TW202007672A - Manufacturing method of steel slag cementitious material - Google Patents

Manufacturing method of steel slag cementitious material Download PDF

Info

Publication number
TW202007672A
TW202007672A TW107127652A TW107127652A TW202007672A TW 202007672 A TW202007672 A TW 202007672A TW 107127652 A TW107127652 A TW 107127652A TW 107127652 A TW107127652 A TW 107127652A TW 202007672 A TW202007672 A TW 202007672A
Authority
TW
Taiwan
Prior art keywords
cement
ballast
ratio
days
compressive strength
Prior art date
Application number
TW107127652A
Other languages
Chinese (zh)
Other versions
TWI717625B (en
Inventor
王金鐘
Original Assignee
大地亮環保服務有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大地亮環保服務有限公司 filed Critical 大地亮環保服務有限公司
Priority to TW107127652A priority Critical patent/TWI717625B/en
Publication of TW202007672A publication Critical patent/TW202007672A/en
Application granted granted Critical
Publication of TWI717625B publication Critical patent/TWI717625B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a manufacturing method of a steel slag cementitious material. It comprises the steps of (a) prepating oxidizing slag powder or reductive slag powder; and (b) mixing 0-70 wt% of the oxidizing slag powder or the reductive slag powder with the remaining weight percent of a cement clinker or/and power plant fly ash to obtain the steel slag cementitious material. Accordingly, the present invention achieves low cost and resource recycling by utilizing industrial waste to produce the steel slag cementitious material which meets the requirements of cement setting time, compressive strength and dry shrinkage rate.

Description

鋼碴膠結材的製造方法Method for manufacturing steel ballast cement

本發明係有關於一種鋼碴膠結材的製造方法,尤其係指一種利用工業廢棄物中氧化碴粉末、還原碴粉末、電廠飛灰製成鋼碴膠結材的方法,其可於常溫環境下利用乾扮混合而得,無須經過高溫燒製,亦無須於混合過程中加入水分,並可達到符合水泥凝結時間、抗壓強度與乾縮率的要求。The invention relates to a method for manufacturing steel ballast cement, in particular to a method for manufacturing steel ballast cement by using oxidized ballast powder, reduced ballast powder and power plant fly ash in industrial waste, which can be used under normal temperature environment It is obtained by mixing dry, without high-temperature firing, without adding water during the mixing process, and can meet the requirements of cement setting time, compressive strength and dry shrinkage.

按,隨著我國鋼鐵業蓬勃的發展,產品等級已逐步提昇,產量也逐年地增長,然而於煉鋼過程中亦伴隨大量副產品-爐渣的產生。早期爐渣被視為無價值的廢棄物,但基於數量出現快速擴展,目前已然為世界各個生產鋼鐵國家的研究重點項目。國內電弧爐煉鋼渣年產量可達100萬噸,目前大多作為填土及道路基層舖設材料,經濟價值不高。由於此種煉鋼殘渣與水泥、水淬爐石粉成份類似,在日本、大陸等主要煉鋼國家將此爐渣作為鋼渣水泥及營建裝修等原料,除增加其使用價值外,其目的亦希望能解決廢棄物日益增多的處理問題。According to the vigorous development of my country's iron and steel industry, product grades have gradually increased, and production has also increased year by year. However, a large amount of by-product slag is also produced in the steelmaking process. Early slag was regarded as worthless waste, but based on the rapid expansion of the quantity, it is currently a research key project in various steel-producing countries in the world. The annual output of domestic electric arc furnace steel-making slag can reach 1 million tons, and most of them are currently used as filling materials and road base laying materials, and the economic value is not high. Since this steel-making residue is similar to cement and water-quenched furnace powder, it is used as a raw material for steel slag cement, construction and decoration in major steel-making countries such as Japan and the mainland. In addition to increasing its use value, its purpose is also hoped to be resolved Increasing waste disposal issues.

舉例而言,中國專利公開第CN102503204A號,即揭示「一種鋼渣制公路材料」,主要含有作為煉鋼固廢鋼渣的細鋼渣、礦渣粉和石料或者粗鋼渣 其特徵在於利用鋼渣在遇水時產生氫氧化鈣的特徵,激發粒化高爐礦渣粉產生凝膠作用,使混合料膠結固化,礦渣粉混合細鋼渣則作為穩定劑,且細鋼渣同時可以作為細骨料,提高公路基層的耐久性和抗壓性,藉此能達到利用煉鐵煉鋼伴生資源取代現有技術採用石灰和水泥作為公路基層材;然而,上述材料需加入水並添加煉鋼廢細鋼渣、礦渣粉、再加入石料或粗鋼渣按一定比例均勻拌合才能得到混合材,不僅製備過程複雜且成本較高。For example, Chinese Patent Publication No. CN102503204A discloses “a road material made of steel slag”, which mainly contains fine steel slag, slag powder and stone material or solid steel slag as steel-making solid waste steel slag, which is characterized in that steel slag is generated when it meets water The characteristics of calcium hydroxide stimulate the granulated blast furnace slag powder to produce a gelation effect, and the mixture is cemented and solidified. The slag powder mixed with fine steel slag is used as a stabilizer, and the fine steel slag can also be used as fine aggregate to improve the durability of the road base and Compression resistance, which can achieve the use of iron and steel associated resources to replace the existing technology using lime and cement as the road base material; however, the above materials need to add water and add steelmaking waste fine steel slag, slag powder, and then add stone or crude steel The slag can be mixed uniformly in a certain proportion to obtain a mixed material, which is not only complicated in preparation process but also high in cost.

中華民國專利公開第201808855號係揭示一種「膠結材、砂漿固化物的製造方法及藉由其所形成的砂漿固化物」,所述製造方法包括:先提供煉鋼爐渣,再將所述煉鋼爐渣浸泡在水中,以使水形成鹼性溶液;接續,將所述鹼性溶液與所述煉鋼爐渣分離,並在所述鹼性溶液中加入玻璃粉末攪拌均勻,以形成膠結溶液;最後固化所述膠結溶液,以形成膠結材;顯然,此製造方法亦須加入水或其他溶液混拌,並且添加玻璃粉末才得以完成,因此製造過程較為繁瑣。Republic of China Patent Publication No. 201808855 discloses a "manufacturing method of cemented material and mortar solidified material and mortar solidified material formed thereby". The manufacturing method includes: firstly providing a steel-making slag, and then the steel-making The slag is soaked in water to form an alkaline solution; then, the alkaline solution is separated from the steel-making slag, and the glass powder is added to the alkaline solution and stirred evenly to form a cementing solution; and finally cured The cementing solution is used to form a cementitious material; obviously, this manufacturing method also requires the addition of water or other solutions for mixing, and the addition of glass powder can be completed, so the manufacturing process is cumbersome.

根據文獻資料顯示,平均生產1 噸生鐵約產生300 公斤的高爐石,而轉爐與電弧爐煉鋼,平均生產1 噸粗鋼約產生130 公斤之轉爐碴或100~200 公斤之電弧爐碴。由經濟部之統計資料顯示,國內電弧爐煉鋼渣年產量為100 萬噸(含碳鋼及不銹鋼渣),無論氧化渣或還原渣皆以殘鐵或氧化鐵、氧化鈣、二氧化矽、三氧化二鋁、氧化鎂及氧化錳為主成分,經過分析得知電弧爐煉鋼時所產生之氧化渣和還原渣其化學性質與水泥、高爐石粉相近,具有類似卜作嵐材料的性質,故如何將上述工業廢料作為混凝土的膠結材料使用,仍為相關領域研發之重點。According to the literature, the average production of 1 ton of pig iron produces about 300 kg of blast furnace stone, while the converter and electric arc furnace steelmaking, the average production of 1 ton of crude steel produces about 130 kg of converter ballast or 100-200 kg of electric arc furnace ballast. According to the statistics of the Ministry of Economy, the annual output of domestic electric arc furnace steel-making slag is 1 million tons (carbon steel and stainless steel slag). Whether the slag or reducing slag is residual iron or iron oxide, calcium oxide, silicon dioxide, Aluminum oxide, magnesium oxide and manganese oxide are the main components. The analysis shows that the chemical properties of the oxidized slag and reducing slag generated during steelmaking in the electric arc furnace are similar to those of cement and blast furnace stone powder, and they have properties similar to those of Bu Zuolan. The use of the above industrial waste as a cementing material for concrete is still the focus of research and development in related fields.

另,台灣營建業每年大約使用2 千萬噸的水泥,大陸地區更是高達8 億噸,然而因製造水泥的過程中,高溫的窯燒會排放相當大量的二氧化碳,故為保護環境的措施下,減少窯燒、製作水泥的替代品亦為刻不容緩的事。In addition, Taiwan’s construction industry uses about 20 million tons of cement every year, and the mainland area is as high as 800 million tons. However, in the process of manufacturing cement, high temperature kiln firing will emit a considerable amount of carbon dioxide, so under environmental protection measures To reduce kiln firing and make cement substitutes is also an urgent matter.

本發明主要目的為提供一種鋼碴膠結材的製造方法,其係指一種利用工業廢棄物中氧化碴粉末、還原碴粉末、電廠飛灰製成鋼碴膠結材的方法,其可於常溫環境下利用乾扮方式混合而得,無須經過高溫燒製,亦無須於混合過程中加入水分,並可達到符合水泥凝結時間、抗壓強度與乾縮率的要求。The main purpose of the present invention is to provide a method for manufacturing steel ballast cement, which refers to a method for making steel ballast cement by using oxidized ballast powder, reduced ballast powder and power plant fly ash in industrial waste, which can be used in normal temperature environment It is obtained by mixing in a dry way, without high-temperature firing, and without adding water during the mixing process, and can meet the requirements of cement setting time, compressive strength and dry shrinkage.

為了達到上述實施目的,本發明一種鋼碴膠結材的製造方法,其包括下列步驟:(a)準備一氧化碴粉末或一還原碴粉末;以及(b)於常溫下且不含水的條件下,將重量百分比0-70 wt%氧化碴粉末或還原碴粉末,與剩餘重量百分比之水泥熟料或/及電廠飛灰混合,以製得鋼碴膠結材;較佳而言,步驟(b)係將重量百分比30-60 wt%氧化碴粉末、20-70 wt%水泥熟料混合,與剩餘重量百分比之電廠飛灰混合,以製得氧化鋼碴膠結材。In order to achieve the above-mentioned implementation objective, the present invention provides a method for manufacturing steel ballast cementitious materials, which includes the following steps: (a) preparing oxidized ballast powder or a reduced ballast powder; and (b) at room temperature without water, Mix 0-70 wt% of oxidized ballast powder or reduced ballast powder with the remaining weight percentage of cement clinker or/and power plant fly ash to produce steel ballast cement; preferably, step (b) is Mix 30-60 wt% oxidized ballast powder and 20-70 wt% cement clinker and mix with the remaining weight percentage of power plant fly ash to produce oxidized steel ballast cement.

於本發明之一實施例中,氧化碴粉末或還原碴粉末係由下列步驟製備而得:(i)進行一磁選、破碎與過篩程序至少一次;以及(ii)進行一研磨與過篩程序,以製得氧化碴粉末或還原碴粉末。In one embodiment of the present invention, the oxidized ballast powder or reduced ballast powder is prepared by the following steps: (i) performing a magnetic separation, crushing and sieving process at least once; and (ii) performing a grinding and sieving process To produce oxidized ballast powder or reduced ballast powder.

於本發明之一實施例中,步驟(b)係將重量百分比30-60 wt%還原碴粉末、20-70 wt%水泥熟料混合,與剩餘重量百分比之電廠飛灰混合,以製得還原鋼碴膠結材。In one embodiment of the present invention, step (b) is to mix 30-60 wt% reduced ballast powder and 20-70 wt% cement clinker with the remaining weight percentage of power plant fly ash to produce reduced Steel ballast cement material.

於本發明之一實施例中,氧化碴粉末係至少包括化合物CaO、SiO2 、Al2 O3 、Fe2 O3 、MgO、Na2 O、MnO、CaCO3 與元素C、O、Si、Al、Fe、Ca、Mg、Mn、Ti、Na。In one embodiment of the present invention, the ballast powder system includes at least compounds CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O, MnO, CaCO 3 and elements C, O, Si, Al , Fe, Ca, Mg, Mn, Ti, Na.

於本發明之一實施例中,還原碴粉末係至少包括化合物CaO、SiO2 、Al2 O3 、Fe2 O3 、CaCO3 、MgO、SnO、Sb2 O3 、MnO與元素C、O、Si、Al、Fe、Ca、Mg、Mn、Sn、Sb。In one embodiment of the present invention, the reduced ballast powder system includes at least compounds CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgO, SnO, Sb 2 O 3 , MnO and elements C, O, Si, Al, Fe, Ca, Mg, Mn, Sn, Sb.

於本發明之一實施例中,水泥熟料係至少包括化合物SiO2 、CaO、Al2 O3 、Fe2 O3 、CaO、MgO、K2 O、Na2 O與元素Ca、Si、Al、Fe、Mg。In one embodiment of the present invention, the cement clinker system includes at least compounds SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 , CaO, MgO, K 2 O, Na 2 O and elements Ca, Si, Al, Fe, Mg.

於本發明之一實施例中,電廠飛灰係至少包括化合物SiO2 、Al2 O3 、Fe2 O3 、CaO、MgO、K2 O、Na2 O與元素C、O、Si、Al、Fe、Ca、K、Mg、Na。In one embodiment of the present invention, the fly ash system of a power plant includes at least compounds SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, K 2 O, Na 2 O and elements C, O, Si, Al, Fe, Ca, K, Mg, Na.

於本發明之一實施例中,鋼碴膠結材係進一步以水膠比0.2-0.3,製得一水泥漿。In an embodiment of the present invention, the steel ballast cement material is further prepared with a water-binder ratio of 0.2-0.3 to obtain a cement slurry.

藉此,本案利用工業廢棄物中的氧化碴粉末、還原碴粉末、電廠飛灰等所製成的鋼碴膠結材,在經過測試後確實能符合水泥凝結時間、抗壓強度與乾縮率的要求;整體而言,本案製造方法可降低製作鋼碴膠結材或水泥等所耗費的成本,亦可達到資源回收再利用之目的。In this way, the steel ballast cement material made of oxidized ballast powder, reduced ballast powder, power plant fly ash, etc. in industrial waste can indeed meet the requirements of cement setting time, compressive strength and dry shrinkage after testing. Requirements; overall, the manufacturing method of this case can reduce the cost of manufacturing steel ballast cement or cement, and can also achieve the purpose of resource recycling.

本發明之目的及其結構功能上的優點,將依據以下圖面所示之結構,配合具體實施例予以說明,俾使審查委員能對本發明有更深入且具體之瞭解。The purpose of the present invention and its structural and functional advantages will be explained based on the structure shown in the following drawings and in conjunction with specific embodiments, so that the reviewing committee can have a more in-depth and specific understanding of the present invention.

如第一圖所示,本發明一種鋼碴膠結材的製造方法,其包括下列步驟:(a)準備一氧化碴粉末或一還原碴粉末;以及(b)於常溫下,將重量百分比0-70 wt%氧化碴粉末或還原碴粉末,與剩餘重量百分比之水泥熟料或/及電廠飛灰混合,以製得鋼碴膠結材;較佳而言,係將重量百分比30-60 wt%氧化碴粉末或還原碴粉末、20-70 wt%水泥熟料混合,與剩餘重量百分比之電廠飛灰混合,以分別製得氧化鋼碴膠結材或還原鋼碴膠結材。As shown in the first figure, a method for manufacturing steel ballast cement material of the present invention includes the following steps: (a) preparing oxidized ballast powder or reduced ballast powder; and (b) at normal temperature, reducing the weight percentage by 0- 70 wt% oxidized ballast powder or reduced ballast powder, mixed with the remaining weight percentage of cement clinker or/and power plant fly ash to produce steel ballast cement; preferably, the weight percentage of 30-60 wt% is oxidized The ballast powder or reduced ballast powder and 20-70 wt% cement clinker are mixed and mixed with the remaining weight percentage of power plant fly ash to prepare respectively oxidized steel ballast cement or reduced steel ballast cement.

所述氧化碴粉末或還原碴粉末可例如由下列步驟製備而得:(i)進行一磁選、破碎與過篩程序至少一次;以及(ii)進行一研磨與過篩(200#)程序,以製得氧化碴粉末或還原碴粉末,詳細如第二圖所示。The oxidized ballast powder or reduced ballast powder can be prepared, for example, by the following steps: (i) performing a magnetic separation, crushing and sieving procedure at least once; and (ii) performing a grinding and sieving (200#) procedure to The oxidized ballast powder or reduced ballast powder is obtained, as shown in the second figure.

此外,藉由下述具體實施例,可進一步證明本發明可實際應用之範圍,但不意欲以任何形式限制本發明之範圍。In addition, through the following specific embodiments, the scope of the present invention can be further proved to be practical, but it is not intended to limit the scope of the present invention in any form.

實施例一:製備鋼碴膠結材Example 1: Preparation of steel ballast cement

鋼碴膠結材在此係採用海光鋼鐵和龍慶鋼鐵的氧化碴和還原碴調配,由於海光鋼鐵和龍慶鋼鐵氧化碴和還原碴料源成份相當類似,因此實施例使用之氧化碴粉就是採用海光氧化碴50%(wt)和龍慶氧化碴50%(wt)所調配的混合料來進行試驗,同理還原碴粉也是採用海光還原碴50%(wt)和龍慶還原碴50%(wt)所調配的混合料來製作。The steel ballast cement material is formulated with the oxidized ballast and reduced ballast of Haiguang Iron and Steel and Longqing Iron and Steel. Since the source materials of the oxidized ballast and reduced ballast of Haiguang Steel and Longqing Iron and Steel are quite similar, the oxidized ballast powder used in the examples is used The mixture of Haiguang oxidized ballast 50% (wt) and Longqing oxidized ballast 50% (wt) was used for the experiment. Similarly, the reduced ballast powder was also used Haiguang reduced ballast 50% (wt) and Longqing reduced ballast 50% ( wt) to prepare the mixture.

