TW202017783A - Method for tire force reserve estimation - Google Patents
Method for tire force reserve estimation Download PDFInfo
- Publication number
- TW202017783A TW202017783A TW107139966A TW107139966A TW202017783A TW 202017783 A TW202017783 A TW 202017783A TW 107139966 A TW107139966 A TW 107139966A TW 107139966 A TW107139966 A TW 107139966A TW 202017783 A TW202017783 A TW 202017783A
- Authority
- TW
- Taiwan
- Prior art keywords
- wheel
- longitudinal
- lateral
- force
- grip
- Prior art date
Links
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
本發明有關於車輛行駛動態之監控,特別是關於一種車輪抓地力裕度估測方法。The invention relates to the monitoring of vehicle driving dynamics, in particular to a method for estimating the wheel grip margin.
車輛於轉彎過程中,需要車輪側向力維持車輛在車道中,使得車輛不會因離心力偏離車道。此時部分的車輪力會被側向力占用,使得剩餘最大可用車輪縱向力下降,而使得車輪可能出現打滑空轉。另外,在轉彎車道中,加減速期間會需要更多側向力以應付不同路況,此時,必須適度降低縱向力以滿足側向需求,否則可能發生車輪側向打滑飄移。現有先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)大多是在感知到打滑現象發生時,才發出警示並介入進行車輪力調整分配,包含介入煞車系統對個別車輪進行煞車減速,或重新分配各車輪的輸出)。During the turning of the vehicle, the lateral force of the wheels is required to maintain the vehicle in the lane, so that the vehicle will not deviate from the lane due to centrifugal force. At this time, part of the wheel force will be occupied by the lateral force, so that the remaining maximum longitudinal force of the wheel decreases, and the wheel may slip and spin. In addition, in turning lanes, more lateral force is required during acceleration and deceleration to cope with different road conditions. In this case, the longitudinal force must be moderately reduced to meet the lateral demand, otherwise the wheel may slip sideways. Most of the existing Advanced Driver Assistance Systems (ADAS) only issue warnings and intervene in wheel force adjustment and distribution when they sense slippage, including intervening in the brake system to brake the individual wheels to slow down, or redistribute each wheel Output).
若能估測剩餘最大可用車輪力(包含縱向力及側向力),則ADAS系統將可提早發出警示,甚至直接介入對個別車輪的控制,就能夠避免打滑現象發生。上述估測也能應用於自動駕駛系統,讓自動駕駛在剩餘最大可用車輪力足夠的情況下,對車輛進行較為激烈的操作(快速轉向或快速變換車道)。If the remaining maximum available wheel force (including longitudinal force and lateral force) can be estimated, the ADAS system will be able to issue a warning early, and even directly intervene in the control of individual wheels to avoid slipping. The above estimation can also be applied to automatic driving systems, allowing automatic driving to perform more drastic operations on the vehicle (fast steering or rapid lane changes) when the remaining maximum available wheel force is sufficient.
鑑於上述問題,本發明提出一種車輪抓地力裕度估測方法,透過車輛動態資訊的偵測,估測各車輪的抓地力裕度。In view of the above problems, the present invention proposes a wheel grip margin estimation method, which estimates the grip margin of each wheel through the detection of vehicle dynamic information.
