TW202011051A - Hybrid gradient-interference hardcoatings - Google Patents

Hybrid gradient-interference hardcoatings Download PDF

Info

Publication number
TW202011051A
TW202011051A TW107130811A TW107130811A TW202011051A TW 202011051 A TW202011051 A TW 202011051A TW 107130811 A TW107130811 A TW 107130811A TW 107130811 A TW107130811 A TW 107130811A TW 202011051 A TW202011051 A TW 202011051A
Authority
TW
Taiwan
Prior art keywords
refractive index
thickness
main surface
optical coating
gradient
Prior art date
Application number
TW107130811A
Other languages
Chinese (zh)
Inventor
羅伯特艾倫 貝爾曼
尚登笛 哈特
卡爾威廉 科赫三世
卡洛安東尼科希 威廉斯
查爾斯安德魯 波森
詹姆士喬瑟夫 布萊斯
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Priority to TW107130811A priority Critical patent/TW202011051A/en
Publication of TW202011051A publication Critical patent/TW202011051A/en

Links

Images

Abstract

The present disclosure describes embodiments directed to durable and scratch resistant articles that include an optical coating that includes a gradient portion. In some embodiments, an article comprises: a substrate comprising a first major surface; and an optical coating disposed over the first major surface. The optical coating comprises: a second major surface opposite the first major surface; a thickness in a direction normal to the second major surface; and a first gradient portion. A refractive index of the optical coating varies along a thickness of the optical coating between the first major surface and the second major surface. The difference between the maximum refractive index of the first gradient portion and the minimum refractive index of the first gradient portion is 0.1 or greater. The absolute value of the slope of the refractive index of the first gradient portion is 0.1/nm or less everywhere along the thickness of the first gradient portion. The article exhibits an average single-surface reflectance of 15 % to 98% over the wavelength range 400 nm - 700 nm, measured at the second major surface. The article also exhibits a maximum hardness in the range from about 10 GPa to about 30 GPa, wherein maximum hardness is measured on the second major surface by indenting the second major surface with a Berkovich indenter to form an indent comprising an indentation depth of about 100 nm or more from the surface of the second major surface. Refractive index "slope" is measured along the thickness direction over a refractive index change of 0.04.

Description

混合梯度干涉硬塗層Mixed gradient interference hard coating

本揭示內容係關於耐用且抗刮製品及製造其之方法,且更具體而言,係關於具有光學塗層之製品,所述光學塗層展現出抗磨性及抗刮性。光學塗層具有梯度部分,但仍展現出多層干涉堆疊之光學特性。The present disclosure relates to durable and scratch-resistant articles and methods of making them, and more specifically, to articles having an optical coating that exhibits abrasion resistance and scratch resistance. The optical coating has a gradient portion, but still exhibits the optical characteristics of a multilayer interference stack.

已知多層干涉堆疊易受耗損或磨損。這樣的磨損可損及多層干涉堆疊所能達成的任何光學性質改善。舉例而言,光學濾光片常由具不同折射係數的多層塗層製成,並由光學透明介電材料(如,氧化物、氮化物和氟化物)製成。用於此類光學濾光片的典型氧化物大多係寬能隙(band-gap)材料,所述材料不具備用於行動裝置、建築製品、運輸製品或電器製品所需的機械性質,例如硬度。氮化物和類鑽石塗層具高硬度值,但此類材料不具應用所需的透射率。Multilayer interference stacks are known to be susceptible to wear or wear. Such wear can compromise any improvement in optical properties achievable with multilayer interference stacks. For example, optical filters are often made of multi-layer coatings with different refractive indices and made of optically transparent dielectric materials (such as oxides, nitrides, and fluorides). Typical oxides used in such optical filters are mostly band-gap materials that do not possess the mechanical properties, such as hardness, required for mobile devices, construction products, transportation products, or electrical products . Nitride and diamond-like coatings have high hardness values, but such materials do not have the required transmission for applications.

磨損損壞可包括來自對立面物體(如,手指)之往復滑動接觸。此外,磨損損壞會產生熱,導致膜材料的化學鍵降解,並造成蓋玻璃剝落和其他損壞類型。由於磨損損壞通常歷時比引起刮痕的單一事件久,故遭磨損損壞的塗層材料亦會氧化而進一步降低塗層的耐用性。Wear damage can include reciprocating sliding contact from opposing objects (eg, fingers). In addition, wear damage can generate heat, leading to degradation of the chemical bonds of the membrane material, and causing peeling of the cover glass and other types of damage. Since wear damage usually lasts longer than the single event that caused scratches, the coating material damaged by wear will also oxidize and further reduce the durability of the coating.

已知多層干涉堆疊也容易刮損,且往往比設置有塗層的下層基板更易刮損。在一些情況中,明顯刮損部分包括微展(microductile)刮痕,此通常包括材料內的單一溝槽並具延伸長度和約100 nm至約500 nm的深度。微展刮痕可能伴隨其他可見損壞類型,例如次表面破裂、摩擦破裂、碎裂及/或磨損。證據指出大多數刮痕和其他可見損壞係由單一接觸事件發生的尖銳接觸引起。一旦出現明顯刮痕,製品外觀即變差,因為刮痕將造成光散射增加,導致光學性質顯著降低。單一事件刮損可對照磨損損壞。單一事件刮損既非由多個接觸事件引起,例如硬對立面物體(如,砂、礫和砂紙)往復滑動接觸,通常亦不會產生熱,致使膜材料的化學鍵降解,並造成剝落和其他損壞類型。此外,單一事件刮痕不會引起氧化或涉及造成磨損損害的相同條件,故常用於防止磨損損壞的解決方式亦無法避免刮痕。再者,已知刮痕和磨損損害解決方式常常損及光學性質。It is known that multilayer interference stacks are also prone to scratching and are often more prone to scratching than the underlying substrate provided with a coating. In some cases, the obvious scratches include microductile scratches, which usually include a single groove in the material and have an extension length and a depth of about 100 nm to about 500 nm. Slight scratches may be accompanied by other types of visible damage, such as subsurface cracking, friction cracking, chipping, and/or wear. Evidence indicates that most scratches and other visible damage are caused by sharp contact that occurs in a single contact event. Once obvious scratches appear, the appearance of the product deteriorates, because the scratches will cause increased light scattering, resulting in a significant decrease in optical properties. A single event of scratch damage can be compared to wear damage. Single event scratching is not caused by multiple contact events, such as hard opposing objects (such as sand, gravel, and sandpaper) sliding back and forth, usually does not generate heat, which causes the chemical bond of the membrane material to degrade and cause peeling and other damage Types of. In addition, a single event scratches will not cause oxidation or involve the same conditions that cause wear damage, so the solutions commonly used to prevent wear damage cannot avoid scratches. Furthermore, known scratch and wear damage solutions often compromise optical properties.

在多層干涉堆疊(其在堆疊的多個層之間具有尖銳界面)中,這樣的界面可能是堆疊對抗機械性損壞之能力的弱點。In a multilayer interference stack (which has a sharp interface between multiple layers of the stack), such an interface may be the weak point of the stack's ability to resist mechanical damage.

因此,需要新的光學塗層及製造其之方法,所述光學塗層抗磨、抗刮並具有改良的光學性質,也具有相較於多層干涉堆疊更為改良的機械性能。Therefore, there is a need for new optical coatings and methods of making the same, which are resistant to abrasion, scratches, and have improved optical properties, as well as improved mechanical properties compared to multilayer interference stacks.

本揭示內容描述了涉及耐用且抗刮之製品的實施例,所述製品包括光學塗層,所述塗層包括梯度部分。The present disclosure describes embodiments involving durable and scratch-resistant articles that include an optical coating that includes a gradient portion.

在某些實施例中,製品包含:基板,包含第一主表面;及光學塗層,設置於第一主表面上方。光學塗層包含:第二主表面,相對於第一主表面;厚度,在垂直於第二主表面之方向上;及第一梯度部分。光學塗層的折射係數沿著介於第一主表面與第二主表面之間的光學塗層的厚度而變化。第一梯度部分的最大折射係數與第一梯度部分的最小折射係數之差為0.1或更大。在沿著第一梯度部分之厚度的每處,第一梯度部分之折射係數的斜率的絕對值為0.1 / nm或更小。製品展現出:在該第二主表面處測量,於波長範圍400 nm至700 nm內之一平均單一表面反射率為15 %至98%。製品也展現出:在自約10 GPa至約30 GPa的範圍內之最大硬度,其中藉由以Berkovich壓頭壓入第二主表面以形成壓痕,以於第二主表面上測量最大硬度,所述壓痕包含從第二主表面之表面起算約100 nm或更大之壓痕深度。在0.04之折射係數變化的範圍內,沿著厚度方向測量折射係數「斜率(slope)」。In some embodiments, the article includes: a substrate including a first major surface; and an optical coating disposed above the first major surface. The optical coating includes: a second major surface, relative to the first major surface; a thickness, in a direction perpendicular to the second major surface; and a first gradient portion. The refractive index of the optical coating varies along the thickness of the optical coating between the first main surface and the second main surface. The difference between the maximum refractive index of the first gradient part and the minimum refractive index of the first gradient part is 0.1 or more. At every location along the thickness of the first gradient portion, the absolute value of the slope of the refractive index of the first gradient portion is 0.1/nm or less. The article exhibits: an average single surface reflectivity of 15% to 98% in one of the wavelength ranges 400 nm to 700 nm measured at the second main surface. The product also exhibits a maximum hardness in the range from about 10 GPa to about 30 GPa, wherein the maximum hardness is measured on the second main surface by forming an indentation by pressing into the second main surface with a Berkovich indenter, The indentation includes an indentation depth of about 100 nm or more from the surface of the second main surface. Within the range of 0.04 refractive index changes, the refractive index "slope" is measured along the thickness direction.

在某些實施例中,就本文描述之任何實施例而言,介於第一梯度部分的最大折射係數與第一梯度部分的最小折射係數之間的差為0.3或更大。In some embodiments, for any of the embodiments described herein, the difference between the maximum refractive index of the first gradient portion and the minimum refractive index of the first gradient portion is 0.3 or greater.

在某些實施例中,就本文描述之任何實施例而言,於該第二主表面處測量,製品展現出5%至90%之平均透射率。In certain embodiments, for any embodiment described herein, the article exhibits an average transmittance of 5% to 90% as measured at the second major surface.

在某些實施例中,就本文描述之任何實施例而言,在沿著第一梯度部分之厚度的每處,光學塗層之折射係數的斜率的絕對值為0.02 / nm或更小,或0.012 / nm或更小。In certain embodiments, for any embodiment described herein, the absolute value of the slope of the refractive index of the optical coating is 0.02/nm or less at each location along the thickness of the first gradient portion, or 0.012/nm or less.

在某些實施例中,就本文描述之任何實施例而言,在沿著第一梯度部分之厚度的每處,光學塗層之折射係數的斜率的絕對值為0.001 / nm或更大,或0.005 / nm或更大。In certain embodiments, for any of the embodiments described herein, the absolute value of the slope of the refractive index of the optical coating is 0.001/nm or greater at each location along the thickness of the first gradient portion, or 0.005/nm or more.

在某些實施例中,就本文描述之任何實施例而言,光學塗層進一步包含高硬度部分。高硬度部分的厚度為200nm或更多,或1000nm或更多。高硬度部分中之平均折射係數為1.6或更大。高硬度部分的最大硬度為10 GPa或更大,其中藉由以Berkovich壓頭壓入該厚的高硬度部分以形成壓痕,來測量最大硬度,所述壓痕包含約100 nm或更大之壓痕深度。In certain embodiments, for any of the embodiments described herein, the optical coating further includes a high hardness portion. The thickness of the high-hardness portion is 200 nm or more, or 1000 nm or more. The average refractive index in the high-hardness portion is 1.6 or more. The maximum hardness of the high-hardness portion is 10 GPa or greater, wherein the maximum hardness is measured by pressing the thick high-hardness portion with a Berkovich indenter to form an indentation, the indentation including about 100 nm or more Indentation depth.

在某些實施例中,就本文描述之任何實施例而言,就高硬度部分之厚度的95%或更多而言,高硬度部分之最大折射係數與高硬度部分之最小折射係數之間的差為0.05或更小。In some embodiments, for any of the embodiments described herein, between 95% or more of the thickness of the high hardness portion, the maximum refractive index of the high hardness portion and the minimum refractive index of the high hardness portion The difference is 0.05 or less.

在某些實施例中,就本文描述之任何實施例而言,沿著高硬度部分的厚度的每處,高硬度部分的最大折射係數與高硬度部分的最小折射係數之間的差為0.05或更小。In certain embodiments, for any of the embodiments described herein, the difference between the maximum refractive index of the high hardness portion and the minimum refractive index of the high hardness portion is 0.05 or smaller.

在某些實施例中,就本文描述之任何實施例而言,在發明內容中的任何段落之實施例中,光學塗層沿著從第二主表面朝向第一主表面之厚度的方向,依序包含:第一梯度部分;以及與第一梯度部分接觸之高硬度部分。在高硬度部分接觸第一梯度部分處,高硬度部分的折射係數與第一梯度部分的最大折射係數之間的差為0.05或更小。In some embodiments, as far as any of the embodiments described herein, in the embodiments of any paragraph in the Summary of the Invention, the optical coating is along the direction of the thickness from the second major surface toward the first major surface, according to The sequence includes: the first gradient portion; and the high hardness portion in contact with the first gradient portion. Where the high hardness portion contacts the first gradient portion, the difference between the refractive index of the high hardness portion and the maximum refractive index of the first gradient portion is 0.05 or less.

在某些實施例中,就本文描述之任何實施例而言,光學塗層進一步包含第二梯度部分,第二梯度部分設置於高硬度部分與基板之間。第二梯度部分與高硬度部分接觸。第二梯度部分的最大折射係數與第二梯度部分的最小折射係數之間的差為0.05或更大。沿著第二梯度部分之厚度的每處,光學塗層之折射係數的斜率的絕對值為0.1 / nm或更小。In some embodiments, for any of the embodiments described herein, the optical coating further includes a second gradient portion, the second gradient portion being disposed between the high hardness portion and the substrate. The second gradient part is in contact with the high hardness part. The difference between the maximum refractive index of the second gradient part and the minimum refractive index of the second gradient part is 0.05 or more. At each location along the thickness of the second gradient portion, the absolute value of the slope of the refractive index of the optical coating is 0.1/nm or less.

在某些實施例中,就本文描述之任何實施例而言,第一梯度部分之折射係數在遠離第二主表面之方向上沿著厚度單調地增加。光學塗層進一步包含多層干涉堆疊,所述多層干涉堆疊包含不連續的層,該等不連續的層設置於高硬度部分與基板之間。In some embodiments, as with any of the embodiments described herein, the refractive index of the first gradient portion increases monotonically along the thickness in a direction away from the second major surface. The optical coating further includes a multi-layer interference stack that includes discontinuous layers that are disposed between the high-hardness portion and the substrate.

在某些實施例中,就本文描述之任何實施例而言,第一梯度部分之折射係數在遠離第二主表面之方向上沿著厚度單調地增加。光學塗層進一步包含第二梯度部分,所述第二梯度部分作為與基板之距離的函數而跨梯度部分的厚度作波動。In some embodiments, as with any of the embodiments described herein, the refractive index of the first gradient portion increases monotonically along the thickness in a direction away from the second major surface. The optical coating further includes a second gradient portion that fluctuates across the thickness of the gradient portion as a function of distance from the substrate.

在某些實施例中,就本文描述之任何實施例而言,光學塗層,沿著厚度從第二主表面朝向第一主表面之方向,依序包含:多層干涉堆疊,包含不連續的層;高硬度部分,與該多層干涉堆疊接觸;以及第一梯度部分,與高硬度部分接觸。高硬度部分與第一梯度部分接觸。高硬度部分的折射係數與第一梯度部分的最大折射係數之間的差為0.05或更少。第一梯度部分的折射係數在遠離第二主表面之方向上沿著厚度單調地減少。In some embodiments, in the case of any of the embodiments described herein, the optical coating, along the thickness from the second major surface toward the first major surface, in sequence includes: a multi-layer interference stack, including discrete layers ; The high-hardness portion is in contact with the multilayer interference stack; and the first gradient portion is in contact with the high-hardness portion. The high hardness portion is in contact with the first gradient portion. The difference between the refractive index of the high-hardness portion and the maximum refractive index of the first gradient portion is 0.05 or less. The refractive index of the first gradient portion monotonously decreases along the thickness in a direction away from the second main surface.

在某些實施例中,就本文描述之任何實施例而言,光學塗層僅由第一梯度部分、高硬度部分及多層干涉堆疊組成。光學塗層直接接觸基板,且其中第二主表面為最外側表面。In some embodiments, for any of the embodiments described herein, the optical coating consists only of the first gradient portion, the high hardness portion, and the multilayer interference stack. The optical coating directly contacts the substrate, and the second main surface is the outermost surface.

在某些實施例中,就本文描述之任何實施例而言,光學塗層僅由第一梯度部分、高硬度部分及第二梯度部分組成。光學塗層直接接觸基板,且其中第二主表面為最外側表面。In some embodiments, for any of the embodiments described herein, the optical coating consists only of the first gradient portion, the high hardness portion, and the second gradient portion. The optical coating directly contacts the substrate, and the second main surface is the outermost surface.

在某些實施例中,就本文描述之任何實施例而言,在光學塗層中的每處,光學塗層之折射係數的斜率的絕對值為0.1 / nm或更小。In certain embodiments, for any of the embodiments described herein, the absolute value of the slope of the refractive index of the optical coating is 0.1/nm or less at each point in the optical coating.

在某些實施例中,就本文描述之任何實施例而言,當在第二主表面測量時,就從0至60度的所有視角而言,製品展現出單側反射顏色範圍,所述單側反射顏色範圍包含數值為5或更小之所有a*點。In some embodiments, as far as any of the embodiments described herein, when measured on the second major surface, the article exhibits a single-sided reflection color range for all viewing angles from 0 to 60 degrees, the single The side reflection color range includes all a* points with a value of 5 or less.

在某些實施例中,就本文描述之任何實施例而言,當在第二主表面測量時,就從0至60度的所有視角而言,製品展現出單側反射顏色範圍,所述單側反射顏色範圍包含數值為5或更小之所有b*點。In some embodiments, as far as any of the embodiments described herein, when measured on the second major surface, the article exhibits a single-sided reflection color range for all viewing angles from 0 to 60 degrees, the single The side reflection color range includes all b* points with a value of 5 or less.

在某些實施例中,就本文描述之任何實施例而言,當在第二主表面測量時,就從0至60度的所有視角而言,製品展現出單側反射顏色範圍,所述單側反射顏色範圍包含數值為5或更小之所有a*點及所有b*點。In some embodiments, as far as any of the embodiments described herein, when measured on the second major surface, the article exhibits a single-sided reflection color range for all viewing angles from 0 to 60 degrees, the single The side reflection color range includes all a* points and all b* points with a value of 5 or less.

在某些實施例中,就本文描述之任何實施例而言,當在第二主表面測量時,就從0至90度的所有視角而言,製品展現出單側反射顏色範圍,所述單側反射顏色範圍包含絕對值為10或更小之所有a*點及所有b*點。In some embodiments, as far as any of the embodiments described herein, when measured on the second major surface, the article exhibits a single-sided reflection color range for all viewing angles from 0 to 90 degrees, the single The side reflection color range includes all a* points and all b* points with an absolute value of 10 or less.

在某些實施例中,就本文描述之任何實施例而言,當在第二主表面測量時,就從0至10度的所有視角而言,製品展現出單側反射顏色範圍,所述單側反射顏色範圍包含數值為20或更大之至少一個a*點或b*點。In some embodiments, as far as any of the embodiments described herein, when measured on the second major surface, the article exhibits a single-sided reflection color range for all viewing angles from 0 to 10 degrees, the single The side reflection color range includes at least one a* point or b* point with a value of 20 or more.

在某些實施例中,就本文描述之任何實施例而言,製品展現出介於30%至80%之最大可見光反射率。In certain embodiments, for any of the embodiments described herein, the article exhibits a maximum visible light reflectance of between 30% and 80%.

在某些實施例中,就本文描述之任何實施例而言,製品展現出介於15%至50%之平均明視反射率。In certain embodiments, for any of the embodiments described herein, the article exhibits an average apparent reflectance between 15% and 50%.

在某些實施例中,就本文描述之任何實施例而言,光學塗層直接設置在基板的第一主表面上。In some embodiments, for any of the embodiments described herein, the optical coating is disposed directly on the first major surface of the substrate.

在某些實施例中,就本文描述之任何實施例而言,製品展現平均透射率或平均反射率,其包含在光學波長範圍內為20個百分點或更小之平均波動振幅。In certain embodiments, for any of the embodiments described herein, the article exhibits an average transmittance or average reflectance, which includes an average fluctuation amplitude of 20 percentage points or less in the optical wavelength range.

在某些實施例中,就本文描述之任何實施例而言,光學塗層包含範圍自約0.5 µm至約3 µm之厚度。In some embodiments, for any of the embodiments described herein, the optical coating includes a thickness ranging from about 0.5 µm to about 3 µm.

在某些實施例中,就本文描述之任何實施例而言,介於高硬度部分與第二主表面之間的光學塗層的任何部分之累積厚度為200 nm或更小,其中所述第二主表面包含1.6或更小之RI。In certain embodiments, for any embodiment described herein, the cumulative thickness of any portion of the optical coating between the high hardness portion and the second major surface is 200 nm or less, wherein the first The two main surfaces contain RI of 1.6 or less.

在某些實施例中,就本文描述之任何實施例而言,製品包含範圍自約12 GPa至約30 GPa或約16 GPa至約30 GPa之最大硬度,其中藉由以Berkovich壓頭壓入第二主表面以形成壓痕,來測量最大硬度,壓痕包含從第二主表面之表面起算約100 nm或更大之壓痕深度。In certain embodiments, with respect to any of the embodiments described herein, the article includes a maximum hardness ranging from about 12 GPa to about 30 GPa or about 16 GPa to about 30 GPa, wherein by pressing a Berkovich indenter The two main surfaces are used to form an indentation to measure the maximum hardness. The indentation includes an indentation depth of about 100 nm or more from the surface of the second main surface.

在某些實施例中,就本文描述之任何實施例而言,光學塗層包含成分梯度,所述成分梯度包含Si、Al、N及O中之至少二者。In certain embodiments, for any of the embodiments described herein, the optical coating includes a composition gradient that includes at least two of Si, Al, N, and O.

在某些實施例中,就本文描述之任何實施例而言,光學塗層包含之梯度選自以下至少一者:孔隙率梯度、密度梯度及彈性模數梯度。In some embodiments, for any embodiment described herein, the gradient included in the optical coating is selected from at least one of the following: a porosity gradient, a density gradient, and an elastic modulus gradient.

在某些實施例中,就本文描述之任何實施例而言,製品進一步包含:第一可選層,與第一主表面接觸;及第二可選層,與第二主表面接觸。In certain embodiments, with respect to any of the embodiments described herein, the article further includes: a first optional layer in contact with the first major surface; and a second optional layer in contact with the second major surface.

在某些實施例中,就本文描述之任何實施例而言,製品為太陽眼鏡鏡片。In certain embodiments, for any of the embodiments described herein, the article is a sunglasses lens.

在某些實施例中,就本文描述之任何實施例而言,製品為抗刮鏡。In some embodiments, for any of the embodiments described herein, the article is a scratch-resistant mirror.

在某些實施例中,就本文描述之任何實施例而言,製品為結合到眼鏡中之鏡片。In certain embodiments, for any of the embodiments described herein, the article is a lens incorporated into eyeglasses.

在某些實施例中,就本文描述之任何實施例而言,製品為消費電子產品之殼體或蓋板的一部分,消費電子產品包含:殼體,具有前表面、後表面及側表面;電子部件,至少部分地提供在殼體內,電子部件包括至少一控制器、記憶體及顯示器,所述顯示器提供於殼體的前表面或鄰近殼體的前表面;及蓋板,設置在顯示器上方。In some embodiments, with respect to any of the embodiments described herein, the article is part of a housing or cover of a consumer electronic product. The consumer electronic product includes: a housing having a front surface, a rear surface, and side surfaces; electronics The components are provided at least partially within the housing. The electronic components include at least one controller, memory, and display provided on or near the front surface of the housing; and a cover plate disposed above the display.

在某些實施例中,就本文描述之任何實施例而言,一種形成製品的方法包含以下步驟:獲得基板,基板包含第一主表面並包含非晶基板或結晶基板;於第一主表面上設置光學塗層,光學塗層包含第二主表面及厚度,第二主表面與第一主表面相對,而厚度在垂直於第二主表面之方向上;及沿著光學塗層之厚度的至少一第一梯度部分產生折射係數梯度。光學塗層的折射係數沿著介於第一主表面與第二主表面之間的光學塗層的厚度而變化。第一梯度部分的最大折射係數與第一梯度部分的最小折射係數之差為0.1或更大。在沿著第一梯度部分之厚度的每處,第一梯度部分之折射係數的斜率的絕對值為0.1 / nm或更小。製品展現出:在第二主表面處測量,於波長範圍400 nm至700 nm內之平均單一表面反射率為15 %至98%。製品也展現出自約10 GPa至約30 GPa的範圍內之最大硬度,其中藉由以Berkovich壓頭壓入第二主表面以形成壓痕,以於第二主表面上測量最大硬度,該壓痕包含從第二主表面之表面起算約100 nm或更大之壓痕深度。在0.04之折射係數變化的範圍內,沿著厚度方向測量折射係數「斜率」。In some embodiments, for any of the embodiments described herein, a method of forming an article includes the steps of: obtaining a substrate including a first major surface and including an amorphous or crystalline substrate; on the first major surface An optical coating is provided. The optical coating includes a second main surface and a thickness, the second main surface is opposite to the first main surface, and the thickness is in a direction perpendicular to the second main surface; and at least along the thickness of the optical coating A first gradient portion generates a refractive index gradient. The refractive index of the optical coating varies along the thickness of the optical coating between the first main surface and the second main surface. The difference between the maximum refractive index of the first gradient part and the minimum refractive index of the first gradient part is 0.1 or more. At every location along the thickness of the first gradient portion, the absolute value of the slope of the refractive index of the first gradient portion is 0.1/nm or less. The product exhibited an average single surface reflectivity of 15% to 98% in the wavelength range of 400 nm to 700 nm, measured at the second major surface. The product also exhibits a maximum hardness in the range from about 10 GPa to about 30 GPa, wherein the maximum hardness is measured by pressing the Berkovich indenter into the second main surface to form an indentation to measure the maximum hardness on the second main surface. Contains an indentation depth of approximately 100 nm or greater from the surface of the second major surface. Measure the "slope" of the refractive index along the thickness in the range of 0.04 refractive index change.

在某些實施例中,就本文描述之任何實施例而言,產生折射係數梯度包含:沿著光學塗層的厚度,改變光學塗層的成分及孔隙率中之至少一者。In some embodiments, for any embodiment described herein, generating a refractive index gradient includes changing at least one of the composition and porosity of the optical coating along the thickness of the optical coating.

在某些實施例中,就本文描述之任何實施例而言,藉由物理氣相沉積濺射製程將光學塗層設置在第一主表面上。In some embodiments, for any embodiment described herein, the optical coating is disposed on the first major surface by a physical vapor deposition sputtering process.

將在以下詳細描述中闡述額外特徵及優點,且對於本案所屬技術領域中具通常知識者而言,某種程度上可從彼等描述立即明白,或可藉由實踐本文描述的實施例而理解,包括隨後的詳細描述、申請專利範圍以及隨附圖式。Additional features and advantages will be set forth in the following detailed description, and for those with ordinary knowledge in the technical field to which this case belongs, to some extent they can immediately be understood from their descriptions, or can be understood by practicing the embodiments described herein , Including the subsequent detailed description, patent application scope, and accompanying drawings.

應理解,前述一般描述及以下詳細描述兩者僅為示例性的,且意欲提供理解申請專利範圍之性質及特性的綜述或框架。包括隨附圖式以提供進一步瞭解且隨附圖式併入本說明書中並形成本說明書之一部分。圖式圖解一或多個實施例,且連同描述用以解釋各種實施例之原理及操作。It should be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide a summary or framework for understanding the nature and characteristics of the scope of patent applications. The accompanying drawings are included to provide a further understanding and the accompanying drawings are incorporated into and form part of this specification. The drawings illustrate one or more embodiments, and together with the description serve to explain the principles and operations of various embodiments.

現將詳述不同實施例,實施例的實例乃繪於附圖。Different embodiments will now be described in detail, and examples of the embodiments are depicted in the drawings.

就某些應用而言,在硬塗層中可能需要特定的光學性質,包括特定反射率和可選的透射性質,所述光學性質也提供高硬度和抗刮性。這些應用可包括眼鏡、太陽眼鏡的外側、智慧型電話及類似裝置之RF透明背蓋或殼體、智慧型電話蓋板、智慧型手表、抬頭顯示系統、汽車窗戶、鏡子、顯示器蓋板、觸控螢幕及顯示器表面、建築玻璃及表面,及其他裝飾性、光學、顯示或保護性應用。For certain applications, specific optical properties, including specific reflectance and optional transmission properties, may also be required in the hard coating, which also provides high hardness and scratch resistance. These applications may include the outside of glasses, sunglasses, RF transparent back covers or cases for smartphones and similar devices, smartphone covers, smart watches, head-up display systems, car windows, mirrors, display covers, touch Control screen and display surfaces, architectural glass and surfaces, and other decorative, optical, display or protective applications.

現有的硬塗層包括採用光學干涉效應的「不連續層(discrete layer)」多層設計,還有採用折射係數逐漸變化的「梯度(gradient)」設計。先前的不連續層設計通常以跨界面之折射係數的突然變化為特徵,例如在跨界面或過渡區(厚度小於2nm、小於1nm,或甚至小於0.5nm)之折射係數的變化為0.2或更多,及在某些情況下為0.4或更多。Existing hard coatings include a "discrete layer" multilayer design that uses optical interference effects, and a "gradient" design that gradually changes in refractive index. Previous discontinuous layer designs are usually characterized by a sudden change in the refractive index across the interface, for example, the change in the refractive index across the interface or transition zone (thickness less than 2nm, less than 1nm, or even less than 0.5nm) is 0.2 or More, and in some cases 0.4 or more.

不連續的層可能更傾向於某些機械失效模式,例如由於在突兀界面上的不同材料之間的低黏附能量、應力或原子/分子鍵斷裂而導致之層的分層、碎裂或剝落。在利用成分的逐漸改變(導致折射係數逐漸改變)之「梯度」膜的某些測試條件下,已觀察到改良的機械性能水平。咸信,成分梯度可改進與塗層結構之內聚力和黏附性,從而增進某些條件下之刮痕及損壞抗性。通常需要與不連續層有關之次-波長特徵及干涉效應,以精確控制反射及透射光譜,以便在空氣中使用具有約1.45之最低折射率的材料系統(如,SiO2 )。梯度部分 Discontinuous layers may be more prone to certain mechanical failure modes, such as delamination, chipping, or spalling of layers due to low adhesion energy, stress, or atomic/molecular bond breakage between different materials at the abrupt interface. Under certain test conditions using "gradient" films with gradual changes in composition (resulting in gradual changes in refractive index), improved levels of mechanical properties have been observed. Xianxin, the composition gradient can improve the cohesion and adhesion of the coating structure, thereby improving the resistance to scratches and damage under certain conditions. Sub-wavelength characteristics and interference effects associated with discontinuous layers are often required to accurately control the reflection and transmission spectra in order to use a material system (eg, SiO 2 ) with a minimum refractive index of about 1.45 in air. Gradient part

在某些實施例中,使用梯度方式(視情況與干涉層方式結合)來產生光學硬塗層。咸信,在某些條件下,一或多個梯度部分的存在可提供增進的刮痕及損壞抗性。在某些較佳實施例中, 形成梯度部分(及視情況,光學塗層的所有部分)之材料是完全緻密的,也就是它們是非多孔的或具有之孔隙率或孔隙體積小於10%、小於5%或甚至小於1%之所述部分的總體積。In some embodiments, a gradient approach (optionally combined with an interference layer approach) is used to create the optical hard coat. It is believed that under certain conditions, the presence of one or more gradient portions may provide improved resistance to scratches and damage. In certain preferred embodiments, the materials forming the gradient portion (and optionally all portions of the optical coating) are completely dense, that is, they are non-porous or have a porosity or pore volume of less than 10%, less than 5% or even less than 1% of the total volume of said part.