將氧化碴粉(代號O)與還原碴粉(代號R)分別再和水泥熟料(代號C)、F級火力電廠飛灰(代號F)依不同重量百分比於室溫環境下混合,混合過程無須添加水,待混合均勻後,形成氧化碴粉共15組與還原碴粉共15組,如表一所示。Mix oxidized ballast powder (code O) and reduced ballast powder (code R) separately with cement clinker (code C) and F-class thermal power plant fly ash (code F) at different weight percentages at room temperature, mixing process There is no need to add water. After mixing, a total of 15 groups of oxidized ballast powder and 15 groups of reduced ballast powder are formed, as shown in Table 1.

表一

Figure 107127652-A0304-0001
Table I
Figure 107127652-A0304-0001

上述水泥熟料購自市售台灣水泥,由X 光繞射分析(XRD) 探討水泥各個相位的組成生成物,結果如第三圖所示,圖中顯示水泥主要結晶形化合物為SiO2 、CaO,次要結晶形化合物為Al2 O3 、Fe2 O3 、CaO、MgO、K2 O、Na2 O 等,再由X 光螢光分析(XRF)探討水泥試樣中各元素含量,其中以Ca、Si、Al、Fe、Mg 等元素含量最高,配合XRD 分析所得的各種化合物再以重量分析計算其化學成份計量,進而推算水泥各元素的氧化態含量百分比,如表二所示。再以掃描式電子顯微鏡(SEM)觀察其晶相變化,如第三圖所示,水泥外觀以針刺狀的C-S-H 膠體(如圖中圓框)與六角片狀的氫氧化鈣(如圖中方框)結合。The above cement clinker was purchased from a commercially available Taiwan cement, and X-ray diffraction analysis (XRD) was used to discuss the composition of each phase of the cement. The results are shown in the third figure, which shows that the main crystalline compounds of the cement are SiO 2 and CaO , The secondary crystalline compounds are Al 2 O 3 , Fe 2 O 3 , CaO, MgO, K 2 O, Na 2 O, etc. The content of each element in the cement sample is discussed by X-ray fluorescence analysis (XRF). With the highest content of Ca, Si, Al, Fe, Mg and other elements, each compound obtained by XRD analysis is then gravimetrically calculated to calculate its chemical composition, and then the percentage of oxidation state content of each element of cement is calculated, as shown in Table 2. Then observe the crystal phase change with a scanning electron microscope (SEM). As shown in the third figure, the appearance of the cement is a needle-like CSH colloid (shown as a round frame in the figure) and a hexagonal piece of calcium hydroxide (as shown in the figure above) Box) combined.

表二

Figure 107127652-A0304-0002
Table II
Figure 107127652-A0304-0002

上述電廠飛灰取至興達火力電廠,由X 光繞射分析(XRD)探討電廠飛灰各個相位的組成生成物,結果如第四圖所示,圖中顯示電廠飛灰主要結晶形化合物為SiO2 ,次要結晶形化合物為 Al2 O3 、Fe2 O3 、CaO、MgO、K2 O、Na2 O 等,再由X 光螢光分析(XRF)探討電廠飛灰試樣中各元素含量,其中以C、O、Si、Al、Fe、Ca、K、Mg、Na 等元素含量最高,配合XRD 分析所得的各種化合物再以重量分析計算其化學成份計量,進而推算電廠飛灰各元素的氧化態含量百分比,如表二所示。再以掃描式電子顯微(SEM)觀察電廠飛灰晶相變化,如第四圖所示,電廠飛灰外觀均以大小不等球狀結構交錯組合,其球狀顆粒的粒徑較大,中間分佈著大小不等孔隙(如圖中方框)。The above-mentioned power plant fly ash was taken to Xingda Thermal Power Plant, and X-ray diffraction analysis (XRD) was used to discuss the composition products of each phase of the power plant fly ash. The results are shown in the fourth figure, which shows that the main crystalline compounds of the power plant fly ash are SiO 2 , the secondary crystalline compounds are Al 2 O 3 , Fe 2 O 3 , CaO, MgO, K 2 O, Na 2 O, etc. Then, X-ray fluorescence analysis (XRF) is used to discuss each of the power plant fly ash samples Elemental content, in which C, O, Si, Al, Fe, Ca, K, Mg, Na and other elements have the highest content, and each compound obtained by XRD analysis is then gravimetrically calculated to calculate its chemical composition measurement, and then to estimate the power plant fly ash The percentage of the oxidation state content of the element is shown in Table 2. Scanning electron microscopy (SEM) was used to observe the crystalline phase change of the fly ash of the power plant. As shown in the fourth figure, the appearance of the fly ash of the power plant was staggered and combined with spherical structures of different sizes, and the particle size of the spherical particles was relatively large. There are pores of different sizes distributed in the middle (as shown in the box).

將取自海光鋼鐵公司的氧化碴利用X 光繞射分析(XRD)探討各個相位的組成生成物,結果如第五圖所示,圖中顯示海光鋼鐵的氧化碴主要結晶形化合物為CaO、SiO2 ,次要結晶形化合物為 Al2 O3 、Fe2 O3 、MgO、Na2 O、MnO、CaCO3 等,再由X 光螢光分析(XRF)探討海光鋼鐵的氧化碴試樣中各元素含量,其中以C、O、Si、Al、Fe、Ca、Mg、Mn、Ti 等元素含量最高,配合XRD 分析所得的各種化合物再以重量分析計算其化學成份計量,得知進而推算其各元素的氧化態含量百分比,如表二所示。再以掃描式電子顯微鏡(SEM)觀察其晶相變化,如第五圖所示,海光鋼鐵的氧化碴由粒徑大小不等片狀、針狀、角粒狀、針刺狀C-S-H 膠體(如圖中圓框)推疊而成,並存在許多大小不等的孔隙。The oxidized ballast from Haiguang Iron and Steel Company was analyzed by X-ray diffraction analysis (XRD). The results are shown in the fifth figure. The figure shows that the main crystalline compounds of oxidized ballast of Haiguang Iron and Steel are CaO and SiO. 2. The secondary crystalline compounds are Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O, MnO, CaCO 3 and so on. Then, X-ray fluorescence analysis (XRF) is used to discuss the oxidized ballast samples of Haiguang Steel. Element content, in which C, O, Si, Al, Fe, Ca, Mg, Mn, Ti and other elements have the highest content, and various compounds obtained by XRD analysis are then gravimetrically calculated to calculate their chemical composition measurement, and then know their respective The percentage of the oxidation state content of the element is shown in Table 2. Scanning electron microscope (SEM) was used to observe the change of crystal phase. As shown in the fifth figure, the oxidized ballast of Haiguang Iron and Steel consisted of flaky, needle-like, angle-like, and needle-like CSH colloids (such as The round frame in the picture is pushed and stacked, and there are many pores of different sizes.

將取自龍慶鋼鐵公司的氧化碴利用X 光繞射分析(XRD)探討各個相位的組成生成物,結果如第六圖所示,圖中顯示慶鋼鐵的氧化碴主要結晶形化合物為CaO、SiO2 、Fe2 O3 ,次要結晶形化合物為Al2 O3 、MgO、CaCO3 、Na2 O、MnO 等,再由X 光螢光分析(XRF)探討龍慶鋼鐵的氧化碴試樣中各元素含量,其中以C、O、Si、Al、Fe、Ca、Mg、Na、Mn 等元素含量最高,配合XRD 分析所得的各種化合物再以重量分析計算其化學成份計量,得知進而推算其各元素的氧化態含量百分比,如表二所示。再以掃描式電子顯微鏡(SEM)觀察其晶相變化,如第六圖所示,龍慶鋼鐵的氧化碴由粒徑大小不等片狀、針狀、角粒狀、針刺狀C-S-H 膠體(如圖中圓框)推疊而成,並存在許多大小不等的孔隙。The oxidized ballast from Longqing Iron and Steel Company was analyzed by X-ray diffraction analysis (XRD). The results are shown in the sixth figure. The figure shows that the main crystalline compounds of oxidized ballast of Qingsteel are CaO, SiO 2 , Fe 2 O 3 , the secondary crystalline compounds are Al 2 O 3 , MgO, CaCO 3 , Na 2 O, MnO, etc., then X-ray fluorescence analysis (XRF) to discuss the oxidation ballast samples of Longqing Steel The content of each element in the medium, of which C, O, Si, Al, Fe, Ca, Mg, Na, Mn and other elements have the highest content, and the various compounds obtained by XRD analysis are then gravimetrically calculated to calculate the chemical composition measurement, and then calculated The percentage of oxidation state content of each element is shown in Table 2. Scanning electron microscope (SEM) was used to observe the change of crystal phase. As shown in the sixth figure, the oxidized ballast of Longqing Iron & Steel consisted of plate-like, needle-like, angle-like, and needle-like CSH colloids with different particle sizes ( As shown in the figure, the round frame is pushed and stacked, and there are many pores of different sizes.

將取自海光鋼鐵公司的還原碴利用X 光繞射分析(XRD)探討各個相位的組成生成物,結果如第七圖所示,圖中顯示海光鋼鐵的還原碴主要結晶形化合物為CaO、SiO2 ,次要結晶形化合物為 Al2 O3 、Fe2 O3 、CaCO3 、MgO、SnO、Sb2 O3 、MnO 等,再由X 光螢光分析(XRF)探討海光鋼鐵的還原碴試樣中各元素含量,其中以C、O、Si、Al、Fe、Ca、Mg、Mn、Sn、Sb 等元素含量最高,配合XRD 分析所得的各種化合物再以重量分析計算其化學成份計量,得知進而推算海光鋼鐵的還原碴各元素的氧化態含量百分比,如表二所示。再以掃描式電子顯微鏡(SEM)觀察其晶相變化,如第七圖所示,海光鋼鐵的還原碴由粒徑大小不等片狀、針狀、角粒狀、針刺狀C-S-H 膠體(如圖中圓框)推疊而成,並存在許多大小不等的孔隙。The reduction ballast from Haiguang Iron and Steel Co., Ltd. was analyzed by X-ray diffraction analysis (XRD). The results are shown in the seventh figure. The figure shows that the main crystalline compounds of the reduction ballast of Haiguang Iron and Steel are CaO and SiO. 2. The secondary crystalline compounds are Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgO, SnO, Sb 2 O 3 , MnO, etc., then X-ray fluorescence analysis (XRF) to discuss the reduction ballast test of Haiguang Steel The content of each element in the sample, of which C, O, Si, Al, Fe, Ca, Mg, Mn, Sn, Sb and other elements have the highest content, and the various compounds obtained by XRD analysis are then gravimetrically calculated to calculate the chemical composition measurement. Knowing and further estimating the percentage of oxidation state content of each element of the reduced ballast of Haiguang Iron and Steel, as shown in Table 2. Scanning electron microscope (SEM) was used to observe the change of crystal phase. As shown in the seventh figure, the reduction ballast of Haiguang Iron and Steel consisted of flaky, needle-like, angular grain-like, and needle-like CSH colloids with different particle sizes (such as The round frame in the picture is pushed and stacked, and there are many pores of different sizes.

將取自龍慶鋼鐵公司的還原碴利用X光繞射分析(XRD)瞭解龍慶鋼鐵的還原碴各個相位的組成生成物,結果如第八圖所示,圖中顯示慶鋼鐵的還原碴主要結晶形化合物為CaO、SiO2 ,次要結晶形化合物Al2 O3 、Fe2 O3 、CaCO3 、MgO、SnO、Sb2 O3 等,再由X 光螢光分析(XRF)探討電廠飛灰試樣中各元素含量,其中以C、O、Si、Al、Fe、Ca、Mg、Sn、Sb 等元素含量最高,配合XRD 分析所得的各種化合物再以重量分析計算其化學成份計量,得知進而推算其各元素的氧化態含量百分比,如表二所示。再以掃描式電子顯微鏡(SEM)觀察其晶相變化,如第八圖所示龍慶鋼鐵的還原碴由粒徑大小不等片狀、針狀、角粒狀、針刺狀C-S-H 膠體(如圖中圓框)推疊而成,並存在許多大小不等的孔隙。The reduction ballast from Longqing Iron and Steel Company will be used to understand the composition of each phase of the reduction ballast of Longqing Steel by X-ray diffraction analysis (XRD). The results are shown in the eighth figure. The crystalline compounds are CaO, SiO 2 , the secondary crystalline compounds Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgO, SnO, Sb 2 O 3, etc. Then, the X-ray fluorescence analysis (XRF) is used to discuss the power plant flying The content of each element in the gray sample, of which C, O, Si, Al, Fe, Ca, Mg, Sn, Sb and other elements have the highest content, and the various compounds obtained by XRD analysis are then gravimetrically calculated to calculate the chemical composition measurement. It is known that the percentage of oxidation state content of each element is calculated as shown in Table 2. Scanning electron microscope (SEM) was used to observe the change of crystal phase. As shown in the eighth figure, the reduction ballast of Longqing Iron & Steel consisted of flaky, needle-like, angle-like, and needle-like CSH colloids with different particle sizes (such as The round frame in the picture is pushed and stacked, and there are many pores of different sizes.

另,氧化碴和還原碴樣品依「有害事業廢棄物認定標準」中之「溶出毒性事業廢棄物」分析方法對其重金屬作有害特性判定(U.S.EPA,1992),所使用之毒性特性溶出程序(Toxicity Characteristic Leaching Procedure,TCLP)的實驗方法係參考環保署檢驗所NIEA R201.12C 之方法,溶出毒性大小之判定則依據行政院環保署公告之溶出毒性事業廢棄物之溶出標準。根據溶出結果得知各項重金屬檢測值遠低於管制標準,應無重金屬汙染之問題,且可歸屬於一般事業廢棄物。後續將利用上述30組具有不同比例氧化碴粉末或還原碴粉末之樣品進行各項試驗。In addition, the samples of oxidized ballast and reduced ballast are used to determine the harmful properties of heavy metals according to the analysis method of "leaching toxic business waste" in the "Hazardous Business Waste Certification Standard" (USEPA, 1992), and the toxic characteristic dissolution procedures used ( The experimental method of Toxicity Characteristic Leaching Procedure (TCLP) refers to the method of NIEA R201.12C of the Environmental Protection Agency, and the determination of the dissolution toxicity is based on the dissolution standard of the toxic business waste promulgated by the Environmental Protection Department of the Executive Yuan. According to the dissolution results, it is known that the detection value of each heavy metal is far lower than the control standard, there should be no problem of heavy metal pollution, and it can be classified as general business waste. Subsequent tests will be conducted using the above 30 groups of samples with different proportions of oxidized ballast powder or reduced ballast powder.

實施例二:檢測凝結時間Example 2: Detecting the setting time

膠結材在加水之後開始產生水化作用,由於水化過程產生C-S-H 膠體並獲得強度,使內部結構更為緻密,而氧化查和還原碴在凝結時為液態與固態之間的轉換,利用氧化碴和還原碴之活性並產生水化反應,而凝結時間也是評估工作性的重要指標之一。The cement material begins to hydrate after adding water. Due to the hydration process, CSH colloids are produced and strong 度 is obtained, which makes the internal structure more dense, and the oxidation check and reduction ballast are the conversion between liquid and solid state when condensed. And reduce the activity of ballast and produce hydration reaction, and the setting time is also one of the important indicators to evaluate the workability.

為了分析不同膠結材漿體之摻配量對於凝結時間的影響,依據ASTM C191 水泥凝結時間試驗進行量測,依表一之配比與水膠比為0.2、0.25和0.30,分別製作錐型膠結材漿體,並以費開氏針來量測膠結材漿體之初凝、終凝時間。判別標準為以費開氏針從純漿試體表面貫入深度判別,於費開氏試驗儀支架上配有刻度尺,旁有費開氏針固定鎖,將費開氏針接觸至漿體表面時,將其固定鎖鬆開後,再依刻度尺紀錄於不同時間之下沉高度。開始下沉時間為30 秒並且下沉高度為25mm 含以下,其時間將判斷為初凝時間,而終凝時間則為無法於漿體面產生下沉高度,測試結果請參閱第九圖和第十圖。In order to analyze the influence of the blending amount of different cement pastes on the setting time, the measurement was carried out according to the ASTM C191 cement setting time test, and the mixing ratio and the water-binder ratio according to Table 1 were 0.2, 0.25, and 0.30, and cone-shaped cements were made respectively. Wood slurry, and measure the initial setting time and final setting time of cementitious material slurry with a Kelvin needle. The standard of discrimination is to penetrate the depth of the pure slurry sample surface with a Fischer needle, and there is a carved 度 ruler on the bracket of the Fischer tester, and there is a fixed lock of the Fischer needle next to the Fischer needle to the surface of the slurry. At the time, after releasing the fixed lock, then record the sink height at different times according to the 度 ruler. The initial settling time is 30 seconds and the settling height 度 is 25mm and the following, the time will be judged as the initial setting time, and the final settling time is that the settling height 度 cannot be generated on the slurry surface. For the test results, please refer to the ninth figure and the tenth Figure.

