TW202009803A - Prediction system and method for solar photovoltaic power generation - Google Patents

Prediction system and method for solar photovoltaic power generation Download PDF

Info

Publication number
TW202009803A
TW202009803A TW107129619A TW107129619A TW202009803A TW 202009803 A TW202009803 A TW 202009803A TW 107129619 A TW107129619 A TW 107129619A TW 107129619 A TW107129619 A TW 107129619A TW 202009803 A TW202009803 A TW 202009803A
Authority
TW
Taiwan
Prior art keywords
neural network
weather
power generation
data
training
Prior art date
Application number
TW107129619A
Other languages
Chinese (zh)
Other versions
TWI684927B (en
Inventor
楊念哲
陳敬炘
曾威智
Original Assignee
楊念哲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楊念哲 filed Critical 楊念哲
Priority to TW107129619A priority Critical patent/TWI684927B/en
Application granted granted Critical
Publication of TWI684927B publication Critical patent/TWI684927B/en
Publication of TW202009803A publication Critical patent/TW202009803A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present invention provides prediction system and method for solar photovoltaic power generation. The method includes establishing a climate sample, calculating the similarity between the historical solar energy output data in the historical database and the climate sample, obtaining multiple weather conditions of predetermined days including a target date from the weather forecast data, and search the historical database for data columns similar to multiple weather conditions. According to the data column, the comparison sample is obtained for standardization processing to establish a training matrix, randomly initializing the number of nodes in the neural network, training the neural network according to the training matrix to obtain an optimized neural network, and performing a solar photovoltaic power generation prediction.

Description

太陽光電發電預測系統及方法 Solar photovoltaic power generation prediction system and method

本發明涉及一種太陽光電發電預測系統及方法,特別是涉及一種結合氣象預報的太陽光電發電預測系統及方法。 The invention relates to a solar photovoltaic power generation prediction system and method, in particular to a solar photovoltaic power generation prediction system and method combined with weather forecast.

電力能源是國家經濟發展的重要依據,也是經濟成長的重要指標,更是人類生活中不可或缺的重要能源之一。在微型電網中精確的太陽光電(PV)預測除了可以提供妥當的發電排程和規劃、也可有效降低運轉成本以及提高供電可靠度,並且能防止電力資源浪費有效的利用太陽光電,增加系統供電品質。 Electric energy is an important basis for national economic development and an important indicator of economic growth. It is also one of the indispensable important energy sources in human life. Precise solar photovoltaic (PV) prediction in the microgrid can not only provide proper power generation scheduling and planning, but also effectively reduce operating costs and improve power supply reliability. It can also prevent the waste of power resources and effectively use solar photovoltaic to increase system power supply. quality.

傳統的太陽光電預測方法藉由環境資訊和太陽光電模組資訊來設計預測模型,環境和模組對太陽光電發電量之間為非線性的關係,使用傳統的預測方法很難界定其間的關係。 The traditional solar photovoltaic prediction method uses environmental information and solar photovoltaic module information to design a prediction model. The relationship between the environment and the module's solar photovoltaic power generation is non-linear. It is difficult to define the relationship between them using traditional prediction methods.

此外,傳統機器學習除了需要溫度計與照度計等天氣參數量測設備,導致建置系統需要額外的成本外,還容易將龐大非相關資料納入訓練矩陣,而增加額外運算成本。 In addition, traditional machine learning requires the addition of weather parameter measurement equipment such as thermometers and illuminance meters, resulting in additional costs for building the system. It is also easy to incorporate huge non-relevant data into the training matrix, which adds additional computational costs.

故,如何通過發電預測方法的改良,來提升預測太陽光電系統發電情形的精確度,同時降低預測所需的系統建置成本及運算成本,來克服上述的缺陷,已成為該項事業所欲解決的重要課題之一。 Therefore, how to improve the accuracy of power generation forecasting methods to improve the accuracy of forecasting the solar photovoltaic system power generation situation, and at the same time reduce the system construction cost and calculation cost required for forecasting, to overcome the above defects, has become the cause of this business. One of the important topics.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種結合氣象預報之太陽光電發電預測方法。 The technical problem to be solved by the present invention is to provide a solar photovoltaic power generation prediction method combined with meteorological prediction in view of the deficiencies of the prior art.

為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種結合氣象預報之太陽光電發電預測方法,包括:建立氣候樣本,氣候樣本包括,對應第一天氣參數、第二天氣參數及第三天氣參數的多筆太陽能輸出功率資料;將歷史資料庫中的多筆歷史太陽能輸出功率資料與氣候樣本進行相似度計算,以判定各多筆歷史太陽能輸出功率資料的對應天氣參數,其中對應天氣參數為第一天氣參數、第二天氣參數或第三天氣參數;決定目標日期;由天氣預報資料取得包括目標日期的預定天數的多個天氣狀態;根據多個天氣狀態,在歷史資料庫中,依據所判定的多筆對應天氣參數,搜尋類似於多個天氣狀態的資料列;判斷是否能以預定天數取得資料列,若否,則減少預定天數並再次於歷史資料庫中進行搜尋,若是,則根據資料列取得比對樣本,其中比對樣本包括對應資料列的多筆歷史太陽能輸出功率資料;將比對樣本進行標準化處理,以建立訓練矩陣;隨機初始化神經網路的節點數量;依據訓練矩陣對神經網路進行訓練,包括:將預測日期、預測時間及對應預測日期的天氣預報輸入神經網路,經由神經網路計算獲得多個訓練結果;依據訓練矩陣及多個訓練結果計算訓練誤差;判斷訓練誤差是否小於所設定的容許誤差目標值,若否,則重新設定節點數量,以最佳化演算法更新神經網路的節點數量並再次依據訓練矩陣對神經網路進行訓練,若是,則以神經網路作為最佳化神經網路;以最佳化神經網路進行太陽光電發電預測。 In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a solar photovoltaic power generation prediction method combined with meteorological forecasting, including: establishing a climate sample, the climate sample including, corresponding to the first weather parameter and the second weather parameter And multiple solar power output data of the third weather parameter; the similarity calculation of the multiple historical solar power output data in the historical database and the climate sample to determine the corresponding weather parameters of each multiple historical solar power output data, of which Corresponding weather parameters are the first weather parameter, the second weather parameter or the third weather parameter; determine the target date; obtain multiple weather conditions including the predetermined number of days of the target date from the weather forecast data; based on the multiple weather conditions, in the historical database In the process, according to the determined multiple corresponding weather parameters, search for a data row similar to multiple weather conditions; determine whether the data row can be obtained with a predetermined number of days; if not, reduce the predetermined number of days and search again in the historical database, If it is, the comparison sample is obtained according to the data row, where the comparison sample includes multiple historical solar output power data of the corresponding data row; the comparison sample is standardized to establish a training matrix; the number of nodes of the neural network is initialized randomly; Train the neural network according to the training matrix, including: input the forecast date, forecast time and weather forecast corresponding to the forecast date into the neural network, and obtain multiple training results through the neural network calculation; calculate based on the training matrix and multiple training results Training error; judge whether the training error is less than the set target value of the allowable error, if not, then reset the number of nodes, update the number of nodes of the neural network with the optimization algorithm and train the neural network again according to the training matrix, If it is, the neural network is used as the optimized neural network; the optimized neural network is used for solar photovoltaic power generation prediction.