本文所述之材料的折射係數通常與材料的機械性能(如材料的硬度)相關。因此,折射係數的突然改變意味著硬度的突然改變,且亦可能導致應力、熱膨脹、原子鍵排列及可影響機械性能之其他因子的突然改變。咸信,具有顯著不同之折射係數的兩種材料之間的突兀界面可能是光學塗層抵抗機械損壞的能力之弱點。但是,多層干涉堆疊依賴這樣的突然改變來獲得期望的光學性質。The refractive index of the materials described herein is usually related to the mechanical properties of the material (such as the hardness of the material). Therefore, a sudden change in refractive index means a sudden change in hardness, and may also cause a sudden change in stress, thermal expansion, atomic bond arrangement, and other factors that can affect mechanical properties. Xianxin, the abrupt interface between two materials with significantly different refractive indices may be the weak point of the optical coating's ability to resist mechanical damage. However, multilayer interference stacks rely on such sudden changes to obtain the desired optical properties.

相對於突兀界面,成分上漸變界面或「梯度部分(gradient portion)」可用於在不同的折射係數之間的過渡區。咸信,與突兀界面相比,梯度部分能賦予機械堅固性,包括刮痕及損壞抗性。梯度部分的特徵在於折射係數的逐漸變化。舉例而言,塗層結構中之某些或全部折射係數過渡區的特徵在於折射係數「斜率」的絕對(正或負)值為0.1/nm或更小(意指每nm之塗層厚度的折射係數改變小於0.1)、0.05/nm或更小(或每10nm小於約0.5)、0.02/nm或更小(或每10nm小於約0.2)、0.016/nm或更小、0.012/nm或更小,或甚至0.01/nm或更小(每10nm小於約0.1)。Relative to the abrupt interface, a compositionally graded interface or "gradient portion" can be used for the transition between different refractive indices. Xianxin, compared with the abrupt interface, the gradient part can impart mechanical robustness, including scratch resistance and damage resistance. The gradient part is characterized by a gradual change in the refractive index. For example, some or all of the refractive index transition zone in the coating structure is characterized by an absolute (positive or negative) value of the refractive index "slope" of 0.1/nm or less (meaning that the coating thickness per nm Refractive index change less than 0.1), 0.05/nm or less (or less than about 0.5 per 10 nm), 0.02/nm or less (or less than about 0.2 per 10 nm), 0.016/nm or less, 0.012/nm or less , Or even 0.01/nm or less (less than about 0.1 per 10 nm).

在某些實施例中,梯度部分的折射係數斜率為0.001或更大、0.002或更大,或0.005或更大。In some embodiments, the gradient of the gradient of the refractive index is 0.001 or greater, 0.002 or greater, or 0.005 or greater.

在本文所用,可用折射係數「斜率(slope)」來描述作為沿著膜厚度之位置之函數的折射係數改變多快。可藉由將折射係數的變化除以發生所述變化的距離,來計算折射係數斜率。在光學塗層中,折射係數在垂直於塗層厚度方向之方向上通常為恆定的,且相對於塗層厚度之方向(如,第1圖之厚度方向126)上之距離的改變來測量折射係數斜率。As used herein, the refractive index "slope" can be used to describe how fast the refractive index changes as a function of position along the film thickness. The slope of the refractive index can be calculated by dividing the change in the refractive index by the distance at which the change occurs. In optical coatings, the refractive index is usually constant in the direction perpendicular to the thickness direction of the coating, and the refraction is measured relative to the change in the distance in the direction of the coating thickness (eg, thickness direction 126 in Figure 1) Coefficient slope.

折射係數梯度可實現為折射係數的連續變化,或實現為折射係數的一系列小階。就足夠小的階尺寸而言,預期光學和機械性能與折射係數沒有階之平滑梯度相同。但,若在包括折射係數階之足夠小的距離間隔上測量斜率,同時排除階之間的大部分距離的話,折射係數的小階可具有局部的高折射係數斜率。為了避免這種在折射係數小階之精確位置處,來自於在小距離間隔上局部測量斜率造成之異常,可在不連續的折射係數間隔上測量並計算本文所述之折射係數斜率。除非另有指明,在0.04的折射係數間隔上測量並計算本文所討論之折射係數斜率。換言之,折射係數斜率是0.04除以折射係數改變0.04之距離。當計算階尺寸為0.04或更小處之折射係數斜率時,此方法導致折射係數的階之間的距離被考慮。在某些實施例中,可在以下折射係數間隔上計算折射係數斜率:0.02、0.03、0.04、0.05或0.06。The refractive index gradient can be realized as a continuous change in the refractive index, or as a series of small orders of the refractive index. As far as the order size is small enough, it is expected that the optical and mechanical properties are the same as the smooth gradient with no order of refractive index. However, if the slope is measured at a sufficiently small distance interval including the refractive index order, while excluding most of the distance between the orders, the small order of the refractive index may have a locally high refractive index slope. In order to avoid such anomalies caused by the local measurement of the slope at small distance intervals at the precise position of the small refractive index, the refractive index slope described herein can be measured and calculated at discrete refractive index intervals. Unless otherwise specified, the slope of the refractive index discussed in this article is measured and calculated at a refractive index interval of 0.04. In other words, the slope of the refractive index is 0.04 divided by the distance the refractive index changes by 0.04. When calculating the slope of the refractive index at a step size of 0.04 or less, this method causes the distance between the steps of the refractive index to be considered. In some embodiments, the refractive index slope can be calculated on the following refractive index intervals: 0.02, 0.03, 0.04, 0.05, or 0.06.

在折射係數斜率於相對大的距離上為零或接近零時,上述計算折射係數斜率的方法可能無法作用,因為沒有0.04之折射係數間隔。因此,在100 nm或更大的距離上沒有0.04之折射係數間隔的話,可在100 nm的距離間隔上計算折射係數斜率。換言之,在這種情況下,折射係數斜率是在100 nm上發生之折射係數的變化(小於0.04)除以100 nm。When the slope of the refractive index is zero or close to zero over a relatively large distance, the above method of calculating the slope of the refractive index may not work because there is no refractive index interval of 0.04. Therefore, if there is no refractive index interval of 0.04 at a distance of 100 nm or greater, the slope of the refractive index can be calculated at a distance of 100 nm. In other words, in this case, the slope of the refractive index is the change in the refractive index that occurs at 100 nm (less than 0.04) divided by 100 nm.

梯度部分可具有作為與基板之距離的函數而跨梯度部分的厚度增加、減少或波動之折射係數。此類折射係數的增加或減少可以是單調的(monotonic)。The gradient portion may have a refractive index that increases, decreases, or fluctuates in thickness across the gradient portion as a function of distance from the substrate. Such an increase or decrease in the refractive index may be monotonic.

在某些實施例中,為了使梯度部分對製品的光學特性就有顯著影響,第一梯度部分的最大折射係數與第一梯度部分的最小折射係數之間的差應為0.05或更大、0.1或更大、0.3或更大,或0.4或更大。在某些實施例中,形成單一梯度部分或多重梯度部分之折射係數之單調變化的端點可包含以下至少一個折射係數端點:高於1.65、高於1.7、高於1.8或甚至高於1.9,並具有以下另一個折射係數端點:低於1.6、低於1.55或甚至低於1.5。 厚的高硬度部分In some embodiments, in order for the gradient portion to have a significant effect on the optical characteristics of the article, the difference between the maximum refractive index of the first gradient portion and the minimum refractive index of the first gradient portion should be 0.05 or greater, 0.1 Or greater, 0.3 or greater, or 0.4 or greater. In some embodiments, the monotonically changing endpoints of the refractive index forming the single gradient portion or multiple gradient portions may include at least one of the following refractive index endpoints: higher than 1.65, higher than 1.7, higher than 1.8, or even higher than 1.9 , And has another endpoint of the refractive index: below 1.6, below 1.55, or even below 1.5. Thick high hardness part

在某些實施例中,除了梯度部分之外,光學塗層包含厚的高硬度部分。在這樣的情況下,可藉由厚的(如,200nm至5000nm厚)高硬度部分來增進刮痕抗性。在某些實施例中,厚的高硬度部分上方之軟性材料的厚度受到限制。舉例而言,300nm或更薄、200nm或更薄或甚至100nm或更薄的較低硬度或低折射係數材料(如,SiO2 )可位於硬塗佈製品之厚硬層上方(即,設置於面向外側或使用者表面上)。位於厚硬層上方之較低硬度或低折射係數材料的量可為零,或可為1 nm或更多。In some embodiments, in addition to the gradient portion, the optical coating contains a thick high hardness portion. In such a case, the scratch resistance can be improved by thick (eg, 200 nm to 5000 nm thick) high hardness portions. In some embodiments, the thickness of the soft material above the thick high-hardness portion is limited. For example, a lower hardness or low refractive index material (eg, SiO 2 ) at 300 nm or thinner, 200 nm or thinner, or even 100 nm or thinner may be located above the thick hard layer of the hard-coated article (ie, disposed at (Facing outward or on the user's surface). The amount of lower hardness or low refractive index material located above the thick hard layer may be zero, or may be 1 nm or more.

只要滿足本文所述之折射係數及硬度標準,厚的高硬度部分就不需要是真的單一材料或單層。舉例而言,厚硬層可包含多個薄層或奈米層,例如在「超晶格(superlattice)」結構中,或包含多種材料、成分、或結構層或梯度之其他硬層結構。不受理論限制,在超晶格結構中,不同材料之足夠薄的層之堆疊可產生獨特的微結構,使得超晶格結構具有類似於單一材料之厚層的光學和機械特性,並具有超過各個薄層中之材料的硬度。範例結構揭示於WO 2016/138195中,其以全文引用方式併入本文。As long as the refractive index and hardness standards described herein are met, the thick high-hardness portion need not be a true single material or single layer. For example, a thick hard layer may include multiple thin layers or nanolayers, such as in a "superlattice" structure, or other hard layer structures that include multiple materials, compositions, or structural layers or gradients. Without being limited by theory, in a superlattice structure, the stacking of sufficiently thin layers of different materials can produce a unique microstructure, so that the superlattice structure has optical and mechanical properties similar to a thick layer of a single material, and has more than The hardness of the material in each thin layer. An example structure is disclosed in WO 2016/138195, which is incorporated herein by reference in its entirety.

厚的高硬度部分可具有以下平均折射係數:1.6或更大、1.7或更大,或1.8或更大。這些折射係數通常對應高硬度材料選擇。高硬度部分可具有以下壓痕硬度:10 GPa或更大、12 GPa或更大、14 GPa或更大、GPa或更大、18 GPa或更大、或20 GPa或更大、或介於10與30 GPa之間。The thick high-hardness portion may have the following average refractive index: 1.6 or greater, 1.7 or greater, or 1.8 or greater. These refractive indexes usually correspond to the selection of high hardness materials. The high hardness portion may have the following indentation hardness: 10 GPa or greater, 12 GPa or greater, 14 GPa or greater, GPa or greater, 18 GPa or greater, or 20 GPa or greater, or between 10 Between 30 GPa.

厚的高硬度部分可具有以下實體厚度:200 nm、300 nm、400 nm、500 nm、600 nm、700 nm、800 nm、900 nm、1000 nm、1200 nm、1400 nm、1600 nm、1800 nm、2000 nm、2500 nm、3000 nm、3500 nm、4000 nm、4500 nm、5000 nm、10000 nm,及其間的所有範圍及子範圍。The thick high-hardness part can have the following physical thickness: 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1200 nm, 1400 nm, 1600 nm, 1800 nm, 2000 nm, 2500 nm, 3000 nm, 3500 nm, 4000 nm, 4500 nm, 5000 nm, 10000 nm, and all ranges and sub-ranges in between.

當由Berkovich壓頭硬度試驗測量時,厚的高硬度層可具有以下最大硬度:約10 GPa或更大、約12 GPa或更大、約15 GPa或更大、約18 GPa或更大,或約20 GPa或更大。為了表徵硬度,可將厚的高硬度部分沉積為單層。When measured by the Berkovich indenter hardness test, the thick high hardness layer may have the following maximum hardness: about 10 GPa or greater, about 12 GPa or greater, about 15 GPa or greater, about 18 GPa or greater, or About 20 GPa or greater. To characterize the hardness, the thick high-hardness portion can be deposited as a single layer.

在某些實施例中,可將薄軟層結合至厚的高硬度部分。舉例而言,高硬度部分之95%或更多的厚度,最大折射係數及最小折射係數可在彼此的0.05以內。但就高硬度部分之5%的厚度可具有較低的折射係數。在這種情況下,此較低的折射係數(及相應較軟的材料)可埋入光學塗層中之足夠深處,使其對整體結構特性的影響不會太大。但是,較佳的是在厚的高硬度部分中避免此種較軟的材料。舉例而言,在厚的高硬度部分內的每處,最大折射係數和最小折射係數都在彼此的0.05以內。In some embodiments, a thin soft layer can be bonded to a thick high-hardness portion. For example, for a thickness of 95% or more of the high-hardness portion, the maximum refractive index and the minimum refractive index may be within 0.05 of each other. However, the thickness of 5% of the high hardness portion may have a lower refractive index. In this case, this lower refractive index (and correspondingly softer material) can be buried deep enough in the optical coating so that it does not affect the overall structural properties much. However, it is preferable to avoid such softer materials in thick high-hardness portions. For example, the maximum refractive index and the minimum refractive index are each within 0.05 of each other in the thick high-hardness portion.

在某些實施例中,厚的高硬度部分可具有相對恆定的(且高的)折射係數。舉例而言,就厚的高硬度部分之95%的厚度而言,或在厚的高硬度部分內的每處,最大折射係數和最小折射係數可在彼此的0.05以內。在某些實施例中,厚的高硬度部分中之折射係數可具有梯度,且厚的高硬度部分中之最大折射係數和最小折射係數的差可超過0.05。硬塗層中之受限的或無突兀界面 In some embodiments, the thick high hardness portion may have a relatively constant (and high) refractive index. For example, with respect to the thickness of 95% of the thick high-hardness portion, or each place within the thick high-hardness portion, the maximum refractive index and the minimum refractive index may be within 0.05 of each other. In some embodiments, the refractive index in the thick high-hardness portion may have a gradient, and the difference between the maximum refractive index and the minimum refractive index in the thick high-hardness portion may exceed 0.05. Limited or unobtrusive interface in hard coating

在某些實施例中,除了結合梯度部分及高硬度部分之外,光學塗層具有有限或無突兀界面。突兀界面發生在短距離上有折射係數突然改變處。咸信,這樣的突兀界面可能是會使機械特性降低之弱點。舉例而言,可藉由在光學塗層中使用梯度部分及厚的高硬度部分取代多層干涉堆疊,並藉由在光學塗層中之不同部分之間的交界處之係數匹配,來避免突兀界面。In some embodiments, the optical coating has a limited or non-obtrusive interface in addition to combining the gradient portion and the high hardness portion. The abrupt interface occurs at a short distance where the refractive index suddenly changes. Xianxin, such an abrupt interface may be a weak point that reduces the mechanical properties. For example, by using gradient sections and thick high-hardness sections in the optical coating instead of multilayer interference stacks, and by matching coefficients at the junctions between different sections in the optical coating, abrupt interfaces can be avoided .

在某些實施例中,可存在突兀界面,但任何突兀界面都埋設在厚的高硬度部分下方。梯度部分可存在於厚的高硬度部分上方。咸信,厚的高硬度部分可保護任何下方層不受機械損壞,使得存在於厚的高硬度部分下方之突兀界面對機械特性具有很小或沒有有害的影響。In some embodiments, there may be an abrupt interface, but any abrupt interface is buried under the thick high hardness portion. The gradient portion may exist above the thick high hardness portion. Xianxin, the thick high hardness part can protect any underlying layer from mechanical damage, so that the abrupt interface existing under the thick high hardness part has little or no harmful effect on the mechanical properties.

在某些實施例中,在光學塗層中完全避免突兀界面。光學塗層僅由梯度部分、厚的高硬度部分,及可選之薄的(如,<200nm)低折射係數部分組成,所述低折射係數部分具有恆定的係數。咸信,缺少突兀界面增進了機械特性。舉例而言,光學塗層中的每處,光學塗層之折射係數的斜率的絕對值可為0.1 / nm或更小、0.05/nm或更小、0.02/nm或更小、0.016/nm或更小、0.012/nm或更小,或甚至0.01/nm或更小。In some embodiments, abrupt interfaces are completely avoided in the optical coating. The optical coating consists only of a gradient portion, a thick high hardness portion, and optionally a thin (eg, <200 nm) low refractive index portion, which has a constant coefficient. Xianxin, the lack of abrupt interfaces enhances the mechanical properties. For example, the absolute value of the slope of the refractive index of the optical coating may be 0.1/nm or less, 0.05/nm or less, 0.02/nm or less, 0.016/nm or Smaller, 0.012/nm or smaller, or even 0.01/nm or smaller.

在某些實施例中,在梯度部分及/或厚的高硬度部分之間的界面處避免突兀界面。舉例而言,當從一個部分移動跨越所述界面到另一個部分時,在這樣的界面處之折射係數的差異可為0.05或更小、0.04或更小、0.03或更小、0.02或更小、0.01或更小,或0.005或更小。 反射率In some embodiments, abrupt interfaces are avoided at the interface between the gradient portion and/or the thick high hardness portion. For example, when moving from one part across the interface to another, the difference in refractive index at such an interface may be 0.05 or less, 0.04 or less, 0.03 or less, 0.02 or less , 0.01 or less, or 0.005 or less. Reflectivity

在某些實施例中,即使光學塗層中不存在突兀界面,使用梯度方式之光學硬塗層仍然採用光學干涉效應來產生光學塗層,所述光學塗層具有光學性質,如通常與多層干涉堆疊相關的反射率。In some embodiments, even if there is no abrupt interface in the optical coating, the optical hard coating using the gradient method still uses the optical interference effect to generate the optical coating, the optical coating has optical properties, such as usually interferes with multiple layers Stack-related reflectivity.

具體而言,在第二主表面測量時,硬塗佈製品的一或多個表面或硬塗層的一或多個界面在波長範圍400 nm至700 nm內可具有15 %至99%的平均反射率。平均反射率可為:15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、98%、99%,及其間的所有範圍和子範圍。這些反射率值可代表550nm波長處之單一表面製品反射率、從500至600nm波長之反射率平均、從450至650nm波長之反射率平均、從420至680nm波長之反射率平均、從400至700nm波長之反射率平均,或明視平均反射率。除非另有指明,本文所述之反射率為在波長範圍400 nm至700 nm內之平均反射率。上面列出的這些相同的反射率值也可代表在400至700nm的可見光範圍內之最大反射率,而不是平均反射率。Specifically, when measured on the second major surface, one or more surfaces of the hard-coated article or one or more interfaces of the hard coat layer may have an average of 15% to 99% in the wavelength range of 400 nm to 700 nm Reflectivity. The average reflectance can be: 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% , 90%, 95%, 98%, 99%, and all ranges and subranges in between. These reflectance values can represent the reflectance of a single surface product at a wavelength of 550 nm, the average reflectance from 500 to 600 nm, the average reflectance from 450 to 650 nm, the average reflectance from 420 to 680 nm, and the average from 400 to 700 nm The average reflectance of wavelength, or the average reflectance of bright vision. Unless otherwise specified, the reflectance described herein is the average reflectance in the wavelength range of 400 nm to 700 nm. These same reflectance values listed above may also represent the maximum reflectance in the visible light range of 400 to 700 nm, rather than the average reflectance.

在某些實施例中,就本文描述之任何實施例而言,製品展現出介於30%至80%之間的最大可見光反射率。在某些實施例中,就本文描述之任何實施例而言,製品展現出介於15%至50%之間的平均明視反射率。In certain embodiments, for any of the embodiments described herein, the article exhibits a maximum visible light reflectance between 30% and 80%. In certain embodiments, for any of the embodiments described herein, the article exhibits an average bright-view reflectance between 15% and 50%.

令人驚訝地,使用結合有梯度部分之硬塗層可實現這些反射率。更令人驚訝地,使用不具有任何突兀界面之硬塗層可實現這些反射率,即,整個硬塗層為具有全密度和低或無孔隙率之一或多個梯度部分、厚的高硬度部分或薄的(如,<200nm)低折射係數部分。這些低反射率值是令人驚訝的,因為對於硬塗層而言,具有突兀界面之多層干涉堆疊通常用於產生此範圍內之反射率。Surprisingly, these reflectances can be achieved using hard coatings incorporating gradient portions. Even more surprisingly, these reflectances can be achieved using a hard coating that does not have any abrupt interfaces, that is, the entire hard coating is a thick, high hardness with one or more gradient portions of full density and low or no porosity Partial or thin (eg, <200nm) low refractive index part. These low reflectance values are surprising because for hard coatings, multilayer interference stacks with abrupt interfaces are often used to produce reflectance in this range.

在此所用,術語「透射率(transmittance)」定義為特定波長範圍內的入射光功率穿透材料(如,製品、基板或光學膜或所述者之部分)的百分比。術語「反射率(反射率)」類似地定義為特定波長範圍內的入射光功率自材料(如,製品、基板或光學膜或所述者之部分)反射的百分比。可利用特定線寬量測透射率及反射率。在一或多個實施例中,透射與反射之特徵的光譜解析度為小於5 nm或0.02 eV。除非另外指明,否則在近法線入射下測量反射率及透射率。透射率 As used herein, the term "transmittance" is defined as the percentage of incident optical power within a specific wavelength range that penetrates a material (eg, an article, substrate, or optical film or portion of the same). The term "reflectivity (reflectivity)" is similarly defined as the percentage of incident optical power reflected from a material (eg, article, substrate, or optical film, or part of the same) within a specific wavelength range. A specific line width can be used to measure transmittance and reflectance. In one or more embodiments, the spectral resolution of the characteristics of transmission and reflection is less than 5 nm or 0.02 eV. Unless otherwise specified, reflectance and transmittance are measured at near normal incidence. Transmittance

在某些實施例中,使用梯度方式之光學硬塗層仍利用光學干涉效應以在製品中產生特定反射率及透射率特性。儘管在光學塗層缺少突兀界面的情況下,可與特定透射率一起得到前文描述之單一表面反射率。In some embodiments, optical hard coatings that use a gradient approach still utilize the optical interference effect to produce specific reflectance and transmittance characteristics in the article. Although the optical coating lacks an abrupt interface, the single surface reflectance described above can be obtained together with the specific transmittance.

具體而言,硬塗佈製品可具有以下整體製品平均透射率:1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%,及其間的所有範圍和子範圍,所述值適用於就上述反射率所指定的一或多個光學波長範圍。除非另有指明,本文所述之透射率為在波長範圍400 nm至700 nm內之平均透射率。Specifically, the hard coated product may have the following overall product average transmittance: 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and all ranges and sub-ranges therebetween, the values apply to one or more optical wavelengths specified for the above reflectance range. Unless otherwise specified, the transmittances described herein are average transmittances in the wavelength range of 400 nm to 700 nm.

令人驚訝地,使用含有梯度部分之硬塗層可達成這些透射率及反射率。更令人驚訝地,使用不具有任何突兀界面之硬塗層(即,整個硬塗層為一或多個梯度部分、厚的高硬度部分,或薄的低折射係數部分),可達成這些透射率和反射率。因為具有突兀界面之多層干涉堆疊通常用於產生這樣的組合,因此這些反射和透射特性結合高硬度及/或刮痕抗性是令人驚訝的。整體光學塗層厚度 Surprisingly, these transmittances and reflectances can be achieved using hard coatings containing gradient portions. More surprisingly, these transmissions can be achieved using a hard coating that does not have any abrupt interfaces (ie, the entire hard coating is one or more gradient parts, thick high hardness parts, or thin low refractive index parts) Rate and reflectivity. Because multilayer interference stacks with abrupt interfaces are commonly used to produce such combinations, it is surprising that these reflection and transmission characteristics combined with high hardness and/or scratch resistance. Overall optical coating thickness

光學塗層120的實體厚度可在自約0.1 µm至約5 µm之範圍內。在某些例子中,光學塗層120的實體厚度可在以下範圍內:自約0.01 µm至約0.9 µm、自約0.01 µm至約0.8 µm、自約0.01 µm至約0.7 µm、自約0.01 µm至約0.6 µm、自約0.01 µm至約0.5 µm、自約0.01 µm至約0.4 µm、自約0.01 µm至約0.3 µm、自約0.01 µm至約0.2 µm、自約0.01 µm至約0.1 µm、自約0.02 µm至約1 µm、自約0.03 µm 至約1 µm、自約0.04 µm至約1 µm、自約0.05 µm至約1 µm、自約0.06 µm至約1 µm、自約0.07 µm至約1 µm、自約0.08 µm至約1 µm、自約0.09 µm至約1 µm、自約0.1 µm至約1 µm、自約0.1 µm至約2 µm、自約0.1 µm至約3 µm、自約0.1 µm至約4 µm、自約0.1 µm至約5 µm、自約0.2 µm至約1 µm、自約0.2 µm至約2 µm、自約0.2 µm至約3 µm、自約0.2 µm至約4 µm、自約0.2 µm至約5 µm、自約0.3 µm至約5 µm、自約0.4 µm至約5 µm、自約0.5 µm至約10 µm、自約0.6 µm至約3 µm、自約0.7 µm至約2 µm、自約0.8 µm至約1 µm,或自約0.9 µm至約1 µm,及其間的所有範圍及子範圍。其他厚度也可能適用。 用於硬塗層之材料和製程The physical thickness of the optical coating 120 may range from about 0.1 µm to about 5 µm. In some examples, the physical thickness of the optical coating 120 may be in the following ranges: from about 0.01 µm to about 0.9 µm, from about 0.01 µm to about 0.8 µm, from about 0.01 µm to about 0.7 µm, from about 0.01 µm To about 0.6 µm, from about 0.01 µm to about 0.5 µm, from about 0.01 µm to about 0.4 µm, from about 0.01 µm to about 0.3 µm, from about 0.01 µm to about 0.2 µm, from about 0.01 µm to about 0.1 µm, From about 0.02 µm to about 1 µm, from about 0.03 µm to about 1 µm, from about 0.04 µm to about 1 µm, from about 0.05 µm to about 1 µm, from about 0.06 µm to about 1 µm, from about 0.07 µm to About 1 µm, from about 0.08 µm to about 1 µm, from about 0.09 µm to about 1 µm, from about 0.1 µm to about 1 µm, from about 0.1 µm to about 2 µm, from about 0.1 µm to about 3 µm, from About 0.1 µm to about 4 µm, from about 0.1 µm to about 5 µm, from about 0.2 µm to about 1 µm, from about 0.2 µm to about 2 µm, from about 0.2 µm to about 3 µm, from about 0.2 µm to about 4 µm, from about 0.2 µm to about 5 µm, from about 0.3 µm to about 5 µm, from about 0.4 µm to about 5 µm, from about 0.5 µm to about 10 µm, from about 0.6 µm to about 3 µm, from about 0.7 µm to about 2 µm, from about 0.8 µm to about 1 µm, or from about 0.9 µm to about 1 µm, and all ranges and subranges therebetween. Other thicknesses may also be applicable. Materials and processes for hard coating

在某些實施例中,塗層結構可包括硬氧化物、氮化物或氮氧化物層,視情況與金屬層結合。較佳的硬塗層材料包括:AlNx 、SiNx 、SiOx Ny 、AlOx Ny 、Siu Alv Ox Ny 、SiO2 、Al2 O3 、及所述之成分的混合物,其具有代表這些材料的組合/混合特性之折射係數及硬度的中間值。In some embodiments, the coating structure may include a hard oxide, nitride, or oxynitride layer, optionally combined with a metal layer. Preferred hard coating materials include: AlN x , SiN x , SiO x N y , AlO x N y , Si u Al v O x N y , SiO 2 , Al 2 O 3 , and mixtures of the aforementioned components, It has an intermediate value of refractive index and hardness representing the combination/mixing characteristics of these materials.

在某些實施例中,可使用金屬模濺射(metal mode sputtering)來沉積硬塗層。在金屬模濺射中,將樣品固定至移動表面,金屬濺射源依序通過移動表面(作為步驟一),且隨後電漿源通過移動表面(作為步驟二)。電漿源可含有氧及氮。步驟一和步驟二重複多次,以沉積由金屬層組成的厚膜,所述金屬層與氧或氮反應,以形成硬氧化物、氮化物或氮氧化物層。In certain embodiments, metal mode sputtering may be used to deposit the hard coat layer. In the metal mold sputtering, the sample is fixed to the moving surface, the metal sputtering source sequentially passes through the moving surface (as step one), and then the plasma source passes through the moving surface (as step two). The plasma source may contain oxygen and nitrogen. Step 1 and step 2 are repeated multiple times to deposit a thick film composed of a metal layer that reacts with oxygen or nitrogen to form a hard oxide, nitride, or oxynitride layer.

在金屬模濺射製程期間,當樣品在金屬源的前面時,它們塗覆有金屬薄層。在金屬源前面通過一次期間所沉積的金屬厚度取決於金屬沉積金屬速率和樣品在金屬源前面所花費的時間長度。當樣品接著移動到電漿源位置時,金屬薄層與電漿反應,以形成金屬氮化物及/或金屬氧化物的薄膜。形成金屬氮化物或氧化物的化學反應的程度或完整性取決於反應性氮和氧物種的化學活性、金屬表面的化學活性,以及樣品在電漿源前面所花費的時間長度。During the metal mold sputtering process, when the samples are in front of the metal source, they are coated with a thin layer of metal. The thickness of the metal deposited during one pass in front of the metal source depends on the metal deposition rate and the length of time the sample spends in front of the metal source. When the sample then moves to the plasma source location, the thin metal layer reacts with the plasma to form a thin film of metal nitride and/or metal oxide. The degree or integrity of the chemical reaction that forms a metal nitride or oxide depends on the chemical activity of the reactive nitrogen and oxygen species, the chemical activity of the metal surface, and the length of time the sample spends in front of the plasma source.

舉例而言,可將樣品安裝在柱形筒上,而筒的軸線經垂直定向。筒的直徑和旋轉速率(有時以每分鐘轉數測量)決定了樣品在金屬和電漿源上移動的速度。柱狀筒包含在真空腔室中,真空腔室含有濺射源(金屬源)和電感式耦合電漿(ICP)源。柱體繞著其軸線旋轉,以移動樣品以依序且重複的方式移動通過金屬源及電漿源。For example, the sample can be mounted on a cylindrical barrel with the axis of the barrel oriented vertically. The diameter and rotation rate of the barrel (sometimes measured in revolutions per minute) determine the speed at which the sample moves on the metal and plasma source. The cylindrical barrel is contained in a vacuum chamber containing a sputtering source (metal source) and an inductively coupled plasma (ICP) source. The column rotates around its axis to move the sample through the metal source and the plasma source in a sequential and repeating manner.