(1)氧化碴膠結材水膠比W/B=0.2、W/B=0.25、W/B=0.3(1) Water-to-binder ratio of oxidized ballast cement material W/B=0.2, W/B=0.25, W/B=0.3

以費開氏針測定水硬性水泥凝結時間試驗,水泥初凝時間為1.5 至3 小時,終凝時間為3 至6 小時。詳細而言,如第九圖所示,當水膠比W/B=0.2時,C20F50O30、C30F40O30、C40F30O30其凝結時間初凝分別為2 分鐘、終凝分別為11 分鐘,以參照值純水泥配比C100O00 初凝為2 分鐘、終凝為3 分鐘相當接近;C10F50O40、C20F40O40、C30F30O40其凝結時間初凝分別為1、22、27 分鐘、終凝為33、86、94 分鐘,以參照值純水泥配比C100O00 初凝為2 分鐘、終凝為3 分鐘差距較大;C00F50O50、C10F40O50、C20F30O50其凝結時間初凝分別為25、1、105 分鐘、終凝分別為46、22、155 分鐘,以參照值純水泥配比C100O00 初凝為2分鐘、終凝為3 分鐘差距較大;再以C70O30、C60O40、C50O50、C40O60、C00O100、C100O00配比而言,其凝結時間初凝分別為1、1、55、78、369、2 分鐘、終凝分別為3、3、78、100、448、3 分鐘,以參照值純水泥配比C100O00 初凝為2 分鐘、終凝為3 分鐘差距更大。由此可知,氧化碴膠結材的凝結時間隨氧化碴摻配量增加而增加,趨勢相當明顯,當水膠比W/B=0.20時以C20F50O30、C30F40O30、C40F30O30、C70O30、C60O40等配比符合水泥凝結時間要求為較佳。The test of setting time of hydraulic cement by Fischer needle is 1.5 to 3 hours for the initial setting time of cement and 3 to 6 hours for the final setting time. In detail, as shown in the ninth figure, when the water-to-binder ratio W/B=0.2, the setting time of C20F50O30, C30F40O30, C40F30O30 is 2 minutes for the initial setting and 11 minutes for the final setting. Compared with C100O00, the initial setting is 2 minutes and the final setting is 3 minutes. It is quite close to C10F50O40, C20F40O40, C30F30O40. The initial setting is 1, 22, 27 minutes, and the final setting is 33, 86, 94 minutes. The ratio of C100O00 is 2 minutes for the initial setting and 3 minutes for the final setting; the setting time for C00F50O50, C10F40O50, C20F30O50 is 25, 1, 105 minutes, and the final setting is 46, 22, and 155 minutes respectively. The value of the pure cement ratio C100O00 is 2 minutes for the initial setting and 3 minutes for the final setting; then according to the ratio of C70O30, C60O40, C50O50, C40O60, C00O100, and C100O00, the setting time of the initial setting is 1, 1, respectively 55, 78, 369, 2 minutes, and final setting are 3, 3, 78, 100, 448, and 3 minutes, respectively. Based on the reference value, the ratio of pure cement C100O00 is 2 minutes for initial setting and 3 minutes for final setting. It can be seen that the setting time of the oxidized ballast cement material increases with the increase of the amount of oxidized ballast, and the trend is quite obvious. When the water-binder ratio W/B=0.20, the ratio of C20F50O30, C30F40O30, C40F30O30, C70O30, C60O40, etc. is in line with cement. The setting time requirement is better.

當水膠比W/B=0.25時,C20F50O30、C30F40O30、C40F30O30其凝結時間初凝分別為115、103、135 分鐘、終凝分別為124、139、143 分鐘,以參照值純水泥配比C100O00 初凝為8 分鐘、終凝為90 分鐘相當接近;C10F50O40、C20F40O40、C30F30O40 其凝結時間初凝分別為84、183、159 分鐘、終凝為115、197、211 分鐘,以參照值純水泥配比C100O00初凝為8 分鐘、終凝為90 分鐘差距較大;C00F50O50、C10F40O50、C20F30O50其凝結時間初凝分別為169、131、402 分鐘、終凝分別為485、300、420 分鐘,以參照值純水泥配比C100O00 初凝為8 分鐘、終凝為90 分鐘差距更大;再以C70O30、C60O40、C50O50、C40O60、C00O100、C100O00其凝結時間初凝分別為56、86、136、165、1084、56 分鐘、終凝分別為90、136、151、189、1445、77 分鐘,以參照值純水泥配比C100O00 初凝為8 分鐘、終凝為90 分鐘差距更大。由此可知,氧化碴膠結材的凝結時間隨氧化碴摻配量增加而增加,趨勢相當明顯,若單純以氧化碴其凝結時間更久,可能需耗費1整天的時間,在這15 組配比中以C70O30、C60O40、C50O50、C40O60 配比凝結時間較接近參照值純水泥配比C100O00。因此,當水膠比W/B=0.25時,以C20F50O30、C30F40O30、C40F30O30、C10F50O40 、C70O30、C60O40、C50O50、C40O60 等配比符合水泥凝結時間要求為較佳。When the water-binder ratio W/B=0.25, the setting time of C20F50O30, C30F40O30, C40F30O30 is 115, 103, 135 minutes, and the final setting is 124, 139, and 143 minutes, respectively. The setting time is 8 minutes and the final setting time is quite close to 90 minutes; for C10F50O40, C20F40O40, C30F30O40, the setting time is 84, 183, 159 minutes, the final setting is 115, 197, 211 minutes, and the reference value is pure cement ratio C100O00 The difference between the initial setting is 8 minutes and the final setting is 90 minutes; the setting time of C00F50O50, C10F40O50, C20F30O50 is 169, 131, 402 minutes, and the final setting is 485, 300, and 420 minutes, respectively. The ratio of C100O00 is 8 minutes for the initial setting and 90 minutes for the final setting; then for C70O30, C60O40, C50O50, C40O60, C00O100, C100O00, the initial setting time is 56, 86, 136, 165, 1084, 56 minutes respectively The final setting is 90, 136, 151, 189, 1445, and 77 minutes, respectively. Based on the reference value, the ratio of pure cement C100O00 is 8 minutes for the initial setting and 90 minutes for the final setting. It can be seen that the setting time of the oxidized ballast cement material increases with the increase of the amount of oxidized ballast. The trend is quite obvious. If the coagulated ballast is used for a longer time, it may take 1 whole day to mix in these 15 groups. In the ratio, the setting time of C70O30, C60O40, C50O50, C40O60 is closer to the reference value, and the ratio of pure cement is C100O00. Therefore, when the water-binder ratio W/B=0.25, it is better to use C20F50O30, C30F40O30, C40F30O30, C10F50O40, C70O30, C60O40, C50O50, C40O60, etc. to meet the cement setting time requirements.

當水膠比W/B=0.3時,C20F50O30、C30F40O30、C40F30O30其凝結時間初凝分別為125、169、134 分鐘、終凝分別為212、218、189 分鐘,以參照值純水泥配比C100O00 初凝為125 分鐘、終凝為170 分鐘相當接近;C10F50O40、C20F40O40、C30F30O40其凝結時間初凝分別為187、208、117 分鐘、終凝為231、232、258 分鐘,以參考值純水泥配比C100O00初凝為125 分鐘、終凝為170 分鐘相當接近;C00F50O50、C10F40O50、C20F30O50其凝結時間初凝分別為362、111、105 分鐘、終凝分別為373、124、127 分鐘,以參照值純水泥配比C100O00 初凝為125 分鐘、終凝為170 分鐘差距較大;再以C70O30、C60O40、C50O50、C40O60、C00O100、C100O00 配比而言,其凝結時間初凝分別為75、83、90、152、1232、75 分鐘、終凝分別為93、95、110、164、1632、93 分鐘,以參照值純水泥配比C100O00 初凝為125 分鐘、終凝為170 分鐘相當接近。由此可知,氧化碴膠結材的凝結時間隨氧化碴摻配量增加而增加,趨勢相當明顯,其中以C70O30、C60O40、C50O50、C40O60 配比凝結時間較接近參照值純水泥配比C100O00。因此,當水膠比W/B=0.30時,以C20F50O30、C30F40O30、C40F30O30 、C10F50O40 、C20F40O40 、C30F30O40、C10F40O50、C20F30O50、C70O30、C60O40、C50O50、C40O60 等配比符合水泥凝結時間要求為較佳。When the water-binder ratio W/B=0.3, the setting time of C20F50O30, C30F40O30, C40F30O30 is 125, 169, 134 minutes, and the final setting is 212, 218, and 189 minutes, respectively. The setting time is 125 minutes, and the final setting is 170 minutes. The setting times of C10F50O40, C20F40O40, and C30F30O40 are 187, 208, and 117 minutes respectively, and the final setting is 231, 232, and 258 minutes. The initial setting is 125 minutes, and the final setting is 170 minutes, which is quite close; the setting time of C00F50O50, C10F40O50, C20F30O50 is 362, 111, 105 minutes, and the final setting is 373, 124, 127 minutes. Compared with C100O00, the initial setting is 125 minutes and the final setting is 170 minutes. The C70O30, C60O40, C50O50, C40O60, C00O100, C100O00 ratios, the initial setting time is 75, 83, 90, 152, 1232, 75 minutes, and final setting are 93, 95, 110, 164, 1632, and 93 minutes respectively. Based on the reference value, the ratio of pure cement C100O00 is 125 minutes for the initial setting and 170 minutes for the final setting. It can be seen that the setting time of the oxidized ballast cement material increases with the increase of the amount of oxidized ballast, and the trend is quite obvious. Among them, the setting time of C70O30, C60O40, C50O50, C40O60 is closer to the reference value, and the pure cement is C100O00. Therefore, when the water-to-binder ratio W/B=0.30, C20F50O30, C30F40O30, C40F30O30, C10F50O40, C20F40O40, C30F30O40, C10F40O50, C20F30O50, C70O30, C60O40, C50O50, C40O60, etc., the best setting time is to meet the cement setting requirements.

(2)還原碴膠結材水膠比W/B=0.2、W/B=0.25、W/B=0.3(2) Water-to-binder ratio of reduced ballast cement material W/B=0.2, W/B=0.25, W/B=0.3

以費開氏針測定水硬性水泥凝結時間試驗,水泥初凝時間為1.5 至3 小時,終凝時間為3 至6 小時。詳細而言,如第十圖所示,當水膠比W/B=0.2時,C20F50R30、C30F40R30、C40F30R30其凝結時間初凝分別為3、3、3分鐘、終凝分別為12、9、6 分鐘,以參照值純水泥配比C100R00 初凝為2 分鐘、終凝為3分鐘相當接近;C10F50R40、C20F40R40、C30F30R40其凝結時間初凝分別為3、3、3 分鐘、終凝為15、60、7 分鐘,以參照值純水泥配比C100R00 初凝為2 分鐘、終凝為3 分鐘相當接近;C00F50R50、C10F40R50、C20F30R50其凝結時間初凝分別為6、10、4 分鐘、終凝分別為11、25、7 分鐘,以參照值純水泥配比C100R00 初凝為2 分鐘、終凝為3 分鐘相當接近;再以C70R30、C60R40、C50R50、C40R60、C00R100、C100R00 配比而言,其凝結時間初凝分別為130、2、4、11、10、2 分鐘、終凝分別為180、5、6、46、220、3 分鐘,以參照值純水泥配比C100R00 初凝為2 分鐘、終凝為3 分鐘, C70R30、C00R100 配比凝結時間差距較大,其餘C60R40、C50R50、C40R60 配比凝結時間較接近參照值純水泥配比C100O00,趨勢相當明顯。由此可知,當水膠比W/B=0.20時以C20F50R30、C30F40R30、C40F30R30、C10F50R40、C20F40R40、C30F30R40 、C00F50R50、C10F40R50、C20F30R50、C60R40、C50R50、C40R60 等配比符合水泥凝結時間要求為較佳。The test of setting time of hydraulic cement by Fischer needle is 1.5 to 3 hours for the initial setting time of cement and 3 to 6 hours for the final setting time. In detail, as shown in the tenth figure, when the water-to-binder ratio W/B=0.2, the setting time of C20F50R30, C30F40R30, C40F30R30 is 3, 3, 3 minutes, and the final setting is 12, 9, 6 respectively. Minutes, according to the reference value, the ratio of pure cement C100R00 is 2 minutes for initial setting and 3 minutes for final setting; the setting time of C10F50R40, C20F40R40, C30F30R40 is 3, 3, 3 minutes, and the final setting is 15, 60, 7 minutes, according to the reference value, the ratio of pure cement C100R00 is 2 minutes for the initial setting and 3 minutes for the final setting; the setting time for C00F50R50, C10F40R50, C20F30R50 is 6, 10, 4 minutes, and the final setting is 11, 25, 7 minutes, according to the reference value of pure cement ratio C100R00, the initial setting is 2 minutes, and the final setting is 3 minutes, which is quite close; then, according to the ratio of C70R30, C60R40, C50R50, C40R60, C00R100, C100R00, the initial setting time Respectively: 130, 2, 4, 11, 10, 2 minutes, final setting: 180, 5, 6, 46, 220, 3 minutes, according to the reference value of pure cement ratio C100R00, initial setting is 2 minutes, final setting is 3 In minutes, the ratio of C70R30 and C00R100 is relatively large, and the rest of C60R40, C50R50 and C40R60 are relatively close to the reference value of pure cement C100O00, the trend is quite obvious. It can be seen that when the water-to-binder ratio W/B=0.20, C20F50R30, C30F40R30, C40F30R30, C10F50R40, C20F40R40, C30F30R40, C00F50R50, C10F40R50, C20F30R50, C60R40, C50R50, C40R60, etc.

當水膠比W/B=0.25時,C20F50R30、C30F40R30、C40F30R30其凝結時間初凝分別為5、7、4分鐘、終凝分別為32、51、16 分鐘,以參照值純水泥配比C100R00 初凝為8 分鐘、終凝為90 分鐘相當接近;C10F50R40、C20F40R40、C30F30R40其凝結時間初凝分別為6、4、4 分鐘、終凝為56、50、18 分鐘,以參照值純水泥配比C100R00 初凝為8 分鐘、終凝為90 分鐘差距較大;C00F50R50、C10F40R50、C20F30R50其凝結時間初凝分別為6、4、4 分鐘、終凝分別為56、50、18 分鐘,以參照值純水泥配比C100R00初凝為8 分鐘、終凝為90 分鐘差距較大;再以C70R30、C60R40、C50R50、C40R60、C00R100、C100R00 配比而言,其凝結時間初凝分別為60、180、160、107、90、8 分鐘、終凝分別為116、240、190、127、252、90 分鐘,以參照值純水泥配比C100R00 初凝為8 分鐘、終凝為90 分鐘差距較大。由此可知,還原碴膠結材的凝結時間隨還原碴摻配量增加而增加,趨勢相當明顯,其中以C70R30、C60R40、C50R50、C40R60 配比凝結時間較接近參照值純水泥配比C100R00。因此,當水膠比W/B=0.25 時以C70R30、C60R40、C50R50、C40R60 等配比符合水泥凝結時間要求為較佳。When the water-binder ratio W/B=0.25, the setting time of C20F50R30, C30F40R30, C40F30R30 is 5, 7 and 4 minutes, and the final setting is 32, 51, and 16 minutes, respectively. The setting time is 8 minutes, and the final setting time is 90 minutes. The setting time of C10F50R40, C20F40R40, C30F30R40 is 6, 4, 4 minutes, and the final setting is 56, 50, and 18 minutes. The reference value is pure cement ratio C100R00 The difference between the initial setting is 8 minutes and the final setting is 90 minutes; the setting time of C00F50R50, C10F40R50, C20F30R50 is 6, 4 and 4 minutes respectively, and the final setting is 56, 50 and 18 minutes respectively. The ratio of the initial setting of C100R00 is 8 minutes, and the final setting is 90 minutes. There is a large gap between them; according to the ratio of C70R30, C60R40, C50R50, C40R60, C00R100, C100R00, the initial setting time is 60, 180, 160, 107 , 90, 8 minutes, and final setting are 116, 240, 190, 127, 252, and 90 minutes respectively. Based on the reference value, the ratio of pure cement ratio C100R00 is 8 minutes for initial setting and 90 minutes for final setting. It can be seen that the setting time of the reduced ballast cement material increases with the increase of the amount of reduced ballast, and the trend is quite obvious. Among them, the setting time of C70R30, C60R40, C50R50, C40R60 is closer to the reference value and the pure cement ratio C100R00. Therefore, when the water-binder ratio W/B = 0.25, it is better to use C70R30, C60R40, C50R50, C40R60 and other ratios to meet the setting time of cement.

