TW202019173A - 用於視訊寫碼中之適應性運動向量差解析度及增加的運動向量儲存精確度的運動向量捨位 - Google Patents

用於視訊寫碼中之適應性運動向量差解析度及增加的運動向量儲存精確度的運動向量捨位 Download PDF

Info

Publication number
TW202019173A
TW202019173A TW108125496A TW108125496A TW202019173A TW 202019173 A TW202019173 A TW 202019173A TW 108125496 A TW108125496 A TW 108125496A TW 108125496 A TW108125496 A TW 108125496A TW 202019173 A TW202019173 A TW 202019173A
Authority
TW
Taiwan
Prior art keywords
motion vector
value
current block
resolution
predictor
Prior art date
Application number
TW108125496A
Other languages
English (en)
Other versions
TWI826487B (zh
Inventor
黃漢
錢威俊
馬塔 卡茲維克茲
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202019173A publication Critical patent/TW202019173A/zh
Application granted granted Critical
Publication of TWI826487B publication Critical patent/TWI826487B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本發明提供一種實例方法,其包括:寫碼視訊資料之一當前區塊之一運動向量差(MVD)的一值;自一運動向量(MV)緩衝器獲得視訊資料之該當前區塊之一運動向量預測符(MVP)的一值;判定該當前區塊之該MVD之該值的一解析度;獲得MV之一儲存解析度移位量;基於該儲存解析度移位量將自該MV緩衝器獲得的該MVD之該值直接捨位至該MVD之該值的該解析度;將該MVP之該經捨位值與該MVD之該值相加以獲得該當前區塊之一MV的一值;基於該當前區塊之該MV獲得該當前區塊之一預測符區塊的樣本;以及基於該預測符區塊的該等樣本重建構該當前區塊之樣本。

