TW202009519A - Precise point positioning method and positioning apparatus and recording medium thereof - Google Patents

Precise point positioning method and positioning apparatus and recording medium thereof Download PDF

Info

Publication number
TW202009519A
TW202009519A TW107147245A TW107147245A TW202009519A TW 202009519 A TW202009519 A TW 202009519A TW 107147245 A TW107147245 A TW 107147245A TW 107147245 A TW107147245 A TW 107147245A TW 202009519 A TW202009519 A TW 202009519A
Authority
TW
Taiwan
Prior art keywords
satellite
satellite signal
signal
item
point positioning
Prior art date
Application number
TW107147245A
Other languages
Chinese (zh)
Other versions
TWI683122B (en
Inventor
徐逸懷
陳盈羽
王澔宇
莊智清
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Application granted granted Critical
Publication of TWI683122B publication Critical patent/TWI683122B/en
Publication of TW202009519A publication Critical patent/TW202009519A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Precise point positioning (PPP) method and a PPP device are provided. The precise point positioning method includes obtaining a first satellite signal from a reference satellite and a second satellite signal from a reference satellite. The first satellite signal and the second satellite signal are combined to eliminate a signal error and obtain a combined satellite signal. A smoothing process is performed on a code data of the combined satellite signal, to obtain a satellite positioning data for positioning process. The satellite positioning data includes modified code data and modified carrier-phase data.

Description

精密單點定位方法及其定位裝置與記錄媒體Precision single-point positioning method, positioning device and recording medium

本發明是有關於衛星定位技術,且特別是有關於精密單點定位方法及其定位裝置以及記錄媒體。The invention relates to satellite positioning technology, and in particular to precise single-point positioning method, positioning device and recording medium.

隨著電子資訊的發展,地圖的資訊也電子化。配合其他科技包括衛星定位系統(satellite positioning system,SPS)的技術,將定位元件定位於電子地圖上已經是很普遍的現象。在實際應用上,當使用者所攜帶可移動的使用者設備(user equipment,UE),例如行動電話或是導航設備,其一般會具有定位功能,可以讓使用者在地圖上所處的位置。定位的方式有多種,其中衛星定位是一種方法。With the development of electronic information, map information has also become electronic. Cooperating with other technologies including satellite positioning system (SPS) technology, it is already a common phenomenon to position positioning elements on an electronic map. In practical applications, when a user carries mobile user equipment (UE), such as a mobile phone or a navigation device, it generally has a positioning function, which allows the user to locate the location on the map. There are various positioning methods, among which satellite positioning is a method.

本發明提供精密單點定位技術,至少可以加速其初始收斂時間。The present invention provides a precise single-point positioning technology, which can at least accelerate its initial convergence time.

於一實施範例,本發明提供一種精密單點定位方法,由一使用者設備執行,包括獲得目標衛星的第一衛星訊號以及參考衛星的第二衛星訊號。結合該第一衛星訊號以及該第二衛星訊號,以消除一訊號誤差並得到一結合衛星訊號。對該結合衛星訊號的電碼資料執行一平滑處理,以得到進行定位所需要的衛星定位資料,該衛星定位資料包括修正後電碼資料與修正後載波相位資料。In an exemplary embodiment, the present invention provides a precise single-point positioning method, which is executed by a user equipment and includes obtaining a first satellite signal of a target satellite and a second satellite signal of a reference satellite. The first satellite signal and the second satellite signal are combined to eliminate a signal error and obtain a combined satellite signal. A smoothing process is performed on the code data combined with the satellite signal to obtain the satellite positioning data required for positioning. The satellite positioning data includes the corrected code data and the corrected carrier phase data.

於一實施範例,本發明也提供一種精密單點定位裝置,包括處理器以及暫存器,共同配置成處理以下操作,包括獲得目標衛星的第一衛星訊號以及參考衛星的第二衛星訊號。結合該第一衛星訊號以及該第二衛星訊號,以消除一訊號誤差並得到一結合衛星訊號。對該結合衛星訊號的電碼資料執行一平滑處理,以得到進行定位所需要的衛星定位資料,該衛星定位資料包括修正後電碼資料與修正後載波相位資料。In one embodiment, the present invention also provides a precision single-point positioning device, including a processor and a register, which are collectively configured to process the following operations, including obtaining the first satellite signal of the target satellite and the second satellite signal of the reference satellite. The first satellite signal and the second satellite signal are combined to eliminate a signal error and obtain a combined satellite signal. A smoothing process is performed on the code data combined with the satellite signal to obtain the satellite positioning data required for positioning. The satellite positioning data includes the corrected code data and the corrected carrier phase data.

於一實施範例,本發明也提供一種精密單點定位方法,由一使用者設備執行,包括每隔一時間間隔由目標衛星接收一次誤差修正處理後的衛星定位訊號,其中當前是第n次接收,n為正整數,其中該衛星定位訊號包含第n次的電碼資料與載波相位資料。對當前第n次該電碼資料執行一平滑處理以得到平滑後的該第n次該電碼資料。該平滑處理在當前時間點n進行遞迴包括:取當前第n次該電碼資料為第一項,取第n-1次平滑後之該電碼資料加上當前第n次之該載波相位資料及前第n-1次之該載波相位資料的總和為第二項,對該第一項與該第二項之間分別以參數a’及(1-a’)權重加總,而得到當前第n次遞迴平滑後的該電碼資料。該參數a’包含衛星相對該用者設備的衛星仰角,該參數a’隨該衛星仰角增加而減小。In an exemplary embodiment, the present invention also provides a precise single-point positioning method, which is executed by a user equipment and includes receiving satellite correction signals from the target satellite after an error correction process every time interval, of which the current is the nth reception , N is a positive integer, where the satellite positioning signal contains the nth code data and carrier phase data. A smoothing process is performed on the current nth code data to obtain the smoothed nth code code. The smoothing process recurs at the current time point n includes: taking the current nth time code data as the first item, taking the n-1th smoothing code data plus the current nth time carrier phase data and The sum of the carrier phase data of the previous n-1th time is the second term, and the weights of the parameters a'and (1-a') are added between the first term and the second term respectively to obtain the current term After n times, the smoothed code data is returned. The parameter a'contains the satellite elevation angle of the satellite relative to the user equipment, and the parameter a'decreases as the satellite elevation angle increases.

於一實施範例,本發明也提供一種記錄媒體,記錄程式碼,該程式碼由使用者設備的處理器取得以執行如前述之精密單點定位方法。In one embodiment, the present invention also provides a recording medium that records program code, which is obtained by the processor of the user equipment to perform the precise single-point positioning method as described above.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

本發明是關於在衛星定位系統中所使用的精密單點定位技術。本發明提供的精密單點定位技術至少可以縮短收斂時間。The invention relates to a precise single-point positioning technology used in a satellite positioning system. The precision single-point positioning technology provided by the present invention can at least shorten the convergence time.

以下舉多個實施範例來說明本發明,但是本發明不限於所舉的多個實施範例。The following examples illustrate the present invention, but the present invention is not limited to the examples.

當使用者設備在地面需要定位時,接收從衛星發出的無線電訊號。此無線電訊號提供該衛星的座標資訊。一般由四個不同位置的衛星的訊號可以得到使用者設備的位置。衛星定位系統例如包括全球定位系統(Global Positioning System,GPS),全球導航衛星系統(Global Navigation Satellite System,GNSS),其更例如中國系統的北斗衛星導航系統(Beidou Navigation Satellite System,BDS)、歐洲系統的伽利略(Galileo)及俄國系統的全球導航衛星系統(Globalnaya navigatsionnaya sputnikovaya sistema,GLONASS)等等。When the user equipment needs to be positioned on the ground, it receives the radio signal sent from the satellite. This radio signal provides the coordinate information of the satellite. Generally, the signals of four satellites at different positions can obtain the position of the user equipment. Satellite positioning systems include, for example, the Global Positioning System (Global Positioning System, GPS), the Global Navigation Satellite System (Global Navigation Satellite System, GNSS), and more specifically, the Chinese system's Beidou Navigation Satellite System (BDS), the European system Galileo (Galileo) and the Russian system of Global Navigation Satellite System (Globalnaya navigatsionnaya sputnikovaya sistema, GLONASS) and so on.

在衛星定位系統的定位機制中,精密單點定位(Precise point positioning,PPP)是近幾年來被廣泛運用及研究的技術,其特色為不受即時動態定位(Real Time Kinematic,RTK)技術中移動站與參考站之間基線距離的限制,並且能夠提供使用者數十公分至數公分不等的定位精度。In the positioning mechanism of the satellite positioning system, precise single point positioning (Precise point positioning, PPP) is a technology that has been widely used and researched in recent years, and is characterized by not being moved by Real Time Kinematic (RTK) technology. The baseline distance between the station and the reference station is limited, and can provide users with positioning accuracy ranging from tens of centimeters to several centimeters.

精密單點定位的效能與其收斂時間是相關。精密單點定位初始收斂時間過長(例如20~40分鐘或是更長)是一個需要考慮的問題。The performance of precise single-point positioning is related to its convergence time. The initial convergence time of precision single-point positioning is too long (for example, 20-40 minutes or longer) is a problem to be considered.