為了解決上述的技術問題,本發明所採用的其中一技術方案是,提供一種結合氣象預報之太陽光電發電預測系統,其包括數據擷取模組、氣候樣本建立模組、歷史資料庫、相似度計算模組、訓練矩陣建立模組、神經網路訓練模組以及太陽光電發電預測模 組。數據擷取模組用於擷取太陽光電模組偵測的太陽光電資料與氣象預報模組產生的天氣預報資料。氣候樣本建立模組用於從該太陽光電資料中取出多筆太陽能輸出功率資料,並依據該天氣預報資料將其對應於第一天氣參數、第二天氣參數及第三天氣參數,以建立氣候樣本。歷史資料庫儲存有多筆歷史太陽能輸出功率資料。相似度計算模組用於將該歷史資料庫中的該多筆歷史太陽能輸出功率資料與該氣候樣本進行相似度計算,以判定各該多筆歷史太陽能輸出功率資料的對應天氣參數,其中該對應天氣參數為該第一天氣參數、該第二天氣參數或該第三天氣參數。訓練矩陣建立模組用於由該天氣預報資料取得包括目標日期的預定天數的多個天氣狀態,根據該多個天氣狀態,在該歷史資料庫中,依據所判定的該多筆對應天氣參數,搜尋類似於該多個天氣狀態的資料列,其中該訓練矩陣建立模組進一步判斷是否能以該預定天數取得該資料列,若否,則減少該預定天數並再次於該歷史資料庫中進行搜尋,若是,則根據該資料列取得比對樣本,其中該比對樣本包括對應該資料列的該多筆歷史太陽能輸出功率資料,並將該比對樣本進行標準化處理,以建立訓練矩陣。神經網路訓練模組,用於將神經網路的節點數量進行隨機初始化,並依據該訓練矩陣對該神經網路進行訓練,包括:將預測日期、預測時間及對應該預測日期的天氣預報輸入該神經網路,經由該神經網路計算獲得多個訓練結果;依據該訓練矩陣及該多個訓練結果計算訓練誤差;及判斷該訓練誤差是否小於所設定的容許誤差目標值,若否,則重新設定該節點數量,以最佳化演算法更新該神經網路的該節點數量並再次依據該訓練矩陣對該神經網路進行訓練,若是,則以該神經網路作為最佳化神經網路。太陽光電發電預測模組,用於將預測日期、預測時間及對應該預測日期的天氣預報輸入該最佳化神經網路,以進行太陽光電發電預測。 In order to solve the above technical problems, one of the technical solutions adopted by the present invention is to provide a solar photovoltaic power generation prediction system combined with weather forecasting, which includes a data acquisition module, a climate sample creation module, a historical database, and similarity Calculation module, training matrix creation module, neural network training module and solar photovoltaic power generation prediction module. The data retrieval module is used to retrieve the photovoltaic data detected by the photovoltaic module and the weather forecast data generated by the weather forecast module. The climate sample creation module is used to extract multiple solar output power data from the solar photovoltaic data, and correspond them to the first weather parameter, the second weather parameter, and the third weather parameter according to the weather forecast data to create a climate sample . The historical database stores multiple historical solar output power data. The similarity calculation module is used to calculate the similarity between the multiple historical solar power output data in the historical database and the climate sample to determine the corresponding weather parameters of the multiple historical solar power output data, wherein the corresponding The weather parameter is the first weather parameter, the second weather parameter, or the third weather parameter. The training matrix creation module is used to obtain a plurality of weather conditions including a predetermined number of days of the target date from the weather forecast data, and according to the plurality of weather conditions, in the historical database, based on the determined plurality of corresponding weather parameters, Search for data rows similar to the multiple weather conditions, where the training matrix creation module further determines whether the data rows can be obtained with the predetermined number of days, if not, reduce the predetermined number of days and search again in the historical database If yes, the comparison sample is obtained according to the data row, where the comparison sample includes the multiple historical solar output power data corresponding to the data row, and the comparison sample is standardized to establish a training matrix. The neural network training module is used to randomly initialize the number of nodes of the neural network and train the neural network according to the training matrix, including: inputting the forecast date, forecast time, and weather forecast corresponding to the forecast date The neural network calculates a plurality of training results through the neural network calculation; calculates a training error based on the training matrix and the plurality of training results; and judges whether the training error is less than the set target value of the allowable error, if not, then Reset the number of nodes, update the number of nodes of the neural network with an optimization algorithm and train the neural network again according to the training matrix, if so, use the neural network as the optimized neural network . The solar photovoltaic power generation prediction module is used to input the predicted date, the predicted time, and the weather forecast corresponding to the predicted date into the optimized neural network to perform the photovoltaic power generation prediction.

本發明的其中一有益效果在於,本發明所提供的太陽光電發 電預測系統及方法,將歷史太陽能輸出功率資料進行篩選以建立氣候樣本,可減少傳統機器學習對溫度計與照度計等天氣參數量測設備之需求,更避免將各案場中龐大非相關資料納入訓練矩陣,而增加額外運算成本,再透過最佳化演算法找出最適合該筆訓練資料之神經節點數量,可精確預測太陽光電系統發電情形。 One of the beneficial effects of the present invention is that the solar photovoltaic power generation prediction system and method provided by the present invention screen historical solar output power data to establish climate samples, which can reduce traditional machine learning to measure weather parameters such as thermometers and illuminance meters. The needs of equipment, avoiding the incorporation of huge non-relevant data in each case into the training matrix, and increasing the additional calculation cost, and then through the optimization algorithm to find the most suitable number of neural nodes for the training data, can accurately predict solar photovoltaic System power generation situation.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。 In order to further understand the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are for reference and explanation only, and are not intended to limit the present invention.

1‧‧‧太陽光電發電預測系統 1‧‧‧ Solar photovoltaic power generation prediction system

100‧‧‧數據擷取模組 100‧‧‧Data extraction module

101‧‧‧氣候樣本建立模組 101‧‧‧Climate sample building module

102‧‧‧歷史資料庫 102‧‧‧Historical database

103‧‧‧相似度計算模組 103‧‧‧ Similarity calculation module

104‧‧‧訓練矩陣建立模組 104‧‧‧ Training matrix creation module

105‧‧‧神經網路訓練模組 105‧‧‧Neural Network Training Module

106‧‧‧太陽光電發電預測模組 106‧‧‧ Solar photovoltaic power generation prediction module

107‧‧‧資料視覺化模組 107‧‧‧Data visualization module

12‧‧‧太陽光電模組 12‧‧‧solar photovoltaic module

14‧‧‧氣象預報模組 14‧‧‧ Meteorological Forecast Module

2‧‧‧神經網路 2‧‧‧Neural Network

221、222、...、22L‧‧‧隱藏層 221, 222, ..., 22L‧‧‧ hidden layer

Nn‧‧‧神經節點 Nn‧‧‧Neural Node

Y1、Y2、...、YN‧‧‧輸出結果 Y1, Y2, ..., YN‧‧‧ output results

X1、X2...、XN‧‧‧輸入 X1, X2..., XN‧‧‧ input

20‧‧‧輸入層 20‧‧‧ input layer

24‧‧‧輸出層 24‧‧‧ output layer

H1‧‧‧第一隱藏層 H1‧‧‧The first hidden layer

H2‧‧‧第二隱藏層 H2‧‧‧Second hidden layer

圖1為本發明一實施例的太陽光電發電預測系統的方塊圖。 FIG. 1 is a block diagram of a solar photovoltaic power generation prediction system according to an embodiment of the invention.

圖2為本發明一實施例的太陽光電發電預測方法的流程圖。 FIG. 2 is a flowchart of a solar photovoltaic power generation prediction method according to an embodiment of the invention.

圖3為本發明一實施例的將歷史發電資料轉換成天氣預報型態的示意圖。 FIG. 3 is a schematic diagram of converting historical power generation data into a weather forecast type according to an embodiment of the present invention.

圖4為本發明一實施例的氣候樣本與歷史太陽能輸出功率資料比較示意圖。 FIG. 4 is a schematic diagram of comparison between climate samples and historical solar power output data according to an embodiment of the present invention.

圖5為本發明一實施例的神經網路架構的示意圖。 FIG. 5 is a schematic diagram of a neural network architecture according to an embodiment of the invention.

圖6A為本發明一實施例的2層隱藏層之神經網路架構的示意圖,圖6B為本發明一實施例的最佳化神經網路架構的示意圖。 FIG. 6A is a schematic diagram of a two-layer hidden layer neural network architecture according to an embodiment of the invention, and FIG. 6B is a schematic diagram of an optimized neural network architecture according to an embodiment of the invention.

圖7為本發明一實施例的預測結果曲線圖。 7 is a graph of a prediction result according to an embodiment of the invention.

以下是通過特定的具體實施例來說明本發明所公開有關“太陽能發電預測系統及方法”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺 寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。 The following are specific specific examples to illustrate the implementation of the "solar power generation prediction system and method" disclosed by the present invention. Those skilled in the art can understand the advantages and effects of the present invention from the content disclosed in this specification. The present invention can be implemented or applied through other different specific embodiments. Various details in this specification can also be based on different viewpoints and applications, and various modifications and changes can be made without departing from the concept of the present invention. In addition, the drawings of the present invention are merely schematic illustrations, and are not drawn according to actual sizes, and are declared in advance. The following embodiments will further describe the related technical content of the present invention, but the disclosed content is not intended to limit the protection scope of the present invention.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。 It should be understood that although terms such as “first”, “second”, and “third” may be used herein to describe various elements or signals, these elements or signals should not be limited by these terms. These terms are mainly used to distinguish one component from another component, or one signal from another signal. In addition, the term "or" as used herein may include any combination of any one or more of the associated listed items, depending on the actual situation.