為了達成上述目的,本發明提出一種車輪抓地力裕度估測方法,用於估測一車輛的車輪抓地力裕度;其中車輛具有一車身質量、一重心與多個車輪,且該些車輪至少包含一對轉向輪;重心具有一離地高,輪胎的滾動指向定義為一縱向,且於一水平面上垂直於滾動指向的方向定義為一側向;車輪抓地力裕度估測方法包含:得到各車輪對一地面的一初始正向力;依據車輛的一縱向加速度、一側向加速度、車身質量、各車輪的一車輪質量,以及各車輪與重心的相對位置,得到對各車輪的縱向負載轉移以及側向負載轉移;以縱向負載轉移以及側向負載轉移修正初始正向力,得到各車輪的一當前正向力;依據各車輪的一車輪輪速、一車輪扭矩、一車輪滾動有效半徑、一車輪轉動慣量以及一車輪旋轉角度隨時間的變化,得到各車輪的一當前縱向力;依據車輛的側向加速度、車輛的一偏航角加速度、轉向輪相對於縱向的一轉向角,各車輪的當前縱向力以及各車輪的當前正向力,得到車輪的側向力總和;取得各車輪的一當前側向力;以及依據各車輪當前正向力、各車輪相對於道路的一道路摩擦係數、當前縱向力以及當前側向力,得到各車輪的一縱向抓地力裕度以及一側向抓地力裕度。In order to achieve the above object, the present invention proposes a wheel grip margin estimation method for estimating the wheel grip margin of a vehicle; wherein the vehicle has a body mass, a center of gravity and a plurality of wheels, and the wheels have at least Contains a pair of steering wheels; the center of gravity has a height above the ground, the rolling direction of the tire is defined as a longitudinal direction, and the direction perpendicular to the rolling direction on a horizontal plane is defined as a lateral direction; the method for estimating the wheel grip margin includes: An initial positive force of each wheel to a ground; based on a longitudinal acceleration of the vehicle, a lateral acceleration, body mass, a wheel mass of each wheel, and the relative position of each wheel and the center of gravity, the longitudinal load on each wheel is obtained Transfer and lateral load transfer; correct the initial forward force by longitudinal load transfer and lateral load transfer to obtain a current positive force of each wheel; according to each wheel's wheel speed, wheel torque, and wheel rolling effective radius , A wheel's moment of inertia and a wheel's rotation angle change with time to obtain a current longitudinal force of each wheel; according to the lateral acceleration of the vehicle, a yaw angle acceleration of the vehicle, and a steering angle of the steering wheel relative to the longitudinal direction, each The current longitudinal force of the wheels and the current forward force of each wheel to obtain the sum of the lateral forces of the wheels; obtain a current lateral force of each wheel; and according to the current forward force of each wheel and a road friction of each wheel relative to the road The coefficient, the current longitudinal force and the current lateral force yield a longitudinal grip margin and lateral grip margin for each wheel.
本發明可以有效估測個別車輪的縱向抓地力裕度以及側向抓地力裕度,在裕度不足時,及早發出警示讓駕駛人改變對車輛的操作,甚至讓先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)在車輪打滑發生前提早介入,可以有效提昇行車安全。車輪抓地力裕度估測方法更可進一步應用於自駕車系統,對行駛策略進行估測,並免自駕車系統做出可能造成打滑的行使決策。The invention can effectively estimate the longitudinal grip margin and lateral grip margin of individual wheels. When the margin is insufficient, an early warning is issued to let the driver change the operation of the vehicle, and even advanced driver assistance system (Advanced Driver Assistance) Systems; ADAS) Early intervention before wheel slip occurs can effectively improve driving safety. The wheel grip margin estimation method can be further applied to the self-driving system to estimate the driving strategy and prevent the self-driving system from making exercise decisions that may cause skidding.