Description

用於視訊寫碼中之適應性運動向量差解析度及增加的運動向量儲存精確度的運動向量捨位
本發明係關於視訊編碼及視訊解碼。
數位視訊能力可併入至廣泛範圍之器件中,該等器件包括數位電視、數位直播系統、無線廣播系統、個人數位助理(PDA)、膝上型或桌上型電腦、平板電腦、電子書閱讀器、數位攝影機、數位記錄器件、數位媒體播放機、視訊遊戲器件、視訊遊戲主控台、蜂巢式或衛星無線電電話(所謂的「智慧型電話」)、視訊電傳會議器件、視訊串流器件及其類似者。數位視訊器件實施視訊寫碼技術,諸如由MPEG-2、MPEG-4、ITU-T H.263、ITU-T H.264/MPEG-4第10部分進階視訊寫碼(AVC)所定義之標準、高效率視訊寫碼(HEVC)標準、ITU-T H.265/高效率視訊寫碼(HEVC)及此等標準之擴展中描述的彼等視訊寫碼技術。視訊器件可藉由實施此類視訊寫碼技術更高效地傳輸、接收、編碼、解碼及/或儲存數位視訊資訊。
視訊寫碼技術包括空間(圖像內)預測及/或時間(圖像間)預測以縮減或移除為視訊序列所固有的冗餘。對於基於區塊之視訊寫碼,視訊截塊(例如視訊圖像或視訊圖像之部分)可被分割成視訊區塊,視訊區塊亦可被稱作寫碼樹型單元(CTU)、寫碼單元(CU)及/或寫碼節點。圖像之經框內寫碼(I)截塊中之視訊區塊係使用關於同一圖像中之相鄰區塊中之參考樣本的空間預測予以編碼。圖像之經框間寫碼(P或B)截塊中之視訊區塊可使用關於同一圖像中之相鄰區塊中之參考樣本的空間預測,或關於其他參考圖像中之參考樣本的時間預測。圖像可被稱作圖框,且參考圖像可被稱作參考圖框。
一般而言,本發明描述用於在視訊寫碼中減少在捨位運動向量時發生之誤差的技術。一視訊解碼器可藉由將一運動向量差(MVD)與一運動向量預測符(MVP)相加而判定一區塊之一運動向量。該MVD可藉由一視訊編碼器在位元串流中用信號傳送,且該MVP可為一先前經寫碼區塊之運動向量。當使用適應性運動向量解析度(例如,AMVR或本端AMVR(LAMVR))時,該視訊編碼器可使用各種解析度用信號發送MVD (例如,四分之一明度樣本精確度、整數明度樣本精確度或四明度樣本精確度)。另外,該視訊解碼器可儲存在一增加之解析度下的經判定運動向量(例如,超過一預設解析度/預設單位)。由於該等運動向量(其被用作MVP)、該等MVD及該預設解析度可均係不同的,因此該視訊解碼器可在計算運動向量時執行多個捨位操作,其可引入誤差。
根據本發明之一或多種技術,一視訊寫碼器(例如,一視訊編碼器或一視訊解碼器)可在判定運動向量時執行一聯合捨位程序。舉例而言,相較於首先將一MVP自儲存解析度捨位至該預設單位,且接著將該結果捨位至該MVD之該解析度(例如,此係因為該儲存解析度不同於該MVD之該解析度),該視訊寫碼器可基於該MVD之該解析度及該儲存解析度將該MVP捨位一次。以此方式,該視訊寫碼器可減少在判定運動向量時引入的誤差。藉由減少所引入之該誤差,該視訊寫碼器可縮減表示視訊資料所需之位元數目,從而獲得經改良壓縮。
作為一個實例,一種方法包括寫碼視訊資料之一當前區塊之一運動向量差的一值;自一運動向量緩衝器獲得視訊資料之該當前區塊之一運動向量預測符的一值;判定該當前區塊之該運動向量差之該值的一解析度;獲得運動向量之一儲存解析度移位量;基於該儲存解析度移位量將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度;將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊之一運動向量的一值; 基於該當前區塊之該運動向量獲得該當前區塊之一預測符區塊的樣本;及基於該當前區塊之該預測符區塊的該等樣本重建構該當前區塊之樣本。
作為另一實例,一種視訊編碼器件包括:一記憶體,其經組態以儲存視訊資料;及一或多個處理單元,其實施於電路系統中且經組態以寫碼視訊資料之一當前區塊之一運動向量差的一值;自一運動向量緩衝器獲得視訊資料之該當前區塊之一運動向量預測符的一值;判定該當前區塊之該運動向量差之該值的一解析度;獲得運動向量之一儲存解析度移位量;基於該儲存解析度移位量將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度;將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊之一運動向量的一值;基於該當前區塊之該運動向量獲得該當前區塊之一預測符區塊的樣本;及基於該當前區塊之該預測符區塊的該等樣本重建構該當前區塊之樣本。
作為另一實例,一種視訊寫碼器件包括:用於寫碼視訊資料之一當前區塊之一運動向量差的一值的構件;用於自一運動向量緩衝器獲得視訊資料之該當前區塊之一運動向量預測符的一值的構件;用於判定該當前區塊之該運動向量差之該值的一解析度的構件;用於獲得運動向量之一儲存解析度移位量的構件;用於基於該儲存解析度移位量將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度的構件;用於將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊之一運動向量的一值的構件;用於基於該當前區塊之該運動向量獲得該當前區塊之一預測符區塊的樣本的構件;及用於基於該當前區塊之該預測符區塊的該等樣本重建構該當前區塊之樣本的構件。
作為另一實例,一種電腦可讀儲存媒體儲存指令,在執行時,該等指令使得一或多個處理器進行以下操作:寫碼視訊資料之一當前區塊之一運動向量差的一值;自一運動向量緩衝器獲得視訊資料之該當前區塊之一運動向量預測符的一值;判定該當前區塊之該運動向量差之該值的一解析度;獲得運動向量之一儲存解析度移位量;基於該儲存解析度移位量將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度;將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊之一運動向量的一值;基於該當前區塊之該運動向量獲得該當前區塊之一預測符區塊的樣本;及基於該當前區塊之該預測符區塊的該等樣本重建構該當前區塊之樣本。
在以下隨附圖式及實施方式中闡述一或多個實例之細節。其他特徵、目標及優點將自實施方式及圖式並自申請專利範圍顯而易見。
[相關申請案]
本申請案主張2018年7月24日申請的美國臨時申請案第62/702,737號的權利,該申請案的全部內容係以引用的方式併入本文中。
在HEVC中,當在截塊標頭中use_integer_mv_flag等於0時,以四分之一明度樣本為單位用信號傳送(運動向量與預測單元(PU)之經預測運動向量之間的)運動向量差(MVD)。然而,在聯合探索測試模型(JEM)草案7中(ITU-T SG 16 WP 3與ISO/JTC 1/SC 29/WG 11之聯合視訊探索小組(JVET)在2017年7月13日至21日於意大利托里諾舉行的第7屆會議中的聯合探索測試模型7 (JEM 7)之演算法描述,文檔:JVET-G1001-v1,其可獲自http://phenix.it-sudparis.eu/jvet/doc_end_user/documents/7_Torino/wg11/JVET-G1001-v1.zip,在下文中「JEM7」),引入本地適應性運動向量解析度(LAMVR)。在JEM7中,視訊寫碼器(例如,視訊編碼器或視訊解碼器)可以四分之一明度樣本精確度、整數明度樣本精確度或四明度樣本精確度為單位寫碼MVD。在將MVD添加至經建構運動向量(MV)之所選擇運動向量預測符(MVP)之前,視訊寫碼器(例如,如下文所論述之視訊編碼器200及/或視訊解碼器300)將MVP捨位至與MVD相同的精確度。又,在JEM7中,增大運動向量儲存之精確度(增大2)。可能需要在添加MVD之前將視訊寫碼器自運動向量緩衝器提取的MVP捨位至四分之一明度樣本之精確度。因此,若MVD並非為四分之一明度樣本精確度,則視訊寫碼器可執行兩個捨位程序。
MV或MVP之值通常表示為整數數值,且精確度表示為移位。舉例而言,對於以四分之一明度樣本為單位的1,移位值可為2。給定移位值N,視訊寫碼器可如下執行捨位程序: –     將變數RoundingOffset設定為等於1<<(N-1) –      mv [ 0 ] = ( mv [ 0 ] >= 0 ? (mv [ 0 ] +RoundingOffset) >> N : - ( ( - mv [ 0 ] + RoundingOffset ) >> N) ) << N –      mv [ 1 ] = (mv [ 1 ] >= 0 ? (mv [ 1 ] +RoundingOffset) >> N : - ( ( - mv [ 1 ] + RoundingOffset ) >> N) )<< N 其中mv[0]為MV之x分量,且mv[1]為MV之y分量。
如上文所論述,上文所描述之兩個捨位程序可產生捨位誤差,該捨位誤差可累積。以下實例說明該誤差: ●    預設單位為四分之一明度樣本精確度,且MV儲存為1/16明度樣本精確度。 ●    自MV緩衝器提取之MVP在1/16明度樣本精確度中為(7, 0)。 ●    移位N為2,且首先將MVP捨位至四分之一明度樣本精確度,至1/16明度樣本精確度中之(8, 0)。 ○    此時,捨位誤差為1/16明度樣本精確度中之1。 ●    若MVD為整數明度樣本精確度,則進一步將值(8, 0)捨位至1/16明度樣本精確度中之(16, 0)。 ○    二級捨位中之捨位誤差為1/16明度樣本精確度中之8。 ●    總捨位誤差為1/16明度樣本精確度中之9 (16-7),其在兩個捨位程序中進行累積。
根據一或多種技術,視訊寫碼器可利用聯合捨位程序。為了說明,變數ImvShift可指示運動向量差解析度(例如,如用信號傳送的MVD之解析度)。在一些實例中,ImvShift之值可指示MVD解析度,從而使得1<<ImvShift表示四分之一明度樣本精確度中之單位數目。舉例而言,ImvShift 等於0指示四分之一明度樣本精確度,ImvShift 等於1指示整數明度樣本精確度,且ImvShift等於2指示四明度樣本精確度。
變數MvStorageShift可指示所儲存增大之MV精確度,從而使得1/(1<<MvStorageShift)表示以四分之一明度樣本精確度為單位之MV精確度。舉例而言,MvStorageShift等於2指示儲存之MV精確度自四分之一明度樣本精確度增大至1/16明度樣本精確度。
mvpLX[0]指示MVP之x分量,且mvpLX[1]指示MVP之y分量。若預設單位為四分之一明度樣本精確度,則視訊寫碼器可如下執行MVP之捨位程序: ●    MvShift = ImvShift + MvStorageShift ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( mvpLX[ 0 ] >= 0 ? (mvpLX[ 0 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift) ) << ImvShift ●    mvpLX[ 1 ] = (mvpLX[ 1 ] >= 0 ? (mvpLX[ 1 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 1 ] + RoundingOffset ) >> MvShift)) << ImvShift
若預設單位與MV儲存中的相同,則視訊寫碼器可如下執行MVP之捨位程序: ●    MvShift = ImvShift + MvStorageShift ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( mvpLX[ 0 ] >= 0 ? (mvpLX[ 0 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift) ) << MvShift ●    mvpLX[ 1 ] = (mvpLX[ 1 ] >= 0 ? (mvpLX[ 1 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 1 ] + RoundingOffset ) >> MvShift)) << MvShift
在另一實例中,視訊寫碼器可如下捨位運動向量,其中MvShift為取決於所要捨位精確度之變數。 ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( mvpLX[ 0 ] >= 0 ? (mvpLX[ 0 ] +RoundingOffset-1) >> MvShift : - ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift) ) << MvShift ●    mvpLX[ 1 ] = (mvpLX[ 1 ] >= 0 ? (mvpLX[ 1 ] +RoundingOffset-1) >> MvShift : - ( ( - mvpLX[ 1 ] + RoundingOffset ) >> MvShift)) << MvShift
給定上文相同實例,藉由所提議的聯合捨位程序將(7,0)捨位至(0,0)。捨位誤差以1/16明度樣本精確度為7,而非9。因此,藉由執行如本發明中所描述之聯合捨位程序,視訊寫碼器可減少在捨位運動向量時引入之誤差。藉由使得視訊寫碼器能夠減少所引入之誤差的量,本發明之技術可改良視訊壓縮之效率(例如降低位元速率)。
在一些實例中,可將向量之負值向0捨位(例如,運動向量預測符)。相較於上文所描述之捨位程序,視訊寫碼器可避免必須判定運動向量之值之正負號經捨位(亦即,可避免「mvpLX[0]>=0」操作),因此降低複雜度。藉由降低捨位運動向量之複雜度,本發明之技術可使得視訊寫碼器能夠以減少之計算資源執行編碼/解碼。
若預設單位為四分之一明度樣本精確度,則視訊寫碼器可如下執行MVP之捨位程序: ●    MvShift = ImvShift + MvStorageShift ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( (mvpLX[ 0 ] +RoundingOffset) >> MvShift )  << ImvShift ●    mvpLX[ 1 ] = ( (mvpLX[ 1 ] +RoundingOffset) >> MvShift ) <<  ImvShift
若預設單位與MV儲存中的相同,則視訊寫碼器可如下執行MVP之捨位程序: ●    MvShift = ImvShift + MvStorageShift ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( (mvpLX[ 0 ] +RoundingOffset) >> MvShift  ) << MvShift ●    mvpLX[ 1 ] = (  (mvpLX[ 1 ] +RoundingOffset) >> MvShift ) << MvShift
在一些實例中,視訊寫碼器可在MVP被視為添加至MVP候選清單之前對每一可能MVP執行聯合捨位操作。以此方式,可在MVP候選清單之修剪程序之前執行捨位程序(例如,其中自MVP候選清單移除諸如冗餘MVP之候選MVP)。在其中在將MVP添加至MVP候選清單之前執行聯合捨位操作之實例中,對經捨位MVP執行修剪程序。在其他實例中,視訊寫碼器可在MVP候選清單得以建構之後對所選擇MVP執行聯合捨位操作。因此,可在捨位之前對MVP執行修剪程序。
根據本發明之一或多種技術,視訊寫碼器可將統一捨位程序用於所有運動向量捨位操作。舉例而言,視訊寫碼器可在適應性運動向量解析度及增大之MV解析度中利用上述捨位程序。在一些實例中,視訊寫碼器可當在仿射運動向量導出程序、時間運動向量預測符導出程序、根據當前圖像及參考圖像之圖像次序計數的MV縮放等等中應用相同捨位程序。
