序列的vhCDR和來自CD3 L1.47序列的可變輕鏈的vlCDR可以與可變重鏈結構域CD38 OKT10 H1.77序列和OKT10L1.24序列組合。顛倒「C」,使得來自CD3序列的可變重鏈結構域和可變輕鏈結構域與CD38序列的CDR一起使用。「D」係來自每個的可變重鏈和可變輕鏈兩者組合的情況。「E」係指CD3的scFv與CD38抗原結合結構域構建體的CDR一起使用的情況,並且「F」係CD3的scFv與CD38抗原結合結構域的可變重和可變輕鏈結構域一起使用的情況。[Fig. 19] A matrix showing possible combinations of embodiments. "A" means that the CDR of the cited CD3 sequence can be combined with the CDR of the CD38 construct on the left. That is, for example, for the cell in the upper left corner, the vhCDR from the variable heavy chain CD3 H1.30 sequence and the vlCDR from the variable light chain of CD3 L1.47 sequence can be compared with the vhCDR from CD38 OKT10 H1.77 sequence Combined with vlCDR from OKT10L1.24 sequence. "B" means that the CDR from the CD3 construct can be combined with the variable heavy and light chain domains from the CD38 construct. That is, for example, for the upper left cell, the vhCDR from the variable heavy chain CD3 H1.30 sequence and the vlCDR from the variable light chain of CD3 L1.47 sequence can be combined with the variable heavy chain domain CD38 OKT10 H1.77 sequence Combination with OKT10L1.24 sequence. Reverse "C" so that the variable heavy chain domain and variable light chain domain from the CD3 sequence are used with the CDR of the CD38 sequence. "D" comes from the combination of each variable heavy chain and variable light chain. "E" refers to the case where the scFv of CD3 is used with the CDR of the CD38 antigen-binding domain construct, and "F" the scFv of CD3 is used with the variable heavy and variable light chain domains of the CD38 antigen-binding domain Case.

[圖20]描繪了Ab-A的序列。[Fig. 20] depicts the sequence of Ab-A.

[圖21]包括兩個圖,說明地塞米松預處理然後暴露於實例中描述的Ab-A的應答。左圖將細胞毒性(%)(Y軸)與Ab-A濃度(ng/ml)相關聯。用地塞米松預處理對異二聚體抗體的EC50具有最小的影響。右圖將細胞介素產生(IFNγ,pg/ml)(y軸)與Ab-A濃度(ng/ml)相關聯。預處理導致細胞介素釋放減少85%。[FIG. 21] Includes two graphs illustrating the response of dexamethasone pretreatment and then exposure to Ab-A described in Examples. The left graph correlates cytotoxicity (%) (Y axis) with Ab-A concentration (ng/ml). Pretreatment with dexamethasone has minimal effect on the EC50 of the heterodimeric antibody. The right panel correlates cytokine production (IFNγ, pg/ml) (y-axis) with Ab-A concentration (ng/ml). Pretreatment resulted in an 85% reduction in cytokine release.

[圖22]係將各個CDR序列、可變區序列、重鏈和輕鏈序列、scFv序列、主鏈序列等與本申請所附序列表中列出的序列識別符聯繫在一起的表。關於所提到的若干種開瓶器型式的主鏈(SEQ ID NO: 347-354),未提供該等序列的Fv序列(例如,scFv和Fab側的vh和vl)。如熟悉該項技術者所理解和以下概述的,該等序列可與本文概述的任何vh和vl對一起使用,其中一種單體包括scFv(視需要包括帶電荷的scFv連接子)並且另一種單體包擴Fab序列(例如,附接至「Fab側重鏈」的vh和附接至「恒定輕鏈」的vl)。scFv可以是抗CD3或抗CD38,另一種係Fab。(「Fab」係指包含VH、CH1、VL、和CL免疫球蛋白結構域的部分。)即,本文概述的CD3和CD38的任何Fv序列能以任何組合摻入該等主鏈中。[Fig. 22] A table that associates each CDR sequence, variable region sequence, heavy and light chain sequence, scFv sequence, main chain sequence, etc. with the sequence identifiers listed in the sequence table attached to this application. Regarding the main chains of the several types of corkscrew mentioned (SEQ ID NO: 347-354), Fv sequences of such sequences are not provided (eg, scFv and vh and vl on the Fab side). As understood by those skilled in the art and outlined below, these sequences can be used with any of the vh and vl pairs outlined herein, where one monomer includes scFv (including charged scFv linkers as needed) and the other Fab sequences are expanded in body (eg, vh attached to the "Fab side heavy chain" and vl attached to the "constant light chain"). The scFv can be anti-CD3 or anti-CD38, another line of Fab. ("Fab" refers to the portion comprising the immunoglobulin domains of VH, CH1, VL, and CL.) That is, any Fv sequence of CD3 and CD38 outlined herein can be incorporated into these backbones in any combination.

Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0001

Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0002

Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0003

Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0004

Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0005

Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0006

Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0007

Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0008

Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0009

Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0010

Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0011

Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0012

Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0013

Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0014

Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0015

Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0016

Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0017

Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0018

Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0019

Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0020

Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0021

Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0022

Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0023

Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0024

Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0025

Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0026

Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0027

Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0028

Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0029

Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0030

Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0031

Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0032

Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0033

Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0034

Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0035

Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0036

Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0037

Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0038

Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0039

Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0040

Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0041

Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0042

Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0043

Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0044

Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0045

Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0046

Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0047

Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0048

Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0049

Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0050

Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0051

Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0052

Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0053

Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0054

Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0055

Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0056

Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0057

Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0058

Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0059

Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0060

Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0061

Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0062

Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0063

Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0064

Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0065

Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0066

Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0067

Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0068

Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0069

Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0070

Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0071

Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0072

Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0073

Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0074

Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0075

Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0076

Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0077

Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0078

Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0079

Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0080

Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0081

Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0082

Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0083

Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0084

Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0085

Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0086

Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0087

Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0088

Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0089

Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0090

Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0091

Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0092

Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0093

Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0094

Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0095

Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0096

Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0097

Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0098

Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0099

Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0100

Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0101

Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0102

Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0103

Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0104

Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0105

Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0106

Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0107

Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0108

Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0109

Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0110

Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0111

Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0112

Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0113

Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0114

Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0115

Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0116

Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0117

Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0118

Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0119

Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0120

Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0121

Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0122

Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0123

Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0124

Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0125

Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0126

Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0127

Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0128

Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0129

Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0130

Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0131

Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0132

Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0133

Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0134

Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0135

Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0136

Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0137

Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0138

Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0139

Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0140

Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0141

Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0142

Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0143

Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0144

Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0145

Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0146

Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0147

Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0148

Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0149

Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0150

Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0151

Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0152

Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0153

Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0154

Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0155

Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0156

Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0157

Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0158

Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0159

Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0160

Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0161

Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0162

Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0163

Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0164

Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0165

Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0166

Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0167

Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0168

Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0169

Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0170

Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0171

Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0172

Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0173

Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0174

Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0175

Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0176

Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0177

Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0178

Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0179

Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0180

Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0181

Figure 12_A0101_SEQ_0182
Figure 12_A0101_SEQ_0182

Figure 12_A0101_SEQ_0183
Figure 12_A0101_SEQ_0183

Figure 12_A0101_SEQ_0184
Figure 12_A0101_SEQ_0184

Figure 12_A0101_SEQ_0185
Figure 12_A0101_SEQ_0185

Figure 12_A0101_SEQ_0186
Figure 12_A0101_SEQ_0186

Figure 12_A0101_SEQ_0187
Figure 12_A0101_SEQ_0187

Figure 12_A0101_SEQ_0188
Figure 12_A0101_SEQ_0188

Figure 12_A0101_SEQ_0189
Figure 12_A0101_SEQ_0189

Figure 12_A0101_SEQ_0190
Figure 12_A0101_SEQ_0190

Figure 12_A0101_SEQ_0191
Figure 12_A0101_SEQ_0191

Figure 12_A0101_SEQ_0192
Figure 12_A0101_SEQ_0192

Figure 12_A0101_SEQ_0193
Figure 12_A0101_SEQ_0193

Figure 12_A0101_SEQ_0194
Figure 12_A0101_SEQ_0194

Figure 12_A0101_SEQ_0195
Figure 12_A0101_SEQ_0195

Figure 12_A0101_SEQ_0196
Figure 12_A0101_SEQ_0196

Figure 12_A0101_SEQ_0197
Figure 12_A0101_SEQ_0197

Figure 12_A0101_SEQ_0198
