TW202019699A - 奈米摩擦起電結構、感測系統及殺菌系統 - Google Patents
奈米摩擦起電結構、感測系統及殺菌系統 Download PDFInfo
- Publication number
- TW202019699A TW202019699A TW107141527A TW107141527A TW202019699A TW 202019699 A TW202019699 A TW 202019699A TW 107141527 A TW107141527 A TW 107141527A TW 107141527 A TW107141527 A TW 107141527A TW 202019699 A TW202019699 A TW 202019699A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode layer
- nano
- triboelectric
- layer
- upper electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/048—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/002—Generators
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本發明提供一種奈米摩擦起電結構,由一上電極層、一下摩擦層、一下電極層及一電連接件組成,其中,上電極層由一水膠組成,下摩擦層對應上電極層且具有一第一表面及一第二表面,第一表面朝向上電極層;下電極層設置在第二表面;且電連接件連接上電極層與下電極層。藉此,奈米摩擦起電結構不受溼度影響,而具有穩定的輸出性能。
Description
本發明是有關於一種奈米摩擦起電結構、感測系統及殺菌系統,且尤其是有關一種上電極層兼具摩擦與電極功能的奈米摩擦起電結構、感測系統及殺菌系統。
近年來,由於科技的進步,穿戴式電子裝置盛行,而織物也被廣泛地應用於此類電子裝置。但此種電子裝置仍需要額外的電源以提供電力,因此電源的發展一直都是趨勢所在。
由於一般的電源缺乏續航力、生物相容性及可攜帶性而不適用於結合織物,故有業者發出奈米摩擦起電裝置,其能應用於織物以提供電力。
請參閱第1A圖及第1B圖,其中第1A圖繪示一習知之奈米摩擦起電裝置10,第1B圖繪示第1A圖之奈米摩擦起電裝置10的輸出電壓與溼度關係圖。如第1A圖所示,習知之奈米摩擦起電裝置10包含一上基材12、一下基材13及一奈米摩擦起電結構11,奈米摩擦起電結構11包含一上
電極層111、一下摩擦層112及一下電極層113,上電極層111及下電極層113電性連接,且奈米摩擦起電結構11設置於上基材12及下基材13之間。上電極層111及下電極層113為金屬材料製成,下摩擦層112為聚四氟乙烯製成,而上基材12及下基材13的至少其中之一可以是織物。透過上電極層111與下摩擦層112之間的連續接觸分離運動,可產生輸出電壓以供電子裝置使用,而具有結構簡單及方便應用之優點。
然而,習知之奈米摩擦起電結構11的輸出電壓容易受溼度影響,如第1B圖所示,其輸出電壓隨溼度(20%至80%)之上升而下降。因此,當奈米摩擦起電裝置10應用於穿戴式電子裝置時,容易受到人體汗水或環境溼度影響而影響輸出電壓。
有鑑於此,如何有效地改善奈米摩擦起電結構,使其具有良好的輸出穩定性,遂成相關業者努力的目標。
本發明提供一種奈米摩擦起電結構,透過上電極層之材料配置,可使奈米摩擦起電結構具有穩定的輸出性能。
依據本發明之一態樣之一實施方式提供一種奈米摩擦起電結構,其由一上電極層、一下摩擦層、一下電極層及一電連接件組成,其中,上電極層由一水膠組成,下摩擦層對應上電極層且具有一第一表面及一第二表面,第一表
面朝向上電極層;下電極層設置在第二表面;且電連接件連接上電極層與下電極層。
藉此,由於上電極層由水膠組成,奈米摩擦起電結構所產生之輸出電壓不易隨溼度變化而改變,而能達到輸出電壓穩定之目的。
依據前述之奈米摩擦起電結構的複數實施例,其中水膠可包含一聚殼糖及一甘油,甘油與聚殼糖混合,甘油的重量百分比可為15%至25%。或奈米摩擦起電結構在溼度為20%時的輸出電壓為V1,奈米摩擦起電結構在溼度為80%時的輸出電壓為V2,可滿足0.9≦V1/V2≦1之關係。
依據本發明之一態樣之另一實施方式提供一種奈米摩擦起電結構,其包含一上電極層、一下摩擦層、一下電極層及一電連接件。上電極層由一水膠組成,下摩擦層對應上電極層且具有一第一表面及一第二表面,第一表面朝向上電極層;下電極層設置在第二表面;且電連接件連接上電極層與下電極層,其中,奈米摩擦起電結構在溼度為20%時的輸出電壓為V1,奈米摩擦起電結構在溼度為80%時的輸出電壓為V2,滿足0.9≦V1/V2≦1之關係。
依據前述之奈米摩擦起電結構的複數實施例,其中水膠可包含一聚殼糖及一甘油,甘油與聚殼糖混合,甘油的重量百分比可為15%至25%。
依據本發明之一態樣之又一實施方式提供一種感測系統,其包含一溼度感測模組及一顯示模組,溼度感測模組包含一溼度感測器及一電源,電源包含任一前述之奈米
摩擦起電結構,且電連接件連接溼度感測器,顯示模組電性連接溼度感測模組。
依據前述之感測系統的複數實施例,其中顯示模組可包含一發光二極體電性連接溼度感測模組。或前述感測系統可更包含一穿戴物及一設置物,設置物與穿戴物相對應,上電極層設置於穿戴物且外露於穿戴物,下電極層設置於設置物與下摩擦層之間。奈米摩擦起電結構可更包含一中空墊圈連接於上電極層與下摩擦層之間,其中奈米摩擦起電結構受力時,中空墊圈變形使上電極層與下摩擦層接觸。
依據本發明之一態樣之再一實施方式提供一種感測系統,其包含一感測模組及一顯示模組。感測模組包含複數感測器分別與一物件的複數部位接觸,各感測器包含任一前述之奈米摩擦起電結構,顯示模組電性連接感測模組,其中,各感測器的輸出電壓依據物件的作動產生變化,以感測物件的複數部位的運動狀況。