藉由將統一(亦即,相同)捨位程序用於所有捨位程序,可降低視訊寫碼器之複雜度。舉例而言,可將相同功能/模組用於所有運動向量捨位操作。在一些實例中,捨位之間的唯一差可為輸入偏移數目,表示為MvShift。
在一個實例中,視訊寫碼器可如下執行統一捨位程序: ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( mvpLX[ 0 ] >= 0 ? (mvpLX[ 0 ] +RoundingOffset-1) >> MvShift : - ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift) ) << MvShift ●    mvpLX[ 1 ] = (mvpLX[ 1 ] >= 0 ? (mvpLX[ 1 ] +RoundingOffset-1) >> MvShift : - ( ( - mvpLX[ 1 ] + RoundingOffset ) >> MvShift) )<< MvShift
在另一實例中,視訊寫碼器可如下執行統一捨位程序: ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( mvpLX[ 0 ] >= 0 ? (mvpLX[ 0 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift) ) << MvShift ●    mvpLX[ 1 ] = (mvpLX[ 1 ] >= 0 ? (mvpLX[ 1 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 1 ] + RoundingOffset ) >> MvShift)) << MvShift
在另一實例中,視訊寫碼器可如下執行統一捨位程序: ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( (mvpLX[ 0 ] +RoundingOffset) >> MvShift  ) << MvShift ●    mvpLX[ 1 ] = (  (mvpLX[ 1 ] +RoundingOffset) >> MvShift ) << MvShift
圖1為說明可執行本發明之技術的實例視訊編碼及解碼系統100的方塊圖。本發明之技術大體上有關於寫碼(編碼及/或解碼)視訊資料。一般而言,視訊資料包括用於處理視訊之任何資料。因此,視訊資料可包括原始未經寫碼視訊、經編碼視訊、經解碼(例如經重建構)視訊,及視訊後設資料,諸如信號傳送資料。
如圖1中所展示,在此實例中,系統100包括源器件102,源器件102提供待由目的地器件116解碼及顯示之經編碼視訊資料。詳言之,源器件102經由電腦可讀媒體110將視訊資料提供至目的地器件116。源器件102及目的地器件116可包含廣泛範圍之器件中之任一者,包括桌上型電腦、筆記型(亦即,膝上型)電腦、平板電腦、機上盒、諸如智慧型電話之電話手機、電視、攝影機、顯示器件、數位媒體播放器、視訊遊戲主控台、視訊串流器件或其類似者。在一些狀況下,源器件102及目的地器件116可經裝備用於無線通信,且因此可被稱作無線通信器件。
在圖1之實例中,源器件102包括視訊源104、記憶體106、視訊編碼器200及輸出介面108。目的地器件116包括輸入介面122、視訊解碼器300、記憶體120及顯示器件118。根據本發明,源器件102之視訊編碼器200及目的地器件116之視訊解碼器300可經組態以應用用於以所儲存運動向量之增大之精確度執行適應性運動向量差解析度的技術。因此,源器件102表示視訊編碼器件之實例,而目的地器件116表示視訊解碼器件之實例。在其他實例中,源器件及目的地器件可包括其他組件或配置。舉例而言,源器件102可自諸如外部攝影機之外部視訊源接收視訊資料。同樣地,目的地器件116可與外部顯示器件介接,而非包括整合式顯示器件。
如圖1中所示的系統100僅為一個實例。一般而言,任何數位視訊編碼及/或解碼器件可執行用於以所儲存運動向量之增大之精確度執行適應性運動向量差解析度的技術。源器件102及目的地器件116僅僅為此類寫碼器件之實例,其中源器件102產生經寫碼視訊資料以供傳輸至目的地器件116。本發明將「寫碼」器件稱作執行資料寫碼(編碼及/或解碼)之器件。因此,視訊編碼器200及視訊解碼器300表示寫碼器件之實例,詳言之,分別為視訊編碼器及視訊解碼器。在一些實例中,器件102、116可以實質上對稱方式操作,使得器件102、116中之每一者包括視訊編碼及解碼組件。因此,系統100可支援器件102、116之間的單向或雙向視訊傳輸,例如用於視訊串流、視訊播放、視訊廣播或視訊電話。
一般而言,視訊源104表示視訊資料(亦即,原始未經寫碼視訊資料)之源並將視訊資料之一系列循序圖像(亦被稱作「圖框」)提供至視訊編碼器200,該視訊編碼器編碼圖像之資料。源器件102之視訊源104可包括諸如視訊攝影機之視訊捕捉器件、含有經先前捕捉原始視訊之視訊存檔,及/或用以自視訊內容提供者接收視訊之視訊饋送介面。作為另一替代例,視訊源104可產生基於電腦圖形之資料作為源視訊,或實況視訊、經存檔視訊及電腦產生之視訊的組合。在每一狀況下,視訊編碼器200編碼經捕捉、經預先捕捉或電腦產生之視訊資料。視訊編碼器200可將圖像自接收次序(有時稱作「顯示次序」)重新配置成寫碼次序以供寫碼。視訊編碼器200可產生包括經編碼視訊資料之位元串流。源器件102可接著經由輸出介面108將經編碼視訊資料輸出至電腦可讀媒體110上,以供藉由(例如)目的地器件116之輸入介面122接收及/或擷取。
源器件102之記憶體106及目的地器件116之記憶體120表示一般用途記憶體。在一些實例中,記憶體106、120可儲存原始視訊資料,例如來自視訊源104之原始視訊及來自視訊解碼器300之原始經解碼視訊資料。另外或替代地,記憶體106、120可儲存可分別由例如視訊編碼器200及視訊解碼器300執行之軟體指令。儘管在此實例中被展示為與視訊編碼器200及視訊解碼器300分離,但應理解,視訊編碼器200及視訊解碼器300亦可包括用於功能上相似或等效目的之內部記憶體。此外,記憶體106、120可儲存例如自視訊編碼器200輸出及輸入至視訊解碼器300之經編碼視訊資料。在一些實例中,可分配記憶體106、120之部分作為一或多個視訊緩衝器,例如以儲存原始、經解碼及/或經編碼視訊資料。
電腦可讀媒體110可表示能夠將經編碼視訊資料自源器件102輸送至目的地器件116的任何類型之媒體或器件。在一個實例中,電腦可讀媒體110表示用以使源器件102能夠例如經由射頻網路或基於電腦之網路即時將經編碼視訊資料直接傳輸至目的地器件116之通信媒體。根據諸如無線通信協定之通信標準,輸出介面108可調變包括經編碼視訊資料之傳輸信號,且輸入介面122可調變經接收傳輸信號。通信媒體可包含任何無線或有線通信媒體,諸如射頻(RF)頻譜或一或多個實體傳輸線。通信媒體可形成諸如區域網路、廣域網路或諸如網際網路之全域網路的基於封包之網路之部分。通信媒體可包括路由器、交換器、基地台,或可用於促進自源器件102至目的地器件116之通信之任何其他設備。
在一些實例中,源器件102可將經編碼資料自輸出介面108輸出至儲存器件116。類似地,目的地器件116可經由輸入介面122自儲存器件116存取經編碼資料。儲存器件116可包括多種分散式或本機存取式資料儲存媒體中之任一者,諸如硬碟機、藍光光碟、DVD、CD-ROM、快閃記憶體、揮發性或非揮發性記憶體,或用於儲存經編碼視訊資料之任何其他合適數位儲存媒體。
在一些實例中,源器件102可將經編碼視訊資料輸出至檔案伺服器114或另一中間儲存器件,其可儲存由源器件102產生之經編碼視訊。目的地器件116可經由串流或下載而自檔案伺服器114存取經儲存視訊資料。檔案伺服器114可為能夠儲存經編碼視訊資料並將該經編碼視訊資料傳輸至目的地器件116的任何類型之伺服器器件。檔案伺服器114可表示網頁伺服器(例如用於網站)、檔案傳送協定(FTP)伺服器、內容遞送網路器件,或網路附接儲存(NAS)器件。目的地器件116可經由包括網際網路連接之任何標準資料連接自檔案伺服器114存取經編碼視訊資料。此連接可包括適合於存取儲存於檔案伺服器114上之經編碼視訊資料的無線頻道(例如Wi-Fi連接)、有線連接(例如DSL、纜線數據機等等)或兩者之組合。檔案伺服器114及輸入介面122可經組態以根據串流傳輸協定、下載傳輸協定或其組合而操作。
輸出介面108及輸入介面122可表示無線傳輸器/接收器、數據機、有線網路連接組件(例如乙太網路卡)、根據各種IEEE 802.11標準中之任一者而操作之無線通信組件,或其他實體組件。在輸出介面108及輸入介面122包含無線組件之實例中,輸出介面108及輸入介面122可經組態以根據諸如4G、4G-LTE (長期演進)、進階LTE、5G或其類似者之蜂巢式通信標準傳送諸如經編碼視訊資料之資料。在輸出介面108包含無線傳輸器之一些實例中,輸出介面108及輸入介面122可經組態以根據諸如IEEE 802.11規範、IEEE 802.15規範(例如ZigBee™)、Bluetooth™標準或其類似者之其他無線標準傳送諸如經編碼視訊資料之資料。在一些實例中,源器件102及/或目的地器件116可包括各別系統單晶片(SoC)器件。舉例而言,源器件102可包括SoC器件以執行歸於視訊編碼器200及/或輸出介面108之功能性,且目的地器件116可包括SoC器件以執行歸於視訊解碼器300及/或輸入介面122之功能性。
本發明之技術可應用於支援多種多媒體應用中之任一者之視訊寫碼,諸如空中電視廣播、有線電視傳輸、衛星電視傳輸、諸如HTTP動態調適性串流(DASH)之網際網路串流視訊傳輸、經編碼至資料儲存媒體上之數位視訊、儲存於資料儲存媒體上之數位視訊之解碼,或其他應用。
目的地器件116之輸入介面122自電腦可讀媒體110 (例如儲存器件112、檔案伺服器114或其類似者)接收經編碼視訊位元串流。經編碼視訊位元串流電腦可讀媒體110可包括由視訊編碼器200定義之信號傳送資訊,該信號傳送資訊亦由視訊解碼器300使用,諸如具有描述視訊區塊或其他經寫碼單元(例如截塊、圖像、圖像群組、序列或其類似者)之特性及/或處理之值的語法元素。顯示器件118向使用者顯示經解碼視訊資料之經解碼圖像。顯示器件118可表示各種顯示器件中之任一者,諸如陰極射線管(CRT)、液晶顯示器(LCD)、電漿顯示器、有機發光二極體(OLED)顯示器,或另一類型之顯示器件。
儘管圖1中未展示,但在一些實例中,視訊編碼器200及視訊解碼器300可各自與音訊編碼器及/或音訊解碼器整合,且可包括適當MUX-DEMUX單元或其他硬體及/或軟體,以處置在共同資料串流中包括音訊及視訊兩者之經多工串流。在適用時,MUX-DEMUX單元可符合ITU H.223多工器協定,或諸如使用者資料報協定(UDP)之其他協定。
視訊編碼器200及視訊解碼器300各自可被實施為各種合適編碼器及/或解碼器電路系統中之任一者,諸如一或多個微處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)、離散邏輯、軟體、硬體、韌體或其任何組合。當該等技術部分地以軟體予以實施時,器件可將用於軟體之指令儲存於合適非暫時性電腦可讀媒體中,並在硬體中使用一或多個處理器執行指令以執行本發明之技術。視訊編碼器200及視訊解碼器300中之每一者可包括於一或多個編碼器或解碼器中,編碼器或解碼器中之任一者可被整合為各別器件中之組合式編碼器/解碼器(編解碼器)之部分。包括視訊編碼器200及/或視訊解碼器300之器件可包含積體電路、微處理器及/或無線通信器件,諸如蜂巢式電話。
視訊編碼器200及視訊解碼器300可根據視訊寫碼標準而操作,該視訊寫碼標準係諸如ITU-T H.265,亦被稱作高效率視訊寫碼(HEVC),或其延伸,諸如多視圖及/或可調式視訊寫碼延伸。替代地,視訊編碼器200及視訊解碼器300可根據諸如聯合探索測試模型(JEM)之其他專屬或工業標準而操作。然而,本發明之技術並不限於任何特定寫碼標準。
一般而言,視訊編碼器200及視訊解碼器300可執行圖像之基於區塊之寫碼。術語「區塊」通常係指包括待處理(例如編碼、解碼或以其他方式在編碼及/或解碼程序中使用)之資料之結構。舉例而言,區塊可包括明度及/或色度資料之樣本之二維矩陣。一般而言,視訊編碼器200及視訊解碼器300可寫碼以YUV (例如Y、Cb、Cr)格式表示之視訊資料。亦即,視訊編碼器200及視訊解碼器300可寫碼明度及色度分量,而非寫碼圖像之樣本之紅、綠及藍(RGB)資料,其中該等色度分量可包括紅色調及藍色調分量兩者。在一些實例中,視訊編碼器200在編碼之前將經接收RGB格式化資料轉換成YUV表示,且視訊解碼器300將YUV表示轉換成RGB格式。替代地,預處理單元及後處理單元(未展示)可執行此等轉換。
本發明大體上可指涉寫碼(例如編碼及解碼)圖像以包括編碼或解碼圖像之資料之程序。相似地,本發明可指涉寫碼圖像之區塊以包括編碼或解碼區塊之資料之程序,例如預測及/或殘差寫碼。經編碼視訊位元串流通常包括表示寫碼決策(例如寫碼模式)及圖像成為區塊之分割之語法元素的一系列值。因此,對寫碼圖像或區塊之參考通常應被理解為寫碼形成該圖像或區塊之語法元素的值。
HEVC定義各種區塊,包括寫碼單元(CU)、預測單元(PU),以及變換單元(TU)。根據HEVC,視訊寫碼器(諸如視訊編碼器200)根據四元樹結構將寫碼樹單元(CTU)分割成CU。亦即,視訊寫碼器將CTU及CU分割成四個相等的非重疊正方形,且四元樹之每一節點具有零個或四個子節點。不具有子節點之節點可被稱作「葉節點」,且此類葉節點之CU可包括一或多個PU及/或一或多個TU。視訊寫碼器可進一步分割PU及TU。舉例而言,在HEVC中,殘差四元樹(RQT)表示TU之分割。在HEVC中,PU表示框間預測資料,而TU則表示殘差資料。經框內預測之CU包括框內預測資訊,諸如框內模式指示。
作為另一實例,視訊編碼器200及視訊解碼器300可經組態以根據JEM而操作。根據JEM,視訊寫碼器(諸如視訊編碼器200)將圖像分割成複數個寫碼樹型單元(CTU)。視訊編碼器200可根據諸如四元樹二元樹(QTBT)結構之樹結構分割CTU。JEM之QTBT結構移除多個分割類型之概念,諸如HEVC之CU、PU及TU之間的分隔。JEM之QTBT結構包括兩個層級:根據四元樹分割而分割之第一層級,及根據二元樹分割而分割之第二層級。QTBT結構之根節點對應於CTU。二元樹之葉節點對應於寫碼單元(CU)。
在一些實例中,視訊編碼器200及視訊解碼器300可使用單一QTBT結構以表示明度及色度分量中之每一者,而在其他實例中,視訊編碼器200及視訊解碼器300可使用兩個或多於兩個QTBT結構,諸如用於明度分量之一個QTBT結構及用於兩個色度分量之另一QTBT結構(或用於各別色度分量之兩個QTBT結構)。
視訊編碼器200及視訊解碼器300可經組態以使用按照HEVC之四元樹分割、根據JEM之QTBT分割,或其他分割結構。為了闡釋之目的,關於QTBT分割呈現本發明之技術之描述。然而,應理解,本發明之技術亦可應用於經組態以使用四分樹分割亦或其他類型之分割的視訊寫碼器。本發明之技術亦可應用於經組態以使用四元樹分割或亦使用其他類型之分割的視訊寫碼器。
本發明可能可互換地使用「N×N」及「N乘N」以係指區塊(諸如CU或其他視訊區塊)在豎直及水平維度方面之樣本尺寸,例如16×16樣本或16乘16樣本。一般而言,16×16 CU將在豎直方向上具有16個樣本(y = 16)並在水平方向上具有16個樣本(x = 16)。同樣地,N×N CU通常在豎直方向上具有N個樣本並在水平方向上具有N個樣本,其中N表示非負整數值。可按列及行來配置CU中之樣本。此外,CU未必在水平方向上與在豎直方向上具有相同數目個樣本。舉例而言,CU可包含N×M個樣本,其中M未必等於N。
