TW202007138A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
TW202007138A
TW202007138A TW108123059A TW108123059A TW202007138A TW 202007138 A TW202007138 A TW 202007138A TW 108123059 A TW108123059 A TW 108123059A TW 108123059 A TW108123059 A TW 108123059A TW 202007138 A TW202007138 A TW 202007138A
Authority
TW
Taiwan
Prior art keywords
image data
motion vector
reference value
calculation unit
unit
Prior art date
Application number
TW108123059A
Other languages
Chinese (zh)
Inventor
三家本英志
篠原隆之
Original Assignee
日商尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商尼康股份有限公司 filed Critical 日商尼康股份有限公司
Publication of TW202007138A publication Critical patent/TW202007138A/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

Provided is an imaging device capable of further improving vibration-damping performance in optical blur correction. This imaging device 1 comprises: an imaging element 3 that captures an image of a subject by an optical system and outputs a signal; an image data generation unit 40 that generates image data on the basis of the signal; and a motion vector calculation unit 41 that detects the subject detected by the first image data generated by the image data generation unit 40 and calculates a motion vector for the subject, detecting said subject in second image data captured at a different time from the first image data and generated by the image data generation unit and detecting said subject in a range set on the basis of the focal distance of the optical system.

Description

攝影裝置Photographic installation

本發明係關於一種攝影裝置。The invention relates to a photographing device.

例如,提出有如下技術:藉由自拍攝之圖像檢測圖像之運動向量資訊並將該運動向量資訊反饋至抖動修正透鏡之目標驅動位置之運算,來提高光學抖動修正之防振性能(參照專利文獻1)。 [先前技術文獻] [專利文獻]For example, the following technique is proposed: by detecting the motion vector information of the image from the captured image and feeding the motion vector information back to the operation of the target driving position of the shake correction lens, the anti-vibration performance of the optical shake correction is improved (refer to Patent Literature 1). [Prior Technical Literature] [Patent Literature]

[專利文獻1]日本專利特開平10-145662號公報[Patent Document 1] Japanese Patent Laid-Open No. 10-145662

本發明之攝影裝置係設為如下構成,該構成具有:攝影元件,其拍攝利用光學系統所得之被攝體之像並輸出訊號;圖像資料產生部,其基於上述訊號產生圖像資料;及運動向量算出部,其於第2圖像資料中在基於上述光學系統之焦點距離設定之範圍內,檢測於第1圖像資料中檢測出之上述被攝體,而算出上述被攝體之像之運動向量,上述第1圖像資料係於上述圖像資料產生部產生,上述第2圖像資料係於與上述第1圖像資料不同之時刻拍攝並於上述圖像資料產生部產生。The photographing device of the present invention is configured to include a photographing element that photographs an image of a subject obtained by an optical system and outputs a signal; an image data generating section that generates image data based on the signal; and The motion vector calculation unit detects the subject detected in the first image data in the second image data within a range set based on the focal distance of the optical system, and calculates the image of the subject For the motion vector, the first image data is generated by the image data generation unit, and the second image data is captured at a different time from the first image data and generated by the image data generation unit.

以下,參照圖式等對本發明之實施形態進行說明。圖1係示意性地表示相機1之剖視圖。 如圖1所示,於本實施形態中,設定3維正交座標系統。具體而言,將與透鏡鏡筒1B之光軸平行之軸設為Z軸(紙面水平方向),將於與Z軸垂直之平面內與Z軸交叉之軸設為X軸(紙面深度方向),將於與Z軸垂直之平面內與Z軸及X軸垂直交叉之軸設為Y軸(紙面鉛直方向)。而且,將以Z軸為中心之旋轉方向設為橫搖(Roll)方向,將以Y軸為中心之旋轉方向設為偏轉(Yaw)方向,將以X軸為中心之旋轉方向設為俯仰(Pitch)方向。Hereinafter, embodiments of the present invention will be described with reference to drawings and the like. FIG. 1 schematically shows a cross-sectional view of the camera 1. As shown in FIG. 1, in this embodiment, a three-dimensional orthogonal coordinate system is set. Specifically, the axis parallel to the optical axis of the lens barrel 1B is defined as the Z axis (horizontal direction of the paper), and the axis crossing the Z axis in a plane perpendicular to the Z axis is defined as the X axis (depth direction of the paper) , The axis perpendicular to the Z axis and the X axis in the plane perpendicular to the Z axis is set as the Y axis (the vertical direction of the paper). Moreover, let the rotation direction centered on the Z axis be the roll direction, the rotation direction centered on the Y axis the yaw direction, and the rotation direction centered on the X axis the pitch ( Pitch) direction.

(相機1) 相機1係相機主體1A與透鏡鏡筒1B一體型,但並不限定於此,亦可為透鏡鏡筒相對於相機主體裝卸自如之相機。 又,相機1於實施形態中為於內部不具備反光鏡之構造,但並不限定於此,亦可為具有反光鏡之相機。(Camera 1) The camera 1 is a type in which the camera body 1A and the lens barrel 1B are integrated, but it is not limited to this, and the lens barrel may be a camera that can be detachably attached to the camera body. In addition, in the embodiment, the camera 1 has a structure that does not include a mirror inside, but it is not limited to this, and may be a camera having a mirror.

(相機主體1A) 相機主體1A具備攝影感測器3、記錄媒體13、記憶部14、操作部15、釋放開關17、背面液晶18、快門20、及CPU2。再者,CPU2包含下述抖動修正裝置100。(Camera body 1A) The camera body 1A includes a photographing sensor 3, a recording medium 13, a memory unit 14, an operation unit 15, a release switch 17, a rear liquid crystal 18, a shutter 20, and a CPU 2. Furthermore, the CPU 2 includes the shake correction device 100 described below.