當水膠比W/B=0.3時,C20F50R30、C30F40R30、C40F30R30其凝結時間初凝分別為196、153、180 分鐘、終凝分別為300、214、213 分鐘,以參照值純水泥配比C100R00 初凝為125 分鐘、終凝為170 分鐘差距較大;C10F50R40、C20F40R40、C30F30R40其凝結時間初凝分別為565、433、371 分鐘、終凝為680、570、540 分鐘,以參照值純水泥配比C100O00 初凝為125 分鐘、終凝為170 分鐘差距更大;以C00F50R50、C10F40R50、C20F30R50其凝結時間初凝分別為540、479、513 分鐘、終凝分別為656、587、624 分鐘,以參照值純水泥配比C100R00 初凝為125 分鐘、終凝為170 分鐘差距更大;再以C70R30、C60R40、C50R50、C40R60、C00R100、C100R00 配比而言,其凝結時間初凝分別為180、196、200、170、1、125 分鐘、終凝分別為240、240、250、256、14、170 分鐘,以參照值純水泥配比C100R00 初凝為125 分鐘、終凝為170 分鐘相當接近。由此可知,還原碴膠結材的凝結時間隨還原碴摻配量增加而增加,趨勢相當明顯。由此可知,C70R30、C60R40、C50R50、C40R60 配比凝結時間較接近參照值純水泥配比C100R00。因此,當水膠比W/B=0.30 時以C20F50R30、C30F40R30、C40F30R30、C70R30、C60R40、C50R50、C40R60等配比符合水泥凝結時間要求為較佳。When the water-binder ratio W/B=0.3, the setting time of C20F50R30, C30F40R30, C40F30R30 is 196, 153, 180 minutes, and the final setting is 300, 214, and 213 minutes, respectively. The setting time is 125 minutes and the final setting is 170 minutes. There is a large gap between C10F50R40, C20F40R40, and C30F30R40. The initial setting time is 565, 433, 371 minutes, and the final setting is 680, 570, and 540 minutes. The difference between C100O00 is 125 minutes for the initial setting and 170 minutes for the final setting; with C00F50R50, C10F40R50, and C20F30R50, the setting times are 540, 479, and 513 minutes, and the final setting is 656, 587, and 624 minutes respectively. The ratio of pure cement C100R00 is 125 minutes for the initial setting and 170 minutes for the final setting; in terms of the ratio of C70R30, C60R40, C50R50, C40R60, C00R100 and C100R00, the setting time is 180, 196 and 200 respectively , 170, 1, 125 minutes, and final setting are 240, 240, 250, 256, 14, 170 minutes, respectively. Based on the reference value, the ratio of pure cement C100R00 is 125 minutes for initial setting and 170 minutes for final setting. It can be seen that the setting time of the reduced ballast cement increases with the increase of the amount of reduced ballast, and the trend is quite obvious. It can be seen that the ratio of C70R30, C60R40, C50R50, and C40R60 is closer to the reference value, and the ratio of pure cement is C100R00. Therefore, when the water-binder ratio W/B=0.30, it is better to use C20F50R30, C30F40R30, C40F30R30, C70R30, C60R40, C50R50, C40R60, etc. to meet the cement setting time requirements.

另,根據上述分析結果比較氧化碴膠結材和還原碴膠結材的凝結時間,當水膠比W/B=0.2 時,C20F50O30、C30F40O30、C40F30O30其凝結時間初凝分別為2 分鐘、終凝分別為11 分鐘;C20F50R30、C30F40R30、C40F30R30其凝結時間初凝分別為3、3、3 分鐘、終凝分別為12、9、6 分鐘,兩者膠結材凝結時間相當接近;其餘配比則大多為以還原碴膠結材凝結時間較短。當水膠比W/B=0.25時,C20F50O30、C30F40O30、C40F30O30其凝結時間初凝分別為115、103、135 分鐘、終凝分別為124、139、143 分鐘;C20F50R30、C30F40R30、C40F30R30其凝結時間初凝分別為5、7、4 分鐘、終凝分別為32、51、16 分鐘,顯然還原碴膠結材凝結時間較短;其餘配比亦大多為以還原碴膠結材凝結時間較短。當水膠比W/B=0.3時,C20F50O30、C30F40O30、C40F30O30其凝結時間初凝分別為125、169、134 分鐘、終凝分別為212、218、189 分鐘;C20F50R30、C30F40R30、C40F30R30其凝結時間初凝分別為196、153、180 分鐘、終凝分別為300、214、213 分鐘,顯然還原碴膠結材凝結時間較長;其餘配比亦大多為以還原碴膠結材凝結時間較長。In addition, according to the above analysis results, the coagulation time of the oxidized ballast cement material and the reduced ballast cement material is compared. When the water-to-binder ratio W/B=0.2, the initial setting time of C20F50O30, C30F40O30, C40F30O30 is 2 minutes, and the final setting is respectively 11 minutes; the setting time of C20F50R30, C30F40R30, C40F30R30 is 3, 3, 3 minutes, and the final setting is 12, 9, and 6 minutes, respectively. The setting time of the two cements is quite close; the rest of the ratio is mostly for reduction The setting time of ballast cement is shorter. When the water-to-binder ratio W/B=0.25, the initial setting time of C20F50O30, C30F40O30, C40F30O30 is 115, 103, 135 minutes, and the final setting time is 124, 139, 143 minutes; the initial setting time of C20F50R30, C30F40R30, C40F30R30 The coagulation was 5, 7, 4 minutes, and the final coagulation was 32, 51, and 16 minutes, respectively. Obviously, the coagulation time of the reduced ballast cement was shorter; the rest of the proportions were mostly the shorter coagulation time of the reduced ballast cement. When the water-to-binder ratio W/B=0.3, the setting time of C20F50O30, C30F40O30, C40F30O30 is 125, 169, 134 minutes, and the final setting is 212, 218, and 189 minutes; C20F50R30, C30F40R30, C40F30R30 has the initial setting time. The coagulation was 196, 153, 180 minutes, and the final coagulation was 300, 214, and 213 minutes, respectively. Obviously, the reduced ballast cement material has a longer setting time; the rest of the proportions are mostly based on the reduced ballast cement material.

實施例三:檢測抗壓強度Example 3: Detecting compressive strength 度

抗壓強度係一般混凝土與鹼膠結材的最重要的指標之一,主要是為瞭解試體內部緻密性與孔隙之多寡。將水膠比設定為0.2、0.25和0.30,並製作5 cm×5 cm×5 cm之立方體試體,利用飽和石灰水浸泡,養護7 天、28 天及56 天後進行抗壓試驗,探討養治時間與抗壓強度的關係度,測試結果請參閱第十一圖和第十二圖。Compressive strength 度 is one of the most important indicators of general concrete and alkali cemented materials, mainly to understand the compactness and porosity of the sample. Set the water-binder ratio to 0.2, 0.25, and 0.30, and make a 5 cm × 5 cm × 5 cm cube sample, soak in saturated lime water, and conduct a compression test after 7 days, 28 days, and 56 days to discuss curing The relationship between time and compressive strength 度, please refer to Figure 11 and Figure 12 for test results.

(1)氧化碴膠結材水膠比W/B=0.2、W/B=0.25、W/B=0.3(1) Water-to-binder ratio of oxidized ballast cement material W/B=0.2, W/B=0.25, W/B=0.3

詳細而言,如第十一圖所示,當水膠比W/B=0.2時,C40F30O30、C30F40O30、C20F50O30其養治7 天抗壓強度分別為194.63、243.23、190.24 kgf/cm2 ,養治28 天抗壓強度分別為245.61、296.05、243.61 kgf/cm2 ,養治56 天抗壓強度分別為250.81、304.35、250.29 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 ,抗壓強度相當接近,並且以C40F30O30配比之抗壓強度最高。C30F30O40、C20F40O40、C10F50O40其養治7 天抗壓強度分別為215.67、157.55、53.28 kgf/cm2 ,養治28 天抗壓強度分別為257.04、216.15、92.49 kgf/cm2 ,養治56 天抗壓強度分別為297.69、223.35、103.48 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度相差較大;C20F30O50、C10F40O50、C00F50O50其養治7 天抗壓強度分別為147.33、45.50、4.46 kgf/cm2 ,養治28 天抗壓強度分別為204.63、87.88、5.33 kgf/cm2 ,養治56 天抗壓強度分別為225.91、100.56、5.41 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度相差較大。再以C00O100、C40O60、C50O50、C60O40、C70O30、C100O00 配比而言,其養治7 天抗壓強度分別為1.60、344.69、446.73、416.68、570.51、175.68 kgf/cm2 ,養治28 天抗壓強度分別為4.35、349.73、471.68、439.52、539.25、185.95 kgf/cm2 ,養治56 天抗壓強度分別為5.91、418.21、448.99、518.83、565.69、343.28 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度除C00O100 配比外其餘配比遠超過參照值純水泥配比相差較大。由此可知,氧化碴膠結材的抗壓強度隨氧化碴摻配量增加而下降,趨勢相當明顯。當水膠比W/B=0.20時,以C40F30O30、C30F40O30、C20F50O30、C30F30O40、C20F40O40、C10F50O40、C20F30O50 、C40O60、C50O50、C60O40、C70O30 等配比符合水泥抗壓強度的要求為較佳。In detail, as shown in the eleventh figure, when the water-to-binder ratio W/B=0.2, the C40F30O30, C30F40O30, and C20F50O30 were cured for 7 days, and their compressive strengths were 194.63, 243.23, and 190.24 kgf/cm 2 , respectively, for 28 days Compressive strength 度 is 245.61, 296.05, 243.61 kgf/cm 2 respectively , curing 56 days Compressive strength 度 is 250.81, 304.35, 250.29 kgf/cm 2 respectively , according to the reference value pure cement ratio C100O00 curing 7 days, 28 days, 56 days The compressive strength 度 is 175.68, 185.95, and 343.28 kgf/cm 2 , respectively, and the compressive strength 度 is quite close, and the compressive strength 度 with the C40F30O30 ratio is the highest. C30F30O40, C20F40O40, and C10F50O40 were treated for 7 days with compressive strength 度 of 215.67, 157.55, and 53.28 kgf/cm 2 respectively , cured with 28 days of compressive strength 度 of 257.04, 216.15, 92.49 kgf/cm 2 , and treated with 56 days of compressive strength 度 as 297.69, 223.35, 103.48 kgf/cm 2 , according to the reference value pure cement ratio C100O00 curing 7 days, 28 days, 56 days compressive strength 度 is 175.68, 185.95, 343.28 kgf/cm 2 compressive strength 度 differs greatly; C20F30O50, For C10F40O50 and C00F50O50, the 7-day compressive strength 度 is 147.33, 45.50, 4.46 kgf/cm 2 , the 28-day compressive strength 度 is 204.63, 87.88, 5.33 kgf/cm 2 , and the 56-day compressive strength 度 is 225.91, respectively. 100.56, 5.41 kgf/cm 2 , the reference value of pure cement ratio C100O00 curing 7 days, 28 days, 56 days compressive strength 度 is 175.68, 185.95, 343.28 kgf/cm 2 compressive strength 度 differs greatly. In terms of the ratio of C00O100, C40O60, C50O50, C60O40, C70O30, and C100O00, their 7-day curing pressure 度 is 1.60, 344.69, 446.73, 416.68, 570.51, 175.68 kgf/cm 2 , and 28-day curing pressure 度 respectively It is 4.35, 349.73, 471.68, 439.52, 539.25, 185.95 kgf/cm 2 , and the 56-day compressive strength 度 is 5.91, 418.21, 448.99, 518.83, 565.69, 343.28 kgf/cm 2 respectively , according to the reference value pure cement ratio C100O00 curing The 7-day, 28-day, and 56-day compressive strengths 度 are 175.68, 185.95, and 343.28 kgf/cm 2 compressive strengths 度 except C00O100, the rest of the ratios far exceed the reference values. The ratio of pure cement is quite different. It can be seen that the compressive strength of oxidized ballast cement 度 decreases with the increase of the amount of oxidized ballast, and the trend is quite obvious. When the water-to-binder ratio W/B=0.20, the C40F30O30, C30F40O30, C20F50O30, C30F30O40, C20F40O40, C10F50O40, C20F30O50, C40O60, C50O50, C60O40, C70O30 and other ratios are better to meet the requirements of the cement pressure resistance 度.

當水膠比W/B=0.25時,C40F30O30、C30F40O30、C20F50O30其養治7 天抗壓強度分別為223.68、183.36、114.31 kgf/cm2 ,養治28 天抗壓強度分別為276.84、231.00、189.00 kgf/cm2 ,養治56 天抗壓強度分別為296.67、245.53、202.05 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為374.19、443.00、480.75 kgf/cm2 ,抗壓強度相差較大,其中仍以C40F30O30配比強度最高;C30F30O40、C20F40O40、C10F50O40其養治7 天抗壓強度分別為171.48、116.76、40.97 kgf/cm2 ,養治28 天抗壓強度分別為239.67、179.67、101.33 kgf/cm2 ,養治56 天抗壓強度分別為244.11、192.99、103.12 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度相差較大;C20F30O50、C10F40O50、C00F50O50其養治7 天抗壓強度分別為95.49、13.47、1.73 kgf/cm2 ,養治28 天抗壓強度分別為129.33、48.00、2.00 kgf/cm2 ,養治56 天抗壓強度分別為152.25、58.91、1.73 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度相差更大;再以C00O100、C40O60、C50O50、C60O40、C70O30、C100O00 配比而言,其養治7 天抗壓強度分別為2.41、279.32、389.96、471.64、497.57、374.19 kgf/cm2 ,養治28 天抗壓強度分別為2.67、318.92、395.99、445.67、525.87、443.00 kgf/cm2 ,養治56 天抗壓強度分別為2.80、366.04、425.81、503.51、532.20、480.75 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為374.19、443.00、480.75 kgf/cm2 抗壓強度相差較大。由此可知,氧化碴膠結材的抗壓強度隨氧化碴摻配量增加而下降,趨勢相當明顯。當水膠比W/B=0.25時,以C50O50、C60O40、C70O30 等配比符合水泥抗壓強度的要求為較佳。When the water-to-binder ratio W/B=0.25, the C40F30O30, C30F40O30, and C20F50O30 had 7-day compressive strength 度 of 223.68, 183.36, 114.31 kgf/cm 2 , and 28-day compressive strength 度 of 276.84, 231.00, 189.00 kgf/ cm 2 , curing 56-day compressive strength 度 is 296.67, 245.53, 202.05 kgf/cm 2 , with reference to pure cement ratio C100O00 curing 7-day, 28-day, 56-day compressive strength 度 is 374.19, 443.00, 480.75 kgf/ cm 2 , the compressive strength 度 differs greatly, among which C40F30O30 is still the strongest proportion 度; C30F30O40, C20F40O40, C10F50O40 have 7-day compressive strength 度 of 171.48, 116.76, 40.97 kgf/cm 2 , and 28-day compressive strength 度 respectively It is 239.67, 179.67, 101.33 kgf/cm 2 , curing 56 days compressive strength 度 is 244.11, 192.99, 103.12 kgf/cm 2 respectively , according to the reference value pure cement ratio C100O00 curing 7 days, 28 days, 56 days compressive strength 度 respectively 175.68, 185.95, 343.28 kgf/cm 2 compressive strength 度 differs greatly; C20F30O50, C10F40O50, C00F50O50 curing 7-day compressive strength 度 95.49, 13.47, 1.73 kgf/cm 2 respectively , curing 28-day compressive strength 度 129.33, respectively , 48.00, 2.00 kgf/cm 2 , curing 56 days compressive strength 度 is 152.25, 58.91, 1.73 kgf/cm 2 , according to the reference value of pure cement ratio C100O00 curing 7 days, 28 days, 56 days compressive strength 度 is 175.68 , 185.95, 343.28 kgf/cm 2 compressive strength 度 differs even more; in terms of the ratio of C00O100, C40O60, C50O50, C60O40, C70O30, C100O00, the 7-day compressive strength 度 of curing is 2.41, 279.32, 389.96, 471.64, respectively. 497.57, 374.19 kgf/cm 2 , 28-day curing pressure 度 2.67, 318.92, 395.99, 445.67, 525.87, 443.00 kgf/cm 2 , curing 56-day pressure 度 2.80, 366.04, 425.81, 503.51, 532.20, respectively 480.75 kgf/cm 2 , according to the reference value pure cement ratio C100O00 curing 7 The compressive strength 度 of days, 28 days, and 56 days is 374.19, 443.00, and 480.75 kgf/cm 2 respectively. The compressive strength 度 differs greatly. It can be seen that the compressive strength of oxidized ballast cement 度 decreases with the increase of the amount of oxidized ballast, and the trend is quite obvious. When the water-binder ratio W/B=0.25, it is better to use C50O50, C60O40, C70O30 and other ratios to meet the requirements of cement compressive strength 度.