濺射源速率由處理參數決定,處理參數包括氣體流量、腔室壓力、樣品與磁控管源分隔的距離、施加到濺射源的功率、濺射源的形狀和尺寸,以及其它特徵。可以通過光量測定法(actinometry)或電探測來量化電漿成分的化學活性。這些測量可以量化電漿密度、電子電位以及離子和電子溫度分佈。然而,這些可能是費力的測量,且通常不進行。反之,ICP電漿通常由線圈尺寸、至線圈的功率以及到線圈區域的氣體流量來描述。The sputtering source rate is determined by the processing parameters, which include gas flow rate, chamber pressure, the distance between the sample and the magnetron source, the power applied to the sputtering source, the shape and size of the sputtering source, and other characteristics. The chemical activity of the plasma components can be quantified by actinometry or electrical detection. These measurements can quantify plasma density, electron potential, and ion and electron temperature distribution. However, these may be laborious measurements and are usually not performed. Conversely, ICP plasma is generally described by the coil size, power to the coil, and gas flow to the coil area.

使用由OptoRun (一間公司)製造的沉積腔室,藉由金屬模濺射來沉積本文所述之膜。筒直徑為約1650毫米,且轉速為80 rpm。腔室壓力為約2毫托耳。吾人使用雙可旋轉柱狀磁控管靶材,其具有約850毫米之長度及約180毫米之直徑。靶材的濺射表面由矽及/或鋁組成。磁控管的磁鐵在靶材的表面產生約500高斯的磁場強度。在交流(AC)模式下將功率施加到磁控管對(magnetron pair),由在中頻模式下操作的Huttinger (一間公司)電源供電。在中頻模式的AC循環的一半期間,一個磁控管柱體經供電作為陰極(負電荷),而另一個磁控管柱體經供電作為陽極(正電荷)。從磁控管表面到樣品的表面之投射距離約為100毫米。反應器就ICP使用四個平面螺旋扁平線圈,位於方形陣列的角落處。所述四個線圈的每一個線圈由約2匝之直徑約12 mm的銅線圈組成,並具有約400毫米的直徑。線圈由OptoRun (一間公司)客製。Using a deposition chamber manufactured by OptoRun (a company), the films described herein were deposited by metal mold sputtering. The barrel diameter is about 1650 mm and the rotation speed is 80 rpm. The chamber pressure is about 2 mTorr. We use dual rotatable cylindrical magnetron targets with a length of about 850 mm and a diameter of about 180 mm. The sputtering surface of the target consists of silicon and/or aluminum. The magnet of the magnetron generates a magnetic field strength of about 500 Gauss on the surface of the target. Power is applied to the magnetron pair in alternating current (AC) mode, powered by a Huttinger (a company) power supply operating in intermediate frequency mode. During half of the AC cycle in the intermediate frequency mode, one magnetron cylinder is powered as a cathode (negative charge), and the other magnetron cylinder is powered as an anode (positive charge). The projection distance from the surface of the magnetron to the surface of the sample is about 100 mm. The reactor uses four flat spiral flat coils for ICP, located at the corners of the square array. Each of the four coils is composed of about 2 turns of a copper coil with a diameter of about 12 mm, and has a diameter of about 400 mm. The coil is customized by OptoRun (a company).

用於此申請案之數據的SiN及SiON製程使用下表中指定的條件組。 表1

Figure 107130811-A0304-0001
The SiN and SiON processes used for the data in this application use the set of conditions specified in the table below. Table 1
Figure 107130811-A0304-0001

其他製程可產生SiNx 及SiOx Ny ,其中由彼等其他製程所產生之材料可具有此申請案中所主張的特性。可製造SiNx 及SiOx Ny 膜之其他製程包括:反應性濺射、蒸鍍技術(如,電子束蒸鍍)、化學氣相沉積(CVD)、電漿增強化學氣相沉積(PECVD)、原子層沉積(ALD)、鍍覆技術(如,電鍍)及濕式化學沉積技術(如,溶膠-凝膠)。Other processes can produce SiN x and SiO x N y , wherein the materials produced by their other processes can have the characteristics claimed in this application. Other processes that can produce SiN x and SiO x N y films include: reactive sputtering, evaporation techniques (eg, electron beam evaporation), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD) , Atomic Layer Deposition (ALD), plating technology (eg, electroplating) and wet chemical deposition technology (eg, sol-gel).

發現對高硬度SiNx 、SiOx Ny 及Siu Alv Ox Ny 之濺射製程條件提供之硬度及折射係數值實質上與高硬度AlOx Ny 一致,進一步描述於美國專利第US 9,335,444號中,該美國專利以全文引用方式併入本文。這些高硬度材料的特徵為,就玻璃基板(其中玻璃基板具有之硬度為~7 GPa)上之500-5000nm厚度的單層膜所測得之單層膜硬度為>16、>18、>20,或自16 GPa至25 GPa。通常,這些高硬度材料還具有以下特徵:約1.85至2.1的折射係數(n)值(在550nm下測量);及在400nm波長下測量,小於約1 e-2、小於5 e-3、小於1e-3或甚至小於5e-4之複合折射係數(吸收係數,k)值。在400 nm下測量K,以獲得更高的靈敏度,而通常在550 nm處回報n。一般而言,可在低於400C或甚至低於300C之製程溫度下,由反應性濺射、金屬模反應性濺射(metal-mode reactive sputtering)及PECVD製造所有這些高硬度材料。It was found that the hardness and refractive index values provided for the sputtering process conditions of high hardness SiN x , SiO x N y and Si u Al v O x N y are substantially consistent with the high hardness AlO x N y , which is further described in US Patent No. US No. 9,335,444, this US patent is incorporated herein by reference in its entirety. These high-hardness materials are characterized by a single-layer film hardness of >16, >18, and >20 measured on a single-layer film with a thickness of 500-5000 nm on a glass substrate (where the glass substrate has a hardness of ~7 GPa) , Or from 16 GPa to 25 GPa. In general, these high-hardness materials also have the following characteristics: a refractive index (n) value of about 1.85 to 2.1 (measured at 550 nm); and measured at a wavelength of 400 nm, less than about 1 e-2, less than 5 e-3, less than 1e-3 or even less than 5e-4 composite refractive index (absorption coefficient, k) value. Measure K at 400 nm for higher sensitivity, and usually return n at 550 nm. Generally speaking, all these high hardness materials can be manufactured from reactive sputtering, metal-mode reactive sputtering and PECVD at process temperatures below 400C or even below 300C.

已發現到,當經適當地調整以實現硬度、折射係數、膜應力及低光學吸收性之期望組合時,「AlON」、「SiON」及「SiAlON」系成分在本文所揭示之光學設計中實質上可互換。較佳的薄膜沉積製程為反應性濺射或金屬模濺射,但諸如PECVD等其他製程也可用於製造本揭示內容的塗層。就本揭示內容的目的而言,可藉由反應性濺射及金屬模濺射來製造AlOx Ny 、SiOx Ny 及Siu Alv Ox Ny 之單層及多層膜,且它們的硬度及光學特性經調整來實現期望的範圍。合適的製造製程描述於,例如,美國專利第US 9,335,444號中,該美國專利以全文引用方式併入本文。所測得之這些塗層的光學特性可用於薄膜設計模擬,以產生本揭示內容之模造實例。It has been found that when properly adjusted to achieve the desired combination of hardness, refractive index, film stress, and low optical absorption, "AlON", "SiON", and "SiAlON" components are essential in the optical design disclosed herein Interchangeable. The preferred thin film deposition process is reactive sputtering or metal mold sputtering, but other processes such as PECVD can also be used to make the coating of the present disclosure. For the purpose of this disclosure, single-layer and multi-layer films of AlO x N y , SiO x N y and Si u Al v O x N y can be manufactured by reactive sputtering and metal mold sputtering, and they The hardness and optical properties are adjusted to achieve the desired range. Suitable manufacturing processes are described, for example, in US Patent No. US 9,335,444, which is incorporated herein by reference in its entirety. The measured optical properties of these coatings can be used in thin film design simulations to produce molding examples of the present disclosure.

光學層(可為硬層或較軟層)也可包括薄膜技術領域中已知的額外材料,諸如SiO2 、Al2 O3 、TiO2 、Nb2 O5 、Ta2 O5 、HfO2 、本案所屬技術領域中已知者,及混合物、層狀結構,及前述者之組合。 應用The optical layer (which may be a hard layer or a softer layer) may also include additional materials known in the field of thin film technology, such as SiO 2 , Al 2 O 3 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , HfO 2 , Known in the technical field to which this case belongs, and mixtures, layered structures, and combinations of the foregoing. application

在某些實施例中,應用包括顯示器蓋板、觸控螢幕、智慧型電話殼體組件,如蓋板元件或背板(如,硬塗佈玻璃或玻璃陶瓷)、太陽眼鏡外部,及防刮鏡。In some embodiments, applications include display covers, touch screens, smart phone housing components, such as cover elements or back plates (eg, hard-coated glass or glass ceramics), sunglasses exterior, and scratch protection mirror.

可就不同的應用使用不同的基板。本文的模造實例使用康寧玻璃代號5318,其可從美國紐約州康寧市的康寧公司購得。應理解到,也可使用替代基板作為這些塗層設計所用之基板。非限制性實例包括:透明的非吸收性玻璃(如Gorilla玻璃)、部分吸收性眼用眼鏡(ophthalmic glasses),如Corning Grey 17 (玻璃代號82524),或玻璃陶瓷(如經化學強化之黑玻璃陶瓷)。這些不同的基板選項實質上維持相同的第一表面反射率及反射顏色值(而透射率值則將藉由基板的選擇而有很大的變化)。在黑玻璃陶瓷基板的例子中,總製品透射率可為小於10%或小於1%。在透明的非吸收性基板的例子中,透射率將接近塗層的100-%反射率(1st 表面),或塗層的100-4-%反射率(後者從透明的玻璃基板之後側、未塗覆的表面認定4%的反射率)。 吸收及金屬層Different substrates can be used for different applications. The molding example herein uses Corning Glass Code 5318, which is commercially available from Corning Corporation of Corning, New York, USA. It should be understood that alternative substrates can also be used as substrates for these coating designs. Non-limiting examples include: transparent non-absorbent glass (such as Gorilla glass), partially absorbent ophthalmic glasses, such as Corning Grey 17 (glass code 82524), or glass ceramics (such as chemically strengthened black glass) ceramics). These different substrate options maintain substantially the same first surface reflectivity and reflected color values (and the transmittance value will vary greatly by the choice of substrate). In the example of a black glass ceramic substrate, the total product transmittance may be less than 10% or less than 1%. In the case of a transparent non-absorbent substrate, the transmittance will be close to 100-% reflectivity of the coating (1 st surface), or 100-4-% reflectivity of the coating (the latter from the backside of the transparent glass substrate, The uncoated surface is considered to have a reflectivity of 4%). Absorption and metal layer

在某些實施例中,本文所述之硬塗層設計可結合金屬層或吸收層。吸收層在太陽眼鏡應用中特別有用,太陽眼鏡應用期望最小化塗層製品之使用者側上的反射率。在這樣的情況下,可能較佳的是將吸收性材料定位在硬塗層的使用者側,例如面向使用者眼睛之吸收玻璃基板,以及在製品的朝外表面上的反射或著色硬塗層,用於朝向外部環境之反射率及刮痕抗性。在併入單側吸收製品結構的例子中,來自製品之兩側的反射可因吸收劑而變化。在這樣的情況下,除非另有指明,否則這裡引用的反射率值將適用於面向環境的表面、硬塗層表面,或界於環境與硬塗層/反射層之間的具有低吸收水平之表面。在某些實施例中,吸收層可位於硬塗層與基板之間。在某些實施例中,可能期望從堆疊排除金屬,如在下文描述的實例中,以最大化黏附性和刮痕抗性。光學塗層在特定製品上之安置 In certain embodiments, the hard coat design described herein can incorporate a metal layer or an absorber layer. Absorbent layers are particularly useful in sunglasses applications, which are intended to minimize the reflectivity on the user side of the coated article. In such cases, it may be preferable to position the absorbent material on the user side of the hard coat, such as an absorbent glass substrate facing the user's eyes, and a reflective or colored hard coat on the outward-facing surface of the article , For reflectivity and scratch resistance towards the external environment. In the case of incorporating a single-sided absorbent article structure, the reflection from both sides of the article may vary due to the absorbent. In such cases, unless otherwise indicated, the reflectance values quoted here will apply to the environment-facing surface, the hard-coat surface, or between the environment and the hard-coat/reflective layer with a low absorption level surface. In some embodiments, the absorber layer may be located between the hard coat layer and the substrate. In certain embodiments, it may be desirable to exclude metal from the stack, as in the examples described below, to maximize adhesion and scratch resistance. Placement of optical coatings on specific products

在某些實施例中,由於眼鏡或太陽眼鏡的兩側都可能受到磨損,尤其是在清潔期間,因此可能期望在眼鏡或太陽眼鏡鏡片的兩側上安置抗刮痕塗層。在吸收太陽眼鏡或眼鏡鏡片的例子中,常希望在太陽眼鏡之外表面上安置較高反射率之刮痕抗性塗層,及在太陽眼鏡之鏡片的內(面向使用者眼睛)表面上之低反射率或抗反射的刮痕抗性塗層。舉例而言,鏡片的外(前)表面上之塗層可具有如本文所述之平均反射率。鏡片的內(後)表面可具有硬塗層,所述硬塗層可使用任何合適的光學塗層而具有低於2%的明視平均反射率。合適的實例描述於美國專利第US 9,335,444號中,該美國專利以全文引用方式併入本文。WO2016018490及WO2014182639以全文引用方式併入本文。In some embodiments, since both sides of the glasses or sunglasses may be subject to wear, especially during cleaning, it may be desirable to place an anti-scratch coating on both sides of the glasses or sunglasses lenses. In the case of absorbing sunglasses or spectacle lenses, it is often desirable to place a higher reflectivity scratch resistant coating on the outer surface of the sunglasses, and on the inner (facing the user's eye) surface of the lens of the sunglasses Low-reflectivity or anti-reflective scratch-resistant coating. For example, the coating on the outer (front) surface of the lens may have an average reflectance as described herein. The inner (rear) surface of the lens can have a hard coating that can use any suitable optical coating to have a clear visual reflectance of less than 2%. Suitable examples are described in US Patent No. US 9,335,444, which is incorporated herein by reference in its entirety. WO2016018490 and WO2014182639 are incorporated herein by reference in their entirety.

在某些實施例中,在將刮痕抗性塗層安置於眼鏡或太陽眼鏡鏡片的兩側上時,兩側表面都被賦予高硬度和刮痕抗性。在這些例子中,可能較佳的是將低反射率塗層(如,<4%的明視平均反射率)安置在太陽眼鏡的內表面上,並將高反射塗層(如,>6%的明視平均反射率)安置在外表面上。在此情況中,元素的順序可為:1) 使用者的眼睛;2) 低反射率塗層;3) 吸收玻璃基板;4) 高反射率塗層;5)太陽或周圍環境。低反射率塗層可為,例如,任何合適的光學塗層。合適的實例描述於美國專利第US 9,335,444號中,該美國專利以全文引用方式併入本文。高反射率塗層可為,例如,本文所述之塗層。In certain embodiments, when the scratch-resistant coating is placed on both sides of spectacles or sunglasses lenses, the surfaces on both sides are endowed with high hardness and scratch resistance. In these examples, it may be preferable to place a low-reflectivity coating (eg, <4% clear visual average reflectivity) on the inner surface of the sunglasses, and a high-reflective coating (eg, >6% The average visual reflectance of) is placed on the outer surface. In this case, the order of the elements may be: 1) the user's eyes; 2) a low-reflectivity coating; 3) an absorbing glass substrate; 4) a high-reflectivity coating; 5) the sun or the surrounding environment. The low reflectance coating may be, for example, any suitable optical coating. Suitable examples are described in US Patent No. US 9,335,444, which is incorporated herein by reference in its entirety. The high reflectivity coating may be, for example, the coating described herein.

在眼鏡應用中,與太陽鏡相反,較佳在透明(非吸收性玻璃基板)的兩側使用低反射率抗刮塗層。在其他情況下,使用單一抗刮塗層(最可能在眼鏡或太陽鏡的面向外的表面上)將更具成本效益。In eyewear applications, as opposed to sunglasses, it is preferable to use a low-reflectivity scratch-resistant coating on both sides of a transparent (non-absorbent glass substrate). In other cases, the use of a single scratch-resistant coating (most likely on the outward-facing surface of the glasses or sunglasses) will be more cost-effective.

在某些實施例中,本文描述之塗層也可有利於汽車玻璃應用,如,側窗或天窗或燈殼。所述塗層可提供具有高度耐刮性及耐候性之低反射率抗刮塗層。In certain embodiments, the coatings described herein may also be useful for automotive glass applications, such as side windows or skylights or lamp housings. The coating can provide a low-reflectivity scratch-resistant coating with high scratch resistance and weather resistance.

在顯示器蓋板及觸控螢幕應用中,通常較佳的是將光學硬塗層安置在顯示器或螢幕之面向使用者/暴露的表面上,但在一些此類應用中,可能期望將塗層安置在顯示器蓋板的雙側上,或視情況使顯示器蓋板的兩側上具有不同的塗層。舉例而言,可將低成本、低硬度之抗反射塗層安置在顯示器蓋板的背側上,以保護其不受因其位置所帶來的刮痕,同時可將如本揭示內容之實施例的高硬度之抗反射塗層安置在顯示器蓋板前方之面向使用者側上。參數 In display cover and touch screen applications, it is generally preferred to place the optical hard coating on the user-facing/exposed surface of the display or screen, but in some such applications, it may be desirable to place the coating Different coatings are provided on both sides of the display cover, or optionally on both sides of the display cover. For example, a low-cost, low-hardness anti-reflective coating can be placed on the back side of the display cover to protect it from scratches caused by its position, and can be implemented as disclosed The high-hardness anti-reflection coating of the example is placed on the user-facing side of the front of the display cover. parameter

基於本揭示內容可考慮或指定的參數包括以下:Parameters that can be considered or specified based on this disclosure include the following:

- 經塗佈製品、經塗佈表面之硬度。-Hardness of coated products and coated surfaces.

- 塗層堆疊中之較軟(通常較低折射係數)材料的分率(fraction)。-Fraction of softer (usually lower refractive index) materials in the coating stack.

- 塗層堆疊中之較軟材料的總量(厚度)。-The total amount (thickness) of the softer materials in the coating stack.

- 最厚的高硬度(高係數)層之暴露(遠離基板)側上之較軟材料的總量(厚度)。-The total amount (thickness) of the softer material on the exposed (away from the substrate) side of the thickest high hardness (high coefficient) layer.

- 可見光範圍中之最大反射率。-Maximum reflectance in the visible range.

- 可見光範圍中之平均反射率(如,明視平均反射率)。-The average reflectance in the visible range (eg, the average reflectance in clear vision).

- 可見光範圍中之透射率(與吸收性材料或基板結合,或不與吸收性材料或基板結合)。-Transmittance in the visible range (combined with absorptive material or substrate or not combined with absorptive material or substrate).

- 光學入射角度之反射顏色及色偏。-Reflected color and color shift at optical incidence angle.

- 光學入射角度之透射顏色及色偏。製品結構 -Transmission color and color shift at optical incidence angle. Product structure

請參見第1圖,根據一或多個實施例之製品100可包括基板110及光學塗層120,光學塗層120設置於基板上。基板110包括相對的主表面112、114和相對的次表面116、118。第1圖繪示之光學塗層120設置於主表面112上;然而,除了將光學塗層120設置於主表面112上,也可將光學塗層120額外地或替代地設置於主表面114及/或所述相對的次表面中之一或二者上。光學塗層120形成外表面122。表面112也可於本文中稱為「第一主表面」,且表面122也可於本文中稱為「第二主表面」。Referring to FIG. 1, the article 100 according to one or more embodiments may include a substrate 110 and an optical coating 120, and the optical coating 120 is disposed on the substrate. The substrate 110 includes opposed major surfaces 112, 114 and opposed minor surfaces 116, 118. The optical coating 120 shown in FIG. 1 is disposed on the main surface 112; however, in addition to the optical coating 120 being disposed on the main surface 112, the optical coating 120 may be additionally or alternatively disposed on the main surface 114 and And/or one or both of the opposing subsurfaces. The optical coating 120 forms an outer surface 122. Surface 112 may also be referred to herein as a "first major surface", and surface 122 may also be referred to herein as a "second major surface."

如所示,光學塗層120包括相對的主表面122、124,所述主表面122、124平行於相對的主表面112、114,並垂直於光學塗層120之厚度方向126。As shown, the optical coating 120 includes opposing major surfaces 122, 124 that are parallel to the opposing major surfaces 112, 114 and perpendicular to the thickness direction 126 of the optical coating 120.

光學塗層120的厚度可為約1 μm或以上,同時仍提供呈現本文所述之光學性質的製品。在一些實例中,光學塗層120的厚度可在自約1 µm至約20 µm的範圍內(如,自約1 µm至約10 µm,或自約1 µm至約5 µm)。藉由截面之掃描式電子顯微鏡(SEM)、藉由透射式電子顯微鏡(TEM)、或藉由光學橢圓測量法(如,藉由n & k分析儀)、或藉由薄膜反射計,來測量薄膜元件(如,抗刮層、光學膜之層,等等)的厚度。就多層元件(如,光學膜堆疊之層),較佳是藉由SEM或TEM進行厚度測量。除非另有指明,使用橢圓測量法來測量厚度。The thickness of the optical coating 120 may be about 1 μm or more, while still providing articles exhibiting the optical properties described herein. In some examples, the thickness of the optical coating 120 may range from about 1 µm to about 20 µm (eg, from about 1 µm to about 10 µm, or from about 1 µm to about 5 µm). Measured by cross-sectional scanning electron microscope (SEM), by transmission electron microscope (TEM), or by optical ellipsometry (eg, by n & k analyzer), or by thin-film reflectometer The thickness of the thin-film element (eg, scratch-resistant layer, optical film layer, etc.). For multilayer devices (eg, layers of optical film stacks), thickness measurement is preferably performed by SEM or TEM. Unless otherwise specified, the thickness is measured using ellipsometry.

製品100也可包括一或多個可選層170、180。舉例而言,可選層170可為黏著層、裂隙減輕層,且可選層180可為易於清潔之層。可選層170及180為可選的,且非必需要包括在製品100中。雖然在第1圖以外的其他圖式中省略了可選層170、180,但他們可視情況存在於所述其他圖式的實施例中。Article 100 may also include one or more optional layers 170, 180. For example, the optional layer 170 may be an adhesive layer, a crack mitigation layer, and the optional layer 180 may be an easy-to-clean layer. The optional layers 170 and 180 are optional and need not be included in the article 100. Although the optional layers 170, 180 are omitted in the drawings other than FIG. 1, they may exist in the embodiments of the other drawings as the case may be.

在本文所用,術語「層」可包括單層或可包括一或更多子層。這樣的子層可彼此直接接觸。子層可由相同材料或二或更多種不同材料組成。在一或多個替代實施例中,子層具有不同材料的中介層置於其間。在一或多個實施例中,層可包括一或更多個連續且不間斷的層,及/或一或多個不連續且間斷的層(即,具不同材料彼此相鄰形成的層)。可以本案所屬技術領域中已知的任何方法形成層或子層,包括離散沉積或連續沉積製程。在一或多個實施例中,可僅利用連續沉積製程或者僅利用離散沉積製程來形成層。As used herein, the term "layer" may include a single layer or may include one or more sublayers. Such sub-layers can directly contact each other. The sub-layer may be composed of the same material or two or more different materials. In one or more alternative embodiments, interlayers with different materials of sub-layers are interposed therebetween. In one or more embodiments, the layer may include one or more continuous and uninterrupted layers, and/or one or more discontinuous and intermittent layers (ie, layers formed of different materials adjacent to each other) . The layer or sublayer can be formed by any method known in the technical field to which this case belongs, including discrete deposition or continuous deposition processes. In one or more embodiments, the layer may be formed using only a continuous deposition process or only a discrete deposition process.

在本文所用,術語「設置」包括使用本案所屬技術領域中任何已知的方法塗佈、沉積及/或形成材料至表面上。設置的材料可構成如前文所界定之層。片語「設置於…上」包括形成材料至表面使材料直接接觸表面的情況,還包括材料形成於表面上且一或多個中介材料位在所設置的材料與表面之間的情況。中介材料可構成如前文所界定之層。As used herein, the term "setting" includes applying, depositing, and/or forming a material onto a surface using any method known in the technical field to which this case pertains. The materials provided can constitute the layers as defined above. The phrase "set on" includes the case where the material is formed to the surface so that the material directly contacts the surface, and also includes the case where the material is formed on the surface and one or more intermediary materials are located between the set material and the surface. The intermediary material may constitute the layer as defined above.

如第2圖所示,製品200包括光學塗層120,而光學塗層120包括第一梯度部分130。第2圖繪示一般實施例,其中光學塗層可或可不包括附加層125。附加層125可為梯度部分、厚的高硬度部分、多層干涉堆疊或其他光學塗層組分。可以存在比第2圖所示更多或更少的附加層125。第一梯度部分130可位於光學塗層120中的任何位置,包括與相對主表面122、124之一或二者接觸的位置。As shown in FIG. 2, the article 200 includes an optical coating 120, and the optical coating 120 includes a first gradient portion 130. Figure 2 illustrates a general embodiment, where the optical coating may or may not include the additional layer 125. The additional layer 125 may be a gradient portion, a thick high hardness portion, a multi-layer interference stack, or other optical coating components. There may be more or fewer additional layers 125 than shown in FIG. 2. The first gradient portion 130 may be located at any position in the optical coating 120, including a position in contact with one or both of the opposing main surfaces 122, 124.

如第3圖所示,製品300包括光學塗層120,光學塗層120包括第一梯度部分130及厚的高硬度部分140二者。參照第2圖,第3圖繪示了可或可不存在之附加層125,且可以是與第2圖之附加層125相同類型的層。第一梯度部分130及厚的高硬度部分140中之各者可位於光學塗層120中的任何位置,包括與相對主表面122、124中之一者接觸之位置。As shown in FIG. 3, the article 300 includes an optical coating 120 that includes both the first gradient portion 130 and the thick high hardness portion 140. Referring to FIG. 2, FIG. 3 illustrates the additional layer 125 which may or may not exist, and may be the same type of layer as the additional layer 125 of FIG. 2. Each of the first gradient portion 130 and the thick high hardness portion 140 may be located at any position in the optical coating 120, including a position in contact with one of the opposing major surfaces 122, 124.

第4圖繪示一具體實施例之製品400,其中由厚的高硬度部分140及第一梯度部分130依此順序堆疊於基板110上而組成光學塗層120,沒有中間層,且光學塗層120中沒有任何附加層125。第5圖繪示一具體實施例之製品500,其中由第二梯度部分150、厚的高硬度部分140及第一梯度部分130依此順序堆疊於基板110上而組成光學塗層120,沒有中間層,且光學塗層120中沒有任何附加層125。在某些實施例中,第5圖的結構可具有沿著厚度從表面122朝向表面112移動之方向上單調地增加的折射係數。在某些實施例中,第二梯度部分的折射係數在相同方向上單調地減少。在本文所用,「單調地增加(monotonically increase)」意指折射係數上升或作為距離的函數保持不變,但不減少。在本文所用,「單調地減少(monotonically decrease)」意指折射係數下降或作為距離的函數保持不變,但不增加。實例1至3各包括梯度部分,所述梯度部分是本段落中描述之單調函數的實例。多層干涉堆疊 FIG. 4 shows a product 400 according to an embodiment, in which the thick high-hardness portion 140 and the first gradient portion 130 are stacked on the substrate 110 in this order to form the optical coating 120 without an intermediate layer, and the optical coating There are no additional layers 125 in 120. FIG. 5 shows a product 500 of an embodiment, in which an optical coating 120 is formed by stacking a second gradient portion 150, a thick high hardness portion 140, and a first gradient portion 130 on the substrate 110 in this order, without an intermediate Layer, and there is no additional layer 125 in the optical coating 120. In some embodiments, the structure of FIG. 5 may have a refractive index that monotonically increases in a direction in which the thickness moves from surface 122 toward surface 112. In some embodiments, the refractive index of the second gradient portion decreases monotonously in the same direction. As used herein, "monotonically increase" means that the refractive index rises or remains constant as a function of distance, but does not decrease. As used herein, "monotonically decrease" means that the refractive index decreases or remains constant as a function of distance, but does not increase. Examples 1 to 3 each include a gradient portion, which is an example of the monotonic function described in this paragraph. Multilayer interference stack

在某些實施例中,附加層125可包含一或多個多層干涉堆疊。第6圖繪示範例製品600,其包括多層干涉堆疊610。在第6圖的實施例中,由多層干涉堆疊610、厚的高硬度部分140及第一梯度部分130依此順序堆疊在基板110上而組成光學塗層120。在一或多個實施例中,多層干涉堆疊610可包括區段(period) 620,區段620包含兩個或更多個層。在一或多個實施例中,所述兩個或更多個層可表徵為具有彼此不同的折射係數。在某些實施例中,區段620包括第一低RI層622及第二高RI層624。第一低RI層與第二高RI層之折射係數的差可為約0.01或更大、0.05或更大、0.1或更大,或甚至0.2或更大。In some embodiments, the additional layer 125 may include one or more multilayer interference stacks. FIG. 6 depicts an example article 600 that includes a multilayer interference stack 610. In the embodiment of FIG. 6, the optical coating 120 is composed of a multilayer interference stack 610, a thick high-hardness portion 140, and a first gradient portion 130 stacked on the substrate 110 in this order. In one or more embodiments, the multilayer interference stack 610 may include a period 620 that includes two or more layers. In one or more embodiments, the two or more layers may be characterized as having different refractive indexes from each other. In some embodiments, the section 620 includes a first low RI layer 622 and a second high RI layer 624. The difference in refractive index between the first low RI layer and the second high RI layer may be about 0.01 or greater, 0.05 or greater, 0.1 or greater, or even 0.2 or greater.

如第6圖所示,多層干涉堆疊610可包括複數個區段620。單一區段包括第一低RI層622及第二高RI層624,使得當提供複數個區段時,第一低RI層622 (為說明指定為「L」)及第二高RI層624 (為說明指定為「H」)以下列層順序交替:L/H/L/H或H/L/H/L,使得第一低RI層和第二高RI層看起來沿著多層干涉堆疊610的實體厚度交替呈現。在第6圖的實例中,多層干涉堆疊610包括三個區段。在某些實施例中,多層干涉堆疊610可包括達25個區段。舉例而言,多層干涉堆疊610可包括自約2至約20個區段、自約2至約15個區段、自約2至約10個區段、自約2至約12個區段、自約3至約8個區段、自約3至約6個區段。As shown in FIG. 6, the multilayer interference stack 610 may include a plurality of sections 620. The single section includes a first low RI layer 622 and a second high RI layer 624, such that when a plurality of sections are provided, the first low RI layer 622 (designated as "L" for description) and the second high RI layer 624 ( Designated as "H" for illustration) alternating in the following layer order: L/H/L/H or H/L/H/L, making the first low RI layer and the second high RI layer appear along the multilayer interference stack 610 The thickness of the solids alternates. In the example of FIG. 6, the multilayer interference stack 610 includes three sections. In some embodiments, the multilayer interference stack 610 may include up to 25 sections. For example, the multilayer interference stack 610 may include from about 2 to about 20 sections, from about 2 to about 15 sections, from about 2 to about 10 sections, from about 2 to about 12 sections, From about 3 to about 8 sections, from about 3 to about 6 sections.