Figure 12_A0101_SEQ_0198

Figure 12_A0101_SEQ_0199
Figure 12_A0101_SEQ_0199

Figure 12_A0101_SEQ_0200
Figure 12_A0101_SEQ_0200

Figure 12_A0101_SEQ_0201
Figure 12_A0101_SEQ_0201

Figure 12_A0101_SEQ_0202
Figure 12_A0101_SEQ_0202

Figure 12_A0101_SEQ_0203
Figure 12_A0101_SEQ_0203

Figure 12_A0101_SEQ_0204
Figure 12_A0101_SEQ_0204

Figure 12_A0101_SEQ_0205
Figure 12_A0101_SEQ_0205

Figure 12_A0101_SEQ_0206
Figure 12_A0101_SEQ_0206

Figure 12_A0101_SEQ_0207
Figure 12_A0101_SEQ_0207

Figure 12_A0101_SEQ_0208
Figure 12_A0101_SEQ_0208

Figure 12_A0101_SEQ_0209
Figure 12_A0101_SEQ_0209

Figure 12_A0101_SEQ_0210
Figure 12_A0101_SEQ_0210

Figure 12_A0101_SEQ_0211
Figure 12_A0101_SEQ_0211

Figure 12_A0101_SEQ_0212
Figure 12_A0101_SEQ_0212

Figure 12_A0101_SEQ_0213
Figure 12_A0101_SEQ_0213

Figure 12_A0101_SEQ_0214
Figure 12_A0101_SEQ_0214

Figure 12_A0101_SEQ_0215
Figure 12_A0101_SEQ_0215

Figure 12_A0101_SEQ_0216
Figure 12_A0101_SEQ_0216

Figure 12_A0101_SEQ_0217
Figure 12_A0101_SEQ_0217

Figure 12_A0101_SEQ_0218
Figure 12_A0101_SEQ_0218

Figure 12_A0101_SEQ_0219
Figure 12_A0101_SEQ_0219

Figure 12_A0101_SEQ_0220
Figure 12_A0101_SEQ_0220

Figure 12_A0101_SEQ_0221
Figure 12_A0101_SEQ_0221

Figure 12_A0101_SEQ_0222
Figure 12_A0101_SEQ_0222

Figure 12_A0101_SEQ_0223
Figure 12_A0101_SEQ_0223

Figure 12_A0101_SEQ_0224
Figure 12_A0101_SEQ_0224

Figure 12_A0101_SEQ_0225
Figure 12_A0101_SEQ_0225

Figure 12_A0101_SEQ_0226
Figure 12_A0101_SEQ_0226

Figure 12_A0101_SEQ_0227
Figure 12_A0101_SEQ_0227

Figure 12_A0101_SEQ_0228
Figure 12_A0101_SEQ_0228

Figure 12_A0101_SEQ_0229
Figure 12_A0101_SEQ_0229

Figure 12_A0101_SEQ_0230
Figure 12_A0101_SEQ_0230

Figure 12_A0101_SEQ_0231
Figure 12_A0101_SEQ_0231

Figure 12_A0101_SEQ_0232
Figure 12_A0101_SEQ_0232

Figure 12_A0101_SEQ_0233
Figure 12_A0101_SEQ_0233

Figure 12_A0101_SEQ_0234
Figure 12_A0101_SEQ_0234

Figure 12_A0101_SEQ_0235
Figure 12_A0101_SEQ_0235

Figure 12_A0101_SEQ_0236
Figure 12_A0101_SEQ_0236

Figure 12_A0101_SEQ_0237
Figure 12_A0101_SEQ_0237

Figure 12_A0101_SEQ_0238
Figure 12_A0101_SEQ_0238

Figure 12_A0101_SEQ_0239
Figure 12_A0101_SEQ_0239

Figure 12_A0101_SEQ_0240
Figure 12_A0101_SEQ_0240

Figure 12_A0101_SEQ_0241
Figure 12_A0101_SEQ_0241

Figure 12_A0101_SEQ_0242
Figure 12_A0101_SEQ_0242

Figure 12_A0101_SEQ_0243
Figure 12_A0101_SEQ_0243

Figure 12_A0101_SEQ_0244
Figure 12_A0101_SEQ_0244

Figure 12_A0101_SEQ_0245
Figure 12_A0101_SEQ_0245

Figure 12_A0101_SEQ_0246
Figure 12_A0101_SEQ_0246

Figure 12_A0101_SEQ_0247
Figure 12_A0101_SEQ_0247

Figure 12_A0101_SEQ_0248
Figure 12_A0101_SEQ_0248

Figure 12_A0101_SEQ_0249
Figure 12_A0101_SEQ_0249

Figure 12_A0101_SEQ_0250
Figure 12_A0101_SEQ_0250

Figure 12_A0101_SEQ_0251
Figure 12_A0101_SEQ_0251

Figure 12_A0101_SEQ_0252
Figure 12_A0101_SEQ_0252

Figure 12_A0101_SEQ_0253
Figure 12_A0101_SEQ_0253

Figure 12_A0101_SEQ_0254
Figure 12_A0101_SEQ_0254

Figure 12_A0101_SEQ_0255
Figure 12_A0101_SEQ_0255

Figure 12_A0101_SEQ_0256
Figure 12_A0101_SEQ_0256

Figure 12_A0101_SEQ_0257
Figure 12_A0101_SEQ_0257

Figure 12_A0101_SEQ_0258
Figure 12_A0101_SEQ_0258

Figure 12_A0101_SEQ_0259
Figure 12_A0101_SEQ_0259

Figure 12_A0101_SEQ_0260
Figure 12_A0101_SEQ_0260

Figure 12_A0101_SEQ_0261
Figure 12_A0101_SEQ_0261

Figure 12_A0101_SEQ_0262
Figure 12_A0101_SEQ_0262

Figure 12_A0101_SEQ_0263
Figure 12_A0101_SEQ_0263

Figure 12_A0101_SEQ_0264
Figure 12_A0101_SEQ_0264

Figure 12_A0101_SEQ_0265
Figure 12_A0101_SEQ_0265

Figure 12_A0101_SEQ_0266
Figure 12_A0101_SEQ_0266

Figure 12_A0101_SEQ_0267
Figure 12_A0101_SEQ_0267

Figure 12_A0101_SEQ_0268
Figure 12_A0101_SEQ_0268

Figure 12_A0101_SEQ_0269
Figure 12_A0101_SEQ_0269

Figure 12_A0101_SEQ_0270
Figure 12_A0101_SEQ_0270

Figure 12_A0101_SEQ_0271
Figure 12_A0101_SEQ_0271

Figure 12_A0101_SEQ_0272
Figure 12_A0101_SEQ_0272

Figure 12_A0101_SEQ_0273
Figure 12_A0101_SEQ_0273

Figure 12_A0101_SEQ_0274
Figure 12_A0101_SEQ_0274

Figure 12_A0101_SEQ_0275
Figure 12_A0101_SEQ_0275

Figure 12_A0101_SEQ_0276
Figure 12_A0101_SEQ_0276

Figure 12_A0101_SEQ_0277
Figure 12_A0101_SEQ_0277

Figure 12_A0101_SEQ_0278
Figure 12_A0101_SEQ_0278

Figure 12_A0101_SEQ_0279
Figure 12_A0101_SEQ_0279

Figure 12_A0101_SEQ_0280
Figure 12_A0101_SEQ_0280

Figure 12_A0101_SEQ_0281
Figure 12_A0101_SEQ_0281

Figure 12_A0101_SEQ_0282
Figure 12_A0101_SEQ_0282

Figure 12_A0101_SEQ_0283
Figure 12_A0101_SEQ_0283

Figure 12_A0101_SEQ_0284
Figure 12_A0101_SEQ_0284

Figure 12_A0101_SEQ_0285
Figure 12_A0101_SEQ_0285

Figure 12_A0101_SEQ_0286
Figure 12_A0101_SEQ_0286

Figure 12_A0101_SEQ_0287
Figure 12_A0101_SEQ_0287

Figure 12_A0101_SEQ_0288
Figure 12_A0101_SEQ_0288

Figure 12_A0101_SEQ_0289
Figure 12_A0101_SEQ_0289

Figure 12_A0101_SEQ_0290
Figure 12_A0101_SEQ_0290

Figure 12_A0101_SEQ_0291
Figure 12_A0101_SEQ_0291

Figure 12_A0101_SEQ_0292
Figure 12_A0101_SEQ_0292

Figure 12_A0101_SEQ_0293
Figure 12_A0101_SEQ_0293

Figure 12_A0101_SEQ_0294
Figure 12_A0101_SEQ_0294

Figure 12_A0101_SEQ_0295
Figure 12_A0101_SEQ_0295

Figure 12_A0101_SEQ_0296
Figure 12_A0101_SEQ_0296

Figure 12_A0101_SEQ_0297
Figure 12_A0101_SEQ_0297

Figure 12_A0101_SEQ_0298
Figure 12_A0101_SEQ_0298

Figure 12_A0101_SEQ_0299
Figure 12_A0101_SEQ_0299

Figure 12_A0101_SEQ_0300
Figure 12_A0101_SEQ_0300

Figure 12_A0101_SEQ_0301
Figure 12_A0101_SEQ_0301

Figure 12_A0101_SEQ_0302
Figure 12_A0101_SEQ_0302

Figure 12_A0101_SEQ_0303
Figure 12_A0101_SEQ_0303

Figure 12_A0101_SEQ_0304
Figure 12_A0101_SEQ_0304

Figure 12_A0101_SEQ_0305
Figure 12_A0101_SEQ_0305

Figure 12_A0101_SEQ_0306
Figure 12_A0101_SEQ_0306

Figure 12_A0101_SEQ_0307
Figure 12_A0101_SEQ_0307

Figure 12_A0101_SEQ_0308
Figure 12_A0101_SEQ_0308

Figure 12_A0101_SEQ_0309
Figure 12_A0101_SEQ_0309

Figure 12_A0101_SEQ_0310
Figure 12_A0101_SEQ_0310

Figure 12_A0101_SEQ_0311