攝影感測器3係設置於攝影光學系統之預定焦點面並對經由透鏡鏡筒1B之攝影光學系統4、5、6入射之被攝體光進行光電轉換而產生訊號之元件,例如由CCD、CMOS等構成。 根據自攝影感測器3輸出之訊號,於CPU2所含之下述圖像產生部40中產生圖像資料。The photo sensor 3 is an element which is installed on a predetermined focal plane of the photo optical system and generates photoelectric conversion by subject light incident through the photo optical systems 4, 5, 6 of the lens barrel 1B, such as a CCD, CMOS and other components. Based on the signal output from the photo sensor 3, image data is generated in the following image generating section 40 included in the CPU 2.

攝影感測器3具有焦點檢測用之像素,CPU2使用來自焦點檢測用像素之像素輸出資料並利用周知之光瞳分割式相位差方式進行焦點檢測處理。或者,亦可使用自攝影感測器3輸出之資料並利用周知之對比度方式進行焦點檢測。The photographic sensor 3 has pixels for focus detection, and the CPU 2 uses pixel output data from the pixels for focus detection to perform focus detection processing using a well-known pupil division type phase difference method. Alternatively, it is also possible to use the data output from the photo sensor 3 and use a well-known contrast method to perform focus detection.

記錄媒體13係用以記錄所拍攝之圖像資料之媒體,使用SD卡、CF卡等。The recording medium 13 is a medium for recording the captured image data, and uses an SD card, a CF card, etc.

記憶部14例如為EEPROM等記憶體。記憶部14如下所述般記憶有與攝影光學系統4、5、6之變焦位置(焦點距離)對應之搜索範圍之資訊。The memory unit 14 is, for example, a memory such as EEPROM. The memory section 14 stores the information of the search range corresponding to the zoom positions (focal distance) of the photographing optical systems 4, 5, and 6 as described below.

操作部15可進行變焦操作,可藉由透過操作部15進行變焦操作來變更攝影光學系統之變焦位置。The operation unit 15 can perform a zoom operation, and the zoom position of the photographing optical system can be changed by performing a zoom operation through the operation unit 15.

釋放開關17係供進行相機1之攝影操作之構件且係供操作快門驅動之時序等之開關。The release switch 17 is a member for photographing operation of the camera 1 and a switch for operating timing of shutter drive and the like.

背面液晶18係設置於相機主體1A之背面並顯示所拍攝之被攝體像(重建圖像、實時取景圖像)或操作相關之資訊(選單)等之彩色液晶顯示器。The back liquid crystal 18 is a color liquid crystal display that is installed on the back of the camera body 1A and displays the captured subject image (reconstructed image, live view image) or operation related information (menu).

快門20根據利用釋放開關17等進行之攝影指示使快門簾移行,而控制入射至攝影感測器3之被攝體光。The shutter 20 moves the shutter curtain according to the photography instruction by the release switch 17 or the like, and controls the subject light incident on the photography sensor 3.

CPU2係進行相機1之整體控制之中央處理裝置,具備下述抖動修正裝置100。The CPU 2 is a central processing device that performs overall control of the camera 1 and includes a shake correction device 100 described below.

(透鏡鏡筒1B) 其次,對透鏡鏡筒1B進行說明。透鏡鏡筒1B具備變焦透鏡4、聚焦透鏡5、抖動修正透鏡6、變焦透鏡驅動機構7、聚焦透鏡驅動機構8、抖動修正透鏡驅動機構9、光圈10、光圈驅動機構11、角速度感測器12(抖動檢測感測器)及抖動修正透鏡位置檢測部21。(Lens barrel 1B) Next, the lens barrel 1B will be described. The lens barrel 1B includes a zoom lens 4, a focus lens 5, a shake correction lens 6, a zoom lens drive mechanism 7, a focus lens drive mechanism 8, a shake correction lens drive mechanism 9, an aperture 10, an aperture drive mechanism 11, an angular velocity sensor 12 (Shake detection sensor) and shake correction lens position detection section 21.

變焦透鏡4係藉由被變焦透鏡驅動機構7驅動而沿光軸方向移動從而使變焦位置(焦點距離)改變之透鏡群。 若攝影者透過操作部15進行變焦操作,則CPU2所含之下述透鏡驅動量運算部39對變焦透鏡4之驅動量進行運算,透過變焦透鏡驅動機構7變更變焦透鏡4之變焦位置。The zoom lens 4 is a lens group that is moved in the optical axis direction by being driven by the zoom lens driving mechanism 7 to change the zoom position (focal distance). When the photographer performs a zoom operation through the operation unit 15, the following lens drive amount calculation unit 39 included in the CPU 2 calculates the drive amount of the zoom lens 4 and changes the zoom position of the zoom lens 4 through the zoom lens drive mechanism 7.

聚焦透鏡5係被聚焦透鏡驅動機構8驅動而於光軸方向上移動從而使焦點對準之透鏡群。The focus lens 5 is a lens group that is driven by the focus lens drive mechanism 8 and moves in the optical axis direction to bring the focus into focus.

抖動修正透鏡6係被VCM(音圈馬達)等抖動修正透鏡驅動機構9光學地進行抖動修正驅動而於與光軸垂直之面上可動之透鏡群。The shake correction lens 6 is a lens group that is optically shake-corrected and driven by a shake correction lens drive mechanism 9 such as a VCM (voice coil motor) and is movable on a plane perpendicular to the optical axis.

光圈10被光圈驅動機構11驅動,控制通過攝影光學系統之被攝體光之光量。The iris 10 is driven by the iris driving mechanism 11 and controls the light quantity of the subject light passing through the photographing optical system.