為了解釋清楚,在一些情況下,本技術可被呈現為包括包含功能塊的獨立功能塊,其包含裝置、裝置元件、軟體中實施的方法中的步驟或路由,或硬體及軟體的組合。 For clarity of explanation, in some cases, the present technology may be presented as an independent functional block including functional blocks, which include devices, device elements, steps or routes in methods implemented in software, or a combination of hardware and software.

在一些實施方式中,電腦可讀儲存裝置、介質和記憶體可以包括電纜或含有位元流等的無線信號。然而,當提及時,非臨時性電腦可讀儲存介質明確地排除諸如能量、載波信號、電磁波及信號本身的介質。 In some embodiments, computer-readable storage devices, media, and memory may include cables or wireless signals that contain bit streams and the like. However, when mentioned, non-transitory computer-readable storage media explicitly exclude media such as energy, carrier signals, electromagnetic waves, and the signal itself.

使用儲存或以其他方式可從電腦可讀介質取得的電腦執行指令來實現根據上述實施例的方法。這樣的指令可包括,例如,引起或以其他方式配置通用目的電腦、專用目的電腦,或專用目的處理裝置執行某一功能或功能組的指令和數據。所使用電腦資源的部分可以透過網路進行存取。該電腦可執行指令可以是,例如二進制,中間格式指令,諸如組合語言(assembly language)、韌體、或源代碼(source code)。可用來儲存根據所描述實施例中的方法期間的指令、所使用的資訊、及/或所創造的資訊的電腦可讀介質的實例包括磁碟或光碟、快閃記憶體、設置有非易失性記憶體的USB裝置、聯網的儲存裝置等等。 The method according to the above embodiments is implemented using computer-executable instructions stored or otherwise obtainable from computer-readable media. Such instructions may include, for example, instructions and data that cause or otherwise configure a general purpose computer, a special purpose computer, or a special purpose processing device to perform a certain function or set of functions. Part of the computer resources used can be accessed via the network. The computer executable instructions may be, for example, binary, intermediate format instructions, such as assembly language, firmware, or source code. Examples of computer readable media that can be used to store instructions during the method according to the described embodiments, information used, and/or information created include magnetic or optical disks, flash memory, non-volatile USB devices for sex memory, networked storage devices, etc.

實施根據這些揭露方法的裝置可以包括硬體、韌體及/或軟體,且可以採取任何各種形體。這種形體的典型例子包括筆記型 電腦、智慧型電話、小型個人電腦、個人數位助理等等。本文描述的功能也可以實施於週邊設備或內置卡。透過進一步舉例,這種功能也可以實施在不同晶片或在單個裝置上執行的不同程序的電路板。 The device implementing the methods according to these disclosures may include hardware, firmware, and/or software, and may take any of various shapes. Typical examples of this form include notebook computers, smart phones, small personal computers, personal digital assistants, and so on. The functions described here can also be implemented in peripheral devices or built-in cards. By way of further example, this function can also be implemented on different chips or on different circuit boards executed on a single device.

該指令、用於傳送這樣的指令的介質、用於執行其的計算資源或用於支持這樣的計算資源的其他結構,為用於提供在這些公開中所述的功能的手段。 The instructions, the medium for transmitting such instructions, the computing resources for executing them, or other structures for supporting such computing resources are means for providing the functions described in these publications.

請一併參閱圖1及圖2,圖1為本發明一實施例的太陽光電發電預測系統的方塊圖,圖2為本發明一實施例的太陽光電發電預測方法的流程圖。 Please refer to FIGS. 1 and 2 together. FIG. 1 is a block diagram of a solar photovoltaic power generation prediction system according to an embodiment of the present invention. FIG. 2 is a flowchart of a solar photovoltaic power generation prediction method according to an embodiment of the present invention.

如圖所示,本發明第一實施例提供一種結合氣象預報之太陽光電發電預測系統1,其包括數據擷取模組100、氣候樣本建立模組101、歷史資料庫102、相似度計算模組103、訓練矩陣建立模組104、神經網路訓練模組105以及太陽光電發電預測模組106。 As shown in the figure, the first embodiment of the present invention provides a solar photovoltaic power generation prediction system 1 combined with weather forecasting, which includes a data extraction module 100, a climate sample creation module 101, a historical database 102, and a similarity calculation module 103. A training matrix creation module 104, a neural network training module 105, and a solar photovoltaic power generation prediction module 106.

以下將概略說明各模組的作用,並於後續實施例中針對各模組做更詳細的說明。詳細而言,數據擷取模組100用於擷取太陽光電模組12偵測的太陽光電資料與氣象預報模組14產生的天氣預報資料,由於在進行預測的過程中,多數氣象測站並未配置有照度計,且測站資料並無每日日照時數及全天空日射量,而僅能透過每日更新的氣象測站資料獲得例如氣壓、氣溫、濕度、風速、風向、降水量等資料,更具體而言,數據擷取模組100可利用實際接收部分太陽光電模組與氣象預報模組的相關數據,將日照依照氣象局公布之天氣預報術語分類並進行預測,藉此可減少傳統機器學習對溫度計與照度計等天氣參數量測設備之需求。 The function of each module will be briefly described below, and each module will be described in more detail in subsequent embodiments. In detail, the data extraction module 100 is used to capture the solar photovoltaic data detected by the solar photovoltaic module 12 and the weather forecast data generated by the weather forecast module 14. Since most weather stations do not There is no illuminance meter, and the station data does not have daily sunshine hours and total sky insolation, and only the weather station data updated daily can obtain, for example, barometric pressure, temperature, humidity, wind speed, wind direction, precipitation, etc. Data, more specifically, the data extraction module 100 can use the actual received data of some solar photovoltaic modules and weather forecast modules to classify and forecast the sunshine according to the weather forecast terms published by the Meteorological Administration, thereby reducing Traditional machine learning needs for weather parameter measurement equipment such as thermometers and illuminance meters.

進一步,進行步驟S100,以氣候樣本建立模組101從上述太陽光電資料中取出多筆太陽能輸出功率資料,並依據該天氣預報資料將其對應於第一天氣參數、第二天氣參數及第三天氣參數,以建立氣候樣本。詳細來說,氣候樣本建立模組101主要用於進 行適性型關聯樣本資料庫選取,首先可將天氣型態標記為晴天(代碼:2)、陰天(代碼:1)、雨天(代碼:0)、故障(代碼:-1),同時將歷史發電資料,以專家系統選取具代表性天氣之歷史發電曲線,其中晴天、陰天與雨天例如可各選取20組,藉此建立氣候樣本。 Further, step S100 is performed, and a plurality of pieces of solar output power data are taken from the solar photovoltaic data with the climate sample creation module 101, and corresponding to the first weather parameter, the second weather parameter, and the third weather according to the weather forecast data Parameters to establish climate samples. In detail, the climate sample creation module 101 is mainly used to select a database of adaptive related samples. First, the weather type can be marked as sunny (code: 2), cloudy (code: 1), rainy (code: 0) ), fault (code: -1), at the same time, the historical power generation data is selected by the expert system to select the historical power generation curve of representative weather. Among them, 20 groups can be selected for sunny, cloudy and rainy days, for example, to establish a climate sample.

請參考圖3,其為本發明一實施例的將歷史發電資料轉換成天氣預報型態的示意圖。舉例而言,在全日無遮蔽或僅有些微遮蔽時,可判定為晴天,而陰天的情形下,遮蔽時間達白天的1/2以上,發電量僅有晴天的2~7成,便判定為陰天,而當發電量僅晴天的不到5成,則判定為雨天。此外,在資料部份缺失、僅有1筆資料或全無資料的情形下,則判定為故障。 Please refer to FIG. 3, which is a schematic diagram of converting historical power generation data into a weather forecast type according to an embodiment of the present invention. For example, when there is no shielding or only slight shielding throughout the day, it can be determined as sunny, and in the case of cloudy days, the shielding time is more than 1/2 of the daytime, and the power generation is only 20% to 70% of the sunny day. It is cloudy, and when the amount of power generation is less than 50% of the sunny day, it is determined to be rainy. In addition, when the data is partially missing, there is only one data or no data at all, it is determined to be a fault.