依據前述之感測系統的複數實施例,感測系統可更包含一設置物與物件相對,各下電極層設置於設置物,物件接觸各感測器使各感測器產生輸出電壓。奈米摩擦起電結構可更包含一中空墊圈連接於上電極層與下摩擦層之間,其中奈米摩擦起電結構受力時,中空墊圈變形使上電極層與下摩擦層接觸。
依據本發明之一態樣之更一實施方式提供一種殺菌系統,其包含一穿戴物及一電源,穿戴物包含一殺菌
層,電源包含任一前述之奈米摩擦起電結構,且電連接件電性連接殺菌層。
依據前述之殺菌系統的複數實施例,其中,電源更包含一撓曲基材,撓曲基材彎折形成複數間隔層,各間隔層具有一上表面及一下表面,奈米摩擦起電結構的數量為複數,一上電極層設置於一間隔層的上表面與下表面中的其中之一,一下電極層設置於前述一間隔層的上表面與下表面的另外之一。
10‧‧‧奈米摩擦起電裝置
11‧‧‧奈米摩擦起電結構
111‧‧‧上電極層
112‧‧‧下摩擦層
113‧‧‧下電極層
12‧‧‧上基材
13‧‧‧下基材
20‧‧‧奈米摩擦起電結構
21‧‧‧上電極層
211‧‧‧摩擦表面
4114‧‧‧電連接件
4115‧‧‧中空墊圈
44‧‧‧顯示模組
50‧‧‧感測系統
51、52、53、54‧‧‧感測器
511‧‧‧奈米摩擦起電結構
5111‧‧‧上電極層
5112‧‧‧下摩擦層
5113‧‧‧下電極層
5115‧‧‧中空墊圈
22‧‧‧下摩擦層
221‧‧‧第一表面
222‧‧‧第二表面
23‧‧‧下電極層
24‧‧‧電連接件
30‧‧‧感測系統
31‧‧‧溼度感測模組
311‧‧‧溼度感測器
312‧‧‧奈米摩擦起電結構
3121‧‧‧上電極層
3122‧‧‧下摩擦層
3123‧‧‧下電極層
32‧‧‧顯示模組
321‧‧‧發光二極體
33‧‧‧設置物
34‧‧‧穿戴物
40‧‧‧感測系統
41、42、43‧‧‧感測器
411‧‧‧奈米摩擦起電結構
412‧‧‧下基材
413‧‧‧上基材
4111‧‧‧上電極層
4112‧‧‧下摩擦層
4113‧‧‧下電極層
55‧‧‧顯示模組
56‧‧‧設置物
60‧‧‧殺菌系統
61‧‧‧電源
611‧‧‧奈米摩擦起電結構
6111‧‧‧上電極層
6112‧‧‧下摩擦層
6113‧‧‧下電極層
6114‧‧‧電連接件
612‧‧‧撓曲基材
6121、6122‧‧‧間隔層
6121a、6122a‧‧‧上表面
6121b、6122b‧‧‧下表面
62‧‧‧穿戴物
621、623、625‧‧‧一般層
622、624‧‧‧殺菌層
6221‧‧‧碳纖維
6222‧‧‧金碲奈米管
631‧‧‧電容
632‧‧‧開關
633‧‧‧整流器
e-‧‧‧電子
H1‧‧‧物件
L1、L2‧‧‧曲線
第1A圖繪示一習知之奈米摩擦起電裝置;第1B圖繪示第1A圖之奈米摩擦起電裝置的輸出電壓與溼度關係圖;第2圖繪示依照本發明第1實施例之一種奈米摩擦起電結構的側視示意圖;第3A圖繪示第2圖之奈米摩擦起電結構的輸出電壓與時間關係圖;第3B圖繪示第2圖之奈米摩擦起電結構的輸出電壓與溼度關係圖;第4圖繪示第2圖之奈米摩擦起電結構的輸出電壓與接觸分離運動次數的關係圖;第5圖繪示第2圖之奈米摩擦起電結構之上電極層的電導率以及一比較例之奈米摩擦起電結構的電荷密度與溼度的關
係圖;第6圖繪示第2圖之上電極層中甘油的重量百分比與輸出電壓的關係圖;第7圖繪示依照本發明第2實施例之一種感測系統的立體示意圖;第8圖繪示第7圖之感測系統的簡化示意圖;第9圖繪示第7圖之感測系統的感測結果圖;第10A圖繪示依照本發明第3實施例之一種感測系統應用於一物件的立體示意圖;第10B圖繪示第10A圖之感測系統的一感測器的立體示意圖;第11圖繪示第10B圖之感測器動作示意圖;第12圖繪示第10A圖之感測器的分布於物件上的示意圖;第13A圖繪示第12圖之物件的一第一動作示意圖;第13B圖繪示第13A圖之感測器的輸出電壓結果圖;第14A圖繪示第12圖之物件的一第二動作示意圖;第14B圖繪示第14A圖之感測器的輸出電壓結果圖;第15A圖繪示第12圖之物件的一第三動作示意圖;第15B圖繪示第15A圖之感測器的輸出電壓結果圖;第16A圖繪示第12圖之物件的一第四動作示意圖;第16B圖繪示第16A圖之感測器的輸出電壓結果圖;第17A圖繪示依照本發明第4實施例之一種感測系統的示意圖;第17B圖繪示第17A圖之感測系統的一感測器的剖視示意圖;第18圖繪示第17A圖之感測系統的量測結果圖;
第19A圖繪示依照本發明第5實施例之一種殺菌系統的立體示意圖;第19B圖繪示第19A圖之殺菌系統的一殺菌層的結構示意圖;第20圖繪示第19A圖之一電源連接一穿戴物的示意圖;第21圖繪示第20圖之電源的間隔層數與總輸出電壓的關係圖;第22A圖繪示第19A圖之殺菌系統的系統架構示意圖;第22B圖繪示第19A圖之殺菌系統的充電示意圖;以及第22C圖繪示第19A圖之殺菌系統的殺菌效果圖。
以下將參照圖式說明本發明之實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,閱讀者應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示;並且重複之元件將可能使用相同的編號或類似的編號表示。
此外,本文中當某一元件(或機構或模組等)「連接」、「設置」或「耦合」於另一元件,可指所述元件是直接連接、直接設置或直接耦合於另一元件,亦可指某一元件是間接連接、間接設置或間接耦合於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接」、「直接設置」或「直接耦合」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。第
一、第二、第三等用語只是用來描述不同元件或成分,而對元件/成分本身並無限制,因此,第一元件/成分亦可改稱為第二元件/成分。且本文中之元件/成分/機構/模組之組合非此領域中之一般周知、常規或習知之組合,不能以元件/成分/機構/模組本身是否為習知,來判定其組合關係是否容易被技術領域中之通常知識者輕易完成。
