TW202018251A - Grid error measurement method and measurement device, and optical equipment - Google Patents

Grid error measurement method and measurement device, and optical equipment Download PDF

Info

Publication number
TW202018251A
TW202018251A TW108122986A TW108122986A TW202018251A TW 202018251 A TW202018251 A TW 202018251A TW 108122986 A TW108122986 A TW 108122986A TW 108122986 A TW108122986 A TW 108122986A TW 202018251 A TW202018251 A TW 202018251A
Authority
TW
Taiwan
Prior art keywords
grid
alignment measurement
degrees
position information
aforementioned
Prior art date
Application number
TW108122986A
Other languages
Chinese (zh)
Other versions
TWI739122B (en
Inventor
宋濤
徐兵
李煜芝
Original Assignee
大陸商上海微電子裝備(集團)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商上海微電子裝備(集團)股份有限公司 filed Critical 大陸商上海微電子裝備(集團)股份有限公司
Publication of TW202018251A publication Critical patent/TW202018251A/en
Application granted granted Critical
Publication of TWI739122B publication Critical patent/TWI739122B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points

Abstract

A grid error measurement method and a measurement device, and optical equipment. The grid error measurement method comprises: acquiring first actual position information about a preset alignment measurement mark on a substrate by means of a position measurement system in optical equipment, the substrate being horizontally adsorbed on a substrate adsorbing table of the optical equipment at a first angle, and a first direction being perpendicular to the second direction; acquiring second actual position information about the preset alignment measurement mark by means of the position measurement system, the substrate being horizontally absorbed on the substrate adsorbing table at a second angle, and the second angle being different from the first angle; and calculating the grid error of the position measurement system according to the first actual position information, the second actual position information, and the standard position information of the preset alignment measurement mark.

Description

一種柵格誤差的測量方法、測量裝置以及光學設備 Measuring method, measuring device and optical equipment for grid error

本發明實施例關於位置測量技術,例如關於一種柵格誤差的測量方法、測量裝置以及光學設備。 Embodiments of the present invention relate to position measurement technology, for example, to a grid error measurement method, measurement device, and optical equipment.

位置測量設備或曝光機中的精密運動設備,在各測量軸會配置干涉儀或者光柵尺測量系統進行運動台定位控制及測量。然而位置測量系統本身也會存在測量誤差,會導致運動台實際位置及理想位置存在偏差,帶來測量不準確。 The precise motion equipment in the position measuring equipment or exposure machine will be equipped with interferometer or grating ruler measuring system on each measuring axis for positioning control and measurement of the motion table. However, there are measurement errors in the position measurement system itself, which may cause deviations between the actual position and the ideal position of the sports table, resulting in inaccurate measurement.

通常,用柵格誤差(水平向某個點的實際形變相對於其理想位置的偏差,將這些點連接起來形成空間排列的棋盤式網格)來表徵位置測量系統測量水平向誤差情況。柵格誤差需要使用一定的手段及方法進行補償或校準,使最終位置量測或運動位置準確。 Generally, grid error (the deviation of the actual deformation of a certain point horizontally from its ideal position, connecting these points to form a spatially arranged checkerboard grid) is used to characterize the horizontal error of the position measurement system. The grid error needs to be compensated or calibrated using certain methods and methods to make the final position measurement or movement position accurate.

目前,市場上位置量測設備,大多使用大光罩或基準版進行柵格校正,但是,一是校準使用及維護不便,需多次手動上載光罩在運動台上不同位置,逐個校準局部誤差,且光罩也需要單獨維護;二是隨著行業發 展,特別是平板顯示領域中基底尺寸也在增大,後續光罩的製作尺寸需要同步增大,成本必然增加,存在局限性。另一種柵格校準方案使用位置測量系統(干涉儀、光柵尺)的位置模型,需要採集運動台在不同姿態下(包含旋轉、傾斜等)較大範圍的位置數據進行數學擬合計算,然而大多數位置測量設備的運動台一般只能設置單個自由度的運動,多個自由度的相關性數據無法獲取,導致位置模型無法求解,因此,也無法計算得出柵格誤差並進行校準。 At present, most of the position measurement equipment on the market uses large masks or reference plates for grid correction. However, it is inconvenient to use and maintain the calibration. It is necessary to manually upload the mask at different positions on the sports table to calibrate the local errors one by one. , And the photomask also needs to be maintained separately; the second is as the industry develops In particular, the size of substrates in the field of flat panel displays is also increasing. The size of subsequent photomasks needs to be increased synchronously, which will inevitably increase the cost and have limitations. Another grid calibration scheme uses the position model of the position measurement system (interferometer, grating ruler), which needs to collect a large range of position data of the motion table in different postures (including rotation, tilt, etc.) for mathematical fitting calculation. The motion stage of most position measuring equipment can generally only set up a single degree of freedom of movement. Correlation data of multiple degrees of freedom cannot be obtained, which makes the position model unable to be solved. Therefore, the grid error cannot be calculated and calibrated.

以下是對本說明書詳細描述的主題的概述。本概述並非是為了限制申請專利範圍的保護範圍。 The following is an overview of the topics described in detail in this specification. This summary is not intended to limit the scope of protection of patent applications.

本發明提供一種柵格誤差的測量方法、測量裝置以及光學設備,計算得出柵格誤差,對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確。 The invention provides a grid error measuring method, a measuring device and an optical device. The grid error is calculated and the measurement position of the position measurement system is calibrated to make the final position measurement or movement position accurate.

第一方面,本發明實施例提供一種柵格誤差的測量方法,其特徵係其包含:藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息,其中,前述基底上設置有多個沿第一方向及第二方向呈陣列排布的對準量測標記,形成測量柵格,前述基底以第一角度水平吸附在前述光學設備的基底吸附台上,前述第一方向及前述第二方向相垂直;藉由前述位置測量系統獲取前述預設對準量測標記的第二實際位置訊息,其中,前述基底以第二角度水平吸附在前述基底吸附台上,前述第二角度不同於前述第一角度;根據前述第一實際位置訊息、前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息計算前述位置測量系統的柵格誤差。 In a first aspect, an embodiment of the present invention provides a method for measuring grid errors, characterized in that it includes: acquiring the first actual position information of a preset alignment measurement mark on a substrate by a position measurement system in an optical device, wherein , A plurality of alignment measurement marks arranged in an array along the first direction and the second direction are formed on the substrate to form a measurement grid, and the substrate is horizontally adsorbed on the substrate adsorption table of the optical device at a first angle, The first direction and the second direction are perpendicular; the second actual position information of the preset alignment measurement mark is acquired by the position measurement system, wherein the substrate is horizontally adsorbed on the substrate adsorption table at a second angle The second angle is different from the first angle; the grid error of the position measurement system is calculated based on the first actual position information, the second actual position information, and the standard position information of the preset alignment measurement mark.

第二方面,本發明實施例進一步提供一種柵格誤差的測量裝置,其特徵係其包含:第一實際位置訊息模組,設置為藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息,其中,前述基底上設置有多個沿第一方向及第二方向呈陣列排布的對準量測標記,形成測量柵格,前述基底以第一角度水平吸附在前述光學設備的基底吸附台上,前述第一方向及前述第二方向相垂直;第二實際位置訊息獲取模組,設置為藉由前述位置測量系統獲取前述預設對準量測標記的第二實際位置訊息,其中,前述基底以第二角度水平吸附在前述基底吸附台上,前述第二角度不同於前述第一角度;柵格誤差計算模組,設置為根據前述第一實際位置訊息、前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息計算前述位置測量系統的柵格誤差。 In a second aspect, an embodiment of the present invention further provides a grid error measurement device, characterized in that it includes: a first actual position information module configured to obtain a preset alignment on a substrate by a position measurement system in an optical device The first actual position information of the measurement mark, wherein the substrate is provided with a plurality of alignment measurement marks arranged in an array along the first direction and the second direction to form a measurement grid, and the substrate is horizontal at a first angle Adsorbed on the substrate adsorption table of the optical device, the first direction and the second direction are perpendicular; the second actual position information acquisition module is set to acquire the preset alignment measurement mark by the position measurement system Second actual position information, wherein the substrate is horizontally adsorbed on the substrate adsorption table at a second angle, the second angle is different from the first angle; the grid error calculation module is set to be based on the first actual position information 2. The second actual position information and the standard position information of the preset alignment measurement mark calculate the grid error of the position measurement system.

第三方面,本發明實施例進一步提供一種光學設備,其特徵係其包含上述第二方面所記載之柵格誤差的測量裝置。 In a third aspect, an embodiment of the present invention further provides an optical device, characterized in that it includes the grid error measuring device described in the second aspect above.

可以在閱讀並理解了圖式及詳細描述後,可以明白其他方面。 You can understand other aspects after reading and understanding the drawings and detailed description.

本發明提供一種柵格誤差的測量方法、測量裝置以及光學設備,計算得出柵格誤差,對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確。 The invention provides a grid error measuring method, a measuring device and an optical device. The grid error is calculated and the measurement position of the position measurement system is calibrated to make the final position measurement or movement position accurate.

1‧‧‧整機氣浴恆溫控制系統 1‧‧‧ Whole machine gas bath constant temperature control system

2‧‧‧整機防護框架 2‧‧‧Full machine protection frame

3‧‧‧光學測量載台 3‧‧‧Optical measuring stage

4‧‧‧光學測量載台運動導軌 4‧‧‧Optical measuring stage motion guide

5‧‧‧導軌支架 5‧‧‧rail bracket

6‧‧‧X向干涉儀測量系統 6‧‧‧X interferometer measuring system

7‧‧‧位置粗測量感測器 7‧‧‧Coarse position sensor

8‧‧‧位置精測量及圖形粗測量感測器 8‧‧‧Position precise measurement and graphic rough measurement sensor

9‧‧‧位置精測量及圖形精測量感測器 9‧‧‧Precision position measurement and graphic precision measurement sensor

10‧‧‧第一高度測量感測器 10‧‧‧The first height measurement sensor

11‧‧‧第二高度測量感測器 11‧‧‧Second height measurement sensor

12‧‧‧基底載台 12‧‧‧ Base stage

13‧‧‧基底吸附台 13‧‧‧Base adsorption table

14‧‧‧基底載台運動導軌 14‧‧‧ Base rail motion guide

15‧‧‧Y向干涉儀測量系統 15‧‧‧Y interferometer measuring system

16‧‧‧大理石支撐台 16‧‧‧Marble support table

17‧‧‧減震系統 17‧‧‧Shock absorption system

100‧‧‧基底 100‧‧‧ base

200‧‧‧對準量測標記 200‧‧‧Alignment measurement mark

201‧‧‧實際位置 201‧‧‧ Actual position

202‧‧‧標準位置 202‧‧‧ Standard position

301‧‧‧載台實際位置 301‧‧‧ Actual position of carrier

302‧‧‧載台期望位置 302‧‧‧ Expected position of carrier

Rz‧‧‧旋轉量 Rz‧‧‧rotation

【圖1】是本發明實施例提供的一種位置測量設備的結構示意圖。 Fig. 1 is a schematic structural diagram of a position measuring device provided by an embodiment of the present invention.

【圖2】是本發明實施例提供的一種柵格誤差的測量方法的流程圖。 Fig. 2 is a flow chart of a method for measuring grid error provided by an embodiment of the present invention.

【圖3】是本發明實施例提供的一種基底結構示意圖。 [Figure 3] is a schematic diagram of a substrate structure provided by an embodiment of the present invention.

【圖4】是本發明實施例提供的幾種對準量測標記的圖形結構。 FIG. 4 is a graph structure of several alignment measurement marks provided by an embodiment of the present invention.

【圖5】是本發明實施例提供的一種旋轉度誤差的示意圖。 FIG. 5 is a schematic diagram of a rotation error provided by an embodiment of the present invention.

【圖6】是本發明實施例提供的一種非正交性誤差的示意圖。 Fig. 6 is a schematic diagram of a non-orthogonal error provided by an embodiment of the present invention.

【圖7】是本發明實施例提供的一種平移誤差的示意圖。 7 is a schematic diagram of a translation error provided by an embodiment of the present invention.

【圖8】是本發明實施例提供的另一種柵格誤差的測量方法的流程圖。 FIG. 8 is a flowchart of another method for measuring grid errors provided by an embodiment of the present invention.

【圖9】是本發明實施例提供的一種旋轉度誤差的示意圖。 9 is a schematic diagram of a rotation error provided by an embodiment of the present invention.

【圖10】是本發明實施例提供的另一種柵格誤差的測量方法的流程圖。 FIG. 10 is a flowchart of another method for measuring grid errors provided by an embodiment of the present invention.

【圖11】是本發明實施例提供的一種非正交性誤差的示意圖。 Fig. 11 is a schematic diagram of a non-orthogonal error provided by an embodiment of the present invention.

【圖12】是本發明實施例提供的另一種柵格誤差的測量方法的流程圖。 FIG. 12 is a flowchart of another method for measuring grid errors provided by an embodiment of the present invention.

【圖13】是本發明實施例提供的一種平移誤差的示意圖。 [Fig. 13] is a schematic diagram of a translation error provided by an embodiment of the present invention.

【圖14】是本發明實施例提供的一種柵格誤差的測量裝置的結構框圖。 FIG. 14 is a structural block diagram of a grid error measurement device provided by an embodiment of the present invention.

下面結合圖式及實施例對本發明作進一步的詳細說明。可以理解的是,此處所描述的具體實施例僅僅用於解釋本發明,而非對本發明的限定。另外進一步需要說明的是,為了便於描述,圖式中僅示出與本發明相關的部分而非全部結構。 The present invention will be further described in detail below with reference to the drawings and embodiments. It can be understood that the specific embodiments described herein are only used to explain the present invention, rather than to limit the present invention. It should be further noted that, in order to facilitate description, the drawings only show parts, but not all structures related to the present invention.

圖1是本發明實施例提供的一種位置測量設備的結構示意圖。需要說明的是,圖1中的位置測量設備僅是本實施例提供的一個具體示例,並非對本發明的限制。 FIG. 1 is a schematic structural diagram of a position measurement device according to an embodiment of the present invention. It should be noted that the position measuring device in FIG. 1 is only a specific example provided by this embodiment, and does not limit the present invention.

參見圖1,位置測量設備可以包含:整機氣浴恆溫控制系統1, 其包含溫度測量感測器、溫度控制氣浴單元,以保證整機內部環境的穩定;整機防護框架2,用於提供防護及保溫功能;光學測量載台3,用於承載光學測量感測器並進行水平X向、垂向Z的運動控制,其中,光學測量載台3上安裝有位置粗測量感測器7、位置精測量及圖形粗測量感測器8、位置精測量及圖形精測量感測器9,第一高度測量感測器10安裝在位置精測量及圖形粗測量感測器8上,第二高度測量感測器11安裝在位置精測量及圖形測量感測器9上;光學測量載台運動導軌4及導軌支架5;X向干涉儀測量系統6,用於測量光學測量載台運動位置;基底載台12,用於承載測量基底,並進行水平Y向運動控制;基底吸附台13,用於吸附測量基底,並帶有基底恆溫冷卻系統;基底載台運動導軌14;Y向干涉儀測量系統15,用於測量基底載台運動位置;大理石支撐台16,用於支撐基底載台,並減弱測量過程中基底載台的運動衝量;減震系統17,用於提供測量過程中載台運動的震動消除作用。 Referring to FIG. 1, the position measuring device may include: a complete gas bath constant temperature control system 1, It includes a temperature measurement sensor and a temperature control gas bath unit to ensure the stability of the internal environment of the whole machine; the protective frame 2 of the whole machine is used to provide protection and thermal insulation functions; the optical measurement stage 3 is used to carry optical measurement sensors It also performs horizontal X-direction and vertical Z-motion control. Among them, the optical measurement stage 3 is equipped with a position coarse measurement sensor 7, a position precise measurement and graphic coarse measurement sensor 8, a position precise measurement and graphic precision The measurement sensor 9, the first height measurement sensor 10 is installed on the position precision measurement and graphic rough measurement sensor 8, and the second height measurement sensor 11 is installed on the position precision measurement and graphic measurement sensor 9 ; Optical measurement stage motion guide rail 4 and guide rail bracket 5; X-direction interferometer measurement system 6, used to measure the optical measurement stage motion position; substrate stage 12, used to carry the measurement substrate, and horizontal Y-direction motion control; Substrate adsorption table 13 for adsorbing the measurement substrate, with a substrate constant temperature cooling system; substrate carrier movement guide 14; Y-directional interferometer measurement system 15 for measuring the substrate carrier movement position; marble support table 16, for Supports the base stage and weakens the motion impulse of the base stage during the measurement process; the shock absorption system 17 is used to provide the vibration elimination effect of the stage movement during the measurement process.

可以理解的是,考慮到後續需要基底需要以不同的角度(例如,0度、90度及180度)水平吸附在基底吸附台13上,為了方便測量,基底100可以為圓形或者正方形,示例性地,可藉由切片機切割。當基底100為正方形時,可以設置其邊長小於或等於基底載台12的短邊,以確保基底100在基底載台12的範圍內。 It can be understood that, considering the subsequent needs, the substrate needs to be horizontally adsorbed on the substrate adsorption table 13 at different angles (for example, 0 degrees, 90 degrees, and 180 degrees). For the convenience of measurement, the substrate 100 may be round or square, for example Sexually, it can be cut by a microtome. When the substrate 100 is square, the side length can be set to be shorter than or equal to the short side of the substrate stage 12 to ensure that the substrate 100 is within the range of the substrate stage 12.

圖2是本發明實施例提供的一種柵格誤差的測量方法的流程圖。該方法適用於需要位置測量校準的專業量測設備,如上述位置測量設備。參見圖2,本發明實施例一的一種柵格誤差的測量方法,包含步驟S110至步驟S130。 2 is a flowchart of a grid error measurement method provided by an embodiment of the present invention. This method is suitable for professional measurement equipment that requires position measurement calibration, such as the position measurement equipment described above. Referring to FIG. 2, a method for measuring grid errors according to Embodiment 1 of the present invention includes steps S110 to S130.

在步驟S110中,藉由光學設備中的位置測量系統獲取基底上預 設對準量測標記的第一實際位置訊息,其中,基底上設置有多個沿第一方向及第二方向呈陣列排布的對準量測標記,形成測量柵格,基底以第一角度水平吸附在光學設備的基底吸附台上,第一方向及第二方向相垂直。 In step S110, the position measurement system in the optical device The first actual position information of the alignment measurement mark is provided, wherein the base is provided with a plurality of alignment measurement marks arranged in an array along the first direction and the second direction to form a measurement grid, and the base is at a first angle It is horizontally adsorbed on the substrate adsorption table of the optical device, and the first direction and the second direction are perpendicular.

其中,光學設備可以是光刻機、曝光機或者其他需要位置測量校準的專業量測設備。光學設備中位置測量系統可以對運動台進行定位控制及測量。 The optical device may be a lithography machine, an exposure machine, or other professional measurement equipment that requires position measurement and calibration. The position measurement system in the optical equipment can perform positioning control and measurement on the motion table.