歷史資料庫101儲存有多筆歷史太陽能輸出功率資料,而用於進行步驟S102,以相似度計算模組103將歷史資料庫101中的該多筆歷史太陽能輸出功率資料與該氣候樣本進行相似度計算,以判定各該多筆歷史太陽能輸出功率資料的對應天氣參數,其中該對應天氣參數為該第一天氣參數、該第二天氣參數或該第三天氣參數,亦即,晴天(代碼:2)、陰天(代碼:1)、雨天(代碼:0)。其中,相似度計算模組103進行的相似度計算可包括以歐幾里得距離系統,計算多筆歷史太陽能輸出功率資料與氣候樣本的多筆太陽能輸出功率資料之間的多個相似度。 The historical database 101 stores a plurality of historical solar output power data, and is used to perform step S102, and the similarity calculation module 103 compares the plurality of historical solar output power data in the historical database 101 with the climate sample Calculate to determine the corresponding weather parameter for each of the multiple historical solar power output data, where the corresponding weather parameter is the first weather parameter, the second weather parameter, or the third weather parameter, that is, sunny day (Code: 2 ), cloudy days (code: 1), rainy days (code: 0). The similarity calculation performed by the similarity calculation module 103 may include using the Euclidean distance system to calculate multiple similarities between multiple historical solar power output data and multiple solar output power data of the climate sample.

例如,請參考圖4,其為本發明一實施例的氣候樣本與歷史太陽能輸出功率資料比較示意圖。假設歷史資料庫101中有一未知天氣型態之太陽光電發電曲線,將其與三種天氣型態樣本(晴天,陰天與雨天)進行歐幾里得距離計算,以下簡稱為歐式距離。歐式距離最小者,即套用為該未知天氣型態。在圖4中,未知天氣型態之太陽光電發電曲線,以人工判別為陰天之發電曲線。將其發電曲線與三種天氣型態樣本計算歐式距離後得下表1: 表1:各樣本歐幾里得距離計算結果

Figure 107129619-A0101-12-0008-2
For example, please refer to FIG. 4, which is a schematic diagram of comparison between climate samples and historical solar power output data according to an embodiment of the present invention. Assuming that there is an unknown weather type solar photovoltaic power generation curve in the historical database 101, Euclidean distance calculation is performed with three weather type samples (clear, cloudy and rainy), hereinafter referred to as Euclidean distance. The one with the smallest Euclidean distance is the unknown weather pattern. In Figure 4, the solar photovoltaic power generation curve of an unknown weather type is manually identified as a cloudy power generation curve. After calculating the Euclidean distance from its power generation curve and the three weather pattern samples, the following table 1:
Figure 107129619-A0101-12-0008-2

如表1所示,平均歐式距離最小者為晴天,故系統判定為晴天,而判定晴天係因為樣本中第10個時間點之發電數值偏高,極近似晴天該時段數值,該點歐式距離極小,造成誤判。 As shown in Table 1, the smallest average Euclidean distance is sunny, so the system determines that it is sunny, and the reason for judging sunny is because the power generation value at the 10th time point in the sample is high, which is very similar to the value of the time period of sunny days, and the European distance at this point is extremely small , Causing misjudgment.

為此,相似度計算模組103進行的相似度計算可進一步包括將所計算的該多個相似度去除極值後,求取平均相似度,並依據平均相似度判定各筆歷史太陽能輸出功率資料的對應天氣參數。 To this end, the similarity calculation performed by the similarity calculation module 103 may further include removing the calculated multiple similarities by extremum, obtaining an average similarity, and determining each historical solar output power data according to the average similarity Corresponding weather parameters.

以本實施例而言,若將極值去除後重新計算歐式距離,可得下表2:

Figure 107129619-A0101-12-0008-3
In this embodiment, if the extreme value is removed and the Euclidean distance is recalculated, the following table 2:
Figure 107129619-A0101-12-0008-3

從表2得知,樣本與晴天歐式距離上升,由0.1516變成0.1722;陰天歐式距離下降,由0.1659變成0.1503;雨天歐式距離上升,由0.3072變成0.3219,得陰天歐式距離最小,故判定為陰天,與人工判別相同,接著,便進行步驟S104,通過以平均相似度最高者套用該日天氣型態,來對歷史資料進行標記。 From Table 2, the European distance between the sample and the sunny day rises from 0.1516 to 0.1722; the European distance between cloudy days decreases from 0.1659 to 0.1503; the European distance from rainy days rises from 0.3072 to 0.3219. The cloudy European distance is the smallest, so it is judged as overcast The day is the same as the manual judgment. Then, step S104 is performed, and the historical data is marked by applying the weather pattern of the day with the highest average similarity.

其中,上述歐式系統具體包括以歐幾里得(歐式)距離方法,計算目標與各樣本間之相似度,將各組樣本相似度去除極值(extremum)後,求取其平均值,且可由下式(1)來表示:

Figure 107129619-A0101-12-0008-4
Among them, the above European system specifically includes the Euclidean (Euclidean) distance method to calculate the similarity between the target and each sample, after removing the extremum of the similarity of each group of samples, the average value is obtained, and It is expressed by the following formula (1):
Figure 107129619-A0101-12-0008-4

其中,x i 為第i行向量的目標與樣本間之歐式距離x ij y ij ,亦即目標與樣本矩陣間之歐式範數值,

Figure 107129619-A0101-12-0008-5
為去除極值後之平均值。如此,將可在建立訓練矩陣前減少因極端狀況造成的誤判。 Where x i is the Euclidean distance x ij and y ij between the target and the sample of the i-th row vector, that is, the Euclidean norm value between the target and the sample matrix,
Figure 107129619-A0101-12-0008-5
It is the average value after removing the extreme value. In this way, the misjudgment caused by extreme conditions can be reduced before the training matrix is established.

進一步,欲建立訓練矩陣時,須先進行步驟S106,輸入目標參數,目標參數可包括目標日期(例如0000/00/00~0000/00/00)、目標時間(小時)以及包括目標日期的預定天數的多個天氣狀態。接著,進行步驟S108,以訓練矩陣建立模組104將訓練矩陣進行降階,具體來說,訓練矩陣建立模組104根據多個天氣狀態,在歷史資料庫中,依據所標記的多筆對應天氣參數,搜尋類似於多個天氣狀態的資料列。例如,預定天數為三天取得目標日期當天、前一日及後一日的多個天氣狀態,例如,晴天、陰天與雨天,於歷史資料庫101中搜尋並讀取各地區及各歷史時間與目標參數相符,換言之,同樣為晴天、陰天與雨天排列的天氣資料列,用於建立用於訓練神經網路的訓練矩陣。 Further, when you want to build a training matrix, you must first go to step S106 and enter the target parameters. The target parameters may include the target date (for example, 0000/00/00~0000/00/00), the target time (hour), and the reservation including the target date Multiple weather conditions for days. Next, step S108 is performed, and the training matrix creation module 104 is used to reduce the order of the training matrix. Specifically, the training matrix creation module 104 is based on multiple weather conditions in the historical database and based on the marked multiple corresponding weather Parameters, search for data rows similar to multiple weather conditions. For example, the predetermined number of days is three days to obtain multiple weather conditions on the day, the previous day, and the next day of the target date, for example, sunny, cloudy, and rainy days, search and read each region and each historical time in the historical database 101 Consistent with the target parameters, in other words, the weather data rows, which are also arranged in sunny, cloudy and rainy days, are used to build a training matrix for training neural networks.

其中,訓練矩陣建立模組104將進一步於步驟S110中判斷是否能以此預定天數取得資料列,若否,則進行步驟S112,減少此預定天數,例如,減少1,並再次於歷史資料庫101中進行搜尋,若是,則根據此資料列取得比對樣本,需要說明的是,比對樣本即包括對應此資料列的多筆歷史太陽能輸出功率資料。 Among them, the training matrix creation module 104 will further determine in step S110 whether the data row can be obtained with the predetermined number of days, if not, proceed to step S112 to reduce the predetermined number of days, for example, by 1, and again in the historical database 101 The search is performed in, if it is, the comparison sample is obtained based on this data row. It should be noted that the comparison sample includes multiple historical solar output power data corresponding to this data row.