圖1是依照本發明的一實施例,衛星定位系統的定位機制示意圖。參閱圖 1,對於衛星定位系統,其包含衛星群組50,是由多個衛星50a, 50b, 50c所組成,在本實施例中,以三個衛星為例。這些衛星可以是相同型或是不相同型的衛星,例如是GLONASS(Global Navigation Satellite System)系統的衛星、GPS(Global Positioning System)系統的衛星等等。FIG. 1 is a schematic diagram of a positioning mechanism of a satellite positioning system according to an embodiment of the present invention. Referring to FIG. 1, a satellite positioning system includes a satellite group 50, which is composed of multiple satellites 50a, 50b, and 50c. In this embodiment, three satellites are used as an example. These satellites can be the same type or different types of satellites, such as the satellites of the GLONASS (Global Navigation Satellite System) system, the satellites of the GPS (Global Positioning System) system, and so on.

具有衛星定位系統的接收機的使用者設備52例如是設置在車輛上,其位置可能會隨需要而移動。衛星定位系統的接收端還可包含設置在固定位置的參考站54。參考站54的數量不限於一個,其依照需要可以有多個。The user equipment 52 having a receiver of a satellite positioning system is installed on a vehicle, for example, and its position may move as needed. The receiving end of the satellite positioning system may further include a reference station 54 provided at a fixed position. The number of reference stations 54 is not limited to one, and it may be plural as needed.

衛星群組50的每一個衛星50a, 50b, 50c可分別發送關於衛星當下位置的資訊給參考站54及使用者設備52。使用者設備52直接接收的訊號是原始的第一訊號。在固定位置設置的參考站54也同時接收到衛星發送的訊號。這些參考站54接收的訊號會先做處理以得到一般性的誤差修正資料,以此誤差修正資料做為第二訊號,在一實施例中,此誤差修正資料為初級誤差修正資料。參考站54將此第二訊號通過網路控制中心56及網路60傳送至使用者設備52,以使使用者設備52取得此第二訊號。使用者設備52將第一訊號根據第二訊號的修正後得到對應此工作頻率的衛星訊號。不同頻率的衛星訊號,可以由具有多頻功能的相同衛星或是不同衛星提供,一般是由相同衛星提供。Each satellite 50a, 50b, 50c of the satellite group 50 can send information about the current position of the satellite to the reference station 54 and the user equipment 52, respectively. The signal directly received by the user equipment 52 is the original first signal. The reference station 54 installed at a fixed position also receives the signal transmitted by the satellite. The signals received by these reference stations 54 are first processed to obtain general error correction data, and the error correction data is used as the second signal. In one embodiment, the error correction data is primary error correction data. The reference station 54 transmits the second signal to the user equipment 52 through the network control center 56 and the network 60, so that the user equipment 52 obtains the second signal. The user equipment 52 obtains the satellite signal corresponding to the operating frequency after correcting the first signal according to the second signal. Satellite signals of different frequencies can be provided by the same satellite with multiple frequency functions or different satellites, generally by the same satellite.

另外依照實際需要,使用者設備52也可以不經由網路60取得第二訊號,例如網路控制中心56將第二訊號傳送給地面上連(uplink)系統58再傳送給衛星50c,而再由衛星50c傳送給使用者設備52。In addition, according to actual needs, the user equipment 52 may not obtain the second signal via the network 60, for example, the network control center 56 transmits the second signal to the uplink system 58 and then to the satellite 50c, and then The satellite 50c is transmitted to the user equipment 52.

衛星訊號的接收涉及多種誤差,例如包括衛星時表誤差、接收機時表誤差、衛星軌道偏移誤差、電離層誤差、對流層誤差、雜訊等等。參考站54所產生的第二訊號可提供衛星的一般性的誤差修正,其例如是衛星軌道偏移誤差及衛星時表誤差。The reception of satellite signals involves a variety of errors, including, for example, satellite timetable errors, receiver timetable errors, satellite orbit offset errors, ionospheric errors, tropospheric errors, noise, etc. The second signal generated by the reference station 54 can provide general error correction of the satellite, such as satellite orbit offset error and satellite time table error.

對於一般的多頻的衛星,衛星定位系統中的衛星使用至少一個載波頻率訊號。使用者設備在定位操作時會接收衛星的一個載波頻率訊號。若要消除電離層的效應,可再取得另一個載波頻率訊號,結合多個載波頻率訊號後,可以消除電離層的誤差效應。此另一個載波頻率訊號可以由多頻的相同衛星或是由不同衛星取得。For general multi-frequency satellites, the satellites in the satellite positioning system use at least one carrier frequency signal. The user equipment receives a carrier frequency signal of the satellite during positioning operation. To eliminate the effect of the ionosphere, another carrier frequency signal can be obtained. After combining multiple carrier frequency signals, the error effect of the ionosphere can be eliminated. This other carrier frequency signal can be obtained from the same satellite with multiple frequencies or from different satellites.

在一實施例中,精密單點定位裝置是設置或放置在使用者設備52中。在一實施例中,使用者設備52可移動,例如是車輛、火車、船舶、飛機或無人機,其可能會快速移動,或是有時進入隧道,再從隧道快速駛出,重新接收衛星訊號。圖2是依照本發明的一實施例,在使用者設備的精密單點定位裝置架構示意圖。圖3是依照本發明的一實施例,精密單點定位方法示意圖。In one embodiment, the precision single-point positioning device is disposed or placed in the user equipment 52. In one embodiment, the user equipment 52 may be mobile, such as a vehicle, train, ship, airplane, or drone, which may move quickly, or sometimes enter a tunnel, and then quickly exit from the tunnel to receive satellite signals again . FIG. 2 is a schematic structural diagram of a precision single-point positioning device in user equipment according to an embodiment of the present invention. 3 is a schematic diagram of a precise single-point positioning method according to an embodiment of the present invention.

上述使用者設備52,在多個實施範例之一,可以包括圖2所顯示的精密單點定位裝置200的架構或是其組成。請參照圖2,精密單點定位裝置200至少包括接收器110、處理器120、暫存器130、記憶體裝置140、以及輸入輸出裝置150。在另一實施範例中,精密單點定位裝置200可包括天線105。精密單點定位裝置200可以對所接收的訊號基於衛星間一次差分技術(between satellite single difference, BSSD)消除各種誤差來源,例如接收機時表誤差、接收機硬體延遲及初始相位誤差。除此之外,精密單點定位裝置200更可導入適應性載波平滑技術,降低一次差分後電碼觀測量的雜訊層級,經過處理的訊號再進行精密單點定位(Precise Point Positioning,PPP)運算。底下將針對整個架構進行說明。The above-mentioned user equipment 52 may include the structure or composition of the precision single-point positioning device 200 shown in FIG. 2 in one of multiple implementation examples. Referring to FIG. 2, the precision single-point positioning device 200 at least includes a receiver 110, a processor 120, a register 130, a memory device 140, and an input-output device 150. In another embodiment, the precision single-point positioning device 200 may include an antenna 105. The precision single-point positioning device 200 can eliminate various sources of error based on the between satellite single difference (BSSD) technique for the received signal, such as receiver time table errors, receiver hardware delays, and initial phase errors. In addition, the precision single-point positioning device 200 can also introduce adaptive carrier smoothing technology to reduce the noise level of the code observation after a differential, and then perform precision single-point positioning (PPP) operations on the processed signal . The entire architecture will be explained below.

精密單點定位裝置200例如是智慧型手機、或是交通工具(車輛、火車、船舶、飛機或無人機等)所使用的導航裝置(Navigation Device)。The precision single-point positioning device 200 is, for example, a smart phone or a navigation device (Navigation Device) used by vehicles (vehicles, trains, ships, airplanes, drones, etc.).

接收器110用以與不同的通信系統以無線的方式進行通信互聯,並且收收從衛星發出的無線電訊號。此無線電訊號提供對應衛星的相關位置訊息。在一實施例中,可由多個(例如三個)不同位置的衛星的訊號得到使用者設備的位置和/或速度。所述的通信系統例如衛星定位系統例如包括全球定位系統(Global Positioning System,GPS)、全球導航衛星系統(Global Navigation Satellite System,GNSS)、歐洲系統的伽利略(Galileo)、中國系統的北斗衛星導航系統(Beidou Navigation Satellite System,BDS)、或俄國系統的全球導航衛星系統(Globalnaya navigatsionnaya sputnikovaya sistema,GLONASS)等。The receiver 110 is used to wirelessly communicate with different communication systems and receive radio signals from satellites. This radio signal provides relevant position information of the corresponding satellite. In an embodiment, the position and/or speed of the user equipment can be obtained from the signals of multiple (eg three) satellites at different positions. The communication system such as a satellite positioning system includes, for example, a global positioning system (Global Positioning System, GPS), a global navigation satellite system (GNSS), a European system Galileo, and a Chinese system Beidou satellite navigation system (Beidou Navigation Satellite System, BDS), or the Russian system of Globalnaya navigatsionnaya sputnikovaya sistema (GLONASS), etc.

處理器120可以是例如一中央處理單元(central processing unit,CPU)、微控制器(microcontroller)、特殊應用積體電路(application specific integrated circuit,ASIC)等等,或具有特定設計程式化的可程式化邏輯裝置(programmable logic device,PLD)或現場可程式化邏輯閘陣列(field programmable gate array,FPGA)等。The processor 120 may be, for example, a central processing unit (CPU), a microcontroller, an application specific integrated circuit (ASIC), etc., or a programmable program with a specific design Programmable logic device (PLD) or field programmable gate array (FPGA), etc.

暫存器130用以暫存處理器120運算過程所需暫存的資訊,例如可以是快取記憶體(Cache Memory)等等。The temporary storage 130 is used to temporarily store the temporary storage information required by the processor 120 during the calculation process, such as a cache memory (Cache Memory) and so on.