請參閱第2圖,其中第2圖繪示依照本發明第1實施例之一種奈米摩擦起電結構20的側視示意圖。奈米摩擦起電結構20包含一上電極層21、一下摩擦層22、一下電極層23及一電連接件24。上電極層21由一水膠組成,下摩擦層22對應上電極層21且具有一第一表面221及一第二表面222,第一表面221朝向上電極層21;下電極層23設置在第二表面222;且電連接件24連接上電極層21與下電極層23。
藉此,由於上電極層21由水膠組成,奈米摩擦起電結構20所產生之輸出電壓不易隨溼度變化而改變,而具有良好的輸出穩定性能。後面將詳述奈米摩擦起電結構20的細節。
上電極層21兼具摩擦與電極功能,上電極層21具有一摩擦表面211,摩擦表面211與下摩擦層22的第一表面221進行一接觸分離運動,所謂的接觸分離運動是指,先讓摩擦表面211與第一表面221朝彼此靠近以上下接觸,再讓摩擦表面211與第一表面221朝彼此遠離以上下分離,並
且不斷的重覆接觸與分離的動作,以產生電荷。此種接觸分離運動是奈米摩擦起電結構領域中所習知,不再贅述。
上電極層21的水膠可包含一聚殼糖(chitosan)及一甘油(glycerol),甘油與聚殼糖混合。在製備時,可添加不同濃度之甘油至含有20%重量百分比聚殼糖的乙酸(acetic acid)溶液中,攪拌以製成一混合溶液,再將此混合溶液塗佈至一含有奈米結構圖形之矽基板上,隨後將前述經塗佈之矽基板進入真空腔室以移除混合溶液內殘餘之氣泡,最後將前述經塗佈之矽基板以60度C加熱4小時以完成上電極層21,而使上電極層21的摩擦表面211具有奈米結構,奈米結構可為不規則之凸起或凹陷。但在其他實施例中,水膠亦可以是聚殼糖與其他單數或複數材料之混合,例如明膠(gelatin)、澱粉(Starch)、角蛋白(keratin)及還原氧化石墨烯(reduced graphene oxide)等,且製備方式及製備參數不以此為限。在此需特別說明的是,當上電極層21的摩擦表面211具有奈米結構時,可提升電荷輸出,但在其他實施例中,摩擦表面的奈米結構亦可以是間隔分布在摩擦表面上的複數V型槽或複數U型槽,或是摩擦表面可以不具有奈米結構,不以上述揭露為限。
下摩擦層22可為聚四氟乙烯(Polytetrafluoroethylene;PTFE)製成,而下電極層23可為鋁,但下摩擦層22及下電極層23的材料不以此為限。電連接件24可具有電線結構,而連接上電極層21與下電極層23。
請參閱第3A圖,其中第3A圖繪示第2圖之奈米摩擦起電結構20的輸出電壓與時間關係圖。由第3A圖可知,隨時間變化,奈米摩擦起電結構20的輸出電壓均維持固定,而具有輸出穩定之性能。
請參閱第3B圖,其中第3B圖繪示第2圖之奈米摩擦起電結構20的輸出電壓與溼度關係圖,且量測溼度為20%、30%、40%、50%、60%、70%及80%,全文中的溼度均指相對溼度。由第3B圖可知,在不同的溼度下,奈米摩擦起電結構20的輸出電壓均維持固定,而具有輸出穩定之性能。較佳地,奈米摩擦起電結構20在溼度為20%時的輸出電壓為V1,奈米摩擦起電結構20在溼度為80%時的輸出電壓為V2,可滿足0.9≦V1/V2≦1之關係。更佳地,輸出電壓V1及輸出電壓V2可滿足0.95≦V1/V2≦1之關係。
請參閱第4圖,其中第4圖繪示第2圖之奈米摩擦起電結構20的輸出電壓與接觸分離運動次數的關係圖。第4圖中,是以一線性馬達控制奈米摩擦起電結構20進行接觸分離運動所得之輸出電壓結果,接觸分離運動的頻率為1Hz,接觸分離運動的時間約3小時,且第12000次至13000次之接觸分離運動是在高溼度下進行。由第4圖可知,奈米摩擦起電結構20在進行接觸分離運動一萬次後,仍可維持穩定之的輸出電壓,且不受溼度影響,而具有良好的輸出穩定性能。
請參閱第5圖,其中第5圖繪示第2圖之奈米摩擦起電結構20之上電極層21的電導率以及一比較例之奈米
摩擦起電結構的電荷密度與溼度的關係圖,比較例之奈米摩擦起電結構具有一上電極層、一上摩擦層、一下摩擦層及一下電極層,而比較例的上電極層為鋁、比較例的上摩擦層的材料與奈米摩擦起電結構20之上電極層21的水膠相同,比較例的下摩擦層及下電極層分別與奈米摩擦起電結構20的下摩擦層22及下電極層23相同。也就是說,奈米摩擦起電結構20中水膠是兼具摩擦與電極功能,而在比較例中,水膠僅用於摩擦功能。由第5圖可看出,比較例之上摩擦層(水膠)的電荷密度(曲線L1)隨溼度上升而下降,而奈米摩擦起電結構20之上電極層21(水膠)的電導率(曲線L2)隨溼度上升而上升。此外,奈米摩擦起電結構20之上電極層21亦進行阻值的量測,可知其阻值會隨溼度上升而下降。因此,當水膠做為摩擦層時,其電荷密度會隨溼度上升而下降,而由於水膠兼具電極與摩擦功能時其電導率會隨溼度上升而上升,進而使得以水膠製成上電極層21的奈米摩擦起電結構20可以在不同溼度下維持穩定的輸出電壓。
請參閱第6圖,其中第6圖繪示第2圖之上電極層中甘油的重量百分比與輸出電壓的關係圖,甘油的重量百分比分別為10%、20%、30%及40%。在製備上電極層21的水膠時,可添加不同濃度之甘油至含有20%重量百分比聚殼糖的乙酸(acetic acid)溶液中,攪拌以製成一混合溶液。如第6圖所示,當添加之甘油的重量百分為20%時,奈米摩擦起電結構20的輸出電壓最高。因此,較佳地,甘油的重量百分比可為15%至25%。
請參閱第7圖、第8圖及第9圖,其中第7圖繪示依照本發明第2實施例之一種感測系統30的立體示意圖,第8圖繪示第7圖之感測系統30的簡化示意圖,第9圖繪示第7圖之感測系統30的感測結果圖。感測系統30包含一溼度感測模組31及一顯示模組32,溼度感測模組31包含一溼度感測器311及一電源(未標示),電源包含一奈米摩擦起電結構312,且電連接件(未標示)連接溼度感測器311,顯示模組32電性連接溼度感測模組31。
更仔細地說,感測系統30更包含一穿戴物34及一設置物33,設置物33與穿戴物34相對應,上電極層3121設置於穿戴物34且外露於穿戴物34,下電極層3123設置於設置物33與下摩擦層3122之間。