接著,進行步驟S114,以訓練矩陣建立模組104將此比對樣本進行標準化處理,以建立訓練矩陣。標準化處理可包括發電量標準化處理、時間標準化處理及日期標準化處理。其中,發電量標準化處理包括將每日太陽光電發電量離差標準化,如下式(2):

Figure 107129619-A0101-12-0009-6
Next, step S114 is performed, and the training matrix creation module 104 normalizes the comparison sample to create a training matrix. Standardization processing may include power generation standardization processing, time standardization processing, and date standardization processing. Among them, the standardization of power generation includes standardization of daily solar power generation dispersion, as shown in the following formula (2):
Figure 107129619-A0101-12-0009-6

其中,PV i

Figure 107129619-A0101-12-0009-24
分別為原始與更新後之發電量。PV minPV max分別為當日發電量最小值及最大值。 Among them, PV i and
Figure 107129619-A0101-12-0009-24
Respectively, the original and updated power generation. PV min and PV max are the minimum and maximum power generation amount of the day, respectively.

時間標準化處理如下式(3)、(4):

Figure 107129619-A0101-12-0009-7
The time standardization process is as follows (3), (4):
Figure 107129619-A0101-12-0009-7

Figure 107129619-A0101-12-0010-8
Figure 107129619-A0101-12-0010-8

其中,Tsin為時間成分之sin函數,Tcos為時間成分之cos函數,T origin 為原始資料。 Among them, T sin is the sin function of the time component, T cos is the cos function of the time component, and T origin is the original data.

時間標準化處理如下式(5)、(6):

Figure 107129619-A0101-12-0010-9
The time standardization process is as follows (5), (6):
Figure 107129619-A0101-12-0010-9

Figure 107129619-A0101-12-0010-10
Figure 107129619-A0101-12-0010-10

其中,Datesin為時間成分之sin函數,Datecos為時間成分之cos函數,Date origin 為原始資料,通過將此比對樣本進行標準化處理,可建立適用於神經網路的標準化訓練矩陣。 Among them, Date sin is the sin function of the time component, Date cos is the cos function of the time component, and Date origin is the original data. By standardizing this comparison sample, a standardized training matrix suitable for neural networks can be established.

續言之,進行步驟S116,以神經網路訓練模組105將神經網路的節點數量進行隨機初始化,並依據訓練矩陣對神經網路進行訓練。請參考圖5,其為本發明一實施例的神經網路架構的示意圖。如圖所示,神經網路2的架構具體包括輸入層20、隱藏層221、222、...、22L及輸出層24。神經網路中,各神經元Nn皆由輸入X1、X2...、XN(input)乘以一個權重w(weight),加總後,再加上一個偏差值b(bias),得到其輸出結果Y1、Y2、...、YN(output)。訓練過程中,常透過學習率η,調整各節點的權重及偏差值。常見修正學習率η的方法包括梯度下降法(Gradient descent)、單步正割法(one-step secant method)及萊文貝格-馬夸特法(Levenberg-Marquardt algorithm)。 In a word, proceed to step S116, the neural network training module 105 randomly initializes the number of nodes of the neural network, and trains the neural network according to the training matrix. Please refer to FIG. 5, which is a schematic diagram of a neural network architecture according to an embodiment of the present invention. As shown in the figure, the architecture of the neural network 2 specifically includes an input layer 20, hidden layers 221, 222, ..., 22L and an output layer 24. In the neural network, each neuron Nn is multiplied by the input X1, X2..., XN(input) by a weight w(weight), after the total is added, and a deviation value b(bias) is added to obtain its output Results Y1, Y2, ..., YN (output). During the training process, the weight and deviation of each node are often adjusted through the learning rate η. Common methods to modify the learning rate η include Gradient descent, one-step secant method and Levenberg-Marquardt algorithm.

其中,神經網路訓練模組105將神經網路2的節點數量隨機初始化可例如,採用具有至少二層隱藏層的該神經網路,並隨機產生該節點數量介於一每層節點數量上限Lim up 及一每層節點數量下限Lim bottom 之間的多個節點,且每層節點數量上限Lim up 小於或等於神經網路2的輸入層20節點數量的2倍,每層節點數量下限Lim bottom 大於或等於輸入層20節點數量的二分之一。 The neural network training module 105 randomly initializes the number of nodes of the neural network 2 by, for example, adopting the neural network with at least two hidden layers and randomly generating the number of nodes between a maximum number of nodes per layer Lim Multiple nodes between up and a lower limit of the number of nodes per layer Lim bottom , and the upper limit of the number of nodes per layer Lim up is less than or equal to twice the number of 20 nodes of the input layer 20 of the neural network 2, the lower limit of the number of nodes per layer Lim bottom is greater than Or equal to half of the number of 20 nodes in the input layer.

接著,進行步驟S118,以神經網路訓練模組105進行神經網路的訓練。具體而言,神經網路訓練模組105將預測日期、預測時間及對應該預測日期的天氣預報輸入神經網路2,經由神經網路2計算獲得多個訓練結果,並進行步驟S120,依據訓練矩陣及多個訓練結果計算訓練誤差。 Next, proceed to step S118, and use the neural network training module 105 to train the neural network. Specifically, the neural network training module 105 inputs the predicted date, the predicted time, and the weather forecast corresponding to the predicted date to the neural network 2, calculates a plurality of training results via the neural network 2, and proceeds to step S120, based on the training The matrix and multiple training results calculate the training error.

此處,可以平均絕對誤差(Mean Absolute Error,MAE)作為訓練誤差指標,並由以下式(7)計算:

Figure 107129619-A0101-12-0011-11
Here, mean absolute error (Mean Absolute Error, MAE) can be used as a training error indicator, and is calculated by the following formula (7):
Figure 107129619-A0101-12-0011-11

其中,y pre 為該訓練結果,y act 為該訓練矩陣包括的訓練目標,n為該訓練矩陣的其中一維度,亦即,歷史太陽光電發電資料的筆數。 Where y pre is the training result, y act is the training target included in the training matrix, and n is one dimension of the training matrix, that is, the number of historical solar photovoltaic power generation data.

接著,進行步驟S122,判斷訓練誤差是否小於所設定的容許誤差目標值d,亦即判斷|MAE|<|d|?若否,代表神經網路2目前的節點設定,無法使訓練誤差收斂,需重新設定節點數量。若是,代表神經網路訓練完整,可進行預測。則以該神經網路作為最佳化神經網路。 Next, proceed to step S122 to determine whether the training error is less than the set allowable error target value d, that is, to determine | MAE |<| d |? If not, it means that the current node settings of neural network 2 cannot converge the training error, and the number of nodes needs to be reset. If so, it means that the neural network is fully trained and can be predicted. The neural network is used as an optimized neural network.

若判斷訓練誤差並未小於所設定的容許誤差目標值d,則執行步驟S124,以最佳化演算法更新神經網路2的節點數量,並再次依據該訓練矩陣對該神經網路進行訓練。更具體來說,以最佳化演算法更新神經網路的節點數量包括更新神經網路2的各隱藏層221、222、...、22L的神經節點Nn的數量,且最佳化演算法常用於非線性函數求解過程,以疊代方式更新每代隱藏層221、222、...、22L的神經節點Nn的數量進行求解。常見的最佳化演算法為基因演算法、粒子群演算法與蛙跳演算法等。 If it is determined that the training error is not less than the set target value d of the allowable error, step S124 is executed to update the number of nodes of the neural network 2 with the optimization algorithm, and the neural network is trained again according to the training matrix. More specifically, updating the number of nodes of the neural network with the optimization algorithm includes updating the number of neural nodes Nn of the hidden layers 221, 222, ..., 22L of the neural network 2, and the optimization algorithm Commonly used in the nonlinear function solving process, iteratively updating the number of neural nodes Nn of each hidden layer 221, 222, ..., 22L to solve. Common optimization algorithms are genetic algorithm, particle swarm algorithm and leapfrog algorithm.

若判斷訓練誤差小於所設定的容許誤差目標值d,則以此神經網路2作為最佳化神經網路,並執行步驟S126。 If it is judged that the training error is less than the set allowable error target value d, the neural network 2 is used as an optimized neural network, and step S126 is executed.