多層干涉堆疊也可包括其他層,如具有與第一低RI層622和第二高RI層624的折射係數不同之高或低折射係數之層,或具有中等折射係數之層。在本文所用,術語「低RI」、「高RI」和「中等RI」指彼此相對的RI值(如,低RI < 中等RI < 高RI)。在一或多個實施例中,偕同第一低RI層或第三層使用的術語「低RI」包括自約1.3至約1.6之範圍。在一或多個實施例中,偕同第二高RI層或第三層使用的術語「高RI」包括自約1.6至約2.5之範圍(如,約1.85或更大)。在某些實施例中,偕同第三層使用的術語「中等RI」包括自約1.55至約1.8之範圍。在一些情況中,低RI、高RI和中等RI的範圍可能重疊;然而,在多數情況下,特定多層干涉堆疊610之層的RI具有一般相關性:低RI < 中等RI < 高RI。The multilayer interference stack may also include other layers, such as a layer with a high or low refractive index different from the refractive index of the first low RI layer 622 and the second high RI layer 624, or a layer with a medium refractive index. As used herein, the terms "low RI", "high RI", and "medium RI" refer to RI values relative to each other (eg, low RI <medium RI <high RI). In one or more embodiments, the term "low RI" used with the first low RI layer or the third layer includes a range from about 1.3 to about 1.6. In one or more embodiments, the term "high RI" used with the second high RI layer or the third layer includes a range from about 1.6 to about 2.5 (eg, about 1.85 or greater). In some embodiments, the term "medium RI" used with the third layer includes a range from about 1.55 to about 1.8. In some cases, the ranges of low RI, high RI, and medium RI may overlap; however, in most cases, the RI of a particular multilayer interference stack 610 has a general correlation: low RI <medium RI <high RI.

適用於多層干涉堆疊610之示例性材料包括:SiO2 、Al2 O3 、GeO2 、SiO、AlOx Ny 、AlN、SiNx 、SiOx Ny 、Siu Alv Ox Ny 、Ta2 O5 、Nb2 O5 、TiO2 、ZrO2 、TiN、MgO、MgF2 、BaF2 ,CaF2 、SnO2 、HfO2 、Y2 O3 、MoO3 、DyF3 、YbF3 、YF3 、CeF3 、聚合物、氟聚合物、電漿聚合之聚合物、矽氧烷聚合物、半矽氧烷、聚醯亞胺、氟化聚醯亞胺、聚醚醯亞胺、聚醚碸、聚苯碸、聚碳酸酯、聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、丙烯酸聚合物、胺甲酸乙酯聚合物、聚甲基丙烯酸甲酯、以下記載適用於抗刮層之其他材料,及本案所屬技術領域中已知的其他材料。適用於第一低RI層中之材料的一些實例包括:SiO2 、Al2 O3 、GeO2 、SiO、AlOx Ny 、SiOx Ny 、Siu Alv Ox Ny 、MgO、MgAl2 O4 、MgF2 、BaF2 、CaF2 、DyF3 、YbF3 、YF3 及CeF3 。可將用於第一低RI層中之材料的氮含量最小化(如,在諸如Al2 O3 及MgAl2 O4 等材料中,或例如,相較於用來形成高係數材料之SiOx Ny ,用來形成低係數材料之SiOx Ny 通常將具有較低的氮含量)。適用於第二高RI層中之材料的一些實例包括:Siu Alv Ox Ny 、Ta2 O5 、Nb2 O5 、AlN、Si3 N4 、AlOx Ny 、SiOx Ny 、HfO2 、TiO2 、ZrO2 、Y2 O3 、Al2 O3 、MoO3 及類鑽石碳。可將用於第二高RI層及/或抗刮層之材料的氧含量最小化,特別是在SiNx 或AlNx 材料中。AlOx Ny 材料可視為氧摻雜的AlNx ,即所述材料可具有AlNx 結晶結構(如,氧空缺(wurtzite))而未必具有AlON結晶結構。示例性之較佳AlOx Ny 高RI材料可包含:自約0原子%至約20原子%的氧,或自約5原子%至約15原子%的氧;同時包括30原子%至約50原子%的氮。示例性之較佳Siu Alv Ox Ny 高RI材料可包含:自約10原子%至約30原子%,或自約15原子%至約25原子%的矽;自約20原子%至約40原子%,或自約25原子%至約35原子%的鋁;自約0原子%至約20原子%,或自約1原子%至約20原子%的氧;及自約30原子%至約50原子%的氮。示例性之較佳SiOx Ny 高RI材料可包含:自約30原子%至約60原子%,或自約40原子%至約50原子%的矽;自約0原子%至約25原子%,或自約1原子%至約25原子%,或自約6原子%至約18原子%的氧;及自約30原子%至約60原子%的氮。示例性之較佳SiNx 高RI材料可包含:自約30原子%至約60原子%,或自約40原子%至約50原子%的矽;及自約30原子%至約70原子%的氮。前述材料可經氫化達至約30重量%。可具體地特性化第二高RI層及/或抗刮層的硬度。在某些實施例中,由Berkovich壓頭硬度測試所量測之第二高RI層及/或抗刮層的最大硬度可為約10 GPa或更大、約12 GPa或更大、約15 GPa或更大、約18 GPa或更大、或約20 GPa或更大。在某些情況下,可將第二高RI層材料沉積為單層並可特性化成抗刮層,且此單層可具有自約500 nm至約2000 nm之厚度,用於可再現之硬度測定。Exemplary materials suitable for multilayer interference stack 610 include: SiO 2 , Al 2 O 3 , GeO 2 , SiO, AlO x N y , AlN, SiN x , SiO x N y , Si u Al v O x N y , Ta 2 O 5, Nb 2 O 5 , TiO 2, ZrO 2, TiN, MgO, MgF 2, BaF 2, CaF 2, SnO 2, HfO 2, Y 2 O 3, MoO 3, DyF 3, YbF 3, YF 3 , CeF 3 , polymer, fluoropolymer, plasma polymerized polymer, siloxane polymer, hemisiloxane, polyimide, fluorinated polyimide, polyether amide imide, polyether sulfone , Polystyrene, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, acrylic polymer, urethane polymer, polymethyl methacrylate, the following description is suitable for scratch resistance Other materials of the layer, and other materials known in the technical field to which this case belongs. Some examples of materials suitable for the first low RI layer include: SiO 2 , Al 2 O 3 , GeO 2 , SiO, AlO x N y , SiO x N y , Si u Al v O x N y , MgO, MgAl 2 O 4, MgF 2, BaF 2, CaF 2, DyF 3, YbF 3, YF 3 , and CeF 3. The nitrogen content of the materials used in the first low RI layer can be minimized (eg, in materials such as Al 2 O 3 and MgAl 2 O 4 , or, for example, compared to SiO x used to form high coefficient materials N y , SiO x N y used to form low coefficient materials will generally have a lower nitrogen content). Some examples of materials suitable for the second highest RI layer include: Si u Al v O x N y , Ta 2 O 5 , Nb 2 O 5 , AlN, Si 3 N 4 , AlO x N y , SiO x N y , HfO 2 , TiO 2 , ZrO 2 , Y 2 O 3 , Al 2 O 3 , MoO 3 and diamond-like carbon. The oxygen content of the material used for the second high RI layer and/or the scratch resistant layer can be minimized, especially in SiN x or AlN x materials. The AlO x N y material can be regarded as oxygen-doped AlN x , that is, the material may have an AlN x crystal structure (eg, oxygen vacancy (wurtzite)) but not necessarily an AlON crystal structure. Exemplary preferred AlO x N y high RI materials may include: from about 0 atomic% to about 20 atomic% oxygen, or from about 5 atomic% to about 15 atomic% oxygen; also including 30 atomic% to about 50 Atomic percent nitrogen. Exemplary preferred Si u Al v O x N y high RI materials may include: from about 10 atomic% to about 30 atomic %, or from about 15 atomic% to about 25 atomic% silicon; from about 20 atomic% to About 40 atomic %, or from about 25 atomic% to about 35 atomic% aluminum; from about 0 atomic% to about 20 atomic %, or from about 1 atomic% to about 20 atomic% oxygen; and from about 30 atomic% Up to about 50 atomic% nitrogen. Exemplary preferred SiO x N y high RI materials may include: from about 30 atomic% to about 60 atomic %, or from about 40 atomic% to about 50 atomic% silicon; from about 0 atomic% to about 25 atomic% , Or from about 1 atomic% to about 25 atomic %, or from about 6 atomic% to about 18 atomic% oxygen; and from about 30 atomic% to about 60 atomic% nitrogen. Exemplary preferred SiN x high RI materials may include: from about 30 atomic% to about 60 atomic %, or from about 40 atomic% to about 50 atomic% silicon; and from about 30 atomic% to about 70 atomic% nitrogen. The aforementioned materials can be hydrogenated to about 30% by weight. The hardness of the second high RI layer and/or the scratch resistant layer can be specifically characterized. In some embodiments, the maximum hardness of the second high RI layer and/or the scratch resistant layer measured by the Berkovich indenter hardness test may be about 10 GPa or greater, about 12 GPa or greater, about 15 GPa Or greater, approximately 18 GPa or greater, or approximately 20 GPa or greater. In some cases, the second high RI layer material can be deposited as a single layer and can be characterized as a scratch-resistant layer, and this single layer can have a thickness from about 500 nm to about 2000 nm for reproducible hardness determination .

多層干涉堆疊610的實體厚度可在自約100 nm至1000 nm之範圍內。在一些情況中,多層干涉堆疊610的實體厚度可為100 nm、200 nm、300 nm、400 nm、500 nm、600 nm、700 nm、800 nm、900 nm、1000 nm,及其間的所有範圍及子範圍。在某些實施例中,安置於基板110與厚的高硬度部分之間的多層干涉堆疊610,如第6圖所示,例如,較佳地具有100至500 nm的厚度。在某些實施例中,安置於基板110上方之多層干涉堆疊較佳地具有100至1000 nm的厚度。The physical thickness of the multilayer interference stack 610 may range from about 100 nm to 1000 nm. In some cases, the physical thickness of the multilayer interference stack 610 may be 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, and all ranges in between and Subrange. In some embodiments, the multilayer interference stack 610 disposed between the substrate 110 and the thick high-hardness portion, as shown in FIG. 6, for example, preferably has a thickness of 100 to 500 nm. In some embodiments, the multilayer interference stack disposed above the substrate 110 preferably has a thickness of 100 to 1000 nm.

在某些實施例中,存在於光學塗層120中之任何多層干涉堆疊610被安置於厚的高硬度部分140下方,即,介於厚的高硬度部分140與基板110之間。不受理論束縛,具有高硬度之厚的高RI層有效地屏蔽下方的層(或介於厚的RI層與基板之間的層),因而降低由多層干涉堆疊610中之突兀界面對製品600的特性造成之機械弱化效應。軟性材料 的安置及 厚度 In some embodiments, any multilayer interference stack 610 present in the optical coating 120 is disposed below the thick high-hardness portion 140, that is, between the thick high-hardness portion 140 and the substrate 110. Without being bound by theory, the thick high RI layer with high hardness effectively shields the underlying layer (or the layer between the thick RI layer and the substrate), thereby reducing the abrupt interface of the multilayer interference stack 610 to the product 600 The mechanical weakening effect caused by the characteristics. Placement and thickness of soft materials

在某些實施例中,可以某些方式最小化及/或安置光學塗層120中之任何軟性材料的厚度。In some embodiments, the thickness of any soft material in the optical coating 120 may be minimized and/or disposed in certain ways.

在實施例中,量化塗層設計中之低折射係數(亦稱為低係數)材料的量或厚度可能是有益的。低係數材料(一般界定為具有低於約1.6之折射係數者)通常也是較低硬度材料。不受理論束縛,低RI材料通常也是較低硬度材料,這是由於原子鍵結和電子密度的性質同時影響折射係數及硬度。因此,期望使塗層設計中之低係數材料的量最小化,但通常需要有一定量的低係數材料以有效率地訂製反射率及顏色目標。在設計描述中以塗層厚度之絕對厚度及分率來表示低係數材料(在實施例中被理解為較低硬度材料)之厚度及分率。量化整體塗層中之低係數材料的總量還有位在塗層設計中之最厚的高硬度塗層上方之低係數材料的量可能是有益的。塗層設計中之最厚的高硬度層保護其下方的層免受刮痕及損壞,意味著最厚的高硬度層上方之低係數層最容易受到刮痕及其他類型的損壞。如上文所註記,最厚的高硬度層不需要是單一的整塊材料,而是可以形成超晶格或其他包括多層或材料之層狀結構,條件是厚的高硬度層形成具有最大硬度之整塊或「複合(composite)」區域,所述最大硬度比整個塗層堆疊之最大硬度更高。In embodiments, it may be beneficial to quantify the amount or thickness of low refractive index (also known as low coefficient) materials in the coating design. Low coefficient materials (generally defined as those having a refractive index less than about 1.6) are also generally lower hardness materials. Without being bound by theory, low RI materials are usually lower hardness materials, because the nature of atomic bonding and electron density affect both the refractive index and the hardness. Therefore, it is desirable to minimize the amount of low-coefficient materials in the coating design, but usually a certain amount of low-coefficient materials is needed to efficiently tailor the reflectivity and color targets. In the design description, the absolute thickness and fraction of the coating thickness are used to represent the thickness and fraction of the low-coefficient material (understandable as a lower hardness material in the examples). It may be beneficial to quantify the total amount of low coefficient material in the overall coating and the amount of low coefficient material above the thickest high hardness coating in the coating design. The thickest high hardness layer in the coating design protects the layers below it from scratches and damage, meaning that the low coefficient layer above the thickest high hardness layer is most susceptible to scratches and other types of damage. As noted above, the thickest high-hardness layer need not be a single monolithic material, but can form a superlattice or other layered structure including multiple layers or materials, provided that the thick high-hardness layer forms the one with the maximum hardness For monolithic or "composite" areas, the maximum hardness is higher than the maximum hardness of the entire coating stack.

在某些實施例中,厚的高硬度部分上方之「軟」材料(如,SiO2 或折射係數低於約1.6之混合材料)的總厚度較佳地受限為小於約200nm、小於約150nm、小於約120nm或甚至小於100 nm。如此最小化厚硬層上方之軟性材料可導致高製品硬度和高抗刮性。在使用Berkovich奈米壓痕測試測量時,在從100至500nm之壓痕深度處之製品硬度可大於10 GPa、大於12 GPa、大於14 GPa,或大於16 GPa。In certain embodiments, the total thickness of the "soft" material (eg, SiO 2 or mixed materials with a refractive index less than about 1.6) above the thick high-hardness portion is preferably limited to less than about 200 nm and less than about 150 nm , Less than about 120 nm or even less than 100 nm. Such minimization of the soft material above the thick hard layer can lead to high product hardness and high scratch resistance. When measured using the Berkovich nanoindentation test, the hardness of the product at an indentation depth from 100 to 500 nm can be greater than 10 GPa, greater than 12 GPa, greater than 14 GPa, or greater than 16 GPa.

在某些實施例中,可最小化光學塗層中之低RI材料的量。以光學塗層120的實體厚度分率表示,低RI材料可包含小於約60%、小於約50%、小於約40%、小於約30%、小於約20%、小於約10%或小於約5%之光學塗層的實體厚度。低RI材料可包含超過零%或超過1%之光學塗層的實體厚度。替代或附加地,低RI材料的量可被量化為設置於光學塗層中最厚的高RI層上方(即,在基板之對側、使用者側或空氣側上)之全部低RI材料的實體厚度的總和。不受理論束縛,具有高硬度之厚的高RI層有效地屏蔽下方的層(或介於厚的RI層與基板之間的層)免於許多或大多數刮痕。因此,設置於最厚的高RI層上方之層對整體製品的抗刮性可有特別大的影響。當最厚的高RI層具有大於約400 nm的實體厚度,且具有依Berkovich壓頭硬度試驗量測之大於約12 GPa的最大硬度時,此尤其關係重大。設置於最厚的高RI層上(即,在基板之對側、使用者側或空氣側上)之低RI材料的量可具有小於或等於約300nm、小於或等於約200nm、小於或等於約150nm、小於或等於約120nm、小於或等於約110nm、100nm、90nm、80nm、70nm、60nm、50nm、40nm、30nm、25nm、20nm、15nm或小於或等於約12nm的厚度。設置於最厚的高RI層上(即,在基板之對側、使用者側或空氣側上)之低RI材料的量可具有大於或等於約0nm或1nm的厚度。可選層 (Optional layer) In certain embodiments, the amount of low RI material in the optical coating can be minimized. Expressed as the physical thickness fraction of the optical coating 120, the low RI material may include less than about 60%, less than about 50%, less than about 40%, less than about 30%, less than about 20%, less than about 10%, or less than about 5 % Of the physical thickness of the optical coating. Low RI materials may contain more than zero% or more than 1% of the physical thickness of the optical coating. Alternatively or additionally, the amount of low RI material can be quantified as the total amount of low RI material disposed above the thickest high RI layer in the optical coating (ie, on the opposite side of the substrate, user side, or air side) The total thickness of the solid. Without being bound by theory, a thick high RI layer with high hardness effectively shields the underlying layer (or the layer between the thick RI layer and the substrate) from many or most scratches. Therefore, the layer disposed above the thickest high RI layer can have a particularly large impact on the scratch resistance of the overall product. This is particularly relevant when the thickest high RI layer has a physical thickness greater than about 400 nm and has a maximum hardness greater than about 12 GPa as measured by the Berkovich indenter hardness test. The amount of low RI material disposed on the thickest high RI layer (ie, on the opposite side of the substrate, user side, or air side) may have less than or equal to about 300 nm, less than or equal to about 200 nm, less than or equal to about A thickness of 150 nm, less than or equal to about 120 nm, less than or equal to about 110 nm, 100 nm, 90 nm, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 25 nm, 20 nm, 15 nm or less than or equal to about 12 nm. The amount of low RI material disposed on the thickest high RI layer (ie, on the opposite side of the substrate, user side, or air side) may have a thickness greater than or equal to about 0 nm or 1 nm. Optional layer (Optional layer)

某些實施例可包括可選層,如可選層170及180。最頂部的空氣側層,如可選層180,可包含低摩擦塗層、疏油性塗層或易清潔塗層。示例性低摩擦層可包括矽烷、氟矽烷或類鑽石碳,這類材料(或光學塗層之一或多個層)可展現出小於0.4、小於0.3、小於0.2或甚至小於0.1之摩擦係數。Some embodiments may include optional layers, such as optional layers 170 and 180. The topmost air side layer, such as optional layer 180, may contain a low-friction coating, an oleophobic coating, or an easy-to-clean coating. Exemplary low friction layers may include silane, fluorosilane, or diamond-like carbon. Such materials (or one or more layers of the optical coating) may exhibit a coefficient of friction of less than 0.4, less than 0.3, less than 0.2, or even less than 0.1.

在一或多個實施例中,可選層180可包括易清潔塗層。合適的易清潔塗層之實例描述於2012年11月30日提申之美國專利申請號第13/690,904號,名稱為「PROCESS FOR MAKING OF GLASS ARTICLES WITH OPTICAL AND EASY-TO-CLEAN COATINGS」,公開為第US20140113083A1號,其以全文引用方式併入本文。易清潔塗層可具有在自約5 nm至約50 nm之範圍內的厚度,且可包括已知材料,例如氟化矽烷。在某些實施例中,易清潔塗層可具有以下範圍之厚度:自約1 nm至約40 nm、自約1 nm至約30 nm、自約1 nm至約25 nm、自約1 nm至約20 nm、自約1 nm至約15 nm、自約1 nm至約10 nm、自約5 nm至約50 nm、自約10 nm至約50 nm、自約15 nm至約50 nm、自約7 nm至約20 nm、自約7 nm至約15 nm、自約7 nm至約12 nm,或自約7 nm至約10 nm,及其間的所有範圍及子範圍。測量 硬度 In one or more embodiments, the optional layer 180 may include an easy-to-clean coating. An example of a suitable easy-to-clean coating is described in US Patent Application No. 13/690,904 filed on November 30, 2012, with the name "PROCESS FOR MAKING OF GLASS ARTICLES WITH OPTICAL AND EASY-TO-CLEAN COATINGS", published No. US20140113083A1, which is incorporated herein by reference in its entirety. The easy-to-clean coating may have a thickness ranging from about 5 nm to about 50 nm, and may include known materials such as fluorinated silane. In certain embodiments, the easy-to-clean coating may have a thickness ranging from about 1 nm to about 40 nm, from about 1 nm to about 30 nm, from about 1 nm to about 25 nm, from about 1 nm to About 20 nm, from about 1 nm to about 15 nm, from about 1 nm to about 10 nm, from about 5 nm to about 50 nm, from about 10 nm to about 50 nm, from about 15 nm to about 50 nm, from From about 7 nm to about 20 nm, from about 7 nm to about 15 nm, from about 7 nm to about 12 nm, or from about 7 nm to about 10 nm, and all ranges and subranges therebetween. Measuring hardness

使用已被廣泛接受的奈米壓痕實作來測定如本文所述之薄膜塗層及製品的硬度及楊氏模數值。請見:Fischer-Cripps, A.C.,「Critical Review of Analysis and Interpretation of Nanoindentation Test Data」, Surface & Coatings Technology,200,4153 – 4165 (2006) (下文稱為「Fischer-Cripps」);及Hay, J., Agee, P及Herbert, E.,「Continuous Stiffness measurement During Instrumented Indentation Testing」,Experimental Techniques,34 (3) 86 – 94 (2010) (下文稱為「Hay」)。就塗層而言,通常以作為壓痕深度之函數的方式來測量硬度及模數。只要塗層具有足夠的厚度,就可以將塗層的性質與所得的響應曲線隔離。應認知到,如果塗層太薄(例如,少於~500 nm),則可能無法完全隔離塗層特性,因為塗層特性可能受到可具有不同機械特性之基板鄰近處的影響。請見Hay。用於報導本文所述之特性的方法可代表塗層本身。程序是測量硬度及模數對比壓痕深度(接近1000 nm之深度)。在硬塗層位於較軟的玻璃上之情況中,響應曲線將呈現在相對小的壓痕深度(小於或等於約200 nm)處之硬度及模數的最大水平。在較深的壓痕深度處,隨著響應受到較軟玻璃基板的影響,硬度和模數二者將逐漸減小。在此情況中,取那些與展現出最大硬度和模數之區域相關的塗層硬度和模數。在軟塗層位於較硬玻璃基板上之情況中,將藉由發生在相對小的壓痕深度處之最低硬度和模數水平來指示塗層特性。在較深的壓痕深度處,由於較硬之玻璃的影響,硬度和模數將逐漸增加。可使用傳統的Oliver及Pharr方法(如Fischer-Cripps所述),或藉由更有效率的連續剛性方法(請見Hay),來獲得硬度和模數對比深度的這些分佈。使用如上所述之奈米壓痕方法,以Berkovich鑽石壓頭尖端測量本文就此類薄膜所報導之彈性模數及硬度值。The widely accepted practice of nanoindentation is used to determine the hardness and Young's modulus values of film coatings and articles as described herein. See: Fischer-Cripps, AC, "Critical Review of Analysis and Interpretation of Nanoindentation Test Data", Surface & Coatings Technology, 200, 4153 – 4165 (2006) (hereinafter referred to as "Fischer-Cripps"); and Hay, J ., Agee, P and Herbert, E., "Continuous Stiffness measurement During Instrumented Indentation Testing", Experimental Techniques, 34 (3) 86 – 94 (2010) (hereinafter referred to as "Hay"). For coatings, hardness and modulus are usually measured as a function of indentation depth. As long as the coating has a sufficient thickness, the properties of the coating can be isolated from the resulting response curve. It should be recognized that if the coating is too thin (eg, less than ~500 nm), the coating characteristics may not be completely isolated because the coating characteristics may be affected by the proximity of substrates that may have different mechanical characteristics. Please see Hay. The method used to report the characteristics described herein may represent the coating itself. The procedure is to measure the hardness and modulus against the indentation depth (depth close to 1000 nm). In the case where the hard coat layer is on a softer glass, the response curve will exhibit the maximum level of hardness and modulus at a relatively small indentation depth (less than or equal to about 200 nm). At deeper indentation depths, both the hardness and modulus will gradually decrease as the response is affected by the softer glass substrate. In this case, take the hardness and modulus of the coating that are related to the area exhibiting the maximum hardness and modulus. In the case where the soft coating is located on a harder glass substrate, the coating properties will be indicated by the lowest hardness and modulus level that occurs at a relatively small indentation depth. At the deeper indentation depth, due to the effect of harder glass, the hardness and modulus will gradually increase. These distributions of hardness and modulus versus depth can be obtained using the traditional Oliver and Pharr methods (as described by Fischer-Cripps), or by a more efficient continuous rigid method (see Hay). Using the nanoindentation method as described above, the elastic modulus and hardness values reported for this type of film are measured at the tip of a Berkovich diamond indenter.

可就由Berkovich壓頭硬度試驗測量的硬度來描述光學塗層120及製品100。在本文所用,「Berkovich壓頭硬度試驗」包括用鑽石Berkovich壓頭壓入材料的表面,以於表面上量測材料的硬度。Berkovich壓頭硬度試驗包括用鑽石Berkovich壓頭壓入製品的主表面122或光學塗層120的表面(或多層干涉堆疊中之任一或多層的表面),以形成壓痕深度在自約50 nm至約1000 nm的範圍內之壓痕(或多層干涉堆疊或層的整個厚度,以較薄者為準),並沿著此壓痕深度的整個壓痕深度範圍或區段(如,自約100 nm至約600 nm的範圍內)量測壓痕的最大硬度,此通常係利用Oliver, W.C., Pharr, G.M., 「An improved 技術 for determining hardness and elastic modulus using load and displacement sensing indentation experiments」,J. Mater. Res. , Vol. 7, No. 6, 1992, 1564-1583」和Oliver, W.C., Pharr, G.M., 「Measurement of Hardness and elastic modulus by Instrument Indentation: Advances in Understanding and Refinements to Methodology」,J. Mater. Res ., Vol. 19, No. 1, 2004, 3-20」所描述之方法。在本文所用,硬度指的是最大硬度,而非平均硬度。除非另外指明,本文提供之硬度值指的是由Berkovich壓頭硬度試驗所測得之值。The optical coating 120 and the article 100 can be described in terms of the hardness measured by the Berkovich indenter hardness test. As used in this article, the "Berkovich Indenter Hardness Test" includes using a diamond Berkovich indenter to press into the surface of the material to measure the hardness of the material on the surface. The Berkovich indenter hardness test includes pressing a diamond Berkovich indenter into the main surface 122 of the product or the surface of the optical coating 120 (or the surface of any one or more layers in a multilayer interference stack) to form an indentation depth of from about 50 nm Indentation in the range of up to about 1000 nm (or the entire thickness of the multilayer interference stack or layer, whichever is thinner), and the entire indentation depth range or section along this indentation depth (eg, from about 100 nm to about 600 nm) The maximum hardness of the indentation is measured. This is usually based on Oliver, WC, Pharr, GM, "An improved technology for determining hardness and elastic modulus using load and displacement sensing indentation experiments", J . Mater. Res. , Vol. 7, No. 6, 1992, 1564-1583" and Oliver, WC, Pharr, GM, "Measurement of Hardness and elastic modulus by Instrument Indentation: Advances in Understanding and Refinements to Methodology", J . Mater. Res ., Vol. 19, No. 1, 2004, 3-20". As used herein, hardness refers to maximum hardness, not average hardness. Unless otherwise specified, the hardness values provided herein refer to the values measured by the Berkovich indenter hardness test.

通常,在比下方基板更硬的塗層之奈米壓痕量測方法中(例如使用Berkovich壓頭),所測得之硬度最初似乎因在淺壓痕深度形成可塑區而增加,並接著在較深壓痕深度增加達最大值或水平頂。隨後,在更深壓痕深度處,硬度因下方基板影響而開始降低。使用硬度比塗層大的基板亦有相同影響;但在更深壓痕深度處,硬度因下方基板影響而增加。Generally, in nanoindentation measurement methods for coatings that are harder than the underlying substrate (for example, using a Berkovich indenter), the measured hardness initially appears to increase due to the formation of a plastic zone at a shallow indentation depth, and then The deeper indentation depth increases to the maximum value or horizontal top. Subsequently, at deeper indentation depths, the hardness begins to decrease due to the influence of the underlying substrate. The use of substrates with greater hardness than the coating has the same effect; but at deeper indentation depths, the hardness increases due to the influence of the substrate below.

可選擇壓痕深度範圍和在某些壓痕深度範圍下的硬度值,以在不受下方基板影響下識別光學膜結構和其層之特定硬度響應。當以Berkovich壓頭量測光學膜結構(當設置於基板上時)的硬度時,材料的永久變形區(可塑區)與材料硬度相關聯。在壓入期間,彈性應力場延伸超出永久變形區。隨著壓痕深度增加,表觀硬度和模數受到應力場與下方基板相互作用的影響。基板對硬度的影響發生在較深壓痕深度(即,通常在深度大於光學膜結構或層厚度的約10%處)。再者,更複雜的是硬度響應需一定的最小負載,以在壓入過程中形成完全可塑性。達到一定最小負載前,硬度大致呈現漸增趨勢。The indentation depth range and the hardness value under certain indentation depth ranges can be selected to identify the specific hardness response of the optical film structure and its layers without being affected by the underlying substrate. When measuring the hardness of the optical film structure (when placed on the substrate) with a Berkovich indenter, the permanent deformation zone (plastic zone) of the material is related to the hardness of the material. During indentation, the elastic stress field extends beyond the permanent deformation zone. As the indentation depth increases, the apparent hardness and modulus are affected by the interaction of the stress field with the underlying substrate. The influence of the substrate on the hardness occurs at a deeper indentation depth (ie, generally at a depth greater than about 10% of the thickness of the optical film structure or layer). Furthermore, what is more complicated is that the hardness response requires a certain minimum load to form full plasticity during the pressing process. Before reaching a certain minimum load, the hardness generally shows an increasing trend.

在小壓痕深度處(此亦可表徵為小負載) (如,達約50 nm),材料的表觀硬度似乎對應壓痕深度大幅增加。此小壓痕深度體系不代表真實硬度度量,而是反映上述可塑區形成,此與壓頭的有限曲率半徑有關。在中間壓痕深度處,表觀硬度接近最大值。在較深壓痕深度處,隨著壓痕深度增加,基板影響變得更顯著。一旦壓痕深度超過光學膜結構厚度或層厚度的30%,硬度便開始急劇降低。At small indentation depths (which can also be characterized as small loads) (eg, up to about 50 nm), the apparent hardness of the material appears to correspond to a substantial increase in indentation depth. This small indentation depth system does not represent the true hardness measurement, but reflects the formation of the above-mentioned plastic zone, which is related to the limited radius of curvature of the indenter. At the depth of the intermediate indentation, the apparent hardness is close to the maximum. At deeper indentation depths, as the indentation depth increases, the substrate effect becomes more pronounced. Once the indentation depth exceeds 30% of the thickness of the optical film structure or layer thickness, the hardness begins to decrease sharply.