本發明中對位置測量系統的具體結構不做限制,在一實施例中,位置測量系統為干涉儀測量系統、雷射三角尺或雷射位移感測器。位置測量系統也可以是其他結構,如曝光機中的精密運動設備。 The specific structure of the position measurement system is not limited in the present invention. In an embodiment, the position measurement system is an interferometer measurement system, a laser triangle ruler, or a laser displacement sensor. The position measuring system can also be other structures, such as precision motion equipment in the exposure machine.

繼續參見圖1,可以定義該位置測量系統中光學測量載台框架的運動方向為X向,在水平面上垂直於X向的方向為Y向,豎直方向為Z向,建立XYZ三維坐標系。 Continuing to refer to FIG. 1, the movement direction of the optical measurement stage frame in the position measurement system can be defined as the X direction, the direction perpendicular to the X direction on the horizontal plane is the Y direction, and the vertical direction is the Z direction, to establish an XYZ three-dimensional coordinate system.

在一實施例中,第一方向平行於預設坐標系中的X軸,第二方向平行於前述預設坐標系中的Y軸;或者,第一方向平行於預設坐標系中的Y軸,第二方向平行於前述預設坐標系中的X軸。 In an embodiment, the first direction is parallel to the X axis in the preset coordinate system, and the second direction is parallel to the Y axis in the preset coordinate system; or, the first direction is parallel to the Y axis in the preset coordinate system , The second direction is parallel to the X axis in the aforementioned preset coordinate system.

圖3是本發明實施例提供的一種基底結構示意圖。參見圖3,可以在基底100上設置多個沿第一方向及第二方向呈陣列排布的對準量測標記200,形成測量柵格。其中,沿第一方向(或第二方向)排布的多個對準量測標記200之間的間距相同,但是沿第一方向排布的對準量測標記200之間的間距與沿第二方向排布的對準量測標記200之間的間距不同。 3 is a schematic diagram of a substrate structure provided by an embodiment of the present invention. Referring to FIG. 3, a plurality of alignment measurement marks 200 arranged in an array along the first direction and the second direction may be provided on the substrate 100 to form a measurement grid. Wherein, the spacing between the alignment measurement marks 200 arranged in the first direction (or the second direction) is the same, but the spacing between the alignment measurement marks 200 arranged in the first direction is the same as that along the first The distance between the alignment measurement marks 200 arranged in two directions is different.

為了測量準確,避免基底在以不同角度吸附在基底吸附台13時,因對準量測標記200的圖形形狀造成測量誤差,在一實施例中,對準量測 標記200的圖形為中心對稱圖形。 In order to measure accurately, to avoid the measurement error caused by the graphic shape of the alignment measurement mark 200 when the substrate is adsorbed on the substrate adsorption table 13 at different angles, in one embodiment, the alignment measurement The figure marked 200 is a center symmetric figure.

需要說明的是,對準量測標記200沿第一方向及第二方向呈陣列排布,沿第一方向或第二方向排布的多個對準量測標記200之間的間距可以相同也可以不同。對準量測標記200之間的間距可以根據實際情況進行設置,在一實施例中,可以設置間距在4-8mm左右。本發明對對準測量標記200的沿第一方向及第二方向的排列位置不做限制,例如,可以設置各個對準量測標記200以基底100的中心呈中心旋轉對稱分布。 It should be noted that the alignment measurement marks 200 are arranged in an array along the first direction and the second direction, and the spacing between the multiple alignment measurement marks 200 arranged along the first direction or the second direction may be the same. Can be different. The spacing between the alignment measurement marks 200 can be set according to the actual situation. In one embodiment, the spacing can be set at about 4-8 mm. The present invention does not limit the arrangement position of the alignment measurement marks 200 along the first direction and the second direction. For example, each alignment measurement mark 200 may be arranged to be rotationally symmetrically distributed with the center of the substrate 100 in the center.

圖4是本發明實施例提供的幾種對準量測標記的圖形結構。參見圖4,可以設置對準量測標記200自身呈180度及90度中心旋轉對稱分布。可以藉由曝光機曝光製作對準量測標記200。 4 is a graph structure of several alignment measurement marks provided by an embodiment of the present invention. Referring to FIG. 4, it can be set that the alignment measurement marks 200 themselves are rotationally symmetrically distributed at 180 degree and 90 degree centers. The alignment measurement mark 200 can be produced by exposure of the exposure machine.

以圖1提供的位置測量設備作為光學設備為例,設置基底100以第一角度水平吸附在光學設備的基底吸附台13上,藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息。 Taking the position measuring device provided in FIG. 1 as an optical device as an example, the substrate 100 is set to be horizontally adsorbed on the substrate adsorption table 13 of the optical device at a first angle, and the preset alignment amount on the substrate is obtained by the position measuring system in the optical device Measure the first actual position information of the mark.

在步驟S120中,藉由位置測量系統獲取預設對準量測標記的第二實際位置訊息,其中,基底以第二角度水平吸附在基底吸附台上,第二角度不同於第一角度。 In step S120, the second actual position information of the preset alignment measurement mark is acquired by the position measurement system, wherein the substrate is horizontally adsorbed on the substrate adsorption table at a second angle, and the second angle is different from the first angle.

考慮到大多數位置測量設備的運動台一般只能設置單個自由度的運動,多個自由度的相關性數據無法獲取,因此,本實施例中僅需要基底在水平方向以不同的角度吸附在基底吸附台上即可,操作簡單,對位置測量設備自由度要求較低,適用於多種位置測量設備的柵格誤差的測量。 Considering that the motion stage of most position measuring devices can generally only set a single degree of freedom of movement, correlation data of multiple degrees of freedom cannot be obtained. Therefore, in this embodiment, only the substrate needs to be adsorbed on the substrate at different angles in the horizontal direction It can be simply placed on the adsorption table, with simple operation and low requirements on the freedom of position measuring equipment. It is suitable for the measurement of grid errors of various position measuring equipment.

在步驟S130中,根據第一實際位置訊息、第二實際位置訊息及預設對準量測標記的標準位置訊息計算位置測量系統的柵格誤差。 In step S130, the grid error of the position measurement system is calculated according to the first actual position information, the second actual position information, and the standard position information of the preset alignment measurement mark.

其中,柵格誤差為位置測量系統本身導致的測量誤差,因此,可以提前記錄對準測量標記的標準位置訊息,其中,可以只記錄計算柵格誤差過程中用到的預設對準量測標記的標準位置訊息,也可以記錄基底上設置的所有的對準量測標記的標準位置訊息。 Among them, the grid error is the measurement error caused by the position measurement system itself, therefore, the standard position information of the alignment measurement mark can be recorded in advance, where only the preset alignment measurement mark used in the process of calculating the grid error can be recorded It can also record the standard position information of all the alignment measurement marks set on the substrate.

需要說明的是,柵格誤差表徵的是位置測量系統測量水平向誤差情況,考慮到大部分位置測量系統的運動台只能設置單個自由度的運動,為了避免採集多個自由度的相關性數據,本發明設置基底以不同的角度水平吸附在基底吸附台上,並採集不同吸附角度時對準量測標記的實際位置訊息,藉由預設演算法計算不同角度下的實際位置訊息,得到位置測量系統的柵格誤差。 It should be noted that the grid error characterizes the horizontal error of the position measurement system. Considering that most of the position measurement system's motion table can only set a single degree of freedom of movement, in order to avoid collecting correlation data of multiple degrees of freedom In the present invention, the substrate is set to be horizontally adsorbed on the substrate adsorption table at different angles, and the actual position information of the alignment measurement marks at different adsorption angles is collected, and the actual position information at different angles is calculated by a preset algorithm to obtain the position The grid error of the measurement system.

本實施例提供的柵格誤差的測量方法,無需大光罩,計算方法簡單,可以對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確,且不需要採集運動台在不同姿態下(包含旋轉、傾斜等)較大範圍的位置數據進行數學擬合計算,避免無法獲取多個自由度的相關性數據而使位置模型無法求解的情況。 The grid error measurement method provided in this embodiment does not require a large mask, and the calculation method is simple. The measurement position of the position measurement system can be calibrated to make the final position measurement or the movement position accurate, and there is no need to collect the movement table in different Mathematical fitting calculations are performed on a large range of position data under attitude (including rotation, tilt, etc.) to avoid the situation that the correlation model of multiple degrees of freedom cannot be obtained and the position model cannot be solved.

目前,柵格誤差主要有以下三種:旋轉度誤差、非正交性誤差及平移誤差。 At present, there are three main grid errors: rotation error, non-orthogonality error and translation error.

首先,旋轉度誤差是由於位置測量系統(例如,干涉儀測量系統)的安裝誤差引起的,對位置測量或運動定位可能會產生影響。旋轉度誤差為光學測量載台在沿第一方向(或第二方向)運動過程中在該方向上具有一定的偏移量,並且該偏移量的值呈線性變化。 First, the rotation error is caused by the installation error of the position measurement system (for example, the interferometer measurement system), which may have an impact on the position measurement or motion positioning. The rotation error is that the optical measurement stage has a certain offset in this direction during the movement in the first direction (or the second direction), and the value of this offset changes linearly.

圖5是本發明實施例提供的一種旋轉度誤差的示意圖。參見圖5,示例性地,當載台(光學測量載台或基底載台)在沿Y向運動過程中,載 台實際位置301相對於同一Y位置的載台期望位置302的旋轉量Rz呈線性變化,會導致對準量測標記200的實際位置201相對於其標準位置202在沿Y向具有呈線性變化的偏移量dy,此為運動台柵格Y向旋轉度誤差。同理,當光學測量載台在沿X向運動過程,旋轉度誤差會使位置量測或運動定位在相對各個對準量測標記200的標準位置202沿X向的偏移量dx呈線性變化的位置。 FIG. 5 is a schematic diagram of a rotation error provided by an embodiment of the present invention. Referring to FIG. 5, exemplarily, when the stage (optical measurement stage or substrate stage) is moving in the Y direction, the stage The rotation amount Rz of the actual position 301 of the stage relative to the desired position 302 of the stage at the same Y position changes linearly, which causes the actual position 201 of the alignment measurement mark 200 to change linearly in the Y direction relative to its standard position 202 Offset dy, this is the Y-axis rotation error of the moving table grid. Similarly, when the optical measurement stage is moving in the X direction, the rotation error will cause the position measurement or movement to be positioned relative to the standard position 202 of each alignment measurement mark 200. The offset dx in the X direction changes linearly s position.

其次,非正交性誤差由於運動台的導軌不垂直導致,會對位置測量產生影響。非正交性誤差為光學測量載台在沿第一方向(或第二方向)運動過程中在另一方向上具有一定的偏移量,並且該偏移量的值呈線性變化。 Secondly, the non-orthogonal error is caused by the guide rail of the moving table is not vertical, which will affect the position measurement. The non-orthogonality error is that the optical measurement stage has a certain offset in another direction during the movement in the first direction (or the second direction), and the value of the offset changes linearly.

圖6是本發明實施例提供的一種非正交性誤差的示意圖。參見圖6,示例性地,當載台在沿Y向運動過程中,對準量測標記200的實際位置201相對於其標準位置202在沿X向具有呈線性變化的偏移量dx,此為運動台柵格Y向非正交性誤差。同理,當光學測量載台在沿X向運動過程,X向非正交性誤差會使位置量測或運動定位在相對各個對準量測標記200的標準位置202沿Y向的偏移量dy呈線性變化的位置。 6 is a schematic diagram of a non-orthogonal error provided by an embodiment of the present invention. Referring to FIG. 6, exemplarily, when the stage is moving in the Y direction, the actual position 201 of the alignment measurement mark 200 has a linearly varying offset dx in the X direction relative to its standard position 202, this It is the Y-direction non-orthogonality error of the moving table grid. Similarly, when the optical measurement stage is moving in the X direction, the non-orthogonal error in the X direction will cause the position measurement or movement to be offset from the standard position 202 of each alignment measurement mark 200 in the Y direction The position where dy changes linearly.

最後,平移誤差主要由位置測量系統中運動導軌或鏡面不平整導致,例如,干涉儀平面鏡不平整,會對位置測量產生影響。平移誤差為載台在沿第一方向(或第二方向)運動過程中,在另一方向上同一數值時具有相同的偏移量,不同數值時偏移量變化且無規律。 Finally, the translation error is mainly caused by the unevenness of the moving guide rail or mirror surface in the position measurement system. For example, the unevenness of the interferometer plane mirror will affect the position measurement. The translation error is that during the movement of the stage in the first direction (or the second direction), it has the same offset in the same value in the other direction, and the offset changes and is irregular at different values.

圖7是本發明實施例提供的一種平移誤差的示意圖。參見圖7,示例性地,在光學測量載台在沿Y向運動過程中,對準量測標記200的實際位置201相對於其標準位置202在同一Y位置具有相同的偏移量dx,但在不同的Y位置的偏移量dx變化且無規律。同理,當光學測量載台在沿X向運 動過程,X向平移誤差會使位置量測在相對各個對準量測標記200的標準位置202同一X位置具有相同的偏移量dy,但在不同的X位置的偏移量dy變化且無規律。 7 is a schematic diagram of a translation error provided by an embodiment of the present invention. Referring to FIG. 7, exemplarily, during the movement of the optical measurement stage in the Y direction, the actual position 201 of the alignment measurement mark 200 has the same offset dx at the same Y position relative to its standard position 202, but The offset dx at different Y positions varies and is irregular. Similarly, when the optical measurement stage is operating in the X direction During the moving process, the X translation error will cause the position measurement to have the same offset dy at the same X position relative to the standard position 202 of each alignment measurement mark 200, but the offset dy at different X positions will change without law.

在上述實施例的基礎上,本實施例提供另一種柵格誤差的測量方法。圖8是本發明實施例提供的另一種柵格誤差的測量方法的流程圖。參見圖8,當測量的柵格誤差為旋轉度誤差時,該柵格誤差的測量方法包含步驟S210、步驟S220、步驟S231、步驟S232以及步驟S233。 Based on the above embodiments, this embodiment provides another method for measuring grid errors. FIG. 8 is a flowchart of another grid error measurement method provided by an embodiment of the present invention. Referring to FIG. 8, when the measured grid error is a rotation error, the method for measuring the grid error includes step S210, step S220, step S231, step S232, and step S233.

在步驟S210中,藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息,其中,基底以第一角度水平吸附在光學設備的基底吸附台上,預設對準量測標記包含在第二方向上的至少兩列對準量測標記。 In step S210, the first actual position information of the preset alignment measurement mark on the substrate is acquired by the position measurement system in the optical device, wherein the substrate is horizontally adsorbed on the substrate adsorption table of the optical device at a first angle, It is assumed that the alignment measurement marks include at least two rows of alignment measurement marks in the second direction.

需要說明的是,由於旋轉度誤差為載台在沿某一方向運動過程中,在該方向中出現線性變化的偏移量,因此需要計算多組沿該方向的偏移量。示例性地,為了測量Y向的旋轉度誤差,可以選擇沿Y向上的至少兩列對準量測標記,計算同一Y值時不同列(即不同X值)的對準量測標記對應的偏移量dy,計算各個Y值時各自對應的偏移量dy,以此得到Y向的旋轉度誤差。 It should be noted that, since the rotation degree error is a linearly changing offset in the direction of the stage during movement in a certain direction, multiple sets of offsets in this direction need to be calculated. Exemplarily, in order to measure the rotation error in the Y direction, at least two columns of alignment measurement marks along the Y direction may be selected, and the offsets corresponding to the alignment measurement marks of different columns (ie, different X values) when calculating the same Y value The shift amount dy is used to calculate the corresponding offset amount dy for each Y value, so as to obtain the rotation error in the Y direction.

同理,為了測量X向的旋轉度誤差可以選擇沿X方向上的至少兩行對準量測標記。 Similarly, in order to measure the rotation error in the X direction, at least two rows of alignment measurement marks along the X direction can be selected.

在步驟S220中,藉由位置測量系統獲取預設對準量測標記的第二實際位置訊息,其中,基底以第二角度水平吸附在基底吸附台上,第一角度為0度,第二角度為180度。 In step S220, the second actual position information of the preset alignment measurement mark is acquired by the position measurement system, wherein the substrate is horizontally adsorbed on the substrate adsorption table at a second angle, the first angle is 0 degrees, the second angle 180 degrees.

需要說明的是,由於運動台柵格及測量基底自身的柵格都有可能存在旋轉度誤差,設置基底分別以0度及180度吸附在基底吸附台上,在基底以0度及180度吸附時的測量結果,是兩者旋轉度誤差的疊加,可以根據二者的計算結果更加準確的計算出該位置測量系統中的旋轉度誤差。 It should be noted that since the grid of the moving table and the grid of the measuring substrate may have rotation errors, the substrate is set to adsorb on the substrate adsorption table at 0 degrees and 180 degrees, and at 0 degrees and 180 degrees on the substrate. The measurement result of the time is the superposition of the rotation error of the two, and the rotation error in the position measurement system can be calculated more accurately according to the calculation results of the two.

在步驟S231中,根據第一實際位置訊息及預設對準量測標記的標準位置訊息,確定基底以0度水平吸附在基底吸附台上時測量柵格的第一柵格旋轉度。 In step S231, according to the first actual position information and the standard position information of the preset alignment measurement mark, it is determined that the first grid rotation degree of the grid is measured when the substrate is adsorbed on the substrate adsorption table at a 0-degree level.

在步驟S232中,根據第二實際位置訊息及預設對準量測標記的標準位置訊息,確定基底以180度水平吸附在基底吸附台上時測量柵格的第二柵格旋轉度。 In step S232, according to the second actual position information and the standard position information of the preset alignment measurement mark, it is determined that the second grid rotation degree of the grid is measured when the substrate is horizontally adsorbed on the substrate adsorption table at 180 degrees.

在步驟S233中,根據第一柵格旋轉度及第二柵格旋轉度計算位置測量系統的第二方向的柵格旋轉度誤差。 In step S233, the grid rotation degree error in the second direction of the position measurement system is calculated according to the first grid rotation degree and the second grid rotation degree.

需要說明的是,需要對基底在不同角度下的偏移量及柵格旋轉度進行計算,並藉由兩次測量的柵格旋轉度確定該柵格旋轉度誤差。 It should be noted that the offset and grid rotation of the substrate at different angles need to be calculated, and the grid rotation error is determined by the two measured grid rotations.