請參考圖6A及圖6B,分別為本發明一實施例的2層隱藏層之神經網路架構的示意圖以及最佳化神經網路架構的示意圖。如圖所示,假設有一2層隱藏層神經網路,每層隱藏層節點上限個數為3個節點,如表3所示:

Figure 107129619-A0101-12-0012-12
Please refer to FIGS. 6A and 6B, which are schematic diagrams of a two-layer hidden layer neural network architecture and optimized neural network architecture according to an embodiment of the present invention. As shown in the figure, suppose that there is a 2-layer hidden layer neural network, and the upper limit of the number of nodes in each hidden layer is 3 nodes, as shown in Table 3:
Figure 107129619-A0101-12-0012-12

經輸入層20輸入欲預測日期(2018/01/01),預測時間(8點),天氣預報(晴天)後,從輸出層24得到9種發電量訓練結果。已知實際發電量為30kW,經表3訓練結果得知,當第一隱藏層H1與第二隱藏層H2節點數為(2,1),(2,3),(3,3)組合時,訓練結果最接近實際發電量30kW,此3種組合為適用該情境的神經網路架構,其餘組合之輸出發電量與實際發電量差距甚大,則不考慮納入本實施例的神經網路使用。 After inputting the desired date (2018/01/01), prediction time (8 o'clock), and weather forecast (clear weather) through the input layer 20, nine kinds of power generation training results are obtained from the output layer 24. It is known that the actual power generation is 30kW, and it is known from the training results in Table 3 that when the number of nodes of the first hidden layer H1 and the second hidden layer H2 is (2,1), (2,3), (3,3) The training result is closest to the actual power generation of 30kW. These three combinations are the neural network architecture suitable for the situation. The output power of the remaining combinations is very different from the actual power generation. Therefore, the use of the neural network in this embodiment is not considered.

接著,再取第一隱藏層H1與第二隱藏層H2節點數總和最小者作為本實施例的隱藏層神經網路節點架構,如圖6B所示,(2,1)為最佳化演算法計算出之隱藏層神經網路架構,從而可獲得最佳化神經網路。 Next, take the smallest sum of the first hidden layer H1 and the second hidden layer H2 as the hidden layer neural network node architecture of this embodiment, as shown in FIG. 6B, (2,1) is the optimal algorithm The calculated hidden layer neural network architecture can obtain an optimized neural network.

在步驟S126中,以太陽光電發電預測模組106將預測日期、預測時間及對應該預測日期的天氣預報輸入最佳化神經網路,以進行太陽光電發電預測。請參考圖7,其為本發明一實施例的預測結果曲線圖。如圖所示,通過採用本發明的太陽光電發電預測系 統及方法,將預測曲線與實際曲線相比,可獲得平均絕對誤差MAE約為1.0040的結果,證明可精確預測太陽光電發電量。 In step S126, the solar photovoltaic power generation prediction module 106 inputs the predicted date, the predicted time, and the weather forecast corresponding to the predicted date into the optimized neural network to perform the photovoltaic power generation prediction. Please refer to FIG. 7, which is a graph of a prediction result according to an embodiment of the present invention. As shown in the figure, by adopting the solar photovoltaic power generation prediction system and method of the present invention, the prediction curve is compared with the actual curve, and the result of obtaining an average absolute error MAE of about 1.0040 is obtained, which proves that the photovoltaic power generation amount can be accurately predicted.

此外,太陽光電發電預測系統1還可包括資料視覺化模組107,用於將太陽光電發電預測模組106進行太陽光電發電預測產生的太陽光電發電預測資料進行資料視覺化。透過直覺性的介面呈現資料,可進一步協助電廠維運人員快速預測太陽光電系統的發電狀況。 In addition, the solar photovoltaic power generation prediction system 1 may further include a data visualization module 107 for visualizing the photovoltaic power generation prediction data generated by the photovoltaic power generation prediction module 106 for photovoltaic power generation prediction. Presenting data through an intuitive interface can further assist power plant maintenance personnel to quickly predict the power generation status of the solar photovoltaic system.

本發明的其中一有益效果在於,本發明所提供的太陽光電發電預測系統及方法,將歷史太陽能輸出功率資料進行篩選以建立氣候樣本,可減少傳統機器學習對溫度計與照度計等天氣參數量測設備之需求,更避免將各案場中龐大非相關資料納入訓練矩陣,而增加額外運算成本,再透過最佳化演算法找出最適合該筆訓練資料之神經節點數量,可精確預測太陽光電系統發電情形。 One of the beneficial effects of the present invention is that the solar photovoltaic power generation prediction system and method provided by the present invention screen historical solar output power data to establish climate samples, which can reduce traditional machine learning to measure weather parameters such as thermometers and illuminance meters. The needs of equipment, avoiding the incorporation of huge non-relevant data in each case into the training matrix, and increasing the additional calculation cost, and then through the optimization algorithm to find the most suitable number of neural nodes for the training data, can accurately predict solar photovoltaic System power generation situation.

以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。 The content disclosed above is only a preferred and feasible embodiment of the present invention, and therefore does not limit the scope of the patent application of the present invention, so any equivalent technical changes made by using the description and drawings of the present invention are included in the application of the present invention. Within the scope of the patent.

指定代表圖為流程圖,故無符號簡單說明 The designated representative diagram is a flowchart, so there is no symbol for a simple explanation

Claims (17)