角速度感測器12係檢測透鏡鏡筒1B中產生之手抖動之角速度(抖動輸出訊號)之感測器,係檢測繞X軸(俯仰)、繞Y軸(偏轉)之角速度之振動陀螺儀等感測器。再者,角速度感測器12亦可進而檢測繞Z軸(橫搖)之角速度。 角速度感測器12亦連接於CPU2所含之下述運動向量運算部41,由角速度感測器12檢測出之角速度被發送至運動向量運算部41。The angular velocity sensor 12 is a sensor that detects the angular velocity of the hand shake (jitter output signal) generated in the lens barrel 1B, and is a vibratory gyroscope that detects the angular velocity around the X axis (pitch) and Y axis (yaw), etc. Sensor. Furthermore, the angular velocity sensor 12 can further detect the angular velocity around the Z axis (rolling). The angular velocity sensor 12 is also connected to the following motion vector computing unit 41 included in the CPU 2, and the angular velocity detected by the angular velocity sensor 12 is sent to the motion vector computing unit 41.

(抖動修正裝置100) 圖2係表示相機1所含之抖動修正裝置100之方塊圖。抖動修正裝置100具備放大部31、第1A/D轉換部32、第2A/D轉換部33、基準值運算部34、減法部43、目標位置運算部36、中心偏壓運算部37、基準值修正部50及透鏡驅動量運算部39。抖動修正裝置100進而具備圖像產生部40、感測器控制部46、及運動向量運算部41。(Shake correction device 100) FIG. 2 is a block diagram showing the shake correction device 100 included in the camera 1. The shake correction device 100 includes an amplification unit 31, a first A/D conversion unit 32, a second A/D conversion unit 33, a reference value calculation unit 34, a subtraction unit 43, a target position calculation unit 36, a center bias calculation unit 37, and a reference value The correction unit 50 and the lens driving amount calculation unit 39. The shake correction device 100 further includes an image generation unit 40, a sensor control unit 46, and a motion vector calculation unit 41.

放大部31將角速度感測器12之輸出放大。The amplifier 31 amplifies the output of the angular velocity sensor 12.

第1A/D轉換部32對放大部31之輸出進行A/D轉換。The first A/D converter 32 performs A/D conversion on the output of the amplifier 31.

基準值運算部34對自角速度感測器12獲得之振動檢測訊號(第1A/D轉換部32之輸出)之基準值(第1基準值、修正前之基準值)進行運算。角速度之基準值係指例如於相機1(相機主體1A、透鏡鏡筒1B)靜止時自角速度感測器12輸出之振動檢測訊號。基準值運算部34例如可基於自角速度感測器12之輸出降低特定之高頻分量之低通濾波器之輸出來求出基準值。The reference value calculation unit 34 calculates the reference value (first reference value, reference value before correction) of the vibration detection signal (output of the first A/D conversion unit 32) obtained from the angular velocity sensor 12. The reference value of the angular velocity refers to, for example, a vibration detection signal output from the angular velocity sensor 12 when the camera 1 (camera body 1A, lens barrel 1B) is at rest. The reference value calculation unit 34 can obtain a reference value based on, for example, the output of a low-pass filter whose output from the angular velocity sensor 12 reduces a specific high-frequency component.

減法部43自第1A/D轉換部32之輸出減去對基準值運算部34中運算出之第1基準值進行修正所得之基準值(第2基準值、修正後之基準值)。The subtraction unit 43 subtracts the reference value (the second reference value, the corrected reference value) obtained by correcting the first reference value calculated by the reference value calculation unit 34 from the output of the first A/D conversion unit 32.

目標位置運算部36基於減法部43中減去基準值後之角速度感測器12之輸出,對抖動修正透鏡6之目標位置進行運算。The target position calculation unit 36 calculates the target position of the shake correction lens 6 based on the output of the angular velocity sensor 12 after subtracting the reference value from the subtraction unit 43.

中心偏壓運算部37基於由目標位置運算部36算出之抖動修正透鏡6之目標位置,運算用以使抖動修正透鏡6朝向其可動範圍之中心移動之向心力作為偏壓量。然後,藉由自抖動修正透鏡6之目標位置減去所算出之偏壓量來算出抖動修正透鏡6之控制位置。 藉由如此進行定心偏壓處理,可有效防止抖動修正透鏡6與硬限制體碰撞,進而可提升攝影圖像之美觀。Based on the target position of the shake correction lens 6 calculated by the target position calculation section 36, the center bias calculation unit 37 calculates a centripetal force for moving the shake correction lens 6 toward the center of its movable range as a bias amount. Then, the control position of the shake correction lens 6 is calculated by subtracting the calculated amount of bias from the target position of the shake correction lens 6. By performing the centering bias processing in this way, it is possible to effectively prevent the shake correction lens 6 from colliding with the hard restricting body, thereby improving the beauty of the photographic image.

透鏡驅動量運算部39進行變焦透鏡4及抖動修正透鏡6之透鏡之驅動量運算。 透鏡驅動量運算部39根據來自目標位置運算部36之目標位置、及抖動修正透鏡6之當前位置,對抖動修正透鏡驅動機構9之驅動量進行運算,上述抖動修正透鏡6之當前位置係根據由抖動修正透鏡位置檢測部21檢測並利用第2A/D轉換部33進行A/D轉換所得之值求出。 當攝影者利用操作部15進行變焦操作時,透鏡驅動量運算部39對變焦透鏡驅動機構7指示驅動量而驅動變焦透鏡4。The lens driving amount calculation unit 39 performs calculation of the driving amount of the lenses of the zoom lens 4 and the shake correction lens 6. The lens drive amount calculation unit 39 calculates the drive amount of the shake correction lens drive mechanism 9 based on the target position from the target position calculation unit 36 and the current position of the shake correction lens 6. The current position of the shake correction lens 6 is based on The shake correction lens position detection unit 21 detects and obtains the value obtained by A/D conversion by the second A/D conversion unit 33. When a photographer performs a zoom operation using the operation unit 15, the lens drive amount calculation unit 39 instructs the zoom lens drive mechanism 7 to drive the zoom lens 4.