記憶體裝置140用以儲存可由處理器120執行處理的各種不同功能模組,在本實施例中包括例如誤差修正模組142、執行衛星間一次差分(between satellite single difference, BSSD)的差分處理模組144、可適應性載波平滑處理模組146、以及精密單點定位(Precise Point Positioning,PPP)處理模組148。而此記憶體裝置140可以是揮發性記憶體(Volatile memory),例如隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)。記憶體裝置140也可以是非揮發性記憶體(Non-volatile memory),例如硬碟、快閃記憶體(flash memory)或是固態儲存裝置(solid state storage)等等。The memory device 140 is used to store various functional modules that can be processed by the processor 120, and in this embodiment includes, for example, an error correction module 142 and a differential processing module that performs a satellite satellite single difference (BSSD) Group 144, an adaptive carrier smoothing processing module 146, and a precision single point positioning (Precise Point Positioning, PPP) processing module 148. The memory device 140 may be a volatile memory (Volatile memory), such as a random access memory (Random Access Memory, RAM) or a read-only memory (Read-Only Memory, ROM). The memory device 140 may also be a non-volatile memory (Non-volatile memory), such as a hard disk, a flash memory, or a solid state storage.

輸入輸出(Input/Output)裝置150用以輸出或是輸入資料。精密單點定位裝置200的處理器120對所接收的訊號基於衛星間一次差分技術(BSSD)消除各種誤差來源,並且可導入適應性載波平滑技術,降低一次差分後電碼觀測量的雜訊層級,經過處理的訊號再進行精密單點定位(PPP)運算之後,經過輸入輸出(Input/Output)裝置150輸出,在一實施例中,可於一導航系統中,在螢幕(未繪示)上的地圖中顯示目前所在位置。The input/output device 150 is used to output or input data. The processor 120 of the precision single-point positioning device 200 eliminates various sources of errors based on the inter-satellite primary differential technology (BSSD) for the received signal, and can introduce adaptive carrier smoothing technology to reduce the noise level of the code observation after a differential, The processed signal is then subjected to precise single point positioning (PPP) operation, and then output through the input/output device 150. In one embodiment, it can be displayed on a screen (not shown) in a navigation system. The current location is displayed on the map.

請參閱圖3,圖3是依照本發明的一實施例的精密單點定位方法示意圖。在一實施例中,可以根據圖2的精密單點定位裝置200的架構,執行圖3的精密單點定位方法。Please refer to FIG. 3, which is a schematic diagram of a precise single-point positioning method according to an embodiment of the present invention. In an embodiment, the precision single-point positioning method of FIG. 3 may be performed according to the architecture of the precision single-point positioning device 200 of FIG. 2.

於一實施例,精密單點定位的運作,可能是會包含使用處理程式碼來進行。此所需要的程式碼是記錄在記錄媒體上。記錄媒體可以是內部包含內部設置的記憶體裝置140,也可以是可以由使用者設備的精密單點定位裝置200讀取的外部記錄媒體。在一實施例中,誤差修正模組142、差分處理模組144、可適應性載波平滑處理模組146、以及精密單點定位處理模組148可以是硬體、韌體或是儲存在記憶體裝置140而由處理器120所載入執行的軟體或機器可執行程式碼。In one embodiment, the operation of precise single-point positioning may include processing code. The required code is recorded on the recording medium. The recording medium may be a memory device 140 including an internal setting, or may be an external recording medium that can be read by the precision single-point positioning device 200 of the user equipment. In one embodiment, the error correction module 142, the differential processing module 144, the adaptive carrier smoothing processing module 146, and the precision single-point positioning processing module 148 may be hardware, firmware, or stored in memory The device 140 is loaded with software or machine executable code loaded by the processor 120.

步驟S100中,接收器110接收電碼資料與載波相位資料的接收。步驟S102中,誤差修正模組142進行電離層誤差的修正。在一實施例中,開始運作後,每隔一個預定的時間間隔會取得與處理一次資料,以時間點n來代表第n次取得資料。在一實施例中,運作是循環持續進行。對應時間的累積,第n次是指n個時間間隔後的時間點,n為正整數。初始以n=1為開始為例,n=1代表第一次接收衛星訊號,其會持續接收分屬於每一個衛星的原始(raw)衛星訊號。於一實施例,在後續的訊號平滑處理是遞迴的方式,會參考前一個時間點的資料,因此n=1時取得的衛星定位資料尚未經過平滑處理,其可供給n=2的時間點的平滑處理在遞迴運算時使用。In step S100, the receiver 110 receives the code data and the carrier phase data. In step S102, the error correction module 142 corrects the ionospheric error. In one embodiment, after the operation is started, the data will be acquired and processed at every predetermined time interval, and the time point n is used to represent the n-th data acquisition. In one embodiment, the operation is continuous. Corresponding to the accumulation of time, the nth time refers to the time point after n time intervals, n is a positive integer. Taking n=1 as an example, n=1 represents the first reception of satellite signals, and it will continue to receive raw satellite signals belonging to each satellite. In an embodiment, the subsequent signal smoothing process is a recursive method, which will refer to the data at the previous time point, so the satellite positioning data obtained when n=1 has not been smoothed, and it can provide the time point of n=2 The smoothing of is used in the recursive operation.

在步驟S100中,接收器110接收原始第一頻率訊號,將原始第一頻率訊號進行初級誤差修正資料的修正後成為第一頻率的衛星訊號,第一頻率的衛星訊號包含觀測(measurement)到的電碼觀測資料及載波相位(carrier-phase)觀測資料,電碼觀測資料簡稱為電碼資料,以P1 (n)或P1 表示,載波相位觀測資料簡稱為載波相位資料,以Φ1 (n)或Φ1 表示,其中以下標1表示第一頻率的衛星訊號。在一實施範例中,接收器110接收原始第二頻率訊號,將原始第二頻率訊號進行初級誤差修正資料的修正後成為第二頻率的衛星訊號,可使用第二頻率的衛星訊號消除電離層誤差,第二頻率的衛星訊號包含電碼資料P2 (n)及載波相位資料Φ2 (n),以下標2表示第二頻率的衛星訊號。在一實施範例中,第二頻率的衛星訊號可由與發出第一頻率的衛星訊號的相同衛星的不同頻率通道發出。於另一實施範例中,第二頻率的衛星訊號可由與發出第一頻率的衛星訊號的不同衛星發出。在一實施範例中,第一頻率的衛星訊號(P1 ,Φ1 )與第二頻率的衛星訊號(P2 ,Φ2 )為已修正衛星軌道偏移誤差及衛星時表誤差後的訊號。In step S100, the receiver 110 receives the original first frequency signal, corrects the original first frequency signal with primary error correction data, and becomes the satellite signal of the first frequency. The satellite signal of the first frequency includes the measured Code observation data and carrier-phase observation data. Code observation data is simply referred to as code data, expressed as P 1 (n) or P 1 , and carrier phase observation data is simply referred to as carrier phase data, with Φ 1 (n) or Φ 1 indicates that the subscript 1 indicates the satellite signal of the first frequency. In one embodiment, the receiver 110 receives the original second frequency signal, and the original second frequency signal is corrected to the primary error correction data to become the satellite signal of the second frequency. The satellite signal of the second frequency can be used to eliminate the ionospheric error. The satellite signal at the second frequency includes code data P 2 (n) and carrier phase data Φ 2 (n), and the subscript 2 represents the satellite signal at the second frequency. In an exemplary embodiment, the satellite signal of the second frequency can be sent from different frequency channels of the same satellite as the satellite signal of the first frequency. In another embodiment, the satellite signal at the second frequency can be sent by a different satellite than the satellite signal at the first frequency. In one embodiment, the satellite signal at the first frequency (P 1 , Φ 1 ) and the satellite signal at the second frequency (P 2 , Φ 2 ) are signals after the satellite orbit offset error and the satellite time table error have been corrected.

於步驟S102,誤差修正模組142根據第一頻率的衛星訊號(P1 ,Φ1 )與第二頻率的衛星訊號(P2 ,Φ2 )的結合進行消除電離層誤差的處理,而得到無電離層(ionosphere-free)的衛星訊號,以下標3來區分包括電碼資料P3 及載波相位資料Φ3 ,如式(1):

Figure 02_image002
Figure 02_image004
(1) P3 : 對應無電離層電碼資料的指標 Φ3 : 對應無電離層載波相位資料的指標 ρ : 接收機到衛星的幾何距離 c : 光速 r : 相對接收機的指標 dtr : 接收機時表誤差 T : 對流層延遲 ε: 未建模(unmodeled)誤差,例如一些溫度雜訊、多通路(multipath)效應等等 N’ : 無電離層組合之載波未定值 λ : 波長In step S102, the error correction module 142 performs the process of eliminating ionospheric errors according to the combination of the satellite signal of the first frequency (P 1 , Φ 1 ) and the satellite signal of the second frequency (P 2 , Φ 2 ) to obtain an ionosphere-free (ionosphere-free) satellite signals, subscript 3 to distinguish between including code data P 3 and carrier phase data Φ 3 , such as formula (1):
Figure 02_image002
Figure 02_image004
(1) P3: Index corresponding to the ionospheric code data Φ3: Index corresponding to the ionospheric carrier phase data ρ: Geometric distance from the receiver to the satellite c: Speed of light r: Relative receiver index dt r : Receiver time table error T : Tropospheric delay ε: unmodeled error, such as some temperature noise, multipath effect, etc. N': undetermined carrier without ionospheric combination λ: wavelength

在一實施例中,將第一頻率的衛星訊號(P1 ,Φ1 )與第二頻率的衛星訊號(P2 ,Φ2 )線性結合,以消除電離層誤差並得到電碼資料P3 及載波相位資料Φ3In one embodiment, the satellite signal of the first frequency (P 1 , Φ 1 ) and the satellite signal of the second frequency (P 2 , Φ 2 ) are linearly combined to eliminate the ionospheric error and obtain the code data P 3 and the carrier phase Information Φ 3 .