奈米摩擦起電結構312的上電極層3121、下摩擦層3122及下電極層3123之結構與材料分別和第1實施例之奈米摩擦起電結構20的上電極層21、下摩擦層22及下電極層23相同,在此不再贅述。穿戴物34在第2實施例中呈一襪子結構,上電極層21是塗佈於穿戴物34的外側而外露於穿戴物34。設置物33可呈一鞋墊結構,下電極層3123是覆蓋設置物33對應穿戴物34的一表面,下摩擦層3122則位於下電極層3123之上,且設置物33可設置於一鞋子(未繪示)內。此外,溼度感測器311可設置於穿戴物34上。
當一使用者(未繪示)的一足部(未標示)穿戴穿戴物34並置於鞋子內部時,穿戴物34會與設置物33相對,而當使用者行走時,穿戴物34會不斷地與設置物33接觸、
分離,而使得奈米摩擦起電結構312的上電極層3121與下摩擦層3122進行接觸分離運動而能產生輸出電壓。
在第2實施例中,溼度感測器311可為一溼敏電阻,如第8圖所示,溼度感測器311串聯於上電極層3121與下電極層3123之間,且溼度感測器311與顯示模組32並聯。而如第9圖所示,由於溼度感測器311的阻值會隨溼度上升,奈米摩擦起電結構312的輸出電壓即會隨溼度上升而降低。
因此,顯示模組32可包含四發光二極體321電性連接溼度感測模組31,當溼度感測器311感測到鞋子內部的溼度變化時,四發光二極體321的發光狀態將改變,以讓使用者知悉鞋子內部的溼度狀況。例如,溼度在20%以下時,奈米摩擦起電結構312的輸出電壓較高,四發光二極體321全亮;溼度在40%時,可有三顆發光二極體321發亮;當溼度在80%時,奈米摩擦起電結構312的輸出電壓最低高,僅一顆發光二極體321發亮。在其他實施例中,顯示模組亦可以只包含一顆發光二極體,而以亮度變化來反應鞋子內部的溼度狀況,或是顯示模組包含液晶顯示器而能顯示溼度數值等,不以此為限。
請參閱第10A圖、第10B圖及第11圖,其中第10A圖繪示依照本發明第3實施例之一種感測系統40應用於一物件H1的立體示意圖,第10B圖繪示第10A圖之感測系統40的一感測器41的立體示意圖,第11圖繪示第10B圖之感測器41動作示意圖。感測系統40包含一感測模組(未標
示)及一顯示模組44。感測模組包含複數感測器41、42、43分別與物件H1的複數部位接觸,各感測器41、42、43包含奈米摩擦起電結構411(由於感測器41、42、43的結構相同,第10B圖中僅繪出感測器41的奈米摩擦起電結構411,以下提到第3實施例的奈米摩擦起電結構時,亦以感測器41的奈米摩擦起電結構411來作說明),顯示模組44電性連接感測模組,其中,各感測器41、42、43的輸出電壓依據物件H1的作動產生變化,以感測物件H1的複數部位的運動狀況。
在第3實施例中,物件H1為手,感測器41、42、43是設置在手背上。感測器41包含奈米摩擦起電結構411、上基材413及下基材412,奈米摩擦起電結構411的結構與第1實施例之奈米摩擦起電結構20類似,其包含上電極層4111、下摩擦層4112、下電極層4113及電連接件4114,但下摩擦層4112及下電極層4113的材料與第1實施例不同,下摩擦層4112的材料為氟化乙烯丙烯共聚物(Fluorinated ethylene propylene,FEP),下電極層4113的材料為氧化銦錫(indium tin oxide,ITO)。上基材413供上電極層4111設置,下基材412供下電極層4113設置,且上基材413及下基材414的材料均為聚二甲基矽氧烷(polydimethylsiloxane,PDMS)。
奈米摩擦起電結構411可更包含一中空墊圈4115連接於上電極層4111與下摩擦層4112之間,其中奈米
摩擦起電結構411受力時,中空墊圈4115變形使上電極層4111與下摩擦層4112接觸。
中空墊圈4115是中空的環形結構,中空墊圈4115具有彈性而能變形,故中空墊圈4115在一情況下可以間隔上電極層4111與下摩擦層4112使其之間具有間隙而彼此分離,中空墊圈4115在另一情況下變形而容許上電極層4111與下摩擦層4112接觸。因此,如第11圖所示,在初始狀態下,奈米摩擦起電結構411未受力,上電極層4111與下摩擦層4112未接觸;而當奈米摩擦起電結構411受力變形後,上電極層4111與下摩擦層4112接觸而產生電荷,當外力移除後,上電極層4111與下摩擦層4112逐漸分離而使得電子e-由下電極層4113流向上電極層4111;並且,奈米摩擦起電結構411再次受力使電位能改變後,電子e-會由上電極層4111流向下電極層4113。
透過上述奈米摩擦起電結構411的接觸分離運動,可以產生輸出電壓,而此輸出電壓可以被偵測,以作為進一步資訊判讀的依據。
請參閱第12圖、第13A圖、第13B圖、第14A圖、第14B圖、第15A圖、第15B圖、第16A圖、第16B圖,第12圖繪示第10A圖之感測器41、42、43的分布示意圖,第13A圖繪示第12圖之物件的一第一動作示意圖,第13B圖繪示第13A圖之感測器41、42、43的輸出電壓結果圖,第14A圖繪示第12圖之物件的一第二動作示意圖,第14B圖繪示第14A圖之感測器41的輸出電壓結果圖,第15A圖繪
示第12圖之物件的一第三動作示意圖,第15B圖繪示第15A圖之感測器42的輸出電壓結果圖,第16A圖繪示第12圖之物件的一第四動作示意圖,第16B圖繪示第16A圖之感測器43的輸出電壓結果圖。
如第12圖所示,感測器41設置於手背上對應大姆指的位置,感測器42設置於手背上對應食指的位置,感測器43設置於手背上對應小姆指的位置。而在其他實施例中,感測器不限於設置於手背上對應大拇指、小拇指及食指的位置,亦可設置於對應中指與無名指的位置。
如第13A圖及第13B圖所示,在初始握拳的狀態下,感測器41、42、43未受力,因此感測器41、42、43的輸出電壓均為零。如第14A圖及第14B圖所示,當大姆指作動時,手背上肌內伸展變形而使感測器41受力,因此感測器41產生輸出電壓。如第15A圖及第15B圖所示,當食指作動時,手背上肌內伸展變形而使感測器42受力,因此感測器42產生輸出電壓。如第16A圖及第16B圖所示,當小姆指作動時,手背上肌內伸展變形而使感測器43受力,因此感測器43產生輸出電壓。