在一實施例中,步驟S231,包含:根據對準量測標記對的第一實際位置訊息及標準位置訊息,計算對準量測標記對的第一旋轉量,其中,對準量測標記對包含在第一方向上的位於同一行的兩個對準量測標記,任一第一旋轉量Rotyn_0滿足:Rotyn_0=(pos_yj_0-pos_yi_0)/(xj-xi),pos_yi_0為0度下對準量測標記對中第一對準量測標記的第一實際位置訊息在第一方向上的座標值,pos_yj_0為0度下對準量測標記對中第二對準量測標記的第一實際位置訊息在第一方向上的座標值,xi為第一對準量測標記的標準位置訊息在第二方向上的座標值,xj為第二對準量測標記的標準位置訊息在第二方向上的座標 值;根據多個不同對準量測標記對的第一旋轉量及標準位置訊息,線性擬合計算出前述第一柵格旋轉度,其中,線性擬合公式滿足:Rotyn_0=K0×(yi+yj)/2+dRotyn_0,K0為前述第一柵格旋轉度,yi為前述第一對準量測標記的標準位置訊息在前述第一方向上的座標值,yj為前述第二對準量測標記的標準位置訊息在前述第一方向上的座標值,dRotyn_0為0度下的擬合殘差。 In an embodiment, step S231 includes: calculating the first rotation amount of the alignment measurement mark pair according to the first actual position information and the standard position information of the alignment measurement mark pair, wherein the alignment measurement mark pair Contains two alignment measurement marks on the same line in the first direction, any first rotation amount Rotyn _0 satisfies: Rotyn _0=( pos_yj _0- pos_yi _0)/ (xj-xi ), pos_yi _0 is 0 The alignment value of the first actual position information of the first alignment measurement mark in the first alignment measurement mark alignment in the first degree, pos_yj _0 is the second alignment measurement in the alignment measurement mark alignment at 0 degrees The coordinate value of the first actual position information of the mark in the first direction, xi is the coordinate value of the standard position information of the first alignment measurement mark in the second direction, and xj is the standard position of the second alignment measurement mark The coordinate value of the message in the second direction; based on the first rotation amount and standard position information of a plurality of different alignment measurement mark pairs, the first grid rotation degree is calculated by linear fitting, wherein the linear fitting formula satisfies: Rotyn _0 = K 0×( yi + yj )/2+ dRotyn _0, K0 is the rotation degree of the first grid, yi is the coordinate value of the standard position information of the first alignment measurement mark in the first direction , Yj is the coordinate value of the standard position information of the second alignment measurement mark in the first direction, dRotyn _0 is the fitting residual at 0 degrees.

步驟S232,包含:根據對準量測標記對的第二實際位置訊息及標準位置訊息,計算對準量測標記對的第二旋轉量,任一前述第二旋轉量Rotyn_180滿足:Rotyn_180=(pos_yj_180-pos_yi_180)/(-xj+xi),pos_yi_180為180度下對準量測標記對中第一對準量測標記的第一實際位置訊息在第一方向上的座標值,pos_yj_180為180度下前述對準量測標記對中第二對準量測標記的第一實際位置訊息在前述第一方向上的座標值;根據多個不同對準量測標記對的第二旋轉量及標準位置訊息,線性擬合計算出第二柵格旋轉度,其中,線性擬合公式滿足:Rotyn_180=K180×(-yi-yj)/2+dRotyn_180,K180為前述第二柵格旋轉度,dRotyn_180為180度下的擬合殘差;相應的,S233中第二方向的柵格旋轉度誤差K_ws_z滿足以下公式:K_ws_z=(K0-K180)/2。 Step S232 includes: calculating the second rotation amount of the alignment measurement mark pair according to the second actual position information and the standard position information of the alignment measurement mark pair, any of the foregoing second rotation amounts Rotyn _180 satisfies: Rotyn _180= ( pos_yj _180- pos_yi _180)/(- xj + xi ), pos_yi _180 is the coordinate value in the first direction of the first actual position information of the first alignment measurement mark in the alignment measurement mark pair at 180 degrees, pos_yj _180 is the coordinate value of the first actual position information of the second alignment measurement mark in the aforementioned alignment measurement mark pair at 180 degrees in the aforementioned first direction; according to the second of multiple different alignment measurement mark pairs Rotation amount and standard position information, linear fitting calculates the rotation degree of the second grid, where the linear fitting formula satisfies: Rotyn _180= K 180×(- yi-yj )/2+ dRotyn _180, K180 is the aforementioned second grid Grid rotation degree, dRotyn _180 is the fitting residual at 180 degrees; correspondingly, the grid rotation error K_ws_z in the second direction in S233 satisfies the following formula: K_ws_z = ( K 0- K 180)/2.

圖9是本發明實施例提供的一種旋轉度誤差的示意圖。參見圖9,例如,以第一方向為X向(第一方向平行於X軸),第二方向為Y向為例(第二方向平行於Y軸),藉由上述柵格誤差測量方法測量Y向柵格誤差旋轉度。 9 is a schematic diagram of a rotation error provided by an embodiment of the present invention. Referring to FIG. 9, for example, taking the first direction as the X direction (the first direction is parallel to the X axis) and the second direction as the Y direction (the second direction is parallel to the Y axis), measured by the above grid error measurement method Y-axis grid error rotation.

首先,選擇在Y向上的至少兩列對準量測標記為預設對準量測標記,可以提前記錄各個預設對準量測標記的標準位置訊息202,例如,Mark1 及Mark2為X方向上同一Y值的一對對準量測標記對,Mark3及Mark4為X方向上另一個同一Y值的一對對準量測標記對,記錄Mark1的標準位置訊息為(x1,y1),Mark2的標準位置訊息為(x2,y2),依次記錄多個不同對準量測標記對的標準位置訊息為(x3,y3)、(x4,y4)......(xN,yN)。 First, select at least two rows of alignment measurement marks in the Y direction as preset alignment measurement marks, and standard position information 202 of each preset alignment measurement mark can be recorded in advance, for example, Mark1 And Mark2 is a pair of alignment measurement mark pairs with the same Y value in the X direction, Mark3 and Mark4 are another pair of alignment measurement mark pairs with the same Y value in the X direction, and the standard position information of Mark1 is recorded as (x1 , Y1), the standard position information of Mark2 is (x2, y2), and the standard position information of multiple pairs of different alignment measurement marks are sequentially recorded as (x3, y3), (x4, y4)... ( xN, yN).

其次,參見圖9(a),使基底以0度水平吸附在光學設備的基底吸附台上,依次測量預設對準量測標記的第一實際位置訊息。示例性地,記錄Mark1的第一實際位置訊息為(pos_x1_0,pos_y1_0),Mark2的第一實際位置訊息為(pos_x2_0,pos_y2_0),依次記錄多個不同對準量測標記對的第一實際位置訊息為(pos_x3_0,pos_y3_0)、(pos_x4_0,pos_y4_0)......(pos_xN_0,pos_yN_0)。 Next, referring to FIG. 9(a), the substrate is adsorbed on the substrate adsorption stage of the optical device at a level of 0 degrees, and the first actual position information of the preset alignment measurement mark is measured in sequence. Exemplarily, record the first actual position information of Mark1 as ( pos_x 1_0, pos_y 1_0), and the first actual position information of Mark2 as ( pos_x 2_0, pos_y 2_0), and record the first An actual position message is ( pos_x 3_0, pos_y 3_0), ( pos_x 4_0, pos_y 4_0)......( pos_xN _0, pos_yN _0).

藉由Rotyn_0=(pos_yj_0-pos_yi_0)/(xj-xi),計算各個對準量測標記對對應的第一旋轉量Rotyn_0:Roty12_0=(pos_y2_0-pos_y1_0)/(x2-x1);Roty34_0=(pos_y4_0-pos_y3_0)/(x4-x3);......Roty(N-1)N_0=(pos_yN_0-pos_y(N-1)_0)/(xN-x(N-1));其中,N為偶數。根據得到的N/2個旋轉量及標準位置訊息中y的位置,線性擬合計算0度下的第一柵格旋轉度Rotyn_0:Rotyn_0=Kyn_0+dRotyn_0;其中,Rotyn_0取Roty12_0、Roty34_0、...或Roty(N-1)N_0;yn_0取(y1+y2)/2、(y3+y4)/2、...或(y(N-1)+yN)/2,dRotyn_0為擬合殘差;即根據: Roty12_0=K0×(y1+y2)/2+dRoty12_0;Roty34_0=K0×(y3+y4)/2+dRoty34_0;......Roty(N-1)N_0=K0×(y(N-1)+yN)/2+dRoty(N-1)N_0;藉由補償各自的擬合殘差,線性擬合得出0度時的第一柵格旋轉度K0。 With Rotyn _0=( pos_yj _0- pos_yi _0)/( xj-xi ), calculate the first rotation amount corresponding to each alignment measurement mark pair Rotyn _0: Roty 12_0=( pos_y 2_0- pos_y 1_0)/( x 2 -x 1); Roty 34_0=( pos_y 4_0- pos_y 3_0)/( x 4- x 3);...... Roty ( N -1) N _0=( pos_yN _0- pos_y ( N -1)_0 )/( xN-x ( N -1)); where N is an even number. According to the obtained N/2 rotations and the position of y in the standard position information, linearly calculate the rotation of the first grid at 0 degrees Rotyn _0: Rotyn _0 = Kyn _0+ dRotyn _0; where, Rotyn _0 Take Roty 12_0, Roty 34_0, ... or Roty ( N -1) N _0; yn _0 takes ( y 1+ y 2)/2, ( y 3+ y 4)/2, ... or ( y ( N -1)+ yN )/2, dRotyn _0 is the fitting residual; that is, according to: Roty 12_0= K 0×( y 1+ y 2)/2+ dRoty 12_0; Roty 34_0= K 0×( y 3+ y 4)/2+ dRoty 34_0;...... Roty ( N -1) N _0 = K 0×( y ( N -1)+ yN )/2+ dRoty ( N -1) N _0; borrow By compensating for the respective fitting residuals, the first grid rotation K0 at 0 degrees is obtained by linear fitting.

由於運動台柵格及測量基底自身的柵格都有可能存在旋轉度誤差,所以0度是得到的第一柵格旋轉度K0,是兩者旋轉度誤差的疊加:其中,K0=(K_ws_y+K_plate_y);K_ws_y為運動台的柵格旋轉度誤差,K_plate_y為測量基底自身的柵格旋轉度誤差。 Since the grid of the moving table and the grid of the measuring base may have rotation errors, 0 degrees is the obtained first grid rotation K0, which is the superposition of the rotation errors of the two: where K 0=( K_ws_y + K_plate_y ); K_ws_y is the grid rotation error of the motion table, and K_plate_y is the grid rotation error of the measurement substrate itself.

接著,參見圖9(b),使基底以180度水平吸附在光學設備的基底吸附台上,依次測量預設對準量測標記的第二實際位置訊息。示例性地,記錄Mark1的第二實際位置訊息為(pos_x1_180,pos_y1_180),Mark2的第二實際位置訊息為(pos_x2_180,pos_y2_180,依次記錄多個不同對準量測標記對的第二實際位置訊息為(pos_x3_180,pos_y3_180)、(pos_x4_180,pos_y4_180)......(pos_xN_180,pos_yN_180)。 Next, referring to FIG. 9(b), the substrate is adsorbed on the substrate adsorption stage of the optical device at 180 degrees, and the second actual position information of the preset alignment measurement mark is measured in sequence. Exemplarily, record the second actual position information of Mark1 as ( pos_x 1_180, pos_y 1_180), and the second actual position information of Mark2 as ( pos_x 2_180, pos_y 2_180, and record the second of multiple pairs of different alignment measurement marks in sequence The actual position information is ( pos_x 3_180, pos_y 3_180), ( pos_x 4_180, pos_y 4_180)......( pos_xN _180, pos_yN _180).

藉由Rotyn_180=(pos_yj_0-pos_yi_0)/(-xj+xi),計算各個對準量測標記對對應的第一旋轉量Rotyn_180:Roty12_180=(pos_y2_180-pos_y1_180)/(-x2+x1);Roty34_180=(pos_y4_180-pos_y3_180)/(-x4+x3);......Roty(N-1)N_180=(pos_yN_180-pos_y(N-1)_180)/(-xN+x(N-1));根據得到的N/2個旋轉量及標準位置訊息中y的位置,線性擬合計算180 度下的第二柵格旋轉度Rotyn_180:Rotyn_180=K180×yn_180+dRotyn_180;其中,Rotyn_180取Roty12_180、Roty34_180...或Roty(N-1)N_180;yn_180取-(y1+y2)/2、-(y3+y4)/2...或-(y(N-1)+yN)/2,dRotyn_180為擬合殘差;即根據:Roty12_180=-(y1+y2)/2×K180+dRoty12_180;Roty34_180=-(y3+y4)/2×K180+dRoty34_180;......Roty(N-1)N_180=-(y(N-1)+yN)/2×K180+dRoty(N-1)N_180;藉由補償各自的擬合殘差,線性擬合得出180度時的第二柵格旋轉度K180。 With Rotyn _180=( pos_yj _0- pos_yi _0)/(- xj + xi ), calculate the first rotation amount corresponding to each alignment measurement mark pair Rotyn _180: Roty 12_180=( pos_y 2_180- pos_y 1_180)/(- x 2+ x 1); Roty 34_180=( pos_y 4_180- pos_y 3_180)/(- x 4+ x 3);...... Roty ( N -1) N _180=( pos_yN _180- pos_y ( N- 1)_180)/(- xN + x ( N -1)); based on the obtained N/2 rotations and the position of y in the standard position information, linearly calculate the rotation degree of the second grid at 180 degrees Rotyn _180: Rotyn _180 = K 180× yn _180+ dRotyn _180; where, Rotyn _180 takes Roty 12_180, Roty 34_180... or Roty ( N -1) N _180; yn _180 takes -( y 1+ y 2)/2, -( y 3+ y 4)/2... or -( y ( N -1)+ yN )/2, dRotyn _180 is the fitting residual; that is, according to: Roty 12_180=-( y 1+ y 2) /2× K 180+ dRoty 12_180; Roty 34_180=-( y 3+ y 4)/2× K 180+ dRoty 34_180;...... Roty ( N -1) N _180=-( y ( N- 1)+ yN )/2× K 180+ dRoty ( N -1) N _180; By compensating the respective fitting residuals, the linear fitting can obtain the second grid rotation degree K180 at 180 degrees.

其中,K180=-(K_ws_y-K_plate_y)。 Among them, K 180=-( K_ws_y-K_plate_y ).

根據K0及K180可以得出基底載台Y向柵格旋轉度誤差K_ws_yK_ws_y=(K0-K180)/2。 According to K0 and K180, the Y-grid rotation error K_ws_y of the substrate stage can be obtained: K_ws_y = ( K 0- K 180)/2.

可以理解的是,測量基底載台X向柵格旋轉度誤差K_ws_x方法與上述實施例提供的測量方法類似,選用基底上X方向上兩行(或者多行)標記進行0度及180度測量校準,如圖9(c)及9(d)。 It can be understood that the method of measuring the rotation error K_ws_x of the X-grid of the substrate stage is similar to the measurement method provided in the above embodiment, and two lines (or multiple lines) of marks in the X direction on the substrate are selected for 0 degree and 180 degree measurement calibration , As shown in Figure 9(c) and 9(d).

本實施例提供的柵格誤差的測量方法,藉由計算基底以不同角度吸附在基底載台上的實際位置及標準位置訊息計算前述位置測量系統的柵格旋轉度誤差,計算方法簡單,可以對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確,且不需要採集運動台在不同姿態下(包含旋轉、 傾斜等)較大範圍的位置數據進行數學擬合計算,避免無法獲取多個自由度的相關性數據而使位置模型無法求解的情況。 The grid error measurement method provided in this embodiment calculates the grid rotation error of the position measurement system by calculating the actual position and standard position information of the substrate adsorbed on the substrate stage at different angles. The calculation method is simple and can be The measurement position of the position measurement system is calibrated, so that the final position measurement or movement position is accurate, and there is no need to collect the movement table in different postures (including rotation, (Tilt, etc.) Mathematical fitting calculation of a large range of position data to avoid the situation that the correlation data of multiple degrees of freedom cannot be obtained and the position model cannot be solved.

本發明實施例進一步提供另一種柵格誤差的測量方法。圖10是本發明實施例提供的另一種柵格誤差的測量方法的流程圖。參見圖10,當測量的柵格誤差為非正交性誤差時,該柵格誤差的測量方法包含步驟S310、步驟S320、步驟S331、步驟S332、以及步驟S333。 The embodiments of the present invention further provide another method for measuring grid errors. 10 is a flowchart of another grid error measurement method provided by an embodiment of the present invention. Referring to FIG. 10, when the measured grid error is a non-orthogonal error, the method for measuring the grid error includes step S310, step S320, step S331, step S332, and step S333.

在步驟S310中,藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息,其中,基底以第一角度水平吸附在光學設備的基底吸附台上,預設對準量測標記包含在第一方向上的至少一行對準量測標記以及在第二方向上的至少一列對準量測標記。 In step S310, the first actual position information of the preset alignment measurement mark on the substrate is acquired by the position measurement system in the optical device, wherein the substrate is horizontally adsorbed on the substrate adsorption table of the optical device at a first angle, It is assumed that the alignment measurement marks include at least one line of alignment measurement marks in the first direction and at least one column of alignment measurement marks in the second direction.

需要說明的是,由於非正交性誤差為載台在沿某一方向運動過程中,在與其垂直的方向中出現線性變化的偏移量。示例性地,運動台在沿Y向運動過程中有線性變化的X向偏移量,由於運動台柵格、測量基底自身柵格都有可能存在非正交性誤差,所以根據0度及90度測量結果,計算該非正交性誤差。 It should be noted that, since the non-orthogonality error is the offset of a linear change in the direction perpendicular to the stage during the movement of the stage in a certain direction. Exemplarily, the motion table has a linearly changing X-direction offset during the movement in the Y direction. Since the grid of the motion table and the grid of the measurement substrate may have non-orthogonal errors, according to 0 degrees and 90 Degree measurement results, calculate the non-orthogonality error.

在步驟S320中,藉由位置測量系統獲取預設對準量測標記的第二實際位置訊息,其中,基底以第二角度水平吸附在基底吸附台上,第一角度為0度,第二角度為90度。 In step S320, the second actual position information of the preset alignment measurement mark is acquired by the position measurement system, wherein the substrate is horizontally adsorbed on the substrate adsorption table at a second angle, the first angle is 0 degrees, the second angle 90 degrees.