在一實施例中,精密單點定位技術的收斂時間可能較長,其原因在於雙頻無電離層線性組合雖然消除了電離層誤差,但可能同時放大了雜訊能量。In one embodiment, the convergence time of the precision single-point positioning technique may be longer because the dual-frequency ionospheric linear combination eliminates ionospheric errors, but may also amplify noise energy.

步驟S102後執行步驟S104,由差分處理模組144進行衛星間一次差分的機制,以消除與接收機相關的誤差。在一實施例中,接收機例如是圖2的精密單點定位裝置200。於一實施範例,與接收機相關的誤差包含接收機時表誤差、接收機硬體延遲以及初始相位誤差。於一實施範例中,一次差分的處理可能會些微放大了觀測量的雜訊層級。本發明一實施例中,利用可適應性載波平滑處理模組146執行步驟S106,進行平滑處理,可以有效縮短收斂時間,提升定位效率。After step S102, step S104 is executed, and the difference processing module 144 performs a mechanism of one-time difference between satellites to eliminate errors related to the receiver. In an embodiment, the receiver is, for example, the precision single-point positioning device 200 of FIG. 2. In one embodiment, the errors related to the receiver include receiver time table errors, receiver hardware delays, and initial phase errors. In one embodiment, a differential process may slightly magnify the observed noise level. In an embodiment of the invention, the adaptive carrier smoothing module 146 executes step S106 to perform smoothing, which can effectively shorten the convergence time and improve the positioning efficiency.

於一實施例,可適應性載波平滑處理模組146中所要平滑的電碼資料與載波相位資料會先進行衛星間一次差分的機制。也就是步驟S104的進行衛星間一次差分的機制會先進行,之後才進行步驟S106的平滑處理。In one embodiment, the code data and the carrier phase data to be smoothed in the adaptive carrier smoothing processing module 146 are first subjected to a differential mechanism between satellites. That is, the mechanism for performing a one-time difference between satellites in step S104 is performed first, and then the smoothing process in step S106 is performed.

以下先描述衛星間一次差分的機制。對多個衛星,可以任取其中一個當作參考衛星,此實施例中以指標k 表示參考衛星,例如以圖1的衛星50a為例。在多個衛星中,除了參考衛星以外的有效衛星中的任一個,例如預計要併入衛星定位的衛星稱為目標衛星,在一實施範例中,至少需要三個目標衛星的資料以進行定位。此實施範例中以指標l 表示目標衛星,l 為可變,依照實際涉及定位的衛星的數量而定。目標衛星例如是衛星50b、50c等的其一。The mechanism of one-time difference between satellites is described below. For multiple satellites, any one of them can be used as a reference satellite. In this embodiment, the index k is used to represent the reference satellite, for example, the satellite 50a in FIG. 1 is taken as an example. Among the multiple satellites, any one of the effective satellites other than the reference satellite, for example, a satellite that is expected to be incorporated into satellite positioning is called a target satellite. In an implementation example, at least three target satellites are required for positioning. In this implementation example, the target l is used to represent the target satellite, and l is variable, depending on the number of satellites actually involved in positioning. The target satellite is, for example, one of the satellites 50b and 50c.

也就是說,衛星間一次差分是以多個衛星的其一者當作參考衛星提供參考衛星訊號,除了該參考衛星以外的該多個衛星的其一或多個是提供目標衛星訊號的目標衛星,其中該參考衛星訊號與該目標衛星訊號結合,以消除共同性的誤差。That is to say, one-time difference between satellites uses one of a plurality of satellites as a reference satellite to provide a reference satellite signal, and one or more of the plurality of satellites other than the reference satellite is a target satellite providing a target satellite signal , Where the reference satellite signal is combined with the target satellite signal to eliminate common errors.

在一實施範例中,消除電離層誤差後的目標衛星訊號為第一衛星訊號(Pl 3 ,Φl 3 ),消除電離層誤差後的參考衛星訊號為第二衛星訊號(Pk 3 ,Φk 3 )。經過衛星間一次差分處理後,得到結合衛星訊號,結合衛星訊號包括BSSD電碼資料P kl 3 及BSSD載波相位資料Φ kl 3 ,如式(2)所示:

Figure 02_image005
Figure 02_image008
(2)ρkl : 接收機到衛星k 與衛星l 的幾何距離的相減Tkl : 接收機到衛星k 與衛星l 的對流層延遲的相減 N’ : 接收機到衛星k 與衛星l 的無電離層組合之載波未定值的相減 λ : 波長
Figure 02_image012
: 接收機到衛星k 與衛星l 的電碼資料未建模誤差的相減
Figure 02_image014
: 接收機到衛星k 與衛星l 的載波相位資料未建模誤差的相減 在一實施範例中,在電碼資料的最後一項
Figure 02_image012
的誤差經過衛星間一次差分的處理後可能會些微放大,可再進行平滑處理,如步驟S106進行平滑處理,其中平滑處理所使用的BSSD電碼資料與BSSD載波相位資料是已完成衛星間一次差分處理的資料。In one embodiment, the target satellite signal after removing ionospheric errors is the first satellite signal (P l 3 , Φ l 3 ), and the reference satellite signal after removing ionospheric errors is the second satellite signal (P k 3 , Φ k 3 ). After a differential processing between the satellites, the combined satellite signal is obtained. The combined satellite signal includes BSSD code data P kl 3 and BSSD carrier phase data Φ kl 3 , as shown in equation (2):
Figure 02_image005
Figure 02_image008
(2) ρ kl: k satellite receiver to the geometric distance of the satellite are subtracted l T kl: k to the satellite receiver and the satellite l of tropospheric delay subtraction N ': k to the satellite receiver and without the satellite l Subtractive λ of the carrier of the ionospheric combination: wavelength
Figure 02_image012
: Subtraction of unmodeled errors in the code data from receiver to satellite k and satellite l
Figure 02_image014
: Subtraction of unmodeled error of carrier phase data from receiver to satellite k and satellite l In an implementation example, in the last item of code data
Figure 02_image012
The error may be slightly magnified after the first differential processing between satellites, and then smoothing may be performed, such as smoothing processing in step S106, where the BSSD code data and BSSD carrier phase data used for the smoothing process have completed a differential processing between satellites data of.

以下描述可適應性載波平滑處理模組146的平滑處理機制,其是遞迴的機制,可利用暫存器130以及處理器120進行暫存處理。如圖3所示,暫存器130記錄第n-1次的BSSD載波相位資料及平滑過的BSSD電碼資料(步驟S110),並在可適應性載波平滑處理模組146完成第n次的平滑處理後(步驟S106),將第n次的BSSD載波相位資料及平滑後的BSSD電碼資料更新在暫存器130中(步驟S110),並將第n次的BSSD載波相位資料及平滑後的BSSD電碼資料輸出到精密單點定位處理模組148,進行後續精密單點定位的處理(步驟S108),以獲得精密單點定位裝置200的所在位置,並可為精密單點定位裝置200定位。在圖2中,可適應性載波平滑處理模組146會將進行衛星間一次差分處理以及平滑處理後的平滑電碼資料與載波相位資料輸出給精密單點定位處理模組148,如步驟S108,進行後續第n次的精密單點定位的定位處理。在一實施例中,精密單點定位處理模組148以多個目標衛星的資料來進行定位,其中各個目標衛星的參考衛星可以共用,也可以針對分別的目標衛星而有不同的參考衛星。本發明不限於參考衛星的選擇。在一實施範例中,衛星定位資料包括修正後電碼資料與修正後載波相位資料,第n次的BSSD載波相位資料為修正後載波相位資料,第n次平滑後的BSSD電碼資料衛星定位資料為修正後電碼資料。The following describes the smoothing mechanism of the adaptive carrier smoothing module 146, which is a recursive mechanism that can use the temporary storage 130 and the processor 120 for temporary storage processing. As shown in FIG. 3, the register 130 records the n-1th BSSD carrier phase data and the smoothed BSSD telegram data (step S110), and completes the nth smoothing in the adaptive carrier smoothing processing module 146 After the processing (step S106), the n-th BSSD carrier phase data and smoothed BSSD code data are updated in the register 130 (step S110), and the n-th BSSD carrier phase data and smoothed BSSD The code data is output to the precision single-point positioning processing module 148 to perform subsequent precision single-point positioning processing (step S108) to obtain the location of the precision single-point positioning device 200 and to position the precision single-point positioning device 200. In FIG. 2, the adaptive carrier smoothing processing module 146 outputs the smoothed code data and carrier phase data after one-time differential processing between satellites and smoothing to the precision single-point positioning processing module 148, as shown in step S108 Subsequent nth positioning processing for precise single-point positioning. In one embodiment, the precision single-point positioning processing module 148 uses multiple target satellite data for positioning, wherein the reference satellites of each target satellite may be shared, or different reference satellites may be provided for the respective target satellites. The invention is not limited to the selection of reference satellites. In an implementation example, the satellite positioning data includes corrected code data and corrected carrier phase data, the nth BSSD carrier phase data is the corrected carrier phase data, and the nth smoothed BSSD code data satellite positioning data is the correction After the code information.