請參閱圖1所示,為一種車輛控制系統,適用於執行本發明實施例所揭露的車輪抓地力裕度估測方法,以在安全範圍內執行車輛的轉向作業。車輛控制系統包含有一微處理器110、一儲存裝置120、一縱向加速規130、一側向加速規140、一車輪轉角感測器150、一煞車壓力感應器160、一扭矩感應器170、一偏航角感應器180以及一轉向角感應器190。Please refer to FIG. 1, which is a vehicle control system, which is suitable for performing the wheel grip margin estimation method disclosed in the embodiment of the present invention to perform the steering operation of the vehicle within a safe range. The vehicle control system includes a
請參閱圖1以及圖2所示,基於上述車輛控制系統,本發明實施例提出一種車輪抓地力裕度估測方法,用於估測車輛的抓地力裕度,避免車輪在轉向時發生打滑現象。車輛具有一車身質量、一重心以及多個車輪。車身質量、重心的位置可事先透過實際量測或由車輛規格書取得。車輪一般為四個,分別為右前輪、左前輪、右後輪以及左後輪rl 。其中,右前輪、左前輪通常為車輛的一對轉向輪。車輪本身也有其車輪質量以及車輪滾動有效半徑,而可據以計算車輪轉動慣量。車輪抓地力裕度估測方法係可分別以四個車輪為各車輪,分別判斷各車輪的抓地力是否足夠。Please refer to FIG. 1 and FIG. 2. Based on the above vehicle control system, an embodiment of the present invention proposes a method for estimating the wheel grip margin, which is used to estimate the vehicle’s grip margin to avoid wheel slip during steering. . The vehicle has a body mass , A center of gravity and multiple wheels. Body mass The position of the center of gravity can be obtained through actual measurement in advance or from the vehicle specification. There are generally four wheels, the right front wheel Front left wheel , Right rear wheel And the left rear wheel rl . Among them, the right front wheel Front left wheel Usually a pair of steering wheels of a vehicle. The wheel itself also has its wheel quality And the effective radius of the wheel rolling , And the wheel moment of inertia can be calculated accordingly . The wheel grip margin estimation method can use four wheels as the wheels to determine whether each wheel has sufficient grip.
前述抓地力裕度,係指車輪所承受的水平力與車輪對地面最大抓地力之間的差距;車輪對地面最大抓地力(即為車輪能到達的最大車輪力)需要大於車輪目前所提供的車輪力(即為車輪所承受的水平力,包含縱向力以及側向力),才能避免車輪打滑。The aforementioned grip margin refers to the difference between the horizontal force received by the wheel and the maximum grip force of the wheel to the ground; the maximum grip force of the wheel to the ground (that is, the maximum wheel force that the wheel can reach) needs to be greater than that currently provided by the wheel Wheel force (that is, the horizontal force that the wheel bears, including longitudinal force And lateral force ) To avoid wheel slip.
前述車輛的重心具有一離地高,車輛輪胎的滾動指向定義為一縱向,且於一水平面上垂直於輪胎滾動指向的方向定義為一側向。The center of gravity of the aforementioned vehicle has a height above the ground The rolling direction of the vehicle tire is defined as a longitudinal direction, and the direction perpendicular to the rolling direction of the tire on a horizontal plane is defined as a lateral direction.
首先,微處理器110依據車身質量、車輪與重心的相對位置,分別得到各車輪對地面的初始正向力,如步驟S110所示。First, the
前述初始正向力中,分別代表、、與四個車輪,所謂正向力即為車輪承受車身重量的垂直負載。車身質量、車輪質量與重心的相對位置通常為固定不變的數值,因此微處理器110可以經過一次計算後得到各車輪的初始正向力,而將初始正向力儲存於儲存裝置120,後續微處理器110重新執行該方法時,直接由儲存裝置120載入初始正向力即可,不需每次都重新計算。甚至,車身質量、車輪質量與重心的相對位置、初始正向力都可以直接由外部取得,例如針對車型由資料庫下載後直接儲存於儲存裝置120。Initial positive force in, Representing , , versus Four wheels, the so-called forward force is the vertical load that the wheels bear the weight of the body. Body mass Wheel quality The relative position with the center of gravity is usually a fixed value, so the
依據車輛的移動狀態,縱向加速規130與側向加速規140持續偵測車輛縱向加速度以及側向加速度。在車輛移動的狀態下,各車輪的接地正向力不再是初始正向力,而是受車身質量加速度的影響產生負載轉移的現象。因此,微處理器110接著依據縱向加速度、側向加速度、車身質量、車輪質量,以及各車輪與重心的相對位置,得到對各車輪的縱向負載轉移以及側向負載轉移,,如步驟S120所示。縱向負載轉移以及側向負載轉移,的估測方式如下:(1)(2)(3)According to the moving state of the vehicle, the
其中,為前軸到後軸的距離,為各車輪質量,為車輛重心至前軸的距離,為車輛重心至後軸的距離。among them, Is the distance from the front axle to the rear axle, For the quality of each wheel, Is the distance from the center of gravity of the vehicle to the front axle, The distance from the center of gravity of the vehicle to the rear axle.