在某些實施例中,光學塗層120可呈現約10 GPa或更大,或約11 GPa或更大,或約12 GPa或更大(如,14 GPa或更大、16 GPa或更大、18 GPa或更大、20 GPa或更大)之硬度。光學塗層120的硬度可達約20 GPa、30 GPa或50 GPa。當藉由Berkovich壓頭硬度試驗在外表面22上測量,如本文所述之包括光學塗層120及任何附加塗層之製品100可呈現約10 GPa或更大,或11 GPa或更大,或約12 GPa或更大(如,14 GPa或更大、16 GPa或更大、18 GPa或更大、20 GPa或更大),且約50 GPa或更小(例如約40 GPa或更小,或約30 GPa或更小)之硬度。光學塗層120的硬度可達約20 GPa、30 GPa或50 GPa。光學塗層120及/或製品100沿著約50 nm或以上或約100 nm或以上(如,自約100 nm至約300 nm、自約100 nm至約400 nm、自約100 nm至約500 nm、自約100 nm至約600 nm、自約200 nm至約300 nm、自約200 nm至約400 nm、自約200 nm至約500 nm或自約200 nm至約600 nm)的壓痕深度可呈現此量測之硬度值。在一或多個實施例中,製品所呈現的硬度大於基板的硬度(可在外表面的相對表面上量測基板的硬度)。In some embodiments, the optical coating 120 may exhibit about 10 GPa or greater, or about 11 GPa or greater, or about 12 GPa or greater (eg, 14 GPa or greater, 16 GPa or greater, 18 GPa or greater, 20 GPa or greater) hardness. The hardness of the optical coating 120 can reach about 20 GPa, 30 GPa, or 50 GPa. When measured on the outer surface 22 by the Berkovich indenter hardness test, the article 100 including the optical coating 120 and any additional coatings as described herein may exhibit approximately 10 GPa or greater, or 11 GPa or greater, or approximately 12 GPa or more (eg, 14 GPa or more, 16 GPa or more, 18 GPa or more, 20 GPa or more), and about 50 GPa or less (eg, about 40 GPa or less, or Hardness of about 30 GPa or less). The hardness of the optical coating 120 can reach about 20 GPa, 30 GPa, or 50 GPa. The optical coating 120 and/or article 100 is along about 50 nm or more or about 100 nm or more (eg, from about 100 nm to about 300 nm, from about 100 nm to about 400 nm, from about 100 nm to about 500 nm, from about 100 nm to about 600 nm, from about 200 nm to about 300 nm, from about 200 nm to about 400 nm, from about 200 nm to about 500 nm, or from about 200 nm to about 600 nm) The depth can show the hardness value of this measurement. In one or more embodiments, the hardness exhibited by the article is greater than the hardness of the substrate (the hardness of the substrate can be measured on the opposite surface of the outer surface).

依Berkovich壓頭硬度試驗之測量,光學塗層120可具有至少一層,該層具有之硬度(在此層的表面上測量,如,厚的高硬度部分140的表面)為約12 GPa或更大、約13 GPa或更大、約14 GPa或更大、約15 GPa或更大、約16 GPa或更大、約17 GPa或更大、約18 GPa或更大、約19 GPa或更大、約20 GPa或更大、約22 GPa或更大、約23 GPa或更大、約24 GPa或更大、約25 GPa或更大、約26 GPa或更大,或約27 GPa或更大(達約50 GPa)。依Berkovich壓頭硬度試驗之測量,此層的硬度可在自約18 GPa至約21 GPa的範圍內。所述至少一層沿著約50 nm或更大或100 nm或更大(如,自約100 nm至約300 nm、自約100 nm至約400 nm、自約100 nm至約500 nm、自約100 nm至約600 nm、自約200 nm至約300 nm、自約200 nm至約400 nm、自約200 nm至約500 nm,或自約200 nm至約600 nm)之壓痕深度可呈現這些測得之硬度值。As measured by the Berkovich indenter hardness test, the optical coating 120 may have at least one layer having a hardness (measured on the surface of this layer, such as the surface of the thick high hardness portion 140) of about 12 GPa or greater , About 13 GPa or more, about 14 GPa or more, about 15 GPa or more, about 16 GPa or more, about 17 GPa or more, about 18 GPa or more, about 19 GPa or more, About 20 GPa or more, about 22 GPa or more, about 23 GPa or more, about 24 GPa or more, about 25 GPa or more, about 26 GPa or more, or about 27 GPa or more ( Up to about 50 GPa). According to the measurement of the Berkovich indenter hardness test, the hardness of this layer can range from about 18 GPa to about 21 GPa. The at least one layer is along about 50 nm or more or 100 nm or more (eg, from about 100 nm to about 300 nm, from about 100 nm to about 400 nm, from about 100 nm to about 500 nm, from about 100 nm to about 600 nm, from about 200 nm to about 300 nm, from about 200 nm to about 400 nm, from about 200 nm to about 500 nm, or from about 200 nm to about 600 nm) These measured hardness values.

在一或多個實施例中,當以Berkovitch壓頭壓入外表面122而於外表面122上測量時,光學塗層120或光學塗層內的個別層可呈現約75GPa或更大、約80 GPa或更大或約85 GPa或更大之彈性模數。光學塗層120或光學塗層內的個別層可呈現約500 GPa或更小之彈性模數。這些模數值可代表非常靠近外表面所量測的模數,如,在0 nm至約50 nm之壓痕深度處,或可代表在較深壓痕深度(如,自約50 nm至約1000nm)處所量測的模數。In one or more embodiments, when a Berkovitch indenter is pressed into the outer surface 122 and measured on the outer surface 122, the optical coating 120 or individual layers within the optical coating may exhibit about 75 GPa or greater, about 80 GPa or greater or about 85 GPa or greater modulus of elasticity. The optical coating 120 or individual layers within the optical coating may exhibit an elastic modulus of about 500 GPa or less. These modulus values can represent the modulus measured very close to the outer surface, for example, at an indentation depth of 0 nm to about 50 nm, or can represent a deeper indentation depth (for example, from about 50 nm to about 1000 nm ) Modulus measured at the location.

在某些實施例中,製品包含之最大硬度在本文就光學塗層所述之範圍內。舉例而言,在某些實施例中,製品包含之最大硬度在自約12 GPa至約30 GPa之範圍內,或在約16 GPa至約30 GPa之範圍內,其中藉由以Berkovich壓頭壓入第二主表面來形成壓痕(所述壓痕包含從第二主表面之表面起算約100 nm或更大之壓痕深度),而在第二主表面上測量最大硬度。化學命名 In certain embodiments, the article contains a maximum hardness within the range described herein for optical coatings. For example, in some embodiments, the article contains a maximum hardness in the range from about 12 GPa to about 30 GPa, or in the range from about 16 GPa to about 30 GPa, wherein by pressing with a Berkovich indenter The second main surface is inserted to form an indentation (the indentation includes an indentation depth of about 100 nm or more from the surface of the second main surface), and the maximum hardness is measured on the second main surface. Chemical nomenclature

在本文所用,本揭示內容中之「AlOx Ny 」、「SiOx Ny 」及「Siu Alx Oy Nz 」材料包括各種氮氧化鋁、氮氧化矽及氮氧化矽鋁材料,如本揭示內容所屬技術領域中具通常知識者所了解的,根據下標「u」、「x」、「y」及「z」的若干數值和範圍描述該等材料。也就是說,通常用「整數式(whole number formula)」描述來描述固體,如Al2 O3 。也常使用等效「原子分率式(atomic fraction formula)」描述來描述固體,如Al0.4 O0.6 ,其等效於Al2 O3 。在原子分率式中,式中所有原子的總和為0.4 + 0.6 = 1,且式中之Al和O之原子分率分別為0.4和0.6。在許多通用教科書中使用原子分率描述來進行描述,並通常使用原子分率描述來描述合金。請見,例如:(i) Charles Kittel,「Introduction to Solid State Physics」,第七版,John Wiley & Sons, Inc.,NY,1996,pp. 611-627;(ii) Smart and Moore,「Solid State Chemistry, An introduction」,Chapman & Hall University and Professional Division,London,1992,pp. 136-151;及(iii) James F. Shackelford,「Introduction to Materials Science for Engineers」,第六版,Pearson Prentice Hall,New Jersey,2005,pp. 404-418。As used in this article, the “AlO x N y ”, “SiO x N y ”and “Si u Al x O y N z ” materials in this disclosure include various aluminum oxynitride, silicon oxynitride and silicon aluminum oxynitride materials, As those of ordinary skill in the technical field to which this disclosure belongs understand, these materials are described according to certain numerical values and ranges of the subscripts "u", "x", "y", and "z". In other words, the "whole number formula" description is usually used to describe solids, such as Al 2 O 3 . The equivalent "atomic fraction formula" description is also often used to describe solids, such as Al 0.4 O 0.6 , which is equivalent to Al 2 O 3 . In the atomic fraction formula, the sum of all atoms in the formula is 0.4 + 0.6 = 1, and the atomic fractions of Al and O in the formula are 0.4 and 0.6, respectively. Atomic fraction description is used in many general textbooks to describe, and atomic fraction description is usually used to describe alloys. See, for example: (i) Charles Kittel, "Introduction to Solid State Physics", seventh edition, John Wiley & Sons, Inc., NY, 1996, pp. 611-627; (ii) Smart and Moore, "Solid State Chemistry, An introduction", Chapman & Hall University and Professional Division, London, 1992, pp. 136-151; and (iii) James F. Shackelford, "Introduction to Materials Science for Engineers", sixth edition, Pearson Prentice Hall , New Jersey, 2005, pp. 404-418.

再次參見本揭示內容中之「AlOx Ny 」、「SiOx Ny 」及「Siu Alx Oy Nz 」材料,下標允許本案所屬技術領域中具通常知識者將這些材料引用為一類材料,而無需指明特定下標值。一般而言,關於合金,如氧化鋁,在沒有指明特定的下標值的情況下,吾人可稱之Alv Ox 。Alv Ox 的描述可代表Al2 O3 或Al0.4 O0.6 。若選擇v + x之總和為1 (即,v + x = 1),則該式可為原子分率描述。類似地,可描述更複雜的混合物,如Siu Alv Ox Ny ,其中,再次,若u + v + x + y之總和等於1,吾人可具有原子分率描述例子。Refer again to the "AlO x N y ", "SiO x N y ", and "Si u Al x O y N z "materials in this disclosure. The subscript allows those with ordinary knowledge in the technical field to which this case belongs to refer to these materials as A type of material without specifying a specific subscript value. In general, regarding an alloy, such as alumina, without specifying a specific subscript value, I can call it Al v O x . The description of Al v O x may represent Al 2 O 3 or Al 0.4 O 0.6 . If the sum of v + x is 1 (that is, v + x = 1), then the formula can be described as atomic fraction. Similarly, more complex mixtures can be described, such as Si u Al v O x N y , where, again, if the sum of u + v + x + y is equal to 1, we can have atomic fraction description examples.

再次參見本揭示內容中之「AlOx Ny 」、「SiOx Ny 」及「Siu Alx Oy Nz 」材料,這些符號允許本案所屬技術領域中具通常知識者容易地比較這些材料和其他材料。也就是說,有時候原子分率式更容易用於比較。舉例而言,由(Al2 O3 )0.3 (AlN)0.7 組成之範例合金幾乎等同於式描述Al0.448 O0.31 N0.241 ,也幾乎等同於式描述Al367 O254 N198 。由(Al2 O3 )0.4 (AlN)0.6 組成之另一個範例合金幾乎等同於式描述Al0.438 O0.375 N0.188 和Al37 O32 N16 。原子分率式Al0.448 O0.31 N0.241 和Al0.438 O0.375 N0.188 相對容易相互比較。舉例來說,原子分率中之Al減少0.01,原子分率中之O增加0.065,且原子分率中之N減少0.053。需要更詳細的計算和考量來比較整數式描述Al367 O254 N198 和Al37 O32 N16 。因此,有時候較佳的使用固體之原子分率式描述。儘管如此,Alv Ox Ny 的使用是通用的,因為其捕集了含有Al、O及N原子的任何合金。Refer again to the "AlO x N y ", "SiO x N y ", and "Si u Al x O y N z "materials in this disclosure, these symbols allow those with ordinary knowledge in the technical field to which this case belongs to easily compare these materials And other materials. In other words, sometimes the atomic fraction formula is easier to compare. For example, an example alloy consisting of (Al 2 O 3 ) 0.3 (AlN) 0.7 is almost equivalent to Al 0.448 O 0.31 N 0.241 and Al 367 O 254 N 198 . Another example alloy composed of (Al 2 O 3 ) 0.4 (AlN) 0.6 is almost equivalent to the formula descriptions Al 0.438 O 0.375 N 0.188 and Al 37 O 32 N 16 . The atomic fraction formulas Al 0.448 O 0.31 N 0.241 and Al 0.438 O 0.375 N 0.188 are relatively easy to compare with each other. For example, Al in the atomic fraction decreases by 0.01, O in the atomic fraction increases by 0.065, and N in the atomic fraction decreases by 0.053. More detailed calculations and considerations are needed to compare the integer descriptions Al 367 O 254 N 198 and Al 37 O 32 N 16 . Therefore, sometimes it is better to use the atomic fraction formula of solid description. Nevertheless, the use of Al v O x N y is versatile because it traps any alloy containing Al, O, and N atoms.

如本揭示內容所屬技術領域中具通常知識者所了解的,與光學膜120有關之任何前述材料(如,AlN),各個下標「u」、「x」、「y」及「z」可在0至1之間變化,下標的總和將小於或等於一,並且成分的餘量為材料中的第一個元素(如,Si或Al)。此外,本案所屬技術領域中具通常知識者可認知到,「Siu Alx Oy Nz 」可經配置使得「u」等於零,且該材料可被描述為「AlOx Ny 」。更進一步,前述用於光學膜120之成分排除了可導致純元素型式(如,純矽、純鋁金屬、氧氣體,等等)之下標組合。最後,本案所屬技術領域中具通常知識者也將認知到,前述成分可包括未明確標註之其他元素(如,氫),其可導致非化學劑量成分(如,SiNx 對比Si3 N4 )。因此,取決於前述成分表示法中之下標的值,用於光學膜之前述材料可表示SiO2 -Al2 O3 -SiNx -AlN或SiO2 -Al2 O3 -Si3 N4 -AlN相圖中之可用空間。 隨著角度之顏色及色偏As understood by those with ordinary knowledge in the technical field to which this disclosure belongs, for any of the foregoing materials (eg, AlN) related to the optical film 120, each subscript "u", "x", "y", and "z" may be Varying between 0 and 1, the sum of the subscripts will be less than or equal to one, and the balance of the composition is the first element in the material (eg, Si or Al). In addition, those with ordinary knowledge in the technical field to which this case belongs can recognize that "Si u Al x O y N z "can be configured so that "u" equals zero, and the material can be described as "AlO x N y ". Furthermore, the aforementioned components for the optical film 120 exclude subscript combinations that can lead to pure element types (eg, pure silicon, pure aluminum metal, oxygen gas, etc.). Finally, those with ordinary knowledge in the technical field to which this case belongs will also realize that the aforementioned components may include other elements that are not clearly labeled (eg, hydrogen), which may result in non-stoichiometric components (eg, SiN x vs. Si 3 N 4 ) . Therefore, depending on the value of the subscript in the aforementioned composition notation, the aforementioned material used for the optical film may represent SiO 2 -Al 2 O 3 -SiN x -AlN or SiO 2 -Al 2 O 3 -Si 3 N 4 -AlN Free space in the phase diagram. Color and color deviation with angle

在某些例子中,可將光學塗層設計為具有相對中性(灰或銀)顏色及伴隨著光入射角度之相對較小的顏色改變。In some examples, the optical coating can be designed to have a relatively neutral (gray or silver) color and a relatively small color change with the incident angle of light.

具體而言,硬塗佈製品可就從0至60度之所有視角展現出單一表面反射顏色範圍,其包含在所有視角範圍內具有20或更小、10或更小、8或更小、5或更小、4或更小、3或更小,或甚至2或更小之絕對值的所有a*點和所有b*點。Specifically, the hard-coated article can exhibit a single surface reflection color range for all viewing angles from 0 to 60 degrees, which includes having 20 or less, 10 or less, 8 or less, 5 in all viewing angle ranges All a* points and all b* points of the absolute value of or less, 4 or less, 3 or less, or even 2 or less.

進而,對於從0至90度之所有視角而言,硬塗佈製品可具有兩表面透射顏色範圍,其包含在所有視角範圍內具有2或更小、1或更小、0.5或更小、0.4或更小、0.3或更小,或甚至0.2或更小之絕對值的所有a*點和所有b*點。Furthermore, for all viewing angles from 0 to 90 degrees, the hard-coated article may have a two-surface transmission color range that includes having 2 or less, 1 or less, 0.5 or less, 0.4 in all viewing angle ranges All a* points and all b* points of absolute values of or less, 0.3 or less, or even 0.2 or less.

在替代的例子中,塗層可經設計而具有相對高的顏色(如,藍色、紫色、紅色、綠色、金色、橙色及其組合),以在一定的視角範圍內保持一定的顏色,或者在受控的顏色象限內隨著視角變化改變顏色。In alternative examples, the coating may be designed to have a relatively high color (eg, blue, purple, red, green, gold, orange, and combinations thereof) to maintain a certain color within a certain viewing angle range, or Change the color as the viewing angle changes within the controlled color quadrant.

在高色塗層的情況下,對於至少一個視角或視角範圍,塗層可具有高於20的a*值或b *值。在組合中,顏色可以受約束而在從0到60度或從0到90度的視角範圍內實質上保持在a*、b*顏色圖表上的一個、兩個或三個顏色象限內。這些硬塗層產生的不同顏色可能跨越整個調色板,從紅色、橙色、金色(黃色)、綠色、藍色到紫色。在某些情況下,顏色可能會隨著角度跨多種顏色偏移。在其他情況下,顏色將隨入射角被限制在a*和b*的一定範圍內。在一些實施例中,「高色(high color)」塗層仍可較佳地以視角限制其顏色。舉例而言,就0至90度的所有視角而言,「綠色」塗層可具有小於5或小於1的a*。就0至90度的所有視角而言,「藍色」或「綠色」塗層可具有小於5或小於1的b*。就0至90度的所有視角而言,「紅色」或「橙色」或「紫色」塗層可具有大於-5或大於-1的a*。就0至90度的所有視角而言,「金色」塗層可具有大於-5或大於-1的b*。這些限制可以彼此組合,以在高色塗層中產生所設計的顏色,例如,「藍-綠」塗層可以就所有視角組合b*小於5及a*小於5的限制。「紅-金」塗層可以就所有視角組合b*大於-5及a*大於-5的限制。In the case of high-color coatings, the coating may have an a* value or a b* value higher than 20 for at least one viewing angle or range of viewing angles. In combination, the colors can be constrained to remain substantially within one, two, or three color quadrants on the a*, b* color chart over a viewing angle range from 0 to 60 degrees or from 0 to 90 degrees. The different colors produced by these hard coats may span the entire palette, from red, orange, gold (yellow), green, blue to purple. In some cases, colors may shift across multiple colors with angle. In other cases, the color will be limited to a certain range of a* and b* with the incident angle. In some embodiments, the "high color" coating can still preferably limit its color with a viewing angle. For example, for all viewing angles from 0 to 90 degrees, the "green" coating may have an a* less than 5 or less than 1. For all viewing angles from 0 to 90 degrees, a "blue" or "green" coating may have a b* of less than 5 or less than 1. For all viewing angles from 0 to 90 degrees, the "red" or "orange" or "purple" coating may have an a* greater than -5 or greater than -1. For all viewing angles from 0 to 90 degrees, the "golden" coating may have a b* greater than -5 or greater than -1. These limits can be combined with each other to produce the designed color in high-color coatings. For example, the "blue-green" coating can combine the limits of b* less than 5 and a* less than 5 for all viewing angles. The "red-gold" coating can be combined for all viewing angles b* greater than -5 and a* greater than -5.

即使在描述特定範圍的視角的情況下,在某些實施例中,本文描述的a*和b*的範圍可以針對不同的視角範圍,如0至10度、0至60度,或0至90度。其他顏色組合及限制也是可能的。Even in the case of describing a specific range of viewing angles, in some embodiments, the ranges of a* and b* described herein may be for different viewing angle ranges, such as 0 to 10 degrees, 0 to 60 degrees, or 0 to 90 degree. Other color combinations and restrictions are also possible.

上述反射率和顏色值最適合於某些應用,例如面對遠離使用者的太陽眼鏡鏡片的表面、防刮鏡、或不通過其觀看顯示器的保護蓋,例如電子裝置(智慧型手錶、智慧型電話、汽車顯示器,等等)之具有高耐刮擦性和特定反射率的外殼。The above reflectivity and color values are most suitable for certain applications, such as facing the surface of the sunglasses lens away from the user, scratch-resistant mirrors, or protective covers that do not view the display through them, such as electronic devices (smart watches, smart Phones, car displays, etc.) have a high scratch resistance and a specific reflectivity.

來自光學塗層120/空氣界面和光學塗層120/基板110界面的反射波間的光干涉將造成光譜反射率及/或透射率波動,進而於製品100產生明顯顏色。反射中之顏色可能更為明顯。因光譜反射率波動隨入射照射角偏移,以致隨視角產生反射中之角度色偏(angular color shift)。且由於光譜透射率波動隨入射照射角偏移,因此透射中之角度色偏隨視角發生。觀看到顏色和隨入射照射角的角色偏通常會令裝置使用者分心或反感,特別是在鮮明的光譜特徵照射下,例如螢光燈和一些LED照明。透射中之角度色偏亦是反射中之角度色偏的因素,反之亦然。透射及/或反射中之角度色偏的因素亦可能包括因視角或角度色偏離某些白點而引起的角度色偏,這可能起因於特定光源或測試系統定義的材料吸收(稍微與角度無關)。The optical interference between the reflected waves from the optical coating 120/air interface and the optical coating 120/substrate 110 interface will cause the spectral reflectance and/or transmittance to fluctuate, thereby producing a distinct color in the product 100. The color in the reflection may be more obvious. Because the spectral reflectance fluctuation shifts with the incident irradiation angle, the angular color shift in reflection occurs with the viewing angle. And because the fluctuation of the spectral transmittance shifts with the incident irradiation angle, the angular color shift in transmission occurs with the viewing angle. Viewing the color and the role deviation with the incident illumination angle usually distracts or dislikes the device user, especially under the bright spectral characteristics, such as fluorescent lamps and some LED lighting. The angular color shift in transmission is also a factor in the angular color shift in reflection, and vice versa. Factors of angular color shift in transmission and/or reflection may also include angular color shift caused by deviation of the viewing angle or angular color from certain white points, which may result from material absorption defined by the specific light source or test system (slightly independent of angle ).

在本文所用,「近法線(near normal)」入射角是指與法線入射角相差10度或更小的入射角。「近法線」包括法線。當將透射或反射標準描述為發生在「近法線」角度處時,如果指定的透射或反射標準發生在任何近法線角度處便滿足標準。在許多情況中,因多層干涉堆疊所致之光學特性(如反射率、透射率及色偏)作為近法線角度之角度的函數不會有太大變化。因此,就實作目的而言,「近法線」入射及「法線」入射是相同的。此外,某些測量技術在精確的法線入射角處無法良好的操作,因此通常基於在近法線角度處之測量值來估計法線入射角處的特性。本文中所有出現「法線」入射應被解讀為包括「近法線」。As used herein, "near normal" incidence angle refers to an incidence angle that differs from the normal incidence angle by 10 degrees or less. "Near normal" includes normals. When the transmission or reflection criterion is described as occurring at a "near normal" angle, the criterion is met if the specified transmission or reflection criterion occurs at any near normal angle. In many cases, the optical properties (such as reflectance, transmittance, and color shift) caused by multilayer interference stacks do not change much as a function of the angle of the near normal angle. Therefore, for practical purposes, "near normal" incidence and "normal" incidence are the same. In addition, some measurement techniques do not operate well at precise normal incidence angles, so characteristics at normal incidence angles are usually estimated based on measurements at near normal angles. All occurrences of "normal" in this article should be interpreted as including "near normal".

可就振幅描述波動。在本文所用,術語「振幅(amplitude)」包括反射或透射中之峰-谷變化。詞彙「平均振幅」包括光波長範圍內之若干波動循環或波長子範圍內的平均反射或透射中之峰-谷變化。在本文所用,除非另外指明,「光波長範圍」包括自約400 nm至約700 nm之波長範圍(更具體而言自約450 nm至約650 nm)。在某些實施例中,製品展現出之平均透射率或平均反射率在光學波長範圍內包含10個百分點或更低、8個百分點或更低、6個百分點或更低、4個百分點或更低、2個百分點或更低、或1個百分點或更低之平均波動振幅。Fluctuations can be described in terms of amplitude. As used herein, the term "amplitude" includes peak-to-valley changes in reflection or transmission. The term "average amplitude" includes a number of fluctuation cycles in the wavelength range of light or a peak-to-valley change in average reflection or transmission in the wavelength sub-range. As used herein, unless otherwise indicated, "light wavelength range" includes a wavelength range from about 400 nm to about 700 nm (more specifically from about 450 nm to about 650 nm). In some embodiments, the article exhibits an average transmittance or average reflectance of 10% or less, 8% or less, 6% or less, 4% or more in the optical wavelength range Low, 2 percentage points or lower, or 1 percentage point or lower average fluctuation amplitude.

本揭示內容的一個態樣涉及製品,即使在光源下以不同的入射照射角度觀看時,所述製品仍呈現反射率及/或透射率之顏色或無色性質。在本文所用,詞彙「色偏(color shift)」(角度或參考點)指的是在CIE L*、a*、b*比色系統下,反射及/或透射中之a*和b*二者的變化。此色偏通常稱為C*,且不受任何L*的改變之影響。舉例而言,可使用下式(1)來決定角度色偏 C*: √((a*2 -a*1 )2 +(b*2 -b*1 )2 ), 其中a*1 和b*1 表示以入射參考照射角(可包括法線入射)觀看製品的a*和b*座標,a*2 和b*2 表示以入射照射角觀看製品的a*和b*座標,前提是入射照射角(incident illumination angle)不同於參考照射角(reference illumination angle),且在某些情況中與參考照射角相差約1度或更多(例如,約2度或約5度)。在一些情況中,在光源下,當從偏離參考照射角的多個入射照射角觀看時,物品呈現出反射及/或透射中之特定角度色偏。光源可包括CIE決定的標準光源,包括A光源(代表鎢絲燈)、B光源(日光模擬照明)、C光源(日光模擬照明)、D系列光源(代表自然採光)和F系列光源(代表各種螢光燈)。除非另有指明,顏色及色偏為在D65光源下呈現者。One aspect of the present disclosure relates to articles that even when viewed at different incident illumination angles under a light source, the articles still exhibit the color or colorless nature of reflectance and/or transmittance. As used herein, the term "color shift" (angle or reference point) refers to a* and b* in reflection and/or transmission under the CIE L*, a*, b* colorimetric system Change. This color cast is usually called C* and is not affected by any change in L*. For example, the following equation (1) can be used to determine the angular color shift C*: √((a* 2 -a* 1 ) 2 +(b* 2 -b* 1 ) 2 ), where a* 1 and b * 1 indicates the a* and b* coordinates of the product viewed at the incident reference illumination angle (which can include normal incidence), a* 2 and b* 2 indicates the a* and b* coordinates of the product viewed at the incident illumination angle, provided that the incidence is The incident illumination angle is different from the reference illumination angle, and in some cases differs from the reference illumination angle by about 1 degree or more (eg, about 2 degrees or about 5 degrees). In some cases, under a light source, when viewed from multiple incident illumination angles that deviate from the reference illumination angle, the article exhibits a specific angular color shift in reflection and/or transmission. Light sources can include standard light sources determined by CIE, including A light source (representing tungsten filament lamp), B light source (daylight simulation lighting), C light source (daylight simulation lighting), D series light source (representing natural lighting) and F series light source (representing various Fluorescent lights). Unless otherwise specified, colors and color casts are presented under D65 light source.

參考照射角可包括法線入射(即,自約0度至約10度),或偏離法線入射5度、偏離法線入射10度、偏離法線入射15度、偏離法線入射20度、偏離法線入射25度、偏離法線入射30度、偏離法線入射35度、偏離法線入射40度、偏離法線入射45度、偏離法線入射50度、偏離法線入射55度或偏離法線入射60度,前提是入射照射角與參考照射角之間的差為約1度或更多(例如,約2度或約5度)。相對於參考照射角,入射照射角可偏離參考照射角自約5度至約80度、自約5度至約70度、自約5度至約65度、自約5度至約60度、自約5度至約55度、自約5度至約50度、自約5度至約45度、自約5度至約40度、自約5度至約35度、自約5度至約30度、自約5度至約25度、自約5度至約20度、自約5度至約15度,及其間的所有範圍及子範圍。製品可在自約0度至約60度或約0度至約90度之範圍內的所有入射照射角處並沿著該範圍內的所有入射照射角呈現反射及/或透射之角度色偏。The reference illumination angle may include normal incidence (ie, from about 0 degrees to about 10 degrees), or 5 degrees from normal incidence, 10 degrees from normal incidence, 15 degrees from normal incidence, 20 degrees from normal incidence, 25 degrees off normal, 30 degrees off normal, 35 degrees off normal, 40 degrees off normal, 45 degrees off normal, 50 degrees off normal, 55 degrees off or normal Normal incidence is 60 degrees, provided that the difference between the incident illumination angle and the reference illumination angle is about 1 degree or more (for example, about 2 degrees or about 5 degrees). With respect to the reference irradiation angle, the incident irradiation angle may deviate from the reference irradiation angle from about 5 degrees to about 80 degrees, from about 5 degrees to about 70 degrees, from about 5 degrees to about 65 degrees, from about 5 degrees to about 60 degrees, From about 5 degrees to about 55 degrees, from about 5 degrees to about 50 degrees, from about 5 degrees to about 45 degrees, from about 5 degrees to about 40 degrees, from about 5 degrees to about 35 degrees, from about 5 degrees to About 30 degrees, from about 5 degrees to about 25 degrees, from about 5 degrees to about 20 degrees, from about 5 degrees to about 15 degrees, and all ranges and subranges therebetween. The article may exhibit an angular color shift of reflection and/or transmission at all incident illumination angles in the range from about 0 degrees to about 60 degrees or about 0 degrees to about 90 degrees and along all incident illumination angles in the range.

在某些實施例中,可在介於參考照射角(如,法線入射)與入射照射角之間的所有角度處測量角度色偏,所述入射照射角的範圍自0度至約60度,或約0度至約90度。In some embodiments, the angular color cast can be measured at all angles between the reference illumination angle (eg, normal incidence) and the incident illumination angle, which ranges from 0 degrees to about 60 degrees , Or about 0 degrees to about 90 degrees.

在一或多個實施例中,用於測量色偏之參考點可為CIE L*, a*, b*比色系統中的原點(0,0) (或色座標a*=0、b* =0),或基板的透射率或反射色座標。除非另有指明,否則參考點為色座標a*=0、b* =0。應理解到,除非另有註記,否則本文所述之製品的L*座標不會影響根據本文所述計算之色偏。製品的參考點色偏係相對基板定義,製品的透射色座標係與基板的透射色座標相比,而製品的反射色座標係與基板的反射色座標相比。In one or more embodiments, the reference point for measuring the color deviation may be the origin (0, 0) (or the color coordinates a*=0, b) in the CIE L*, a*, b* colorimetric system * =0), or the substrate's transmittance or reflection color coordinates. Unless otherwise specified, the reference points are color coordinates a*=0, b*=0. It should be understood that unless otherwise noted, the L* coordinates of the products described herein will not affect the color shift calculated according to the description herein. The reference color shift of the product is defined relative to the substrate. The transmission color coordinate of the product is compared with the transmission color coordinate of the substrate, and the reflective color coordinate of the product is compared with the reflection color coordinate of the substrate.