於一實施範例,本發明的平滑處理會對電碼資料Pkl 3 進行平滑處理。於一實施範例,如果依照時間點n的遞迴,參考式(3),在時間點n的平滑處理所得到的電碼資料Pkl 3,SM (n)是將第n-1次的平滑後電碼資料Pkl 3,SM (n-1)、第n次的BSSD電碼資料Pkl 3 (n)與BSSD載波相位資料Φ3 kl 以參數 “

Figure 02_image016
”及 “(1-
Figure 02_image018
Figure 02_image016
)”進行權重加總,其如式(3) :
Figure 02_image020
+ (1-
Figure 02_image022
)(
Figure 02_image024
+
Figure 02_image026
+
Figure 02_image028
) (3) “
Figure 02_image016
”及 “(1-
Figure 02_image018
Figure 02_image016
)” 的參數“
Figure 02_image016
” 是隨處理時間持續變化,
Figure 02_image016
=1/n。In an implementation example, the smoothing process of the present invention smoothes the code data P kl 3 . In an implementation example, if according to the recursion at time n, refer to equation (3), the code data P kl 3,SM (n) obtained by the smoothing process at time n is the n-1th smoothing Code data P kl 3,SM (n-1), n-th BSSD code data P kl 3 (n) and BSSD carrier phase data Φ 3 kl are based on the parameter “
Figure 02_image016
"And" (1-
Figure 02_image018
Figure 02_image016
)" to add the weights, as in formula (3):
Figure 02_image020
+ (1-
Figure 02_image022
)(
Figure 02_image024
+
Figure 02_image026
+
Figure 02_image028
) (3) "
Figure 02_image016
"And" (1-
Figure 02_image018
Figure 02_image016
)"parameters"
Figure 02_image016
"Is continuously changing with processing time,
Figure 02_image016
=1/n.

指標n是第n次接收資料的時間點,就時間來看,其是從開始點經過n個時間間隔的時間點。下標“SM ”是代表平滑處理後的結果。式(3)的第一項是參數 “

Figure 02_image016
”與當前的時間點n經過衛星間一次差分處理的電碼資料Pkl 3 (n) 的乘積。第二項包含
Figure 02_image024
+
Figure 02_image026
+
Figure 02_image028
與(1-
Figure 02_image018
Figure 02_image016
)的乘積。第一項與第二相加總得到平滑處理後的電碼資料Pkl 3,SM (n)。當觀測時間增加,其表示n值加大,平滑後的電碼資料Pkl 3,SM (n)的第二項“(1-
Figure 02_image018
Figure 02_image016
)•((
Figure 02_image024
+
Figure 02_image029
+
Figure 02_image030
)”的效應會加大。另外上標 “kl ”是指參考衛星k 與目標衛星l 之間已完成衛星間一次差分的處理。The index n is the time point of receiving the data for the nth time, and in terms of time, it is a time point that passes n time intervals from the starting point. The subscript " SM " is the result after smoothing. The first term of equation (3) is the parameter "
Figure 02_image016
”The product of the telegram data P kl 3 (n) that has undergone a differential processing between satellites at the current time n. The second term contains
Figure 02_image024
+
Figure 02_image026
+
Figure 02_image028
With (1-
Figure 02_image018
Figure 02_image016
). The first item and the second are added together to obtain the smoothed code data P kl 3,SM (n). When the observation time increases, it means that the value of n increases, and the second item of the smoothed code data P kl 3,SM (n) "(1-
Figure 02_image018
Figure 02_image016
)•((
Figure 02_image024
+
Figure 02_image029
+
Figure 02_image030
)" will increase the effect. In addition, the superscript " kl " means that the reference satellite k and the target satellite l have completed a differential processing between satellites.

另外,步驟S106是遞迴的方式,第一次的遞迴平滑處理可以輸入適當的初始值,其例如是pkl 3,SM (1)= pkl 3 (1)。In addition, step S106 is a recursive manner. The first recursive smoothing process can input an appropriate initial value, which is, for example, p kl 3,SM (1) = p kl 3 (1).

圖4是依照本發明的一實施例,精密單點定位方法中仰角平滑機制示意圖。參閱圖4,於一實施範例中,當衛星仰角θ2 較大時,衛星更接近接收機的上方。此時的衛星訊號的品質可能較佳。反之,衛星仰角θ1 較小時,衛星更接近接收機的水平方向,衛星訊號的品質可能較差。4 is a schematic diagram of an elevation angle smoothing mechanism in a precision single-point positioning method according to an embodiment of the invention. Referring to FIG. 4, in an implementation example, when the satellite elevation angle θ 2 is larger, the satellite is closer to the top of the receiver. The quality of the satellite signal at this time may be better. Conversely, when the satellite elevation angle θ 1 is small, the satellite is closer to the horizontal direction of the receiver, and the quality of the satellite signal may be poor.

基於衛星仰角θ的因素,平滑處理可再加上衛星仰角θ的效應,以將電碼資料加上衛星仰角的修正,如式(4)所示,將參數

Figure 02_image016
修改為:
Figure 02_image032
(4) 如此,參考式(3)及式(4),當衛星仰角θ大時(例如接近90度),參數“
Figure 02_image016
”更趨近於零,如式(3)的第二項“(1-
Figure 02_image016
)•(
Figure 02_image024
+
Figure 02_image026
+
Figure 02_image028
)”的權重加大,可以增加平滑速度。反之當衛星仰角θ小時(例如接近0度),如式(3)的第二項的權重會減小,則會減緩平滑速度,與未考慮衛星仰角θ的平滑處理的速度相同或相似。Based on the factors of satellite elevation angle θ, the smoothing process can add the effect of satellite elevation angle θ to add the code data to the satellite elevation angle correction, as shown in equation (4), change the parameters
Figure 02_image016
change into:
Figure 02_image032
(4) As such, referring to equations (3) and (4), when the satellite elevation angle θ is large (for example, close to 90 degrees), the parameter "
Figure 02_image016
"Closer to zero, as in the second term of formula (3)" (1-
Figure 02_image016
)•(
Figure 02_image024
+
Figure 02_image026
+
Figure 02_image028
)" weight is increased, you can increase the smoothing speed. Conversely, when the satellite elevation angle θ is small (for example, close to 0 degrees), the weight of the second term of formula (3) will be reduced, it will slow down the smoothing speed, and the satellite is not considered The speed of the smoothing process of the elevation angle θ is the same or similar.

於一實施範例,就衛星仰角θ的平滑效果來考量,其也可以應用於沒有衛星間一次差分處理的資料,也就是省去步驟S104。對於當前的目標衛星,以指標l 為例,式(3)改變為式(5):

Figure 02_image034
+ (1-
Figure 02_image022
)(
Figure 02_image036
+
Figure 02_image038
+
Figure 02_image040
) (5)
Figure 02_image032
In an implementation example, considering the smoothing effect of the satellite elevation angle θ, it can also be applied to data without one-time difference processing between satellites, that is, step S104 is omitted. For the current target satellite, taking index l as an example, equation (3) is changed to equation (5):
Figure 02_image034
+ (1-
Figure 02_image022
)(
Figure 02_image036
+
Figure 02_image038
+
Figure 02_image040
) (5)
Figure 02_image032

綜合前面的描述,本發明至少可以有如下的特徵。In summary, the present invention may have at least the following features.

於一實施範例,本發明提供一種精密單點定位方法,由一使用者設備執行,包括獲得目標衛星的第一衛星訊號以及參考衛星的第二衛星訊號。結合該第一衛星訊號以及該第二衛星訊號,以消除一訊號誤差並得到一結合衛星訊號。對該結合衛星訊號的電碼資料執行一平滑處理,以得到進行定位所需要的衛星定位資料,該衛星定位資料包括修正後電碼資料與修正後載波相位資料。In an exemplary embodiment, the present invention provides a precise single-point positioning method, which is executed by a user equipment and includes obtaining a first satellite signal of a target satellite and a second satellite signal of a reference satellite. The first satellite signal and the second satellite signal are combined to eliminate a signal error and obtain a combined satellite signal. A smoothing process is performed on the code data combined with the satellite signal to obtain the satellite positioning data required for positioning. The satellite positioning data includes the corrected code data and the corrected carrier phase data.

於一實施範例,本發明提供一種精密單點定位裝置,包括處理器以及暫存器,共同配置成處理以下操作,包括獲得目標衛星的第一衛星訊號以及參考衛星的第二衛星訊號。結合該第一衛星訊號以及該第二衛星訊號,以消除一訊號誤差並得到一結合衛星訊號。對該結合衛星訊號的電碼資料執行一平滑處理,以得到進行定位所需要的衛星定位資料,該衛星定位資料包括修正後電碼資料與修正後載波相位資料。In one embodiment, the present invention provides a precision single-point positioning device, including a processor and a register, which are collectively configured to process the following operations, including obtaining the first satellite signal of the target satellite and the second satellite signal of the reference satellite. The first satellite signal and the second satellite signal are combined to eliminate a signal error and obtain a combined satellite signal. A smoothing process is performed on the code data combined with the satellite signal to obtain the satellite positioning data required for positioning. The satellite positioning data includes the corrected code data and the corrected carrier phase data.

於一實施範例,在所述的精密單點定位方法或裝置中,結合該第一衛星訊號以及該第二衛星訊號以消除該訊號誤差並得到該結合衛星訊號的該步驟或操作包括:消除該第一衛星訊號的第一電離層誤差以及消除該第二衛星訊號的第二電離層誤差。In an embodiment, in the precise single-point positioning method or device, the step or operation of combining the first satellite signal and the second satellite signal to eliminate the signal error and obtain the combined satellite signal includes: eliminating the The first ionospheric error of the first satellite signal and the second ionospheric error of the second satellite signal are eliminated.