有了縱向負載轉移以及側向負載轉移,,微處理器110即可依據縱向負載轉移以及側向負載轉移,修正初始正向力,得到各車輪的一當前正向力,如步驟S130所示。(4)(5)(6)(7)With longitudinal load transfer And lateral load transfer , , The
其中,分別代表、、與四個車輪。among them, Representing , , versus Four wheels.
車輪的縱向力,主要與車輪本身的轉動動態有關,包含車輪輪速、車輪角加速度以及車輪扭矩。微處理器110係透過車輪轉角感測器150取得車輪旋轉角度與車輪輪速,再依據車輪旋轉角度隨時間的變化,得到車輪角加速度。(8)Wheel longitudinal force , Mainly related to the rotation dynamics of the wheel itself, including the wheel speed , Wheel angular acceleration And wheel torque . The
車輪角加速度結合車輪滾動有效半徑、車輪轉動慣量,可列出與當前縱向力相關的轉矩平衡公式:(9)Wheel angular acceleration Combined with wheel rolling effective radius , Wheel inertia , Which can be listed with the current longitudinal force Related torque balance formula: (9)
前述車輪扭矩包含煞車扭力以及驅動扭力。其中,微處理器110透過煞車壓力感應器160取得煞車壓力數值後,即可依據煞車規格換算得到煞車扭力。驅動扭力可由扭矩感應器170直接量測車輛動力系統對車輪的扭力輸出。(10)Wheel torque Including brake torque And drive torque . After the
車輪扭矩也不排除用單一扭矩感應裝置,直接由車輪偵測取得。有了上述數據的估測,則可估測當前縱向力。估測的方法係將狀態向量定義為,輸入訊號,輸出訊號為,可改寫成如方程式(11)、(12)及(13)所示:(11)(12)(13)Wheel torque It does not exclude the use of a single torque sensing device, which is directly obtained by wheel detection. With the estimation of the above data, the current longitudinal force can be estimated . The estimation method defines the state vector as , Input signal , The output signal is , Can be rewritten as shown in equations (11), (12) and (13): (11) (12) (13)
其中為系統矩陣,為輸入向量,為輸出向量。among them Is the system matrix, Is the input vector, Is the output vector.
接著將連續時間下的狀態空間運動模型,轉換為離散時間下的狀態空間方程式,並使用卡爾曼濾波器估測出回饋增益值。轉換成離散方程式(14)如下,再藉由卡爾曼估測器計算出四個車輪的當前縱向力、、和:(14)(15)Then, the state space motion model in continuous time is converted into the state space equation in discrete time, and the feedback gain value is estimated using a Kalman filter. Convert to discrete equation (14) as follows, and then use the Kalman estimator to calculate the current longitudinal forces of the four wheels , , with : (14) (15)
如圖3所示前述車輪滾動有效半徑、車輪轉動慣量可事先量測計算,或直接依據車型規格由資料庫下載儲存於儲存裝置120中,並由微處理器110在需要時載入。因此,在取得車輪輪速、車輪扭矩及車輪旋轉角度隨時間的變化之後,微處理器110即可依據各車輪的車輪輪速、車輪扭矩、車輪滾動有效半徑、車輪轉動慣量以及車輪旋轉角度隨時間的變化,得到各車輪的當前縱向力,如步驟S140所示。As shown in Figure 3, the effective radius of the aforementioned wheel rolling , Wheel inertia It can be measured and calculated in advance, or downloaded and stored in the
要得到各車輪的當前側向力,需先由車身的側向動態得到該些車輪的側向力總和(由車身在側向上對所有車輪作用的總力)。偏航角感應器180係持續偵測車輛的偏航角,且轉向角感應器190持續偵測轉向輪相對於縱向的一轉向角。微處理器110依據車輛的側向加速度、車輛的一偏航角隨時間的變化、轉向輪相對於縱向的一轉向角、各車輪的當前縱向力以及各車輪的當前正向力,得到車輪的側向力總和,如步驟S150所示。其中,偏航角隨時間的變化,主要係用於計算偏航角速度,以進一步估測偏航角加速度。To get the current lateral force of each wheel , The total lateral force of these wheels must be obtained from the lateral dynamics of the vehicle body (the total force exerted by the vehicle body on all wheels in the lateral direction). The yaw angle sensor 180 continuously detects the yaw angle of the vehicle , And the steering angle sensor 190 continuously detects a steering angle of the steering wheel relative to the longitudinal direction . The