一種結合氣象預報之太陽光電發電預測方法,包括:建立一氣候樣本,該氣候樣本包括,對應一第一天氣參數、一第二天氣參數及一第三天氣參數的多筆太陽能輸出功率資料;將一歷史資料庫中的多筆歷史太陽能輸出功率資料與該氣候樣本進行一相似度計算,以判定各該多筆歷史太陽能輸出功率資料的一對應天氣參數,其中該對應天氣參數為該第一天氣參數、該第二天氣參數或該第三天氣參數;決定一目標日期;由一天氣預報資料取得包括該目標日期的一預定天數的多個天氣狀態;根據該多個天氣狀態,在該歷史資料庫中,依據所判定的該多筆對應天氣參數,搜尋類似於該多個天氣狀態的一資料列;判斷是否能以該預定天數取得該資料列,若否,則減少該預定天數並再次於該歷史資料庫中進行搜尋,若是,則根據該資料列取得一比對樣本,其中該比對樣本包括對應該資料列的該多筆歷史太陽能輸出功率資料;將該比對樣本進行一標準化處理,以建立一訓練矩陣;隨機初始化一神經網路的一節點數量;依據該訓練矩陣對該神經網路進行訓練,包括:將一預測日期、一預測時間及對應該預測日期的一天氣預報輸入該神經網路,經由該神經網路計算獲得多個訓練結果;依據該訓練矩陣及該多個訓練結果計算一訓練誤差;判斷該訓練誤差是否小於所設定的一容許誤差目標值,若否,則重新設定該節點數量,以一最佳化演算法更新該神經網路的該節點數量並再次依據該訓練矩陣對該神經網路進行訓 練,若是,則以該神經網路作為一最佳化神經網路;以該最佳化神經網路進行太陽光電發電預測。 A solar photovoltaic power generation prediction method combined with meteorological forecasting includes: establishing a climate sample including multiple solar output power data corresponding to a first weather parameter, a second weather parameter and a third weather parameter; A plurality of pieces of historical solar power output data in a historical database and a climatic sample are subjected to a similarity calculation to determine a corresponding weather parameter of each of the plurality of historical solar power output data, wherein the corresponding weather parameter is the first weather Parameters, the second weather parameter or the third weather parameter; determine a target date; obtain a plurality of weather conditions including a predetermined number of days of the target date from a weather forecast data; according to the plurality of weather conditions, in the historical data In the library, according to the determined multiple corresponding weather parameters, search a data row similar to the multiple weather conditions; determine whether the data row can be obtained with the predetermined number of days, if not, then reduce the predetermined number of days and again Perform a search in the historical database, and if so, obtain a comparison sample based on the data row, where the comparison sample includes the multiple historical solar output power data corresponding to the data row; perform a standardization process on the comparison sample To create a training matrix; randomly initialize the number of nodes in a neural network; train the neural network according to the training matrix, including: inputting a forecast date, a forecast time, and a weather forecast corresponding to the forecast date The neural network calculates a plurality of training results through the neural network calculation; calculates a training error based on the training matrix and the plurality of training results; judges whether the training error is less than a set target error tolerance value, if not, Then reset the number of nodes, update the number of nodes of the neural network with an optimization algorithm and train the neural network again according to the training matrix, if so, use the neural network as an optimization Neural network; use this optimized neural network to predict solar photovoltaic power generation. 如請求項1所述的結合氣象預報之太陽光電發電預測方法,其中該相似度計算包括:以歐幾里得距離方法,計算該多筆歷史太陽能輸出功率資料與該氣候樣本的該多筆太陽能輸出功率資料之間的多個相似度。 The solar photovoltaic power generation prediction method combined with meteorological forecasting as described in claim 1, wherein the similarity calculation includes: calculating the plurality of historical solar power output data and the plurality of solar power of the climate sample by the Euclidean distance method Multiple similarities between output power data. 如請求項2所述的結合氣象預報之太陽光電發電預測方法,其中該相似度計算更包括:將所計算的該多個相似度去除極值後,求取一平均相似度;依據該平均相似度判定各該多筆歷史太陽能輸出功率資料的該對應天氣參數。 The solar photovoltaic power generation prediction method combined with meteorological forecasting as described in claim 2, wherein the similarity calculation further includes: after removing the extreme values of the calculated multiple similarities, an average similarity is obtained; based on the average similarity To determine the corresponding weather parameter of each of the multiple historical solar power output data. 如請求項1所述的結合氣象預報之太陽光電發電預測方法,其中隨機初始化該神經網路的該節點數量的步驟包括:採用具有至少二層隱藏層的該神經網路,並隨機產生該節點數量介於一每層節點數量上限及一每層節點數量下限之間的多個節點。 The solar photovoltaic power generation prediction method combined with meteorological forecasting as described in claim 1, wherein the step of randomly initializing the number of nodes of the neural network includes: using the neural network with at least two hidden layers and randomly generating the node Multiple nodes with a number between a maximum number of nodes per layer and a minimum number of nodes per layer. 如請求項4所述的結合氣象預報之太陽光電發電預測方法,其中該每層節點數量上限小於或等於該神經網路的一輸入層節點數量的2倍,該每層節點數量下限大於或等於該輸入層節點數量的二分之一。 The solar photovoltaic power generation prediction method combined with meteorological forecasting as described in claim 4, wherein the upper limit of the number of nodes in each layer is less than or equal to twice the number of nodes in an input layer of the neural network, and the lower limit of the number of nodes in each layer is greater than or equal to The number of nodes in the input layer is half. 如請求項1所述的結合氣象預報之太陽光電發電預測方法,其中該標準化處理包括一發電量標準化處理、一時間標準化處理及一日期標準化處理。 The solar photovoltaic power generation prediction method combined with weather forecasting as described in claim 1, wherein the standardization processing includes a power generation standardization processing, a time standardization processing, and a date standardization processing. 如請求項1所述的結合氣象預報之太陽光電發電預測方法,其中該訓練誤差包括一平均絕對誤差(Mean Absolute Error,MAE),並由以下方程式計算:
Figure 107129619-A0101-13-0003-13
其中, y pre 為該訓練結果, y act 為該訓練矩陣包括的訓練目標,n為該訓練矩陣的其中一維度。
The solar photovoltaic power generation prediction method combined with weather forecasting as described in claim 1, wherein the training error includes a mean absolute error (Mean Absolute Error, MAE), and is calculated by the following equation:
Figure 107129619-A0101-13-0003-13
Where y pre is the training result, y act is the training target included in the training matrix, and n is one of the dimensions of the training matrix.
如請求項1所述的結合氣象預報之太陽光電發電預測方法,其中以該最佳化演算法更新該神經網路的該節點數量的步驟包括:以該最佳化演算法更新該神經網路的各隱藏層的一神經節點數量,且該最佳化演算法包括基因演算法、粒子群演算法及蛙跳演算法。 The photovoltaic power generation prediction method combined with meteorological prediction according to claim 1, wherein the step of updating the number of nodes of the neural network with the optimization algorithm includes: updating the neural network with the optimization algorithm The number of a neural node in each hidden layer, and the optimization algorithm includes genetic algorithm, particle swarm algorithm and leapfrog algorithm. 一種結合氣象預報之太陽光電發電預測系統,其包括:一數據擷取模組,用於擷取一太陽光電模組偵測的一太陽光電資料與一氣象預報模組產生的一天氣預報資料;一氣候樣本建立模組,用於從該太陽光電資料中取出多筆太陽能輸出功率資料,並依據該天氣預報資料將其對應於一第一天氣參數、一第二天氣參數及一第三天氣參數,以建立一氣候樣本;一歷史資料庫,儲存有多筆歷史太陽能輸出功率資料;一相似度計算模組,用於將該歷史資料庫中的該多筆歷史太陽能輸出功率資料與該氣候樣本進行一相似度計算,以判定各該多筆歷史太陽能輸出功率資料的一對應天氣參數,其中該對應天氣參數為該第一天氣參數、該第二天氣參數或該第三天氣參數; 一訓練矩陣建立模組,用於由該天氣預報資料取得包括一目標日期的一預定天數的多個天氣狀態,根據該多個天氣狀態,在該歷史資料庫中,依據所判定的該多筆對應天氣參數,搜尋類似於該多個天氣狀態的一資料列,其中該訓練矩陣建立模組進一步判斷是否能以該預定天數取得該資料列,若否,則減少該預定天數並再次於該歷史資料庫中進行搜尋,若是,則根據該資料列取得一比對樣本,其中該比對樣本包括對應該資料列的該多筆歷史太陽能輸出功率資料,並將該比對樣本進行一標準化處理,以建立一訓練矩陣;一神經網路訓練模組,用於將一神經網路的一節點數量進行隨機初始化,並依據該訓練矩陣對該神經網路進行訓練,包括:將一預測日期、一預測時間及對應該預測日期的一天氣預報輸入該神經網路,經由該神經網路計算獲得多個訓練結果;依據該訓練矩陣及該多個訓練結果計算一訓練誤差;及判斷該訓練誤差是否小於所設定的一容許誤差目標值,若否,則重新設定該節點數量,以一最佳化演算法更新該神經網路的該節點數量並再次依據該訓練矩陣對該神經網路進行訓練,若是,則以該神經網路作為一最佳化神經網路;以及一太陽光電發電預測模組,用於將一預測日期、一預測時間及對應該預測日期的一天氣預報輸入該最佳化神經網路,以進行太陽光電發電預測。 A solar photovoltaic power generation prediction system combined with meteorological forecasting includes: a data extraction module for acquiring a solar photovoltaic data detected by a solar photovoltaic module and a weather forecast data generated by a weather forecast module; A climate sample creation module for extracting multiple pieces of solar output power data from the solar photovoltaic data and corresponding them to a first weather parameter, a second weather parameter and a third weather parameter according to the weather forecast data To create a climate sample; a historical database that stores multiple pieces of historical solar power output data; a similarity calculation module for the multiple historical solar power output data and the climate sample in the historical database Perform a similarity calculation to determine a corresponding weather parameter for each of the multiple historical solar power output data, where the corresponding weather parameter is the first weather parameter, the second weather parameter, or the third weather parameter; a training matrix Establish a module for obtaining a plurality of weather conditions of a predetermined number of days including a target date from the weather forecast data, according to the plurality of weather conditions, in the historical database, according to the determined plurality of corresponding weather parameters , Searching for a data row similar to the multiple weather conditions, where the training matrix creation module further determines whether the data row can be obtained with the predetermined number of days, if not, reducing the predetermined number of days and again in the historical database Perform a search, and if so, obtain a comparison sample based on the data row, where the comparison sample includes the multiple historical solar power output data corresponding to the data row, and perform a standardization process on the comparison sample to establish a Training matrix; a neural network training module, used to randomly initialize the number of a node of a neural network, and train the neural network according to the training matrix, including: a prediction date, a prediction time and A weather forecast corresponding to the predicted date is input to the neural network, and multiple training results are obtained through the neural network calculation; a training error is calculated based on the training matrix and the multiple training results; and it is determined whether the training error is less than the set A target value of tolerance, if not, reset the number of nodes, update the number of nodes of the neural network with an optimization algorithm and train the neural network again according to the training matrix, if yes, then The neural network is used as an optimized neural network; and a solar photovoltaic power generation prediction module for inputting a predicted date, a predicted time, and a weather forecast corresponding to the predicted date into the optimized neural network , To make solar photovoltaic power generation forecast. 如請求項9所述的結合氣象預報之太陽光電發電預測系統,其中該相似度計算模組進行的該相似度計算包括:以歐幾里得距離系統,計算該多筆歷史太陽能輸出功率資料與該氣候樣本的該多筆太陽能輸出功率資料之間的多個相似度。 The solar photovoltaic power generation prediction system combined with weather forecasting as described in claim 9, wherein the similarity calculation performed by the similarity calculation module includes: using the Euclidean distance system to calculate the multiple historical solar output power data and Multiple similarities between the multiple solar output power data of the climate sample. 如請求項10所述的結合氣象預報之太陽光電發電預測系統, 其中該相似度計算模組進行的該相似度計算更包括:將所計算的該多個相似度去除極值後,求取一平均相似度;依據該平均相似度判定各該多筆歷史太陽能輸出功率資料的該對應天氣參數。 The solar photovoltaic power generation prediction system combined with meteorological forecasting as described in claim 10, wherein the similarity calculation performed by the similarity calculation module further includes: after removing the extreme values of the calculated similarities, a Average similarity; according to the average similarity, the corresponding weather parameters of each of the multiple historical solar power output data are determined. 如請求項9所述的結合氣象預報之太陽光電發電預測系統,其中該神經網路訓練模組將該神經網路的該節點數量隨機初始化更包括:採用具有至少二層隱藏層的該神經網路,並隨機產生該節點數量介於一每層節點數量上限及一每層節點數量下限之間的多個節點。 The solar photovoltaic power generation prediction system combined with meteorological prediction according to claim 9, wherein the neural network training module randomly initializes the number of nodes of the neural network further includes: using the neural network with at least two hidden layers And randomly generate multiple nodes with the number of nodes between an upper limit of the number of nodes per layer and a lower limit of the number of nodes per layer. 如請求項12所述的結合氣象預報之太陽光電發電預測系統,其中該每層節點數量上限小於或等於該神經網路的一輸入層節點數量的2倍,該每層節點數量下限大於或等於該輸入層節點數量的二分之一。 The solar photovoltaic power generation prediction system combined with meteorological forecast according to claim 12, wherein the upper limit of the number of nodes per layer is less than or equal to twice the number of nodes of an input layer of the neural network, and the lower limit of the number of nodes per layer is greater than or equal to The number of nodes in the input layer is half. 如請求項9所述的結合氣象預報之太陽光電發電預測系統,其中該標準化處理包括一發電量標準化處理、一時間標準化處理及一日期標準化處理。 The solar photovoltaic power generation prediction system combined with weather forecasting as described in claim 9, wherein the standardization processing includes a power generation standardization processing, a time standardization processing, and a date standardization processing. 如請求項9所述的結合氣象預報之太陽光電發電預測系統,其中該訓練誤差包括一平均絕對誤差(Mean Absolute Error,MAE),並由以下方程式計算:
Figure 107129619-A0101-13-0005-14
其中, y pre 為該訓練結果, y act 為該訓練矩陣包括的訓練目標,n為該訓練矩陣的其中一維度。
The solar photovoltaic power generation prediction system combined with weather forecasting as described in claim 9, wherein the training error includes a mean absolute error (Mean Absolute Error, MAE) and is calculated by the following equation:
Figure 107129619-A0101-13-0005-14
Where y pre is the training result, y act is the training target included in the training matrix, and n is one of the dimensions of the training matrix.
如請求項9所述的結合氣象預報之太陽光電發電預測系統,其中以該最佳化演算法更新該神經網路的該節點數量的步驟包括:以該最佳化演算法更新該神經網路的各隱藏層的一神經節點數量,且該最佳化演算法包括基因演算法、粒子群演算法及蛙跳演算法。 The solar photovoltaic power generation prediction system combined with meteorological forecasting as described in claim 9, wherein the step of updating the number of nodes of the neural network with the optimization algorithm includes: updating the neural network with the optimization algorithm The number of a neural node in each hidden layer, and the optimization algorithm includes genetic algorithm, particle swarm algorithm and leapfrog algorithm. 如請求項9所述的結合氣象預報之太陽光電發電預測系統,更包括一資料視覺化模組,用於將該太陽光電發電預測模組進行太陽光電發電預測產生的太陽光電發電預測資料進行資料視覺化。 The solar photovoltaic power generation prediction system combined with weather forecast as described in claim 9 further includes a data visualization module for carrying out data on the photovoltaic power generation prediction data generated by the photovoltaic power generation prediction module of the photovoltaic power generation prediction visualize.
TW107129619A 2018-08-24 2018-08-24 Prediction system and method for solar photovoltaic power generation TWI684927B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107129619A TWI684927B (en) 2018-08-24 2018-08-24 Prediction system and method for solar photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107129619A TWI684927B (en) 2018-08-24 2018-08-24 Prediction system and method for solar photovoltaic power generation