於一實施範例,在所述的精密單點定位方法或裝置中,結合該第一衛星訊號以及該第二衛星訊號以消除該訊號誤差並得到該結合衛星訊號的步驟或操作更包括:利用該第一衛星訊號以及該第二衛星訊號進行衛星間一次差分處理,消除共同性的誤差。In one embodiment, in the precise single-point positioning method or device, the step or operation of combining the first satellite signal and the second satellite signal to eliminate the signal error and obtain the combined satellite signal further includes: using the The first satellite signal and the second satellite signal are subjected to one-time differential processing between satellites to eliminate common errors.

於一實施範例,在所述的精密單點定位方法或裝置中,該衛星間一次差分是取多個衛星的其一者為該參考衛星,該參考衛星提供該第二衛星訊號,除了該參考衛星以外的該多個衛星的其一個為該目標衛星,該目標衛星提供該第一衛星訊號。In an embodiment, in the precise single-point positioning method or device, the one-time difference between the satellites takes one of a plurality of satellites as the reference satellite, and the reference satellite provides the second satellite signal except for the reference One of the satellites other than the satellite is the target satellite, and the target satellite provides the first satellite signal.

於一實施範例,在所述的精密單點定位方法或裝置中,該平滑處理包括:取當前的該結合衛星訊號的電碼資料為第一項,取前次遞迴平滑後之該結合衛星訊號的電碼資料加上當前遞迴之載波相位資料及前次遞迴之載波相位資料的總和為第二項,對該第一項與該第二項之間分別以參數a及(1-a)權重加總,而得到當前遞迴平滑後的該衛星定位資料。In an embodiment, in the precise single-point positioning method or device, the smoothing process includes: taking the current code data of the combined satellite signal as the first item, and taking the combined satellite signal after the previous recursive smoothing The sum of the telegram data plus the current recursive carrier phase data and the previous recursive carrier phase data is the second item, and the parameters a and (1-a) are used between the first item and the second item respectively The weights are added up, and the satellite positioning data after the current recursive smoothing is obtained.

於一實施範例,在所述的精密單點定位方法或裝置中,該參數a包括衛星相對該用者設備的衛星仰角,其中該參數a隨該衛星仰角增加而減小。In an embodiment, in the precise single-point positioning method or device, the parameter a includes the satellite elevation angle of the satellite relative to the user equipment, where the parameter a decreases as the satellite elevation angle increases.

於一實施範例,在所述的精密單點定位方法或裝置中,該參數a是1/n,其中每隔一時間間隔接收一次該第一衛星訊號以及該第二衛星訊號,其中參數n是第n次接收該第一衛星訊號以及該第二衛星訊號,n為正整數。In an exemplary embodiment, in the precise single-point positioning method or device, the parameter a is 1/n, wherein the first satellite signal and the second satellite signal are received every time interval, wherein the parameter n is Receive the first satellite signal and the second satellite signal for the nth time, n is a positive integer.

於一實施範例,在所述的精密單點定位方法或裝置中,該參數a是(1-θ/90)/n,參數θ是該衛星仰角,其中每隔一時間間隔接收一次該第一衛星訊號以及該第二衛星訊號,其中參數n是第n次接收該第一衛星訊號以及該第二衛星訊號,n為正整數。In an embodiment, in the precision single-point positioning method or device, the parameter a is (1-θ/90)/n, the parameter θ is the satellite elevation angle, and the first The satellite signal and the second satellite signal, wherein the parameter n is the nth reception of the first satellite signal and the second satellite signal, and n is a positive integer.

於一實施範例,在所述的精密單點定位方法或裝置中,該使用者設備的該第一衛星訊號以及該第二衛星訊號的每一個包含由參考站接收的初級誤差修正資料,其中該參考站分別接收該參考衛星與該目標衛星的無線電訊號,並且產生該初級誤差修正資料。In an embodiment, in the precision single-point positioning method or device, each of the first satellite signal and the second satellite signal of the user equipment includes primary error correction data received by a reference station, wherein the The reference station respectively receives the radio signals of the reference satellite and the target satellite, and generates the primary error correction data.

於一實施範例,在所述的精密單點定位方法或裝置中,該第一衛星訊號以及該第二衛星訊號的每一個包括電碼資料與載波相位資料。In an embodiment, in the precise single-point positioning method or device, each of the first satellite signal and the second satellite signal includes code data and carrier phase data.

於一實施範例,本發明也提供一種精密單點定位方法,由一使用者設備執行,包括每隔一時間間隔由目標衛星接收一次誤差修正處理後得到的衛星定位訊號,其中當前是第n次接收,n為正整數,其中該衛星定位訊號包含第n次的電碼資料與載波相位資料。對當前第n次該電碼資料執行一平滑處理以得到平滑後的該第n次該電碼資料。該平滑處理在當前時間點n進行遞迴包括:取當前第n次該電碼資料為第一項,取第n-1次平滑後之該電碼資料加上當前第n次之該載波相位資料及前第n-1次之該載波相位資料的總和為第二項,對該第一項與該第二項之間分別以參數a’及(1-a’)權重加總,而得到當前第n次遞迴平滑後的該電碼資料。該參數a’包含衛星相對該用者設備的衛星仰角的修正,使該參數a’隨該衛星仰角增加而減小。In an exemplary embodiment, the present invention also provides a precise single-point positioning method, which is executed by a user equipment and includes a satellite positioning signal obtained after receiving an error correction process from a target satellite every time interval, of which the current is the nth time Receive, n is a positive integer, where the satellite positioning signal contains the nth code data and carrier phase data. A smoothing process is performed on the current nth code data to obtain the smoothed nth code code. The smoothing process recurs at the current time point n includes: taking the current nth time code data as the first item, taking the n-1th smoothing code data plus the current nth time carrier phase data and The sum of the carrier phase data of the previous n-1th time is the second term, and the weights of the parameters a'and (1-a') are added between the first term and the second term respectively to obtain the current term After n times, the smoothed code data is returned. The parameter a'contains the correction of the satellite elevation angle of the satellite relative to the user equipment, so that the parameter a'decreases as the satellite elevation angle increases.

於一實施範例,在所述的精密單點定位方法中,其中該參數a’包含(1-θ/90)的乘數,參數θ是該衛星仰角。In an embodiment, in the precise single-point positioning method, the parameter a'includes a multiplier of (1-θ/90), and the parameter θ is the elevation angle of the satellite.

於一實施範例,在所述的精密單點定位方法中,該參數a’隨時間變化是(1-θ/90)/n。In one embodiment, in the precise single-point positioning method, the parameter a'changes with time to be (1-θ/90)/n.

於一實施範例,本發明也提供一種記錄媒體,記錄程式碼,該程式碼由使用者設備的處理器取得以執行如前述之精密單點定位方法。In one embodiment, the present invention also provides a recording medium that records program code, which is obtained by the processor of the user equipment to perform the precise single-point positioning method as described above.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

50‧‧‧衛星群組50a、50b、50c‧‧‧衛星52‧‧‧使用者設備54‧‧‧參考站56‧‧‧網路控制中心58‧‧‧地面上連系統60‧‧‧網路105‧‧‧天線110‧‧‧接收器120‧‧‧處理器130‧‧‧暫存器140‧‧‧記憶體裝置142‧‧‧誤差修正模組144‧‧‧差分處理模組146‧‧‧可適應性載波平滑處理模組148‧‧‧精密單點定位(PPP)處理模組150‧‧‧輸入輸出裝置200‧‧‧精密單點定位裝置S100、S102、S104、S106、S108、S110‧‧‧步驟50‧‧‧ Satellite group 50a, 50b, 50c ‧‧‧ Satellite 52‧‧‧ User equipment 54‧‧‧ Reference station 56‧‧‧ Network control center 58‧‧‧ On-ground system 60‧‧‧ Road 105‧‧‧ antenna 110‧‧‧ receiver 120‧‧‧ processor 130‧‧‧ register 140‧‧‧ memory device 142‧‧‧ error correction module 144‧‧‧ differential processing module 146‧ ‧‧Adaptable carrier smoothing processing module 148‧‧‧Precision single-point positioning (PPP) processing module 150‧‧‧I/O device 200‧‧‧Precision single-point positioning device S100, S102, S104, S106, S108, S110‧‧‧Step

圖1是依照本發明的一實施例,衛星定位系統的定位機制示意圖。 圖2是依照本發明的一實施例,在使用者設備的精密單點定位裝置架構示意圖。 圖3是依照本發明的一實施例,精密單點定位方法示意圖。 圖4是依照本發明的一實施例,精密單點定位方法中仰角平滑機制示意圖。FIG. 1 is a schematic diagram of a positioning mechanism of a satellite positioning system according to an embodiment of the present invention. FIG. 2 is a schematic structural diagram of a precision single-point positioning device in user equipment according to an embodiment of the present invention. 3 is a schematic diagram of a precise single-point positioning method according to an embodiment of the present invention. 4 is a schematic diagram of an elevation angle smoothing mechanism in a precision single-point positioning method according to an embodiment of the invention.