(感測器控制部46) 感測器控制部46基於測光所得之被攝體之亮度,設定攝影感測器3之感測器速率。例如,於被攝體較暗時,用以獲得1張圖像之曝光時間變長,因此,將感測器速率較低地設定為15 fps。隨著變明亮,用以獲得1張圖像之曝光時間變短,因此,將感測器速率較高地設定為30、60、120 fps。(Sensor control unit 46) The sensor control unit 46 sets the sensor rate of the photographing sensor 3 based on the brightness of the subject obtained by photometry. For example, when the subject is dark, the exposure time for obtaining an image becomes longer, so the sensor rate is set to 15 fps lower. As it becomes brighter, the exposure time to obtain one image becomes shorter, so the sensor rate is set higher at 30, 60, 120 fps.

(圖像產生部40) 圖像產生部40對由攝影感測器3獲取之圖像訊號進行雜訊處理或A/D轉換等處理,作成以靜止圖像之形式記錄於記錄媒體13中之記錄用圖像資料。(Image generation section 40) The image generating unit 40 performs noise processing or A/D conversion on the image signal acquired by the photo sensor 3 to create image data for recording recorded in the recording medium 13 in the form of a still image.

(運動向量運算部41) 運動向量運算部41根據由圖像產生部40產生之處理用圖像資料,對表示像之運動(運動方向、運動量)之運動向量資訊進行運算。運動向量資訊由附X軸方向、Y軸方向、橫搖方向之符號之大小等表示。進而,運動向量資訊亦包含檢測延遲時間等。(Motion vector calculation unit 41) The motion vector calculation unit 41 calculates the motion vector information representing the motion (movement direction, motion amount) of the image based on the processing image data generated by the image generation unit 40. The motion vector information is represented by the size of the symbols with X-axis direction, Y-axis direction, and rolling direction. Furthermore, the motion vector information also includes the detection delay time and so on.

(運動向量之運算方法) 運動向量運算部41將由攝影感測器3拍攝之兩個以上之圖像資料所含之參照部之位置加以比較,根據上述參照部之運動方向及運動量,求出運動向量資訊。除亮度資訊以外,亦可藉由圖像之圖案匹配等求出運動向量資訊。 再者,運動向量資訊可自1個圖像進行檢測,亦可自2個分離之圖像資料算出,亦可自3個圖像算出。(Calculation method of motion vector) The motion vector calculation unit 41 compares the positions of the reference parts included in the two or more image data captured by the photography sensor 3, and obtains the motion vector information based on the motion direction and the amount of motion of the reference parts. In addition to brightness information, motion vector information can also be obtained by pattern matching of the image. Furthermore, the motion vector information can be detected from one image, it can also be calculated from two separate image data, or it can be calculated from three images.

(運動向量之運算方法之具體例) 於本實施形態中,運動向量運算部41將第1圖像資料之一部分區域(畫面內之某特定部位,以下稱作參照部)與第1圖像資料之後產生之第2圖像資料之參照部加以比較,根據兩個圖像資料之參照部之移動量求出運動向量資訊。以下示出其求出方法之一例。圖3係說明運動向量資訊之求出方法之一例之圖。(Specific example of motion vector calculation method) In the present embodiment, the motion vector calculation unit 41 refers to a partial region of the first image data (a specific part in the screen, hereinafter referred to as a reference unit) and the second image data generated after the first image data The two parts are compared, and the motion vector information is obtained based on the movement amount of the reference part of the two image data. An example of the method for obtaining this is shown below. FIG. 3 is a diagram illustrating an example of a method of obtaining motion vector information.

首先,於第1圖像資料內,選擇參照部Q。參照部Q例如為特徵性之高亮度部分等,以下對1個圖像資料中之參照部為1個之情形進行說明,但亦可將圖像資料分為複數個區塊,以區塊為單位選擇參照部。參照部Q由1個以上之像素構成。將第1圖像資料內之參照部Q之位置設為移動前位置P1。First, in the first image data, the reference part Q is selected. The reference part Q is, for example, a characteristic high-brightness part, etc. The following describes the case where the reference part in one image data is one, but the image data can also be divided into a plurality of blocks, with the block as Unit selection reference department. The reference part Q is composed of one or more pixels. Let the position of the reference portion Q in the first image data be the position P1 before the movement.

然後,於第2圖像資料中,將以第1圖像資料之參照部Q之移動前位置P1為中心之如圖中以虛線表示之特定範圍設定為搜索範圍。於該搜索範圍內,檢索與參照部Q關聯較高之部分,與第一圖像資料同樣地選擇第2圖像資料中之參照部Q。 將關聯最高之移動後之參照部Q之位置設為移動後位置P2。 檢測參照部Q之移動前位置P1與移動後位置P2之間之位置偏移作為運動向量MV。運動向量資訊係指包含該位置偏移之大小及方向之資訊。Then, in the second image data, a specific range as indicated by a dotted line in the figure, centered on the pre-movement position P1 of the reference portion Q of the first image data, is set as the search range. Within this search range, a part having a high correlation with the reference part Q is searched, and the reference part Q in the second image data is selected in the same way as the first image data. The position of the reference part Q after the movement with the highest correlation is set to the position P2 after the movement. The positional deviation between the pre-movement position P1 and the post-movement position P2 of the reference part Q is detected as the motion vector MV. The motion vector information refers to the information including the magnitude and direction of the position shift.