視訊編碼器200編碼表示預測及/或殘差資訊及其他資訊的CU之視訊資料。預測資訊指示將如何預測CU以便形成CU之預測區塊。殘差資訊通常表示在編碼之前的CU之樣本與預測區塊之樣本之間的逐樣本差。
為了預測CU,視訊編碼器200通常可經由框間預測或框內預測形成CU之預測區塊。框間預測通常係指自經先前寫碼圖像之資料預測CU,而框內預測通常係指自同一圖像之經先前寫碼資料預測CU。為了執行框間預測,視訊編碼器200可使用一或多個運動向量來產生預測區塊。視訊編碼器200可執行運動搜尋以識別接近地匹配於CU之參考區塊,例如在CU與參考區塊之間的差方面。視訊編碼器200可使用絕對差總和(SAD)、平方差總和(SSD)、平均絕對差(MAD)、均方差(MSD)或其他此類差計算來計算差度量,以判定參考區塊是否接近地匹配於當前CU。在一些實例中,視訊編碼器200可使用單向預測或雙向預測來預測當前CU。
JEM亦提供仿射運動補償模式,其可被視為框間預測模式。在仿射運動補償模式中,視訊編碼器200可判定表示非平移運動之兩個或多於兩個運動向量,該非平移運動係諸如放大或縮小、旋轉、透視運動或其他不規則運動類型。
為了執行框內預測,視訊編碼器200可選擇框內預測模式以產生預測區塊。JEM提供六十七種框內預測模式,包括各種方向模式,以及平面模式及DC模式。一般而言,視訊編碼器200選擇描述當前區塊(例如CU之區塊)之相鄰樣本之框內預測模式,自該框內預測模式將預測當前區塊之樣本。此類樣本通常可與當前區塊在同一圖像中並在當前區塊之上方、左上方或左側,此係假定視訊編碼器200按光柵掃描次序(左至右、上至下)寫碼CTU及CU。
視訊編碼器200編碼表示當前區塊之預測模式之資料。舉例而言,對於框間預測模式,視訊編碼器200可編碼表示各種可用框間預測模式中之哪一者被使用以及對應模式之運動資訊的資料。舉例而言,對於單向或雙向框間預測,視訊編碼器200可使用進階運動向量預測(AMVP)或合併模式來編碼運動向量。視訊編碼器200可使用相似模式來編碼仿射運動補償模式之運動向量。
在區塊之諸如框內預測或框間預測之預測之後,視訊編碼器200可計算用於該區塊之殘差資料。諸如殘差區塊之殘差資料表示該區塊與使用對應預測模式而形成的該區塊之預測區塊之間的逐樣本差。視訊編碼器200可將一或多個變換應用於殘差區塊,以在變換域而非樣本域中產生經變換資料。舉例而言,視訊編碼器200可將離散餘弦變換(DCT)、整數變換、小波變換或概念上相似變換應用於殘差視訊資料。另外,視訊編碼器200可在第一變換之後應用次級變換,諸如模式相依不可分離次級變換(MDNSST)、信號相依變換、卡忽南-拉維(Karhunen-Loeve)變換(KLT)或其類似者。視訊編碼器200在應用一或多個變換之後產生變換係數。
如上文所提及,在進行任何變換以產生變換係數之後,視訊編碼器200可執行變換係數之量化。量化通常係指量化變換係數以可能地縮減用以表示該等係數之資料之量從而提供進一步壓縮的程序。藉由執行量化程序,視訊編碼器200可縮減與係數中之一些或全部相關聯之位元深度。舉例而言,視訊編碼器200可在量化期間將n 位元值捨位至m 位元值,其中n 大於m 。在一些實例中,為了執行量化,視訊編碼器200可執行待量化值之按位元右移。
在量化之後,視訊編碼器200可掃描變換係數,從而自包括經量化變換係數之二維矩陣產生一維向量。掃描可經設計以將較高能量(且因此,較低頻率)係數置放於向量之前部處,並將較低能量(且因此,較高頻率)變換係數置放於向量之後部處。在一些實例中,視訊編碼器200可利用預定義掃描次序來掃描經量化變換係數以產生序列化向量,並接著熵編碼向量之經量化變換係數。在其他實例中,視訊編碼器200可執行調適性掃描。在掃描經量化變換係數以形成一維向量之後,視訊編碼器200可例如根據上下文調適性二進位算術寫碼(CABAC)熵編碼一維向量。視訊編碼器200亦可熵編碼描述與經編碼視訊資料相關聯之後設資料之語法元素之值,以由視訊解碼器300用來解碼視訊資料。
為了執行CABAC,視訊編碼器200可將上下文模型內之上下文指派給待傳輸符號。該上下文可與例如符號之相鄰值是否為零值相關。機率判定可基於經指派給符號之上下文。
視訊編碼器200可例如在圖像標頭、區塊標頭、截塊標頭或諸如序列參數集(SPS)、圖像參數集(PPS)或視訊參數集(VPS)之其他語法資料中向視訊解碼器300進一步產生語法資料,諸如基於區塊之語法資料、基於圖像之語法資料及基於序列之語法資料。視訊解碼器300可同樣地解碼此類語法資料以判定如何解碼對應視訊資料。
以此方式,視訊編碼器200可產生位元串流,該位元串流包括經編碼視訊資料,例如描述圖像成為區塊(例如CU)之分割之語法元素及用於區塊之預測及/或殘差資訊。最後,視訊解碼器300可接收位元串流並解碼經編碼視訊資料。
一般而言,視訊解碼器300執行與由視訊編碼器200執行之程序互逆的程序,以解碼位元串流之經編碼視訊資料。舉例而言,視訊解碼器300可使用CABAC以與視訊編碼器200之CABAC編碼程序實質上相似但互逆的方式解碼位元串流之語法元素之值。語法元素可定義圖像成為CTU之分割資訊,及每一CTU根據諸如QTBT結構之對應分割區結構之分割,以定義CTU之CU。語法元素可進一步定義視訊資料之區塊(例如CU)之預測及殘差資訊。
殘差資訊可由例如經量化變換係數表示。視訊解碼器300可反量化及反變換區塊之經量化變換係數,以再生區塊之殘差區塊。視訊解碼器300使用經信號傳送預測模式(框內或框間預測)及相關預測資訊(例如用於框間預測之運動資訊),以形成用於該區塊之預測區塊。視訊解碼器300可接著組合預測區塊與殘差區塊(在逐樣本基礎上)以再生原始區塊。視訊解碼器300可執行額外處理,諸如執行解區塊程序以縮減沿區塊之邊界之視覺假影。
根據本發明之技術,視訊編碼器200及/或視訊解碼器300可減少在捨位運動向量時(例如,在以所儲存運動向量之增大之精確度執行適應性運動向量差解析度時)引入的誤差。舉例而言,視訊解碼器300可自經寫碼視訊位元串流解碼視訊資料之當前區塊的運動向量差(MVD)之值。視訊解碼器300可自運動向量緩衝器獲得視訊資料之當前區塊的運動向量預測符(MVP)之值。
如上文所論述,各種運動向量、MVP及MVD可以不同解析度/精確度用信號傳送/儲存或以其他方式表示。舉例而言,可以四分之一明度樣本、整數明度樣本或四個明度樣本為單位(例如四分之一明度樣本精確度、整數明度樣本精確度,或四明度樣本精確度)寫碼MVD。由於運動向量被計算為MVP及MVD之總和,因此對於視訊解碼器300而言,可能有必要在計算運動向量之值時捨位MVP之值及/或MVD之值。此等捨位操作可能引入誤差,該誤差係非所要的。本發明提供用於藉由移除將以其他方式執行之至少一個捨位操作來減少所引入之誤差的量的技術(例如,其中可藉由執行聯合捨位程序來實現至少一個捨位操作之移除)。聯合捨位程序可被視為「聯合」的原因在於其可在單個捨位操作產生兩個捨位操作之結果,該單個捨位操作相比該等兩個捨位操作引入較少誤差。
為執行聯合捨位程序,視訊解碼器300可判定當前區塊之運動向量差之值的解析度,且判定運動向量之儲存解析度移位量。舉例而言,視訊解碼器300可基於LAMVR旗標判定MVD之值之解析度。視訊解碼器300可針對所有視訊資料或針對當前圖像或區塊自適應性地將儲存解析度移位量判定為一常量。舉例而言,在根據JEM編碼視訊資料的情況下,視訊解碼器300可判定運動向量儲存之精確度增大2個位元(例如,相對於MVD的用信號傳送之精確度)。
視訊解碼器300可基於運動向量差之值之解析度及儲存解析度移位量而捨位自運動向量緩衝器獲得的運動向量預測符之值。舉例而言,視訊解碼器300可基於運動向量差之值之解析度及儲存解析度移位量而判定第一移位值(例如,MvShift)。視訊解碼器300可右移位第一移位值,即自運動向量緩衝器獲得的運動向量預測符之值加捨位偏移(例如,mvpLX[ 0 ] >= 0 ? (mvpLX[ 0 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift))。視訊解碼器300可將運動向量預測符之經右移值左移第二移位值(例如,ImvShift或MvShift)以獲得運動向量預測符之捨位值。
視訊解碼器300可基於視訊資料之區塊的預設解析度是否與視訊資料之區塊的儲存解析度相同而選擇第二移位值。作為一個實例,其中預設解析度與儲存解析度不相同,視訊解碼器300可選擇第二移位值作為運動向量差之值之解析度。作為另一實例,其中預設解析度與儲存解析度相同(例如,其中預設單位為四分之一明度樣本),視訊解碼器300可選擇第二移位值作為第一移位值(例如,第一移位值=第二移位值=MvShift)。
視訊解碼器300可利用運動向量預測符之捨位值重建構當前區塊之樣本。舉例而言,視訊解碼器300可將運動向量預測符之捨位值與運動向量差之值相加以獲得當前區塊的運動向量之值;基於當前區塊之運動向量,自參考圖像緩衝器獲得當前區塊之預測符區塊之樣本;及基於當前區塊的預測符區塊之樣本而重建構當前區塊之樣本。
視訊編碼器200可以類似方式利用聯合捨位程序(例如,在重建構迴路中)。以此方式,視訊編碼器200及/或視訊解碼器300可減少所引入之誤差的量。減少所引入之誤差的量可產生更精確預測,該等更精確預測可產生較小殘差資料。就此而論,本發明之技術實現視訊資料之經改良壓縮。
本發明大體上可指「用信號傳送」某些資訊,諸如語法元素 術語「用信號傳送」大體上可指用以解碼經編碼視訊資料之語法元素及/或其他資料之值之傳達。亦即,視訊編碼器200可在位元串流中用信號傳送語法元素之值。一般而言,用信號傳送係指在位元串流中產生值。如上文所提及,源器件102可實質上即時將位元串流輸送至目的地器件116,或不即時將位元串流輸送至目的地器件116,諸如可能會在將語法元素儲存至儲存器件112以供目的地器件116稍後擷取時發生。
圖2為說明可執行本發明之技術的實例視訊編碼器200的方塊圖。為了解釋之目的而提供圖2,且不應將其視為對如本發明中廣泛例示及描述之技術的限制。為了解釋之目的,本發明在諸如HEVC視訊寫碼標準及目前正在開發之多功能視訊寫碼(VVC)標準之視訊寫碼標準的上下文中描述視訊編碼器200,該多功能視訊寫碼標準可變為ITU-T H.266標準。然而,本發明之技術並不限於此等視訊寫碼標準,且通常適用於視訊編碼及解碼。
在圖2之實例中,視訊編碼器200包括視訊資料記憶體230、模式選擇單元202、殘差產生單元204、變換處理單元206、量化單元208、反量化單元210、反變換處理單元212、重建構單元214、濾波器單元216、經解碼圖像緩衝器(DPB) 218及熵編碼單元220。
視訊資料記憶體230可儲存待由視訊編碼器200之組件編碼之視訊資料。視訊編碼器200可自例如視訊源104 (圖1)接收儲存於視訊資料記憶體230中之視訊資料。DPB 218可充當參考圖像記憶體,其儲存參考視訊資料以用於由視訊編碼器200預測後續視訊資料。另外地或替代性地,DBP 218可包括儲存視訊資料之區塊之運動向量(例如,可用以預測視訊資料之其他區塊的運動向量)的運動向量緩衝器。視訊資料記憶體230及DPB 218可由諸如動態隨機存取記憶體(DRAM)之多種記憶體器件中之任一者形成,包括同步DRAM (SDRAM)、磁阻式RAM (MRAM)、電阻式RAM (RRAM),或其他類型之記憶體器件。視訊資料記憶體230及DPB 218可由同一記憶體器件或單獨記憶體器件提供。在各種實例中,視訊資料記憶體230可與視訊編碼器200之其他組件一起在晶片上,如所繪示,或相對於彼等組件在晶片外。
在本發明中,對視訊資料記憶體230之參考不應被解譯為限於在視訊編碼器200內部之記憶體,除非有如此特定描述;或對視訊資料記憶體230之參考不應被解譯為限於在視訊編碼器200外部之記憶體,除非有如此特定描述。更確切地,對視訊資料記憶體230之參考應被理解為儲存由視訊編碼器200接收以供編碼之視訊資料(例如,將被編碼的當前區塊之視訊資料)之參考記憶體。圖1之記憶體106亦可提供來自視訊編碼器200之各種單元之輸出的臨時儲存。
圖2之各種單元經說明以輔助理解藉由視訊編碼器200執行的操作。單元可被實施為固定功能電路、可程式化電路或其組合。固定功能電路係指提供特定功能性並在可執行之操作時被預設的電路。可程式化電路係指可經程式化以執行各種任務並在可執行之操作中提供靈活功能性的電路。舉例而言,可程式化電路可執行軟體或韌體,軟體或韌體致使可程式化電路以由軟體或韌體之指令定義之方式操作。固定功能電路可執行軟體指令(例如用以接收參數或輸出參數),但由固定功能電路執行之操作之類型通常係不可變的。在一些實例中,單元中之一或多者可為相異電路區塊(固定功能或可程式化),且在一些實例中,一或多個單元可為積體電路。
視訊編碼器200可包括由可程式化電路形成之算術邏輯單元(ALU)、基本功能單元(EFU)、數位電路、類比電路及/或可程式化核心。在視訊編碼器200之操作係使用由可程式化電路執行之軟體執行的實例中,記憶體106 (圖1)可儲存由視訊編碼器200接收及執行之軟體之物件程式碼,或視訊編碼器200內之另一記憶體(未展示)可儲存此類指令。
視訊資料記憶體230經組態以儲存經接收視訊資料。視訊編碼器200可自視訊資料記憶體230擷取視訊資料之圖像,並將視訊資料提供至殘差產生單元204及模式選擇單元202。視訊資料記憶體230中之視訊資料可為待編碼之原始視訊資料。
模式選擇單元202包括運動估計單元222、運動補償單元224及框內預測單元226。模式選擇單元202可包括額外功能單元以根據其他預測模式執行視訊預測。作為實例,模式選擇單元202可包括調色盤單元、區塊內複製單元(其可為運動估計單元222及/或運動補償單元224之部分)、仿射單元、線性模型(LM)單元或其類似者。
模式選擇單元202通常協調多個編碼遍次,以測試編碼參數組合及此類組合之所得速率-失真值。編碼參數可包括CTU成為CU之分割、用於CU之預測模式、用於CU之殘差資料之變換類型、用於CU之殘差資料之量化參數等等。模式選擇單元202可最終選擇相比於其他經測試組合具有較佳速率-失真值之編碼參數組合。
視訊編碼器200可將自視訊資料記憶體230擷取之圖像分割成一系列CTU,並將一或多個CTU囊封於截塊內。模式選擇單元202可根據諸如上文所描述之HEVC之QTBT結構或四元樹結構的樹結構分割圖像之CTU。如上文所描述,視訊編碼器200可由於根據樹結構分割CTU而形成一或多個CU。此類CU亦可大體上被稱作「視訊區塊」或「區塊」。
一般而言,模式選擇單元202亦控制其組件(例如運動估計單元222、運動補償單元224及框內預測單元226)以產生用於當前區塊(例如當前CU,或在HEVC中為PU與TU之重疊部分)之預測區塊。對於當前區塊之框間預測,運動估計單元222可執行運動搜尋以識別一或多個參考圖像(例如儲存於DPB 218中之一或多個經先前寫碼圖像)中之一或多個接近匹配參考區塊。詳言之,運動估計單元222可例如根據絕對差總和(SAD)、平方差總和(SSD)、平均值絕對差(MAD)、均方差(MSD)或其類似者計算表示潛在參考區塊與當前區塊相似程度之值。運動估計單元222通常可使用當前區塊與正考慮之參考區塊之間的逐樣本差執行此等計算。運動估計單元222可識別具有由於此等計算而產生之最低值之參考區塊,其指示最接近地匹配於當前區塊之參考區塊。
運動估計單元222可形成一或多個運動向量(MV),其相對於當前圖像中之當前區塊之位置界定參考圖像中之參考區塊之位置。運動估計單元222可接著將運動向量提供至運動補償單元224。舉例而言,對於單向框間預測,運動估計單元222可提供單一運動向量,而對於雙向框間預測,運動估計單元222可提供兩個運動向量。運動補償單元224可接著使用運動向量產生預測區塊。舉例而言,運動補償單元224可使用運動向量擷取參考區塊之資料。作為另一實例,若運動向量具有分數樣本精確度,則運動補償單元224可根據一或多個內插濾波器內插預測區塊之值。此外,對於雙向框間預測,運動補償單元224可擷取用於由各別運動向量識別之兩個參考區塊之資料,並例如經由逐樣本求平均值或經加權求平均值來組合經擷取資料。