在步驟S331中,擬合計算基底以0度水平吸附在基底吸附台上時測量柵格的第一非正交性誤差Orth_0。 In step S331, the fitting calculation calculates the first non-orthogonal error Orth_0 of the measurement grid when the substrate is adsorbed on the substrate adsorption stage at a level of 0 degrees.

pos_xm_0=Tx_0+xm×Sx_0-ym×Rzy_0+Res_xm_0;pos_ym_0=Ty_0+ym×Sy_0+xm×Rzx_0+Res_ym_0; Orth_0=Rzy_0-Rzx_0;其中,pos_xm_0為0度下預設對準量測標記中任一對準量測標記的第一實際位置訊息在第二方向上的座標值,pos_ym_0為0度下任一對準量測標記的第一實際位置訊息在第一方向上的座標值,xm為任一對準量測標記的標準位置訊息在第二方向上的座標值,ym為任一對準量測標記的標準位置訊息在第一方向上的座標值,Tx_0為0度下對準量測標記整體在第一方向上的平移,Ty_0為0度下對準量測標記整體在第二方向上的平移;Sx_0為0度下在第一方向上的縮放倍率,Sy_0為0度下在第二方向上的縮放倍率;Rzx_0表示0度下繞平行於第一方向的坐標軸的旋轉,Rzy_0表示0度下繞平行於第二方向的坐標軸的旋轉;Res_xm_0為0度下任一對準量測標記在第一方向上的位置殘差,Res_ym_0為0度下任一對準量測標記在第二方向上的位置殘差;在步驟S332中,擬合計算基底以90度水平吸附在基底吸附台上時測量柵格的第二非正交性誤差Orth_90。 pos_xm _0 = Tx _0 + xm × Sx _0- ym × Rzy _0 + Res_xm _0; pos_ym _0 = Ty _0 + ym × Sy _0 + xm × Rzx _0 + Res_ym _0; Orth _0 = Rzy _0- Rzx _0; wherein, pos_xm _0 is 0 degrees The coordinate value of the first actual position information of any alignment measurement mark in the second direction of the alignment measurement mark is preset, pos_ym _0 is the first actual position information of any alignment measurement mark at 0 degrees The coordinate value in the first direction, xm is the coordinate value of the standard position information of any alignment measurement mark in the second direction, and ym is the coordinate of the standard position information of any alignment measurement mark in the first direction Value, Tx _0 is the translation of the entire alignment measurement mark at 0 degrees in the first direction, Ty _0 is the translation of the overall alignment measurement mark at 0 degrees in the second direction; Sx _0 is the first translation at 0 degrees The zoom magnification in one direction, Sy _0 is the zoom magnification in the second direction at 0 degrees; Rzx _0 represents the rotation around the coordinate axis parallel to the first direction at 0 degrees, Rzy _0 represents the parallel rotation at 0 degrees The rotation of the coordinate axis in two directions; Res_xm _0 is the positional residual of any alignment measurement mark in the first direction at 0 degrees, Res_ym _0 is the alignment measurement mark in the second direction of 0 degrees Position residual; in step S332, fitting and calculating the second non-orthogonal error Orth _90 of the measurement grid when the substrate is adsorbed on the substrate adsorption stage at a 90-degree level.

pos_xm_90=Tx_90+xm×Sx_90-ym×Rzy_90+Res_xm_90;pos_ym_90=Ty_90+ym×Sy_90+xm×Rzx_90+Res_ym_90;Orth_90=Rzy_90-Rzx_90;其中,pos_xm_90為90度下任一對準量測標記的第二實際位置訊息在第二方向上的座標值,pos_ym_90為90度下任一對準量測標記的第二實際位置訊息在第一方向上的座標值,Tx_90為90度下對準量測標記整體在第一方向上的平移,Ty_90為90度下對準量測標記整體在第二方向上的平移;Sx_90為90度下在第一方向上的縮放倍率,Sy_90為90度下在第二方向上的縮放倍率;Rzx_90表示90度下繞平行於第一方向的坐標軸的旋轉,Rzy_90表示90度下繞 平行於第二方向的坐標軸的旋轉;Res_xm_90為90度下任一對準量測標記在第一方向上的位置殘差,Res_ym_90為90度下任一對準量測標記在第二方向上的位置殘差。 pos_xm _90 = Tx _90 + xm × Sx _90- ym × Rzy _90 + Res_xm _90; pos_ym _90 = Ty _90 + ym × Sy _90 + xm × Rzx _90 + Res_ym _90; Orth _90 = Rzy _90- Rzx_ 90; wherein, pos_xm _90 to 90 ° The coordinate value of the second actual position information of any alignment measurement mark in the second direction, pos_ym _90 is the coordinate value of the second actual position information of any alignment measurement mark in the first direction at 90 degrees, Tx _90 is the translation of the entire alignment measurement mark at 90 degrees in the first direction, Ty _90 is the translation of the overall alignment measurement mark at 90 degrees in the second direction; Sx _90 is the first direction at 90 degrees Upward zoom magnification, Sy _90 is the zoom magnification in the second direction at 90 degrees; Rzx _90 indicates rotation around the coordinate axis parallel to the first direction at 90 degrees, Rzy _90 indicates parallel to the second direction at 90 degrees The rotation of the coordinate axis; Res_xm _90 is the position residual of any alignment measurement mark in the first direction at 90 degrees, Res_ym _90 is the position residual of any alignment measurement mark in the second direction at 90 degrees difference.

在步驟S333中,根據第一非正交性誤差及第二非正交性誤差計算位置測量系統的柵格非正交性誤差Orth_wsIn step S333, the grid non-orthogonal error Orth_ws of the position measurement system is calculated based on the first non-orthogonal error and the second non-orthogonal error.

Orth_ws=(Orth_0+Orth_90)/2。 Orth_ws = ( Orth _0+ Orth _90)/2.

圖11是本發明實施例提供的一種非正交性誤差的示意圖。參見圖11,例如,以第一方向為X向,第二方向為Y向為例,藉由上述柵格誤差測量方法測量柵格非正交性誤差。 FIG. 11 is a schematic diagram of a non-orthogonality error provided by an embodiment of the present invention. Referring to FIG. 11, for example, taking the first direction as the X direction and the second direction as the Y direction as an example, the grid non-orthogonal error is measured by the above grid error measurement method.

首先,選擇一行一列(或多行多列)對準量測標記為預設對準量測標記,可以提前記錄各個預設對準量測標記的標準位置訊息,例如,記錄Mark1的標準位置訊息為(x1,y1),Mark2的標準位置訊息為(x2,y2),依次記錄多個不同對準量測標記對的標準位置訊息為(x3,y3)、(x4,y4)......(xM,yM)。 First, select the alignment measurement marks of one row and one column (or multiple rows and multiple columns) as the default alignment measurement marks. You can record the standard position information of each preset alignment measurement mark in advance, for example, record the standard position information of Mark1 Is (x1, y1), the standard position information of Mark2 is (x2, y2), and the standard position information of multiple pairs of different alignment measurement marks are recorded in sequence (x3, y3), (x4, y4)... .. (xM, yM).

其次,參見圖11(a),使基底以0度水平吸附在光學設備的基底吸附台上,依次測量預設對準量測標記的第一實際位置訊息。示例性地,記錄Mark1的第一實際位置訊息為(pos_x1_0,pos_y1_0),Mark2的第一實際位置訊息為(pos_x2_0,pos_y2_0),依次記錄多個不同對準量測標記對的第一實際位置訊息為(pos_x3_0,pos_y3_0)、(pos_x4_0,pos_y4_0)......及(pos_xM_0,pos_yM_0)。 Next, referring to FIG. 11(a), the substrate is adsorbed on the substrate adsorption stage of the optical device at a 0 degree level, and the first actual position information of the preset alignment measurement mark is measured in sequence. Exemplarily, record the first actual position information of Mark1 as ( pos_x 1_0, pos_y 1_0), and the first actual position information of Mark2 as ( pos_x 2_0, pos_y 2_0), and record the first An actual position message is ( pos_x 3_0, pos_y 3_0), ( pos_x 4_0, pos_y 4_0)... and ( pos_xM _0, pos_yM _0).

根據得到的M個預設對準量測標記的第一實際位置訊息及標準位置訊息,擬合計算0度下測量柵格的第一非正交性誤差Orth_0: pos_x1_0=Tx_0+xSx_0-yRzy_0+Res_x1_0;pos_y1_0=Ty_0+ySy_0+xRzx_0+Res_y1_0;pos_x2_0=Tx_0+xSx_0-yRzy_0+Res_x2_0;pos_y2_0=Ty_0+ySy_0+xRzx_0+Res_y2_0;......pos_xm_0=Tx_0+xm×Sx_0-ym×Rzy_0+Res_xm_0;pos_ym_0=Ty_0+ym×Sy_0+xm×Rzx_0+Res_ym_0;根據上述多個公式進行擬合,得出Rzx_0及Rzy_0,並得到第一非正交性誤差Orth_0:Orth_0=Rzy_0-Rzx_0。 Based on the obtained first actual position information and standard position information of the M preset alignment measurement marks, fitting and calculating the first non-orthogonal error of the measurement grid at 0 degrees Orth _0: pos_x 1_0= Tx _0+ x 1 × Sx _0- yRzy _0+ Res _ x 1_0; pos_y 1_0= Ty _0+ ySy _0+ xRzx _0+ Res _ y 1_0; pos_x 2_0= Tx _0+ xSx _0- yRzy _0 Res _ x 2_0; pos_y 2_0 = Ty _0+ ySy _0+ xRzx _0+ Res _ y 2_0; ... pos_xm _0= Tx _0+ xm × Sx _0- ym × Rzy _0+ Res_xm _0; pos_ym _0 = Ty _0+ ym × Sy _0+ xm × Rzx _0+ Res_ym _0; fitting according to the above multiple formulas to get Rzx _0 and Rzy _0, and get the first non-orthogonal error Orth _0: Orth _0= Rzy _0- Rzx _0.

由於運動台柵格、測量基底自身柵格都有可能存在非正交性誤差,所以0度時得到的第一非正交性誤差Orth_0是兩者非正交性誤差的疊加:Orth_0=(Orth_ws+Orth_plate),Orth_ws為運動台的柵格非正交性誤差,Orth_plate為測量基底自身的柵格非正交性誤差。 Since the grid of the moving table and the grid of the measuring base may have non-orthogonal errors, the first non-orthogonal error Orth _0 obtained at 0 degrees is the superposition of the non-orthogonal errors of the two: Orth _0= ( Orth_ws + Orth_plate ), Orth_ws is the grid non-orthogonal error of the motion table, Orth _ plate is the grid non-orthogonal error of the measurement substrate itself.

接著,參見圖11(b),使基底以90度水平吸附在光學設備的基底吸附台上,依次測量預設對準量測標記的第二實際位置訊息。示例性地,記錄Mark1的第二實際位置訊息為(pos_x1_90,pos_y1_90),Mark2的第二實際位置訊息為(pos_x2_90,pos_y2_90),依次記錄多個不同對準量測標記對的第二實際位置訊息為(pos_x3_90,pos_y3_90)、(pos_x4_90,pos_y4_90)......(pos_xM_90,pos_yM_90)。 Next, referring to FIG. 11(b), the substrate is adsorbed on the substrate adsorption stage of the optical device at a 90-degree level, and the second actual position information of the preset alignment measurement mark is measured in sequence. Exemplarily, record the second actual position information of Mark1 as ( pos_x 1_90, pos_y 1_90), and the second actual position information of Mark2 as ( pos_x 2_90, pos_y 2_90), and record the first The second actual position information is ( pos_x 3_90, pos_y 3_90), ( pos_x 4_90, pos_y 4_90)......( pos_xM _90 , pos_yM _90 ).

根據得到的M個第二實際位置訊息及標準位置訊息,擬合計算90度下測量柵格的第二非正交性誤差Orth_90:pos_x1_90=Tx_90+xSx_90-yRzy_90+Res_x1_90; pos_y1_90=Ty_90+ySy_90+xRzx_90+Res_y1_90;pos_x2_90=Tx_90+xSx_90-yRzy_90+Res_x2_90;pos_y2_90=Ty_90+ySy_90+xRzx_90+Res_y2_90;......pos_xm_90=Tx_90+xm×Sx_90-ym×Rzy_90+Res_xm_90;pos_ym_90=Ty_90+ym×Sy_90+xm×Rzx_90+Res_ym_90;根據上述多個公式進行擬合,得出Rzy_90及Rzx_90,並得出第二非正交性誤差Orth_90:Orth_90=Rzy_90-Rzx_90。 Based on the obtained M second actual position information and standard position information, fitting and calculating the second non-orthogonal error Orth _90 of the measurement grid at 90 degrees: pos_x 1_90= Tx _90+ xSx _90- yRzy _90 + Res_x 1_90; pos_y 1_90 = Ty _90+ ySy _90 + xRzx_ 90+ Res _ y 1_90; pos_x 2_90= Tx _90+ xSx _90- yRzy_ 90+ Res _ x 2_90; pos_y 2_90 Ty _90+ ySy _90 + xRzx _90 + Res _ y 2_90;...... pos_xm _90 = Tx _90 + xm × Sx _90- ym × Rzy _90 + Res_xm _90 ; pos_ym _90 = Ty _90 + ym × Sy _90+ xm × Rzx _90 + Res_ym _90 ; fitting according to the above multiple formulas to obtain Rzy _90 and Rzx _90 , and the second non-orthogonality error Orth _90 : Orth _90 = Rzy _90- Rzx _90 .

根據Orth_0及Orth_90計算位置測量系統的柵格非正交性誤差Orth_wsOrth_ws=(Orth_0+Orth_90)/2。 Calculate the grid non-orthogonal error Orth_ws of the position measurement system according to Orth _0 and Orth _90 : Orth_ws = ( Orth _0+ Orth _90)/2.

本實施例提供的柵格誤差的測量方法,藉由計算基底以不同角度吸附在基底載台上的實際位置及標準位置訊息計算前述位置測量系統的柵格非正交性誤差,計算方法簡單,可以對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確,且不需要採集運動台在不同姿態下(包含旋轉、傾斜等)較大範圍的位置數據進行數學擬合計算,避免無法獲取多個自由度的相關性數據而使位置模型無法求解的情況。 The grid error measurement method provided in this embodiment calculates the grid non-orthogonal error of the position measurement system by calculating the actual position and standard position information of the substrate adsorbed on the substrate stage at different angles. The calculation method is simple. The measurement position of the position measurement system can be calibrated to make the final position measurement or movement position accurate, and there is no need to collect a large range of position data of the sports table in different postures (including rotation, tilt, etc.) for mathematical fitting calculation, Avoid situations where the correlation data of multiple degrees of freedom cannot be obtained and the position model cannot be solved.

本發明實施例進一步提供另一種柵格誤差的測量方法。圖12是本發明實施例提供的另一種柵格誤差的測量方法的流程圖。參見圖12,當測量的柵格誤差為平移誤差時,該柵格誤差的測量方法包含步驟S410、步驟S420、步驟S431、步驟S432,以及步驟S433。 The embodiments of the present invention further provide another method for measuring grid errors. FIG. 12 is a flowchart of another grid error measurement method provided by an embodiment of the present invention. Referring to FIG. 12, when the measured grid error is a translation error, the grid error measurement method includes steps S410, S420, S431, S432, and S433.

在步驟S410中,藉由光學設備中的位置測量系統獲取基底上預 設對準量測標記的第一實際位置訊息,其中,基底以第一角度水平吸附在光學設備的基底吸附台上,預設對準量測標記包含在第二方向上的至少一列對準量測標記。 In step S410, the position measurement system in the optical device The first actual position information of the alignment measurement mark is set, wherein the substrate is horizontally adsorbed on the substrate adsorption table of the optical device at a first angle, and the preset alignment measurement mark includes at least one row of alignment amounts in the second direction测lagging.

在步驟S420中,藉由位置測量系統獲取預設對準量測標記的第二實際位置訊息,其中,基底以第二角度水平吸附在基底吸附台上,第一角度為0度,第二角度為180度。 In step S420, the second actual position information of the preset alignment measurement mark is acquired by the position measurement system, wherein the substrate is horizontally adsorbed on the substrate adsorption table at a second angle, the first angle is 0 degrees, the second angle 180 degrees.

在步驟S431中,擬合計算基底以0度水平吸附在基底吸附台上時測量柵格的第一平移誤差Res_xp_0。 In step S431, the fitting calculates the first translation error Res_xp _0 of the measurement grid when the substrate is adsorbed on the substrate adsorption stage at a 0-degree level.

pos_xp_0=Tx_0+xp×Sx_0-yp×Rzy_0+Res_xp_0;其中,pos_xp_0為0度下預設對準量測標記中任一對準量測標記的第一實際位置訊息在第二方向上的座標值,xp為任一對準量測標記的標準位置訊息在第二方向上的座標值,yp為任一對準量測標記的標準位置訊息在第一方向上的座標值,Tx_0為0度下對準量測標記整體在第一方向上的平移,Sx_0為0度下在第一方向上的縮放倍率,Rzy_0表示0度下繞平行於第二方向的坐標軸的旋轉;在步驟S432中,擬合計算基底以前述180度水平吸附在基底吸附台上時測量柵格的第二平移誤差Res_xp_180。 pos_xp _0= Tx _0+ xp × Sx _0- yp × Rzy _0+ Res_xp _0; where pos_xp _0 is the preset alignment measurement mark at 0 degrees, the first actual position information of any alignment measurement mark is in the second direction Xp is the coordinate value of the standard position information of any alignment measurement mark in the second direction, yp is the coordinate value of the standard position information of any alignment measurement mark in the first direction, Tx _0 is the translation of the entire alignment measurement mark in the first direction at 0 degrees, Sx _0 is the zoom magnification in the first direction at 0 degrees, Rzy _0 indicates the rotation around the coordinate axis parallel to the second direction at 0 degrees Rotation; in step S432, the fitting calculates the second translation error Res_xp_180 of the measurement grid when the substrate is adsorbed on the substrate adsorption table at the aforementioned 180 degree level.

pos_xp_180=Tx_180+xp×Sx_180-yp×Rzy_180+Res_xp_180;其中,pos_xp_180為180度下任一對準量測標記的第二實際位置訊息在第二方向上的座標值,Tx_180為180度下對準量測標記整體在第一方向上的平移,Sx_180為180度下在第一方向上的縮放倍率,Rzy_180表示180度下繞平行於第二方向的坐標軸的旋轉。 pos_xp _180= Tx _180+ xp × Sx _180- yp × Rzy _180+ Res_xp _180; where pos_xp _180 is the coordinate value of the second actual position information of any alignment measurement mark at 180 degrees in the second direction, Tx _180 is measured at 180 degrees integrally aligned in the first direction translating the mark, Sx _180 is a magnification in a first direction at 180 degrees, Rzy _180 represents a rotation about the axis 180 parallel to the second direction.

在步驟S433中,根據第一平移誤差及第二平移誤差計算位置測 量系統相對於任一對準量測標記的第一方向的柵格平移誤差Res_xp_psIn step S433, the grid translation error Res_xp_ps in the first direction of the position measurement system relative to any alignment measurement mark is calculated based on the first translation error and the second translation error.

Res_xp_ps=(Res_xp_0+Res_xp_180)/2。 Res_xp_ps = ( Res_xp _0+ Res_xp _180)/2.

圖13是本發明實施例提供的一種平移誤差的示意圖。參見圖13,例如,以第一方向為X向,第二方向為Y向為例,藉由上述柵格誤差測量方法測量X向柵格平移誤差。 13 is a schematic diagram of a translation error provided by an embodiment of the present invention. Referring to FIG. 13, for example, taking the first direction as the X direction and the second direction as the Y direction as an example, the X-direction grid translation error is measured by the above-mentioned grid error measurement method.