Figure 12_A0101_SEQ_0311

Figure 12_A0101_SEQ_0312
Figure 12_A0101_SEQ_0312

Figure 12_A0101_SEQ_0313
Figure 12_A0101_SEQ_0313

Figure 12_A0101_SEQ_0314
Figure 12_A0101_SEQ_0314

Figure 12_A0101_SEQ_0315
Figure 12_A0101_SEQ_0315

Figure 12_A0101_SEQ_0316
Figure 12_A0101_SEQ_0316

Figure 12_A0101_SEQ_0317
Figure 12_A0101_SEQ_0317

Figure 12_A0101_SEQ_0318
Figure 12_A0101_SEQ_0318

Figure 12_A0101_SEQ_0319
Figure 12_A0101_SEQ_0319

Figure 12_A0101_SEQ_0320
Figure 12_A0101_SEQ_0320

Figure 12_A0101_SEQ_0321
Figure 12_A0101_SEQ_0321

Figure 12_A0101_SEQ_0322
Figure 12_A0101_SEQ_0322

Figure 12_A0101_SEQ_0323
Figure 12_A0101_SEQ_0323

Figure 12_A0101_SEQ_0324
Figure 12_A0101_SEQ_0324

Figure 12_A0101_SEQ_0325
Figure 12_A0101_SEQ_0325

Figure 12_A0101_SEQ_0326
Figure 12_A0101_SEQ_0326

Figure 12_A0101_SEQ_0327
Figure 12_A0101_SEQ_0327

Figure 12_A0101_SEQ_0328
Figure 12_A0101_SEQ_0328

Figure 12_A0101_SEQ_0329
Figure 12_A0101_SEQ_0329

Figure 12_A0101_SEQ_0330
Figure 12_A0101_SEQ_0330

Figure 12_A0101_SEQ_0331
Figure 12_A0101_SEQ_0331

Figure 12_A0101_SEQ_0332
Figure 12_A0101_SEQ_0332

Figure 12_A0101_SEQ_0333
Figure 12_A0101_SEQ_0333

Figure 12_A0101_SEQ_0334
Figure 12_A0101_SEQ_0334

Figure 12_A0101_SEQ_0335
Figure 12_A0101_SEQ_0335

Figure 12_A0101_SEQ_0336
Figure 12_A0101_SEQ_0336

Figure 12_A0101_SEQ_0337
Figure 12_A0101_SEQ_0337

Figure 12_A0101_SEQ_0338
Figure 12_A0101_SEQ_0338

Figure 12_A0101_SEQ_0339
Figure 12_A0101_SEQ_0339

Figure 12_A0101_SEQ_0340
Figure 12_A0101_SEQ_0340

Figure 12_A0101_SEQ_0341
Figure 12_A0101_SEQ_0341

Figure 12_A0101_SEQ_0342
Figure 12_A0101_SEQ_0342

Figure 12_A0101_SEQ_0343
Figure 12_A0101_SEQ_0343

Figure 12_A0101_SEQ_0344
Figure 12_A0101_SEQ_0344

Figure 12_A0101_SEQ_0345
Figure 12_A0101_SEQ_0345

Figure 12_A0101_SEQ_0346
Figure 12_A0101_SEQ_0346

Figure 12_A0101_SEQ_0347
Figure 12_A0101_SEQ_0347

Figure 12_A0101_SEQ_0348
Figure 12_A0101_SEQ_0348

Figure 12_A0101_SEQ_0349
Figure 12_A0101_SEQ_0349

Figure 12_A0101_SEQ_0350
Figure 12_A0101_SEQ_0350

Figure 12_A0101_SEQ_0351
Figure 12_A0101_SEQ_0351

Figure 12_A0101_SEQ_0352
Figure 12_A0101_SEQ_0352

Figure 12_A0101_SEQ_0353
Figure 12_A0101_SEQ_0353

Figure 12_A0101_SEQ_0354
Figure 12_A0101_SEQ_0354

Figure 12_A0101_SEQ_0355
Figure 12_A0101_SEQ_0355

Figure 12_A0101_SEQ_0356
Figure 12_A0101_SEQ_0356

Figure 12_A0101_SEQ_0357
Figure 12_A0101_SEQ_0357

Figure 12_A0101_SEQ_0358
Figure 12_A0101_SEQ_0358

Figure 12_A0101_SEQ_0359
Figure 12_A0101_SEQ_0359

Figure 12_A0101_SEQ_0360
Figure 12_A0101_SEQ_0360

Figure 12_A0101_SEQ_0361
Figure 12_A0101_SEQ_0361

Figure 12_A0101_SEQ_0362
Figure 12_A0101_SEQ_0362

Figure 12_A0101_SEQ_0363
Figure 12_A0101_SEQ_0363

Figure 12_A0101_SEQ_0364
Figure 12_A0101_SEQ_0364

Figure 12_A0101_SEQ_0365
Figure 12_A0101_SEQ_0365

Figure 12_A0101_SEQ_0366
Figure 12_A0101_SEQ_0366

Figure 12_A0101_SEQ_0367
Figure 12_A0101_SEQ_0367

Figure 12_A0101_SEQ_0368
Figure 12_A0101_SEQ_0368

Figure 12_A0101_SEQ_0369
Figure 12_A0101_SEQ_0369

Figure 12_A0101_SEQ_0370
Figure 12_A0101_SEQ_0370

Figure 12_A0101_SEQ_0371
Figure 12_A0101_SEQ_0371

Figure 12_A0101_SEQ_0372
Figure 12_A0101_SEQ_0372

Figure 12_A0101_SEQ_0373
Figure 12_A0101_SEQ_0373

Figure 12_A0101_SEQ_0374
Figure 12_A0101_SEQ_0374

Figure 12_A0101_SEQ_0375
Figure 12_A0101_SEQ_0375

Figure 12_A0101_SEQ_0376
Figure 12_A0101_SEQ_0376

Figure 12_A0101_SEQ_0377
Figure 12_A0101_SEQ_0377

Figure 12_A0101_SEQ_0378
Figure 12_A0101_SEQ_0378

Figure 12_A0101_SEQ_0379
Figure 12_A0101_SEQ_0379

Figure 12_A0101_SEQ_0380
Figure 12_A0101_SEQ_0380

Figure 12_A0101_SEQ_0381
Figure 12_A0101_SEQ_0381

Figure 12_A0101_SEQ_0382
Figure 12_A0101_SEQ_0382

Figure 12_A0101_SEQ_0383
Figure 12_A0101_SEQ_0383

Figure 12_A0101_SEQ_0384
Figure 12_A0101_SEQ_0384

Figure 12_A0101_SEQ_0385
Figure 12_A0101_SEQ_0385

Figure 12_A0101_SEQ_0386
Figure 12_A0101_SEQ_0386

Figure 12_A0101_SEQ_0387
Figure 12_A0101_SEQ_0387

Figure 12_A0101_SEQ_0388
Figure 12_A0101_SEQ_0388

Figure 12_A0101_SEQ_0389
Figure 12_A0101_SEQ_0389

Figure 12_A0101_SEQ_0390
Figure 12_A0101_SEQ_0390

Figure 12_A0101_SEQ_0391
Figure 12_A0101_SEQ_0391

Figure 12_A0101_SEQ_0392
Figure 12_A0101_SEQ_0392

Figure 12_A0101_SEQ_0393
Figure 12_A0101_SEQ_0393

Figure 12_A0101_SEQ_0394
Figure 12_A0101_SEQ_0394

Figure 12_A0101_SEQ_0395
Figure 12_A0101_SEQ_0395

Figure 12_A0101_SEQ_0396
Figure 12_A0101_SEQ_0396

Figure 12_A0101_SEQ_0397
Figure 12_A0101_SEQ_0397

Figure 12_A0101_SEQ_0398
Figure 12_A0101_SEQ_0398

Figure 12_A0101_SEQ_0399
Figure 12_A0101_SEQ_0399

Figure 12_A0101_SEQ_0400
Figure 12_A0101_SEQ_0400

Figure 12_A0101_SEQ_0401
Figure 12_A0101_SEQ_0401

Figure 12_A0101_SEQ_0402
Figure 12_A0101_SEQ_0402

Figure 12_A0101_SEQ_0403
Figure 12_A0101_SEQ_0403

Figure 12_A0101_SEQ_0404
Figure 12_A0101_SEQ_0404

Figure 12_A0101_SEQ_0405
Figure 12_A0101_SEQ_0405

Figure 12_A0101_SEQ_0406
Figure 12_A0101_SEQ_0406

Figure 12_A0101_SEQ_0407
Figure 12_A0101_SEQ_0407

Figure 12_A0101_SEQ_0408
Figure 12_A0101_SEQ_0408

Figure 12_A0101_SEQ_0409
Figure 12_A0101_SEQ_0409

Figure 12_A0101_SEQ_0410
Figure 12_A0101_SEQ_0410

Figure 12_A0101_SEQ_0411
Figure 12_A0101_SEQ_0411

Figure 12_A0101_SEQ_0412
Figure 12_A0101_SEQ_0412

Figure 12_A0101_SEQ_0413
Figure 12_A0101_SEQ_0413

Figure 12_A0101_SEQ_0414
Figure 12_A0101_SEQ_0414

Figure 12_A0101_SEQ_0415
Figure 12_A0101_SEQ_0415

Figure 12_A0101_SEQ_0416
Figure 12_A0101_SEQ_0416

Figure 12_A0101_SEQ_0417
Figure 12_A0101_SEQ_0417

Figure 12_A0101_SEQ_0418
Figure 12_A0101_SEQ_0418

Figure 12_A0101_SEQ_0419
Figure 12_A0101_SEQ_0419

Figure 12_A0101_SEQ_0420
Figure 12_A0101_SEQ_0420

Figure 12_A0101_SEQ_0421
Figure 12_A0101_SEQ_0421

Figure 12_A0101_SEQ_0422
Figure 12_A0101_SEQ_0422

Figure 12_A0101_SEQ_0423
Figure 12_A0101_SEQ_0423

Claims (38)