Publications (2)

Publication Number Publication Date
TWI684927B TWI684927B (en) 2020-02-11
TW202009803A true TW202009803A (en) 2020-03-01

Family

ID=70413575

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107129619A TWI684927B (en) 2018-08-24 2018-08-24 Prediction system and method for solar photovoltaic power generation

Country Status (1)

Country Link
TW (1) TWI684927B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783605B (en) * 2021-08-02 2022-11-11 崑山科技大學 Solar power generation prediction method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739312B (en) * 2020-02-19 2021-09-11 春禾科技股份有限公司 Method for estimating the solar radiation value of solar field
TWI810487B (en) * 2020-09-25 2023-08-01 國立成功大學 Solar power forecasting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249731B2 (en) * 2007-05-24 2012-08-21 Alexander Bach Tran Smart air ventilation system
TW201727559A (en) * 2016-01-26 2017-08-01 Chun He Technology Co Ltd Management method and system of renewable energy power plant checking whether the power generation of a renewable energy power plant is normal according to the estimated power generation amount
CN107425520B (en) * 2017-06-12 2020-04-21 东南大学 Active power distribution network three-phase interval state estimation method containing node injection power uncertainty
CN107730044A (en) * 2017-10-20 2018-02-23 燕山大学 A kind of hybrid forecasting method of renewable energy power generation and load

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI783605B (en) * 2021-08-02 2022-11-11 崑山科技大學 Solar power generation prediction method

Also Published As

Publication number Publication date
TWI684927B (en) 2020-02-11

Similar Documents

Publication Publication Date Title
US20170286838A1 (en) Predicting solar power generation using semi-supervised learning
CN110968701A (en) Relationship map establishing method, device and equipment for graph neural network
TWI684927B (en) Prediction system and method for solar photovoltaic power generation
CN110929953A (en) Photovoltaic power station ultra-short term output prediction method based on cluster analysis
del Campo-Ávila et al. Binding data mining and expert knowledge for one-day-ahead prediction of hourly global solar radiation
CN114330935B (en) New energy power prediction method and system based on multiple combination strategies integrated learning
CN116403058B (en) Remote sensing cross-scene multispectral laser radar point cloud classification method
CN114792156A (en) Photovoltaic output power prediction method and system based on curve characteristic index clustering
CN111967675A (en) Photovoltaic power generation amount prediction method and prediction device
CN113822418A (en) Wind power plant power prediction method, system, device and storage medium
Girimurugan et al. Application of deep learning to the prediction of solar irradiance through missing data
CN116435998A (en) Prediction method of photovoltaic power generation power
Kuyunani et al. Improving voltage harmonics forecasting at a wind farm using deep learning techniques
CN115482436B (en) Training method and device for image screening model and image screening method
Wang et al. Short term photovoltaic power prediction based on transfer learning and considering sequence uncertainty
Fen et al. Short‐term photovoltaic power probability forecasting based on OLPP‐GPR and modified clearness index
Saxena et al. Hybrid KNN-SVM machine learning approach for solar power forecasting
CN116340534A (en) Knowledge graph construction method and system for identifying new energy abnormal data
CN116029440A (en) Ultra-short-term power prediction method and device for photovoltaic power station
Peng et al. Short‐term wind power prediction based on stacked denoised auto‐encoder deep learning and multi‐level transfer learning
Feng et al. Occlusion-perturbed deep learning for probabilistic solar forecasting via sky images
Đaković et al. Deep neural network configuration sensitivity analysis in wind power forecasting
CN109241070B (en) Time dimension unification method for meteorological data inconsistency based on big data
CN112650850A (en) Wind and cloud satellite remote sensing mapping data management system
Wang et al. Tropical Cyclogenesis Detection from Remotely Sensed Sea Surface Winds Using Graphical and Statistical Features-based Broad Learning System