因此,透過偵測感測器41、42、43的輸出電壓,即可以偵測到手指的作動。例如,在左手及右手的手背上均如上述方式配置設置3個感測器,而能產生多個組合,因此可指定26個輸出電壓的組合給26個英文字母,而能依照感測器41、42、43的輸出電壓來判定所欲表示的英文字母,並將此英文字母透過顯示模組44顯示。
請參閱第17A圖及第17B圖,其中第17A圖繪示依照本發明第4實施例之一種感測系統50的立體示意圖,第17B圖繪示第17A圖之感測系統50的感測器51的剖視示意圖。感測系統50包含一感測模組(未標示)及一顯示模組55。感測模組包含複數感測器51、52、53、54分別與一物件(未繪示)的複數部位接觸,各感測器51、52、53、54包含一奈米摩擦起電結構511(由於感測器51、52、53、54的結構相同,第17B圖中僅繪出感測器51的奈米摩擦起電結構511,以下提到第4實施例的奈米摩擦起電結構時,亦以感測器51的奈米摩擦起電結構511來作說明),顯示模組55電性連接感測模組,其中,各感測器51、52、53、54的輸出電壓依據物件的作動產生變化,以感測物件的複數部位的運動狀況。
更仔細的說,感測器51、52、53、54的奈米摩擦起電結構511與第3實施例之奈米摩擦起電結構411相同,而包含上電極層5111、下摩擦層5112、下電極層5113及中空墊圈5115,但下摩擦層5112及下電極層5113的材料不同。下摩擦層5112及下電極層5113的材料分別與第1實施例的下摩擦層22及下電極層23相同。
在第4實施例中,感測系統50更包含一設置物56與物件相對,各下電極層5113設置於設置物56,物件接觸各感測器51、52、53、54,使各感測器51、52、53、54產生輸出電壓。
物件可以是一足底,設置物56具有一鞋墊結構,感測器51、52、53、54分散設置在設置物56的不同位置,藉此,當足底踩踏於設置物56上時,由於足底的不同部位會接觸不同的感測器51、52、53、54,而足底作動時不同部位的壓力不同,而會使感測器51、52、53、54的輸出電壓產生變化。在其他的實施例中,亦可以是讓下摩擦層及下電極層覆蓋整個設置物的表面,並且更包含一穿戴物同時供物件穿戴及供上電極層設置,穿戴物可具有襪子結構(即配置可如第7圖之感測系統30),其中複數個彼此分離之上電極層設置於穿戴物的不同部位,透過足底的動作,可讓上電極層與設置物上的下摩擦層進行接觸分離運動。
請參閱第18圖,其中第18圖繪示第17A圖之感測系統50的量測結果圖,而圖中由左至右分別為感測器51、52、53、54的輸出電壓。如第18圖所示,不同的足底作動使各感測器51、52、53、54的輸出電壓不同,因此可透過偵測感測器51、52、53、54的輸出電壓變化,以了解足底的作動是正常、內八或外八,而能進一步進行矯正。此外,足底作動不限於外八或內八,其他可被足壓辨識之不良姿勢均可被檢驗出來,包含上述但不限於此。
請參閱第19A圖、第19B圖、第20圖、第21圖、第22A圖、第22B圖及第22C圖,其中第19A圖繪示依照本發明第5實施例之一種殺菌系統60的立體示意圖,第19B圖繪示第19A圖之殺菌系統60的一殺菌層622的結構示意圖,第20圖繪示第19A圖之一電源61連接一穿戴物62的示
意圖,第21圖繪示第20圖之電源61的間隔層6121、6122數與總輸出電壓的關係圖,第22A圖繪示第19A圖之殺菌系統60的系統架構示意圖,第22B圖繪示第19A圖之殺菌系統60的充電示意圖,第22C圖繪示第19A圖之殺菌系統60的殺菌效果圖。殺菌系統60包含一穿戴物62及一電源61,穿戴物62包含二殺菌層622、624,電源61包含奈米摩擦起電結構611,且電源61透過電連接件連接殺菌層622、624。
穿戴物62可具有一褲子結構或一衣服結構,穿戴物62包含三個一般層621、623、625及上述的二殺菌層622、624,殺菌層622設置在一般層621、623之間,殺菌層624設置在一般層623、625之間。一般層621、623、625的材料為聚脂纖維(Polyester),殺菌層622包含碳纖維6221及複數金碲奈米管(AU-Te NWs)6222,金碲奈米管6222位於碳纖維6221上。在製備殺菌層622時,提供以碳纖維6221製成之一碳纖維布,將碳纖維布清洗以去除雜質。接著,將碳纖維布置於含1.0M水合聯胺(hydrazine monohydrate)及50mM亞碲酸鈉(Na2TeO3)的溶液內,並以60℃加熱3小時,即形成碲奈米管。之後,為了要在碲奈米管上形成金奈米粒子,需透過碲原子與正三價金離子的氧化還原反應來達成。因此,將上述具有碲奈米管的碳纖維布置於氯金酸(HAuCl4)的溶液中,以於碳纖維6221形成金碲奈米管6222。在其他實施例中,殺菌層也可以是以其他通電後能產生殺菌功能的材料製成,且穿戴物亦可以僅由殺菌層組成,不以此為限。
奈米摩擦起電結構611與第1實施例之奈米摩擦起電結構20相同,而包含上電極層6111、下摩擦層6112、下電極層6113及電連接件6114,但下摩擦層6112及下電極層6113的材料不同,其中下摩擦層6112的材料為聚二甲基矽氧烷,下電極層6113的材料為氧化銦錫。
電源61可更包含一撓曲基材612,撓曲基材612彎折形成複數間隔層6121、6122,各間隔層6121、6122具有一上表面6121a、6122a及一下表面6121b、6122b,奈米摩擦起電結構611的數量為複數,一上電極層6111設置於一間隔層6121的上表面6121a與下表面6121b中的其中之一,一下電極層6113設置於一間隔層6121的上表面6121a與下表面6121b的另外之一。
更仔細的說,撓曲基材612的材料可以是聚乙烯對苯二甲酸酯(PET),如第20圖所示,撓曲基材612經過連續Z型彎折而可形成複數個間隔層6121、6122。換句話說,透過連續Z型彎折,間隔層6121與間隔層6122交錯設置,且彼此連接。