一種治療多發性骨髓瘤之方法,該方法包括向有需要的受試者以約0.05 mg至約200 mg的劑量投與異二聚體抗體,該異二聚體抗體包含: a)第一單體,該第一單體包含第一Fc結構域和抗CD3 scFv,該抗CD3 scFv包含 (i) scFv可變輕鏈結構域,其包含如SEQ ID NO: 15所示的vlCDR1、如SEQ ID NO: 16所示的vlCDR2、和如SEQ ID NO: 17所示的vlCDR3,和 (ii) scFv可變重鏈結構域,其包含如SEQ ID NO: 11所示的vhCDR1、如SEQ ID NO: 12所示的vhCDR2、和SEQ ID NO: 13中所示的vhCDR3,其中使用結構域連接子將所述scFv共價附接至所述Fc結構域的N末端; b) 第二單體,該第二單體包含 i)抗CD38重鏈可變結構域,其包含如SEQ ID NO: 65所示的vhCDR1、如SEQ ID NO: 66所示的vhCDR2、和如SEQ ID NO: 67所示的vhCDR3,和 ii)包含第二Fc結構域的重鏈恒定結構域;以及 c)包含可變恒定結構域和抗CD38可變輕鏈結構域的輕鏈,該抗CD38可變輕鏈結構域包含如SEQ ID NO: 69所示的vlCDR1、如SEQ ID NO: 70所示的vlCDR2、和如SEQ ID NO: 71所示的vlCDR3。A method for treating multiple myeloma, the method comprising administering a heterodimeric antibody to a subject in need at a dose of about 0.05 mg to about 200 mg, the heterodimeric antibody comprising: a) a first monomer, the first monomer comprising a first Fc domain and an anti-CD3 scFv, the anti-CD3 scFv comprising (i) scFv variable light chain domain comprising vlCDR1 as shown in SEQ ID NO: 15, vlCDR2 as shown in SEQ ID NO: 16, and vlCDR3 as shown in SEQ ID NO: 17, and (ii) a scFv variable heavy chain domain comprising vhCDR1 shown in SEQ ID NO: 11, vhCDR2 shown in SEQ ID NO: 12, and vhCDR3 shown in SEQ ID NO: 13, wherein the structure is used A domain linker covalently attaches the scFv to the N-terminus of the Fc domain; b) Second monomer, the second monomer contains i) an anti-CD38 heavy chain variable domain comprising vhCDR1 as shown in SEQ ID NO: 65, vhCDR2 as shown in SEQ ID NO: 66, and vhCDR3 as shown in SEQ ID NO: 67, and ii) a heavy chain constant domain comprising a second Fc domain; and c) A light chain comprising a variable constant domain and an anti-CD38 variable light chain domain, the anti-CD38 variable light chain domain comprising vlCDR1 as shown in SEQ ID NO: 69, as shown in SEQ ID NO: 70 VlCDR2, and vlCDR3 shown in SEQ ID NO: 71. 如請求項1之方法,其中該劑量為約0.05 mg、0.15 mg、0.45 mg、1.35 mg、4 mg、12 mg、36 mg、100 mg、或200 mg。The method of claim 1, wherein the dose is about 0.05 mg, 0.15 mg, 0.45 mg, 1.35 mg, 4 mg, 12 mg, 36 mg, 100 mg, or 200 mg. 如請求項1之方法,其中該劑量為約36 mg至約200 mg。The method of claim 1, wherein the dose is about 36 mg to about 200 mg. 如請求項1至3中任一項之方法,該方法包括:在治療的第一週和第二週每週向該受試者投與兩個劑量的異二聚體抗體,在治療的第三週和第四週每週向該受試者投與一個劑量的異二聚體抗體,並從第5週開始到治療結束每兩週投與一個劑量的異二聚體抗體。The method according to any one of claims 1 to 3, the method comprising: administering two doses of heterodimeric antibody to the subject each week during the first week and the second week of treatment. The subject was administered a dose of heterodimeric antibody weekly for three weeks and the fourth week, and a dose of heterodimeric antibody was administered every two weeks from week 5 to the end of treatment. 如請求項1至3中任一項之方法,該方法包括:在治療的第一週、第二週、第三週和第四週每週向該受試者投與一個劑量的異二聚體抗體,並且從第5週開始至治療結束每兩週投與一個劑量的異二聚體抗體。The method of any one of claims 1 to 3, the method comprising: administering a dose of heterodimerization to the subject weekly during the first week, second week, third week, and fourth week of treatment Antibodies, and a dose of heterodimeric antibody is administered every two weeks from the 5th week to the end of treatment. 如請求項1至5中任一項之方法,其中,該方法包括在約6個月至約12個月的治療期投與兩個或更多個劑量的該異二聚體抗體。The method of any one of claims 1 to 5, wherein the method comprises administering two or more doses of the heterodimeric antibody during a treatment period of about 6 months to about 12 months. 如請求項6之方法,其中該治療期約為八個月。The method of claim 6, wherein the treatment period is about eight months. 如請求項1至7中任一項之方法,其中該異二聚體抗體藉由靜脈內輸注經約30分鐘至約4小時投與。The method of any one of claims 1 to 7, wherein the heterodimeric antibody is administered by intravenous infusion over about 30 minutes to about 4 hours. 如請求項8之方法,其中第一劑量的異二聚體抗體經約四小時的時間投與,第二劑量的異二聚體抗體經約兩小時的時間投與,並且所有後續劑量經約30分鐘的時間投與。The method of claim 8, wherein the first dose of heterodimeric antibody is administered in about four hours, the second dose of heterodimeric antibody is administered in about two hours, and all subsequent doses are administered in about Give in 30 minutes. 如請求項1至9中任一項之方法,該方法包括:投與兩個或更多個劑量的異二聚體抗體並在治療期間至少一次增加劑量。The method of any one of claims 1 to 9, the method comprising: administering two or more doses of heterodimeric antibody and increasing the dose at least once during the treatment period. 如請求項1至10中任一項之方法,其中該受試者患有復發/難治性多發性骨髓瘤。The method of any one of claims 1 to 10, wherein the subject has relapsed/refractory multiple myeloma. 如請求項1至11中任一項之方法,該方法進一步包括給該受試者投與地塞米松。The method of any one of claims 1 to 11, the method further comprising administering dexamethasone to the subject. 如請求項12之方法,其中靜脈內投與地塞米松。The method of claim 12, wherein the dexamethasone is administered intravenously. 如請求項12或請求項13之方法,其中在投與該異二聚體抗體之前一小時內將地塞米松投與給該受試者。The method of claim 12 or claim 13, wherein the dexamethasone is administered to the subject within one hour before the administration of the heterodimeric antibody. 如請求項12至14中任一項之方法,其中以約8 mg或約4 mg的量投與地塞米松。The method of any one of claims 12 to 14, wherein dexamethasone is administered in an amount of about 8 mg or about 4 mg. 如請求項12之方法,其中口服投與地塞米松。The method of claim 12, wherein dexamethasone is administered orally. 如請求項1至16中任一項之方法,該方法包括:(a) 給該受試者投與抗CD38單特異性抗體,並且在足以將該抗CD38單特異性抗體的全身濃度降低至0.2 μg/ml或更低的洗脫期後,(b) 投與初始劑量的該異二聚體抗體。