於本實施形態中,搜索範圍因攝影光學系統(變焦透鏡)之變焦位置而異。搜索範圍係以如下方式決定。In this embodiment, the search range varies depending on the zoom position of the photographing optical system (zoom lens). The search range is determined as follows.

(獲取變焦位置資訊) 當利用操作部15進行變焦操作時,透鏡驅動量運算部39對變焦透鏡4之驅動量進行運算,驅動變焦透鏡驅動機構7。與此同時,運動向量運算部41接收攝影光學系統之變焦位置。 再者,於在透鏡鏡筒1B設置有變焦透鏡之位置檢測部之情形時,運動向量運算部41亦可自變焦透鏡之位置檢測部接收變焦位置資訊。(Get zoom position information) When the zoom operation is performed by the operation unit 15, the lens drive amount calculation unit 39 calculates the drive amount of the zoom lens 4 to drive the zoom lens drive mechanism 7. At the same time, the motion vector calculation unit 41 receives the zoom position of the photographing optical system. Furthermore, in the case where the lens barrel 1B is provided with a position detection section of the zoom lens, the motion vector calculation section 41 may also receive zoom position information from the position detection section of the zoom lens.

(參照記憶部14之資料) 變焦位置例如分為透鏡鏡筒1B距長焦(望遠)端固定區域之長焦區域、距寬角(廣角)端固定區域之寬角區域、長焦區域與寬角區域之間之中間區域之3個區域。 如以下之表1所示,於變焦位置為寬角區域、中間區域、長焦區域之情形時,記憶部14中記憶有不同之搜索範圍。(Refer to the data of the memory department 14) The zoom position is divided into, for example, the telephoto area of the lens barrel 1B from the fixed area at the telephoto (telephoto) end, the wide-angle area from the fixed area at the wide-angle (wide-angle) end, and the intermediate area between the telephoto area and the wide-angle area 3 areas. As shown in Table 1 below, when the zoom position is the wide-angle region, the middle region, and the telephoto region, different search ranges are stored in the memory unit 14.

[表1]

Figure 108123059-A0304-0001
運動向量運算部41自記憶部14獲取與當前之攝影光學系統之變焦位置對應之運動向量搜索範圍。[Table 1]
Figure 108123059-A0304-0001
The motion vector calculation unit 41 acquires the motion vector search range corresponding to the current zoom position of the photographing optical system from the memory unit 14.

(運動向量之運算) 運動向量運算部41於第2圖像資料中以位置P1為中心之由記憶部14獲取之搜索範圍內,檢索參照部Q,上述位置P1相當於第1圖像資料中之參照部Q之位置。 繼而,根據第1圖像資料中之參照部Q之位置P1與第2圖像資料中之參照部之位置P2之偏移量,求出運動向量MV。(Operation of motion vector) The motion vector computing unit 41 searches the reference unit Q within the search range acquired by the memory unit 14 centered on the position P1 in the second image data, and the position P1 corresponds to the position of the reference unit Q in the first image data . Then, the motion vector MV is obtained based on the offset between the position P1 of the reference portion Q in the first image data and the position P2 of the reference portion in the second image data.

(寬角區域) 於變焦位置為寬角區域之情形時,運動向量之搜索範圍為22×22像素。運動向量運算部41於第2圖像資料中以位置P1為中心之22×22像素之搜索範圍內,檢索參照部Q。 通常,於寬角區域之情形時,與長焦區域相比,手抖動所致畫面上之被攝體像之移動較少,因此,即便進行手抖動修正,殘留之運動向量亦較少。即,於寬角區域,第1圖像資料與第2圖像資料之間之參照部Q之位置偏移比長焦側小。因此,無須徒勞擴大搜索範圍,相反地,若擴大搜索範圍,則會增加處理時間、運算負荷。 於實施形態中,藉由使寬角區域之搜索範圍比其他區域窄,可使處理時間、運算負荷與其他區域相比縮小。(Wide angle area) When the zoom position is a wide-angle area, the search range of the motion vector is 22×22 pixels. The motion vector calculation unit 41 searches the reference unit Q within the search range of 22×22 pixels centered on the position P1 in the second image data. Generally, in the case of a wide-angle area, the movement of the subject image on the screen due to hand shake is less than that of the telephoto area. Therefore, even if the hand shake is corrected, there are fewer residual motion vectors. That is, in the wide-angle area, the positional deviation of the reference portion Q between the first image data and the second image data is smaller than the telephoto side. Therefore, it is not necessary to expand the search range in vain. On the contrary, if the search range is expanded, the processing time and calculation load will increase. In the embodiment, by narrowing the search range of the wide-angle area compared to other areas, the processing time and calculation load can be reduced compared to other areas.

(中間區域) 於變焦位置為中間區域之情形時,運動向量之搜索範圍為38×38像素。運動向量運算部41於第2圖像資料中以位置P1為中心之38×38像素之搜索範圍內,檢索參照部Q。(Middle area) When the zoom position is in the middle area, the search range of the motion vector is 38×38 pixels. The motion vector calculation unit 41 searches the reference unit Q within the search range of 38×38 pixels centered on the position P1 in the second image data.