側向力總和的取得可以由力平衡建立連立方程式如下:(16)(17)The total lateral force can be obtained by establishing a simultaneous equation from the force balance as follows: (16) (17)
接著將聯立方程式(16)、(17)化簡後可得到方程式(18)、(19),進而將數值直接帶入即可:(18)(19)Then simplify the simultaneous equations (16), (17) to obtain equations (18), (19), and then directly bring the values into: (18) (19)
前述偏航角加速度可以利用偏航角速度搭配卡爾曼估測器做估測,偏航角、偏航角速度及偏航角加速度的關係如(20)所示:(20)Yaw angular acceleration Yaw rate can be used Estimation with Kalman Estimator, yaw angle Yaw rate Yaw angular acceleration The relationship is shown in (20): (20)
由上述方程式,即可獲得在連續時間下狀態空間表示式,如方程式(21)所示:(21)(22)From the above equation, the state space expression in continuous time can be obtained, as shown in equation (21): (twenty one) (twenty two)
為狀態向量,輸入。 Is a state vector, enter.
接著將連續時間下的狀態空間方程式,利用forward rectangular rule轉換為在離散時間下的狀態空間方程式,如(23)與(24)所示:(23)(24)Next, the state space equations in continuous time are converted into state space equations in discrete time using forward rectangular rule, as shown in (23) and (24): (twenty three) (twenty four)
其中,,為系統的干擾雜訊,T 為取樣時間,為系統輸出,為輸出矩陣,而和表示如方程式(25):(25)among them , , Is the interference noise of the system, T is the sampling time, For system output, Is the output matrix, and with It is expressed as equation (25): (25)
利用上述的運動模型,使用卡爾曼濾波器配合回饋增益矩陣,因為無法量測,將其假設為0,以進行閉迴路狀態估測,如方程式(26)及(27)所示:(26)(27)Using the aforementioned motion model, a Kalman filter is used in conjunction with the feedback gain matrix, because It cannot be measured, and it is assumed to be 0 for closed-loop state estimation, as shown in equations (26) and (27): (26) (27)
其中為估測的系統狀態,為回饋增益矩陣。among them To estimate the state of the system, It is the feedback gain matrix.
微處理器110再以車輪的當前縱向力總和與各車輪的當前縱向力,分配當前側向力總和,取得各車輪的當前側向力,如步驟S160所示。微處理器110並依據當前正向力及各車輪相對於道路的道路摩擦係數,取得各車輪的最大抓地力,如步驟S170所示。The
最後,微處理器110以最大抓地力 , 、當前縱向力以及當前側向力得到各車輪的縱向抓地力裕度以及側向抓地力裕度,如步驟S180所示。Finally, the
由於最大抓地力受限於道路摩擦係數,以各車輪的當前縱向力與各車輪的當前側向力的摩擦圓關係進行各個車輪的車輪抓地力裕度估測,如方程式(28)、(29)所示,係先得到各車輪的最大縱向抓地力以及最大側向抓地力。(28)(29)Because the maximum grip is limited by the road friction coefficient , With the current longitudinal force of each wheel Current lateral force with each wheel The friction circle relationship is used to estimate the wheel grip margin of each wheel. As shown in equations (28) and (29), the maximum longitudinal grip of each wheel is obtained first And maximum lateral grip . (28) (29)
其中分別代表、、、為各個車輪最大縱向抓地力。為各個車輪最大側向抓地力。among them Representing , , , Maximum longitudinal grip for each wheel. Maximum lateral grip for each wheel.