首先,選擇一列(或多列)對準量測標記為預設對準量測標記,如圖13(a),可以提前記錄各個預設對準量測標記的標準位置訊息,例如,記錄Mark1的標準位置訊息為(x1,y1),Mark2的標準位置訊息為(x2,y2),依次記錄多個不同對準量測標記對的標準位置訊息為(x3,y3)、(x4,y4)......(xP,yP)。 First, select one row (or multiple rows) of alignment measurement marks as preset alignment measurement marks, as shown in FIG. 13(a), you can record the standard position information of each preset alignment measurement mark in advance, for example, record Mark1 The standard position information is (x1, y1), the standard position information of Mark2 is (x2, y2), and the standard position information of multiple pairs of different alignment measurement marks are sequentially recorded as (x3, y3), (x4, y4) ...(xP, yP).

其次,參見圖13(a),使基底以0度水平吸附在光學設備的基底吸附台上,依次測量預設對準量測標記的第一實際位置訊息。示例性地,記錄Mark1的第一實際位置訊息為(pos_x1_0,pos_y1_0),Mark2的第一實際位置訊息為(pos_x2_0,pos_y2_0),依次記錄多個不同對準量測標記對的第一實際位置訊息為(pos_x3_0,pos_y3_0)、(pos_x4_0,pos_y4_0)......及(pos_xP_0,pos_yP_0)。 Next, referring to FIG. 13(a), the substrate is adsorbed on the substrate adsorption table of the optical device at a level of 0 degrees, and the first actual position information of the preset alignment measurement mark is measured in sequence. Exemplarily, record the first actual position information of Mark1 as ( pos_x 1_0, pos_y 1_0), and the first actual position information of Mark2 as ( pos_x 2_0, pos_y 2_0), and record the first An actual position message is ( pos_x 3_0, pos_y 3_0), ( pos_x 4_0, pos_y 4_0)... and ( pos_xP _0, pos_yP _0).

根據得到的P個預設對準量測標記的第一實際位置訊息及標準位置訊息,擬合計算0度下測量柵格的第一平移誤差Res_xp_0:pos_x1_0=Tx_0+xSx_0-yRzy_0+Res_x1_0;pos_x2_0=Tx_0+xSx_0-yRzy_0+Res_x2_0;......pos_xp_0=Tx_0+xp×Sx_0-yp×Rzy_0+Res_xp_0; 其中,Res_xp_0為X向的位置殘差,即在0度下測量柵格的X向的第一平移殘差。 Based on the obtained first actual position information and standard position information of the P preset alignment measurement marks, fit and calculate the first translation error of the measurement grid at 0 degrees Res_xp _0: pos_x 1_0= Tx _0+ xSx _0 -yRzy _0+ Res_x 1_0; pos_x 2_0= Tx _0+ xSx _0- yRzy _0+ Res_x 2_0; ... pos_xp _0= Tx _0+ xp × Sx _0- yp × Rzy _0+ Res_xp _0 ; Where Res_xp _0 is the position residual in the X direction, that is, the first translation residual in the X direction of the measurement grid at 0 degrees.

由於運動台、測量基底自身都有可能存在柵格平移誤差,所以第一平移殘差Res_xp_0是兩者柵格平移誤差的疊加;Res_xp_0=Res_xp_ws+Res_xp_plate;其中,Res_xp_ps為運動台在p點處柵格的X平移殘差,Res_xp_plate為基底自身在p點處柵格的X平移殘差。 Since the motion table and the measurement base itself may have grid translation errors, the first translation residual Res_xp _0 is the superposition of the grid translation errors of the two; Res_xp _0 = Res_xp_ws + Res_xp_plate ; where, Res_xp_ps is the motion table at point p The X translation residual of the grid at Res_xp_plate is the X translation residual of the grid at point p of the substrate itself.

接著,參見圖13(b),使基底以180度水平吸附在光學設備的基底吸附台上,依次測量預設對準量測標記的第二實際位置訊息。示例性地,記錄Mark1的第二實際位置訊息為(pos_x1_180,pos_y1_180),Mark2的第二實際位置訊息為(pos_x2_180,pos_y2_180),依次記錄多個不同對準量測標記對的第二實際位置訊息為(pos_x3_180,pos_y3_180)、(pos_x4_180,pos_y4_180)......(pos_xN_180,pos_yN_180)。 Next, referring to FIG. 13(b), the substrate is adsorbed on the substrate adsorption stage of the optical device at 180 degrees, and the second actual position information of the preset alignment measurement mark is measured in sequence. Exemplarily, record the second actual position information of Mark1 as ( pos_x 1_180, pos_y 1_180), and the second actual position information of Mark2 as ( pos_x 2_180, pos_y 2_180), and record the first The second actual position information is ( pos_x 3_180, pos_y 3_180), ( pos_x 4_180, pos_y 4_180)......( pos_xN _180, pos_yN _180).

根據得到的P個預設對準量測標記的第二實際位置訊息及標準位置訊息,擬合計算0度下測量柵格的第二平移誤差Res_xp_180:pos_x1_180=Tx_180+xSx_180-yRzy_180+Res_x1_180;pos_x2_180=Tx_180+xSx_180-yRzy_180+Res_x2_180;......pos_xp_180=Tx_180+xp×Sx_180-yp×Rzy_180+Res_xp_180;其中,Res_xp_180為X向的位置殘差,即在180度下測量柵格的X向第二平移殘差。 Based on the obtained second actual position information and standard position information of the P preset alignment measurement marks, fit and calculate the second translation error Res_xp _180 of the measurement grid at 0 degrees: pos_x 1_180= Tx _180+ xSx_ 180 -yRzy _180+ Res_x 1_180; pos_x 2_180= Tx _180+ xSx _180- yRzy _180+ Res_x 2_180;...... pos_xp _180= Tx _180+ xp × Sx _180- yp × Rzy _180+ Res_xp _180 ; wherein, Res_xp _180 X to the position residuals, i.e. the measuring grid at 180 X of the second translation residuals.

其中,Res_xp_180=Res_xp_ws-Res_xp_plateAmong them, Res_xp _180= Res_xp_ws - Res_xp_plate .

根據Res_xp_0及Res_xp_180可以得出基底載台X向柵格平移誤差。 According to Res_xp _0 and Res_xp _180, the translation error of the substrate stage in the X direction grid can be obtained.

Res_xp_ps=(Res_xp_0+Res_xp_180)/2。 Res_xp_ps = ( Res_xp _0+ Res_xp _180)/2.

可以理解的是,測量基底載台Y向柵格平移誤差Res_yp_ps方法與上述實施例提供的測量方法類似,選用基底上Y方向上一列(或者多列)標記進行0度及180度測量校準,如圖13(c)及13(d)。 It can be understood that the method of measuring the translation error of the Y-grid of the substrate stage Res_yp_ps is similar to the measurement method provided in the above embodiment, and a column (or multiple columns) of markers on the substrate in the Y direction are used for the measurement and calibration of 0 degrees and 180 degrees, such as Figures 13(c) and 13(d).

本實施例提供的柵格誤差的測量方法,藉由計算基底以不同角度吸附在基底載台上的實際位置及標準位置訊息計算前述位置測量系統的柵格平移誤差,計算方法簡單,可以對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確,且不需要採集運動台在不同姿態下(包含旋轉、傾斜等)較大範圍的位置數據進行數學擬合計算,避免無法獲取多個自由度的相關性數據而使位置模型無法求解的情況。 The grid error measurement method provided in this embodiment calculates the grid translation error of the position measurement system by calculating the actual position and standard position information of the substrate adsorbed on the substrate stage at different angles. The measurement position of the measurement system is calibrated, so that the final position measurement or movement position is accurate, and there is no need to collect a large range of position data of the movement table in different postures (including rotation, tilt, etc.) for mathematical fitting calculation, to avoid being unable to obtain The situation that the correlation data of multiple degrees of freedom prevents the position model from being solved.

為了採用上述實施例提供的柵格誤差測量方法測量位置測量系統中的柵格誤差。本發明實施例進一步提供一種柵格誤差的測量裝置。 In order to measure the grid error in the position measurement system using the grid error measurement method provided in the above embodiment. The embodiment of the invention further provides a grid error measuring device.

圖14是本發明實施例提供的一種柵格誤差的測量裝置的結構框圖。如圖14所示,該柵格誤差的測量裝置包含:第一實際位置訊息模組51,設置為藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息,其中,基底上設置有多個沿第一方向及第二方向呈陣列排布的對準量測標記,形成測量柵格,基底以第一角度水平吸附在光學設備的基底吸附台上,第一方向及第二方向相垂直;第二實際位置訊息獲取模組52,設置為藉由位置測量系統獲取預設對準量測標記的第二實際位置訊息,其中,基底以第二角度水平吸附在基底吸附台上,第二角度不同於第一角度;柵格誤差計算模 組53,設置為根據第一實際位置訊息、第二實際位置訊息及預設對準量測標記的標準位置訊息計算位置測量系統的柵格誤差。 14 is a structural block diagram of a grid error measurement device provided by an embodiment of the present invention. As shown in FIG. 14, the grid error measuring device includes: a first actual position information module 51, which is configured to acquire the first actual position of the preset alignment measurement mark on the substrate by the position measuring system in the optical device Message, wherein the substrate is provided with a plurality of alignment measurement marks arranged in an array along the first direction and the second direction to form a measurement grid, and the substrate is horizontally adsorbed on the substrate adsorption table of the optical device at a first angle, The first direction and the second direction are perpendicular; the second actual position information acquisition module 52 is set to acquire the second actual position information of the preset alignment measurement mark by the position measurement system, wherein the substrate is horizontal at the second angle Adsorbed on the substrate adsorption table, the second angle is different from the first angle; grid error calculation mode Group 53 is set to calculate the grid error of the position measurement system based on the first actual position information, the second actual position information, and the standard position information of the preset alignment measurement mark.

在一實施例中,第一方向平行於預設坐標系中的X軸,第二方向平行於預設坐標系中的Y軸;或者,第一方向平行於預設坐標系中的Y軸,第二方向平行於前述預設坐標系中的X軸。 In an embodiment, the first direction is parallel to the X axis in the preset coordinate system, and the second direction is parallel to the Y axis in the preset coordinate system; or, the first direction is parallel to the Y axis in the preset coordinate system, The second direction is parallel to the X axis in the aforementioned preset coordinate system.

該柵格誤差測量裝置可以藉由上述實施例中的柵格誤差測量方法測量位置測量系統中的不同種類的柵格誤差,藉由將基底以不同的吸附角度吸附在基底吸附台上,並獲取預設對準量測標記在不同吸附角度下的實際位置訊息,計算得到位置測量系統的柵格誤差,計算方法簡單,可以對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確,且不需要採集運動台在不同姿態下(包含旋轉、傾斜等)較大範圍的位置數據進行數學擬合計算,避免無法獲取多個自由度的相關性數據而使位置模型無法求解的情況。 The grid error measurement device can measure different types of grid errors in the position measurement system by the grid error measurement method in the above embodiment, by adsorbing the substrate on the substrate adsorption table at different adsorption angles, and obtaining Preset the actual position information of the alignment measurement marks at different adsorption angles, and calculate the grid error of the position measurement system. The calculation method is simple. The measurement position of the position measurement system can be calibrated to make the final position measurement or movement position. Accurate, and does not need to collect a large range of position data of the motion table in different poses (including rotation, tilt, etc.) for mathematical fitting calculation, to avoid the situation that the correlation data of multiple degrees of freedom cannot be obtained and the position model cannot be solved .

在一實施例中,預設對準量測標記包含在前述第二方向上的至少兩列前述對準量測標記,前述第一角度為0度,前述第二角度為180度。 In one embodiment, the preset alignment measurement mark includes at least two rows of the alignment measurement mark in the second direction, the first angle is 0 degrees, and the second angle is 180 degrees.

柵格誤差計算模組包含第一柵格旋轉度確定單元,第二柵格旋轉度確定單元以及柵格旋轉度誤差計算單元。 The grid error calculation module includes a first grid rotation degree determination unit, a second grid rotation degree determination unit, and a grid rotation degree error calculation unit.

第一柵格旋轉度確定單元,設置為根據第一實際位置訊息及預設對準量測標記的標準位置訊息,確定基底以0度水平吸附在基底吸附台上時測量柵格的第一柵格旋轉度。 The first grid rotation degree determining unit is set to determine the first grid of the measuring grid when the substrate is adsorbed on the substrate adsorption table at a 0 degree level according to the first actual position information and the standard position information of the preset alignment measurement mark Grid rotation.

第二柵格旋轉度確定單元,設置為根據第二實際位置訊息及預設對準量測標記的標準位置訊息,確定基底以180度水平吸附在基底吸附台上時測量柵格的第二柵格旋轉度。 The second grid rotation degree determining unit is configured to determine the second grid of the measuring grid when the substrate is adsorbed on the substrate adsorption table at a 180-degree level according to the second actual position information and the standard position information of the preset alignment measurement mark Grid rotation.

柵格旋轉度誤差計算單元,設置為根據第一柵格旋轉度及第二柵格旋轉度計算位置測量系統的第二方向的柵格旋轉度誤差。 The grid rotation degree error calculation unit is configured to calculate the grid rotation degree error in the second direction of the position measurement system according to the first grid rotation degree and the second grid rotation degree.

在一實施例中,第一柵格旋轉度確定單元包含第一旋轉量計算子單元及第一柵格旋轉度擬合子單元。 In an embodiment, the first grid rotation degree determination unit includes a first rotation amount calculation subunit and a first grid rotation degree fitting subunit.

第一旋轉量計算子單元,設置為根據對準量測標記對的第一實際位置訊息及標準位置訊息,計算對準量測標記對的第一旋轉量,其中,對準量測標記對包含在第一方向上的位於同一行的兩個前述對準量測標記,任一前述第一旋轉量Rotyn_0滿足:Rotyn_0=(pos_yj_0-pos_yi_0)/(xj-xi),pos_yi_0為0度下前述對準量測標記對中第一對準量測標記的第一實際位置訊息在第一方向上的座標值,pos_yj_0為0度下對準量測標記對中第二對準量測標記的第一實際位置訊息在第一方向上的座標值,xi為第一對準量測標記的標準位置訊息在第二方向上的座標值,xj為第二對準量測標記的標準位置訊息在第二方向上的座標值。 The first rotation amount calculation subunit is configured to calculate the first rotation amount of the alignment measurement mark pair based on the first actual position information and the standard position information of the alignment measurement mark pair, wherein the alignment measurement mark pair includes The two aforementioned alignment measurement marks on the same line in the first direction, any of the aforementioned first rotation amounts Rotyn _0 satisfies: Rotyn _0=( pos_yj _0- pos_yi _0)/( xj-xi ), pos_yi _0 is The coordinate value of the first actual position information of the first alignment measurement mark in the aforementioned alignment measurement mark pair at 0 degrees in the first direction, pos_yj _0 is the second alignment of the alignment measurement mark pair at 0 degrees The coordinate value of the first actual position information of the measurement mark in the first direction, xi is the coordinate value of the standard position information of the first alignment measurement mark in the second direction, and xj is the coordinate value of the second alignment measurement mark The coordinate value of the standard position information in the second direction.

第一柵格旋轉度擬合子單元,設置為根據多個不同對準量測標記對的第一旋轉量及標準位置訊息,線性擬合計算出第一柵格旋轉度,其中,線性擬合公式滿足:Rotyn_0=K0×(yi+yj)/2+dRotyn_0,K0為前述第一柵格旋轉度,yi為第一對準量測標記的標準位置訊息在第一方向上的座標值,yj為第二對準量測標記的標準位置訊息在第一方向上的座標值,dRotyn_0為0度下的擬合殘差。 The first grid rotation degree fitting sub-unit is set to calculate the first grid rotation degree based on the first rotation amount and standard position information of a plurality of different alignment measurement mark pairs, wherein the linear fitting formula Satisfy: Rotyn _0 = K 0×( yi + yj )/2+ dRotyn _0, K0 is the aforementioned first grid rotation degree, yi is the coordinate value of the standard position information of the first alignment measurement mark in the first direction , Yj is the coordinate value of the standard position information of the second alignment measurement mark in the first direction, dRotyn _0 is the fitting residual at 0 degrees.

第二柵格旋轉度確定單元包含第二旋轉量計算子單元及第二柵格旋轉度擬合子單元。 The second grid rotation degree determination unit includes a second rotation amount calculation subunit and a second grid rotation degree fitting subunit.

第二旋轉量計算子單元,設置為根據對準量測標記對的第二實 際位置訊息及標準位置訊息,計算對準量測標記對的第二旋轉量,任一第二旋轉量Rotyn_180滿足:Rotyn_180=(pos_yj_180-pos_yi_180)/(-xj+xi),pos_yi_180為180度下前述對準量測標記對中第一對準量測標記的第一實際位置訊息在第一方向上的座標值,pos_yj_180為180度下對準量測標記對中第二對準量測標記的第一實際位置訊息在第一方向上的座標值。 The second rotation amount calculation sub-unit is configured to calculate the second rotation amount of the alignment measurement mark pair based on the second actual position information and the standard position information of the alignment measurement mark pair, and any second rotation amount Rotyn _180 satisfies : Rotyn _180=( pos_yj _180- pos_yi _180)/(- xj + xi ), pos_yi _180 is the first actual position information of the first alignment measurement mark in the aforementioned alignment measurement mark pair at 180 degrees on the first side The upward coordinate value, pos_yj_180 is the coordinate value of the first actual position information of the second alignment measurement mark in the alignment measurement mark pair at 180 degrees in the first direction.

第二柵格旋轉度擬合子單元,設置為根據多個不同對準量測標記對的第二旋轉量及標準位置訊息,線性擬合計算出前述第二柵格旋轉度,其中,線性擬合公式滿足:Rotyn_180=K180×(-yi-yj)/2+dRotyn_180,K180為第二柵格旋轉度,dRotyn_180為180度下的擬合殘差。 The second grid rotation degree fitting subunit is configured to calculate the aforementioned second grid rotation degree according to the second rotation amount and standard position information of a plurality of different alignment measurement mark pairs, wherein, the linear fitting The formula satisfies: Rotyn _180 = K 180×(- yi-yj )/2+ dRotyn_ 180, K180 is the rotation degree of the second grid, and dRotyn_180 is the fitting residual at 180 degrees.

相應的,根據第一柵格旋轉度及第二柵格旋轉度計算位置測量系統的第二方向的柵格旋轉度誤差K_ws_z滿足以下公式:K_ws_z=(K0-K180)/2。 Correspondingly, the grid rotation error K _ ws_z in the second direction of the position measurement system is calculated according to the first grid rotation and the second grid rotation to satisfy the following formula: K _ ws_z = ( K 0- K 180)/ 2.

在一實施例中,預設對準量測標記包含在第一方向上的至少一行對準量測標記以及在第二方向上的至少一列對準量測標記,第一角度為0度,第二角度為90度。 In one embodiment, the preset alignment measurement mark includes at least one line of alignment measurement marks in the first direction and at least one column of alignment measurement marks in the second direction. The first angle is 0 degrees, the first The second angle is 90 degrees.

柵格誤差計算模組包含第一非正交性擬合單元,第二非正交性擬合單元,以及柵格非正交性誤差計算單元。 The grid error calculation module includes a first non-orthogonal fitting unit, a second non-orthogonal fitting unit, and a grid non-orthogonal error calculation unit.