(長焦區域) 於變焦位置為長焦區域之情形時,運動向量之搜索範圍為64×64像素。運動向量運算部41於第2圖像資料中以位置P1為中心之64×64像素之搜索範圍內,檢索參照部Q。 如上述理由,通常,於長焦區域,第1圖像資料與第2圖像資料之間之參照部Q之位置偏移比寬角側大。因此,若搜索範圍較窄,則於第2圖像資料中參照部Q移動至搜索範圍外,而有可能無法檢測到參照部Q。 但,於本實施形態中,使長焦區域之搜索範圍比寬角區域寬,因此,減小於第2圖像資料中參照部Q位於搜索範圍外而無法檢測到參照部Q之可能性。(Telephoto area) When the zoom position is the telephoto area, the search range of the motion vector is 64×64 pixels. The motion vector calculation unit 41 searches the reference unit Q within the 64×64 pixel search range centered on the position P1 in the second image data. For the above reasons, in general, in the telephoto region, the positional deviation of the reference portion Q between the first image data and the second image data is larger than the wide-angle side. Therefore, if the search range is narrow, the reference part Q moves out of the search range in the second image data, and the reference part Q may not be detected. However, in this embodiment, the search range of the telephoto region is wider than the wide-angle region, and therefore, the possibility that the reference unit Q is outside the search range in the second image data and the reference unit Q cannot be detected is reduced.

再者,亦可將第1圖像資料及第2圖像資料分別分割為複數個區塊,將區塊之範圍設為搜索範圍,於第1圖像資料與第2圖像資料之間,於區塊內檢索參照部。 於該情形時,於寬角區域,較長焦區域增加分割之區塊數量而使1個區塊縮小,藉此縮小搜索範圍。於長焦區域,減少分割之區塊數量而使1個區塊增大,藉此擴大搜索範圍。Furthermore, the first image data and the second image data can be divided into a plurality of blocks, and the range of the blocks is set as the search range, between the first image data and the second image data, Search the reference part in the block. In this case, in the wide-angle area and the longer focal area, the number of divided blocks is increased to shrink one block, thereby narrowing the search range. In the telephoto area, the number of divided blocks is reduced to increase one block, thereby expanding the search range.

有將第1圖像資料及第2圖像資料分別分割為複數個區塊並將小於該區塊之範圍設為搜索範圍以縮短處理時間之情況。於此種情形時,亦可隨著越到長焦側,使搜索範圍越接近區塊框,藉此使搜索範圍擴大。In some cases, the first image data and the second image data are divided into a plurality of blocks and the range smaller than the block is set as the search range to shorten the processing time. In this case, as the telephoto side increases, the search range is closer to the block frame, thereby expanding the search range.

(運動向量之運算時序) 圖4係對運動向量運算部41中之運動向量之運算時序進行說明之圖。 運動向量運算部41根據第n-1個圖像資料(第1圖像資料)、及於獲取第n-1個圖像資料之時刻之後之時刻拍攝的其後之第n個圖像資料(第2圖像資料),對運動向量資訊進行運算。 例如,於自攝影感測器3以30 fps發送圖像資料之情形時,每33 ms獲得1次運動向量資訊。(Motion vector operation timing) FIG. 4 is a diagram illustrating the operation timing of the motion vector in the motion vector calculation unit 41. The motion vector calculation unit 41 is based on the n-1th image data (the first image data) and the nth image data taken after the time after the time when the n-1th image data is acquired ( (2nd image data), operation on motion vector information. For example, when the self-photographic sensor 3 transmits image data at 30 fps, motion vector information is obtained every 33 ms.

此處, 時刻t1係開始第n-1個圖像資料之曝光之時刻。 時刻t2係開始第n-1個圖像資料之曝光之時刻與結束曝光之時刻之正中間之時刻。 時刻t4係開始第n個圖像資料之曝光之時刻。 時刻t5係開始第n個圖像資料之曝光之時刻與結束曝光之時刻之正中間之時刻。 時刻t6係獲得根據第n-1個圖像資料及第n個圖像資料運算出之運動向量資訊之時刻,但認為該運動向量資訊之產生時刻係t5與t2之間之正中間即t3較為妥當。於獲得運動向量資訊之時刻與運動向量產生之時刻之間,產生t6-t3之檢測延遲時間。Here, Time t1 is the time to start the exposure of the n-1th image data. Time t2 is the time between the moment when the exposure of the n-1th image data starts and the moment when the exposure ends. Time t4 is the time to start the exposure of the n-th image data. Time t5 is the time between the moment when the exposure of the n-th image data starts and the moment when the exposure ends. Time t6 is the time to obtain the motion vector information calculated from the n-1th image data and the nth image data, but it is considered that the generation time of the motion vector information is in the middle between t5 and t2, that is, t3 is more appropriate. Between the moment when the motion vector information is obtained and the moment when the motion vector is generated, a detection delay time of t6-t3 is generated.

(基準值修正部50) 基準值修正部50具備中心偏壓去除部38、基準值修正量運算部35、基準值減法加法部42。(Reference value correction unit 50) The reference value correction unit 50 includes a center bias removal unit 38, a reference value correction amount calculation unit 35, and a reference value subtraction and addition unit 42.

於以下之說明中,對X方向之基準值之修正進行說明。將運動向量資訊之X方向之資訊設為運動向量資訊X。Y方向之基準值之修正亦與X方向相同。於本實施形態中,不接收運動向量資訊之橫搖方向之資訊。再者,亦可接收運動向量資訊之橫搖方向之資訊。In the following description, the correction of the reference value in the X direction will be described. The motion vector information X direction information is set as motion vector information X. The correction of the reference value in the Y direction is also the same as in the X direction. In this embodiment, the information of the rolling direction of the motion vector information is not received. Furthermore, it can also receive the information of the rolling direction of the motion vector information.

(中心偏壓去除部38) 中心偏壓去除部38自運動向量資訊X減去偏壓修正量X,上述偏壓修正量X係根據中心偏壓運算部37中運算出之(自抖動修正透鏡6之目標位置減去之)X分量之偏壓量而算出。(Center bias removal section 38) The center bias removal unit 38 subtracts the bias correction amount X from the motion vector information X, which is calculated based on the center bias calculation unit 37 (subtracted from the target position of the shake correction lens 6) Calculated by the amount of bias of the X component.