接著,以最大縱向抓地力減去當前縱向力,即為縱向車輪抓地力裕度;以最大側向抓地力減去當前縱向力,即為側向車輪抓地力裕度。(30)Then, with maximum longitudinal grip Minus the current longitudinal force , Which is the longitudinal wheel grip margin ; With maximum lateral grip Minus the current longitudinal force , Which is the lateral wheel grip margin . (30)
為各個車輪的縱向車輪抓地力裕度。為各個車輪的側向車輪抓地力裕度。為最大道路摩擦係數,可利用輪胎側滑角與轉向輪回正力矩的估測後,算出輪胎側滑角以及估測的回正力矩的 Timewindow,使用 stateflow 判斷式,先判斷最大道路摩擦系數可能範圍,再求出最大道路摩擦係數,找出最大道路摩擦係數範圍。或,最大道路摩擦系數可採用資料庫記錄,依據車輛所在路段地點以及天候,由資料庫擷取對應的最大道路摩擦系數。 The longitudinal wheel grip margin for each wheel. The lateral wheel grip margin for each wheel. For the maximum road friction coefficient, the tire side slip angle and the steering wheel return torque can be used to calculate the tire side slip angle and the estimated return torque of Timewindow. Using the stateflow judgment formula, first determine the maximum road friction coefficient possible range , And then find the maximum road friction coefficient to find the range of maximum road friction coefficient. Or, the maximum road friction coefficient can be recorded in a database, and the corresponding maximum road friction coefficient can be retrieved from the database according to the location of the road section where the vehicle is located and the weather.
有了縱向抓地力裕度以及側向抓地力裕度,ADAS系統即可用於介入車輛的行駛,避免車輪在縱向打滑(空轉)或側向打滑(側向飄移)。例如,微處理器110可載入一門檻值,縱向抓地力裕度或側向抓地力裕度小於門檻值,產生一車輪打滑警示。前述的車輪打滑警示,可以是單純地以資訊顯示提供給駕駛人,以使駕駛人對車輛操作進行減速或減少轉向角度。或,依據車輪打滑警示,由微處理器110介入煞車或車輪動力分配。於自動駕駛的場合,則由自動駕駛系統依據車輪打滑警示,修正車速以及規劃路徑(特別是變化車道時,車輛在兩車道之間橫向移動的速度)。With longitudinal grip margin And the lateral grip margin , ADAS system can be used to intervene in the driving of the vehicle to avoid the wheels slipping in the longitudinal direction (idling) or sideways (sideways drifting). For example, the
請參閱圖4、圖5、圖6以及圖7所示,為車輪抓地力裕度估測方法與Mechanical Simulation發行的CarSim(車輛模擬分析軟體)的比較,採用的車輛參數如圖4所示,比較情境一為車輛於直線的加減速,速度變化如圖5所示,車輛以約50km/hr的初速開始加速後再減速至40km/hr,圖中Vx為車輛秒速(公尺/秒)。Please refer to Figure 4, Figure 5, Figure 6 and Figure 7 for a comparison of the wheel grip margin estimation method with CarSim (vehicle simulation analysis software) issued by Mechanical Simulation. The vehicle parameters used are shown in Figure 4. Comparative scenario 1 is the acceleration and deceleration of the vehicle in a straight line. The speed change is shown in Figure 5. The vehicle starts accelerating at an initial speed of about 50km/hr and then decelerates to 40km/hr. Vx in the figure is the vehicle's second speed (meter/second).