在第20圖中,第1個上電極層6111可位於最上方之第1個間隔層6121的下表面6121b,且第1個下電極層6113設置在第2個間隔層6122的上表面6122a;第2個上電極層6111設置在第2個間隔層6122的下表面6122b,且第2個下電極層6113可位於第3個間隔層6121的上表面6121a;各上電極層6111彼此電性連接且連接至穿戴物62,各下電極層6113彼此電性連接且連接至穿戴物62。
如第21圖所示,奈米摩擦起電結構611的數目會與電源61的總輸出電壓有關,第21圖中比較奈米摩擦起電結構611的數目為2、6、10時的電源61的總輸出電壓結果。其中奈米摩擦起電結構611的數目為2時,表示撓曲基材612僅彎成3個間隔層6121、6122且供2個奈米摩擦起電結構611設置;奈米摩擦起電結構611的數目為6時,表示撓曲基材612僅彎成7個間隔層6121、6122且供6個奈米摩擦起電結構611設置;奈米摩擦起電結構611的數目為10時,表示撓曲基材612僅彎成11個間隔層6121、6122且供10個奈米摩擦起電結構611設置。由第21圖所示,當奈米摩擦起電結構611的數目愈多時,電源61的總輸出電壓愈大。
如第22A圖所示,電源61可設置於鞋墊上,且電源61可電性連接一電容631、一開關632以及一整流器633。藉此,使用者(未標示)走路或跑步踩踏奈米摩擦起電結構611後,電源61的總輸出電壓可被整流器633整流且對電容631充電,並提供電力給穿戴物62使用。第22B圖顯示電容631可被電源61充電及放電。
如第22C圖所示,當放電時間愈長,表示殺菌的時間愈長,可以看到活菌數隨時間增加而減少,而殺菌系統60產生的過氧化氫(H2O2)濃度愈高,而具有良好的殺菌效果。
由上述的實施例可知,由於本發明之奈米摩擦起電結構具有輸出穩定的性能而能排除溼度的影響,因此,如第2實施例所示,當其應用於量測溼度的感測系統30時,
可以準確的量測溼度。如第3實施例所示,當其設置於手背上且應用於量測手指動作的感測系統40時,可以不受人體流汗之影響,而能分辨手指動作。如第4實施例所示,當其設置於設置物(鞋墊)上且應用於偵測足底動作的感測系統50時,可以不受鞋內溼度影響。如第5實施例所示,當其設置於鞋墊上且應用於殺菌系統60時,可以不受鞋內溼度影響穩定輸出供電。故本發明之奈米摩擦起電結構可具有廣泛的應用。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
20‧‧‧奈米摩擦起電結構
21‧‧‧上電極層
211‧‧‧摩擦表面
22‧‧‧下摩擦層
221‧‧‧第一表面
222‧‧‧第二表面
23‧‧‧下摩擦層
24‧‧‧電連接件
Claims (16)
- 一種奈米摩擦起電結構,由一上電極層、一下摩擦層、一下電極層及一電連接件組成,其中:該上電極層由一水膠組成;該下摩擦層對應該上電極層且具有一第一表面及一第二表面,該第一表面朝向該上電極層;該下電極層設置在該第二表面;且該電連接件連接該上電極層與該下電極層。
- 如申請專利範圍第1項所述之奈米摩擦起電結構,其中該水膠包含:一聚殼糖;及一甘油,與該聚殼糖混合。
- 如申請專利範圍第2項所述之奈米摩擦起電結構,其中該甘油的重量百分比為15%至25%。
- 如申請專利範圍第1項所述之奈米摩擦起電結構,其中,該奈米摩擦起電結構在溼度為20%時的輸出電壓為V1,該奈米摩擦起電結構在溼度為80%時的輸出電壓為V2,滿足0.9≦V1/V2≦1之關係。
- 一種奈米摩擦起電結構,包含:一上電極層,由一水膠組成;一下摩擦層,對應該上電極層且具有一第一表面及一第二表面,該第一表面朝向該上電極層;一下電極層,設置在該第二表面;以及一電連接件,連接該上電極層與該下電極層;其中,該奈米摩擦起電結構在溼度為20%時的輸出電壓為V1,該奈米摩擦起電結構在溼度為80%時的輸出電壓為V2,滿足0.9≦V1/V2≦1之關係。
- 如申請專利範圍第5項所述之奈米摩擦起電結構,其中該水膠包含:一聚殼糖;及一甘油,與該聚殼糖混合。
- 如申請專利範圍第6項所述之奈米摩擦起電結構,其中該甘油的重量百分比為15%至25%。
- 一種感測系統,包含:一溼度感測模組,包含:一溼度感測器;及 一電源,包含一如申請專利範圍第1項或第5項所述之奈米摩擦起電結構,且該電連接件連接該溼度感測器;以及一顯示模組,電性連接該溼度感測模組。
- 如申請專利範圍第8項所述之感測系統,其中該顯示模組包含:一發光二極體,電性連接該溼度感測模組。
- 如申請專利範圍第8項所述之感測系統,更包含一穿戴物及一設置物,該設置物與該穿戴物相對應,該上電極層設置於該穿戴物且外露於該穿戴物,該下電極層設置於該設置物與該下摩擦層之間。
- 如申請專利範圍第8項所述之感測系統,其中該奈米摩擦起電結構更包含:一中空墊圈,連接於該上電極層與該下摩擦層之間;其中該奈米摩擦起電結構受力時,該中空墊圈變形使該上電極層與該下摩擦層接觸。
- 一種感測系統,包含: 一感測模組,包含複數感測器分別與一物件的複數部位接觸,各該感測器包含一如申請專利範圍第1項或第5項所述之奈米摩擦起電結構;以及一顯示模組,電性連接該感測模組;其中,各該感測器的輸出電壓依據該物件的作動產生變化,以感測該物件的該些部位的運動狀況。
- 如申請專利範圍第12項所述之感測系統,更包含一設置物與該物件相對,各該下電極層設置於該設置物,該物件接觸各該感測器使各該感測器產生輸出電壓。
- 如申請專利範圍第12項所述之感測系統,其中該些下電極層分別設置於該物件的該些部位,各該奈米摩擦起電結構更包含:一中空墊圈,連接於該上電極層與該下摩擦層之間;其中該奈米摩擦起電結構受力時,該中空墊圈變形使該上電極層與該下摩擦層接觸。
- 一種殺菌系統,包含:一穿戴物,包含一殺菌層;以及 一電源,包含一如申請專利範圍第1項或第5項所述之奈米摩擦起電結構,且該電連接件電性連接該殺菌層。