作為另一實例,對於框內預測,或框內預測寫碼,框內預測單元226可自相鄰於當前區塊之樣本產生預測區塊。舉例而言,對於方向模式,框內預測單元226通常可在數學上組合相鄰樣本之值,並在橫越當前區塊之所定義方向上填入此等計算值以產生預測區塊。作為另一實例,對於DC模式,框內預測單元226可計算當前區塊之相鄰樣本之平均值,並產生預測區塊以針對預測區塊之每一樣本包括此所得平均值。
模式選擇單元202將預測區塊提供至殘差產生單元204。殘差產生單元204自視訊資料記憶體230接收當前區塊之原始未經寫碼版本,並自模式選擇單元202接收預測區塊之原始未經寫碼版本。殘差產生單元204計算當前區塊與預測區塊之間的逐樣本差。所得逐樣本差定義用於當前區塊之殘差區塊。在一些實例中,殘差產生單元204亦可判定殘差區塊中之樣本值之間的差,以使用殘差微分脈碼調變(RDPCM)產生殘差區塊。在一些實例中,可使用執行二進位減法之一或多個減法器電路形成殘差產生單元204。
在模式選擇單元202將CU分割成PU之實例中,每一PU可與明度預測單元及對應色度預測單元相關聯。視訊編碼器200視訊解碼器300可支援具有各種大小之PU。如上文所指示,CU之大小可指CU之明度寫碼區塊之大小,且PU之大小可指PU之明度預測單元的大小。假定特定CU之大小為2N×2N,則視訊編碼器200可支援用於框內預測的2N×2N或N×N之PU大小,及用於框間預測的2N×2N、2N×N、N×2N、N×N或相似者之對稱PU大小。視訊編碼器20及視訊解碼器30亦可支援用於框間預測的2N×nU、2N×nD、nL×2N及nR×2N之PU大小的不對稱分割。
在模式選擇單元未將CU進一步分割成PU之實例中,每一CU可與明度寫碼區塊及對應色度寫碼區塊相關聯。如上,CU之大小可指CU之明度寫碼區塊之大小。視訊編碼器200及視訊解碼器300可支援2N×2N、2N×N或N×2N之CU大小。
對於諸如作為少數實例之區塊內複製模式寫碼、仿射模式寫碼及線性模型(LM)模式寫碼之其他視訊寫碼技術,模式選擇單元202經由與寫碼技術相關聯之各別單元產生用於正被編碼之當前區塊之預測區塊。在諸如調色盤模式寫碼之一些實例中,模式選擇單元202可能不會產生預測區塊,而是產生指示基於經選擇調色盤重建構區塊之方式的語法元素。在此類模式中,模式選擇單元202可將此等語法元素提供至熵編碼單元220以待編碼。
如上文所描述,殘差產生單元204接收用於當前區塊及對應預測區塊之視訊資料。殘差產生單元204接著產生用於當前區塊之殘差區塊。為了產生殘差區塊,殘差產生單元204計算預測區塊與當前區塊之間的逐樣本差。
變換處理單元206將一或多個變換應用於殘差區塊以產生變換係數之區塊(在本文中被稱作「變換係數區塊」)。變換處理單元206可將各種變換應用於殘差區塊以形成變換係數區塊。舉例而言,變換處理單元206可將離散餘弦變換(DCT)、方向變換、卡忽南-拉維變換(KLT)或概念上相似之變換應用於殘差區塊。在一些實例中,變換處理單元206可對殘差區塊執行多個變換,例如初級變換及次級變換,諸如旋轉變換。在一些實例中,變換處理單元206不將變換應用於殘差區塊。
量化單元208可量化變換係數區塊中之變換係數以產生經量化變換係數區塊。量化單元208可根據與當前區塊相關聯之量化參數(QP)值量化變換係數區塊之變換係數。視訊編碼器200 (例如經由模式選擇單元202)可藉由調整與CU相關聯之QP值而調整應用於與當前區塊相關聯之係數區塊之量化程度。量化可能會引入資訊之損耗,且因此,經量化變換係數相比於由變換處理單元206產生之原始變換係數可具有較低精確度。
反量化單元210及反變換處理單元212可將反量化及反變換分別應用於經量化變換係數區塊,以用變換係數區塊重建構殘差區塊。重建構單元214可基於經重建構殘差區塊及藉由模式選擇單元202產生之預測區塊,產生對應於當前區塊之經重建構區塊(儘管可能具有一些程度的失真)。舉例而言,重建構單元214可將經重建構殘差區塊之樣本添加至來自模式選擇單元202產生之預測區塊的對應樣本,以產生經重建構區塊。
濾波器單元216可對經重建構區塊執行一或多個濾波操作。舉例而言,濾波器單元216可執行解區塊操作以縮減沿CU之邊緣之區塊效應假影 在一些實例中,可跳過濾波器單元216之操作。
視訊編碼器200將經重建構區塊儲存於DPB 218中。舉例而言,在不需要濾波器單元216之操作的實例中,重建構單元214可將經重建構區塊儲存至DPB 218。在需要濾波器單元216之操作的實例中,濾波器單元216可將經濾波之經重建構區塊儲存至DPB 218。運動估計單元222及運動補償單元224可自DPB 218擷取由經重建構(及潛在地經濾波)區塊形成之參考圖像,以框間預測隨後編碼之圖像之區塊。另外,框內預測單元226可使用當前圖像之DPB 218中之經重建構區塊,以框內預測當前圖像中之其他區塊。
一般而言,熵編碼單元220可熵編碼自視訊編碼器200之其他功能組件接收之語法元素。舉例而言,熵編碼單元220可熵編碼來自量化單元208之經量化變換係數區塊。作為另一實例,熵編碼單元220可熵編碼來自模式選擇單元202之預測語法元素(例如用於框間預測之運動資訊或用於框內預測之框內模式資訊)。熵編碼單元220可對為視訊資料之另一實例的語法元素執行一或多個熵編碼操作以產生經熵編碼資料。舉例而言,熵編碼單元220可對資料執行上下文調適性可變長度寫碼(CAVLC)操作、CABAC操作、可變至可變(V2V)長度寫碼操作、基於語法之上下文調適性二進位算術寫碼(SBAC)操作、機率區間分割熵(PIPE)寫碼操作、指數-哥倫布編碼操作,或另一類型之熵編碼操作。在一些實例中,熵編碼單元220可在旁路模式中操作,其中語法元素未被熵編碼。
視訊編碼器200可輸出位元串流,位元串流包括重建構截塊或圖像之區塊所需要的經熵編碼語法元素。詳言之,熵編碼單元220可輸出位元串流。
關於區塊來描述上文所描述之操作。此類描述應被理解為用於明度寫碼區塊及/或色度寫碼區塊之操作。如上文所描述,在一些實例中,明度寫碼區塊及色度寫碼區塊為CU之明度及色度分量。在一些實例中,明度寫碼區塊及色度寫碼區塊為PU之明度分量及色度分量。
在一些實例中,不需要針對色度寫碼區塊重複關於明度寫碼區塊所執行之操作。作為一個實例,不需要重複用以識別明度寫碼區塊之運動向量(MV)及參考圖像之操作來識別色度區塊之MV及參考圖像。更確切地,可按比例調整明度寫碼區塊之MV以判定色度區塊之MV,且參考圖像可相同。作為另一實例,框內預測程序針對明度寫碼區塊及色度寫碼區塊可相同。
如上文所論述,運動估計單元222可形成當前區塊之運動向量(MV),其界定參考區塊相對於當前區塊之位置。運動估計單元222可產生具有編碼當前區塊之MV之值的值的一或多個語法元素。舉例而言,運動估計單元222可基於運動向量預測符(MVP)及運動向量差(MVD)而產生使得視訊解碼器(亦即,圖3之視訊解碼器300)能夠重建構當前區塊之MV的值的語法元素。運動估計單元222可基於先前經寫碼區塊之MV或一或多個預設值而獲得MVP。在一些實例中,運動估計單元222可自各種源獲得複數個候選MVP (例如空間相鄰區塊之MV、時間相鄰區塊之MV及預設值)。
運動估計單元222可自複數個候選MVP選擇最密切匹配當前區塊之MV的MVP。運動估計單元222可計算當前區塊之MV與所選擇MVP之間的差。運動估計單元222可產生指示所選擇MVP的語法元素(例如,對候選MVP清單之索引)及指示MVD之值的語法元素。熵編碼單元220可將所產生語法元素編碼至位元串流中。
如上文所論述且根據本發明之一或多種技術,運動估計單元222可在判定運動向量時執行聯合捨位程序。舉例而言,相較於首先將MVP之值自儲存解析度捨位至預設單位解析度,且接著將結果捨位至MVD之解析度,運動估計單元222可基於MVD之解析度及儲存解析度捨位MVP一次。以此方式,運動估計單元222可減少在判定運動向量時引入之誤差。藉由減少引入之誤差,運動估計單元222可縮減用以表示視訊資料之位元數目,從而獲得經改良壓縮。
以此方式,視訊編碼器200表示一種視訊編碼器件之一實例,該視訊編碼器件包括:一記憶體,其經組態以儲存視訊資料;及一或多個處理單元,其實施於電路系統中且經組態以判定視訊資料之一當前區塊之一運動向量差的一值;自一運動向量緩衝器獲得視訊資料之該當前區塊的一運動向量預測符之一值;判定該當前區塊的該運動向量差之該值的一解析度;獲得運動向量的一儲存解析度移位量;基於該運動向量差之該值的該解析度及該儲存解析度移位量捨位自該運動向量緩衝器獲得的該運動向量預測符之該值;將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊的一運動向量之一值;基於該當前區塊之該運動向量獲得該當前區塊的一預測符區塊之樣本;及基於該當前區塊的該預測符區塊之該等樣本重建構該當前區塊之樣本。
圖3為說明可執行本發明之技術之實例視訊解碼器300的方塊圖。為了解釋之目的而提供圖3,且其並不限制如本發明中所廣泛例示及描述之技術。為了解釋之目的,本發明描述了根據JEM及HEVC之技術來描述視訊解碼器300。然而,本發明之技術可由經組態至其他視訊寫碼標準之視訊寫碼器件執行。
在圖3之實例中,視訊解碼器300包括經寫碼圖像緩衝器(CPB)記憶體320、熵解碼單元302、預測處理單元304、反量化單元306、反變換處理單元308、重建構單元310、濾波器單元312及經解碼圖像緩衝器(DPB) 314。預測處理單元304包括運動補償單元316及框內預測單元318。預測處理單元304可包括用以根據其他預測模式執行預測之額外單元。作為實例,預測處理單元304可包括調色盤單元、區塊內複製單元(其可形成運動補償單元316之部分)、仿射單元、線性模型(LM)單元或其類似者。在其他實例中,視訊解碼器300可包括更多、更少或不同的功能組件。
CPB記憶體320可儲存待由視訊解碼器300之組件解碼之視訊資料,諸如經編碼視訊位元串流。可例如自電腦可讀媒體110 (圖1)獲得儲存於CPB記憶體320中之視訊資料。CPB記憶體320可包括儲存來自經編碼視訊位元串流之經編碼視訊資料(例如語法元素)的CPB。又,CPB記憶體320可儲存除了經寫碼圖像之語法元素之外的視訊資料,諸如表示來自視訊解碼器300之各種單元之輸出的臨時資料。DPB 314通常儲存經解碼圖像,視訊解碼器300可在解碼經編碼視訊位元串流之後續資料或圖像時輸出及/或使用該等經解碼圖像作為參考視訊資料。CPB記憶體320及DPB 314可由諸如動態隨機存取記憶體(DRAM)之多種記憶體器件中之任一者形成,包括同步DRAM (SDRAM)、磁阻式RAM (MRAM)、電阻式RAM (RRAM),或其他類型之記憶體器件。CPB記憶體320及DPB 314可由同一記憶體器件或單獨記憶體器件提供。在各種實例中,CPB記憶體320可與視訊解碼器300之其他組件一起在晶片上,或相對於彼等組件在晶片外。
另外或替代地,在一些實例中,視訊解碼器300可自記憶體120 (圖1)擷取經寫碼視訊資料。亦即,記憶體120可運用CPB 記憶體320儲存如上文所論述之資料。同樣地,當視訊解碼器300之一些或所有功能性實施於軟體中以由視訊解碼器300之處理電路系統執行時,記憶體120可儲存待由視訊解碼器300執行之指令。
繪示圖3中所展示之各種單元以輔助理解由視訊解碼器300執行之操作。單元可被實施為固定功能電路、可程式化電路或其組合。與圖2相似,固定功能電路係指提供特定功能性並在可執行之操作時被預設的電路。可程式化電路係指可經程式化以執行各種任務並在可執行之操作中提供靈活功能性的電路。舉例而言,可程式化電路可執行軟體或韌體,軟體或韌體致使可程式化電路以由軟體或韌體之指令定義之方式操作。固定功能電路可執行軟體指令(例如用以接收參數或輸出參數),但由固定功能電路執行之操作之類型通常係不可變的。在一些實例中,單元中之一或多者可為相異電路區塊(固定功能或可程式化),且在一些實例中,一或多個單元可為積體電路。
視訊解碼器300可包括由可程式化電路形成之ALU、EFU、數位電路、類比電路及/或可程式化核心。在視訊解碼器300之操作由在可程式化電路上執行之軟體執行的實例中,晶片上或晶片外記憶體可儲存由視訊解碼器300接收及執行之軟體之指令(例如物件程式碼)。
熵解碼單元302可自CPB接收經編碼視訊資料,並熵解碼視訊資料以再生語法元素。預測處理單元304、反量化單元306、反變換處理單元308、重建構單元310及濾波器單元312可基於自位元串流提取之語法元素產生經解碼視訊資料。
一般而言,視訊解碼器300在逐區塊基礎上重建構圖像。視訊解碼器300可個別地對每一區塊執行重建構操作(其中當前正被重建構(亦即,解碼)之區塊可被稱作「當前區塊」)。
熵解碼單元302可熵解碼定義經量化變換係數區塊之經量化變換係數的語法元素,以及諸如量化參數(QP)及/或變換模式指示之變換資訊。反量化單元306可使用與經量化變換係數區塊相關聯之QP以判定量化程度並同樣地判定反量化程度以供反量化單元306應用。反量化單元306可例如執行按位元左移操作以反量化經量化變換係數。反量化單元306可藉此形成包括變換係數之變換係數區塊。
在反量化單元306形成變換係數區塊之後,反變換處理單元308可將一或多個反變換應用於變換係數區塊以產生與當前區塊相關聯之殘差區塊。舉例而言,反變換處理單元308可將反DCT、反整數變換、反卡忽南-拉維變換(KLT)、反旋轉變換、反方向變換或另一反變換應用於係數區塊。
此外,預測處理單元304根據由熵解碼單元302熵解碼之預測資訊語法元素產生預測區塊。舉例而言,若預測資訊語法元素指示當前區塊被框間預測,則運動補償單元316可產生預測區塊。在此狀況下,預測資訊語法元素可指示DPB 314中供擷取參考區塊之參考圖像,以及運動向量,其識別參考圖像中之參考區塊相對於當前圖像中之當前區塊之位置的位置。運動補償單元316通常可以與關於運動補償單元224 (圖2)所描述之方式實質上相似的方式執行框間預測程序。
作為另一實例,若預測資訊語法元素指示當前區塊被框內預測,則框內預測單元318可根據由預測資訊語法元素指示之框內預測模式產生預測區塊。再次,框內預測單元318通常可以與關於框內預測單元226 (圖2)所描述之方式實質上相似的方式執行框內預測程序。框內預測單元318可自DPB 314擷取當前區塊之相鄰樣本之資料。
重建構單元310可使用預測區塊及殘差區塊重建構當前區塊。舉例而言,重建構單元310可將殘差區塊之樣本添加至預測區塊之對應樣本,以重建構當前區塊。
濾波器單元312可對經重建區塊執行一或多個濾波操作。舉例而言,濾波器單元312可執行解區塊操作以縮減沿經重建構區塊之邊緣之區塊效應假影。未必在所有實例中執行濾波器單元312之操作。
視訊解碼器300可將經重建構區塊儲存於DPB 314中。如上文所論述,DPB 314可向預測處理單元304提供參考資訊,諸如用於框內預測之當前圖像及用於後續運動補償之經先前解碼圖像的樣本。此外,視訊解碼器300可輸出來自DPB之經解碼圖像以用於隨後呈現於諸如圖1之顯示器件118的顯示器件上。
如上文所論述,運動補償單元316可獲得當前區塊之運動向量(MV)的值,其界定參考區塊相對於當前區塊之位置。運動補償單元316可基於運動向量預測符(MVP)及運動向量差(MVD)獲得運動向量之值。運動補償單元316可基於先前經寫碼區塊之MV或一或多個預設值而獲得MVP。在一些實例中,運動補償單元316可自各種源獲得複數個候選MVP (例如空間相鄰區塊之MV、時間相鄰區塊之MV及預設值)。運動補償單元316可以類似於視訊編碼器200之方式獲得複數個候選MVP,從而使得藉由運動補償單元316獲得之複數個候選MVP匹配藉由視訊編碼器200獲得之複數個候選MVP。運動補償單元316可基於指示MVD之值的一或多個語法元素獲得MVD之值。