當參考點為色座標a*=0,b*=0,則可由下式(2)計算參考點色偏。 參考點色偏=√((a *製品 )2 +(b *製品 )2 )When the reference point is a color coordinate a*=0, b*=0, the color deviation of the reference point can be calculated by the following formula (2). Reference point color shift = √(( a * product ) 2 +( b * product ) 2 )

當參考點為基板的色座標,則可由下式(4)計算參考點色偏。 參考點色偏=√((a *製品a *基板 )2 +(b *製品b *基板 )2 )When the reference point is the color coordinate of the substrate, the color deviation of the reference point can be calculated by the following formula (4). Reference point color shift = √(( a * product - a * substrate ) 2 +( b * product - b * substrate ) 2 )

在某些實施例中,當參考點為基板的色座標及色座標(a*=0、b*=0)中之任一者時,製品可呈現透射顏色(或透射色座標)及反射顏色(或反射色座標),使得參考點色偏如所指定。In some embodiments, when the reference point is any one of the color coordinate and the color coordinate (a*=0, b*=0) of the substrate, the article may exhibit a transmission color (or transmission color coordinate) and a reflection color (Or reflection color coordinates), so that the reference color shift is as specified.

在某些實施例中,在D65、A及F2光源下,在自約0度至約60度之範圍內的入射照射角處,製品(在外表面及相對的裸露表面處)展現出透射率的特定a*值。在某些實施例中,在D65、A及F2光源下,在自約0度至約60度之範圍內的入射照射角處,製品(在外表面及相對的裸露表面處)展現出透射率的特定b*值。In some embodiments, under D65, A, and F2 light sources, at an incident illumination angle ranging from about 0 degrees to about 60 degrees, the article (at the outer surface and the opposite bare surface) exhibits transmittance Specific a* value. In some embodiments, under D65, A, and F2 light sources, at an incident illumination angle ranging from about 0 degrees to about 60 degrees, the article (at the outer surface and the opposite bare surface) exhibits transmittance Specific b* value.

在某些實施例中,在D65、A及F2光源下,在自約0度至約60度之範圍內的入射照射角處,製品(僅在外表面)展現出反射率的特定a*值。在某些實施例中,在D65、A及F2光源下,在自約0度至約60度之範圍內的入射照射角處,製品(僅在外表面)展現出反射率的特定b*值。In certain embodiments, under D65, A, and F2 light sources, the article (only on the outer surface) exhibits a specific a* value of reflectivity at an incident illumination angle ranging from about 0 degrees to about 60 degrees. In certain embodiments, under D65, A, and F2 light sources, at an incident illumination angle ranging from about 0 degrees to about 60 degrees, the article (only on the outer surface) exhibits a specific b* value of reflectivity.

最大反射色偏值表示,在指定角度範圍中之任何角度處測得之最高色點值減去在相同範圍中測得之最低色點值。所述值可表示a*值之最大變化(a*最高 -a*最低 )、b*值之最大變化(b*最高 -b*最低 )、a*值和b*值二者之最大變化,或量值之最大變化√((a*最高 -a*最低 )2 +(b*最高 -b*最低 )2 )。除非另有指明,最大反射色偏指的是此量值的最大變化。明視平均反射率及透射率 The maximum reflection color deviation value means that the highest color point value measured at any angle in the specified angle range minus the lowest color point value measured in the same range. The value may represent the maximum change in a* value (a* highest-a * minimum ), the maximum change in b*value (b* highest- b* minimum ), the maximum change in both a*value and b*value, Or the maximum change in magnitude √((a* highest-a * lowest ) 2 +(b* highest- b* lowest ) 2 ). Unless otherwise specified, the maximum reflected color shift refers to the maximum change in this magnitude. Visual average reflectance and transmittance

在某些實施例中,一或多個實施例的製品,或一或多個製品的外表面122,可在光學波長範圍內展現出特定的平均可見光明視平均反射率及/或平均可見光明視平均透射率。可在範圍自約0°至約20°、自約0°至約40°或自約0°至約60°中之入射照射角處表現出這些明視反射率值。除非另有指明,否則平均明視平均反射率或透射率是在範圍自約0度至約10度之入射照射角處測得。在本文所用,藉由根據人眼的敏感度對反射率對比波長光譜進行加權,使明視平均反射率模擬人眼的反應。根據CIE顏色空間協定,明視平均反射率被定義為反射光之亮度或三色刺激Y值。平均明視平均反射率由(4)界定為光譜反射率,

Figure 02_image001
,乘以光源光譜,
Figure 02_image003
,及CIE之色彩匹配函數
Figure 02_image005
,與眼睛的光譜反應有關:
Figure 02_image007
In some embodiments, the article of one or more embodiments, or the outer surface 122 of the article or articles, may exhibit a specific average visible light average reflectance and/or average visible light in the optical wavelength range Apparent average transmittance. These apparent reflectance values can be exhibited at incident illumination angles ranging from about 0° to about 20°, from about 0° to about 40°, or from about 0° to about 60°. Unless otherwise specified, the average apparent visual average reflectance or transmittance is measured at an incident illumination angle ranging from about 0 degrees to about 10 degrees. As used in this paper, by weighting the reflectance versus the wavelength spectrum according to the sensitivity of the human eye, the average reflectance of bright vision simulates the response of the human eye. According to the CIE color space agreement, the average visual reflectance is defined as the brightness of the reflected light or the Y value of the tristimulus. The average bright-view average reflectance is defined by (4) as the spectral reflectance,
Figure 02_image001
, Multiplied by the light source spectrum,
Figure 02_image003
, And CIE's color matching function
Figure 02_image005
, Related to the spectral response of the eye:
Figure 02_image007

類似地,除非另有指明,否則在約0度至約10度的範圍內之入射照射角度下測量平均反射率及透射率。Similarly, unless otherwise specified, the average reflectance and transmittance are measured at an incident illumination angle in the range of about 0 degrees to about 10 degrees.

在某些實施例中,製品展現出特定的單側平均明視反射率,僅在外表面上之法線或近法線入射(如,0至10度)處測量。 基板In certain embodiments, the article exhibits a specific one-sided average apparent reflectance, measured only at normal or near normal incidence (eg, 0 to 10 degrees) on the outer surface. Substrate

基板110可包括無機材料,且可包括非晶基板、結晶基板或上述者之組合。基板110可由人造材料及/或天然材料(如,石英及聚合物)製成。舉例而言,在一些情況中,基板110可表徵為有機,且可特定為聚合物。合適的聚合物實例包括,但不限於:熱塑性塑膠,包括聚苯乙烯(PS) (包括苯乙烯共聚物與摻合物)、聚碳酸酯(PC) (包括共聚物與摻合物)、聚酯(包括共聚物與摻合物,包括聚對苯二甲酸乙二酯和聚對苯二甲酸乙二酯共聚物)、聚烯烴(PO)和環聚烯烴(環狀PO)、聚氯乙烯(PVC)、丙烯酸聚合物,包括聚甲基丙烯酸甲酯(PMMA) (包括共聚物與摻合物)、熱塑性胺甲酸乙酯(TPU)、聚醚醯亞胺(PEI)和該等聚合物相互摻合物。其他示例性聚合物包括環氧、苯乙烯系、酚醛、三聚氫胺和矽酮樹脂。The substrate 110 may include an inorganic material, and may include an amorphous substrate, a crystalline substrate, or a combination of the foregoing. The substrate 110 may be made of artificial materials and/or natural materials such as quartz and polymers. For example, in some cases, the substrate 110 may be characterized as organic, and may be specifically a polymer. Examples of suitable polymers include, but are not limited to: thermoplastics, including polystyrene (PS) (including styrene copolymers and blends), polycarbonate (PC) (including copolymers and blends), polymer Esters (including copolymers and blends, including polyethylene terephthalate and polyethylene terephthalate copolymers), polyolefins (PO) and cyclic polyolefins (cyclic PO), polyvinyl chloride (PVC), acrylic polymers, including polymethyl methacrylate (PMMA) (including copolymers and blends), thermoplastic urethane (TPU), polyetherimide (PEI), and these polymers Mutual blending. Other exemplary polymers include epoxy, styrenic, phenolic, melamine, and silicone resins.

在某些具體實施例中,基板110可特別排除聚合物、塑膠及/或金屬基板。可將基板表徵為含鹼金屬基板(即,基板包括一或多種鹼金屬)。在一或多個實施例中,基板呈現之折射係數在自約1.45至約1.55之範圍內。在具體實施例中,當使用球對環測試(ball-on-ring testing)使用5個或更多個樣品量測時,基板110在一或多個相對主表面上之表面處可呈現平均應變致失效(strain-to-failure)為:0.5%或以上、0.6%或以上、0.7%或以上、0.8%或以上、0.9%或以上、1%或以上、1.1%或以上、1.2%或以上、1.3%或以上、1.4%或以上、1.5%或以上,或甚至2%或以上。可在合理範圍內使用更多樣品,因為可預期更多樣品將導致更大的統計一致性。在具體實施例中,基板110可在其一或多個相對主表面上之表面處呈現約1.2%、約1.4%、約1.6%、約1.8%、約2.2%、約2.4%、約2.6%、約2.8%或約3%或以上之平均應變致失效。In some embodiments, the substrate 110 may specifically exclude polymer, plastic and/or metal substrates. The substrate may be characterized as an alkali metal-containing substrate (ie, the substrate includes one or more alkali metals). In one or more embodiments, the substrate exhibits a refractive index ranging from about 1.45 to about 1.55. In a specific embodiment, when ball-on-ring testing is used to measure 5 or more samples, the substrate 110 may exhibit an average strain at one or more surfaces on the opposite major surface Strain-to-failure: 0.5% or more, 0.6% or more, 0.7% or more, 0.8% or more, 0.9% or more, 1% or more, 1.1% or more, 1.2% or more , 1.3% or more, 1.4% or more, 1.5% or more, or even 2% or more. More samples can be used within a reasonable range because it is expected that more samples will result in greater statistical consistency. In a specific embodiment, the substrate 110 may exhibit about 1.2%, about 1.4%, about 1.6%, about 1.8%, about 2.2%, about 2.4%, about 2.6% at the surface on one or more of its opposite major surfaces , About 2.8% or about 3% or more of the average strain-induced failure.

合適的基板110可呈現自約30 GPa至約120 GPa之範圍內的彈性模數(或楊氏模數)。在一些情況中,基板的彈性模數可在自約30 GPa至約110 GPa、自約30 GPa至約100 GPa、自約30 GPa至約90 GPa、自約30 GPa至約80 GPa、自約30 GPa至約70 GPa、自約40 GPa至約120 GPa、自約50 GPa至約120 GPa、自約60 GPa至約120 GPa、自約70 GPa至約120 GPa之範圍內,及其間的所有範圍及子範圍。A suitable substrate 110 may exhibit an elastic modulus (or Young's modulus) in the range from about 30 GPa to about 120 GPa. In some cases, the elastic modulus of the substrate may be from about 30 GPa to about 110 GPa, from about 30 GPa to about 100 GPa, from about 30 GPa to about 90 GPa, from about 30 GPa to about 80 GPa, from about 30 GPa to about 70 GPa, from about 40 GPa to about 120 GPa, from about 50 GPa to about 120 GPa, from about 60 GPa to about 120 GPa, from about 70 GPa to about 120 GPa, and all in between Scope and sub-scope.

在一或多個實施例中,非晶基板可包括經強化玻璃或未經強化玻璃。合適的玻璃之實例包括鈉鈣玻璃、鹼金屬鋁矽酸玻璃、含鹼金屬硼矽酸玻璃和鹼金屬鋁硼矽酸玻璃。在一些變型中,玻璃不含氧化鋰。在一或多個替代實施例中,基板110可包括結晶基板,如玻璃陶瓷基板(其可經強化或未經強化),或可包括單晶結構,如藍寶石。在一或多個具體實施例中,基板110包括非晶基底(如,玻璃)和結晶披覆(如,藍寶石層、多晶氧化鋁層及/或尖晶石(MgAl2 O4 )層)。In one or more embodiments, the amorphous substrate may include strengthened glass or unstrengthened glass. Examples of suitable glasses include soda lime glass, alkali metal aluminosilicate glass, alkali metal-containing borosilicate glass, and alkali metal aluminoborosilicate glass. In some variations, the glass is free of lithium oxide. In one or more alternative embodiments, the substrate 110 may include a crystalline substrate, such as a glass ceramic substrate (which may or may not be strengthened), or may include a single crystal structure, such as sapphire. In one or more specific embodiments, the substrate 110 includes an amorphous base (eg, glass) and a crystalline coating (eg, sapphire layer, polycrystalline alumina layer, and/or spinel (MgAl 2 O 4 ) layer) .

一或多個實施例之基板110具有之硬度可小於製品之硬度(依本文所述之Berkovich壓頭硬度試驗量測)。基板之硬度可由如本文所述之Berkovich壓頭硬度試驗來測定。The hardness of the substrate 110 of one or more embodiments may be less than the hardness of the product (measured according to the Berkovich indenter hardness test described herein). The hardness of the substrate can be determined by the Berkovich indenter hardness test as described herein.

基板110可呈實質平面或片狀,然其他實施例可採用彎曲或其他形狀或造形的基板。基板110可為實質透光、透明且無光散射。在這樣的實施例中,基板在光波長範圍中可呈現約85%或更大、約86%或更大、約87%或更大、約88%或更大、約89%或更大、約90%或更大、約91%或更大,或約92%或更大之平均光透射率。在一或多個替代實施例中,基板110可為不透明,或在光波長範圍中呈現小於約10%、小於約9%、小於約8%、小於約7%、小於約6%、小於約5%、小於約4%、小於約3%、小於約2%、小於約1%,或小於約0.5%之平均光透射率。在某些實施例中,所述光反射率及透射率值可為全反射率或全透射率(考量基板的兩主要表面上之反射率或透射率),或可在基板的單側上觀測(即,僅在外表面122上,不考慮相對表面)。除非另有指明,否則是在0度之入射照射角測量平均反射率或透射率(然而,可在45度或60度之入射照射角處作此類量測)。基板110可選擇性呈現顏色,例如白色、黑色、紅色、藍色、綠色、黃色、橘色,等等。The substrate 110 may be substantially planar or sheet-shaped, although other embodiments may use curved or other shapes or shapes. The substrate 110 may be substantially light-transmissive, transparent, and free of light scattering. In such an embodiment, the substrate may exhibit about 85% or greater, about 86% or greater, about 87% or greater, about 88% or greater, about 89% or greater in the light wavelength range, An average light transmittance of about 90% or greater, about 91% or greater, or about 92% or greater. In one or more alternative embodiments, the substrate 110 may be opaque or exhibit less than about 10%, less than about 9%, less than about 8%, less than about 7%, less than about 6%, less than about An average light transmittance of 5%, less than about 4%, less than about 3%, less than about 2%, less than about 1%, or less than about 0.5%. In some embodiments, the light reflectance and transmittance values may be total reflectance or total transmittance (taking into account the reflectance or transmittance on the two main surfaces of the substrate), or may be observed on one side of the substrate (That is, only on the outer surface 122, regardless of the opposing surface). Unless otherwise specified, the average reflectance or transmittance is measured at an incident illumination angle of 0 degrees (however, such measurements can be made at an incident illumination angle of 45 degrees or 60 degrees). The substrate 110 can selectively display colors, such as white, black, red, blue, green, yellow, orange, and so on.

此外又或者,由於美觀及/或功能的原因,基板110的實體厚度可沿其一或更多維度改變。舉例而言,基板110的邊緣可比基板110的更靠中心的區域厚。基板110的長度、寬度和實體厚度亦可依製品100的應用或用途改變。Additionally or alternatively, due to aesthetic and/or functional reasons, the physical thickness of the substrate 110 may vary along one or more of its dimensions. For example, the edge of the substrate 110 may be thicker than the more central area of the substrate 110. The length, width, and physical thickness of the substrate 110 may also vary according to the application or use of the product 100.

可使用各種不同製程來提供基板110。例如,當基板110包括諸如玻璃等非晶基板時,各種形成方法可包括浮式玻璃製程和向下抽拉製程,例如融合抽拉與狹槽抽拉。Various different processes can be used to provide the substrate 110. For example, when the substrate 110 includes an amorphous substrate such as glass, various forming methods may include a floating glass process and a downward drawing process, such as fusion drawing and slot drawing.

一旦形成,基板110便可經強化成強化基板。在本文所用,術語「強化基板」一詞係指經化學強化的基板,例如透過較大離子與基板表面的較小離子間離子交換。然而,亦可利用此領域已知的其他強化方法來形成強化基板,例如熱回火、或利用基板各部分不匹配的熱膨脹係數產生壓縮應力與中心張力區域。Once formed, the substrate 110 can be strengthened to strengthen the substrate. As used herein, the term "reinforced substrate" refers to a chemically strengthened substrate, for example, by ion exchange between larger ions and smaller ions on the surface of the substrate. However, other strengthening methods known in the art can also be used to form the strengthened substrate, such as thermal tempering, or the use of mismatched thermal expansion coefficients of the substrate to generate compressive stress and central tension regions.

當基板由離子交換製程經化學強化時,基板表層的離子將被具相同價數或氧化態的較大離子取代或與之交換。離子交換製程的進行通常係把基板浸入熔融鹽浴,熔融鹽浴含有較大離子以與基板中的較小離子交換。本案所屬技術領域中具通常知識者將明白離子交換製程的參數(包括但不限於:浴組成、溫度、浸入時間、基板浸入一或更多鹽浴的次數、使用多種鹽浴、諸如退火、洗滌等附加步驟),一般取決於基板組成和預定壓縮應力(CS)、強化操作引起的基板壓縮應力層深度(或層深度)。舉例而言,藉由浸入至少一含鹽類的熔融鹽浴,鹽類例如為較大鹼金屬離子的硝酸鹽、硫酸鹽和氯化物,但不以此為限,可使含鹼金屬的玻璃基板離子交換。熔融鹽浴的溫度通常為約380 ºC達約450℃,浸入時間為約15分鐘達約40小時。然而,亦可採用不同於上述的溫度和浸入時間。When the substrate is chemically strengthened by the ion exchange process, the ions on the surface of the substrate will be replaced or exchanged with larger ions with the same valence or oxidation state. The ion exchange process is usually performed by immersing the substrate in a molten salt bath that contains larger ions to exchange with smaller ions in the substrate. Those of ordinary skill in the technical field to which this case belongs will understand the parameters of the ion exchange process (including but not limited to: bath composition, temperature, immersion time, number of times the substrate is immersed in one or more salt baths, use of multiple salt baths, such as annealing, washing And other additional steps), generally depends on the substrate composition and the predetermined compressive stress (CS), the substrate compression stress layer depth (or layer depth) caused by the strengthening operation. For example, by immersing in at least one molten salt bath containing salts, such as nitrates, sulfates and chlorides of larger alkali metal ions, but not limited to this, alkali-containing glass can be used Substrate ion exchange. The temperature of the molten salt bath is usually about 380 ºC to about 450°C, and the immersion time is about 15 minutes to about 40 hours. However, temperatures and immersion times other than those described above can also be used.

此外,非限定離子交換製程實例描述於Douglas C. Allan等人於西元2009年7月10日申請、名稱為「Glass with Compressive Surface for Consumer Applications」的美國專利申請案第12/500,650號,其中玻璃基板浸入多個離子交換浴且浸入之間具有洗滌及/或退火步驟,該申請案並主張西元2008年7月11日申請的美國臨時專利申請案第61/079,995號的優先權,其中玻璃基板係藉由浸入不同濃度的鹽浴以經多重連續離子交換處理而強化;及西元2012年11月20日授予Christopher M, Lee等人、名稱為「Dual Stage Ion Exchange for Chemical Strengthening of Glass」的美國專利案第8,312,739號,該專利案並主張西元2008年7月29日申請的美國臨時專利申請案第61/084,398號的優先權,其中玻璃基板係在用流出離子稀釋的第一浴中離子交換、隨後浸入流出離子濃度比第一浴低的第二浴而強化。美國專利申請案第12/500,650號和美國專利案第8,312,739號的全文內容以引用方式併入本文中。In addition, an example of a non-limiting ion exchange process is described in US Patent Application No. 12/500,650, entitled "Glass with Compressive Surface for Consumer Applications", filed on July 10, 2009 by Douglas C. Allan et al. The substrate is immersed in multiple ion exchange baths and there is a washing and/or annealing step between the immersion. This application also claims the priority of US Provisional Patent Application No. 61/079,995 filed on July 11, 2008, of which the glass substrate Strengthened by multiple continuous ion exchange treatments by immersion in salt baths of different concentrations; and awarded to Christopher M, Lee et al. in the United States on November 20, 2012 with the name "Dual Stage Ion Exchange for Chemical Strengthening of Glass" Patent Case No. 8,312,739, which also claims the priority of US Provisional Patent Application No. 61/084,398 filed on July 29, 2008, in which the glass substrate is ion-exchanged in the first bath diluted with effluent ions Then, it is strengthened by immersing in a second bath with a lower ion concentration than the first bath. The entire contents of US Patent Application No. 12/500,650 and US Patent No. 8,312,739 are incorporated herein by reference.

可使用市售儀器,例如Orihara Industrial有限公司(日本)製造的FSM-6000,而藉由表面應力計(surface stress meter;FSM)測量壓縮應力(包括表面CS)。表面應力量測係依據應力光學係數(stress optical coefficient;SOC)的精確量測,SOC與玻璃的雙折射有關。進而依據名稱為「Standard Test Method for Measurement of Glass Stress-Optical Coefficient」的ASTM標準C770-16中所述之程序C (玻璃盤法(Glass Disc Method))量測SOC,該文獻全文內容以引用方式併入本文中。可使用本案所屬技術領域中已知的散射光偏光儀(scattered light polariscope;SCALP)技術測量最大CT值。A commercially available instrument such as FSM-6000 manufactured by Orihara Industrial Co., Ltd. (Japan) can be used, and the compressive stress (including surface CS) is measured by a surface stress meter (FSM). Surface stress measurement is based on the accurate measurement of stress optical coefficient (SOC), which is related to the birefringence of glass. Furthermore, the SOC was measured according to the procedure C (Glass Disc Method) described in the ASTM standard C770-16 named "Standard Test Method for Measurement of Glass Stress-Optical Coefficient". The full text of this document is cited by reference Incorporated in this article. The maximum CT value can be measured using a scattered light polariscope (SCALP) technique known in the technical field to which this case belongs.

在本文所用,DOC意指所述經化學強化之鹼金屬鋁矽酸玻璃製品中的應力從壓縮變成拉伸的深度。取決於離子交換處理,可藉由FSM或散射光偏光儀(SCALP)測量DOC。若由將鉀離子交換至玻璃製品內而於玻璃製品中產生應力,使用FSM測量DOC。若由將鈉離子交換至玻璃製品內而產生應力,則使用SCALP測量DOC。若由將鉀離子及鈉離子二者交換至玻璃內而於玻璃製品中產生應力,則以SCALP測量DOC,此係因為據信鈉的交換深度指示DOC,而鉀離子的交換深度則指示壓縮應力的量級變化(但不是從壓縮變成拉伸之應力變化);此類玻璃製品中之鉀離子的交換深度則由FSM測量。As used herein, DOC means the depth to which the stress in the chemically strengthened alkali metal aluminosilicate glass product changes from compression to stretching. Depending on the ion exchange process, DOC can be measured by FSM or scattered light polarimeter (SCALP). If stress is generated in the glass product by exchanging potassium ions into the glass product, FSM is used to measure DOC. If stress is generated by exchanging sodium ions into glass products, DOC is measured using SCALP. If stress is generated in the glass product by exchanging both potassium ions and sodium ions into the glass, the DOC is measured by SCALP, because the exchange depth of sodium is believed to indicate DOC, and the exchange depth of potassium ions indicates compressive stress Changes in magnitude (but not stress changes from compression to tension); the exchange depth of potassium ions in such glass products is measured by FSM.

在某些實施例中,經強化的基板110具有的表面CS可為250 MPa或更大、300 MPa或更大、如,400 MPa或更大、450 MPa或更大、500 MPa或更大、550 MPa或更大、600 MPa或更大、650 MPa或更大、700 MPa或更大、750 MPa或更大,或800 MPa或更大。經強化的基板可具有10µm或以上、15 µm或以上、20 µm或以上(如,25 µm、30 µm、35 µm、40 µm、45 µm、50 µm或以上)之DOC,及/或10 MPa或更大、20 MPa或更大、30 MPa或更大、40 MPa或更大(如,42 MPa、45 MPa,或50 MPa或更大)但小於100 MPa(如,95、90、85、80、75、70、65、60、55 MPa或更小)之最大CT。在一或多個具體實施例中,經強化的基板具有以下一或多者:大於500 MPa之表面CS、大於15 µm之DOC,及大於18 MPa之最大CT。In some embodiments, the strengthened substrate 110 may have a surface CS of 250 MPa or greater, 300 MPa or greater, for example, 400 MPa or greater, 450 MPa or greater, 500 MPa or greater, 550 MPa or more, 600 MPa or more, 650 MPa or more, 700 MPa or more, 750 MPa or more, or 800 MPa or more. The strengthened substrate may have a DOC of 10 µm or more, 15 µm or more, 20 µm or more (eg, 25 µm, 30 µm, 35 µm, 40 µm, 45 µm, 50 µm or more), and/or 10 MPa Or greater, 20 MPa or greater, 30 MPa or greater, 40 MPa or greater (eg, 42 MPa, 45 MPa, or 50 MPa or greater) but less than 100 MPa (eg, 95, 90, 85, 80, 75, 70, 65, 60, 55 MPa or less) maximum CT. In one or more specific embodiments, the strengthened substrate has one or more of the following: a surface CS greater than 500 MPa, a DOC greater than 15 µm, and a maximum CT greater than 18 MPa.

可用於基板的範例玻璃包括鹼金屬鋁矽酸玻璃成分或鹼金屬鋁硼矽酸玻璃成分,然亦可考慮其他玻璃成分。此類玻璃成分能以離子交換製程化學強化。一種範例玻璃成分包含SiO2 、B2 O3 及Na2 O,其中(SiO2 + B2 O3 ) ≥ 66 莫耳%,且Na2 O ≥ 9 莫耳%。在某些實施例中,玻璃成分包括6重量%或更多的氧化鋁。在進一步的實施例中,基板包括玻璃成分,所述玻璃成分具有一或多種鹼土金屬氧化物,致使鹼土金屬氧化物的含量為5重量%或更多。在某些實施例中,合適的玻璃成分進一步包含K2 O、MgO及CaO中之至少一者。在某些實施例中,用於基板之玻璃成分可包含:61至75莫耳%的SiO2;7至15莫耳%的Al2 O3 ;0至12莫耳%的B2 O3 ;9至21莫耳%的Na2 O;0至4莫耳%的K2 O;0至7莫耳%的MgO;及0至3莫耳%的CaO。Examples of glass that can be used for the substrate include alkali metal aluminosilicate glass components or alkali metal aluminoborosilicate glass components, although other glass components can also be considered. Such glass components can be chemically strengthened by the ion exchange process. An example glass composition includes SiO 2 , B 2 O 3 and Na 2 O, where (SiO 2 + B 2 O 3 ) ≥ 66 mol% and Na 2 O ≥ 9 mol %. In certain embodiments, the glass composition includes 6 wt% or more alumina. In a further embodiment, the substrate includes a glass component having one or more alkaline earth metal oxides, such that the content of alkaline earth metal oxides is 5% by weight or more. In certain embodiments, suitable glass components further include at least one of K 2 O, MgO, and CaO. In some embodiments, the glass composition used for the substrate may include: 61 to 75 mol% SiO2; 7 to 15 mol% Al 2 O 3 ; 0 to 12 mol% B 2 O 3 ; 9 to 21 mole% of Na 2 O; 0. 4 to mole% of K 2 O; 0. 7 to mole percent of MgO; and 0-3 mole% of CaO.

適用於基板之更進一步範例玻璃成分包含:60至70莫耳%的SiO2 ;6至14莫耳%的Al2 O3 ;0至15莫耳%的B2 O3 ;0至15莫耳%的Li2 O;0至20莫耳%的Na2 O;0至10莫耳%的K2 O;0至8莫耳%的MgO;0至10莫耳%的CaO;0至5莫耳%的ZrO2 ;0至1莫耳%的SnO2 ;0至1莫耳%的CeO2 ;少於50 ppm的As2 O3 ;及少於50 ppm的Sb2 O3 ;其中12莫耳% £ (Li2 O + Na2 O + K2 O) £ 20莫耳%,且0莫耳% £ (MgO + CaO) £ 10莫耳%。Further examples of glass compositions suitable for substrates include: 60 to 70 mol% SiO 2 ; 6 to 14 mol% Al 2 O 3 ; 0 to 15 mol% B 2 O 3 ; 0 to 15 mol % Li 2 O; 0 to 20 mol% Na 2 O; 0 to 10 mol% K 2 O; 0 to 8 mol% MgO; 0 to 10 mol% CaO; 0 to 5 mol% % ZrO 2 in ears; 0 to 1 mol% SnO 2 ; 0 to 1 mol% CeO 2 ; less than 50 ppm As 2 O 3 ; and less than 50 ppm Sb 2 O 3 ; of which 12 mo Ear% £ (Li 2 O + Na 2 O + K 2 O) £20 mole%, and 0 mole% £ (MgO + CaO) £10 mole%.

適用於基板之更進一步範例玻璃成分包含:63.5至66.5莫耳%的SiO2 ;8至12莫耳%的Al2 O3 ;0至3莫耳%的B2 O3 ;0至5莫耳%的Li2 O;8至18莫耳%的Na2 O;0至5莫耳%的K2 O;1至7莫耳%的MgO;0至2.5莫耳%的CaO;0至3莫耳%的ZrO2 ;0.05至0.25莫耳%的SnO2 ;0.05至0.5莫耳%的CeO2 ;少於50 ppm的As2 O3 ;及少於50 ppm的Sb2 O3 ;其中14莫耳% £ (Li2 O + Na2 O + K2 O) £ 18莫耳%,且2莫耳% £ (MgO + CaO) £ 7莫耳%。Further examples of glass compositions suitable for substrates include: 63.5 to 66.5 mol% SiO 2 ; 8 to 12 mol% Al 2 O 3 ; 0 to 3 mol% B 2 O 3 ; 0 to 5 mol % Li 2 O; 8 to 18 mol% Na 2 O; 0 to 5 mol% K 2 O; 1 to 7 mol% MgO; 0 to 2.5 mol% CaO; 0 to 3 mol% % ZrO 2 in ears; 0.05 to 0.25 mol% SnO 2 ; 0.05 to 0.5 mol% CeO 2 ; less than 50 ppm As 2 O 3 ; and less than 50 ppm Sb 2 O 3 ; 14 of which Ear% £ (Li 2 O + Na 2 O + K 2 O) £ 18 mole %, and 2 mole% £ (MgO + CaO) £ 7 mole %.

在某些實施例中,適用於基板之鹼金屬鋁矽酸玻璃成分包含氧化鋁、至少一種鹼金屬,及在某些實施例中為大於50莫耳%的SiO2 ,在其他實施例中為58莫耳%或更多的SiO2 ,且在其他實施例中為60莫耳%或更多的SiO2 ,其中(Al2 O3 + B2 O3 )/Ʃ改質劑(即,改質劑的總和)之比例大於1,其中在所述比例中,所述組分以莫耳%表示,且改質劑為鹼金屬氧化物。在特定實施例中,此玻璃成分包含:58至72莫耳%的SiO2 ;9至17莫耳%的Al2 O3 ;2至12莫耳%的B2 O3 ;8至16莫耳%的Na2 O;及0至4莫耳%的K2 O,其中(Al2 O3 + B2 O3 )/Ʃ改質劑(即,改質劑的總和)的比例大於1。In some embodiments, the alkali metal aluminosilicate glass composition suitable for the substrate includes alumina, at least one alkali metal, and in some embodiments, greater than 50 mol% SiO 2 , in other embodiments it is 58 mole% or more of SiO 2, and in other embodiments from 60 mole% or more of SiO 2, wherein the (Al 2 O 3 + B 2 O 3) / Σ modifier (i.e., change The ratio of the sum of the quality agents is greater than 1, wherein in the ratio, the components are expressed in mole %, and the modifier is an alkali metal oxide. In specific embodiments, this glass composition comprises: 58 to 72 mol% SiO 2 ; 9 to 17 mol% Al 2 O 3 ; 2 to 12 mol% B 2 O 3 ; 8 to 16 mol % Na 2 O; and 0 to 4 mol% K 2 O, where the ratio of (Al 2 O 3 + B 2 O 3 )/modifier (ie, the sum of modifiers) is greater than 1.