第一非正交性擬合單元,設置為擬合計算基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一非正交性誤差Orth_0:pos_xm_0=Tx_0+xm×Sx_0-ym×Rzy_0+Res_xm_0;pos_ym_0=Ty_0+ym×Sy_0+xm×Rzx_0+Res_ym_0; Orth_0=Rzy_0-Rzx_0;其中,pos_xm_0為0度下預設對準量測標記中任一對準量測標記的第一實際位置訊息在前述第二方向上的座標值,pos_ym_0為0度下任一對準量測標記的第一實際位置訊息在第一方向上的座標值,xm為任一對準量測標記的標準位置訊息在第二方向上的座標值,ym為任一對準量測標記的標準位置訊息在第一方向上的座標值,Tx_0為0度下對準量測標記整體在第一方向上的平移,Ty_0為0度下對準量測標記整體在第二方向上的平移;Sx_0為0度下在第一方向上的縮放倍率,Sy_0為0度下在第二方向上的縮放倍率;Rzx_0表示0度下繞平行於第一方向的坐標軸的旋轉,Rzy_0表示0度下繞平行於第二方向的坐標軸的旋轉;Res_xm_0為0度下任一對準量測標記在第一方向上的位置殘差,Res_ym_0為0度下任一對準量測標記在第二方向上的位置殘差。 The first non-orthogonal fitting unit is set to fit and calculate the first non-orthogonal error Orth _0 of the measurement grid when the substrate is adsorbed on the substrate adsorption platform at the aforementioned 0 degree level Orth _0: pos_xm _0= Tx _0+ xm × Sx _0- ym × Rzy _0+ Res_xm _0; pos_ym _0 = Ty _0+ ym × Sy _0+ xm × Rzx _0+ Res_ym _0; Orth _0= Rzy _0- Rzx _0; where pos_xm _0 is the preset alignment measurement at 0 degrees The coordinate value of the first actual position information of any alignment measurement mark in the aforementioned second direction, pos_ym _0 is the coordinate of the first actual position information of any alignment measurement mark in the first direction at 0 degrees Value, xm is the coordinate value of the standard position information of any alignment measurement mark in the second direction, ym is the coordinate value of the standard position information of any alignment measurement mark in the first direction, Tx _0 is 0 The translation of the entire measurement mark in the first direction under the degree, Ty _0 is the translation of the entire measurement mark in the second direction at 0 degrees; Sx _0 is the zoom magnification in the first direction at 0 degrees , Sy _0 is the zoom magnification in the second direction at 0 degrees; Rzx _0 represents the rotation around the coordinate axis parallel to the first direction at 0 degrees, Rzy _0 represents the rotation around the coordinate axis parallel to the second direction at 0 degrees Rotation; Res_xm _0 is the positional residual of any alignment measurement mark in the first direction at 0 degrees, and Res_ym _0 is the positional residual of any alignment measurement mark in the second direction at 0 degrees.

第二非正交性擬合單元,設置為擬合計算基底以90度水平吸附在基底吸附台上時測量柵格的第二非正交性誤差Orth_90:pos_xm_90=Tx_90+xm×Sx_90-ym×Rzy_90+Res_xm_90;pos_ym_90=Ty_90+ym×Sy_90+xm×Rzx_90+Res_ym_90;Orth_90=Rzy_90-Rzx_90;其中,pos_xm_90為90度下任一對準量測標記的第二實際位置訊息在第二方向上的座標值,pos_ym_90為90度下任一對準量測標記的第二實際位置訊息在第一方向上的座標值,Tx_90為90度下對準量測標記整體在第一方向上的平移,Ty_90為90度下對準量測標記整體在前述第二方向上的平移;Sx_90為90度下在第一方向上的縮放倍率,Sy_90為90度下在第二方向上的縮放倍率;Rzx_90表示90度下繞平行於第一方向的坐標軸的旋轉,Rzy_90表示90度 下繞平行於第二方向的坐標軸的旋轉;Res_xm_90為90度下任一對準量測標記在第一方向上的位置殘差,Res_ym_90為90度下任一對準量測標記在第二方向上的位置殘差。 The second non-orthogonal fitting unit is set to fit and calculate the second non-orthogonal error of the measurement grid when the substrate is adsorbed on the substrate adsorption platform at a 90-degree level: Orth_90: pos_xm_90=Tx_90+xm×Sx_90-ym× Rzy_90+Res_xm_90; pos_ym_90=Ty_90+ym×Sy_90+xm×Rzx_90+Res_ym_90; Orth _90 = Rzy _90- Rzx _90 ; where pos_xm _90 is the second actual position information of any alignment measurement mark at 90 degrees The coordinate value in the two directions, pos_ym _90 is the coordinate value of the second actual position information of any alignment measurement mark at 90 degrees in the first direction, Tx _90 is the overall alignment measurement mark at 90 degrees in the first place The translation in the direction, Ty _90 is the translation of the entire measurement mark at 90 degrees in the aforementioned second direction; Sx _90 is the zoom magnification in the first direction at 90 degrees, Sy _90 is the second at 90 degrees Zoom magnification in the direction; Rzx_90 means rotation around the coordinate axis parallel to the first direction at 90 degrees, Rzy _90 means rotation around the coordinate axis parallel to the second direction at 90 degrees; Res_xm _90 is any value under 90 degrees The position residual of the alignment measurement mark in the first direction, Res_ym _90 is the position residual of any alignment measurement mark in the second direction at 90 degrees.

柵格非正交性誤差計算單元,設置為根據第一非正交性及第二非正交性計算位置測量系統的柵格非正交性誤差Orth_wsOrth_ws=(Orth_0+Orth_90)/2。 The grid non-orthogonal error calculation unit is set to calculate the grid non-orthogonal error of the position measurement system based on the first non-orthogonality and the second non-orthogonality Orth_ws : Orth_ws = ( Orth _0+ Orth _90)/2 .

在一實施例中,預設對準量測標記包含在第二方向上的至少一列對準量測標記,第一角度為0度,第二角度為180度。 In one embodiment, the preset alignment measurement mark includes at least one row of alignment measurement marks in the second direction, the first angle is 0 degrees, and the second angle is 180 degrees.

柵格誤差計算模組包含第一平移誤差擬合單元,第二平移誤差擬合單元,以及柵格平移誤差計算單元。 The grid error calculation module includes a first translation error fitting unit, a second translation error fitting unit, and a grid translation error calculation unit.

第一平移誤差擬合單元,設置為擬合計算基底以0度水平吸附在基底吸附台上時測量柵格的第一平移誤差Res_xp_0:pos_xp_0=Tx_0+xp×Sx_0-yp×Rzy_0+Res_xp_0;其中,pos_xp_0為0度下預設對準量測標記中任一對準量測標記的第一實際位置訊息在第二方向上的座標值,xp為任一對準量測標記的標準位置訊息在第二方向上的座標值,yp為任一對準量測標記的標準位置訊息在第一方向上的座標值,Tx_0為0度下對準量測標記整體在第一方向上的平移,Sx_0為0度下在第一方向上的縮放倍率,Rzy_0表示0度下繞平行於第二方向的坐標軸的旋轉。 A first translation error fitting means to fit calculation adsorbing the substrate to a first level of translation 0 Res_xp _0 measurement error grid when the substrate adsorption stage: pos_xp _0 = Tx _0 + xp × Sx _0- yp × Rzy _0 + Res_xp _0; where pos_xp _0 is the coordinate value in the second direction of the first actual position information of any alignment measurement mark in the preset alignment measurement mark at 0 degrees, xp is any alignment measurement mark The coordinate value of the standard position information in the second direction, yp is the coordinate value of the standard position information of any alignment measurement mark in the first direction, Tx _0 is the alignment measurement mark at 0 degrees. translational direction, Sx_ 0 is the magnification in the first direction at 0 degree, Rzy _0 about a coordinate axis parallel to the second direction at 0 degrees rotation.

第二平移誤差擬合單元,設置為擬合計算基底以180度水平吸附在基底吸附台上時測量柵格的第二平移誤差Res_xp_180:pos_xp_180=Tx_180+xp×Sx_180-yp×Rzy_180+Res_xp_180;其中,pos_xp_180為180度下任一對準量測標記的第二實際位置訊息在第二方向上的 座標值,Tx_180為180度下對準量測標記整體在第一方向上的平移,Sx_180為180度下在第一方向上的縮放倍率,Rzy_180表示180度下繞平行於第二方向的坐標軸的旋轉。 The second translation error fitting unit is set to fit and calculate the second translation error of the measurement grid when the substrate is adsorbed on the substrate adsorption stage at 180 degrees horizontally. Res_xp _180: pos_xp _180= Tx _180+ xp × Sx _180- yp × Rzy _180+ Res_xp _180; where pos_xp _180 is the coordinate value of the second actual position information of any alignment measurement mark at 180 degrees in the second direction, Tx _180 is the overall alignment measurement mark at 180 degrees in the first direction translation, Sx_180 the scaling factor in the first direction 180 degrees, Rzy _180 represents a rotational direction about an axis parallel to the second axis by 180 degrees.

柵格平移誤差計算單元,設置為根據第一平移誤差及第二平移誤差計算位置測量系統相對於任一對準量測標記的第一方向的柵格平移誤差Res_xp_psRes_xp_ps=(Res_xp_0+Res_xp_180)/2。 The grid translation error calculation unit is set to calculate the grid translation error in the first direction of the position measurement system relative to any alignment measurement mark based on the first translation error and the second translation error Res_xp_ps : Res_xp_ps = ( Res_xp _0+ Res_xp _180 )/2.

本發明實施例進一步提供一種光學設備,該光學設備包含上述任意實施例提供的柵格誤差的測量裝置。 An embodiment of the present invention further provides an optical device including the grid error measuring device provided by any of the above embodiments.

在一實施例中,光學設備包含光刻機。 In one embodiment, the optical device includes a lithography machine.

本實施例提供的光學設備,藉由計算基底以不同角度吸附在基底載台上的實際位置及標準位置訊息計算前述位置測量系統的柵格誤差,計算方法簡單,可以對位置測量系統的測量位置進行校準,使最終位置量測或運動位置準確,且不需要採集運動台在不同姿態下(包含旋轉、傾斜等)較大範圍的位置數據進行數學擬合計算,避免無法獲取多個自由度的相關性數據而使位置模型無法求解的情況。 The optical device provided in this embodiment calculates the grid error of the aforementioned position measurement system by calculating the actual position and standard position information of the substrate adsorbed on the substrate stage at different angles, the calculation method is simple, and the measurement position of the position measurement system can be measured Carry out calibration to make the final position measurement or motion position accurate, and do not need to collect a large range of position data of the motion table in different postures (including rotation, tilt, etc.) for mathematical fitting calculation, avoiding the inability to obtain multiple degrees of freedom Correlation data makes it impossible to solve the position model.

本發明主張於2018年06月28日提交中國專利局、申請號為201810688910.1之中國專利申請的優先權,該申請的全部內容藉由引用結合在本發明中。 The present invention claims the priority of the Chinese patent application filed on June 28, 2018 in the China Patent Office with the application number 201810688910.1. The entire content of the application is incorporated by reference in the present invention.

Claims (16)