如上文所論述,各種運動向量(亦即,MVP、MVD及MV)可具有不同解析度。在一些實例中,諸如其中使用適應性運動向量解析度(AMVR)之實例,MVD可以1/4像素解析度、整數像素解析度及四重像素解析度用信號傳送。在一些實例中,諸如其中使用AMVR之實例,MVP可以1/16像素解析度儲存,而預設單位可為1/4像素解析度。
為了將MVP及MVD之值正確相加以獲得MV,運動補償單元316可執行一或多個捨位操作。舉例而言,運動補償單元316可執行第一捨位操作,以將MVP捨位至預設單位。接著,若MVD以不同於預設單位之解析度用信號傳送,則運動補償單元316可執行第二捨位操作以將MVP自預設單位解析度捨位至MVD之解析度。
如上文所論述且根據本發明之一或多種技術,運動補償單元316可在判定運動向量時執行聯合捨位程序。舉例而言,相較於首先將MVP之值自儲存解析度捨位至預設單位解析度,且接著將結果捨位至MVD之解析度,運動補償單元316可基於MVD之解析度及儲存解析度捨位MVP一次。以此方式,運動補償單元316可減少在判定運動向量時引入之誤差。藉由減少引入之誤差,運動補償單元316可縮減用以表示視訊資料之位元數目,從而獲得經改良壓縮。
以此方式,視訊解碼器300表示一種視訊解碼器件之一實例,該視訊解碼器件包括:一記憶體,其經組態以儲存視訊資料;及一或多個處理單元,其實施於電路系統中且經組態以自一經寫碼視訊位元串流解碼視訊資料之一當前區塊之一運動向量差的一值;自一運動向量緩衝器獲得視訊資料之該當前區塊的一運動向量預測符之一值;判定該當前區塊的該運動向量差之該值的一解析度;獲得運動向量的一儲存解析度移位量;基於該運動向量差之該值的該解析度及該儲存解析度移位量捨位自該運動向量緩衝器獲得的該運動向量預測符之該值;將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊的一運動向量之一值;基於該當前區塊之該運動向量獲得該當前區塊的一預測符區塊之樣本;及基於該當前區塊的該預測符區塊之該等樣本重建構該當前區塊之樣本。
圖4為說明用於編碼當前區塊之實例方法的流程圖。當前區塊可包含當前CU。儘管相對於視訊編碼器200 (圖1及圖2)加以描述,但應理解,其他器件可經組態以進行類似於圖4之方法的方法。
在此實例中,視訊編碼器200最初預測當前區塊(350)。舉例而言,視訊編碼器200可形成當前區塊之預測區塊。視訊編碼器200接著可計算當前區塊之殘差區塊(352)。為了計算殘差區塊,視訊編碼器200可計算當前區塊的初始未經寫碼區塊與預測區塊之間的差。視訊編碼器200可接著變換且量化殘差區塊之係數(354)。接著,視訊編碼器200可掃描殘差區塊之經量化變換係數(356)。在掃描期間或在掃描之後,視訊編碼器200可熵編碼係數(358)。舉例而言,視訊編碼器200可使用CAVLC或CABAC來編碼係數。視訊編碼器200可接著輸出區塊之經熵寫碼資料(360).
視訊編碼器200可解碼視訊資料之經編碼當前區塊作為重建構迴路之部分。作為解碼之部分,視訊編碼器200可在判定當前區塊之運動向量之值時執行上文所描述之聯合捨位程序。
圖5為說明用於解碼視訊資料之當前區塊之實例方法的流程圖。當前區塊可包含當前CU。儘管相對於視訊解碼器300 (圖1及圖3)予以描述,但應理解,其他器件可經組態以執行類似於圖5之方法的方法。
視訊解碼器300可接收當前區塊之經熵寫碼資料,諸如經熵寫碼預測資訊及對應於當前區塊之殘差區塊之係數之經熵寫碼資料(370)。視訊解碼器300可熵解碼經熵寫碼資料,以判定當前區塊之預測資訊且再生殘差區塊之係數(372)。舉例而言,視訊解碼器300可使用本文中所描述之聯合捨位程序判定當前區塊之運動向量之值。
視訊解碼器300可例如使用如由當前區塊之預測資訊所指示的框內或框間預測來預測當前區塊(374),以計算當前區塊之預測區塊。視訊解碼器300接著可反掃描經再生之係數(376)以產生經量化變換係數之區塊。視訊解碼器300可接著反量化及反變換係數以產生殘差區塊(378)。視訊解碼器300可最後藉由組合預測區塊及殘差區塊來解碼當前區塊(380)。
圖6為說明用於預測視訊資料之當前區塊之實例方法的流程圖。當前區塊可包含當前CU。儘管相對於視訊解碼器300 (圖1及圖3)加以描述,但應理解,其他器件可經組態以進行類似於圖6之方法的方法。舉例而言,視訊編碼器200可執行圖6之方法作為重建構迴路之部分。
視訊解碼器300可獲得當前區塊之運動向量差(MVD)之值(702)。舉例而言,運動補償單元316可獲得(例如自熵解碼單元302)指示MVD之值的一或多個語法元素之值。作為一個實例,運動補償單元316可獲得指定MVD之絕對值是否大於0之第一語法元素(例如,abs_mvd_greater0_flag)、指定MVD之絕對值是否大於1之第二語法元素(例如,abs_mvd_greater1_flag)、指定MVD之絕對值之第三語法元素(例如,abs_mvd_minus2)及/或指定MVD之值之正負號的第四語法元素(例如,mvd_sign_flag)之值。
視訊解碼器300可獲得當前區塊之運動向量預測符(MVP)之值(704)。舉例而言,運動補償單元316可自運動向量緩衝器獲得先前經寫碼區塊(例如,當前區塊之相鄰區塊)之運動向量(MV)之值。運動向量緩衝器可儲存視訊資料之先前經寫碼區塊的運動向量之值。視訊解碼器300可將運動向量緩衝器維持於記憶體中(例如,作為DPB 314之部分)。在一些實例中,MVP可被稱作候選MVP。舉例而言,運動補償單元316可自運動向量緩衝器獲得複數個候選MVP。實例候選MVP包括空間MVP候選、時間MVP候選、預設值及其類似者。
視訊解碼器300可判定MVD之值之解析度(706)。如上文所論述,在一些實例中,諸如其中使用適應性運動向量解析度(AMVR)之實例,可以不同解析度(例如1/4明度樣本、整數明度樣本及四重明度樣本解析度中之一者)用信號傳送MVD之值(例如在位元串流中編碼)。運動補償單元316可獲得(例如,自熵解碼單元302)指定MVD之值之解析度的一或多個語法元素之值(例如,ImvShift)。
視訊解碼器300可獲得儲存解析度移位量(708)。舉例而言,運動補償單元316可相對於預設單位之解析度判定儲存運動向量(例如於運動向量緩衝器中)時的解析度。舉例而言,運動補償單元316可判定指定所儲存增大之運動向量解析度的變數之值(例如,MvStorageShift)。在一些實例中,1/(1<<MvStorageShift)可表示以四分之一明度樣本精確度為單位的MV精確度。舉例而言,MvStorageShift等於2指示儲存之MV解析度/精確度自四分之一明度樣本精確度增大至1/16明度樣本精確度。在一些實例中,可在位元串流中寫碼指定所儲存增大之運動向量解析度的變數之值。在一些實例中,可預定指定所儲存增大之運動向量解析度的變數之值。舉例而言,可將指定所儲存增大之運動向量解析度的變數之值預定為2,其中所儲存MV解析度/精確度自四分之一明度樣本精確度(例如預設單位解析度)增大至1/16明度樣本精確度。
視訊解碼器300可基於儲存解析度移位量將MVP之值直接捨位至MVD之解析度(710)。舉例而言,相較於首先將MVP之值捨位至預設單位解析度且接著將MVP之第一經捨位值重新捨位至MVD之解析度,運動補償單元316可執行單個捨位操作,以將MVP之值直接自其予以儲存時的解析度捨位至MVD之解析度。作為一個實例,運動補償單元316可根據以下等式捨位MVP之值,其中ImvShift表示MVD之值之解析度,且MvStorageShift表示所儲存增大之運動向量解析度: ●    MvShift = ImvShift + MvStorageShift ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( mvpLX[ 0 ] >= 0 ? (mvpLX[ 0 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift) ) << MvShift ●    mvpLX[ 1 ] = (mvpLX[ 1 ] >= 0 ? (mvpLX[ 1 ] +RoundingOffset) >> MvShift : - ( ( - mvpLX[ 1 ] + RoundingOffset ) >> MvShift) )<< MvShift
如上文所示,在一些實例中,運動補償單元316可評估MVP之值之正負號作為捨位程序之部分,以判定向0捨位抑或遠離零捨位。詳言之,如上文所示,運動補償單元316評估MVP之值大於零抑或等於零(亦即,mvpLX[0]>=0),以判定捨位(mvpLX[ 0 ] +RoundingOffset)<< MvShift抑或捨位- ( ( - mvpLX[ 0 ] + RoundingOffset ) >> MvShift) ) << MvShift。在一些實例中,運動補償單元316可在始終向0捨位時執行聯合捨位程序。舉例而言,運動補償單元316可根據以下等式捨位MVP之值,其中ImvShift表示MVD之值之解析度,且MvStorageShift表示所儲存增大之運動向量解析度: ●    MvShift = ImvShift + MvStorageShift ●    將變數RoundingOffset設定為等於1<<(MvShift -1) ●    mvpLX[ 0 ] = ( (mvpLX[ 0 ] +RoundingOffset) >> MvShift  ) << MvShift ●    mvpLX[ 1 ] = (  (mvpLX[ 1 ] +RoundingOffset) >> MvShift ) << MvShift
以此方式,視訊解碼器300可基於MVP之值之正負號而避免使用兩種不同捨位技術。就此而論,本發明之技術可降低捨位程序之複雜度。
視訊解碼器300可將MVP之經捨位值與MVD之值相加以獲得當前區塊的運動向量之值(712)。舉例而言,在MVP及MVD之值處於相同解析度的情況下,運動補償單元316可將MVP及MVD之值相加以獲得當前區塊的MV之值。
視訊解碼器300可基於MV之值獲得預測符區塊之樣本(714)。舉例而言,運動補償單元316可獲得藉由當前區塊之MV識別的預測符區塊之樣本。如上文參考圖5所論述,在圖5之步驟374中,視訊解碼器300可獲得預測符區塊之樣本。視訊解碼器300可基於預測符區塊之樣本重建構當前區塊之樣本。舉例而言,如圖5之區塊380中所示,視訊解碼器300可形成殘差區塊,並將殘差區塊之樣本與預測符區塊之樣本組合以獲得當前區塊之經重建構樣本。
如上文所論述,在一些實例中,運動補償單元316可自運動向量緩衝器獲得複數個候選MVP。在一些實例中,運動補償單元316可對複數個候選MVP執行修剪程序(例如以移除重複)。運動補償單元316可在各種點執行修剪程序。作為一個實例,運動補償單元316可在捨位MVP之值之前執行修剪程序。舉例而言,運動補償單元316可對候選MVP之經捨位值執行修剪程序以產生MVP候選清單。作為另一實例,運動補償單元316可在捨位MVP之值之後執行修剪程序。舉例而言,運動補償單元316可對候選MVP之未經捨位值執行修剪程序以產生MVP候選清單,且接著對MVP候選清單中之MVP執行捨位程序。
應認識到,取決於實例,本文中所描述之技術中之任一者之某些動作或事件可以不同序列被執行,可被添加、合併或完全省去(例如並非所有所描述動作或事件皆為實踐該等技術所必要)。此外,在某些實例中,可例如經由多執行緒處理、中斷處理或多個處理器同時而非循序地執行動作或事件。
在一或多個實例中,所描述之功能可實施於硬體、軟體、韌體或其任何組合中。若實施於軟體中,則該等功能可作為一或多個指令或程式碼而儲存於電腦可讀媒體上或經由電腦可讀媒體進行傳輸,並由基於硬體之處理單元執行。電腦可讀媒體可包括:電腦可讀儲存媒體,其對應於諸如資料儲存媒體之有形媒體;或通信媒體,其包括例如根據通信協定促進電腦程式自一處傳送至另一處之任何媒體。以此方式,電腦可讀媒體大體上可對應於(1)為非暫時性的有形電腦可讀儲存媒體,或(2)諸如信號或載波之通信媒體。資料儲存媒體可為可由一或多個電腦或一或多個處理器存取以擷取指令、程式碼及/或資料結構以用於實施本發明中所描述之技術之任何可用媒體。電腦程式產品可包括電腦可讀媒體。
作為實例而非限制,此類電腦可讀儲存媒體可包含RAM、ROM、EEPROM、CD-ROM或其他光碟儲存、磁碟儲存或其他磁性儲存器件、快閃記憶體,或可用以儲存呈指令或資料結構形式之所要程式碼且可由電腦存取之任何其他媒體。又,任何連接被適當地稱為電腦可讀媒體。舉例而言,若使用同軸纜線、光纜、雙絞線、數位用戶線(DSL)或諸如紅外線、無線電及微波之無線技術自網站、伺服器或其他遠端源傳輸指令,則同軸纜線、光纜、雙絞線、DSL或諸如紅外線、無線電及微波之無線技術包括於媒體之定義中。然而,應理解,電腦可讀儲存媒體及資料儲存媒體並不包括連接、載波、信號或其他暫時性媒體,而是有關於非暫時性的有形儲存媒體。如本文中所使用,磁碟及光碟包括緊密光碟(CD)、雷射光碟、光學光碟、數位多功能光碟(DVD)、軟性磁碟及藍光光碟,其中磁碟通常以磁性方式再生資料,而光碟運用雷射以光學方式再生資料。以上各者之組合亦應包括於電腦可讀媒體之範疇內。
指令可由諸如以下各者之一或多個處理器執行:一或多個數位信號處理器(DSP)、一般用途微處理器、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA),或其他等效整合式或離散邏輯電路系統。因此,如本文中所使用之術語「處理器」可指上述結構或適合於實施本文中所描述之技術之任何其他結構中之任一者。另外,在一些態樣中,本文中所描述之功能性可提供於經組態以供編碼及解碼或併入於經組合編解碼器中之專用硬體及/或軟體模組內。又,該等技術可完全實施於一或多個電路或邏輯元件中。
本發明之技術可實施於各種各樣的器件或裝置中,該等器件或裝置包括無線手機、積體電路(IC)或IC集合(例如晶片組)。在本發明中描述各種組件、模組或單元以強調經組態以執行所揭示技術之器件之功能態樣,但未必要求由不同硬體單元來實現。更確切地,如上文所描述,各種單元可組合於編解碼器硬體單元中,或由互操作性硬體單元之集合結合合適軟體及/或韌體提供,該等硬體單元包括如上文所描述之一或多個處理器。
已描述了各種實例。此等及其他實例在以下申請專利範圍之範疇內。
100:視訊編碼及解碼系統 102:源器件 104:視訊源 106:記憶體 108:輸出介面 110:電腦可讀媒體 112:儲存器件 114:檔案伺服器 116:目的地器件 118:顯示器件 120:記憶體 122:輸入介面 200:視訊編碼器 202:模式選擇單元 204:殘差產生單元 206:變換處理單元 208:量化單元 210:反量化單元 212:反變換處理單元 214:重建構單元 216:濾波器單元 218:經解碼圖像緩衝器(DPB) 220:熵編碼單元 222:運動估計單元 224:運動補償單元 226:框內預測單元 230:視訊資料記憶體 300:視訊解碼器 302:熵解碼單元 304:預測處理單元 306:反量化單元 308:反變換處理單元 310:重建構單元 312:濾波器單元 314:經解碼圖像緩衝器(DPB) 316:運動補償單元 318:框內預測單元 320:經寫碼圖像緩衝器(CPB)記憶體 350:步驟 352:步驟 354:步驟 356:步驟 358:步驟 360:步驟 370:步驟 372:步驟 374:步驟 376:步驟 378:步驟 380:步驟 702:步驟 704:步驟 706:步驟 708:步驟 710:步驟 712:步驟 714:步驟
圖1為說明可執行本發明之技術之實例視訊編碼及解碼系統的方塊圖。
圖2為說明可執行本發明之技術之實例視訊編碼器的方塊圖。
圖3為說明可執行本發明之技術之實例視訊解碼器的方塊圖。
圖4為說明用於編碼當前區塊之實例方法的流程圖。
圖5為說明用於解碼當前區塊之實例方法的流程圖。
圖6為說明用於預測當前區塊之實例方法的流程圖。
702:步驟
704:步驟
706:步驟
708:步驟
710:步驟
712:步驟
714:步驟