S100、S102、S104、S106、S108、S110‧‧‧步驟 S100, S102, S104, S106, S108, S110‧‧‧

Claims (24)

一種精密單點定位方法,由一使用者設備執行,包括: 獲得目標衛星的第一衛星訊號以及參考衛星的第二衛星訊號; 結合該第一衛星訊號以及該第二衛星訊號,以消除一訊號誤差並得到一結合衛星訊號;以及 對該結合衛星訊號的電碼資料執行一平滑處理,以得到進行定位所需的衛星定位資料,該衛星定位資料包括修正後電碼資料與修正後載波相位資料。A precise single-point positioning method, executed by a user equipment, includes: acquiring the first satellite signal of the target satellite and the second satellite signal of the reference satellite; combining the first satellite signal and the second satellite signal to eliminate a signal Error and obtain a combined satellite signal; and perform a smoothing process on the code data of the combined satellite signal to obtain the satellite positioning data required for positioning, the satellite positioning data includes the corrected code data and the corrected carrier phase data. 如申請專利範圍第1項所述之精密單點定位方法,其中結合該第一衛星訊號以及該第二衛星訊號以消除該訊號誤差並得到該結合衛星訊號的該步驟包括: 消除該第一衛星訊號的第一電離層誤差;以及 消除該第二衛星訊號的第二電離層誤差。The precise single-point positioning method as described in item 1 of the patent application scope, wherein the step of combining the first satellite signal and the second satellite signal to eliminate the signal error and obtain the combined satellite signal includes: eliminating the first satellite The first ionospheric error of the signal; and the second ionospheric error of the second satellite signal. 如申請專利範圍第2項所述之精密單點定位方法,其中結合該第一衛星訊號以及該第二衛星訊號以消除該訊號誤差並得到該結合衛星訊號的該步驟更包括: 利用該第一衛星訊號以及該第二衛星訊號進行衛星間一次差分處理,消除共同性的誤差。The precise single-point positioning method as described in item 2 of the patent application scope, wherein the step of combining the first satellite signal and the second satellite signal to eliminate the signal error and obtain the combined satellite signal further includes: using the first The satellite signal and the second satellite signal are subjected to one-time differential processing between satellites to eliminate common errors. 如申請專利範圍第3項所述之精密單點定位方法,其中該衛星間一次差分是取多個衛星的其一者為該參考衛星,該參考衛星提供該第二衛星訊號,除了該參考衛星以外的該多個衛星的其一個為該目標衛星,該目標衛星提供該第一衛星訊號。The precise single-point positioning method as described in item 3 of the patent application scope, wherein the one-time difference between the satellites is to take one of a plurality of satellites as the reference satellite, and the reference satellite provides the second satellite signal except for the reference satellite One of the other satellites is the target satellite, and the target satellite provides the first satellite signal. 如申請專利範圍第1項所述之精密單點定位方法,其中該平滑處理包括: 取當前的該結合衛星訊號的電碼資料為第一項,取前次遞迴平滑後之該結合衛星訊號的電碼資料加上當前遞迴之載波相位資料及前次遞迴之載波相位資料的總和為第二項,對該第一項與該第二項之間分別以參數a及(1-a)權重加總,而得到當前遞迴平滑後的該衛星定位資料。The precise single-point positioning method as described in item 1 of the patent application scope, wherein the smoothing process includes: taking the current code data of the combined satellite signal as the first item, and taking the combined satellite signal after the previous recursive smoothing The sum of the code data plus the current recursive carrier phase data and the previous recursive carrier phase data is the second item, and the first item and the second item are weighted by parameters a and (1-a) respectively Sum up, and get the satellite positioning data after the current recursive smoothing. 如申請專利範圍第5項所述之精密單點定位方法,其中該參數a包括衛星相對該用者設備的衛星仰角,其中該參數a隨該衛星仰角增加而減小。The precise single-point positioning method as described in item 5 of the patent application scope, wherein the parameter a includes the satellite elevation angle of the satellite relative to the user equipment, where the parameter a decreases as the satellite elevation angle increases. 如申請專利範圍第6項所述之精密單點定位方法,其中該參數a是(1-θ/90)/n,參數θ是該衛星仰角,其中每隔一時間間隔接收一次該第一衛星訊號以及該第二衛星訊號,其中參數n是第n次接收該第一衛星訊號以及該第二衛星訊號,n為正整數。The precise single-point positioning method as described in item 6 of the patent application, wherein the parameter a is (1-θ/90)/n, the parameter θ is the elevation angle of the satellite, and the first satellite is received at every interval The signal and the second satellite signal, where the parameter n is the nth reception of the first satellite signal and the second satellite signal, and n is a positive integer. 如申請專利範圍第5項所述之精密單點定位方法,其中該參數a是1/n,其中每隔一時間間隔接收一次該第一衛星訊號以及該第二衛星訊號,其中參數n是第n次接收該第一衛星訊號以及該第二衛星訊號,n為正整數。The precise single-point positioning method as described in item 5 of the patent application scope, wherein the parameter a is 1/n, wherein the first satellite signal and the second satellite signal are received every time interval, wherein the parameter n is the first Receive the first satellite signal and the second satellite signal n times, n is a positive integer. 如申請專利範圍第1項所述之精密單點定位方法,其中該使用者設備的該第一衛星訊號以及該第二衛星訊號的每一個是包含由參考站接收的初級誤差修正資料,其中該參考站分別接收該參考衛星與該目標衛星的無線電訊號,並且產生該初級誤差修正資料。The precise single-point positioning method as described in item 1 of the patent application scope, wherein each of the first satellite signal and the second satellite signal of the user equipment contains primary error correction data received by a reference station, wherein the The reference station respectively receives the radio signals of the reference satellite and the target satellite, and generates the primary error correction data. 如申請專利範圍第1項所述之精密單點定位方法,其中該第一衛星訊號以及該第二衛星訊號的每一個包括電碼資料與載波相位資料。The precise single-point positioning method as described in item 1 of the patent application scope, wherein each of the first satellite signal and the second satellite signal includes code data and carrier phase data. 一種精密單點定位裝置,包括處理器以及暫存器,經配置以處理以下操作,包括: 獲得目標衛星的第一衛星訊號以及參考衛星的第二衛星訊號; 結合該第一衛星訊號以及該第二衛星訊號,以消除一訊號誤差並得到一結合衛星訊號;以及 對該結合衛星訊號的電碼資料執行一平滑處理,以得到進行定位所需要的衛星定位資料,該衛星定位資料包括修正後電碼資料與修正後載波相位資料。A precision single-point positioning device, including a processor and a register, configured to process the following operations, including: acquiring a first satellite signal of a target satellite and a second satellite signal of a reference satellite; combining the first satellite signal and the first satellite signal Two satellite signals to eliminate a signal error and obtain a combined satellite signal; and perform a smoothing process on the code data of the combined satellite signal to obtain the satellite positioning data required for positioning, the satellite positioning data includes the corrected code data And corrected carrier phase data. 如申請專利範圍第11項所述之精密單點定位裝置,其中結合該第一衛星訊號以及該第二衛星訊號以消除該訊號誤差並得到該結合衛星訊號的該操作包括: 消除該第一衛星訊號的第一電離層誤差;以及 消除該第二衛星訊號的第二電離層誤差。The precision single-point positioning device as described in item 11 of the patent application scope, wherein the operation of combining the first satellite signal and the second satellite signal to eliminate the signal error and obtain the combined satellite signal includes: eliminating the first satellite The first ionospheric error of the signal; and the second ionospheric error of the second satellite signal. 如申請專利範圍第12項所述之精密單點定位裝置,其中結合該第一衛星訊號以及該第二衛星訊號以消除該訊號誤差並得到該結合衛星訊號的該操作更包括: 利用該第一衛星訊號以及該第二衛星訊號進行衛星間一次差分處理,消除共同性的誤差。The precision single-point positioning device as described in item 12 of the patent application scope, wherein the operation of combining the first satellite signal and the second satellite signal to eliminate the signal error and obtain the combined satellite signal further includes: using the first The satellite signal and the second satellite signal are subjected to one-time differential processing between satellites to eliminate common errors. 如申請專利範圍第13項所述之精密單點定位裝置,其中該衛星間一次差分是取多個衛星的其一者為該參考衛星,該參考衛星提供該第二衛星訊號,除了該參考衛星以外的該多個衛星的其一個為該目標衛星,該目標衛星提供該第一衛星訊號。The precision single-point positioning device as described in item 13 of the patent application scope, wherein the primary difference between the satellites is to take one of a plurality of satellites as the reference satellite, and the reference satellite provides the second satellite signal, except for the reference satellite One of the other satellites is the target satellite, and the target satellite provides the first satellite signal. 如申請專利範圍第11項所述之精密單點定位裝置,其中該平滑處理包括: 取當前的該結合衛星訊號的電碼資料為第一項,取前次遞迴平滑後之該結合衛星訊號的電碼資料加上當前遞迴之載波相位資料及前次遞迴之載波相位資料的總和為第二項,對該第一項與該第二項之間分別以參數a及(1-a)權重加總,而得到當前遞迴平滑後的該衛星定位資料。The precision single-point positioning device as described in item 11 of the patent application scope, wherein the smoothing process includes: taking the current code data of the combined satellite signal as the first item, and taking the combined satellite signal after the previous recursive smoothing The sum of the code data plus the current recursive carrier phase data and the previous recursive carrier phase data is the second item, and the first item and the second item are weighted by parameters a and (1-a) respectively Sum up, and get the satellite positioning data after the current recursive smoothing. 如申請專利範圍第15項所述之精密單點定位裝置,其中該參數a包括衛星相對該用者設備的衛星仰角,其中該參數a隨該衛星仰角增加而減小。The precision single-point positioning device as described in item 15 of the patent application scope, wherein the parameter a includes the satellite elevation angle of the satellite relative to the user equipment, where the parameter a decreases as the satellite elevation angle increases. 如申請專利範圍第16項所述之精密單點定位裝置,其中該參數a是(1-θ/90)/n,參數θ是該衛星仰角,其中每隔一時間間隔接收一次該第一衛星訊號以及該第二衛星訊號,其中參數n是第n次接收該第一衛星訊號以及該第二衛星訊號,n為正整數。The precise single-point positioning device as described in item 16 of the patent application, wherein the parameter a is (1-θ/90)/n, the parameter θ is the elevation angle of the satellite, and the first satellite is received at every interval The signal and the second satellite signal, where the parameter n is the nth reception of the first satellite signal and the second satellite signal, and n is a positive integer. 如申請專利範圍第15項所述之精密單點定位裝置,其中該參數a是1/n,其中每隔一時間間隔接收一次該第一衛星訊號以及該第二衛星訊號,其中參數n是第n次接收該第一衛星訊號以及該第二衛星訊號,n為正整數。The precision single-point positioning device as described in item 15 of the patent application scope, wherein the parameter a is 1/n, wherein the first satellite signal and the second satellite signal are received at every time interval, wherein the parameter n is the first Receive the first satellite signal and the second satellite signal n times, n is a positive integer. 如申請專利範圍第11項所述之精密單點定位裝置,其中該使用者設備的該第一衛星訊號以及該第二衛星訊號的每一個是包含由參考站接收的初級誤差修正資料,其中該參考站分別接收該參考衛星與該目標衛星的無線電訊號,並且產生該初級誤差修正資料。The precision single-point positioning device as described in item 11 of the patent application scope, wherein each of the first satellite signal and the second satellite signal of the user equipment contains primary error correction data received by a reference station, wherein the The reference station respectively receives the radio signals of the reference satellite and the target satellite, and generates the primary error correction data. 如申請專利範圍第11項所述之精密單點定位裝置,其中該第一衛星訊號以及該第二衛星訊號的每一個包括電碼資料與載波相位資料。The precision single-point positioning device as described in item 11 of the patent application scope, wherein each of the first satellite signal and the second satellite signal includes code data and carrier phase data. 一種精密單點定位方法,由一使用者設備執行,包括: 每隔一時間間隔由目標衛星接收一次誤差修正處理後的衛星定位訊號,其中當前是第n次接收,n為正整數,其中該衛星定位訊號包含電碼資料與載波相位資料;以及 對當前第n次該電碼資料執行一平滑處理以得到平滑後的該第n次該電碼資料,該平滑處理在當前時間點n進行遞迴包括: 取當前第n次該電碼資料為第一項,取第n-1次平滑後之該電碼資料加上當前第n次之該載波相位資料及前第n-1次之該載波相位資料的總和為第二項,對該第一項與該第二項之間分別以參數a’及(1-a’)權重加總,而得到當前第n次遞迴平滑後的該電碼資料, 其中該參數a’包含衛星相對該用者設備的衛星仰角,該參數a’隨該衛星仰角增加而減小。A precise single-point positioning method, executed by a user equipment, including: receiving satellite correction signals after error correction processing from the target satellite at every time interval, wherein the current is the nth reception, and n is a positive integer, where the The satellite positioning signal includes code data and carrier phase data; and performing a smoothing process on the current n-th code data to obtain the smoothed n-th code data, and the smoothing process recurs at the current time point n includes: Take the current nth time the code data as the first item, take the sum of the n-1th smoothed code data plus the current nth carrier phase data and the previous n-1th carrier phase data Is the second item, the parameters a'and (1-a') weight are added between the first item and the second item respectively to obtain the current nth recursive smoothed code data, where the The parameter a'contains the satellite elevation angle of the satellite relative to the user equipment, and the parameter a'decreases as the satellite elevation angle increases. 如申請專利範圍第21項所述之精密單點定位方法,其中該參數a’包含(1-θ/90)的乘數,參數θ是該衛星仰角。The precise single-point positioning method as described in item 21 of the patent application scope, wherein the parameter a'includes a multiplier of (1-θ/90), and the parameter θ is the elevation angle of the satellite. 如申請專利範圍第22項所述之精密單點定位方法,其中該參數a’隨時間變化是(1-θ/90)/n。The precise single-point positioning method as described in Item 22 of the patent application scope, wherein the parameter a'changes with time to be (1-θ/90)/n. 一種記錄媒體,記錄程式碼,該程式碼由使用者設備的處理器取得以執行如申請專利範圍第1項所述之精密單點定位方法。A recording medium records a program code, which is acquired by a processor of a user equipment to execute the precise single-point positioning method described in item 1 of the patent application scope.
TW107147245A 2018-08-27 2018-12-26 Precise point positioning method and positioning apparatus and recording medium thereof TWI683122B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862722997P 2018-08-27 2018-08-27
US62/722,997 2018-08-27