- 如申請專利範圍第15項所述之殺菌系統,其中,該電源更包含一撓曲基材,該撓曲基材彎折形成複數間隔層,各該間隔層具有一上表面及一下表面,該奈米摩擦起電結構的數量為複數,且一該上電極層設置於一該間隔層的該上表面與該下表面中的其中之一,一該下電極層設置於該一間隔層的該上表面與該下表面的另外之一。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141527A TWI696549B (zh) | 2018-11-21 | 2018-11-21 | 奈米摩擦起電結構、感測系統及殺菌系統 |
US16/352,814 US11070148B2 (en) | 2018-11-21 | 2019-03-13 | Triboelectric nanogenerator structure, sensing system and disinfecting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141527A TWI696549B (zh) | 2018-11-21 | 2018-11-21 | 奈米摩擦起電結構、感測系統及殺菌系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202019699A true TW202019699A (zh) | 2020-06-01 |
TWI696549B TWI696549B (zh) | 2020-06-21 |
Family
ID=70727140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107141527A TWI696549B (zh) | 2018-11-21 | 2018-11-21 | 奈米摩擦起電結構、感測系統及殺菌系統 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11070148B2 (zh) |
TW (1) | TWI696549B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114755448A (zh) * | 2022-04-26 | 2022-07-15 | 重庆大学 | 基于卡门涡街效应和摩擦纳米发电的水流流速传感器 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11742780B2 (en) * | 2019-09-23 | 2023-08-29 | Jacob Cox | Graphene-enhanced triboelectric footpath electricity generator for large-scale output planks suspended by rare-earth metal magnets |
US12057788B2 (en) * | 2020-10-17 | 2024-08-06 | Jacob Cox | Magnetically levitated graphene-enhanced insole triboelectric nanogenerator |
TWI847298B (zh) * | 2022-10-06 | 2024-07-01 | 國立清華大學 | 抗磨損奈米摩擦發電裝置、抗磨損鱗狀摩擦薄膜製備方法及腳踏車 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4387613B2 (ja) * | 2000-07-10 | 2009-12-16 | キヤノン株式会社 | マゼンタトナー |
US8442407B2 (en) * | 2010-07-27 | 2013-05-14 | Xerox Corporation | Methods, apparatus and systems to control the tribo-electric charge of a toner material associated with a printing development system |
US9595894B2 (en) * | 2012-09-21 | 2017-03-14 | Georgia Tech Research Corporation | Triboelectric nanogenerator for powering portable electronics |
US10472500B2 (en) * | 2017-06-05 | 2019-11-12 | Purdue Research Foundation | Chitosan biopolymer and chitosan biopolymer based triboelectric nanogenerators |
-
2018
- 2018-11-21 TW TW107141527A patent/TWI696549B/zh active
-
2019
- 2019-03-13 US US16/352,814 patent/US11070148B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114755448A (zh) * | 2022-04-26 | 2022-07-15 | 重庆大学 | 基于卡门涡街效应和摩擦纳米发电的水流流速传感器 |
CN114755448B (zh) * | 2022-04-26 | 2024-05-10 | 重庆大学 | 基于卡门涡街效应和摩擦纳米发电的水流流速传感器 |
Also Published As
Publication number | Publication date |
---|---|
US20200161990A1 (en) | 2020-05-21 |