Claims (29)

  1. 一種寫碼視訊資料之方法,該方法包含: 寫碼視訊資料之一當前區塊之一運動向量差的一值; 自一運動向量緩衝器獲得視訊資料之該當前區塊之一運動向量預測符的一值; 判定該當前區塊之該運動向量差的該值之一解析度; 獲得運動向量之一儲存解析度移位量; 基於該儲存解析度移位量將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度; 將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊之一運動向量的一值; 基於該當前區塊之該運動向量的該值獲得該當前區塊之一預測符區塊的樣本;以及 基於該當前區塊之該預測符區塊的該等樣本重建構該當前區塊之樣本。
  2. 如請求項1之方法,其中捨位自該運動向量緩衝器獲得的該運動向量預測符之該值包含: 基於該運動向量差之該值之該解析度及該儲存解析度移位量獲得一移位值; 將表示自該運動向量緩衝器獲得之該運動向量預測符之該值與一捨位偏移之一總和的一值右移位該移位值; 將表示該運動向量預測符與該捨位偏移之該總和的該經右移位值左移位該移位值,以獲得該運動向量預測符之該經捨位值。
  3. 如請求項2之方法,其進一步包含將該捨位偏移判定為左移位該移位值與1之一差的捨位偏移。
  4. 如請求項2之方法,其中判定該移位值包含將表示該運動向量差之該值之該解析度的一值與表示該儲存解析度移位量之一值相加以獲得該移位值。
  5. 如請求項4之方法,其中表示該儲存解析度移位量之該值為2。
  6. 如請求項5之方法,其中表示該運動向量差之該值之該解析度的該值指示該運動向量差之該值之該解析度是否為四分之一明度樣本精確度、整數明度樣本精確度或四明度樣本精確度中之一者。
  7. 如請求項1之方法,其中捨位自該運動向量緩衝器獲得之該運動向量預測符之該值包含向零捨位。
  8. 如請求項1之方法,其中該運動向量預測符為一第一運動向量預測符,該方法進一步包含: 自該運動向量緩衝器獲得視訊資料之該當前區塊的複數個候選運動向量預測符之值,其中該複數個候選運動向量預測符包括該第一運動向量預測符, 其中捨位自該運動向量緩衝器獲得之該第一運動向量預測符的該值包含將自該運動向量緩衝器獲得的該複數個候選運動向量預測符之該等值直接捨位至該運動向量差之該值的該解析度;及 對該等候選運動向量預測符之該等經捨位值執行一修剪程序以產生一運動向量預測符候選清單。
  9. 如請求項1之方法,其中該運動向量預測符為一第一運動向量預測符,該方法進一步包含: 自該運動向量緩衝器獲得視訊資料之該當前區塊的複數個候選運動向量預測符之值,其中該複數個候選運動向量預測符包括該第一運動向量預測符; 對自該運動向量緩衝器獲得的該複數個候選運動向量預測符之該等值執行一修剪程序以產生一候選運動向量預測符候選清單,其中該運動向量預測符候選清單包括該第一運動向量預測符; 其中捨位自該運動向量緩衝器獲得之該第一運動向量預測符的該值包含將包括於該運動向量預測符候選清單中之該複數個候選運動向量預測符之該等值直接捨位至該運動向量差之該值的該解析度。
  10. 如請求項1之方法,其中捨位自該運動向量緩衝器獲得之該運動向量預測符的該值包含根據用於所有運動向量捨位操作之一統一捨位程序捨位自該運動向量緩衝器獲得之該運動向量預測符的該值。
  11. 如請求項1之方法,其中寫碼包含解碼,該方法進一步包含: 自該經寫碼視訊位元串流獲得該當前區塊之殘差值,其中重建構該當前區塊之該等樣本包含將該當前區塊之該等殘差值添加至該預測符區塊之該等樣本。
  12. 如請求項1之方法,其中寫碼包含編碼,該方法進一步包含: 在該經寫碼視訊位元串流中編碼該當前區塊之殘差值,其中重建構該當前區塊之該等樣本包含將該當前區塊之該等殘差值添加至該預測符區塊之該等樣本。
  13. 如請求項1之方法,其中將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度包含: 執行一單個捨位操作以將自該運動向量緩衝器獲得的該運動向量預測符之該值自一儲存解析度捨位至該運動向量差之該值的該解析度。
  14. 一種視訊寫碼器件,其包含: 一記憶體,其經組態以儲存視訊資料;及 一或多個處理單元,其實施於電路系統中且經組態以: 寫碼視訊資料之一當前區塊之一運動向量差的一值; 自一運動向量緩衝器獲得視訊資料之該當前區塊之一運動向量預測符的一值; 判定該當前區塊之該運動向量差之該值的一解析度; 獲得運動向量之一儲存解析度移位量; 基於該儲存解析度移位量將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度; 將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊之一運動向量的一值; 基於該當前區塊之該運動向量的該值獲得該當前區塊之一預測符區塊的樣本;以及 基於該當前區塊之該預測符區塊的該等樣本重建構該當前區塊之樣本。
  15. 如請求項14之器件,其中,為捨位自該運動向量緩衝器獲得的該運動向量預測符之該值,該一或多個處理單元經組態以: 基於該運動向量差之該值之該解析度及該儲存解析度移位量獲得一移位值; 將表示自該運動向量緩衝器獲得之該運動向量預測符之該值與一捨位偏移之一總和的一值右移位該移位值; 將表示該運動向量預測符與該捨位偏移之該總和的該經右移位值左移位該移位值,以獲得該運動向量預測符之該經捨位值。
  16. 如請求項15之器件,其中該一或多個處理單元經組態以將該捨位偏移判定為左移位該移位值與1之一差的捨位偏移。
  17. 如請求項15之器件,其中,為判定該移位值,該一或多個處理單元經組態以將表示該運動向量差之該值之該解析度的一值與表示該儲存解析度移位量之一值相加以獲得該移位值。
  18. 如請求項17之器件,其中表示該儲存解析度移位量之該值為2。
  19. 如請求項18之器件,其中表示該運動向量差之該值之該解析度的該值指示該運動向量差之該值之該解析度是否為四分之一明度樣本精確度、整數明度樣本精確度或四明度樣本精確度中之一者。
  20. 如請求項14之器件,其中,為捨位自該運動向量緩衝器獲得的該運動向量預測符之該值,該一或多個處理單元經組態以向零捨位自該運動向量緩衝器獲得的該運動向量預測符之該值。
  21. 如請求項14之器件,其中該運動向量預測符為一第一運動向量預測符,該一或多個處理單元經組態以: 自該運動向量緩衝器獲得視訊資料之該當前區塊的複數個候選運動向量預測符之值,其中該複數個候選運動向量預測符包括該第一運動向量預測符, 其中,為捨位自該運動向量緩衝器獲得的該第一運動向量預測符之該值,該一或多個處理單元經組態以將自該運動向量緩衝器獲得的該複數個候選運動向量預測符之該等值直接捨位至該運動向量差之該值的該解析度;及 對該等候選運動向量預測符之該等經捨位值執行一修剪程序以產生一運動向量預測符候選清單。
  22. 如請求項14之器件,其中該運動向量預測符為一第一運動向量預測符,該一或多個處理單元經組態以: 自該運動向量緩衝器獲得視訊資料之該當前區塊的複數個候選運動向量預測符之值,其中該複數個候選運動向量預測符包括該第一運動向量預測符; 對自該運動向量緩衝器獲得的該複數個候選運動向量預測符之該等值執行一修剪程序以產生一候選運動向量預測符候選清單,其中該運動向量預測符候選清單包括該第一運動向量預測符; 其中,為捨位自該運動向量緩衝器獲得的該第一運動向量預測符之該值,該一或多個處理單元經組態以將包括於該運動向量預測符候選清單中之該複數個候選運動向量預測符之該等值直接捨位至該運動向量差之該值的該解析度。
  23. 如請求項14之器件,其中,為捨位自該運動向量緩衝器獲得的該運動向量預測符之該值,該一或多個處理單元經組態以根據用於所有運動向量捨位操作之一統一捨位程序捨位自該運動向量緩衝器獲得的該運動向量預測符之該值。
  24. 如請求項14之器件,其中該視訊寫碼器件包含一視訊解碼器件,該一或多個處理單元經組態以: 自一經寫碼視訊位元串流獲得該當前區塊之殘差值,其中,為重建構該當前區塊之該等樣本,該一或多個處理單元經組態以將該當前區塊之該等殘差值添加至該預測符區塊之該等樣本。
  25. 如請求項24之器件,其進一步包含一顯示器,該顯示器經組態以顯示該重建構該當前區塊之該等樣本。
  26. 如請求項14之器件,其中該視訊寫碼器件包含一視訊編碼器件,該一或多個處理單元經組態以: 在一經寫碼視訊位元串流中編碼該當前區塊之殘差值,其中,為重建構該當前區塊之該等樣本,該一或多個處理單元經組態以將該當前區塊之該等殘差值添加至該預測符區塊之該等樣本。
  27. 如請求項26之器件,其中該器件為一無線通信器件,該器件進一步包含經組態以捕捉該視訊資料之一攝影機。
  28. 如請求項14之器件,其中,為將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度,該一或多個處理單元經組態以: 執行一單個捨位操作以將自該運動向量緩衝器獲得的該運動向量預測符之該值自一儲存解析度捨位至該運動向量差之該值的該解析度。
  29. 一種儲存指令之電腦可讀儲存媒體,在執行時,該等指令使得一或多個處理器進行以下操作: 寫碼視訊資料之一當前區塊之一運動向量差的一值; 自一運動向量緩衝器獲得視訊資料之該當前區塊之一運動向量預測符的一值; 判定該當前區塊之該運動向量差之該值的一解析度; 獲得運動向量之一儲存解析度移位量; 基於該儲存解析度移位量將自該運動向量緩衝器獲得的該運動向量預測符之該值直接捨位至該運動向量差之該值的該解析度; 將該運動向量預測符之該經捨位值與該運動向量差之該值相加以獲得該當前區塊之一運動向量的一值; 基於該當前區塊之該運動向量的該值獲得該當前區塊之一預測符區塊的樣本;以及 基於該當前區塊之該預測符區塊的該等樣本重建構該當前區塊之樣本。
TW108125496A 2018-07-24 2019-07-18 用於視訊寫碼中之適應性運動向量差解析度及增加的運動向量儲存精確度的運動向量捨位 TWI826487B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862702737P 2018-07-24 2018-07-24
US62/702,737 2018-07-24
US16/514,326 2019-07-17
US16/514,326 US10897617B2 (en) 2018-07-24 2019-07-17 Rounding of motion vectors for adaptive motion vector difference resolution and increased motion vector storage precision in video coding