Publications (2)

Publication Number Publication Date
TWI683122B TWI683122B (en) 2020-01-21
TW202009519A true TW202009519A (en) 2020-03-01

Family

ID=69651874

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147245A TWI683122B (en) 2018-08-27 2018-12-26 Precise point positioning method and positioning apparatus and recording medium thereof

Country Status (2)

Country Link
CN (1) CN110865402B (en)
TW (1) TWI683122B (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7117417B2 (en) * 2003-07-30 2006-10-03 Navcom Technology, Inc. Method for generating clock corrections for a wide-area or global differential GPS system
US8018377B2 (en) * 2009-01-23 2011-09-13 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Decoupled clock model with ambiguity datum fixing
US8456354B2 (en) * 2009-11-25 2013-06-04 Nexteq Navigation Corporation System and method for applying augmentation corrections for GNSS positioning
CN102096084B (en) * 2010-12-09 2012-12-26 东南大学 Precise point positioning (PPP) method based on inter-satellite combination difference
US8659474B2 (en) * 2011-01-12 2014-02-25 Navcom Technology, Inc. Navigation system and method for resolving integer ambiguities using double difference ambiguity constraints
US9170335B2 (en) * 2011-02-14 2015-10-27 Trimble Navigation Limited GNSS signal processing with ionosphere model for synthetic reference data
CN102426372A (en) * 2011-10-31 2012-04-25 北京中微星通电子有限公司 Carrier smoothing pseudo range method and device
US9612341B2 (en) * 2012-12-28 2017-04-04 Trimble Inc. GNSS receiver positioning system
CN103344978B (en) * 2013-07-04 2014-11-19 武汉大学 Area enhanced precision positioning service method suitable for large-scale users
CN104459737A (en) * 2014-12-02 2015-03-25 东南大学 Satellite positioning method based on real-time beacon differential
CN105807300B (en) * 2016-03-17 2018-09-07 武汉际上导航科技有限公司 A method of carrying out Dynamic High-accuracy One-Point Location with Big Dipper dual-frequency receiver
CN108196272A (en) * 2017-12-29 2018-06-22 中国电子科技集团公司第二十研究所 A kind of satellite navigation positioning device and method based on real-time accurate One-Point Location
CN108363079B (en) * 2018-01-30 2022-06-10 上海交通大学 GNSS pseudo-range double-difference positioning method and system for portable intelligent equipment

Also Published As

Publication number Publication date
TWI683122B (en) 2020-01-21
CN110865402B (en) 2022-07-26
CN110865402A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
Zhao et al. Initial results of precise orbit and clock determination for COMPASS navigation satellite system
CN106255065B (en) Indoor and outdoor seamless positioning system and method for smart phone
Hauschild et al. Kalman-filter-based GPS clock estimation for near real-time positioning
CN1208631C (en) Method and appts. for determining time in satellite positioning system
Marques et al. Accuracy assessment of Precise Point Positioning with multi-constellation GNSS data under ionospheric scintillation effects
US20230258817A1 (en) Antenna phase center compensation for orbital assistance data
WO2015099194A1 (en) Satellite positioning system, positioning terminal, positioning method, and recording medium
WO2015145719A1 (en) Positioning device
CN110531396B (en) Mobile station positioning method and device, and computer readable storage medium
WO2016207176A1 (en) Gnss receiver with a capability to resolve ambiguities using an uncombined formulation
CN112505735A (en) Method, device and storage medium for positioning terminal
CN110824505B (en) Deviation estimation method and system, positioning method and terminal of GNSS satellite receiver
CN114935770B (en) Method and device for accelerating precision single-point positioning convergence speed by multiple calendars
US20200081135A1 (en) Positioning method and positioning terminal
EP3620825B1 (en) Precise point positioning method and positioning apparatus and recording medium thereof
CN112505729B (en) Method for determining satellite number, method for determining terminal position, device and medium
TWI683122B (en) Precise point positioning method and positioning apparatus and recording medium thereof
CN110794433B (en) Vector ionosphere delay correction method based on Beidou system
CN106814376B (en) Rapid and accurate centimeter-level single-point positioning method
CN109856656B (en) Navigation positioning method and device, electronic equipment and storage medium
CN114047527A (en) Pseudo-range signal transmission method, pseudo-range signal transmission device, storage medium, and electronic device
US11294072B2 (en) Method, device and server for estimation of IFB calibration value
KR102661093B1 (en) Apparatus and method for generating user carrier phase virtual observations for gnss precise user positining based on homogeneous network rtk corrections
CN110531395B (en) Method, device and equipment for positioning unmanned vehicle
EP2177929A1 (en) Navigation-satellite tracking method and receiving station