當水膠比W/B=0.3時,C40F30O30、C30F40O30、C20F50O30其養治7 天抗壓強度分別為220.24、172.20、109.72 kgf/cm2 ,養治28 天抗壓強度分別為312.80、240.77、161.97 kgf/cm2 ,養治56 天抗壓強度分別為308.28、242.65、181.43 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 ,抗壓強度相差較大,其中仍以C40F30O30配比強度最高;C30F30O40、C20F40O40、C10F50O40其養治7 天抗壓強度分別為178.57、94.20、28.44 kgf/cm2 ,養治28 天抗壓強度分別為285.95、178.05、72.48 kgf/cm2 ,養治56 天抗壓強度分別為298.76、179.63、81.89 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 ,抗壓強度相差較大;C20F30O50、C10F40O50、C00F50O50其養治7 天抗壓強度分別為87.24、13.73、1.45 kgf/cm2 ,養治28 天抗壓強度分別為134.60、46.772、1.60 kgf/cm2 ,養治56 天抗壓強度分別為150.24、52.84、1.60 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 ,抗壓強度相差更大;再以C00O100、C40O60、C50O50、C60O40、C70O30、C100O00 其養治7 天抗壓強度分別為1.60、217.59、191.28 、371.71、426.31、550.21 kgf/cm2 ,養治28 天抗壓強度分別為1.60、240.75、279.17、402.91、459.59、608.36 kgf/cm2 ,養治56 天抗壓強度分別為1.70、264.85、284.49、418.75、514.64、647.99 kgf/cm2 ,以參照值純水泥配比C100O00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 ,抗壓強度相差較大。由此可知,氧化碴膠結材的抗壓強度隨氧化碴摻配量增加而下降,趨勢相當明顯。當水膠比W/B=0.30時,以C40O60、C50O50、C60O40、C70O30 等配比抗壓強度較接近水泥的要求為較佳。When the water-to-binder ratio W/B=0.3, the C40F30O30, C30F40O30, and C20F50O30 had a 7-day curing pressure of 220.24, 172.20, and 109.72 kgf/cm 2 respectively , and a 28-day curing pressure of 312.80, 240.77, and 161.97 kgf/ cm 2 , curing 56-day compressive strength 度 is 308.28, 242.65, 181.43 kgf/cm 2 , according to the reference value pure cement ratio C100O00 curing 7-day, 28-day, 56-day compressive strength 度 is 550.21, 608.36, 647.99 kgf/ cm 2 , the compressive strength 度 differs greatly, among which C40F30O30 is still the strongest proportion 度; the C30F30O40, C20F40O40, C10F50O40 curing 7-day compressive strength 度 is 178.57, 94.20, 28.44 kgf/cm 2 , and the 28-day compressive strength 度 respectively 285.95, 178.05, 72.48 kgf/cm 2 , curing 56 days compressive strength 度 298.76, 179.63, 81.89 kgf/cm 2 respectively , according to the reference value pure cement ratio C100O00 curing 7 days, 28 days, 56 days compressive strength 度 respectively 550.21, 608.36, 647.99 kgf/cm 2 , the difference in compression strength 度 is quite large; C20F30O50, C10F40O50, C00F50O50 their curing 7-day compressive strength 度 is 87.24, 13.73, 1.45 kgf/cm 2 , curing 28-day compressive strength 度 are 134.60, 46.772, 1.60 kgf/cm 2 , curing 56 days compressive strength 度 is 150.24, 52.84, 1.60 kgf/cm 2 respectively , according to the reference value pure cement ratio C100O00 curing 7 days, 28 days, 56 days compressive strength 度 are 550.21, 608.36, 647.99 kgf/cm 2 , the difference in compressive strength 度 is larger; then C00O100, C40O60, C50O50, C60O40, C70O30, C100O00, the curing 7-day compressive strength 度 is 1.60, 217.59, 191.28, 371.71, 426.31, 550.21, respectively kgf/cm 2 , the 28-day compressive strength 度 is 1.60, 240.75, 279.17, 402.91, 459.59, 608.36 kgf/cm 2 , and the 56-day compressive strength 度 is 1.70, 264.85, 284.49, 418.75, 514.64, 647.99 kgf/ cm 2 , cured with reference value pure cement ratio C100O00 for 7 days, 2 The 8-day and 56-day compressive strengths 度 are 550.21, 608.36, and 647.99 kgf/cm 2 , respectively, and the compressive strengths 度 vary greatly. It can be seen that the compressive strength of oxidized ballast cement 度 decreases with the increase of the amount of oxidized ballast, and the trend is quite obvious. When the water-binder ratio W/B=0.30, it is better to use the ratio of C40O60, C50O50, C60O40, C70O30 and other compressive strength 度 closer to the requirement of cement.

(2)還原碴膠結材水膠比W/B=0.2、W/B=0.25、W/B=0.3(2) Water-to-binder ratio of reduced ballast cement material W/B=0.2, W/B=0.25, W/B=0.3

如第十二圖所示,當水膠比W/B=0.2時,C40F30R30、C30F40R30、C20F50R30其養治7 天抗壓強度分別為55.48、45.01、22.86 kgf/cm2 ,養治28 天抗壓強度分別為70.25、70.21、28.25 kgf/cm2 ,養治56 天抗壓強度分別為71.17、77.29、42.11 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.952、343.28 kgf/cm2 ,抗壓強度相差較大,無法滿足水泥抗壓強度要求;C30F30R40、C20F40R40、C10F50R40其養治7 天抗壓強度分別為54.10、34.20、10.41 kgf/cm2 ,養治28 天抗壓強度分別為57.33、53.49、24.83 kgf/cm2 ,養治56 天抗壓強度分別為63.55、76.66、28.75 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度相差較大,無法滿足水泥抗壓強度要求;C20F30R50、C10F40R50、C00F50R50其養治7 天抗壓強度分別為31.52、9.68、1.73 kgf/cm2 ,養治28 天抗壓強度分別為61.84、25.81、6.02 kgf/cm2 ,養治56 天抗壓強度分別為63.69、37.49、7.45 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度相差較大,無法滿足水泥抗壓強度要求;C20F30R50、C10F40R50、C00F50R50其養治7 天抗壓強度分別為31.52、9.68、1.73 kgf/cm2 ,養治28 天抗壓強度分別為61.84、25.81、6.02 kgf/cm2 ,養治56 天抗壓強度分別為63.69、37.49、7.45 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 抗壓強度相差較大,無法滿足水泥抗壓強度要求;再以C00R100、C40R60、C50R50、C60R40、C70R30、C100R00其養治7天抗壓強度分別為1.77、71.73、106.80、147.18、171.84、175.68 kgf/cm2 ,養治28 天抗壓強度分別為7.01、189.24、227.87、254.06、235.73、185.95 kgf/cm2 ,養治56 天抗壓強度分別為7.91、265.98、361.34、311.40、330.91、343.28 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為175.68、185.95、343.28 kgf/cm2 ,抗壓強度除C00R100 配比外其餘配比遠超過參照值純水泥配比相差較大。由此可知,還原碴膠結材的抗壓強度隨還原碴摻配量增加而下降,趨勢相當明顯。當水膠比W/B=0.20 時,以C40R60、C50R50、C60R40、C70R30 等配比符合水泥抗壓強度的要求為較佳。As shown in the twelfth figure, when the water-to-binder ratio W/B=0.2, the C40F30R30, C30F40R30, C20F50R30 curing pressure for 7 days 度 is 55.48, 45.01, 22.86 kgf/cm 2 respectively , curing for 28 days compressive strength 度 respectively 70.25, 70.21, 28.25 kgf/cm 2 , curing 56 days compressive strength 度 71.17, 77.29, 42.11 kgf/cm 2 respectively , according to the reference value pure cement ratio C100R00 curing 7 days, 28 days, 56 days compressive strength 度 respectively It is 175.68, 185.952, 343.28 kgf/cm 2 , and the compressive strength 度 is quite different, which can not meet the cement compressive strength 度 requirements; C30F30R40, C20F40R40, C10F50R40 whose curing 7-day compressive strength 度 is 54.10, 34.20, 10.41 kgf/cm 2 , respectively The 28-day compressive strength 度 is 57.33, 53.49, 24.83 kgf/cm 2 , and the 56-day compressive strength 度 is 63.55, 76.66, 28.75 kgf/cm 2 respectively , and the reference value pure cement ratio C100R00 is cured for 7 days, 28 days The 56-day compressive strength 度 is 175.68, 185.95, and 343.28 kgf/cm 2 respectively. The compressive strength 度 differs greatly and cannot meet the cement compressive strength 度 requirement; C20F30R50, C10F40R50, C00F50R50 are cured for 7 days. The compressive strength 度 is 31.52, 9.68, 1.73 kgf/cm 2 , curing pressure for 28 days 度 is 61.84, 25.81, 6.02 kgf/cm 2 , curing 56 days compression pressure 度 is 63.69, 37.49, 7.45 kgf/cm 2 respectively , according to the reference value pure cement ratio C100R00 The 7-day, 28-day, and 56-day compressive strengths 度 are 175.68, 185.95, and 343.28 kgf/cm 2 respectively. The compressive strength 度 differs greatly and cannot meet the cement compressive strength 度 requirements; C20F30R50, C10F40R50, and C00F50R50 are cured for 7 days compressive strength 度Respectively 31.52, 9.68, 1.73 kgf/cm 2 , curing 28-day compressive strength 度 61.84, 25.81, 6.02 kgf/cm 2 , curing 56-day compressive strength 度 63.69, 37.49, 7.45 kgf/cm 2 , respectively, for reference The value of pure cement ratio C100R00 is 7 days, 28 days, and 56 days. The compressive strength 度 is 175.68, 185.95, and 343.28 kgf/cm 2 respectively. The compressive strength 度 differs greatly, and the cement compressive strength 度 requirements cannot be met; then C00R100, C40R60 , C50R50, C60R40, C70R30, and C100R00, their 7-day curing pressures 度 are 1.77, 71.73, 106.80, 147.18, 171.84, 175.68 kgf/cm 2 , 28-day curing pressures are 7.01, 189.24, 227.87, 254.06, 235.73, respectively , 185.95 kgf/cm 2 , curing 56 days compressive strength 度 are 7.91, 265.98, 361.34, 311.40, 330.91, 343.28 kgf/cm 2 , according to the reference value of pure cement ratio C100R00 curing 7 days, 28 days, 56 days of compression The strength 度 is 175.68, 185.95, and 343.28 kgf/cm 2 , respectively. The compressive strength 度, except for the C00R100 ratio, far exceeds the reference value. The ratio of pure cement is quite different. It can be seen that the compressive strength of reduced ballast cement 度 decreases with the increase of the amount of reduced ballast, and the trend is quite obvious. When the water-binder ratio W/B=0.20, it is better to use C40R60, C50R50, C60R40, C70R30 and other ratios to meet the requirements of cement compressive strength 度.

當水膠比W/B=0.25時,C40F30R30、C30F40R30、C20F50R30其養治7 天抗壓強度分別為171.53、147.07、70.16 kgf/cm2 ,養治28 天抗壓強度分別為250.63、177.65、76.05 kgf/cm2 ,養治56 天抗壓強度分別為280.65、216.97、125.11 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為177.20、374.19、480.75 kgf/cm2 ,抗壓強度相差較大,無法滿足水泥抗壓強度要求;C30F30R40、C20F40R40、C10F50R40其養治7 天抗壓強度分別為114.03、57.92、17.37 kgf/cm2 ,養治28 天抗壓強度分別為195.03、176.07、50.65 kgf/cm2 ,養治56 天抗壓強度分別為199.81、121.97、53.01 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為177.20、374.19、480.75 kgf/cm2 抗壓強度相差較大,無法滿足水泥抗壓強度要求;C20F30R50、C10F40R50、C00F50R50其養治7 天抗壓強度分別為40.12、14.1、4.41 kgf/cm2 ,養治28 天抗壓強度分別為86.93、35.52、10.04 kgf/cm2 ,養治56 天抗壓強度分別為130.68、42.05、11.23 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為177.20、374.19、480.75 kgf/cm2 抗壓強度相差較大,無法滿足水泥抗壓強度要求;再以C00R100、C40R60、C50R50、C60R40、C70R30、C100R00其養治7天抗壓強度分別為4.35、193.69、256.75、274.00、458.57、177.20 kgf/cm2 ,養治28 天抗壓強度分別為8.75、231.39、301.52、366.12、484.29、374.19 kgf/cm2 ,養治56 天抗壓強度分別為10.92、250.62、330.36、400.13、494.23、480.75 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為177.20、374.19、480.75 kgf/cm2 抗壓強度相差較大。由此可知,還原碴膠結材的抗壓強度隨還原碴摻配量增加而下降,趨勢相當明顯。當水膠比W/B=0.25時,以C40R60、C50R50、C60R40、C70R30 等配比接近水泥抗壓強度的要求為較佳。When the water-to-binder ratio W/B=0.25, the C40F30R30, C30F40R30, C20F50R30 curing pressure for 7 days 度 is 171.53, 147.07, 70.16 kgf/cm 2 respectively, and the curing pressure for 28 days 度 is 250.63, 177.65, 76.05 kgf/ cm 2 , curing 56-day compressive strength 度 is 280.65, 216.97, 125.11 kgf/cm 2 , according to the reference value pure cement ratio C100R00 curing 7-day, 28-day, 56-day compressive strength 度 is 177.20, 374.19, 480.75 kgf/ cm 2 , the compressive strength 度 differs greatly and cannot meet the cement compressive strength 度 requirements; C30F30R40, C20F40R40, C10F50R40 curing 7-day compressive strength 度 114.03, 57.92, 17.37 kgf/cm 2 respectively , and curing 28-day compressive strength 度 are 195.03, 176.07, 50.65 kgf/cm 2 , curing 56 days compressive strength 度 is 199.81, 121.97, 53.01 kgf/cm 2 , according to the reference value pure cement ratio C100R00 curing 7 days, 28 days, 56 days compressive strength 度 are 177.20, 374.19, 480.75 kgf/cm 2 compressive strength 度 differs greatly, unable to meet the cement compressive strength 度 requirements; C20F30R50, C10F40R50, C00F50R50 its curing 7-day compressive strength 度 is 40.12, 14.1, 4.41 kgf/cm 2 , curing 28 The daily compressive strength 度 is 86.93, 35.52 and 10.04 kgf/cm 2 respectively , and the curing 56-day compressive strength 度 is 130.68, 42.05 and 11.23 kgf/cm 2 respectively , and the reference value pure cement ratio C100R00 is cured for 7 days, 28 days and 56 The compressive strength of the day 度 is 177.20, 374.19, 480.75 kgf/cm 2 respectively. The compressive strength 度 is quite different and cannot meet the compressive strength of the cement 度; then C00R100, C40R60, C50R50, C60R40, C70R30, C100R00 are cured for 7 days of compressive strength 度Respectively 4.35, 193.69, 256.75, 274.00, 458.57, 177.20 kgf/cm 2 , 28-day curing pressure 度 8.75, 231.39, 301.52, 366.12, 484.29, 374.19 kgf/cm 2 respectively , curing 56-day compression strength 度 are 10.92, 250.62, 330.36, 400.13, 494.23, 480.75 kgf/cm 2 , according to the reference value pure cement ratio C100 R00 The compressive strengths 度 of 7 days, 28 days and 56 days were 177.20, 374.19 and 480.75 kgf/cm 2 respectively. It can be seen that the compressive strength of reduced ballast cement 度 decreases with the increase of the amount of reduced ballast, and the trend is quite obvious. When the water-binder ratio W/B=0.25, it is better to use C40R60, C50R50, C60R40, C70R30 and other ratios close to the compressive strength of cement 度.

當水膠比W/B=0.3時,C40F30R30、C30F40R30、C20F50R30其養治7 天抗壓強度分別為181.60、126.04、64.35 kgf/cm2 ,養治28 天抗壓強度分別為284.04、183.48、142.56 kgf/cm2 ,養治56 天抗壓強度分別為287.65、210.00、148.40 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 ,抗壓強度相差較大,無法滿足水泥抗壓強度要求;C30F30R40、C20F40R40、C10F50R40其養治7 天抗壓強度分別為62.20、74.92、20.16 kgf/cm2 ,養治28 天抗壓強度分別為107.16、141.23、62.16 kgf/cm2 ,養治56 天抗壓強度分別為199.84、151.19、67.89 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 抗壓強度相差較大,無法滿足水泥抗壓強度要求;C20F30R50、C10F40R50、C00F50R50其養治7 天抗壓強度分別為58.52、16.13、3.37 kgf/cm2 ,養治28 天抗壓強度分別為122.12、46.41、6.20 kgf/cm2 ,養治56 天抗壓強度分別為130.84、64.65、13.24 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 抗壓強度相差較大,無法滿足水泥抗壓強度要求;再以C00R100、C40R60、C50R50、C60R40、C70R30、C100R00 配比而言,其養治7天抗壓強度分別為2.97、218.87、264.92、396.04、510.97、550.21 kgf/cm2 ,養治28 天抗壓強度分別為5.96、243.11、276.20、447.91、515.71、647.99 kgf/cm2 ,養治56 天抗壓強度分別為9.35、270.14、274.28、448.84、541.74、647.99 kgf/cm2 ,以參照值純水泥配比C100R00 養治7 天、28 天、56 天抗壓強度分別為550.21、608.36、647.99 kgf/cm2 抗壓強度相差較大。由此可知,還原碴膠結材的抗壓強度隨還原碴摻配量增加而下降,趨勢相當明顯。當水膠比W/B=0.30時,以C40R60、C50R50、C60R40、C70R30 等配比接近水泥抗壓強度的要求為較佳。When the water-to-binder ratio W/B=0.3, the C40F30R30, C30F40R30, C20F50R30 curing pressure for 7 days 度 is 181.60, 126.04, 64.35 kgf/cm 2 respectively, and the curing pressure for 28 days 度 is 284.04, 183.48, 142.56 kgf/ cm 2 , curing compressive strength for 56 days 度 is 287.65, 210.00, 148.40 kgf/cm 2 , according to the reference value pure cement ratio C100R00 curing compressive strength for 7 days, 28 days, 56 days 度 is 550.21, 608.36, 647.99 kgf/ cm 2 , the compressive strength 度 differs greatly and cannot meet the cement compressive strength 度 requirements; C30F30R40, C20F40R40, C10F50R40 curing 7-day compressive strength 度 62.20, 74.92, 20.16 kgf/cm 2 respectively , curing 28-day compressive strength 度 are 107.16, 141.23, 62.16 kgf/cm 2 , 56-day curing pressure 度 is 199.84, 151.19, 67.89 kgf/cm 2 , according to the reference value pure cement ratio C100R00 curing 7-day, 28-day, 56-day compression strength 度 are 550.21, 608.36, 647.99 kgf/cm 2 compressive strength 度 is quite different and cannot meet the cement compressive strength 度 requirements; C20F30R50, C10F40R50, C00F50R50 its curing 7-day compressive strength 度 is 58.52, 16.13, 3.37 kgf/cm 2 , curing 28 The daily compressive strength 度 is 122.12, 46.41 and 6.20 kgf/cm 2 respectively , and the curing 56-day compressive strength 度 is 130.84, 64.65 and 13.24 kgf/cm 2 respectively , and the reference value pure cement ratio C100R00 is cured for 7 days, 28 days, 56 The natural compressive strength 度 is 550.21, 608.36 and 647.99 kgf/cm 2 respectively. The compressive strength 度 differs greatly and cannot meet the cement compressive strength 度 requirements; then the C00R100, C40R60, C50R50, C60R40, C70R30 and C100R00 ratios are used for curing The 7-day compressive strength 度 is 2.97, 218.87, 264.92, 396.04, 510.97, 550.21 kgf/cm 2 , and the 28-day compressive strength 度 is 5.96, 243.11, 276.20, 447.91, 515.71, 647.99 kgf/cm 2 , 56 days Compressive strength 度 is 9.35, 270.14, 274.28, 448.84, 541.74, 647.99 kgf/cm 2 , according to the reference value pure cement Compared with C100R00, the 7-day, 28-day, and 56-day compressive strength 度 is 550.21, 608.36, and 647.99 kgf/cm 2 compressive strength 度, which is quite different. It can be seen that the compressive strength of reduced ballast cement 度 decreases with the increase of the amount of reduced ballast, and the trend is quite obvious. When the water-binder ratio W/B=0.30, it is better to use C40R60, C50R50, C60R40, C70R30 and other ratios close to the compressive strength of cement 度.