在某些實施例中,基板可包括鹼金屬鋁矽酸玻璃成分,包含:64至68莫耳%的SiO2 ;12至16莫耳%的Na2 O;8至12莫耳%的Al2 O3 ;0至3莫耳%的B2 O3 ;2至5莫耳%的K2 O;4至6莫耳%的MgO;及0至5莫耳%的CaO,其中:66莫耳%   SiO2 + B2 O3 + CaO   69莫耳%;Na2 O + K2 O + B2 O3 + MgO + CaO + SrO > 10莫耳%;5莫耳%   MgO + CaO + SrO   8莫耳%;(Na2 O + B2 O3 ) – Al2 O3   2莫耳%;2莫耳%   Na2 O   Al2 O3   6莫耳%;及4莫耳%   (Na2 O + K2 O) – Al2 O3   10莫耳%。In certain embodiments, the substrate may include an alkali metal aluminosilicate glass composition, including: 64 to 68 mol% SiO 2 ; 12 to 16 mol% Na 2 O; 8 to 12 mol% Al 2 O 3 ; 0 to 3 mol% B 2 O 3 ; 2 to 5 mol% K 2 O; 4 to 6 mol% MgO; and 0 to 5 mol% CaO, of which: 66 mol % SiO 2 + B 2 O 3 + CaO 69 mole %; Na 2 O + K 2 O + B 2 O 3 + MgO + CaO + SrO> 10 mole %; 5 mole% MgO + CaO + SrO 8 mole Ear %; (Na 2 O + B 2 O 3 ) – Al 2 O 3 2 mole %; 2 mole% Na 2 O Al 2 O 3 6 mole %; and 4 mole% (Na 2 O + K 2 O) – Al 2 O 3 10 mol%.

在某些實施例中,基板可包含鹼金屬鋁矽酸玻璃成分,包含:2莫耳%或更多的Al2 O3 及/或ZrO2 ,或4莫耳%或更多的Al2 O3 及/或ZrO2In some embodiments, the substrate may include an alkali metal aluminosilicate glass composition, including: 2 mol% or more Al 2 O 3 and/or ZrO 2 , or 4 mol% or more Al 2 O 3 and/or ZrO 2 .

當基板110包括結晶基板,基板可包括單晶,單晶可包括Al2 O3 。這樣的單晶基板稱為藍寶石。可用於結晶基板的其他合適材料包括多晶氧化鋁層及/或尖晶石 (MgAl2 O4 )。When the substrate 110 includes a crystalline substrate, the substrate may include a single crystal, and the single crystal may include Al 2 O 3 . Such a single crystal substrate is called sapphire. Other suitable materials that can be used for crystalline substrates include polycrystalline alumina layers and/or spinel (MgAl 2 O 4 ).

視情況而定,結晶基板110可包括玻璃陶瓷基板,玻璃陶瓷基板可經強化或未經強化。合適的玻璃陶瓷之實例可包括Li2 O-Al2 O3 -SiO2 系統(即,LAS-系統)玻璃陶瓷、MgO-Al2 O3 -SiO2 系統(即,MAS-系統)玻璃陶瓷,及/或包括主要晶相包括b-石英固溶體、b-鋰輝石ss、堇青石和二矽酸鋰之玻璃陶瓷。可使用本文所述之化學強化製程來強化玻璃陶瓷基板。在一或多個實施例中,可在Li2 SO4 熔融鹽中強化MAS-系統玻璃陶瓷基板,從而使2Li+ 可與Mg2+ 交換。As the case may be, the crystalline substrate 110 may include a glass-ceramic substrate, which may or may not be strengthened. Examples of suitable glass ceramics may include Li 2 O-Al 2 O 3 -SiO 2 system (ie, LAS-system) glass ceramics, MgO-Al 2 O 3 -SiO 2 system (ie, MAS-system) glass ceramics, And/or include glass ceramics whose main crystal phases include b-quartz solid solution, b-spodumene ss, cordierite and lithium disilicate. The glass ceramic substrate can be strengthened using the chemical strengthening process described herein. In one or more embodiments, the MAS-system glass-ceramic substrate can be strengthened in Li 2 SO 4 molten salt so that 2Li + can be exchanged with Mg 2+ .

根據一或多個實施例之基板110可具有範圍自約100 µm至約5 mm之實體厚度。範例基板110實體厚度的範圍自約100 µm至約500 µm (如,100、200、300、400或500 µm)。其他範例基板110實體厚度的範圍自約500 µm至約1000 µm (如,500、600、700、800、900或1000 µm)。基板110可具有大於約1 mm (如,約2、3、4或5 mm)之實體厚度。在一或多個具體實施例中,基板110可具有2 mm或更小或小於1 mm之實體厚度。基板110可經酸拋光(acid polish)或其他處理,以消除或降低表面缺陷之影響。方法 The substrate 110 according to one or more embodiments may have a physical thickness ranging from about 100 µm to about 5 mm. The physical thickness of the example substrate 110 ranges from about 100 µm to about 500 µm (eg, 100, 200, 300, 400, or 500 µm). Other example substrates 110 have a physical thickness ranging from about 500 µm to about 1000 µm (eg, 500, 600, 700, 800, 900, or 1000 µm). The substrate 110 may have a physical thickness greater than about 1 mm (eg, about 2, 3, 4, or 5 mm). In one or more specific embodiments, the substrate 110 may have a physical thickness of 2 mm or less or less than 1 mm. The substrate 110 may be subjected to acid polish or other treatments to eliminate or reduce the effects of surface defects. method

此揭示內容的第二態樣涉及了用以形成本文所述之製品的方法。在某些實施例中,所述方法包括以下步驟:於塗佈腔室中提供基板,基板具有主表面;在塗佈腔室中形成真空;於主表面上形成如本文所述之耐用光學塗層;視情況在光學塗層上形成附加塗層,所述附加塗層包含易清潔塗層及抗刮塗層中之至少一者;及將基板移出塗佈腔室。在一或多個實施例中,光學塗層及附加塗層係在同一塗佈腔室中形成,或在不破壞真空的情況下在個別塗佈腔室中形成。The second aspect of this disclosure relates to methods for forming the articles described herein. In certain embodiments, the method includes the steps of: providing a substrate in a coating chamber, the substrate having a main surface; forming a vacuum in the coating chamber; forming a durable optical coating as described herein on the main surface A layer; optionally forming an additional coating on the optical coating, the additional coating including at least one of an easy-to-clean coating and a scratch-resistant coating; and removing the substrate from the coating chamber. In one or more embodiments, the optical coating and the additional coating are formed in the same coating chamber, or in separate coating chambers without breaking the vacuum.

在一或多個實施例中,所述方法可包括以下步驟:將基板裝載到載具上,接著在裝載閘條件下,使用載具移動基板進出不同的塗佈腔室,以於移動基板時保持真空。In one or more embodiments, the method may include the steps of: loading the substrate onto the carrier, and then using the carrier to move the substrate into and out of the different coating chambers under the loading gate condition, so as to move the substrate Keep the vacuum.

可利用各種沉積方法來形成光學塗層120及/或其他層,所述沉積方法可如:真空沉積技術,例如,化學氣相沉積(如,電漿增強化學氣相沉積(PECVD)、低壓化學氣相沉積、大氣壓化學氣相沉積,及電漿增強大氣壓化學氣相沉積)、物理氣相沉積(如,反應性或非反應性濺射、金屬模(metal-mode)反應性濺射,或雷射剝除)、熱或電子束蒸鍍及/或原子層沉積。亦可使用液體系方法,例如噴塗、浸泡、旋塗或狹縫塗佈(例如,使用溶膠-凝膠材料)。當採用真空沉積時,可使用沿線製程(inline process)在一次沉積運行中形成光學塗層120及/或其他層。在一些情況中,可藉由線性PECVD源達成真空沉積。Various deposition methods may be used to form the optical coating 120 and/or other layers, such as vacuum deposition techniques, for example, chemical vapor deposition (eg, plasma enhanced chemical vapor deposition (PECVD), low pressure chemical Vapor deposition, atmospheric pressure chemical vapor deposition, and plasma enhanced atmospheric pressure chemical vapor deposition), physical vapor deposition (eg, reactive or non-reactive sputtering, metal-mode reactive sputtering, or Laser stripping), thermal or electron beam evaporation and/or atomic layer deposition. Liquid system methods can also be used, such as spraying, dipping, spin coating, or slot coating (for example, using a sol-gel material). When vacuum deposition is used, an inline process may be used to form the optical coating 120 and/or other layers in one deposition run. In some cases, vacuum deposition can be achieved by a linear PECVD source.

在某些實施例中,所述方法可包括以下步驟:控制光學塗層120及/或其他層的厚度,使得沿著約80%或更多之表面122面積的厚度變化,或沿著基板面積之任一點處的各層之目標厚度差異不超過約4%。在某些實施例中,光學塗層120及/或其他層的厚度沿著約95%或更多的外表面122面積的厚度變化不超過約4%。In some embodiments, the method may include the step of controlling the thickness of the optical coating 120 and/or other layers such that the thickness varies along about 80% or more of the surface 122 area, or along the substrate area The target thickness difference of each layer at any point does not exceed about 4%. In certain embodiments, the thickness of the optical coating 120 and/or other layers varies by no more than about 4% along the thickness of about 95% or more of the area of the outer surface 122.

在某些實施例中,就本文描述之任何實施例而言,形成製品之方法包含以下步驟:獲得基板,基板包含第一主表面並包含非晶基板或結晶基板;將光學塗層設置在第一主表面上,光學塗層包含第二主表面及厚度,第二主表面與第一主表面相對,而厚度在垂直於第二主表面之方向上;以及沿著光學塗層的厚度之至少第一梯度部分,產生折射係數梯度。光學塗層的折射係數在第一主表面與第二主表面之間沿著光學塗層的厚度而變化。In some embodiments, for any of the embodiments described herein, the method of forming an article includes the following steps: obtaining a substrate, the substrate including a first major surface and including an amorphous substrate or a crystalline substrate; On a main surface, the optical coating includes a second main surface and a thickness, the second main surface is opposite to the first main surface, and the thickness is in a direction perpendicular to the second main surface; and at least the thickness along the optical coating In the first gradient part, a refractive index gradient is generated. The refractive index of the optical coating varies along the thickness of the optical coating between the first main surface and the second main surface.

在某些實施例中,就本文描述之任何實施例而言,產生折射係數梯度包含以下步驟:沿著光學塗層的厚度改變光學塗層的成分和孔隙率中之至少一者。可藉由以逐步或連續的方式調節沉積參數和條件,來逐步或連續地改變成分及/或孔隙率。具體 製品 的實例 In some embodiments, for any of the embodiments described herein, generating a refractive index gradient includes the step of changing at least one of the composition and porosity of the optical coating along the thickness of the optical coating. The composition and/or porosity can be changed stepwise or continuously by adjusting the deposition parameters and conditions in a stepwise or continuous manner. Examples of specific products

第35圖繪示根據某些實施例之眼鏡3500。眼鏡3500包括鏡片3510、鏡框3520、橋接部3530及鏡腳3540。可使用任何合適的眼鏡結構。不欲以第35圖之具體結構做為限制。舉例而言,某些眼鏡具有單個連續的鏡片,而不是藉由橋接部分開的兩個鏡片。且,例如,某些太陽鏡具有不同的鏡框配置,包括半框和無框配置。在某些實施例中,可將本文所述之抗刮塗層施加至鏡片3510的前表面,即,背離穿戴者之表面。如本文所述,也可將塗層施加至鏡片3510的後表面。FIG. 35 illustrates glasses 3500 according to some embodiments. The glasses 3500 includes a lens 3510, a frame 3520, a bridge 3530, and a temple 3540. Any suitable spectacle structure can be used. It is not intended to be limited by the specific structure of Figure 35. For example, some glasses have a single continuous lens instead of two lenses that are partially separated by bridging. And, for example, some sunglasses have different frame configurations, including half frame and frameless configurations. In certain embodiments, the scratch resistant coating described herein may be applied to the front surface of the lens 3510, ie, the surface facing away from the wearer. As described herein, the coating may also be applied to the rear surface of the lens 3510.

本文揭示之玻璃製品可以結合到另一製品中,例如具有顯示器之製品(或顯示製品) (如,消費電子產品,包括行動電話、平板、電腦、導航系統、可穿戴設備(如,手錶)等等)、抬頭顯示器(如,經設計以反射來自投影機(如LED或雷射系投影機)之某些波長的光同時使其他波長穿透之經塗佈玻璃)、建築製品、運輸製品(如,汽車、火車、飛機、船等等)、家電製品、或可受益於某種透明度、抗刮性、抗膜性或前述特性之組合的任何製品。透明度可包括可見/光學透明度,或可包括微波/ RF透明度(即使製品在可見光譜中是不透明的,例如黑色玻璃-陶瓷)。結合本文揭示之任何玻璃製品之範例製品繪示於第36及37圖中。具體而言,第36及37圖繪示了消費性電子裝置3600,其包括殼體3602,殼體3602具有正面3604、背面3606及側表面3608;電子部件(未繪示)至少部分地或完全地位於殼體內,並包括至少一控制器、記憶體及顯示器3610,顯示器3610位於或鄰近殼體的前表面;以及蓋板3612,蓋板3612位於或覆於殼體的前表面,使其覆於顯示器。在某些實施例中,蓋板3612可包括本文揭示之任何玻璃製品。在某些實施例中,殼體的一部分或蓋板中之至少一者包含本文揭示之玻璃製品。實例 The glass products disclosed herein can be incorporated into another product, such as a product with a display (or display product) (eg, consumer electronics, including mobile phones, tablets, computers, navigation systems, wearable devices (eg, watches), etc. Etc.), head-up displays (e.g. coated glass designed to reflect certain wavelengths of light from projectors (such as LED or laser projectors) while penetrating other wavelengths), construction products, transportation products ( For example, cars, trains, airplanes, ships, etc.), home appliances, or any product that can benefit from some transparency, scratch resistance, film resistance, or a combination of the foregoing characteristics. Transparency may include visible/optical transparency, or may include microwave/RF transparency (even if the article is opaque in the visible spectrum, such as black glass-ceramic). Exemplary products incorporating any of the glass products disclosed herein are shown in Figures 36 and 37. Specifically, FIGS. 36 and 37 illustrate a consumer electronic device 3600, which includes a housing 3602 having a front surface 3604, a back surface 3606, and a side surface 3608; electronic components (not shown) are at least partially or completely Is located in the housing and includes at least one controller, memory and display 3610, the display 3610 is located at or near the front surface of the housing; and the cover plate 3612, the cover plate 3612 is located at or covers the front surface of the housing so that it covers On the monitor. In some embodiments, the cover plate 3612 may include any glass article disclosed herein. In certain embodiments, at least one of a portion of the housing or the cover plate includes the glass article disclosed herein. Examples

藉由以下實例進一步闡明各種實施方式。Various embodiments are further clarified by the following examples.

已經透過各種刮痕、壓痕和分層實驗觀察到,梯度界面可提供改良的對機械損壞(包括分層)的抗性。預期具有較低斜率(最慢的成分變化)的梯度將最像主體材料(bulk material),且因此具有最高的分層抗性。但是,如本文進一步解釋並通過實例和對照例說明的,具有非常低斜率的梯度可能無法實現期望的光學干涉效應,以用緻密塗層材料產生理想的反射率和其他光學性質。本文的實例顯示,具有適當斜率的RI梯度可增強機械穩健性,同時仍然具有足夠快的折射係數變化,以提供期望的光學干涉效果。最期望的實施例將取決於應用要求。某些應用可能需要最高的機械性能,同時針對高反射率和特定顏色;其他應用可能容許較低的反射率,同時針對中性(銀)色;等等。It has been observed through various scratch, indentation, and delamination experiments that the gradient interface can provide improved resistance to mechanical damage, including delamination. It is expected that gradients with a lower slope (slowest composition change) will most resemble bulk materials and therefore have the highest resistance to delamination. However, as explained further herein and illustrated by examples and comparative examples, gradients with very low slopes may not achieve the desired optical interference effects to produce ideal reflectivity and other optical properties with dense coating materials. The examples in this article show that an RI gradient with an appropriate slope can enhance mechanical robustness while still having a refractive index change fast enough to provide the desired optical interference effect. The most desirable embodiment will depend on the application requirements. Some applications may require the highest mechanical properties while targeting high reflectivity and specific colors; other applications may allow lower reflectivity while targeting neutral (silver) colors; and so on.

對照例1至2和模造實例1至3使用模型建構來演示包括本文所述之光學塗層的實施例之製品的反射率及透射率光譜。在對照例1至2和模造實例1至3中,除非另外指明,光學塗層包括AlOx Ny 、SiO2 及它們的混合物之層。基板模造參數是基於可從康寧®購得之玻璃基板(康寧玻璃代號5318)。Comparative Examples 1 to 2 and Molded Examples 1 to 3 used model construction to demonstrate the reflectance and transmittance spectra of articles including the embodiments of optical coatings described herein. In the making of Example 2 and Comparative Examples 1-1 mold through 3, unless otherwise specified, the optical coating comprises AlO x N y, SiO, and mixtures thereof layer 2. Substrate molding parameters are based on glass substrates commercially available from Corning® (Corning Glass Code 5318).

用於建模之塗層材料的折射係數色散曲線係根據量測值。藉由金屬模旋轉筒反應性濺射在熔融成型並經離子交換之5318玻璃上,以形成SiO2 及AlOx Ny 的單膜。在模造實例中製造並使用之AlOx Ny 具有以下標稱成分:約10至16原子%的氧(~12重量%的氧)、32至40原子%的氮,及48至54原子%的鋁。使用光譜橢偏儀測量這些單膜的折射係數。這些測量的結果列示於表2。在某些實例中,SiO2 及AlOx Ny 折射係數的線性平均值用於中間係數混合材料。總而言之,這些折射係數是從實驗製造的材料測量的,其中模造實例使用基於此處列出的實驗折射係數的光學模擬塗層設計。為方便起見,模造實例在其描述表中使用單一折射係數值,其對應於從色散曲線中約550 nm波長處選擇的點。The refractive index dispersion curve of the coating material used for modeling is based on measured values. A single film of SiO 2 and AlO x N y was formed by reactive sputtering on the metal mold rotating cylinder on the melt-formed and ion-exchanged 5318 glass. The AlO x N y manufactured and used in the molding example has the following nominal composition: about 10 to 16 atomic% oxygen (~12% by weight oxygen), 32 to 40 atomic% nitrogen, and 48 to 54 atomic% aluminum. The refractive index of these single films was measured using a spectroscopic ellipsometer. The results of these measurements are shown in Table 2. In some examples, the linear average of the refractive index of SiO 2 and AlO x N y is used for the intermediate coefficient mixed material. In summary, these refraction coefficients were measured from experimentally manufactured materials, where the molding examples used optical simulated coating designs based on the experimental refraction coefficients listed here. For convenience, the modeling example uses a single refractive index value in its description table, which corresponds to a point selected from the dispersion curve at a wavelength of about 550 nm.

表2:5318玻璃基板、SiO2 濺射膜及AlOx Ny 濺射膜之經測量折射係數

Figure 107130811-A0304-0002
Table 2: Measured refractive index of 5318 glass substrate, SiO 2 sputtered film and AlO x N y sputtered film
Figure 107130811-A0304-0002

在實例中,厚度為實體厚度,非光學厚度。實例1至3的結構類似於第5圖、第6圖或第7圖的結構,但具有實例中提供的特定層、層成分和層厚度。實例2的結構類似於第5圖,其中一個梯度部分具有之折射係數在整個梯度部分中波動,而非單調地增加或減少。但是,高折射係數和低折射係數之間的過渡不是突兀界面,而是滿足如本文所定義之梯度部分。In the example, the thickness is a physical thickness, not an optical thickness. The structure of Examples 1 to 3 is similar to the structure of Figure 5, Figure 6, or Figure 7, but with the specific layers, layer composition, and layer thickness provided in the examples. The structure of Example 2 is similar to FIG. 5, in which the refractive index of one gradient part fluctuates throughout the gradient part, rather than monotonously increasing or decreasing. However, the transition between the high refractive index and the low refractive index is not an abrupt interface, but satisfies the gradient part as defined herein.

在實例中,外表面也可稱為「前」表面,且為與基板相對之表面。在前(塗佈)表面上測量單側反射率及單側反射顏色,同時從塗佈製品的背側去除反射(通常藉由將後表面光學耦合至吸收基板來實現)。就穿過前表面朝向基板的光,來測量透射率。舉例而言,若在眼鏡的朝外表面上使用所述實例,則穿過外表面或前表面的透射將是佩戴者看到的,而來自外表面或前表面的反射則是他人看到的。使用CIE D65光源和D65檢測器來模擬模造實例。In an example, the outer surface may also be referred to as the "front" surface, and is the surface opposite the substrate. One-sided reflectance and one-sided reflection color are measured on the front (coated) surface while removing reflection from the back side of the coated article (usually achieved by optically coupling the back surface to the absorbing substrate). The transmittance is measured by the light passing through the front surface toward the substrate. For example, if the example is used on the outward facing surface of the glasses, the transmission through the outer surface or front surface will be seen by the wearer, while the reflection from the outer surface or front surface will be seen by others . A CIE D65 light source and D65 detector were used to simulate the molding example.

除非另外註記,否則模造實例之反射率及透射率作圖是在0度(法線入射)下計算。在實務中,從0至10度之光學性質的變化可忽略,意味著可將法線入射和近-法線入射視為功能上等同,如此0至10度角度範圍所界定。平均偏振用於所有反射率、透射率及顏色計算。Unless otherwise noted, the reflectance and transmittance of the molded examples are plotted at 0 degrees (normal incidence). In practice, the change in optical properties from 0 to 10 degrees is negligible, meaning that normal incidence and near-normal incidence can be considered to be functionally equivalent, as defined by the angle range of 0 to 10 degrees. The average polarization is used for all reflectance, transmittance and color calculations.

在本揭示內容的所有實例中,最厚的硬層之厚度(在實例1至3中為2000nm)可變化為500nm至5000nm中之任意值而不會顯著改變光學性質。類似地,最厚的硬層可由多個子層組成,例如< 10nm之層形成「超晶格(superlattice)」,同時維持高硬度和類似的有效光學性質。In all the examples of the present disclosure, the thickness of the thickest hard layer (2000 nm in Examples 1 to 3) can be changed to any value from 500 nm to 5000 nm without significantly changing the optical properties. Similarly, the thickest hard layer can be composed of multiple sub-layers, for example, a layer <10 nm to form a "superlattice" while maintaining high hardness and similar effective optical properties.

在顯示實例和對照例之結構的作圖中,玻璃基板在左側。厚度軸居中,其中0標記最厚的硬層之起始。塗層的梯度部分被模造為一系列厚度和係數之不連續小階(discrete small step)。應認識到,具有相似梯度斜率之連續梯度,或具有不同的不連續階尺寸但具有相似的整體斜率之梯度,可被設計成具有實質上相同的光學性質。對照例 1 In the drawing showing the structures of Examples and Comparative Examples, the glass substrate is on the left. The thickness axis is centered, where 0 marks the beginning of the thickest hard layer. The gradient part of the coating is modeled as a series of discrete small steps of thickness and coefficient. It should be appreciated that continuous gradients with similar gradient slopes, or gradients with different discontinuous step sizes but similar overall slopes, can be designed to have substantially the same optical properties. Comparative Example 1

表3列示對照例1之結構。對照例1具有不連續層狀結構。Table 3 shows the structure of Comparative Example 1. Comparative Example 1 has a discontinuous layered structure.

表3:對照例1,結構

Figure 107130811-A0304-0003
Table 3: Comparative Example 1, structure
Figure 107130811-A0304-0003

表4列示對照例1之1-側反射顏色、2-側透射顏色、明視平均反射率及明視平均透射率。Table 4 lists the 1-side reflection color, 2-side transmission color, bright-view average reflectance and bright-view average transmittance of Comparative Example 1.

表4

Figure 107130811-A0304-0004
Table 4
Figure 107130811-A0304-0004

第7圖將對照例1之塗層設計繪示成折射係數對位置之關係圖。第8圖將對照例1之部分塗層設計的細節繪示成折射係數對位置之關係圖。第9圖繪示對照例1之反射光譜。第10圖繪示對照例1之透射光譜。第11圖繪示對照例1之表面反射的D65顏色對角度之關係圖。第9圖及第10圖是基於從第7圖之右側向左側通過之入射光。對照例 2 Figure 7 depicts the coating design of Comparative Example 1 as a graph of refractive index versus position. Figure 8 depicts the details of the partial coating design of Comparative Example 1 as a graph of refractive index versus position. FIG. 9 shows the reflection spectrum of Comparative Example 1. FIG. 10 shows the transmission spectrum of Comparative Example 1. FIG. 11 is a graph showing the relationship between D65 color and angle reflected by the surface of Comparative Example 1. FIG. Figures 9 and 10 are based on incident light passing from the right side to the left side of Figure 7. Comparative Example 2

表5列示對照例2的結構。對照例2具有簡單的梯度,其導致相對高的反射率。Table 5 shows the structure of Comparative Example 2. Comparative Example 2 has a simple gradient, which results in a relatively high reflectivity.

表5:對照例2,結構

Figure 107130811-A0304-0005
Table 5: Comparative Example 2, structure
Figure 107130811-A0304-0005

表6列示對照例2之1-側反射顏色、2-側透射顏色、明視平均反射率及明視平均透射率。Table 6 lists the 1-side reflection color, 2-side transmission color, bright-view average reflectance and bright-view average transmittance of Comparative Example 2.

表6

Figure 107130811-A0304-0006
Table 6
Figure 107130811-A0304-0006

第12圖將對照例2之塗層設計繪示成折射係數對位置之關係圖。第13圖將對照例2之部分塗層設計的細節繪示成折射係數對位置之關係圖。第14圖繪示對照例2之反射光譜。第15圖繪示對照例2之透射光譜。第16圖繪示對照例2之表面反射的D65顏色對角度之關係圖。第14圖及第15圖是基於從第12圖之右側向左側通過之入射光。實例 1 Figure 12 depicts the coating design of Comparative Example 2 as a graph of refractive index versus position. Figure 13 depicts the details of the partial coating design of Comparative Example 2 as a graph of refractive index versus position. FIG. 14 shows the reflection spectrum of Comparative Example 2. FIG. 15 shows the transmission spectrum of Comparative Example 2. FIG. 16 is a graph showing the relationship between D65 color and angle reflected by the surface of Comparative Example 2. FIG. Figures 14 and 15 are based on incident light passing from the right side to the left side of Figure 12. Example 1

實例1包含經硬塗佈、經化學強化之玻璃,所述玻璃具有多層(非梯度)結構,其與硬塗層之含梯度抗反射頂部(位在厚的高硬度層上方)一起在基板與厚的高硬度層之間產生高反射率。此塗層在近法線入射下產生「藍色」的反射顏色、約略為70%之最大可見光反射率,及約略為35%之明視平均可見光反射率。就0至90度之間的所有視角而言,「藍色」顏色可受到良好控制及維持,如第23圖所繪示。就0至90度之間的所有視角而言,1st -表面反射的顏色介於-35 ≤ b* ≤ 0與-12 ≤ a* ≤ 2之間。Example 1 includes hard-coated, chemically strengthened glass with a multilayer (non-gradient) structure that is on the substrate along with the gradient-containing anti-reflective top of the hard coating layer (located above the thick high hardness layer) High reflectivity is produced between thick high hardness layers. This coating produces a "blue" reflection color under near normal incidence, a maximum visible light reflectance of approximately 70%, and a bright-vision average visible light reflectance of approximately 35%. For all viewing angles between 0 and 90 degrees, the "blue" color can be well controlled and maintained, as shown in Figure 23. For all viewing angles between 0 and 90 degrees, the color of the 1 st -surface reflection is between -35 ≤ b* ≤ 0 and -12 ≤ a* ≤ 2.

表7列示實例1的結構。Table 7 lists the structure of Example 1.

表7:實例1,結構

Figure 107130811-A0304-0007
Table 7: Example 1, structure
Figure 107130811-A0304-0007

表8列示實例1之1-側反射顏色、2-側透射顏色、明視平均反射率及明視平均透射率。Table 8 lists the 1-side reflection color, 2-side transmission color, bright-view average reflectance and bright-view average transmittance of Example 1.

表8

Figure 107130811-A0304-0008
Table 8
Figure 107130811-A0304-0008

第18圖將實例1之塗層設計繪示成折射係數對位置之關係圖。第19圖將實例1之部分塗層設計的細節繪示成折射係數對位置之關係圖。第20圖將實例1之部分塗層設計的細節繪示成折射係數對位置之關係圖。第21圖繪示實例1之反射光譜。第22圖繪示實例1之透射光譜。第23圖繪示實例1之表面反射的D65顏色對角度之關係圖。第20圖是基於從第17圖之右側向左側通過之入射光。實例1展現出從基板上至厚的硬塗層之多層干涉堆疊(所述多層干涉堆疊具有銳利界面),以及從厚的硬塗層下至外部使用者表面單調減少之折射係數。實例 2 Figure 18 depicts the coating design of Example 1 as a graph of refractive index versus position. Figure 19 depicts the details of the partial coating design of Example 1 as a graph of refractive index versus position. Figure 20 shows the details of the partial coating design of Example 1 as a graph of refractive index versus position. FIG. 21 shows the reflection spectrum of Example 1. Figure 22 shows the transmission spectrum of Example 1. FIG. 23 shows the relationship between D65 color and angle reflected by the surface of Example 1. FIG. Figure 20 is based on incident light passing from the right side to the left side of Figure 17. Example 1 exhibits a multilayer interference stack from the substrate to a thick hard coating layer (the multilayer interference stack has a sharp interface), and a monotonically reduced refractive index from the thick hard coating layer to the external user surface. Example 2

實例2包含經硬塗佈、經化學強化之玻璃,所述玻璃具有多層的含梯度結構,其與硬塗層之含梯度抗反射頂部(位在厚的高硬度層上方)一起在基板與厚的高硬度層之間產生高反射率。類似於實例1,此塗層在近法線入射下產生「藍色」的反射顏色、約略為70%之最大可見光反射率,及約略為35%之明視平均可見光反射率。就0至90度之間的所有視角而言,「藍色」顏色可受到良好控制及維持,如第29圖所繪示。就0至90度之間的所有視角而言,1st -表面反射的顏色介於-35 ≤ b* ≤ 0與-12 ≤ a* ≤ 2之間。Example 2 includes hard-coated, chemically strengthened glass with a multi-layered gradient-containing structure, which together with the gradient-containing anti-reflective top of the hard coating layer (located above the thick high-hardness layer) on the substrate and thick High reflectivity is produced between the high hardness layers. Similar to Example 1, this coating produces a "blue" reflection color under near normal incidence, a maximum visible light reflectance of approximately 70%, and an average visible light reflectance of approximately 35%. For all viewing angles between 0 and 90 degrees, the "blue" color can be well controlled and maintained, as shown in Figure 29. For all viewing angles between 0 and 90 degrees, the color of the 1 st -surface reflection is between -35 ≤ b* ≤ 0 and -12 ≤ a* ≤ 2.