TWI696549B (zh) | 2020-06-21 |
US11070148B2 (en) | 2021-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI696549B (zh) | 奈米摩擦起電結構、感測系統及殺菌系統 | |
Chen et al. | Direct current fabric triboelectric nanogenerator for biomotion energy harvesting | |
Wen et al. | A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors | |
He et al. | Beyond energy harvesting-multi-functional triboelectric nanosensors on a textile | |
Tao et al. | Self‐powered tactile sensor array systems based on the triboelectric effect | |
Guan et al. | Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing | |
Eom et al. | Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers | |
Kwak et al. | Textile‐based triboelectric nanogenerators for self‐powered wearable electronics | |
Chen et al. | Self-powered electronic skin based on the triboelectric generator | |
Zou et al. | Triboelectric nanogenerator enabled smart shoes for wearable electricity generation | |
Wu et al. | Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting | |
Bai et al. | Autonomously adhesive, stretchable, and transparent solid‐state polyionic triboelectric patch for wearable power source and tactile sensor | |
Ko et al. | PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays | |
Zeng et al. | Flexible triboelectric nanogenerator for human motion tracking and gesture recognition | |
Chiu et al. | A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression | |
Sun et al. | Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction | |
Yang et al. | Flexible and extendable honeycomb‐shaped triboelectric nanogenerator for effective human motion energy harvesting and biomechanical sensing | |
US20210356345A1 (en) | Pressure visualization device, manufacturing method thereof, and detection device | |
Wang et al. | Customizable textile sensors based on helical core–spun yarns for seamless smart garments | |
Fu et al. | Fibrous self-powered sensor with high stretchability for physiological information monitoring | |
Jiang et al. | Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions | |
You et al. | A Skin‐Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting | |
Yang et al. | Conductive composite fiber with customizable functionalities for energy harvesting and electronic textiles | |
Qu et al. | Superhydrophobic, humidity-resistant, and flexible triboelectric nanogenerators for biomechanical energy harvesting and wearable self-powered sensing | |
Zhang et al. | Free-standing triboelectric layer-based full fabric wearable nanogenerator for efficient mechanical energy harvesting |