如圖6所示,前輪為驅動輪而在加速過程中用掉縱向抓地力,因此在10秒前的加速過程中,前輪的縱向抓地力裕度下降;而在10秒後的減速裡,開始減速時有一個向上的響應,而一瞬間增加輪胎力裕度造成前輪的縱向抓地力裕度回升,後續因為各車輪煞車減速,而消耗縱向抓地力裕度,而再消耗縱向抓地力裕度,使縱向抓地力裕度下降。再如圖7所示,由於車輛沒有側向動態,因此側向抓地力裕度主要受到因垂直負載轉移影響,加速過程因垂直負載主要移轉至後輪,而減速時垂直負載主要移轉至前輪,而使得10秒前後有明顯的側向抓地力裕度變化。As shown in Figure 6, the front wheel uses longitudinal grip during acceleration to drive the wheel, so during
參閱圖8、圖9以及圖10,比較情境二為車輛於變換車道進行超車。如圖9與圖10,0~5秒時為直線運動,因此縱向抓地力裕度以及側向抓地力裕度維持不變。接著開始進行轉向之後,前後輪的側向抓地力裕度都有明顯的變化,而連帶的因為摩擦圓的比例關係,改變縱向抓地力裕度。最後,當變換車道完成後,縱向抓地力裕度以及側向抓地力裕度又回復到初始狀態。Referring to FIG. 8, FIG. 9 and FIG. 10, the comparison scenario 2 is that the vehicle overtakes while changing lanes. As shown in Fig. 9 and Fig. 10, the movement is linear from 0 to 5 seconds, so the longitudinal grip margin And the lateral grip margin stay the same. After starting the steering, the lateral grip margin of the front and rear wheels There are obvious changes, and because of the proportional relationship of the friction circle, the longitudinal grip margin is changed. . Finally, when the lane change is completed, the longitudinal grip margin And the lateral grip margin Reverted back to the initial state.
本發明可以有效估測各別車輪的縱向抓地力裕度以及側向抓地力裕度,在裕度不足時,及早發出警示讓駕駛人改變對車輛的操作,甚至讓先進駕駛輔助系統(Advanced Driver Assistance Systems;ADAS)在車輪打滑發生前提早介入,可以有效提昇行車安全。車輪抓地力裕度估測方法更可進一步應用於自駕車系統,對行駛策略進行估測,並免自駕車系統做出可能造成打滑的行使決策。The invention can effectively estimate the longitudinal grip margin of each wheel And the lateral grip margin When the margin is insufficient, an early warning is issued to let the driver change the operation of the vehicle, and even Advanced Driver Assistance Systems (ADAS) can intervene before the wheel slip occurs, which can effectively improve driving safety. The wheel grip margin estimation method can be further applied to the self-driving car system to estimate the driving strategy and prevent the self-driving car system from making exercise decisions that may cause skidding.
110:微處理器120:儲存裝置130:縱向加速規140:側向加速規150:車輪轉角感測器160:煞車壓力感應器170:扭矩感應器180:偏航角感應器190:轉向角感應器S140~S180:步驟110: Microprocessor 120: Storage device 130: Vertical acceleration gauge 140: Lateral acceleration gauge 150: Wheel angle sensor 160: Brake pressure sensor 170: Torque sensor 180: Yaw angle sensor 190: Steering angle sensor S140~S180: Steps
圖1為車輛控制系統的系統方塊圖,用於執行車輪抓地力裕度估測方法。 圖2以及圖3為本發明實施例的方法流程圖。 圖4為用於估測的車輛參數。 圖5為用於直線加減速過程的速度變化。 圖6為各車輪的縱向裕度隨時間的變化。 圖7為各車輪的側向裕度隨時間的變化。 圖8為車輛變換車道的示意圖。 圖9為各車輪的縱向裕度隨時間的變化。 圖10為各車輪的側向裕度隨時間的變化。FIG. 1 is a system block diagram of a vehicle control system for performing a wheel grip margin estimation method. 2 and 3 are flowcharts of the method according to an embodiment of the invention. Figure 4 shows the estimated vehicle parameters. Figure 5 shows the speed change used in the linear acceleration and deceleration process. Figure 6 shows the variation of the longitudinal margin of each wheel with time. Fig. 7 is the change of the lateral margin of each wheel with time. 8 is a schematic diagram of a vehicle changing lanes. Figure 9 shows the variation of the longitudinal margin of each wheel with time. Fig. 10 shows the variation of the lateral margin of each wheel with time.