表9列示實例2的結構。Table 9 lists the structure of Example 2.

表9:實例2,結構

Figure 107130811-A0304-0009
Table 9: Example 2, structure
Figure 107130811-A0304-0009

表10列示實例2之1-側反射顏色、2-側透射顏色、明視平均反射率及明視平均透射率。Table 10 lists the 1-side reflection color, 2-side transmission color, bright-view average reflectance and bright-view average transmittance of Example 2.

表10:實例2,反射及透射顏色

Figure 107130811-A0304-0010
Table 10: Example 2, reflection and transmission colors
Figure 107130811-A0304-0010

第24圖將實例2之塗層設計繪示成折射係數對位置之關係圖。第25圖將實例2之部分塗層設計的細節繪示成折射係數對位置之關係圖。第26圖將實例2之部分塗層設計的細節繪示成折射係數對位置之關係圖。第27圖繪示實例2之反射光譜。第28圖繪示實例2之透射光譜。第29圖繪示實例2之表面反射的D65顏色對角度之關係圖。第27圖及第29圖是基於從第24圖之右側向左側通過之入射光。實例2展現出從基板上至厚的硬塗層之梯度部分,所述梯度部分具有交替的高折射係數及低折射係數,並具有在高折射係數與低折射係數之間的平緩折射係數斜率(0.31 / nm或0.318 / nm)。實例2亦展現出從厚的硬塗層下至外部使用者表面單調減少之折射係數。實例 3 Figure 24 depicts the coating design of Example 2 as a graph of refractive index versus position. Figure 25 depicts the details of the partial coating design of Example 2 as a graph of refractive index versus position. Figure 26 depicts the details of the partial coating design of Example 2 as a graph of refractive index versus position. Figure 27 shows the reflection spectrum of Example 2. Figure 28 shows the transmission spectrum of Example 2. FIG. 29 is a graph showing the relationship between D65 color and angle reflected by the surface of Example 2. FIG. Figures 27 and 29 are based on incident light passing from the right side to the left side of Figure 24. Example 2 exhibits a gradient portion from the substrate to the thick hard coating layer, the gradient portion having alternating high and low refractive index, and having a gentle refractive index slope between high and low refractive index ( 0.31 / nm or 0.318 / nm). Example 2 also exhibited a monotonous reduction in the refractive index from the thick hard coating down to the external user surface. Example 3

實例3包含經硬塗佈、經化學強化之玻璃,所述玻璃具有梯度結構,其與產生高反射率之多層的非梯度頂部分(位在厚的高硬度層上方)一起在基板與厚的高硬度層之間產生低反射率。此塗層在近法線入射下亦產生「藍色」的反射顏色,並具有約略為58%之最大可見光反射率,及約略為33%之明視平均可見光反射率。就0至90度之間的所有視角而言,「藍色」顏色可受到良好控制及維持,如第34圖所繪示。就0至90度之間的所有視角而言,1st -表面反射的顏色介於-41 ≤ b* ≤ 0與-20 ≤ a* ≤ 0之間。Example 3 includes a hard-coated, chemically strengthened glass with a gradient structure, which together with a non-graded top portion (located above the thick high hardness layer) that produces a multilayer with high reflectivity on the substrate and the thick Low reflectivity is produced between high hardness layers. This coating also produces a "blue" reflection color under near normal incidence, and has a maximum visible light reflectance of approximately 58%, and an average visible light reflectance of approximately 33%. For all viewing angles between 0 and 90 degrees, the "blue" color can be well controlled and maintained, as shown in Figure 34. For all viewing angles between 0 and 90 degrees, the color of 1 st -surface reflection is between -41 ≤ b* ≤ 0 and -20 ≤ a* ≤ 0.

表11列示實例3的結構。Table 11 lists the structure of Example 3.

表11:實例3,結構

Figure 107130811-A0304-0011
Table 11: Example 3, structure
Figure 107130811-A0304-0011

表12列示實例3之1-側反射顏色、2-側透射顏色、明視平均反射率及明視平均透射率。Table 12 lists the 1-side reflection color, 2-side transmission color, bright-view average reflectance and bright-view average transmittance of Example 3.

表12

Figure 107130811-A0304-0012
Table 12
Figure 107130811-A0304-0012

第30圖將實例3之塗層設計繪示成折射係數對位置之關係圖。第31圖將實例3之部分塗層設計的細節繪示成折射係數對位置之關係圖。第32圖繪示實例3之反射光譜。第33圖繪示實例3之透射光譜。第34圖繪示實例3之表面反射的D65顏色對角度之關係圖。第32圖及第34圖是基於從第30圖之右側向左側通過之入射光。實例3展現出從基板上至厚的硬塗層單調增加之折射係數,以及從厚的硬塗層下至外部使用者表面之具有銳利界面的多層干涉堆疊。實例 4 Figure 30 depicts the coating design of Example 3 as a graph of refractive index versus position. Figure 31 depicts the details of the partial coating design of Example 3 as a graph of refractive index versus position. Figure 32 shows the reflection spectrum of Example 3. Figure 33 shows the transmission spectrum of Example 3. FIG. 34 is a graph showing the relationship between D65 color and angle reflected by the surface of Example 3. FIG. Figures 32 and 34 are based on incident light passing from the right to the left of Figure 30. Example 3 exhibits a monotonically increasing refractive index from the substrate to the thick hard coating, and a multilayer interference stack with a sharp interface from the thick hard coating down to the external user surface. Example 4

實例4包含經硬塗佈、經化學強化之玻璃,其中硬塗層為全梯度設計(all-gradient design)。實際製造實例6,並評估其硬度。Example 4 includes hard-coated, chemically strengthened glass, where the hard coating is an all-gradient design. Example 6 was actually manufactured and its hardness was evaluated.

第38圖以不同元素之氧原子濃度表示實例4之硬塗層的成分。線3810顯示元素碳含量。線3820顯示元素氮含量。線3830顯示元素氧含量。線3840顯示元素鋁含量。線3850顯示元素矽含量。線3860顯示元素鉀含量。Figure 38 shows the composition of the hard coat of Example 4 in terms of the oxygen atom concentration of different elements. Line 3810 shows the elemental carbon content. Line 3820 shows the element nitrogen content. Line 3830 shows the elemental oxygen content. Line 3840 shows the elemental aluminum content. Line 3850 shows the elemental silicon content. Line 3860 shows the elemental potassium content.

第39圖繪示實例4之硬塗層的折射係數分佈。第39圖係基於在整個梯度的有限個點處之數據測量而產生,其確認了預期折射係數分佈,預期折射係數分佈可用於決定元素在各位置處之期望原子濃度。FIG. 39 shows the refractive index distribution of the hard coating of Example 4. Figure 39 is generated based on data measurements at a limited number of points across the gradient, which confirms the expected refractive index distribution, which can be used to determine the expected atomic concentration of the element at each location.

實例4中之折射係數之斜率的最高絕對值為0.0017 / nm。實例4之製品的最大硬度經測得為14.9 GPa。實例4示範了具有高硬度之全梯度硬塗層。The highest absolute value of the slope of the refractive index in Example 4 is 0.0017 / nm. The maximum hardness of the product of Example 4 was measured to be 14.9 GPa. Example 4 demonstrates a full gradient hard coating with high hardness.

對於本案所屬技術領域中具通常知識者而言顯而易見的是,在不悖離本揭示內容的精神或範圍的情況下,可進行各種修飾或變化。It is obvious to those with ordinary knowledge in the technical field to which this case belongs that various modifications or changes can be made without departing from the spirit or scope of the present disclosure.

在本文所用,術語「約」意味著量、大小、調配物、參數及其他數量及特徵並非精確的並且不必為精確的,而是可根據需要為近似的及/或更大或更小,反映容差、轉換因素、捨入、量測誤差等,以及為本案所屬技術領域中具通常知識者已知之其他因素。當使用術語「約」來描述範圍的值或端點時,應該將本揭示內容理解為包括所指的具體值或端點。無論說明書中的範圍的數值或端點是否記載「約」,範圍的數值或端點意欲包括兩個實施例:一個由「約」修飾,一個未由「約」修飾。將可進一步理解到,每個範圍的端點相對於另一個端點都是重要的,並且獨立於另一個端點。As used herein, the term "about" means that the amount, size, formulation, parameters, and other quantities and characteristics are not precise and need not be precise, but may be approximate and/or larger or smaller as needed, reflecting Tolerances, conversion factors, rounding, measurement errors, etc., as well as other factors known to those with ordinary knowledge in the technical field to which this case belongs. When the term "about" is used to describe a value or endpoint of a range, the disclosure should be understood to include the specific value or endpoint referred to. Regardless of whether the numerical value or end point of the range in the specification describes "about", the numerical value or end point of the range is intended to include two embodiments: one modified by "about" and one not modified by "about". It will be further understood that the endpoint of each range is important with respect to the other endpoint and is independent of the other endpoint.

本文所用之術語「實質的」、「實質上」及其變體意欲註記所描述的特徵等於或近似等於值或描述。舉例而言,「實質上平坦的(substantially planar)」表面意欲表示平坦或接近平坦之表面。並且,「實質上」意欲表示兩個值相等或幾乎相等。在某些實施例中,「實質上」可表示在彼此之約10%內的值,例如在彼此之約5%內,或在彼此之約2%內。As used herein, the terms "substantial", "substantially" and variations thereof are intended to note that the described feature is equal to or approximately equal to the value or description. For example, a "substantially planar" surface is intended to mean a flat or nearly flat surface. Also, "substantially" is intended to mean that two values are equal or nearly equal. In certain embodiments, "substantially" may mean values within about 10% of each other, such as within about 5% of each other, or within about 2% of each other.

本文所用之方向性術語—例如上、下、右、左、前、後、頂部、底部—僅參照所繪製的附圖進行,並不意味著暗示絕對定向。The directional terms used herein—for example, up, down, right, left, front, back, top, and bottom—are only made with reference to the drawings that are drawn, and are not meant to imply absolute orientation.

在本文所用,過渡術語「包含」,其與「包括」、「含有」或「特徵在於」同義,為包容性或開放式的,且不排除額外的、未記載之元件或方法步驟。過渡詞彙「由…組成」排除了「由…組成」後的列舉中未指明的任何元件、步驟或成分。過渡詞彙「基本上由…組成」將範圍限制在指定的材料或步驟,以及那些實質上不會影響申請專利範圍中所述的基本及新穎性特徵的材料或步驟。As used herein, the transitional term "comprising", which is synonymous with "including", "containing" or "characterized by", is inclusive or open-ended and does not exclude additional, undocumented elements or method steps. The transitional term "consisting of" excludes any elements, steps, or ingredients not specified in the list after "consisting of". The transitional term "consisting essentially of" limits the scope to the specified materials or steps, as well as those materials or steps that do not substantially affect the basic and novel features described in the scope of the patent application.

在本文所用,術語「該」、「一」表示「至少一」,且不應限於「僅有一」,除非有明確的相反指示。因此,舉例而言,對「一組分」之引用包括具有兩個或更多個該類組分的實施例,除非上下文另有明確指示。As used herein, the terms "the" and "one" mean "at least one" and should not be limited to "only one" unless there is a clear indication to the contrary. Thus, for example, reference to "a component" includes embodiments having two or more such components, unless the context clearly indicates otherwise.

100:製品110:基板112:主表面114:主表面116:次表面118:次表面120:光學塗層122:主表面/外表面124:主表面125:附加層126:厚度方向130:第一梯度部分140:厚的高硬度部分150:第二梯度部分170:可選層180:可選層200:製品300:製品400:製品500:製品600:製品610:多層干涉堆疊620:區段622:低RI層624:高RI層3500:眼鏡3510:鏡片3520:鏡框3530:橋接部3540:鏡腳3600:消費性電子裝置3602:殼體3604:正面3606:背面3608:側表面3610:顯示器3612:蓋板100: product 110: substrate 112: main surface 114: main surface 116: secondary surface 118: secondary surface 120: optical coating 122: primary surface/outer surface 124: primary surface 125: additional layer 126: thickness direction 130: first Gradient part 140: thick high hardness part 150: second gradient part 170: optional layer 180: optional layer 200: product 300: product 400: product 500: product 600: product 610: multilayer interference stack 620: section 622 : Low RI layer 624: High RI layer 3500: Glasses 3510: Lens 3520: Frame 3530: Bridge 3540: Temple 3600: Consumer electronics 3602: Case 3604: Front 3606: Back 3608: Side surface 3610: Display 3612 : Cover

第1圖為根據一或多個實施例之製品的側視圖;Figure 1 is a side view of an article according to one or more embodiments;

第2圖為根據一或多個實施例之製品的側視圖;Figure 2 is a side view of an article according to one or more embodiments;

第3圖為根據一或多個實施例之製品的側視圖;Figure 3 is a side view of an article according to one or more embodiments;

第4圖為根據一或多個實施例之製品的側視圖;Figure 4 is a side view of an article according to one or more embodiments;

第5圖為根據一或多個實施例之製品的側視圖;Figure 5 is a side view of an article according to one or more embodiments;

第6圖為根據一或多個實施例之製品的側視圖;Figure 6 is a side view of an article according to one or more embodiments;

第7圖為根據一或多個實施例之製品的側視圖;Figure 7 is a side view of an article according to one or more embodiments;

第8圖繪示對照例1之塗層設計;Figure 8 shows the coating design of Comparative Example 1;

第9圖繪示對照例1之塗層設計;Figure 9 shows the coating design of Comparative Example 1;

第10圖繪示對照例1之反射光譜;Figure 10 shows the reflection spectrum of Comparative Example 1;

第11圖繪示對照例1之透射光譜;Figure 11 shows the transmission spectrum of Comparative Example 1;

第12圖繪示對照例1之表面反射的D65顏色對角度之關係圖;FIG. 12 is a graph showing the relationship between D65 color and angle reflected by the surface of Comparative Example 1;

第13圖繪示對照例2之塗層設計;Figure 13 shows the coating design of Comparative Example 2;

第14圖繪示對照例2之塗層設計;Figure 14 shows the coating design of Comparative Example 2;

第15圖繪示對照例2之反射光譜;Figure 15 shows the reflection spectrum of Comparative Example 2;

第16圖繪示對照例2之透射光譜;Figure 16 shows the transmission spectrum of Comparative Example 2;

第17圖繪示對照例2之表面反射的D65顏色對角度之關係圖;FIG. 17 is a graph showing the relationship between D65 color and angle reflected by the surface of Comparative Example 2;

第18圖繪示實例1之塗層設計;Figure 18 shows the coating design of Example 1;

第19圖繪示實例1之塗層設計;Figure 19 shows the coating design of Example 1;

第20圖繪示實例1之塗層設計;Figure 20 shows the coating design of Example 1;

第21圖繪示實例1之反射光譜;Figure 21 shows the reflection spectrum of Example 1;

第22圖繪示實例1之透射光譜;Figure 22 shows the transmission spectrum of Example 1;

第23圖繪示實例1之表面反射的D65顏色對角度之關係圖;Figure 23 shows the relationship between the D65 color and angle reflected by the surface of Example 1;

第24圖繪示實例2之塗層設計;Figure 24 shows the coating design of Example 2;

第25圖繪示實例2之塗層設計;Figure 25 shows the coating design of Example 2;

第26圖繪示實例2之塗層設計;Figure 26 shows the coating design of Example 2;

第27圖繪示實例2之反射光譜;Figure 27 shows the reflection spectrum of Example 2;

第28圖繪示實例2之透射光譜;Figure 28 shows the transmission spectrum of Example 2;

第29圖繪示實例2之表面反射的D65顏色對角度之關係圖;Figure 29 shows the relationship between the D65 color and angle reflected by the surface of Example 2;

第30圖繪示實例3之塗層設計;Figure 30 shows the coating design of Example 3;

第31圖繪示實例3之塗層設計;Figure 31 shows the coating design of Example 3;

第32圖繪示實例3之反射光譜;Figure 32 shows the reflection spectrum of Example 3;

第33圖繪示實例3之透射光譜;Figure 33 shows the transmission spectrum of Example 3;

第34圖繪示實例3之表面反射的D65顏色對角度之關係圖;Figure 34 shows the relationship between D65 color and angle reflected by the surface of Example 3;

第35圖繪示實例4之表面反射的D65顏色對角度之關係圖;Figure 35 shows the relationship between D65 color and angle reflected by the surface of Example 4;

第36圖繪示根據一或多個實施例之製品(眼鏡鏡片);Figure 36 shows an article (eyeglass lens) according to one or more embodiments;

第37圖繪示根據一或多個實施例之製品(用於智慧型電話之蓋板);Figure 37 shows a product (cover for a smart phone) according to one or more embodiments;

第38圖繪示實例4之硬塗層的成分。Figure 38 shows the composition of the hard coat of Example 4.

第39圖繪示實例4之硬塗層的折射係數分佈。FIG. 39 shows the refractive index distribution of the hard coating of Example 4.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in order of storage institution, date, number) No

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Overseas hosting information (please note in order of hosting country, institution, date, number) No

100:製品 100: product

110:基板 110: substrate

112:主表面 112: Main surface

114:主表面 114: Main surface

116:次表面 116: Subsurface

118:次表面 118: Subsurface

120:光學塗層 120: Optical coating

122:主表面/外表面 122: main surface/outer surface

124:主表面 124: Main surface

126:厚度方向 126: thickness direction

170:可選層 170: optional layer

180:可選層 180: optional layer

Claims (18)

一種製品,包含: 一基板,包含一第一主表面;以及一光學塗層,設置於該第一主表面上方,該光學塗層包含:一第二主表面,相對於該第一主表面,一厚度,在垂直於該第二主表面之一方向上,以及一第一梯度部分, 其中: 該光學塗層之一折射係數沿著介於該第一主表面與該第二主表面之間的該光學塗層的一厚度而變化; 該第一梯度部分的最大折射係數與該第一梯度部分的最小折射係數之差為0.1或更大; 在沿著該第一梯度部分之厚度的每處,該第一梯度部分之該折射係數的斜率的絕對值為0.1 / nm或更小; 其中該製品展現出: 在該第二主表面處測量,於波長範圍400 nm至700 nm內之一平均單一表面反射率為15 %至98%; 在自約10 GPa至約30 GPa的範圍內之一最大硬度,其中藉由以Berkovich壓頭壓入該第二主表面以形成一壓痕,以於該第二主表面上測量最大硬度,該壓痕包含從該第二主表面之表面起算約100 nm或更大之一壓痕深度; 其中在0.04之一折射係數變化的範圍內,沿著該厚度測量斜率。An article includes: a substrate including a first main surface; and an optical coating disposed above the first main surface, the optical coating including: a second main surface, relative to the first main surface, A thickness in a direction perpendicular to the second main surface and a first gradient portion, wherein: a refractive index of the optical coating is along a distance between the first main surface and the second main surface The thickness of the optical coating varies; the difference between the maximum refractive index of the first gradient portion and the minimum refractive index of the first gradient portion is 0.1 or more; at each location along the thickness of the first gradient portion , The absolute value of the slope of the refractive index of the first gradient part is 0.1 / nm or less; where the product exhibits: measured at the second main surface, averaged over one of the wavelength range 400 nm to 700 nm The single surface reflectivity is 15% to 98%; one of the maximum hardness in the range from about 10 GPa to about 30 GPa, in which an indentation is formed by pressing into the second main surface with a Berkovich indenter, so that The maximum hardness is measured on the second main surface, and the indentation includes an indentation depth of about 100 nm or greater from the surface of the second main surface; where within a range of a change in refractive index of 0.04, along the Thickness measurement slope. 如請求項1所述之製品,其中: 在沿著該第一梯度部分之厚度的每處,該光學塗層之該折射係數的該斜率的該絕對值為0.001 / nm或更大。The article according to claim 1, wherein: at each location along the thickness of the first gradient portion, the absolute value of the slope of the refractive index of the optical coating is 0.001/nm or more. 如請求項1所述之製品,其中該光學塗層進一步包含一高硬度部分,其中: 該高硬度部分之該厚度為200 nm或更多: 該高硬度部分之該平均折射係數為1.6或更大;以及 該高硬度部分之最大硬度為10 GPa或更高,其中藉由以Berkovich壓頭壓入該厚的高硬度部分以形成一壓痕,來測量最大硬度,該壓痕包含約100 nm或更大之一壓痕深度。The article of claim 1, wherein the optical coating further comprises a high hardness portion, wherein: the thickness of the high hardness portion is 200 nm or more: the average refractive index of the high hardness portion is 1.6 or more Large; and the maximum hardness of the high hardness portion is 10 GPa or higher, in which the maximum hardness is measured by pressing a thick high hardness portion with a Berkovich indenter to form an indentation, the indentation including about 100 nm Or a greater depth of indentation. 如請求項3所述之製品,其中就該高硬度部分之該厚度的95%或更多而言,該高硬度部分之最大折射係數與該高硬度部分之最小折射係數之間的差為0.05或更小。The article according to claim 3, wherein the difference between the maximum refractive index of the high hardness portion and the minimum refractive index of the high hardness portion is 0.05 for 95% or more of the thickness of the high hardness portion Or smaller. 如請求項3所述之製品,其中沿著從該第二主表面朝向該第一主表面之該厚度的方向,該光學塗層依序包含: 該第一梯度部分;以及 該高硬度部分,與該第一梯度部分接觸; 其中,在該高硬度部分接觸該第一梯度部分處,該高硬度部分之該折射係數與該第一梯度部分之最大折射係數之間的差為0.05或更小。The article according to claim 3, wherein in the direction of the thickness from the second main surface toward the first main surface, the optical coating sequentially includes: the first gradient portion; and the high hardness portion, In contact with the first gradient portion; wherein, where the high hardness portion contacts the first gradient portion, the difference between the refractive index of the high hardness portion and the maximum refractive index of the first gradient portion is 0.05 or less . 如請求項3所述之製品,其中該光學塗層進一步包含一第二梯度部分,該第二梯度部分設置於該高硬度部分與該基板之間,其中該第二梯度部分與該高硬度部分接觸,且其中: 該第二梯度部分之最大折射係數與該第二梯度部分之最小折射係數之間的差為0.05或更大; 沿著該第二梯度部分之該厚度的每處,該光學塗層之該折射係數的該斜率的該絕對值為0.1 / nm或更小。The article according to claim 3, wherein the optical coating further includes a second gradient portion disposed between the high hardness portion and the substrate, wherein the second gradient portion and the high hardness portion Contact, and wherein: the difference between the maximum refractive index of the second gradient portion and the minimum refractive index of the second gradient portion is 0.05 or greater; along each location of the thickness of the second gradient portion, the optical The absolute value of the slope of the refractive index of the coating is 0.1/nm or less. 如請求項3所述之製品,其中: 該第一梯度部分之該折射係數在遠離該第二主表面之方向上沿著該厚度單調地增加; 該光學塗層進一步包含一多層干涉堆疊,該多層干涉堆疊包含不連續的層,該等不連續的層設置於該高硬度部分與該基板之間。The article of claim 3, wherein: the refractive index of the first gradient portion increases monotonously along the thickness in a direction away from the second main surface; the optical coating further includes a multilayer interference stack, The multi-layer interference stack includes discontinuous layers that are disposed between the high-hardness portion and the substrate. 如請求項3所述之製品,其中: 該第一梯度部分之該折射係數在遠離該第二主表面之方向上沿著該厚度單調地增加; 該光學塗層進一步包含一第二梯度部分,該第二梯度部分作為與該基板之距離的一函數而跨該梯度部分的該厚度作波動。The article of claim 3, wherein: the refractive index of the first gradient portion increases monotonously along the thickness in a direction away from the second main surface; the optical coating further includes a second gradient portion, The second gradient portion fluctuates across the thickness of the gradient portion as a function of the distance from the substrate. 如請求項1至8中任一項所述之製品,其中在該光學塗層中的每處,該光學塗層之該折射係數的該斜率的該絕對值為0.1 / nm或更小。The article according to any one of claims 1 to 8, wherein the absolute value of the slope of the refractive index of the optical coating is 0.1/nm or less at each of the optical coatings. 如請求項1至8中任一項所述之製品,其中滿足以下至少一者: 當在該第二主表面測量時,就從0至60度的所有視角而言,該製品展現出一單側反射顏色範圍,該單側反射顏色範圍包含數值為5或更小之所有a*點;以及 當在該第二主表面測量時,就從0至60度的所有視角而言,該製品展現出一單側反射顏色範圍,該單側反射顏色範圍包含數值為5或更小之所有b*點。The product according to any one of claims 1 to 8, wherein at least one of the following is satisfied: When measured on the second main surface, the product exhibits a single view in all viewing angles from 0 to 60 degrees Side reflection color range, the single side reflection color range contains all a* points with a value of 5 or less; and when measured on the second main surface, the product exhibits all viewing angles from 0 to 60 degrees A single-sided reflection color range is included. The single-side reflection color range includes all b* points with a value of 5 or less. 如請求項1至8中任一項所述之製品,其中當在該第二主表面測量時,就從0至10度的所有視角而言,該製品展現出一單側反射顏色範圍,該單側反射顏色範圍包含數值為20或更大之至少一個a*點或b*點。The article according to any one of claims 1 to 8, wherein the article exhibits a single-sided reflection color range for all viewing angles from 0 to 10 degrees when measured on the second main surface, the The one-sided reflection color range includes at least one a* point or b* point having a value of 20 or more. 如請求項1至8中任一項所述之製品,其中光學塗層包含之一厚度在自約0.5 µm至約3 µm之範圍內。The article of any one of claims 1 to 8, wherein the optical coating includes one having a thickness ranging from about 0.5 µm to about 3 µm. 如請求項3至8中任一項所述之製品,其中介於該高硬度部分與包含1.6或更小的RI之該第二主表面之間的該光學塗層的任何部分之累積厚度為200 nm或更小。The article according to any one of claims 3 to 8, wherein the cumulative thickness of any portion of the optical coating between the high-hardness portion and the second main surface including the RI of 1.6 or less is 200 nm or less. 如請求項1至8中任一項所述之製品,其中該光學塗層包含一成分梯度,該成分梯度包含Si、Al、N及O中之至少二者。The article of any one of claims 1 to 8, wherein the optical coating includes a composition gradient including at least two of Si, Al, N, and O. 如請求項1至8中任一項所述之製品,其中該製品係一抗刮鏡。The article according to any one of claims 1 to 8, wherein the article is an anti-scratch mirror. 一種眼鏡,包含一鏡片,其中該鏡片包含如請求項1至8中任一項所述之製品。An eyeglass comprising a lens, wherein the lens comprises the article according to any one of claims 1 to 8. 一種消費電子產品,包含: 一殼體,具有一前表面、一後表面及多個側表面; 多個電子部件,至少部份地設置在該殼體內,該等電子部件包含至少一控制器、一記憶體及一顯示器,該顯示器位於或鄰近該殼體之該前表面;以及 一蓋板,設置於該顯示器上方,其中該殼體的一部分或該蓋板中之至少一者包含如請求項1至8中任一項所述之製品。A consumer electronic product includes: a housing having a front surface, a rear surface, and a plurality of side surfaces; a plurality of electronic components, at least partially disposed in the housing, the electronic components including at least a controller, A memory and a display, the display is located at or near the front surface of the housing; and a cover plate is provided above the display, wherein at least one of a part of the housing or the cover plate includes items as requested The product according to any one of 1 to 8. 一種形成一製品之方法,包含以下步驟: 獲得一基板,該基板包含一第一主表面並包含一非晶基板或一結晶基板; 於該第一主表面上設置一光學塗層,該光學塗層包含一第二主表面及一厚度,該第二主表面與該第一主表面相對,而該厚度在垂直於該第二主表面之一方向上, 沿著該光學塗層之該厚度的至少一第一梯度部分產生一折射係數梯度, 其中: 該光學塗層之一折射係數沿著介於該第一主表面與該第二主表面之間的該光學塗層的一厚度而變化; 該第一梯度部分的最大折射係數與該第一梯度部分的最小折射係數之差為0.1或更大; 在沿著該第一梯度部分之該厚度的每處,該第一梯度部分之該折射係數的該斜率的該絕對值為0.1/nm或更小; 其中該製品展現出: 在該第二主表面處測量,於波長範圍400nm至700nm內之一平均單一表面反射率為15%至98%;以及 在自約10 GPa至約30 GPa的範圍內之一最大硬度,其中藉由以Berkovich壓頭壓入該第二主表面以形成一壓痕,以於該第二主表面上測量最大硬度,該壓痕包含從該第二主表面之表面起算約100 nm或更大之一壓痕深度; 其中在0.04之一折射係數變化的範圍內,沿著該厚度測量該斜率。A method for forming an article includes the following steps: obtaining a substrate including a first main surface and including an amorphous substrate or a crystalline substrate; providing an optical coating on the first main surface, the optical coating The layer includes a second main surface and a thickness, the second main surface is opposite to the first main surface, and the thickness is in a direction perpendicular to the second main surface, along at least the thickness of the optical coating A first gradient portion produces a refractive index gradient, wherein: a refractive index of the optical coating changes along a thickness of the optical coating between the first main surface and the second main surface; the The difference between the maximum refractive index of the first gradient portion and the minimum refractive index of the first gradient portion is 0.1 or more; at each location along the thickness of the first gradient portion, the refractive index of the first gradient portion The absolute value of the slope of is 0.1/nm or less; where the article exhibits: Measured at the second major surface, the average single surface reflectivity is within a range of 400nm to 700nm from 15% to 98% ; And one of the maximum hardness in the range from about 10 GPa to about 30 GPa, in which a maximum pressure is measured on the second main surface by pressing a Berkovich indenter into the second main surface to form an indentation The indentation includes an indentation depth of about 100 nm or greater from the surface of the second main surface; wherein the slope is measured along the thickness within a range of 0.04 refractive index change.
TW107130811A 2018-09-03 2018-09-03 Hybrid gradient-interference hardcoatings TW202011051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107130811A TW202011051A (en) 2018-09-03 2018-09-03 Hybrid gradient-interference hardcoatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107130811A TW202011051A (en) 2018-09-03 2018-09-03 Hybrid gradient-interference hardcoatings

Publications (1)

Publication Number Publication Date
TW202011051A true TW202011051A (en) 2020-03-16

Family

ID=70766743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107130811A TW202011051A (en) 2018-09-03 2018-09-03 Hybrid gradient-interference hardcoatings

Country Status (1)

Country Link
TW (1) TW202011051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137930A (en) * 2021-04-25 2021-07-20 西南石油大学 Visual and quantitative determination method for thinning of foam liquid film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137930A (en) * 2021-04-25 2021-07-20 西南石油大学 Visual and quantitative determination method for thinning of foam liquid film
CN113137930B (en) * 2021-04-25 2022-02-01 西南石油大学 Visual and quantitative determination method for thinning of foam liquid film

Similar Documents

Publication Publication Date Title
TWI744249B (en) High light transmission and scratch-resistant anti-reflective articles
TWI783998B (en) Reflective, colored, or color-shifting scratch resistant coatings and articles
TWI745212B (en) Durable anti-reflective articles
US20230212063A1 (en) Coated articles with optical coatings having residual compressive stress
US11630244B2 (en) Coatings of non-planar substrates and methods for the production thereof
TW201602623A (en) Durable and scratch-resistant anti-reflective articles
US20230280502A1 (en) Hybrid gradient-interference hardcoatings
US11500130B2 (en) Anti-reflection optical coatings having reduced thickness on curved or faceted portion
US11520082B2 (en) Hybrid gradient-interference hardcoatings
US20230273345A1 (en) Coated articles having non-planar substrates and methods for the production thereof
TW202011051A (en) Hybrid gradient-interference hardcoatings
TWI833788B (en) Inorganic oxide articles with thin, durable anti-reflective structures