一種柵格誤差的測量方法,其特徵係其包含:藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息,其中,前述基底上設置有多個沿第一方向及第二方向呈陣列排布的對準量測標記,形成測量柵格,前述基底以第一角度水平吸附在前述光學設備的基底吸附台上,前述第一方向及前述第二方向相垂直;藉由前述位置測量系統獲取前述預設對準量測標記的第二實際位置訊息,其中,前述基底以第二角度水平吸附在前述基底吸附台上,前述第二角度不同於前述第一角度;根據前述第一實際位置訊息、前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息計算前述位置測量系統的柵格誤差。 A method for measuring grid error, characterized in that it includes: acquiring the first actual position information of a preset alignment measurement mark on a substrate by a position measurement system in an optical device, wherein the substrate is provided with a plurality of edges The first direction and the second direction are aligned measurement marks arranged in an array to form a measurement grid, the substrate is horizontally adsorbed on the substrate adsorption table of the optical device at a first angle, the first direction and the second direction Vertical; acquiring the second actual position information of the preset alignment measurement mark by the position measurement system, wherein the substrate is horizontally adsorbed on the substrate adsorption table at a second angle, and the second angle is different from the first An angle; calculating the grid error of the position measurement system based on the first actual position information, the second actual position information, and the standard position information of the preset alignment measurement mark. 如申請專利範圍第1項所記載之柵格誤差的測量方法,其中,前述第一方向平行於預設坐標系中的X軸,前述第二方向平行於前述預設坐標系中的Y軸;或者,前述第一方向平行於預設坐標系中的Y軸,前述第二方向平行於前述預設坐標系中的X軸。 The method for measuring grid errors as described in item 1 of the patent application scope, wherein the first direction is parallel to the X axis in the preset coordinate system, and the second direction is parallel to the Y axis in the preset coordinate system; Alternatively, the first direction is parallel to the Y axis in the preset coordinate system, and the second direction is parallel to the X axis in the preset coordinate system. 如申請專利範圍第2項所記載之柵格誤差的測量方法,其中,前述預設對準量測標記包含在前述第二方向上的至少兩列前述對準量測標記,前述第一角度為0度,前述第二角度為180度;根據前述第一實際位置訊息、前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息計算前述位置測量系統的柵格誤差,包含:根據前述第一實際位置訊息及前述預設對準量測標記的標準位置訊息,確 定前述基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一柵格旋轉度;根據前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息,確定前述基底以前述180度水平吸附在前述基底吸附台上時測量柵格的第二柵格旋轉度;根據前述第一柵格旋轉度及前述第二柵格旋轉度計算前述位置測量系統的前述第二方向的柵格旋轉度誤差。 The method for measuring grid error as described in item 2 of the patent application scope, wherein the preset alignment measurement mark includes at least two rows of the alignment measurement mark in the second direction, and the first angle is 0 degrees, the second angle is 180 degrees; calculating the grid error of the position measurement system based on the first actual position information, the second actual position information, and the standard position information of the preset alignment measurement mark, including: According to the first actual position information and the standard position information of the preset alignment measurement mark, confirm The first grid rotation degree of the grid is measured when the substrate is adsorbed on the substrate adsorption table at the 0-degree level; based on the second actual position information and the standard position information of the preset alignment measurement mark, the aforesaid is determined The second grid rotation of the grid is measured when the substrate is adsorbed on the substrate adsorption platform at the 180 degree level; the second of the position measurement system is calculated according to the first grid rotation and the second grid rotation The grid rotation error in the direction. 如申請專利範圍第3項所記載之柵格誤差的測量方法,其中,根據前述第一實際位置訊息及前述預設對準量測標記的標準位置訊息,確定前述基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一柵格旋轉度,包含:根據對準量測標記對的第一實際位置訊息及標準位置訊息,計算前述對準量測標記對的第一旋轉量,其中,前述對準量測標記對包含在前述第一方向上的位於同一行的兩個前述對準量測標記,任一前述第一旋轉量Rotyn_0滿足:Rotyn_0=(pos_yj_0-pos_yi_0)/(xj-xi),pos_yi_0為0度下前述對準量測標記對中第一對準量測標記的第一實際位置訊息在前述第一方向上的座標值,pos_yi_0為0度下前述對準量測標記對中第二對準量測標記的第一實際位置訊息在前述第一方向上的座標值,xi為前述第一對準量測標記的標準位置訊息在前述第二方向上的座標值,xj為前述第二對準量測標記的標準位置訊息在前述第二方向上的座標值;根據多個不同對準量測標記對的第一旋轉量及標準位置訊息,線性擬合計算出前述第一柵格旋轉度,其中,線性擬合公式滿足: Rotyn_0=K0×(yi+yj)/2+dRotyn_0,K0為前述第一柵格旋轉度,yi為前述第一對準量測標記的標準位置訊息在前述第一方向上的座標值,yj為前述第二對準量測標記的標準位置訊息在前述第一方向上的座標值,dRotyn_0為0度下的擬合殘差;根據前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息,確定前述基底以前述180度水平吸附在前述基底吸附台上時測量柵格的第二柵格旋轉度,包含:根據前述對準量測標記對的第二實際位置訊息及標準位置訊息,計算前述對準量測標記對的第二旋轉量,任一前述第二旋轉量Rotyn_180滿足:Rotyn_180=(pos_yj_180-pos_yi_180)/(-xj+xi),pos_yi_180為180度下前述對準量測標記對中第一對準量測標記的第一實際位置訊息在前述第一方向上的座標值,pos_yj_180為180度下前述對準量測標記對中第二對準量測標記的第一實際位置訊息在前述第一方向上的座標值;根據多個不同對準量測標記對的第二旋轉量及標準位置訊息,線性擬合計算出前述第二柵格旋轉度,其中,線性擬合公式滿足:Rotyn_180=K180×(-yi-yj)/2+dRotyn_180,K180為前述第二柵格旋轉度,dRotyn_180為180度下的擬合殘差;根據前述第一柵格旋轉度及前述第二柵格旋轉度計算前述位置測量系統的前述第二方向的柵格旋轉度誤差K_ws_z滿足以下公式:K_ws_z=(K0-K180)/2。 The grid error measurement method as described in item 3 of the patent application scope, wherein, based on the first actual position information and the standard position information of the preset alignment measurement mark, it is determined that the substrate is adsorbed at the 0 degree level The first grid rotation degree of the measurement grid when on the substrate adsorption table includes: calculating the first rotation amount of the alignment measurement mark pair according to the first actual position information and the standard position information of the alignment measurement mark pair Where the pair of alignment measurement marks includes two alignment measurement marks located in the same row in the first direction, and any of the first rotation amounts Rotyn _0 satisfies: Rotyn _0=( pos_yj _0- pos_yi _0)/( xj-xi ), pos_yi _0 is the coordinate value of the first actual position information of the first alignment measurement mark in the first alignment measurement mark pair in the first direction at 0 degrees, pos_yi _0 is 0 The first actual position information of the second alignment measurement mark in the alignment measurement mark pair in the first direction, xi is the standard position information of the first alignment measurement mark in the first The coordinate value in two directions, xj is the coordinate value of the standard position information of the second alignment measurement mark in the second direction; the first rotation amount and the standard position information of the pair of measurement alignment marks according to multiple different alignments , The linear fitting calculates the aforementioned first grid rotation degree, where the linear fitting formula satisfies: Rotyn _0 = K 0×( yi + yj )/2+ dRotyn _0, K0 is the aforementioned first grid rotation degree, yi is The coordinate value of the standard position information of the first alignment measurement mark in the first direction, yj is the coordinate value of the standard position information of the second alignment measurement mark in the first direction, dRotyn _0 is 0 Fitting error at degree; according to the second actual position information and the standard position information of the preset alignment measurement mark, determine the first measurement of the grid when the substrate is adsorbed on the substrate adsorption table at the 180 degree level The two grid rotation degrees include: calculating the second rotation amount of the alignment measurement mark pair according to the second actual position information and the standard position information of the alignment measurement mark pair, any of the foregoing second rotation amounts Rotyn _180 Satisfy: Rotyn _180=( pos_yj _180- pos_yi _180)/(- xj + xi ), pos_yi _180 is the first actual position information of the first alignment measurement mark in the aforementioned alignment measurement mark pair at 180 degrees. The coordinate value in one direction, pos_yj _180 is the coordinate value of the first actual position information of the second alignment measurement mark in the aforementioned alignment measurement mark pair at 180 degrees in the aforementioned first direction; according to multiple different alignments The second rotation amount and standard position information of the mark pair are measured, and the second grid rotation degree is calculated by linear fitting, wherein the linear fitting formula satisfies: Rotyn_ 180 = K 18 0×(- yi - yj )/2+ dRotyn _180, K180 is the rotation degree of the second grid described above, dRotyn _180 is the fitting residual at 180 degrees; according to the rotation degree of the first grid and the second grid Rotation degree calculation The grid rotation degree error K_ws_z in the aforementioned second direction of the aforementioned position measurement system satisfies the following formula: K_ws_z = ( K 0- K 180)/2. 如申請專利範圍第2項所記載之柵格誤差的測量方法,其中,前述預設對準量測標記包含在前述第一方向上的至少一行前述對準量測標記以及在前 述第二方向上的至少一列前述對準量測標記,前述第一角度為0度,前述第二角度為90度;根據前述第一實際位置訊息、前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息計算前述位置測量系統的柵格誤差,包含:擬合計算前述基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一非正交性誤差Orth_0:pos_xm_0=Tx_0+xm×Sx_0-ym×Rzy_0+Res_xm_0;pos_ym_0=Ty_0+ym×Sy_0+xm×Rzx_0+Res_ym_0;Orth_0=Rzy_0-Rzx_0;其中,pos_xm_0為0度下前述預設對準量測標記中任一對準量測標記的第一實際位置訊息在前述第二方向上的座標值,pos_ym_0為0度下前述任一對準量測標記的第一實際位置訊息在前述第一方向上的座標值,xm為前述任一對準量測標記的標準位置訊息在前述第二方向上的座標值,ym為前述任一對準量測標記的標準位置訊息在前述第一方向上的座標值,Tx_0為0度下前述對準量測標記整體在前述第一方向上的平移,Ty_0為0度下前述對準量測標記整體在前述第二方向上的平移;Sx_0為0度下在前述第一方向上的縮放倍率,Sy_0為0度下在前述第二方向上的縮放倍率;Rzx_0表示0度下繞平行於前述第一方向的坐標軸的旋轉,Rzy_0表示0度下繞平行於前述第二方向的坐標軸的旋轉;Res_xm_0為0度下前述任一對準量測標記在前述第一方向上的位置殘差,Res_ym_0為0度下前述任一對準量測標記在前述第二方向上的位置殘差;擬合計算前述基底以前述90度水平吸附在前述基底吸附台上時測量柵格的 第二非正交性誤差Orth_90:pos_xm_90=Tx_90+xm×Sx_90-ym×Rzy_90+Res_xm_90;pos_ym_90=Ty_90+ym×Sy_90+xm×Rzx_90+Res_ym_90;Orth_90=Rzy_90-Rzx_90;其中,pos_xm_90為90度下前述任一對準量測標記的第二實際位置訊息在前述第二方向上的座標值,pos_ym_90為90度下前述任一對準量測標記的第二實際位置訊息在前述第一方向上的座標值,Tx_90為90度下前述對準量測標記整體在前述第一方向上的平移,Ty_90為90度下前述對準量測標記整體在前述第二方向上的平移;Sx_90為90度下在前述第一方向上的縮放倍率,Sy_90為90度下在前述第二方向上的縮放倍率;Rzx_90表示90度下繞平行於前述第一方向的坐標軸的旋轉,Rzy_90表示90度下繞平行於前述第二方向的坐標軸的旋轉;Res_xm_90為90度下前述任一對準量測標記在前述第一方向上的位置殘差,Res_ym_90為90度下前述任一對準量測標記在前述第二方向上的位置殘差;根據前述第一非正交性誤差及前述第二非正交性誤差計算前述位置測量系統的柵格非正交性誤差Orth_wsOrth_ws=(Orth_0+Orth_90)/2。 The method for measuring grid errors as described in item 2 of the patent application scope, wherein the preset alignment measurement mark includes at least one line of the alignment measurement mark in the first direction and in the second direction At least one row of the alignment measurement marks, the first angle is 0 degrees, and the second angle is 90 degrees; based on the first actual position information, the second actual position information, and the preset alignment measurement marks The standard position information calculates the grid error of the position measurement system, including: fitting and calculating the first non-orthogonal error of the measurement grid when the substrate is adsorbed on the substrate adsorption table at the level of 0 degrees Orth _0: pos_xm _0= Tx _0+ xm × Sx _0- ym × Rzy _0+ Res_xm _0; pos_ym _0 = Ty _0+ ym × Sy _0+ xm × Rzx _0+ Res_ym _0; Orth _0 = Rzy _0- Rzx _0; where pos_xm_previous is 0 The coordinate value of the first actual position information of any alignment measurement mark in the alignment measurement mark in the aforementioned second direction, pos_ym _0 is the first actual position information of any alignment measurement mark at 0 degrees at The coordinate value in the first direction, xm is the coordinate value of the standard position information of any alignment measurement mark in the second direction, and ym is the standard position information of any alignment measurement mark in the first position The coordinate value in one direction, Tx_0 is the translation of the entire alignment measurement mark at 0 degrees in the first direction, Ty _0 is the translation of the entire alignment measurement mark at 0 degrees in the second direction ; Sx _0 is the zoom magnification in the aforementioned first direction at 0 degrees, Sy _0 is the zoom magnification in the aforementioned second direction at 0 degrees; Rzx _0 represents a coordinate axis parallel to the aforementioned first direction at 0 degrees Rotation, Rzy _0 means rotation around the coordinate axis parallel to the aforementioned second direction at 0 degrees; Res_xm _0 is the positional residual of any of the alignment measurement marks in the aforementioned first direction at 0 degrees, Res_ym _0 is 0 The position residual error of any of the aforementioned alignment measurement marks in the aforementioned second direction; fitting and calculating the second non-orthogonal error of the measurement grid when the aforementioned substrate is adsorbed on the aforementioned substrate adsorption platform at the aforementioned 90-degree level Orth _90: pos_xm _90 = Tx _90 + xm × Sx _90- ym × Rzy _90 + Res_xm _90; pos_ym _90 = Ty _90 + ym × Sy _90 + xm × Rzx _90 + Res_ym _90; Orth _90 = Rzy _90- Rzx _90; wherein, pos_xm _90 is The second actual position information of any of the aforementioned alignment measurement marks is at the front at 90 degrees The coordinate value in the second direction, pos_ym _90 is the coordinate value of the second actual position information of any of the alignment measurement marks at 90 degrees in the first direction, Tx _90 is the alignment measurement at 90 degrees Translation of the entire mark in the first direction, Ty _90 is the translation of the entire alignment measurement mark in the second direction at 90 degrees; Sx _90 is the zoom magnification in the first direction at 90 degrees, Sy _90 is the zoom magnification in the aforementioned second direction at 90 degrees; Rzx _90 indicates the rotation around the coordinate axis parallel to the aforementioned first direction at 90 degrees, Rzy _90 indicates the coordinate axis parallel to the aforementioned second direction at 90 degrees The rotation of Res_xm _90 is the position residual of the aforementioned alignment measurement mark in the first direction at 90 degrees, Res_ym _90 is the position of the aforementioned alignment measurement mark in the second direction at 90 degrees Residual error; calculate the grid non-orthogonal error Orth_ws of the position measurement system based on the first non-orthogonal error and the second non-orthogonal error: Orth_ws = ( Orth _0+ Orth _90)/2. 如申請專利範圍第2項所記載之柵格誤差的測量方法,其中,前述預設對準量測標記包含在前述第二方向上的至少一列前述對準量測標記,前述第一角度為0度,前述第二角度為180度;根據前述第一實際位置訊息、前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息計算前述位置測量系統的柵格誤差,包含: 擬合計算前述基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一平移誤差Res_xp_0:pos_xp_0=Tx_0+xp×Sx_0-yp×Rzy_0+Res_xp_0;其中,pos_xp_0為0度下前述預設對準量測標記中任一對準量測標記的第一實際位置訊息在前述第二方向上的座標值,xp為前述任一對準量測標記的標準位置訊息在前述第二方向上的座標值,yp為前述任一對準量測標記的標準位置訊息在前述第一方向上的座標值,Tx_0為0度下前述對準量測標記整體在前述第一方向上的平移,Sx_0為0度下在前述第一方向上的縮放倍率,Rzy_0表示0度下繞平行於前述第二方向的坐標軸的旋轉;擬合計算前述基底以前述180度水平吸附在前述基底吸附台上時測量柵格的第二平移誤差Res_xp_180:pos_xp_180=Tx_180+xp×Sx_180-yp×Rzy_180+Res_xp_180;其中,pos_xp_180為180度下前述任一對準量測標記的第二實際位置訊息在前述第二方向上的座標值,Tx_180為180度下前述對準量測標記整體在前述第一方向上的平移,Sx_180為180度下在前述第一方向上的縮放倍率,Rzy_180表示180度下繞平行於前述第二方向的坐標軸的旋轉;根據前述第一平移誤差及前述第二平移誤差計算前述位置測量系統相對於前述任一對準量測標記的前述第一方向的柵格平移誤差Res_xp_psRes_xp_ps=(Res_xp_0+Res_xp_180)/2。 The method for measuring grid error as described in item 2 of the patent application scope, wherein the preset alignment measurement mark includes at least one row of the alignment measurement mark in the second direction, and the first angle is 0 Degree, the second angle is 180 degrees; calculating the grid error of the position measurement system based on the first actual position information, the second actual position information, and the standard position information of the preset alignment measurement mark, including: Summing up the first translation error of the measurement grid when the aforementioned substrate is adsorbed on the aforementioned substrate adsorption platform at the aforementioned 0 degree level Res_xp _0: pos_xp _0= Tx _0+ xp × Sx _0- yp × Rzy _0+ Res_xp _0; where pos_xp _0 is At 0 degrees, the coordinate value of the first actual position information of any alignment measurement mark in the preset alignment measurement mark in the second direction, xp is the standard position information of any alignment measurement mark in The coordinate value in the second direction, yp is the coordinate value of the standard position information of any of the alignment measurement marks in the first direction, Tx _0 is the overall alignment measurement mark at 0 degrees at the first The translation in the direction, Sx _0 is the zoom magnification in the first direction at 0 degrees, Rzy _0 represents the rotation around the coordinate axis parallel to the second direction at 0 degrees; fitting calculates the aforementioned substrate at the aforementioned 180 degree level The second translation error Res_xp _180 of the measurement grid when adsorbed on the aforementioned substrate adsorption table: pos_xp _180= Tx _180+ xp × Sx _180- yp × Rzy _180+ Res_xp _180; where pos_xp _180 is any of the aforementioned alignment amounts at 180 degrees The coordinate value of the second actual position information of the measurement mark in the second direction, Tx _180 is the translation of the entire alignment measurement mark in the first direction at 180 degrees, and Sx _180 is the first translation in the first direction at 180 degrees The zoom magnification in the direction, Rzy _180 represents the rotation around the coordinate axis parallel to the second direction at 180 degrees; calculate the alignment amount of the position measurement system relative to any of the foregoing based on the first translation error and the second translation error Measure the grid translation error Res_xp_ps in the aforementioned first direction of the mark : Res_xp_ps = ( Res_xp _0+ Res_xp _180)/2. 如申請專利範圍第1至6項中任一項所記載之柵格誤差的測量方法,其中,前述對準量測標記的圖形為中心對稱圖形。 The method for measuring grid errors as described in any one of the items 1 to 6 of the patent application range, wherein the pattern of the alignment measurement mark is a center symmetric figure. 如申請專利範圍第1至6項中任一項所記載之柵格誤差的測量方法,其 中,前述位置測量系統為干涉儀測量系統、雷射三角尺或雷射位移感測器。 The measurement method of grid error as described in any of items 1 to 6 of the patent application scope, which In the above, the aforementioned position measuring system is an interferometer measuring system, a laser triangle ruler or a laser displacement sensor. 一種柵格誤差的測量裝置,其特徵係其包含:第一實際位置訊息模組,設置為藉由光學設備中的位置測量系統獲取基底上預設對準量測標記的第一實際位置訊息,其中,前述基底上設置有多個沿第一方向及第二方向呈陣列排布的對準量測標記,形成測量柵格,前述基底以第一角度水平吸附在前述光學設備的基底吸附台上,前述第一方向及前述第二方向相垂直;第二實際位置訊息獲取模組,設置為藉由前述位置測量系統獲取前述預設對準量測標記的第二實際位置訊息,其中,前述基底以第二角度水平吸附在前述基底吸附台上,前述第二角度不同於前述第一角度;柵格誤差計算模組,設置為根據前述第一實際位置訊息、前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息計算前述位置測量系統的柵格誤差。 A grid error measuring device, characterized in that it includes: a first actual position information module configured to obtain the first actual position information of a preset alignment measurement mark on the substrate by a position measuring system in an optical device, Wherein, the substrate is provided with a plurality of alignment measurement marks arranged in an array along the first direction and the second direction to form a measurement grid, and the substrate is horizontally adsorbed on the substrate adsorption table of the optical device at a first angle , The first direction and the second direction are perpendicular; the second actual position information acquisition module is configured to acquire the second actual position information of the preset alignment measurement mark by the position measurement system, wherein the substrate Adsorbed horizontally on the substrate suction table at a second angle, the second angle is different from the first angle; the grid error calculation module is set based on the first actual position information, the second actual position information and the The standard position information of the alignment measurement mark is set to calculate the grid error of the aforementioned position measurement system. 如申請專利範圍第9項所記載之柵格誤差的測量裝置,其中,前述第一方向平行於預設坐標系中的X軸,前述第二方向平行於前述預設坐標系中的Y軸;或者,前述第一方向平行於預設坐標系中的Y軸,前述第二方向平行於前述預設坐標系中的X軸。 The grid error measuring device described in item 9 of the patent application scope, wherein the first direction is parallel to the X axis in the preset coordinate system, and the second direction is parallel to the Y axis in the preset coordinate system; Alternatively, the first direction is parallel to the Y axis in the preset coordinate system, and the second direction is parallel to the X axis in the preset coordinate system. 如申請專利範圍第10項所記載之柵格誤差的測量裝置,其中,前述預設對準量測標記包含在前述第二方向上的至少兩列前述對準量測標記,前述第一角度為0度,前述第二角度為180度;前述柵格誤差計算模組包含: 第一柵格旋轉度確定單元,設置為根據前述第一實際位置訊息及前述預設對準量測標記的標準位置訊息,確定前述基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一柵格旋轉度;第二柵格旋轉度確定單元,設置為根據前述第二實際位置訊息及前述預設對準量測標記的標準位置訊息,確定前述基底以前述180度水平吸附在前述基底吸附台上時測量柵格的第二柵格旋轉度;柵格旋轉度誤差計算單元,設置為根據前述第一柵格旋轉度及前述第二柵格旋轉度計算前述位置測量系統的前述第二方向的柵格旋轉度誤差。 A grid error measuring device as described in item 10 of the patent application range, wherein the preset alignment measurement mark includes at least two rows of the alignment measurement mark in the second direction, and the first angle is 0 degrees, the second angle is 180 degrees; the grid error calculation module includes: The first grid rotation degree determining unit is configured to determine the measurement grid when the substrate is adsorbed on the substrate adsorption stage at the level of 0 degrees based on the first actual position information and the standard position information of the preset alignment measurement mark The first grid rotation degree of the grid; the second grid rotation degree determination unit is configured to determine that the substrate is adsorbed at the 180-degree horizontal level according to the second actual position information and the standard position information of the preset alignment measurement mark The second grid rotation degree of the grid is measured while on the substrate adsorption table; the grid rotation degree error calculation unit is set to calculate the position measurement system based on the first grid rotation degree and the second grid rotation degree The grid rotation error in the aforementioned second direction. 如申請專利範圍第11項所記載之柵格誤差的測量裝置,其中,前述第一柵格旋轉度確定單元包含:第一旋轉量計算子單元,設置為根據對準量測標記對的第一實際位置訊息及標準位置訊息,計算前述對準量測標記對的第一旋轉量,其中,前述對準量測標記對包含在前述第一方向上的位於同一行的兩個前述對準量測標記,任一前述第一旋轉量Rotyn_0滿足:Rotyn_0=(pos_yj_0-pos_yi_0)/(xj-xi),pos_yi_0為0度下前述對準量測標記對中第一對準量測標記的第一實際位置訊息在前述第一方向上的座標值,pos_yj_0為0度下前述對準量測標記對中第二對準量測標記的第一實際位置訊息在前述第一方向上的座標值,xi為前述第一對準量測標記的標準位置訊息在前述第二方向上的座標值,xj為前述第二對準量測標記的標準位置訊息在前述第二方向上的座標值;第一柵格旋轉度擬合子單元,設置為根據多個不同對準量測標記對的第一旋轉量及標準位置訊息,線性擬合計算出前述第一柵格旋轉度,其中,線 性擬合公式滿足:Rotyn_0=K0×(yi+yj)/2+dRotyn_0,K0為前述第一柵格旋轉度,yi為前述第一對準量測標記的標準位置訊息在前述第一方向上的座標值,yj為前述第二對準量測標記的標準位置訊息在前述第一方向上的座標值,dRotyn_0為0度下的擬合殘差;前述第二柵格旋轉度確定單元包含:第二旋轉量計算子單元,設置為根據前述對準量測標記對的第二實際位置訊息及標準位置訊息,計算前述對準量測標記對的第二旋轉量,任一前述第二旋轉量Rotyn_180滿足:Rotyn_180=(pos_yj_180-pos_yi_180)/(-xj+xi),pos_yi_180為180度下前述對準量測標記對中第一對準量測標記的第一實際位置訊息在前述第一方向上的座標值,pos_yj_180為180度下前述對準量測標記對中第二對準量測標記的第一實際位置訊息在前述第一方向上的座標值;第二柵格旋轉度擬合子單元,設置為根據多個不同對準量測標記對的第二旋轉量及標準位置訊息,線性擬合計算出前述第二柵格旋轉度,其中,線性擬合公式滿足:Rotyn_180=K180×(-yi-yj)/2+dRotyn_180,K180為前述第二柵格旋轉度,dRotyn_180為180度下的擬合殘差;根據前述第一柵格旋轉度及前述第二柵格旋轉度計算前述位置測量系統的前述第二方向的柵格旋轉度誤差K_ws_z滿足以下公式:K_ws_z=(K0-K180)/2。 The grid error measuring device as described in item 11 of the patent application range, wherein the first grid rotation degree determination unit includes: a first rotation amount calculation subunit, which is set to measure the first of the pair of marks according to the alignment measurement The actual position information and the standard position information calculate the first rotation amount of the alignment measurement mark pair, wherein the alignment measurement mark pair includes two of the alignment measurements on the same line in the first direction Mark, any of the aforementioned first rotation amount Rotyn _0 satisfies: Rotyn _0=( pos_yj _0- pos_yi _0)/( xj-xi ), pos_yi _0 is the first alignment measurement in the aforementioned alignment measurement mark pair at 0 degrees The coordinate value of the first actual position information of the mark in the first direction, pos_yj _0 is the first actual position information of the second alignment measurement mark in the alignment measurement mark pair at 0 degrees in the first direction The coordinate value of xi is the coordinate value of the standard position information of the first alignment measurement mark in the second direction, and xj is the coordinate of the standard position information of the second alignment measurement mark in the second direction Value; the first grid rotation degree fitting subunit is set to calculate the aforementioned first grid rotation degree according to the first rotation amount and standard position information of a plurality of different alignment measurement mark pairs, wherein, linear The fitting formula satisfies: Rotyn _0 = K 0×( yi + yj )/2+ dRotyn _0, K0 is the rotation degree of the first grid, and yi is the standard position information of the first alignment measurement mark. The coordinate value in the direction, yj is the coordinate value of the standard position information of the second alignment measurement mark in the first direction, dRotyn _0 is the fitting residual at 0 degrees; the rotation degree of the second grid is determined The unit includes: a second rotation amount calculation sub-unit configured to calculate the second rotation amount of the alignment measurement mark pair based on the second actual position information and the standard position information of the alignment measurement mark pair, any of the foregoing The two rotation amounts Rotyn _180 satisfies: Rotyn _180=( pos_yj _180- pos_yi _180)/(- xj + xi ), pos_yi _180 is the first actuality of the first alignment measurement mark in the aforementioned alignment measurement mark pair at 180 degrees The coordinate value of the position information in the first direction, pos_yj _180 is the coordinate value of the first actual position information of the second alignment measurement mark in the alignment measurement mark pair at 180 degrees in the first direction; The second grid rotation degree fitting subunit is set to calculate the foregoing second grid rotation degree according to the second rotation amount and standard position information of a plurality of different alignment measurement mark pairs, wherein the linear fitting formula Satisfy: Rotyn _180 = K 180×(- yi-yj )/2+ dRotyn _180, K180 is the aforementioned second grid rotation degree, dRotyn _1 80 is the fitting residual error at 180 degrees; the grid rotation error K_ws_z in the second direction of the position measurement system is calculated according to the first grid rotation degree and the second grid rotation degree to satisfy the following formula: K_ws_z = ( K 0- K 180)/2. 如申請專利範圍第10項所記載之柵格誤差的測量裝置,其中,前述預設對準量測標記包含在前述第一方向上的至少一行前述對準量測標記以及在前述第二方向上的至少一列前述對準量測標記,前述第一角度為0度,前述 第二角度為90度;前述柵格誤差計算模組包含:第一非正交性擬合單元,設置為擬合計算前述基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一非正交性誤差Orth_0:pos_xm_0=Tx_0+xm×Sx_0-ym×Rzy_0+Res_xm_0;pos_ym_0=Ty_0+ym×Sy_0+xm×Rzx_0+Res_ym_0;Orth_0=Rzy_0-Rzx_0;其中,pos_xm_0為0度下前述預設對準量測標記中任一對準量測標記的第一實際位置訊息在前述第二方向上的座標值,pos_ym_0為0度下前述任一對準量測標記的第一實際位置訊息在前述第一方向上的座標值,xm為前述任一對準量測標記的標準位置訊息在前述第二方向上的座標值,ym為前述任一對準量測標記的標準位置訊息在前述第一方向上的座標值,Tx_0為0度下前述對準量測標記整體在前述第一方向上的平移,Ty_0為0度下前述對準量測標記整體在前述第二方向上的平移;Sx_0為0度下在前述第一方向上的縮放倍率,Sy_0為0度下在前述第二方向上的縮放倍率;Rzx_0表示0度下繞平行於前述第一方向的坐標軸的旋轉,Rzy_0表示0度下繞平行於前述第二方向的坐標軸的旋轉;Res_xm_0為0度下前述任一對準量測標記在前述第一方向上的位置殘差,Res_ym_0為0度下前述任一對準量測標記在前述第二方向上的位置殘差;第二非正交性擬合單元,設置為擬合計算前述基底以前述90度水平吸附在前述基底吸附台上時測量柵格的第二非正交性誤差Orth_90:pos_xm_90=Tx_90+xm×Sx_90-ym×Rzy_90+Res_xm_90; pos_ym_90=Ty_90+ym×Sy_90+xm×Rzx_90+Res_ym_90;Orth_90=Rzy_90-Rzx_90;其中,pos_xm_90為90度下前述任一對準量測標記的第二實際位置訊息在前述第二方向上的座標值,pos_ym_90為90度下前述任一對準量測標記的第二實際位置訊息在前述第一方向上的座標值,Tx_90為90度下前述對準量測標記整體在前述第一方向上的平移,Ty_90為90度下前述對準量測標記整體在前述第二方向上的平移;Sx_90為90度下在前述第一方向上的縮放倍率,Sy_90為90度下在前述第二方向上的縮放倍率;Rzx_90表示90度下繞平行於前述第一方向的坐標軸的旋轉,Rzy_90表示90度下繞平行於前述第二方向的坐標軸的旋轉;Res_xm_90為90度下前述任一對準量測標記在前述第一方向上的位置殘差,Res_ym_90為90度下前述任一對準量測標記在前述第二方向上的位置殘差;柵格非正交性誤差計算單元,設置為根據前述第一非正交性誤差及前述第二非正交性誤差計算前述位置測量系統的柵格非正交性誤差Orth_wsOrth_ws=(Orth_0+Orth_90)/2。 A grid error measuring device as described in item 10 of the patent application range, wherein the preset alignment measurement mark includes at least one line of the alignment measurement mark in the first direction and in the second direction At least one row of the alignment measurement marks, the first angle is 0 degrees, the second angle is 90 degrees; the grid error calculation module includes: a first non-orthogonal fitting unit, which is set for fitting calculation The first non-orthogonal error Orth _0 of the measurement grid when the aforementioned substrate is adsorbed on the aforementioned substrate adsorption platform at the aforementioned 0 degree level: pos_xm _0= Tx _0+ xm × Sx _0- ym × Rzy _0+ Res_xm _0; pos_ym _0= Ty _0+ ym × Sy _0+ xm × Rzx _0+ Res_ym _0; Orth _0= Rzy _0- Rzx _0; where pos_xm _0 is the first actual position of any of the aforementioned alignment measurement marks at 0 degrees The coordinate value of the message in the aforementioned second direction, pos_ym _0 is the coordinate value of the first actual position of the aforementioned alignment measurement mark at 0 degrees in the aforementioned first direction, and xm is any of the aforementioned alignment measurement The coordinate value of the standard position information of the mark in the aforementioned second direction, ym is the coordinate value of the standard position information of any of the aforementioned alignment measurement marks in the aforementioned first direction, Tx _0 is the aforementioned alignment measurement at 0 degrees Translation of the entire mark in the first direction, Ty _0 is the translation of the entire alignment measurement mark in the second direction at 0 degrees; Sx _0 is the zoom magnification in the first direction at 0 degrees, Sy _0 is the zoom magnification in the second direction at 0 degrees; Rzx _0 represents the rotation around the coordinate axis parallel to the first direction at 0 degrees, Rzy _0 represents the coordinate axis parallel to the second direction at 0 degrees Of rotation; Res_xm _0 is the position residual of the aforementioned alignment measurement mark in the first direction at 0 degrees, Res_ym _0 is the position of the aforementioned alignment measurement mark in the second direction at 0 degrees Residual; second non-orthogonal fitting unit, set to fit and calculate the second non-orthogonal error of the measurement grid when the aforementioned substrate is adsorbed on the aforementioned substrate adsorption platform at the aforementioned 90-degree level Orth _90 : pos_xm _90 = Tx _90+ xm × Sx _90- ym × Rzy _90 + Res_xm _90 ; pos_ym _90 = Ty _90 + ym × Sy _90 + xm × Rzx _90 + Res_ym _90 ; Orth _90 = Rzy _90- Rzx _90 ; where, pos_xm_ below 90 The coordinate value of the second actual position information aligned with the measurement mark in the aforementioned second direction, pos_ym _90 is the coordinate value of the second actual position information of any of the alignment measurement marks in the first direction at 90 degrees, Tx_90 is the translation of the entire alignment measurement marks in the first direction at 90 degrees , Ty _90 is the translation of the entire alignment measurement mark in the second direction at 90 degrees; Sx_ 90 is the zoom magnification in the first direction at 90 degrees, and Sy _90 is the second direction at 90 degrees Rzx _90 represents the rotation around the coordinate axis parallel to the aforementioned first direction at 90 degrees, Rzy _90 represents the rotation about the coordinate axis parallel to the aforementioned second direction at 90 degrees; Res_xm_ 90 is the foregoing at 90 degrees The position residual of any alignment measurement mark in the first direction, Res_ym _90 is the position residual of any alignment measurement mark in the second direction at 90 degrees; grid non-orthogonality error The calculation unit is configured to calculate the grid non-orthogonal error Orth_ws of the position measurement system based on the first non-orthogonal error and the second non-orthogonal error: Orth_ws = ( Orth _0+ Orth _90)/2. 如申請專利範圍第10項所記載之柵格誤差的測量裝置,其中,前述預設對準量測標記包含在前述第二方向上的至少一列前述對準量測標記,前述第一角度為0度,前述第二角度為180度;前述柵格誤差計算模組包含:第一平移誤差擬合單元,設置為擬合計算前述基底以前述0度水平吸附在前述基底吸附台上時測量柵格的第一平移誤差Res_xp_0:pos_xp_0=Tx_0+xp×Sx_0-yp×Rzy_0+Res_xp_0;其中,pos_xp_0為0度 下前述預設對準量測標記中任一對準量測標記的第一實際位置訊息在前述第二方向上的座標值,xp為前述任一對準量測標記的標準位置訊息在前述第二方向上的座標值,yp為前述任一對準量測標記的標準位置訊息在前述第一方向上的座標值,Tx_0為0度下前述對準量測標記整體在前述第一方向上的平移,Sx_0為0度下在前述第一方向上的縮放倍率,Rzy_0表示0度下繞平行於前述第二方向的坐標軸的旋轉;第二平移誤差擬合單元,設置為擬合計算前述基底以前述180度水平吸附在前述基底吸附台上時測量柵格的第二平移誤差Res_xp_180:pos_xp_180=Tx_180+xp×Sx_180-yp×Rzy_180+Res_xp_180;其中,pos_xp_180為180度下前述任一對準量測標記的第二實際位置訊息在前述第二方向上的座標值,Tx_180為180度下前述對準量測標記整體在前述第一方向上的平移,Sx_180為180度下在前述第一方向上的縮放倍率,Rzy_180表示180度下繞平行於前述第二方向的坐標軸的旋轉;柵格平移誤差計算單元,設置為根據前述第一平移誤差及前述第二平移誤差計算前述位置測量系統相對於前述任一對準量測標記的前述第一方向的柵格平移誤差Res_xp_psRes_xp_ps=(Res_xp_0+Res_xp_180)/2。 The grid error measuring device as described in item 10 of the patent application range, wherein the preset alignment measurement mark includes at least one row of the alignment measurement mark in the second direction, and the first angle is 0 Degrees, the second angle is 180 degrees; the grid error calculation module includes: a first translation error fitting unit, configured to fit and calculate the grid when the substrate is adsorbed on the substrate adsorption table at the level of 0 degrees Res_xp _0 of the first translation error: pos_xp _0= Tx _0+ xp × Sx _0- yp × Rzy _0+ Res_xp _0; where pos_xp _0 is any of the alignment measurement marks in the aforementioned preset alignment measurement marks at 0 degrees The coordinate value of the first actual position information in the aforementioned second direction, xp is the coordinate value of the standard position information of any of the aforementioned alignment measurement marks in the aforementioned second direction, and yp is the coordinate value of any of the aforementioned alignment measurement marks The coordinate value of the standard position information in the first direction, Tx_0 is the translation of the entire alignment measurement mark in the first direction at 0 degrees, Sx _0 is the zoom magnification in the first direction at 0 degrees, Rzy _0 represents the rotation around the coordinate axis parallel to the aforementioned second direction at 0 degrees; the second translation error fitting unit is set to fit the measurement grid when the aforementioned substrate is adsorbed on the aforementioned substrate adsorption platform at the aforementioned 180-degree level Res_xp _180 of the second translation error: pos_xp _180= Tx _180+ xp × Sx _180- yp × Rzy _180+ Res_xp _180; where pos_xp _180 is the second actual position information of any of the aforementioned alignment measurement marks at 180 degrees The coordinate values in the two directions, Tx _180 is the translation of the entire alignment measurement mark in the first direction at 180 degrees, Sx _180 is the zoom magnification in the first direction at 180 degrees, Rzy _180 represents 180 degrees Rotation down the coordinate axis parallel to the second direction; grid translation error calculation unit, configured to calculate the alignment measurement mark of the position measurement system relative to any of the foregoing based on the first translation error and the second translation error The grid translation error of the aforementioned first direction Res_xp_ps : Res_xp_ps = ( Res_xp _0+ Res_xp _180)/2. 一種光學設備,其特徵係其包含如申請專利範圍第9至14項中任一項所記載之柵格誤差的測量裝置。 An optical device characterized by including a grid error measuring device as described in any of items 9 to 14 of the patent application. 如申請專利範圍第15項所記載之光學設備,前述光學設備包含光刻機。 As described in item 15 of the scope of the patent application, the aforementioned optical device includes a lithography machine.
TW108122986A 2018-06-28 2019-06-28 Measuring method, measuring device and optical equipment for grid error TWI739122B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810688910.1 2018-06-28
CN201810688910.1A CN110657743B (en) 2018-06-28 2018-06-28 Grid error measuring method and device and optical equipment