(基準值修正量運算部35) 基準值修正量運算部35基於中心偏壓去除部38中去除偏壓修正量X所得之運動向量資訊X,根據繞Y軸(偏轉)方向之角速度感測器之輸出值對基準值修正量進行運算。 於本實施形態中,僅判斷運動向量資訊X之正負,當於負方向確認到運動向量資訊X時,修正量為正之固定量,當於正方向確認到運動向量資訊時,修正量為負之固定量。(Reference value correction amount calculation unit 35) The reference value correction amount calculation unit 35 performs the reference value correction amount on the basis of the motion vector information X obtained by removing the bias correction amount X in the center bias removal unit 38, based on the output value of the angular velocity sensor around the Y axis (yaw) direction Operation. In this embodiment, only the positive and negative of the motion vector information X are determined. When the motion vector information X is confirmed in the negative direction, the correction amount is a positive fixed amount, and when the motion vector information is confirmed in the positive direction, the correction amount is negative Fixed amount.

(基準值減法加法部42) 基準值減法加法部42以由基準值運算部35運算出之修正量修正第1基準值而求出修正後之第2基準值。(Base value subtraction and addition section 42) The reference value subtraction addition unit 42 corrects the first reference value by the correction amount calculated by the reference value calculation unit 35 to obtain the corrected second reference value.

(抖動修正裝置100之動作) 圖5係表示抖動修正裝置100之動作流程之流程圖。 步驟001:相機1之電源接通後,抖動修正裝置100開始用於光學防振之運算。根據相機,於半按壓釋放開關17之情形時,抖動修正裝置100開始用於光學防振之運算。(Operation of shake correction device 100) FIG. 5 is a flowchart showing the operation flow of the shake correction device 100. Step 001: After the power of the camera 1 is turned on, the shake correction device 100 starts an operation for optical vibration prevention. According to the camera, when the release switch 17 is pressed halfway, the shake correction device 100 starts an operation for optical vibration prevention.

步驟002:抖動修正裝置100將角速度感測器12之輸出利用放大部31放大後,利用第1A/D轉換部32進行A/D轉換。Step 002: The shake correction device 100 amplifies the output of the angular velocity sensor 12 by the amplifying unit 31, and then performs A/D conversion by the first A/D conversion unit 32.

步驟003:抖動修正裝置100於基準值運算部34中,基於角速度感測器12之輸出之A/D轉換後之訊號,算出運算上之角速度之基準值(相當於零deg/s之值)。角速度之基準值根據溫度特性或剛啟動後之漂移特性等而改變,因此無法將例如工場出貨時之角速度感測器12之靜止時輸出用於基準值。Step 003: The shake correction device 100 calculates a reference value (equivalent to zero deg/s) of the calculated angular velocity based on the A/D converted signal of the output of the angular velocity sensor 12 in the reference value calculation unit 34 . The reference value of the angular velocity changes according to the temperature characteristic or the drift characteristic immediately after the start, etc. Therefore, for example, the output of the angular velocity sensor 12 at the time of factory shipment at rest cannot be used as the reference value.

關於算出基準值之方法,已知有對特定時間之移動平均進行運算之方法或利用LPF處理進行運算之方法。於本實施形態中,使用利用LPF處理進行之基準值運算。As a method of calculating the reference value, a method of calculating a moving average at a specific time or a method of calculating by LPF processing is known. In this embodiment, reference value calculation by LPF processing is used.

圖6係表示基準值運算部34(HPF)之圖。LPF34之截止頻率fc通常設定為0.1[Hz]左右之較低之頻率。其原因在於:手抖動中1~10[Hz]左右之頻率占支配地位。若為0.1[Hz]之fc,則對手抖動分量造成之影響較少,而可進行良好之抖動修正。FIG. 6 is a diagram showing the reference value calculation unit 34 (HPF). The cut-off frequency fc of the LPF34 is usually set to a lower frequency around 0.1 [Hz]. The reason is that the frequency of about 1 to 10 [Hz] in the hand shake is dominant. If it is fc of 0.1 [Hz], the influence caused by the hand jitter component is small, and good jitter correction can be performed.

然而,於實際拍攝時,亦有因施加構圖之微調整(無法檢測出相機平移之水準)等低頻之運動而導致基準值運算結果具有誤差之情況。又,由於fc較低(時間常數較大),於一端誤差變大之情形時,存在收斂至真值之前需要時間之問題。本實施形態係修正該基準值之誤差者。However, in actual shooting, there may also be errors in the reference value calculation result due to low-frequency motion such as fine adjustment of the composition (the level of camera translation cannot be detected). In addition, since fc is low (the time constant is large), there is a problem that it takes time before converging to the true value when the error at one end becomes large. The present embodiment corrects the error of the reference value.

步驟004:抖動修正裝置100於運動向量資訊更新之情形時(S004為是)進入至S005,於未更新之情形時(S004為否)進入至S006。Step 004: The shake correction device 100 proceeds to S005 when the motion vector information is updated (Yes in S004), and proceeds to S006 when the motion vector information is not updated (No in S004).

步驟005:抖動修正裝置100於運動向量資訊更新之情形時,於基準值修正部50中進行基準值修正。基準值修正步驟將於下文進行敍述。再者,曝光中無法獲得運動向量之資訊,因此該步驟於即將曝光前實施。Step 005: When the motion vector information is updated, the shake correction device 100 corrects the reference value in the reference value correction unit 50. The reference value correction procedure will be described below. In addition, the motion vector information cannot be obtained during the exposure, so this step is implemented immediately before the exposure.