The method of any one of claims 1 to 16, the method comprising: (a) administering an anti-CD38 monospecific antibody to the subject, and reducing the systemic concentration of the anti-CD38 monospecific antibody to a level sufficient to After an elution period of 0.2 μg/ml or less, (b) administer the initial dose of the heterodimeric antibody. 如請求項1至16中任一項之方法,該方法包括:(a) 給該受試者投與抗CD38單特異性抗體和 (b) 在停止投與該抗CD38單特異性抗體後至少12週的時間點投與初始劑量的該異二聚體抗體。The method of any one of claims 1 to 16, the method comprising: (a) administering the anti-CD38 monospecific antibody to the subject and (b) at least after stopping the administration of the anti-CD38 monospecific antibody The initial dose of this heterodimeric antibody was administered at the 12-week time point. 如請求項18之方法,其中該方法包括在投與初始劑量的該異二聚體抗體之前14-16週停止該抗CD38單特異性抗體的治療。The method of claim 18, wherein the method comprises stopping treatment of the anti-CD38 monospecific antibody 14-16 weeks prior to the administration of the initial dose of the heterodimeric antibody. 如請求項17至19中任一項之方法,其中該抗CD38單特異性抗體係達雷妥木單抗。The method of any one of claims 17 to 19, wherein the anti-CD38 monospecific antibody system is daratumumab. 如請求項1至20中任一項之方法,其中該受試者先前接受過用蛋白酶體抑制劑和/或免疫調節藥物進行的治療。The method of any one of claims 1 to 20, wherein the subject has previously received treatment with a proteasome inhibitor and/or immunomodulatory drug. 如請求項1至21中任一項之方法,其中該抗CD3 scFv包含與SEQ ID NO: 18所示的胺基酸序列至少90%相同的胺基酸序列。The method of any one of claims 1 to 21, wherein the anti-CD3 scFv comprises an amino acid sequence that is at least 90% identical to the amino acid sequence shown in SEQ ID NO: 18. 如請求項1至21中任一項之方法,其中該抗CD3 scFv包含SEQ ID NO: 18所示的胺基酸序列。The method of any one of claims 1 to 21, wherein the anti-CD3 scFv comprises the amino acid sequence shown in SEQ ID NO: 18. 如請求項1至23中任一項之方法,該抗CD38可變輕鏈結構域包含與SEQ ID NO: 68所示的胺基酸序列至少90%相同的胺基酸序列。The method of any one of claims 1 to 23, the anti-CD38 variable light chain domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence shown in SEQ ID NO: 68. 如請求項24之方法,該抗CD38可變鏈輕鏈結構域包含SEQ ID NO: 68所示的胺基酸序列。As in the method of claim 24, the anti-CD38 variable chain light chain domain comprises the amino acid sequence shown in SEQ ID NO: 68. 如請求項1至25中任一項之方法,其中該抗CD38重鏈可變結構域包含與SEQ ID NO: 64所示的胺基酸序列至少90%相同的胺基酸序列。The method of any one of claims 1 to 25, wherein the anti-CD38 heavy chain variable domain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence shown in SEQ ID NO: 64. 如請求項26之方法,其中該抗CD38重鏈可變結構域包含SEQ ID NO: 64所示的胺基酸序列。The method of claim 26, wherein the anti-CD38 heavy chain variable domain comprises the amino acid sequence shown in SEQ ID NO: 64. 如請求項1至27中任一項之方法,其中該第一單體包含與SEQ ID NO: 335所示的胺基酸序列至少90%相同的胺基酸序列。The method of any one of claims 1 to 27, wherein the first monomer comprises an amino acid sequence that is at least 90% identical to the amino acid sequence shown in SEQ ID NO: 335. 如請求項28之方法,其中該第一單體包含SEQ ID NO: 335所示的胺基酸序列。The method of claim 28, wherein the first monomer comprises the amino acid sequence shown in SEQ ID NO: 335. 如請求項1至29中任一項之方法,其中該第二單體包含與SEQ ID NO: 82所示的胺基酸序列至少90%相同的胺基酸序列。The method of any one of claims 1 to 29, wherein the second monomer comprises an amino acid sequence that is at least 90% identical to the amino acid sequence shown in SEQ ID NO: 82. 如請求項30之方法,其中該第二單體包含SEQ ID NO: 82所示的胺基酸序列。The method of claim 30, wherein the second monomer comprises the amino acid sequence shown in SEQ ID NO: 82. 如請求項1至31中任一項之方法,其中該輕鏈包含與SEQ ID NO: 84所示的胺基酸序列至少90%相同的胺基酸序列。The method of any one of claims 1 to 31, wherein the light chain comprises an amino acid sequence that is at least 90% identical to the amino acid sequence shown in SEQ ID NO: 84. 如請求項32之方法,其中該輕鏈包含SEQ ID NO: 84所示的胺基酸序列。The method of claim 32, wherein the light chain comprises the amino acid sequence shown in SEQ ID NO: 84. 如請求項1至27中任一項之方法,其中該第一Fc結構域和該第二Fc結構域包含一個或多個減少同二聚化的突變。The method of any one of claims 1 to 27, wherein the first Fc domain and the second Fc domain comprise one or more mutations that reduce homodimerization. 如請求項1至27中任一項之方法,其中所述第一Fc結構域和所述第二Fc結構域包含選自以下群組的變體組,該群組由以下項組成:S364K/E357Q : L368D/K370S;L368D/K370S : S364K;L368E/K370S : S364K;T411T/E360E/Q362E : D401K;L368D/K370S : S364K/E357L和K370S : S364K/E357Q。The method according to any one of claims 1 to 27, wherein the first Fc domain and the second Fc domain comprise a variant group selected from the group consisting of the following items: S364K/ E357Q: L368D/K370S; L368D/K370S: S364K; L368E/K370S: S364K; T411T/E360E/Q362E: D401K; L368D/K370S: S364K/E357L and K370S: S364K/E357Q. 如請求項1至27中任一項之方法,其中所述scFv結構域連接子係帶電荷的連接子。The method according to any one of claims 1 to 27, wherein the scFv domain linker is a charged linker. 如請求項1至27中任一項之方法,其中所述重鏈恒定結構域包含胺基酸取代N208D/Q295E/N384D/Q418E/N421D。The method of any one of claims 1 to 27, wherein the heavy chain constant domain comprises an amino acid substitution N208D/Q295E/N384D/Q418E/N421D. 如請求項1至27中任一項之方法,其中所述第一和第二Fc結構域包含胺基酸取代E233P/L234V/L235A/G236del/S267K。The method of any one of claims 1 to 27, wherein the first and second Fc domains comprise amino acid substitutions E233P/L234V/L235A/G236del/S267K.
TW108125109A 2018-07-16 2019-07-16 Method of treating multiple myeloma TW202019965A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862698675P 2018-07-16 2018-07-16
US62/698,675 2018-07-16