Publications (2)

Publication Number Publication Date
TW202019173A true TW202019173A (zh) 2020-05-16
TWI826487B TWI826487B (zh) 2023-12-21

Family

ID=69178863

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125496A TWI826487B (zh) 2018-07-24 2019-07-18 用於視訊寫碼中之適應性運動向量差解析度及增加的運動向量儲存精確度的運動向量捨位

Country Status (7)

Country Link
US (1) US10897617B2 (zh)
EP (1) EP3827590A1 (zh)
CN (1) CN112673636B (zh)
BR (1) BR112021000640A2 (zh)
SG (1) SG11202013091SA (zh)
TW (1) TWI826487B (zh)
WO (1) WO2020023280A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170093B (zh) * 2018-11-20 2023-05-02 北京字节跳动网络技术有限公司 视频处理中的细化帧间预测
CN113056920B (zh) 2018-11-22 2024-05-24 北京字节跳动网络技术有限公司 基于子块的帧间预测的协调方法
JP7030246B2 (ja) * 2019-06-25 2022-03-04 日本放送協会 イントラ予測装置、画像復号装置、及びプログラム
JP7481430B2 (ja) * 2019-08-13 2024-05-10 北京字節跳動網絡技術有限公司 サブブロックに基づくインター予測における動き精度
WO2021052505A1 (en) 2019-09-22 2021-03-25 Beijing Bytedance Network Technology Co., Ltd. Reference picture resampling in video processing
WO2023207649A1 (en) * 2022-04-29 2023-11-02 Mediatek Inc. Method and apparatus for decoder-side motion derivation in video coding system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241434A1 (en) * 2011-10-11 2014-08-28 Mediatek Inc Method and apparatus of motion and disparity vector derivation for 3d video coding and hevc
US9325991B2 (en) * 2012-04-11 2016-04-26 Qualcomm Incorporated Motion vector rounding
US20150016533A1 (en) * 2013-07-12 2015-01-15 Qualcomm Incorporated Intra motion compensation extensions
US10531116B2 (en) * 2014-01-09 2020-01-07 Qualcomm Incorporated Adaptive motion vector resolution signaling for video coding
US10531113B2 (en) 2014-10-31 2020-01-07 Samsung Electronics Co., Ltd. Method and device for encoding/decoding motion vector
US20160337662A1 (en) * 2015-05-11 2016-11-17 Qualcomm Incorporated Storage and signaling resolutions of motion vectors

Also Published As

Publication number Publication date
WO2020023280A1 (en) 2020-01-30
CN112673636A (zh) 2021-04-16
CN112673636B (zh) 2023-12-26
BR112021000640A2 (pt) 2021-04-06
SG11202013091SA (en) 2021-02-25
US20200036980A1 (en) 2020-01-30
US10897617B2 (en) 2021-01-19
EP3827590A1 (en) 2021-06-02
TWI826487B (zh) 2023-12-21

Similar Documents

Publication Publication Date Title
US10986340B2 (en) Coding adaptive multiple transform information for video coding
TWI846773B (zh) 用於視訊寫碼之三角運動資訊
TWI843809B (zh) 用於視訊寫碼中具有運動向量差之合併模式之信令傳輸
US20180205946A1 (en) Coding video data using derived chroma mode
TW202101989A (zh) 用於視訊寫碼之參考圖像重採樣及框間寫碼工具
TW202025752A (zh) 用於仿射模式之以歷史為基礎之運動向量預測
TW202114418A (zh) 用於視訊寫碼中低頻非可分離變換之變換及最後有效係數位置信令傳輸
TW202019178A (zh) 用於係數寫碼之規則寫碼位元子之減少
CN112514386B (zh) 网格编解码量化系数编解码
TW202025767A (zh) 具有適應性方向性資訊集合之最終動作向量表示
TWI826487B (zh) 用於視訊寫碼中之適應性運動向量差解析度及增加的運動向量儲存精確度的運動向量捨位
TW202021354A (zh) 運動向量預測器清單產生
US11539952B2 (en) Implicit transform selection in video coding
US11259052B2 (en) Transform variations of multiple separable transform selection
CN113557734A (zh) 视频译码中的系数域块差分脉冲译码调制
TW202041014A (zh) 視訊寫碼中之運動向量推導
TW202041009A (zh) 用於轉換跳過模式之係數寫碼
TW202038609A (zh) 用於視訊寫碼之共享候選清單及平行候選清單推導
TW202029754A (zh) 用於置零轉換之掃描及最後係數位置寫碼
TW202101996A (zh) 用於視訊寫碼之以梯度為基礎之預測精細化
TW202034695A (zh) 用於視訊寫碼之限制仿射運動繼承
TW202044833A (zh) 使用不同色度格式之三角預測單元模式中之視訊寫碼
TW202106021A (zh) 使用非矩形預測模式減少視訊資料之預測之運動場儲存
TW202038613A (zh) 在視訊寫碼中用於平行處理之處理區域之推導
TW202002654A (zh) 具有群組分流位元子之係數寫碼