另,根據上述分析結果比較氧化碴膠結材和還原碴膠結材的抗壓強度,顯然,抗壓強度以氧化碴膠結材較高,分析水膠比對於氧化碴膠結材和還原碴膠結材的抗壓強度之影響,結果顯示,氧化碴膠結材與還原碴膠結材的抗壓強度皆隨水膠比增加而降低。In addition, according to the above analysis results, the compressive strength 度 of the oxidized ballast cement material and the reduced ballast cement material is compared. Obviously, the compressive strength 度 is higher with the oxidized ballast cement material. Analyze the resistance of the water cement ratio to the oxidized ballast cement material and the reduced ballast cement material The influence of the pressure 度 shows that the compressive strength 度 of the oxidized ballast cement material and the reduced ballast cement material decreases as the water-binder ratio increases.

實施例四:乾縮量檢測Embodiment 4: Dry shrinkage detection

乾縮試驗可用以瞭解氧化碴膠結材和還原碴膠結材之體積穩定性,因此利用數位式比較測長儀來量測無機聚合物脫水時所造成試體乾縮之長度變化量。通常此乾縮量越小越好,以下將針對氧化碴膠結材和還原碴膠結材對於體積穩定性作探討。The dry shrinkage test can be used to understand the volume stability of the oxidized ballast cement material and the reduced ballast cement material. Therefore, a digital comparative length gauge is used to measure the change in the length of the sample shrinkage caused by the dehydration of the inorganic polymer. Generally, the smaller the shrinkage, the better. The following will discuss the volume stability of oxidized ballast cement and reduced ballast cement.

依據 CNS 14603 之試驗步驟,進行長度變化試驗,水膠比設定為0.2、0.25和0.30,將膠結材漿體,並灌入試體尺寸285 mm ×25 mm ×25 mm 之長方型柱模具中,於固化階段將試體進行拆模,並於拆模後量測試體長度之初始值。往後則以3 天、7 天及28 天齡期量測各齡期之乾縮長度變化量,施測前須以標準桿於儀器上相同位置,以校核比較測長儀之歸零,其主要用於量測由膠結材漿體棒試體之長度變化量,其計算試體長度變化公式如下: ΔLX =[(L2 - L1 )/G] ×100According to the test procedure of CNS 14603, the long 度 change test is carried out, the water-to-binder ratio is set to 0.2, 0.25 and 0.30, and the cement material slurry is poured into a rectangular column mold with a size of 285 mm × 25 mm × 25 mm. At the curing stage, the test body is demolded, and the initial value of the test body length 度 is measured after demolding. Afterwards, the dry shrinkage of each age is measured at 3 days, 7 days and 28 days of age. The amount of change 度 must be calibrated at the same position on the instrument before the test to verify the comparison of the zero length of the length gauge. It is mainly used to measure the change of the length 度 of the specimen of the cement paste bar. The formula for calculating the length of the sample 度 is as follows: ΔL X =[(L 2 -L 1 )/G] ×100

其中,ΔLX :試體於齡期量測之長度變化(%),L1:試體初始長度之讀數,減去同一時間之參考桿長度數據值(mm),L2:試體於齡期量測之相對長度之讀數,減去相同齡期之標準桿之讀數(mm),G:標稱之有效標距250mm。Among them, ΔL X : the length of the sample measured at age 度 change (%), L1: the reading of the initial length of the sample 度, minus the reference rod length at the same time 度 data value (mm), L2: the amount of the sample at age The reading of the relatively long 度, minus the reading (mm) of the par at the same age, G: the nominal effective gauge length of 250mm.

(1)氧化碴膠結材水膠比W/B=0.2(1) Water/binder ratio of oxidized ballast cement material W/B=0.2

請參閱第十三圖,C40F30O30、C30F40O30、C20F50O30其養治7 天乾縮率分別為0.057%、0.032%、0.24%,養治28 天乾縮率分別為0.057%、0.047%、0.301%,養治56 天乾縮率分別為0.319%、0.100%、0.351%,以參照值純水泥配比C100O00 養治7 天、28 天、56 天乾縮率分別為0.049%、0.158%、0.161 %,乾縮率相當接近,其中以C20F50O30 配比乾縮率較高;C30F30O40、C20F40O40、C10F50O40其養治7 天乾縮率分別為0.004%、0.001%、0.035%,養治28 天乾縮率分別為0.021%、0.011%、0.046%,養治56 天乾縮率分別為0.105%、0.060%、0.084%,以參照值純水泥配比C100O00 作比較,其乾縮率相當接近;C20F30O50、C10F40O50、C00F50O50其養治7 天乾縮率分別為0.007%、0.011%、-0.05%,養治28 天乾縮率分別為0.053%、0.022%、-0.100%,養治56 天乾縮率分別為0.172%、0.029%、-0.139%,以參照值純水泥配比C100O00 作比較,其乾縮率相當 接近;再以C00O100、C40O60、C50O50、C60O40、C70O30、C100O00 配比而言,其養治7 天乾縮率分別為0.082%、0.242%、-0.007%、-0.004%、0.021%、0.049%,養治28 天乾縮率分別為0.097%、0.376%、-0.014%、-0.018%、0.035%、0.158%,養治56 天乾縮率分別為0.115%、0.376%、-0.025%、-0.039%、0.091%、0.161%,以參照值純水泥配比C100O00作比較,除C00O100 配比外,其餘配比乾縮率相當接近參照值純水泥配比。由此可知,氧化碴膠結材的乾縮率隨氧化碴摻配量增加而增加,但是增加趨勢不明顯。當水膠比W/B=0.20 時,以C40F30O30、C30F40O30、C30F30O40、C20F40O40、C10F50O40、C20F30O50 、C40O60、C50O50、C60O40、C70O30 等配比符合水泥乾縮率的要求為較佳。Please refer to the thirteenth graph, C40F30O30, C30F40O30, C20F50O30, their 7-day curing shrinkage rates are 0.057%, 0.032%, 0.24%, 28-day curing shrinkage rates are 0.057%, 0.047%, 0.301%, curing 56 days The dry shrinkage rates were 0.319%, 0.100%, and 0.351%, respectively. Based on the reference value, the pure cement ratio C100O00 cured for 7 days, 28 days, and 56 days. The dry shrinkage rates were 0.049%, 0.158%, and 0.161%, respectively. Among them, the ratio of C20F50O30 is higher; the shrinkage rate of C30F30O40, C20F40O40, and C10F50O40 is 7 days, and the shrinkage rate is 0.004%, 0.001%, and 0.035%, and the 28-day cure rate is 0.021%, 0.011%, and 0.046, respectively. %, 56-day curing shrinkage rate is 0.105%, 0.060%, 0.084%, compared with the reference value of pure cement ratio C100O00, the drying shrinkage rate is quite close; C20F30O50, C10F40O50, C00F50O50, curing 7-day drying shrinkage rate respectively 0.007%, 0.011%, -0.05%, 28-day curing shrinkage rates were 0.053%, 0.022%, -0.10%, 56-day curing shrinkage rates were 0.172%, 0.029%, -0.139%, based on reference value Compared with the ratio of pure cement C100O00, the dry shrinkage ratio is quite close; in terms of the ratio of C00O100, C40O60, C50O50, C60O40, C70O30, C100O00, the curing shrinkage ratio of 7 days is 0.082%, 0.242%, -0.007 respectively %, -0.004%, 0.021%, 0.049%, 28-day curing shrinkage rate is 0.097%, 0.376%, -0.014%, -0.018%, 0.035%, 0.158%, 56-day curing shrinkage rate is 0.115% , 0.376%, -0.025%, -0.039%, 0.091%, 0.161%, compared with the reference value pure cement ratio C100O00, except for the C00O100 ratio, the rest of the ratio dry shrinkage ratio is quite close to the reference value pure cement ratio. It can be seen that the shrinkage rate of oxidized ballast cement material increases with the increase of the amount of oxidized ballast, but the increase trend is not obvious. When the water-binder ratio W/B=0.20, it is better to use C40F30O30, C30F40O30, C30F30O40, C20F40O40, C10F50O40, C20F30O50, C40O60, C50O50, C60O40, C70O30, etc. to meet the requirements of cement shrinkage ratio.

(2)氧化碴膠結材水膠比W/B=0.25(2) Water/binder ratio of oxidized ballast cement material W/B=0.25

請參閱第十四圖,C40F30O30、C30F40O30、C20F50O30其養治7 天乾縮率分別為0.018%、0.014%、0.118%,養治28 天乾縮率分別為0.032%、0.038%、0.132%,養治56 天乾縮率分別為0.070%、0.049%、0.150%,以參照值純水泥配比C100O00 養治7 天、28 天、56天乾縮率分別為-0.007%、-0.011%、-0.018%,乾縮率相當接近,其中以C20F50O30 配比乾縮率較高;C30F30O40、C20F40O40、C10F50O40其養治7 天乾縮率分別為0.021%、0.090%、0.011%,養治28 天乾縮率分別為0.089%、0.273%、0.039%,養治56 天乾縮率分別為0.093%、0.335%、0.235%,以參照值純水泥配比C100O00 作比較,乾縮率相當接近,其中以C20F40O40 配比乾縮率較高;C20F30O50、C10F40O50、C00F50O50其養治7 天乾縮率分別為0.109%、0.378%、0.144%,養治28 天乾縮率分別為0.148%、0.443%、0.395%,養治56 天乾縮率分別為0.176%、0.500%、0.625%,以參照值純水泥配比C100O00 作比較,三個配比乾縮率相當高遠超過參照值;再以C00O100、C40O60、C50O50、C60O40、C70O30、C100O00 配比而言,其養治7 天乾縮率分別為0.148%、0.206%、0.001%、0.079%、-0.154%、-0.007%,養治28 天乾縮率分別為0.219%、0.282%、-0.004%、0.036%、-0.154%、-0.011%,養治56 天乾縮率分別為0.317%、0.340%、-0.079%、0.068%、-0.210%、-0.018%,以參照值純水泥配比C100O00作比較,除C00O100、C40O600 配比外,其餘配比乾縮率相當接近參照值純水泥配比。由此可知,氧化碴膠結材的乾縮率隨氧化碴摻配量增加而增加,但是增加趨勢不明顯。當水膠比W/B=0.25 時,以C40F30O30、C30F40O30、C30F30O40、C10F50O40、C20F30O50、C50O50、C60O40、C70O30 等配比符合水泥乾縮率的要求為較佳。Please refer to the fourteenth figure, C40F30O30, C30F40O30, C20F50O30 cure shrinkage rate of 0.018%, 0.014%, 0.118% for curing 7 days, 0.032%, 0.038%, 0.132% cure for 28 days, curing 56 days Dry shrinkage ratios are 0.070%, 0.049%, and 0.150%, respectively. Based on the reference value, the pure cement ratio C100O00 cures for 7 days, 28 days, and 56 days. The dry shrinkage ratios are -0.007%, -0.011%, and -0.018%, respectively. The rate is quite close, and the shrinkage rate is higher with the ratio of C20F50O30; C30F30O40, C20F40O40, C10F50O40 have 7-day curing shrinkage rates of 0.021%, 0.090%, and 0.011%, and 28-day curing shrinkage rates are 0.089% and 0.273, respectively. %, 0.039%, curing shrinkage rate of 56 days is 0.093%, 0.335%, 0.235%, compared with the reference value of pure cement ratio C100O00, the drying shrinkage rate is quite close, of which C20F40O40 ratio is higher; For C20F30O50, C10F40O50, C00F50O50, the 7-day curing shrinkage rates were 0.109%, 0.378%, and 0.144%, the 28-day curing shrinkage rates were 0.148%, 0.443%, and 0.395%, and the 56-day curing shrinkage rates were 0.176%, respectively. , 0.500%, 0.625%, compared with the reference value of pure cement ratio C100O00, the shrinkage rate of the three ratios is quite high and far exceeds the reference value; then with C00O100, C40O60, C50O50, C60O40, C70O30, C100O00 ratio, its The 7-day curing shrinkage rate was 0.148%, 0.206%, 0.001%, 0.079%, -0.154%, -0.007%, and the 28-day curing shrinkage rate was 0.219%, 0.282%, -0.004%, 0.036%,- 0.154%, -0.011%, curing shrinkage rate of 56 days is 0.317%, 0.340%, -0.079%, 0.068%, -0.210%, -0.018%, with the reference value of pure cement ratio C100O00 for comparison, except C00O100, In addition to the C40O600 ratio, the dry shrinkage of the other ratios is quite close to the reference value of pure cement. It can be seen that the shrinkage rate of oxidized ballast cement material increases with the increase of the amount of oxidized ballast, but the increase trend is not obvious. When the water-binder ratio W/B=0.25, it is better to use C40F30O30, C30F40O30, C30F30O40, C10F50O40, C20F30O50, C50O50, C60O40, C70O30, etc. to meet the requirements of cement dry shrinkage.

(3)氧化碴膠結材水膠比W/B=0.3(3) Water-to-binder ratio of oxidized ballast cement material W/B=0.3

請參閱第十五圖,C40F30O30、C30F40O30、C20F50O30其養治7 天乾縮率分別為0.01%、0.032%、0.004%,養治28 天乾縮率分別為0.029%、0.050%、0.018%,養治56 天乾縮率分別為0.072%、0.118%、0.025%,以參照值純水泥配比C100O00 養治7 天、28 天、56 天乾縮率分別為-0.014%、-0.021%、-0.07%,乾縮率相當接近參照值純水泥配比;C30F30O40、C20F40O40、C10F50O40其養治7 天乾縮率分別為0.021%、0.090%、0.011%,養治28 天乾縮率分別為0.089%、0.273%、0.039%,養治56 天乾縮率分別為0.093%、0.335%、0.235%,以參照值純水泥配比C100O00 作比較,其中以C20F40O40配比乾縮率較高,乾縮率相當接近參照值純水泥配比;C20F30O50、C10F40O50、C00F50O50其養治7 天乾縮率分別為0.021%、0.107%、0.022%,養治28 天乾縮率分別為0.13%、0.221%、0.361%,養治56 天乾縮率分別為0.148%、0.251%、0.435%,以參照值純水泥配比C100O00 作比較,其中以C00F50O50配比乾縮率較高,乾縮率相當接近參照值純水泥配比;再以C00O100、C40O60、C50O50、C60O40、C70O30、C100O00 配比而言,其養治7 天乾縮率分別為-0.025%、0.043%、0.134%、0.125%、-0.091%、-0.014%,養治28 天乾縮率分別為-0.047%、0.126%、0.191%、0.132%、-0.112%、-0.021%,養治56 天乾縮率分別為-0.06%、0.16%、0.154%、0.197%、-0.137%、-0.07%,其乾縮率相當接近參照值純水泥配比。由此可知,氧化碴膠結材的乾縮率隨氧化碴摻配量增加而增加,但是增加趨勢不明顯。當水膠比W/B=0.30 時,以C40F30O30、C30F40O30、C20F50O30、C30F30O40、C10F50O40、C20F30O50、C10F40O50、C50O50、C60O40、C70O30 等配比符合水泥乾縮率的要求為較佳。Please refer to the fifteenth figure, C40F30O30, C30F40O30, C20F50O30 cure shrinkage rate of 0.01%, 0.032%, 0.004% for 7 days, 0.029%, 0.050%, 0.018% cure for 28 days, 56 days cure The dry shrinkage ratios are 0.072%, 0.118%, and 0.025%, respectively, and the reference value of pure cement is C100O00 curing for 7 days, 28 days, and 56 days. The dry shrinkage ratios are -0.014%, -0.021%, and -0.07%, respectively. The rate is quite close to the reference value of pure cement ratio; C30F30O40, C20F40O40, C10F50O40 curing shrinkage rate of 7 days is 0.021%, 0.090%, 0.011%, 28 days curing shrinkage rate is 0.089%, 0.273%, 0.039%, The 56-day curing shrinkage rate of curing is 0.093%, 0.335%, 0.235% respectively, compared with the reference value pure cement ratio C100O00, in which the C20F40O40 ratio is higher, and the dry shrinkage ratio is quite close to the reference value pure cement ratio ; C20F30O50, C10F40O50, C00F50O50, the 7-day curing shrinkage rates were 0.021%, 0.107%, and 0.022%, the 28-day curing shrinkage rates were 0.13%, 0.221%, and 0.361%, and the 56-day curing shrinkage rates were 0.148, respectively. %, 0.251%, 0.435%, compared with the reference value of pure cement ratio C100O00, in which the shrinkage rate of C00F50O50 is higher, and the shrinkage rate is quite close to the reference value of pure cement ratio; then C00O100, C40O60, C50O50, For C60O40, C70O30, and C100O00, the 7-day curing shrinkage rate is -0.025%, 0.043%, 0.134%, 0.125%, -0.091%, -0.014%, and the 28-day curing shrinkage rate is -0.047, respectively. %, 0.126%, 0.191%, 0.132%, -0.112%, -0.021%, the curing shrinkage rate for 56 days is -0.06%, 0.16%, 0.154%, 0.197%, -0.137%, -0.07% The shrinkage is quite close to the reference value of pure cement. It can be seen that the shrinkage rate of oxidized ballast cement material increases with the increase of the amount of oxidized ballast, but the increase trend is not obvious. When the water-binder ratio W/B=0.30, it is better to use C40F30O30, C30F40O30, C20F50O30, C30F30O40, C10F50O40, C20F30O50, C10F40O50, C50O50, C60O40, C70O30, etc. to meet the requirements of cement shrinkage ratio.