Publications (1)

Publication Number Publication Date
TW202019965A true TW202019965A (en) 2020-06-01

Family

ID=67480446

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125109A TW202019965A (en) 2018-07-16 2019-07-16 Method of treating multiple myeloma

Country Status (2)

Country Link
TW (1) TW202019965A (en)
WO (1) WO2020018556A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12274747B2 (en) 2021-01-28 2025-04-15 Regeneron Pharmaceuticals, Inc. Compositions and methods for treating cytokine release syndrome
IL316002A (en) 2022-04-11 2024-11-01 Regeneron Pharma Universal tumor cell killing compositions and methods
WO2024173830A2 (en) 2023-02-17 2024-08-22 Regeneron Pharmaceuticals, Inc. Induced nk cells responsive to cd3/taa bispecific antibodies

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
EP0915987A2 (en) 1997-04-21 1999-05-19 Donlar Corporation POLY-($g(a)-L-ASPARTIC ACID), POLY-($g(a)-L-GLUTAMIC ACID) AND COPOLYMERS OF L-ASP AND L-GLU, METHOD FOR THEIR PRODUCTION AND THEIR USE
US7449443B2 (en) 2000-03-23 2008-11-11 California Institute Of Technology Method for stabilization of proteins using non-natural amino acids
US6586207B2 (en) 2000-05-26 2003-07-01 California Institute Of Technology Overexpression of aminoacyl-tRNA synthetases for efficient production of engineered proteins containing amino acid analogues
WO2003073238A2 (en) 2002-02-27 2003-09-04 California Institute Of Technology Computational method for designing enzymes for incorporation of amino acid analogs into proteins
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US20060235208A1 (en) 2002-09-27 2006-10-19 Xencor, Inc. Fc variants with optimized properties
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
JP4890253B2 (en) 2003-10-09 2012-03-07 アンブレツクス・インコーポレイテツド Azide or acetylene-terminated water-soluble polymer
AU2005211385B2 (en) 2004-02-02 2008-12-11 Ambrx, Inc. Modified human growth hormone polypeptides and their uses
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
DK1931709T3 (en) 2005-10-03 2017-03-13 Xencor Inc FC VARIETIES WITH OPTIMIZED FC RECEPTOR BINDING PROPERTIES
KR101973930B1 (en) 2010-11-05 2019-04-29 자임워크스 인코포레이티드 Stable heterodimeric antibody design with mutations in the fc domain
US8820052B2 (en) 2012-02-09 2014-09-02 Ford Global Technologies, Llc Liquid reductant system and method for operation of the liquid reductant system
DK2943511T3 (en) 2013-01-14 2019-10-21 Xencor Inc NEW HETERODIMERIC PROTEINS
KR102211176B1 (en) 2013-03-15 2021-02-01 젠코어 인코포레이티드 Heterodimeric proteins
BR112016022385A2 (en) 2014-03-28 2018-06-19 Xencor, Inc specific antibodies that bind to cd38 and cd3
EA037065B1 (en) 2014-11-26 2021-02-01 Ксенкор, Инк. Heterodimeric antibodies that bind cd3 and cd38

Also Published As

Publication number Publication date
WO2020018556A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6865324B2 (en) Anti-CD3 antibodies, bispecific antigen-binding molecules that bind to CD3 and CD20, and their use
US20220040264A1 (en) Il-15/il-15ra heterodimeric fc fusion proteins and uses thereof
JP6982643B2 (en) Heterodimer antibody that binds to CD3 and CD38
US11618776B2 (en) Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15RA and NKG2D antigen binding domains
JP6681396B2 (en) Method of treating a tumor with a CD3XCD20 bispecific antibody
US20210095027A1 (en) Bispecific antibodies that bind cd20 and cd3
US20170349660A1 (en) Bispecific antibodies that bind cd123 and cd3
BR112020024249A2 (en) bispecific anti-pvrig / anti-tigit antibody, composition, nucleic acid composition, expression vector composition, host cell, methods for producing a bispecific anti-pvrig / anti-tigit antibody, for activation of a patient&#39;s t cells, for activation of a patient&#39;s cytotoxic t cells, for activation of a patient&#39;s nk cells, for activation of a patient&#39;s delta gamma t cells, for activation of a patient&#39;s th1 cells, to decrease or eliminate the number of cells and / or the activity of at least one of the regulatory t cells in a patient, to increase the production of interferon-gamma and / or the secretion of pro-inflammatory cytokines in a patient and to treat cancer in a patient, anti-pvrig antibody, anti antibody -tigit, and, expression vector.
JP2021520829A (en) TIM-3 targeted heterodimer fusion protein containing IL-15 / IL-15RA Fc fusion protein and TIM-3 antigen binding domain
JP2018537516A (en) Optimized anti-CD3 bispecific antibody and use thereof
CN110894240A (en) Heterodimeric antibodies that bind CD3 and tumor antigens
US20200231676A1 (en) Methods of treating transplant rejection using a domain antibody directed against cd40l
US20200392230A1 (en) Bispecific anti-cd3 x cd20 antibodies and uses thereof
TW202019965A (en) Method of treating multiple myeloma
US20240400633A1 (en) Split human ifn-gamma and tnf-alpha constructs and uses thereof
HK40034502A (en) Methods for tumor treatment using cd3xcd20 bispecific antibody
HK1244293B (en) Methods for tumor treatment using cd3xcd20 bispecific antibody
HK1261817A1 (en) Heterodimeric antibodies that bind cd3 and cd38
HK1261817B (en) Heterodimeric antibodies that bind cd3 and cd38
BR112016022381B1 (en) ISOLATED HUMANIZED ANTIBODY OR ANTIGEN-BINDING FRAGMENT THEREOF THAT LINKS TO CANNABINOID RECEPTOR 1 (CB1), ITS USE, PHARMACEUTICAL COMPOSITION AND IN VITRO METHOD OF AGONIZING OR ANTAGONIZING CB1