S140~S180:步驟 S140~S180: Steps
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107139966A TWI672235B (en) | 2018-11-09 | 2018-11-09 | Method for tire force reserve estimation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107139966A TWI672235B (en) | 2018-11-09 | 2018-11-09 | Method for tire force reserve estimation |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI672235B TWI672235B (en) | 2019-09-21 |
TW202017783A true TW202017783A (en) | 2020-05-16 |
Family
ID=68618983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107139966A TWI672235B (en) | 2018-11-09 | 2018-11-09 | Method for tire force reserve estimation |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI672235B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11560152B2 (en) | 2020-12-23 | 2023-01-24 | Automotive Research & Testing Center | Method and system for controlling movements of an autonomous vehicle with self diagnosis capability |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5435193A (en) * | 1994-03-31 | 1995-07-25 | Halliday; Donald R. | System and method for measuring the grip performance of a vehicle |
FR2918478B1 (en) * | 2007-07-04 | 2009-08-21 | Michelin Soc Tech | METHOD OF ESTIMATING THE ADHESIVE MARGIN AVAILABLE OF A TIRE IN ROLLING. |
FR2932264B1 (en) * | 2008-06-06 | 2010-07-30 | Michelin Soc Tech | METHOD OF ESTIMATING THE TRANSVERSAL ADHESION OF A PNEUMATIC TORQUE BY COMPARATIVE ANALYSIS |
FR2943417B1 (en) * | 2009-03-19 | 2011-06-10 | Michelin Soc Tech | METHOD FOR DETERMINING A WHEEL ADHESION COEFFICIENT BY SIMULTANEOUS CLAMP |
-
2018
- 2018-11-09 TW TW107139966A patent/TWI672235B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI672235B (en) | 2019-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109747632B (en) | Torque distribution method for double-power-source driven vehicle | |
US10328942B2 (en) | Motor vehicle controller and method | |
JP3539722B2 (en) | Road surface friction coefficient estimation device for vehicles | |
JP4829289B2 (en) | Vehicle attitude stabilization control method and apparatus | |
US9278693B2 (en) | System and method for improving vehicle performance on grade | |
US8682560B2 (en) | Vehicle stability control system and method | |
US20070112477A1 (en) | Optimization of a vehicle dynamics control using tire information | |
CN107685733B (en) | The estimation method of four motorized wheels electric car coefficient of road adhesion | |
US8103409B2 (en) | Vehicle height control apparatus using data communication between braking controller and suspension controller and control method thereof | |
US20130090828A1 (en) | Method for stabilizing a two-wheeled vehicle having a laterally slipping rear wheel | |
US20010029419A1 (en) | Road surface friction coefficient estimating apparatus | |
US11230272B2 (en) | Wheelie controller and control method thereof | |
EP2858870B1 (en) | Vehicle and method of control thereof | |
US10421360B2 (en) | Traction control considering wheel slip, pitch and heave | |
JP2008546586A (en) | Driving dynamic control method and driving dynamic controller for motorized single track vehicle | |
CN114375269B (en) | Apparatus and method for estimating road friction coefficient | |
KR20080105032A (en) | A method of determining vehicle properties | |
CN111231975B (en) | Wheel grip margin estimation method | |
CN109080608B (en) | Braking force control method for emergency braking of unmanned vehicle on rainy, snowy and slippery road surface | |
KR101961081B1 (en) | Apparatus for estimating road friction coefficient | |
US8024100B2 (en) | Method of controlling the path of a vehicle | |
TW202017783A (en) | Method for tire force reserve estimation | |
JP3271956B2 (en) | Road surface friction coefficient estimation device for vehicles | |
EP3109107B1 (en) | Flying car extended vehicle control method | |
CN109866624A (en) | The control device of vehicle and the control method of vehicle |