(4)還原碴膠結材水膠比W/B=0.2(4) Water-to-binder ratio of reduced ballast cement material W/B=0.2

請參閱第十六圖,C40F30R30、C30F40R30、C20F50R30其養治7 天乾縮率分別為0.054%、0.028%、0.018%,養治28 天乾縮率分別為0.077%、0.032%、0.028%,養治56 天乾縮率分別為0.077%、0.067%、0.056%,以參照值純水泥配比C100R00 養治7 天、28 天、56 天乾縮率分別為0.004%、0.022%、0.032 %,乾縮率相當接近參照值純水泥配比;C30F30R40、C20F40R40、C10F50R40其養治7 天乾縮率分別為0.046%、0.007%、0.257%,養治28 天乾縮率分別為0.049%、0.014%、0.298%,養治56 天乾縮率分別為0.07%、0.147%、0.485%,以參照值純水泥配比C100R00 作比較,其中以C10F50R40配比乾縮率較高,其乾縮率相當接近參照值純水泥配比;C20F30R50、C10F40R50、C00F50R50其養治7 天乾縮率分別為0.039%、0.137%、0.328%,養治28 天乾縮率分別為0.079%、0.259%、0.382%,養治56 天乾縮率分別為0.179%、0.431%、0.435%,以參照值純水泥配比C100R00 作比較,其中以C10F40R50、C00F50R50 配比乾縮率較高,只有配比C20F30R50 乾縮率才接近參照值純水泥配比。再以C00R100、C40R60、C50R50、C60R40、C70R30、C100R00 配比而言,其養治7天乾縮率分別為0.082%、0.285%、0.032%、0.104%、0.011%、0.004%,養治28 天乾縮率分別為0.097%、0.404%、0.035%、0.129%、0.079%、0.022%,養治56 天乾縮率分別為0.12%、0.52%、0.053%、0.133%、0.147%、0.032%,以參照值純水泥配比C100R00 作比較,除C40R60 配比外,其餘配比乾縮率相當接近參照值純水泥配比。由此可知,還原碴膠結材的乾縮率隨還原碴摻配量增加而增加,但是增加趨勢不明顯。當水膠比W/B=0.20 時,以C40F30R30、C30F40R30、C20F50R30、C30F30R40、C20F40R40、C20F30R50、C50R50、C60R40、C70R30 等配比符合水泥乾縮率的要求為較佳。Please refer to the sixteenth figure, C40F30R30, C30F40R30, C20F50R30 curing shrinkage rate of 7 days is 0.054%, 0.028%, 0.018%, curing 28 days shrinkage rate is 0.077%, 0.032%, 0.028%, curing 56 days Dry shrinkage ratios are 0.077%, 0.067%, and 0.056%, respectively. Based on the reference value, pure cement ratio C100R00 is cured for 7 days, 28 days, and 56 days. The dry shrinkage ratios are 0.004%, 0.022%, and 0.032%, respectively. Reference value of pure cement ratio; C30F30R40, C20F40R40, C10F50R40 curing shrinkage rate of 0.046%, 0.007%, 0.257% for curing 7 days, 0.049%, 0.014%, 0.298% curing cure for 28 days, curing 56 days The dry shrinkage ratios are 0.07%, 0.147%, and 0.485% respectively, compared with the reference value pure cement ratio C100R00, in which the C10F50R40 ratio is higher, and the dry shrinkage ratio is quite close to the reference value pure cement ratio; C20F30R50 , C10F40R50, C00F50R50, the 7-day curing shrinkage rate were 0.039%, 0.137%, 0.328%, 28-day curing shrinkage rate were 0.079%, 0.259%, 0.382%, 56-day curing shrinkage rate were 0.179%, 0.431% and 0.435% are compared with the reference value pure cement ratio C100R00. Among them, the C10F40R50 and C00F50R50 ratios have higher shrinkage ratios. Only the ratio C20F30R50 dry shrinkage ratio is close to the reference value pure cement ratio. Based on the ratio of C00R100, C40R60, C50R50, C60R40, C70R30, and C100R00, the 7-day curing shrinkage rate is 0.082%, 0.285%, 0.032%, 0.104%, 0.011%, 0.004%, and the 28-day curing shrinkage The rates were 0.097%, 0.404%, 0.035%, 0.129%, 0.079%, and 0.022%, and the 56-day curing shrinkage rates were 0.12%, 0.52%, 0.053%, 0.133%, 0.147%, and 0.032%, respectively. For the comparison of pure cement ratio C100R00, except for the C40R60 ratio, the dry shrinkage ratio of the other ratios is quite close to the reference value pure cement ratio. It can be seen that the shrinkage rate of reduced ballast cement increases with the increase of the amount of reduced ballast, but the increase trend is not obvious. When the water-binder ratio W/B=0.20, it is better to use C40F30R30, C30F40R30, C20F50R30, C30F30R40, C20F40R40, C20F30R50, C50R50, C60R40, C70R30, etc. to meet the requirements of cement dry shrinkage.

(5)還原碴膠結材水膠比W/B=0.25(5) Water-to-binder ratio of reduced ballast cement material W/B=0.25

請參閱第十七圖,C40F30R30、C30F40R30、C20F50R30其養治7 天乾縮率分別為0.004%、0.029%、0.022%,養治28 天乾縮率分別為0.039%、0.072%、0.061%,養治56 天乾縮率分別為0.047%、0.104%、0.144%,以參照值純水泥配比C100R00 養治7 天、28 天、56 天乾縮率分別為0.004%、0.022%、0.032 %,其配比乾縮率相當接近參照值純水泥配比;C30F30R40、C20F40R40、C10F50R40其養治7 天乾縮率分別為0.032%、0.072%、0.114%,養治28 天乾縮率分別為0.046%、0.100%、0.157%,養治56 天乾縮率分別為0.089%、0.107%、0.222%,以參照值純水泥配比C100R00 作比較,其中以C10F50R40配比乾縮率較高,其乾縮率相當接近參照值純水泥配比;C20F30R50、C10F40R50、C00F50R50 配比而言,其養治7 天乾縮率分別為0.018%、0.103%、0.119%,養治28 天乾縮率分別為0.035%、0.231%、0.463%,養治56 天乾縮率分別為0.049%、0.483%、0.537%,以參照值純水泥配比C100R00 作比較,其中以C10F40R50、C00F50R50 配比乾縮率較高,只有配比C20F30R50 乾縮率才接近參照值純水泥配比;再以C00R100、C40R60、C50R50、C60R40、C70R30、C100R00 配比而言,其養治7天乾縮率分別為0.148%、0.333%、0.0458%、0.0408%、0.077%、0.05%,養治28 天乾縮率分別為0.219%、0.437%、0.047%、0.053%、0.082%、0.062%,養治56 天乾縮率分別為0.32%、0.54%、0.052%、0.066%、0.085%、0.09%,以參照值純水泥配比C100R00 作比較,除C00R100、C40R60 配比外,其餘配比乾縮率相當接近參照值純水泥配比。由此可知,還原碴膠結材的乾縮率隨還原碴摻配量增加而增加,但是增加趨勢不明顯。當水膠比W/B=0.25 時,以C40F30R30、C30F40R30、C20F50R30、C30F30R40、C20F40R40、C20F30R50、C50R50、C60R40、C70R30 等配比符合水泥乾縮率的要求為較佳。Please refer to the seventeenth figure, C40F30R30, C30F40R30, C20F50R30, their 7-day curing shrinkage rate is 0.004%, 0.029%, 0.022%, 28-day curing shrinkage rate is 0.039%, 0.072%, 0.061%, curing 56 days Dry shrinkage ratios are 0.047%, 0.104%, and 0.144%, respectively. Based on the reference value, the pure cement ratio C100R00 is cured for 7 days, 28 days, and 56 days. The dry shrinkage ratios are 0.004%, 0.022%, and 0.032%, respectively. The rate is quite close to the reference value of pure cement ratio; C30F30R40, C20F40R40, C10F50R40 curing shrinkage rate of 7 days is 0.032%, 0.072%, 0.114%, curing 28 days drying shrinkage rate is 0.046%, 0.100%, 0.157%, The 56-day curing shrinkage rate of curing is 0.089%, 0.107%, 0.222% respectively, compared with the reference value pure cement ratio C100R00, in which the C10F50R40 ratio is higher, and the dry shrinkage ratio is quite close to the reference value pure cement ratio Ratio; C20F30R50, C10F40R50, C00F50R50 ratio, the 7-day curing shrinkage rate was 0.018%, 0.103%, 0.119%, 28-day curing shrinkage rate was 0.035%, 0.231%, 0.463%, curing 56 days Dry shrinkage ratios are 0.049%, 0.483%, and 0.537%, respectively, compared with the reference value of pure cement ratio C100R00. Among them, C10F40R50 and C00F50R50 ratios have higher shrinkage ratios. Only the ratio C20F30R50 dry shrinkage ratios are close to the reference value. Cement ratio; then with C00R100, C40R60, C50R50, C60R40, C70R30, C100R00 ratio, its 7-day curing shrinkage rate is 0.148%, 0.333%, 0.0458%, 0.0408%, 0.077%, 0.05%, curing The 28-day shrinkage rates were 0.219%, 0.437%, 0.047%, 0.053%, 0.082%, and 0.062%, and the 56-day shrinkage rates were 0.32%, 0.54%, 0.052%, 0.066%, 0.085%, and 0.09%, respectively. Compared with the reference value pure cement ratio C100R00, except for the C00R100 and C40R60 ratios, the other ratio dry shrinkage ratios are quite close to the reference value pure cement ratio. It can be seen that the shrinkage rate of reduced ballast cement increases with the increase of the amount of reduced ballast, but the increase trend is not obvious. When the water-binder ratio W/B=0.25, it is better to use C40F30R30, C30F40R30, C20F50R30, C30F30R40, C20F40R40, C20F30R50, C50R50, C60R40, C70R30, etc. to meet the requirements of cement dry shrinkage.

(6)還原碴膠結材水膠比W/B=0.3(6) Water-to-binder ratio of reduced ballast cement material W/B=0.3

請參閱第十八圖,C40F30R30、C30F40R30、C20F50R30其養治7 天乾縮率分別為0.083%、0.09%、0.043%,養治28 天乾縮率分別為0.219%、0.129%、0.057%,養治56 天乾縮率分別為0.244%、0.222%、0.215%,以參照值純水泥配比C100R00 養治7 天、28 天、56 天乾縮率分別為0.003%、0.014%、0.017 %,其配比乾縮率偏高;C30F30R40、C20F40R40、C10F50R40 配比而言,其養治7 天乾縮率分別為0.021%、0.021%、0.097%,養治28 天乾縮率分別為0.046%、0.057%、0.193%,養治56 天乾縮率分別為0.054%、0.122%、0.204%,以參照值純水泥配比C100R00 作比較,其中以C10F50R40配比乾縮率較高,其餘配比乾縮率相當接近參照值純水泥配比;C20F30R50、C10F40R50、C00F50R50其養治7 天乾縮率分別為0.021%、0.021%、0.110%,養治28 天乾縮率分別為0.056%、0.042%、0.466%,養治56 天乾縮率分別為0.066%、0.091%、0.519%,以參照值純水泥配比C100R00 作比較,其中以C00F50R50配比乾縮率較高,其餘配比乾縮率相當接近參照值純水泥配比;再以C00R100、C40R60、C50R50、C60R40、C70R30、C100R00 配比而言,其養治7天乾縮率分別為0.025%、0.247%、0.031%、0.018%、0.04%、0.003%,養治28 天乾縮率分別為0.047%、0.389%、0.045%、0.077%、0.095%、0.014%,養治56 天乾縮率分別為0.06%、0.55%、0.108%、0.116%、0.112%、0.017%,以參照值純水泥配比C100R00 作比較,除C40R60 配比外,其餘配比乾縮率相當接近參照值純水泥配比。由此可知,還原碴膠結材的乾縮率隨還原碴摻配量增加而增加,但是增加趨勢不明顯。當水膠比W/B=0.30 時,以C30F30R40、C20F40R40、C20F30R50、C10F40R50、C50R50、C60R40、C70R30 等配比符合水泥乾縮率的要求為較佳。Please refer to the eighteenth figure, C40F30R30, C30F40R30, C20F50R30 cure shrinkage rate of 0.083%, 0.09%, 0.043% for 7 days, 0.219%, 0.129%, 0.057% cure for 28 days, 56 days cure The dry shrinkage ratios are 0.244%, 0.222%, 0.215%, respectively, and the reference value of pure cement is C100R00 curing for 7 days, 28 days, and 56 days. The dry shrinkage ratios are 0.003%, 0.014%, and 0.017%, respectively. The rate is high; for C30F30R40, C20F40R40, and C10F50R40, the 7-day curing shrinkage rates are 0.021%, 0.021%, and 0.097%, and the 28-day curing shrinkage rates are 0.046%, 0.057%, and 0.193%, respectively. The 56-day dry shrinkage ratios are 0.054%, 0.122%, and 0.204%, respectively, compared with the reference value pure cement ratio C100R00, in which the C10F50R40 ratio is higher, and the remaining ratio dry shrinkage ratios are quite close to the reference value pure cement. Mixing ratio; C20F30R50, C10F40R50, C00F50R50, the 7-day curing shrinkage rate is 0.021%, 0.021%, and 0.110%, the 28-day curing shrinkage rate is 0.056%, 0.042%, 0.466%, and the 56-day curing shrinkage rate, respectively It is 0.066%, 0.091%, 0.519%, compared with the reference value pure cement ratio C100R00, in which the dry shrinkage ratio of C00F50R50 ratio is higher, and the remaining ratio dry shrinkage ratio is quite close to the reference value pure cement ratio; then C00R100 , C40R60, C50R50, C60R40, C70R30, C100R00, the 7-day curing shrinkage rate is 0.025%, 0.247%, 0.031%, 0.018%, 0.04%, 0.003%, 28-day curing shrinkage rate is respectively 0.047%, 0.389%, 0.045%, 0.077%, 0.095%, 0.014%, curing shrinkage rate of 56 days is 0.06%, 0.55%, 0.108%, 0.116%, 0.112%, 0.017%, according to the reference value of pure cement Compared with C100R00, except for the C40R60 ratio, the rest of the ratio shrinkage ratio is quite close to the reference value of pure cement. It can be seen that the shrinkage rate of reduced ballast cement increases with the increase of the amount of reduced ballast, but the increase trend is not obvious. When the water-binder ratio W/B=0.30, it is better to use C30F30R40, C20F40R40, C20F30R50, C10F40R50, C50R50, C60R40, C70R30, etc. to meet the requirements of cement dry shrinkage.

實施例五:晶相檢測Example 5: Crystal phase detection

將氧化碴膠結材和還原碴膠結材漿體在相同水膠比氧化碴膠結材15 組配比還原碴膠結材15 組配比製作成澆置成 5cm×5cm×5cm 方形試體,養護7 天後,於養護齡期進行抗壓試驗後進行取樣、烘乾、鍍金等程序,施作掃描式電子顯微鏡(SEM)探討材料微結構的相貌,取出所需觀察之試片,其尺寸大小約3-5mm,經由24 小時抽真空及表面鍍碳之前處理程序後,置入電子顯微鏡下經由250 至3000 倍的放大倍率,觀察試片之微觀結晶相圖。不同配比之晶相圖如第十八圖~第二十三圖所示,在晶相圖上皆可看到外觀針刺狀的C-S-H 膠體(以方框表示),大小不等球狀結構體(以圓框表示)。The oxidized ballast cement material and the reduced ballast cement material slurry are made at the same water-to-binder ratio. The oxidized ballast cement material is 15 groups, and the reduced ballast cement material is 15 groups. The cast is made into a 5cm×5cm×5cm square sample, which is cured for 7 days. After the compression test at the curing age, sampling, drying, gold plating and other procedures are carried out, and a scanning electron microscope (SEM) is used to discuss the microstructure of the material, and the required test piece is taken out, and its size is about 3 -5mm, after 24 hours of evacuation and pre-treatment of carbon coating on the surface, place it under an electron microscope at 250 to 3000 times magnification, and observe the microcrystalline phase diagram of the test piece. The crystal phase diagrams of different ratios are shown in the eighteenth to twenty-third diagrams. On the crystal phase diagrams, you can see the appearance of needle-like CSH colloids (indicated by boxes), with different sizes of spherical structures Body (represented by a round frame).