Publications (2)

Publication Number Publication Date
TW202018251A true TW202018251A (en) 2020-05-16
TWI739122B TWI739122B (en) 2021-09-11

Family

ID=68985835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122986A TWI739122B (en) 2018-06-28 2019-06-28 Measuring method, measuring device and optical equipment for grid error

Country Status (3)

Country Link
CN (1) CN110657743B (en)
TW (1) TWI739122B (en)
WO (1) WO2020001557A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701798B (en) * 2021-08-29 2024-01-19 孙恺欣 Calibrating device and method for two-dimensional grid standard plate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724526A (en) * 1984-09-11 1988-02-09 Bausch & Lomb Incorporated Apparatus and method for determining object elevation and height from images thereof
US5798947A (en) * 1996-09-25 1998-08-25 The Board Of Trustees Of The Leland Stanford, Jr. University Methods, apparatus and computer program products for self-calibrating two-dimensional metrology stages
US7054007B2 (en) * 2002-02-08 2006-05-30 Koninklijke Philips Electronics N.V. Calibration wafer for a stepper
SG120949A1 (en) * 2002-09-20 2006-04-26 Asml Netherlands Bv Alignment system and methods for lithographic systems using at least two wavelengths
EP2171394B2 (en) * 2007-07-24 2020-07-15 Hexagon Metrology S.p.A. Method for compensating measurement errors caused by deformations of a measuring machine bed under the load of a workpiece and measuring machine operating according to said method
US8508735B2 (en) * 2008-09-22 2013-08-13 Nikon Corporation Movable body apparatus, movable body drive method, exposure apparatus, exposure method, and device manufacturing method
CN102109767B (en) * 2009-12-23 2012-05-23 北大方正集团有限公司 Method and system for determining alignment precision matching between lithography machines
US8539685B2 (en) * 2011-01-20 2013-09-24 Trimble Navigation Limited Integrated surveying and leveling
CN102264097B (en) * 2011-08-26 2013-11-06 北京铭润创展科技有限公司 Method for positioning GSM (global system for mobile communication) mobile communication network terminal
CN105892238B (en) * 2011-08-31 2018-04-13 Asml荷兰有限公司 Determine the modified method of focal position, photoetching treatment member and device making method
CN103324036A (en) * 2013-07-04 2013-09-25 中国科学院光电技术研究所 Device and method for detecting ratio and distortion of projection objective
CN104006777B (en) * 2014-06-10 2017-06-13 清华大学 A kind of two-dimensional large-stroke precision stage measuring system self-calibrating method
CN104236501A (en) * 2014-09-22 2014-12-24 上海市计量测试技术研究院 Self-calibration method for grid point system error of two-dimensional grid plate
KR20230130161A (en) * 2015-02-23 2023-09-11 가부시키가이샤 니콘 Measurement device, lithography system and exposure device, and management method, superposition measurement method and device manufacturing method
CN105261067A (en) * 2015-11-04 2016-01-20 深圳职业技术学院 Overground and underground integrated modeling method based on true 3D volumetric display technique and system

Also Published As

Publication number Publication date
WO2020001557A1 (en) 2020-01-02
CN110657743B (en) 2021-08-31
TWI739122B (en) 2021-09-11
CN110657743A (en) 2020-01-07

Similar Documents

Publication Publication Date Title
TWI645267B (en) Optical measuring device and method
CN109856926B (en) Orthogonalization debugging device and method for positioning motion platform of direct-writing lithography exposure equipment
US20140180620A1 (en) Calibration Artifact and Method of Calibrating a Coordinate Measuring Machine
CN109916342A (en) A kind of locating platform straight line degree measurement system and method
CN101694370B (en) Method for evaluating precision of large-scale industrial photogrammetry system and benchmark device
CN108072319A (en) The Fast Calibration system and scaling method of a kind of motion platform
WO2002016868A1 (en) Positional error evaluation method for mobile device and movement accuracy improving method based on the evaluation result
US8352886B2 (en) Method for the reproducible determination of the position of structures on a mask with a pellicle frame
CN108303023A (en) A kind of method of ultraprecise two-dimension moving platform system place precision compensation
KR102350332B1 (en) Optical measurement apparatus and method
CN101183222B (en) Measurement method of focusing levelling light spot horizontal position
TWI739122B (en) Measuring method, measuring device and optical equipment for grid error
CN106814557B (en) A kind of pair of Barebone and alignment methods
CN104977812A (en) Exposure apparatus and method for manufacturing article
CN100455445C (en) Apparatus for measuring the physical properties of a surface and a pattern generating apparatus
CN108645392B (en) Camera installation posture calibration method and device
TW201826039A (en) Optical measurement device and method
CN106444374B (en) Six degree of freedom relative motion based on 2D-PSD measures modeling method
JPH0474854B2 (en)
CN107687933A (en) A kind of distorting lens system high accuracy rigid body displacement detection method and device
CN107024185A (en) A kind of basal surface type measuring method and measurement apparatus
CN109141385B (en) Positioning method of total station instrument without leveling
CN103246152A (en) Method of determining overlay error and control system for dynamic control of reticle position
CN109732643B (en) Calibration device and method for mechanical arm
CN113177987A (en) Outfield global calibration method and system of visual tracking measurement system