綜上所述,本案鋼碴膠結材所界定的特定配比確實具有其特殊意義,且能達到所述特定功效。In summary, the specific ratio defined by the ballast cement material in this case does have its special meaning and can achieve the specific effect.

由上述之實施說明可知,本發明與現有技術相較之下,本發明具有以下優點:It can be seen from the above implementation description that the present invention has the following advantages compared with the prior art:

1.本案鋼碴膠結材經由毒性試驗得知其毒物溶出量遠低於管制標準,因此不具重金屬毒性,具有使用安全性。1. The ballast cement material in this case was found through toxicity tests that the amount of toxic substances dissolved was far lower than the regulatory standards, so it did not have the toxicity of heavy metals and it was safe to use.

2.本案鋼碴膠結材進行混合時,可在常溫下進行,不需高溫燒製,且於不含水環境中以乾扮方式混合即可,因此整體製作程序所耗費成本較低,且可避免高溫燒製造成的環境汙染。2. In this case, the ballast cement material can be mixed at room temperature without firing at high temperature, and it can be mixed in a dry manner in a non-aqueous environment, so the overall production process costs less and can be avoided Environmental pollution caused by high temperature firing.

3.本案利用工業廢棄物中的氧化碴粉末、還原碴粉末、電廠飛灰等製成鋼碴膠結材,並經過測試證實能符合水泥凝結時間、抗壓強度與乾縮率的要求,因此可達到資源回收再利用之目的。3. This case uses oxidized ballast powder, reduced ballast powder, power plant fly ash, etc. in industrial waste to make steel ballast cement, and has been tested and confirmed to meet the requirements of cement setting time, compressive strength and dry shrinkage, so it can be To achieve the purpose of resource recovery and reuse.

綜上所述,本發明之鋼碴膠結材的製造方法,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明亦未曾公開於申請前,誠已完全符合專利法之規定與要求。爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。In summary, the manufacturing method of the steel ballast cement material of the present invention can indeed achieve the expected use effect through the embodiments disclosed above, and the present invention has not been disclosed before the application, and it has fully complied with the patent law Regulations and requirements. I filed an application for a patent for invention in accordance with the law, pleaded for the review, and granted the patent.

惟,上述所揭之圖示及說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。However, the illustrations and descriptions disclosed above are only preferred embodiments of the present invention, and are not intended to limit the scope of protection of the present invention; those who are familiar with this skill, according to the characteristic scope of the present invention, do other things Equivalent changes or modifications should be regarded as not departing from the design scope of the present invention.

no

第一圖:本發明其較佳實施例之步驟流程圖。Figure 1: The flow chart of the steps of the preferred embodiment of the present invention.

第二圖:本發明其較佳實施例中氧化碴粉末或還原碴粉末之製備流程圖。The second figure: the preparation flow chart of the oxidized ballast powder or the reduced ballast powder in the preferred embodiment of the present invention.

第三圖:水泥熟料之X 光繞射分析(XRD)圖及掃描式電子顯微鏡(SEM)晶相圖。Third figure: X-ray diffraction analysis (XRD) diagram and scanning electron microscope (SEM) crystal phase diagram of cement clinker.

第四圖:電廠飛灰之X 光繞射分析(XRD)圖及掃描式電子顯微鏡(SEM)晶相圖。Fourth figure: X-ray diffraction analysis (XRD) diagram and scanning electron microscope (SEM) crystal phase diagram of power plant fly ash.

第五圖:氧化碴(海光)之X 光繞射分析(XRD)圖及掃描式電子顯微鏡(SEM)晶相圖。Fifth picture: X-ray diffraction analysis (XRD) picture and scanning electron microscope (SEM) crystal phase picture of ballast oxide (sea light).

第六圖:氧化碴(龍慶)之X 光繞射分析(XRD)圖及掃描式電子顯微鏡(SEM)晶相圖。Figure 6: X-ray diffraction analysis (XRD) diagram and scanning electron microscope (SEM) crystal phase diagram of the ballast oxide (Longqing).

第七圖:還原碴(海光)之X 光繞射分析(XRD)圖及掃描式電子顯微鏡(SEM)晶相圖。Figure 7: X-ray diffraction analysis (XRD) diagram and scanning electron microscope (SEM) crystal phase diagram of reduced ballast (sea light).

第八圖:還原碴(龍慶)之X 光繞射分析(XRD)圖及掃描式電子顯微鏡(SEM)晶相圖。Figure 8: X-ray diffraction analysis (XRD) diagram and scanning electron microscope (SEM) phase diagram of reduced ballast (Longqing).

第九圖:不同水膠比之氧化碴膠結材摻配量與凝結時間之分析圖。The ninth figure: the analysis chart of the blending amount and setting time of oxidized ballast cement materials with different water-binder ratios.

第十圖:不同水膠比之還原碴膠結材摻配量與凝結時間之分析圖。Figure 10: Analysis chart of blending amount and setting time of reduced ballast cement materials with different water-binder ratios.

第十一圖:不同水膠比之氧化碴膠結材摻配量與抗壓強度之分析圖。Figure 11: Analysis chart of blending amount and compressive strength of oxidized ballast cement materials with different water-binder ratios.

第十二圖:不同水膠比之還原碴膠結材摻配量與抗壓強度之分析圖。Figure 12: Analysis chart of the blending amount and compression strength of reduced ballast cement materials with different water-binder ratios.

第十三圖:水膠比0.2之氧化碴膠結材摻配量與乾縮率之分析圖。Figure 13: Analysis chart of blending amount and dry shrinkage of oxidized ballast cement material with water-binder ratio of 0.2.

第十四圖:水膠比0.25之氧化碴膠結材摻配量與乾縮率之分析圖。Figure 14: Analysis chart of blending amount and dry shrinkage of oxidized ballast cement material with water-binder ratio of 0.25.

第十五圖:水膠比0.3之氧化碴膠結材摻配量與乾縮率之分析圖。Figure 15: Analysis chart of blending amount and dry shrinkage of oxidized ballast cement material with water-binder ratio of 0.3.

第十六圖:水膠比0.2之還原碴膠結材摻配量與乾縮率之分析圖。Figure 16: Analysis chart of blending amount and dry shrinkage of reduced ballast cement material with water-binder ratio of 0.2.

第十七圖:水膠比0.25之還原碴膠結材摻配量與乾縮率之分析圖。Figure 17: Analysis chart of blending amount and shrinkage rate of reduced ballast cement material with water-binder ratio of 0.25.

第十八圖:水膠比0.3之還原碴膠結材摻配量與乾縮率之分析圖。Figure 18: Analysis chart of blending amount and dry shrinkage of reduced ballast cement material with water-binder ratio of 0.3.

第十九圖:不同氧化碴膠結材C40-F30-O30之掃描式電子顯微鏡(SEM)晶相圖(一);Figure 19: Scanning electron microscope (SEM) phase diagram of different oxidized ballast cement C40-F30-O30 (1);

第二十圖:不同氧化碴膠結材之掃描式電子顯微鏡(SEM)晶相圖(二)Figure 20: Scanning electron microscope (SEM) crystal phase diagram of different ballast cement materials (2)

第二十一圖:不同氧化碴膠結材與還原碴膠結材之掃描式電子顯微鏡(SEM)晶相圖(三);Figure 21: Scanning electron microscope (SEM) phase diagram of different oxidized ballast cement material and reduced ballast cement material (3);

第二十二圖:不同還原碴膠結材之掃描式電子顯微鏡(SEM)晶相圖(四);Figure 22: Scanning electron microscope (SEM) phase diagram of different reduced ballast cement materials (4);

第二十三圖:不同還原碴膠結材之掃描式電子顯微鏡(SEM)晶相圖(五)。Figure 23: Scanning electron microscope (SEM) phase diagram of different reduced ballast cement materials (5).

Claims (9)

一種鋼碴膠結材的製造方法,其包括下列步驟:   (a)準備一氧化碴粉末或一還原碴粉末;以及   (b)於常溫下,將重量百分比0-70 wt%該氧化碴粉末或該還原碴粉末,與剩餘重量百分比之水泥熟料或/及電廠飛灰混合,以製得鋼碴膠結材。A method for manufacturing steel ballast cement material, comprising the following steps:    (a) prepare oxidized ballast powder or a reduced ballast powder; and (b) at room temperature, change the weight percentage of 0-70 wt% of the oxidized ballast powder or the The reduced ballast powder is mixed with the remaining weight percentage of cement clinker or/and power plant fly ash to produce steel ballast cement. 如申請專利範圍第1項所述之鋼碴膠結材的製造方法,其中該氧化碴粉末或該還原碴粉末係由下列步驟製備而得:(i)進行一磁選、破碎與過篩程序至少一次;以及(ii)進行一研磨與過篩(200#)程序,以製得該氧化碴粉末或該還原碴粉末。The method for manufacturing steel ballast cement as described in item 1 of the patent application scope, wherein the oxidized ballast powder or the reduced ballast powder is prepared by the following steps: (i) performing a magnetic separation, crushing and sieving process at least once ; And (ii) performing a grinding and sieving (200#) procedure to prepare the oxidized ballast powder or the reduced ballast powder. 如申請專利範圍第1項所述之鋼碴膠結材的製造方法,其中該步驟(b)係將重量百分比30-60 wt%該氧化碴粉末、20-70 wt%該水泥熟料混合,與剩餘重量百分比之該電廠飛灰混合,以製得氧化鋼碴膠結材。The method for manufacturing steel ballast cement as described in item 1 of the patent scope, wherein the step (b) is to mix 30-60 wt% of the oxidized ballast powder and 20-70 wt% of the cement clinker with The remaining weight percentages of the power plant fly ash are mixed to produce oxide steel ballast cement. 如申請專利範圍第1項所述之鋼碴膠結材的製造方法,其中該步驟(b)係將重量百分比30-60 wt%該還原碴粉末、20-70 wt%該水泥熟料混合,與剩餘重量百分比之該電廠飛灰混合,以製得還原鋼碴膠結材。The method for manufacturing steel ballast cement as described in item 1 of the patent scope, wherein the step (b) is to mix 30-60 wt% of the reduced ballast powder and 20-70 wt% of the cement clinker with The remaining weight percentage of the power plant fly ash is mixed to produce reduced steel ballast cement. 如申請專利範圍第1或2項所述之鋼碴膠結材的製造方法,其中該氧化碴粉末係至少包括化合物CaO、SiO2 、Al2 O3 、Fe2 O3 、MgO、Na2 O、MnO、CaCO3 與元素C、O、Si、Al、Fe、Ca、Mg、Mn、Ti、Na。The method for manufacturing steel ballast cement as described in item 1 or 2 of the patent application scope, wherein the ballast powder includes at least compounds CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , MgO, Na 2 O, MnO, CaCO 3 and elements C, O, Si, Al, Fe, Ca, Mg, Mn, Ti, Na. 如申請專利範圍第1或2項所述之鋼碴膠結材的製造方法,其中該還原碴粉末係至少包括化合物CaO、SiO2 、Al2 O3 、Fe2 O3 、CaCO3 、MgO、SnO、Sb2 O3 、MnO與元素C、O、Si、Al、Fe、Ca、Mg、Mn、Sn、Sb。The method for manufacturing steel ballast cement as described in item 1 or 2 of the patent application scope, wherein the reduced ballast powder includes at least compounds CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaCO 3 , MgO, SnO , Sb 2 O 3 , MnO and elements C, O, Si, Al, Fe, Ca, Mg, Mn, Sn, Sb. 如申請專利範圍第1或2項所述之鋼碴膠結材的製造方法,其中該水泥熟料係至少包括化合物SiO2 、CaO、Al2 O3 、Fe2 O3 、CaO、MgO、K2 O、Na2 O與元素Ca、Si、Al、Fe、Mg。The method for manufacturing steel ballast cement as described in item 1 or 2 of the patent application scope, wherein the cement clinker includes at least compounds SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 , CaO, MgO, K 2 O, Na 2 O and elements Ca, Si, Al, Fe, Mg. 如申請專利範圍第1或2項所述之鋼碴膠結材的製造方法,其中該電廠飛灰係至少包括化合物SiO2 、Al2 O3 、Fe2 O3 、CaO、MgO、K2 O、Na2 O與元素C、O、Si、Al、Fe、Ca、K、Mg、Na。The method for manufacturing steel ballast cement as described in item 1 or 2 of the patent application scope, wherein the fly ash of the power plant includes at least compounds SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, K 2 O, Na 2 O and elements C, O, Si, Al, Fe, Ca, K, Mg, Na. 如申請專利範圍第1或2項所述之鋼碴膠結材的製造方法,其中該鋼碴膠結材係進一步以水膠比0.2-0.3,製得一水泥漿。The method for manufacturing steel ballast cement as described in item 1 or 2 of the patent application scope, wherein the steel ballast cement is further prepared with a water-binder ratio of 0.2-0.3 to obtain a cement slurry.
TW107127652A 2018-08-08 2018-08-08 Manufacturing method of steel slag cementitious material TWI717625B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107127652A TWI717625B (en) 2018-08-08 2018-08-08 Manufacturing method of steel slag cementitious material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107127652A TWI717625B (en) 2018-08-08 2018-08-08 Manufacturing method of steel slag cementitious material

Publications (2)

Publication Number Publication Date
TW202007672A true TW202007672A (en) 2020-02-16
TWI717625B TWI717625B (en) 2021-02-01

Family

ID=70413109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127652A TWI717625B (en) 2018-08-08 2018-08-08 Manufacturing method of steel slag cementitious material

Country Status (1)

Country Link
TW (1) TWI717625B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788694B (en) * 2020-08-06 2023-01-01 林宏明 A blend with electric arc furnace slag capable of reducing expansion
WO2024022235A1 (en) * 2022-07-26 2024-02-01 中国建筑材料科学研究总院有限公司 Method for exciting steel slag powder cementing material via chemical-physical coupling, and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI239324B (en) * 2002-07-15 2005-09-11 Wen-Chen Jau Normal strength self-compacting concrete
TWI289544B (en) * 2005-09-28 2007-11-11 Wen-Chen Jau Non-dispersible concrete for underwater construction
TWI462785B (en) * 2012-11-29 2014-12-01 Univ Cheng Shiu Method for manufacturing light weight of weld slag
CN104556881B (en) * 2015-01-19 2016-02-17 广东冠生土木工程技术有限公司 A kind of superhigh tenacity concrete and preparation method thereof
CN106698983A (en) * 2017-01-23 2017-05-24 中交三公局第工程有限公司 Steel slag and cement stable structure and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788694B (en) * 2020-08-06 2023-01-01 林宏明 A blend with electric arc furnace slag capable of reducing expansion
WO2024022235A1 (en) * 2022-07-26 2024-02-01 中国建筑材料科学研究总院有限公司 Method for exciting steel slag powder cementing material via chemical-physical coupling, and application thereof

Also Published As

Publication number Publication date
TWI717625B (en) 2021-02-01

Similar Documents

Publication Publication Date Title
Singhal et al. Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing
Liu et al. Experimental research on magnesium phosphate cements modified by red mud
El-Dieb et al. Ceramic waste powder an alternative cement replacement–Characterization and evaluation
Borges et al. Performance of blended metakaolin/blastfurnace slag alkali-activated mortars
Arif et al. Sugar cane bagasse ash from a high efficiency co-generation boiler: Applications in cement and mortar production
Alahverdi et al. Construction wastes as raw materials for geopolymer binders
Pavithra et al. Effect of the Na2SiO3/NaOH ratio and NaOH molarity on the synthesis of fly ash-based geopolymer mortar
US10800704B2 (en) Fly ash-based geopolymer concrete and method of formation
TWI701228B (en) Concrete composition and method for producing the same
WO2021024192A1 (en) Cement compositions based on amorphous bagasse ash
CN110041002A (en) A kind of levigate rice hull ash base composite blend and its application
KR102267021B1 (en) high-precision marine concrete structure
TW202007672A (en) Manufacturing method of steel slag cementitious material
KR20160127958A (en) Reactive powder concrete artificial stone for outer wall of building and manufacturing thereof
Kanaan1a et al. Ceramic waste powder as an ingredient to sustainable concrete
Wu et al. Experimental study on eco-friendly one-part alkali-activated slag-fly ash-lime composites under CO2 environment: Reaction mechanism and carbon capture capacity
Gluth et al. Design and characterization of fly ash-based geopolymer concretes for a round-robin durability testing program
Türedi et al. Self-compacting mortar production by using calcium aluminate cement
El-Dieb et al. Cementless concrete using ceramic waste powder
Rathanasalam et al. Effect of ultrafine ground granulated blast-furnace slag (UFGGBFS) and copper slag on ambient cured geopolymer concrete
Nazari et al. RETRACTED ARTICLE: The effects of ZrO2 nanoparticles on strength assessments and water permeability of concrete in different curing media
Hassan et al. Fresh and hardened properties of high-performance concrete utilising micro and nano palm oil fuel ash
Işil et al. Assessment of Reusing Ferrochrome Slag Wastes in Mortar as SCMs
Zhang et al. Hydration, Microstructure and Compressive Strength Development of Seawater-mixed Calcium Sulphoaluminate Cement-based Systems
Singh et al. ETP Sludge as Filler and the Role of AOD Slag and GBFS in Fly Ash–Slag–Sludge Blended Geopolymer