步驟006:抖動修正裝置100於目標位置運算部36中,基於基準值修正後之角速度感測器12之輸出,目標位置運算部36基於焦點距離、被攝體距離、攝影倍率、抖動修正透鏡特性資訊,對抖動修正透鏡6之目標位置進行運算。Step 006: The shake correction device 100 in the target position calculation unit 36, based on the output of the angular velocity sensor 12 after the reference value correction, the target position calculation unit 36 corrects the lens characteristics based on the focus distance, the subject distance, the photographic magnification, and the shake Information, calculate the target position of the shake correction lens 6.

步驟007:抖動修正裝置100為了防止抖動修正透鏡6到達至可動端,而進行中心偏壓處理。 關於中心偏壓處理之方法,有根據目標位置資訊設定偏壓量之方法或HPF處理、不完全積分處理(S006中)等各種方法,但此處不限定方法。Step 007: The shake correction device 100 performs center bias processing to prevent the shake correction lens 6 from reaching the movable end. Regarding the method of center bias processing, there are various methods such as a method of setting the amount of bias based on the target position information, HPF processing, incomplete integration processing (in S006), but the method is not limited here.

步驟008:抖動修正裝置100於透鏡驅動量運算部39中,根據已考慮中心偏壓分量之目標位置資訊與抖動修正透鏡位置資訊之差分,對透鏡驅動量進行運算。Step 008: The shake correction device 100 in the lens driving amount calculation unit 39 calculates the lens driving amount based on the difference between the target position information having considered the center bias component and the shake correction lens position information.

步驟009:抖動修正裝置100透過抖動修正透鏡驅動機構9使抖動修正透鏡6驅動至目標位置,返回至S002。Step 009: The shake correction device 100 drives the shake correction lens 6 to the target position through the shake correction lens driving mechanism 9 and returns to S002.

(基準值修正步驟) 圖7係圖5之基準值修正步驟005之詳細流程圖。 步驟101:抖動修正裝置100將所接收之運動向量資訊全部合計,進入至步驟102。 步驟102:抖動修正裝置100於中心偏壓去除部38中,將步驟007中運算出之中心偏壓分量換算成與運動向量資訊相同之尺度,進入至步驟103。 換算方法係基於焦點距離、被攝體距離、攝影倍率、運動向量資訊之解析度資訊進行運算。 Bias_MV=Bias_θ*f1+β/MV_pitch Bias_MV:中心偏壓分量(與運動向量資訊相同之尺度) Bias_θ:中心偏壓分量(角度) f:焦點距離 β:攝影倍率 MV_pitch:運動向量間距尺寸(Steps to modify the reference value) FIG. 7 is a detailed flowchart of the reference value correction step 005 of FIG. 5. Step 101: The shake correction device 100 adds up all the received motion vector information and proceeds to step 102. Step 102: The shake correction device 100 converts the center bias component calculated in step 007 to the same scale as the motion vector information in the center bias removal unit 38, and proceeds to step 103. The conversion method is based on the resolution information of focus distance, subject distance, photographic magnification, and motion vector information. Bias_MV=Bias_θ*f1+β/MV_pitch Bias_MV: center bias component (same scale as motion vector information) Bias_θ: center bias component (angle) f: focal distance β: photography magnification MV_pitch: motion vector pitch size

又,運動向量資訊於檢測出前產生延遲時間,因此較佳為中心偏壓分量亦具有與運動向量資訊同等之延遲時間。例如,於以30[fps]具有3幀(frame)量之延遲時間之情形時,延遲約100[ms]。因此,可藉由使用100[ms]前之偏壓資訊,更準確地對運動向量資訊所含之中心偏壓分量進行運算。In addition, the motion vector information generates a delay time before being detected, so it is preferable that the center bias component also has the same delay time as the motion vector information. For example, when there is a delay time of 3 frames at 30 [fps], the delay is about 100 [ms]. Therefore, by using the bias information before 100 [ms], the center bias component contained in the motion vector information can be calculated more accurately.

步驟103:抖動修正裝置100於中心偏壓去除部38中自運動向量資訊減去步驟102中運算出之中心偏壓分量,進入至步驟104。藉此,可獲取基於基準值誤差之運動向量資訊。Step 103: The shake correction device 100 subtracts the center bias component calculated in step 102 from the motion vector information in the center bias removal unit 38, and proceeds to step 104. In this way, motion vector information based on the reference value error can be obtained.

步驟104:抖動修正裝置100獲取最新之運動向量資訊(n)與1幀前之運動向量資訊(n-1)之差分:MV_diff,進入至步驟105。Step 104: The shake correction device 100 obtains the difference between the latest motion vector information (n) and the motion vector information (n-1) before 1 frame: MV_diff, and proceeds to step 105.

步驟105:抖動修正裝置100於基準值修正量運算部35中,基於MV_diff,設定修正基準值之量。基準值係根據以下之考慮設定修正量,進入至步驟106。 MV_diff>0:ω0_comp=-ω0_comp_def MV_diff<0:ω0_comp=+ω0_comp_def MV_diff=0:ω0_comp=0 ω0_comp:基準值修正量 ω0_comp_def:基準值修正常數Step 105: The shake correction device 100 sets the amount of correction of the reference value based on MV_diff in the reference value correction amount calculation unit 35. The reference value sets the correction amount based on the following considerations, and proceeds to step 106. MV_diff>0: ω0_comp=-ω0_comp_def MV_diff<0: ω0_comp=+ω0_comp_def MV_diff=0: ω0_comp=0 ω0_comp: reference value correction amount ω0_comp_def: reference value correction constant

步驟106:抖動修正裝置100於基準值減法加法部42中自S107中運算出之第1基準值減去步驟105中運算出之ω0_comp而求出修正後之第2基準值。Step 106: The shake correction device 100 subtracts the ω0_comp calculated in step 105 from the first reference value calculated in S107 in the reference value subtraction and addition unit 42 to obtain the corrected second reference value.

圖8(a)係表示偏轉方向之第2基準值之曲線圖。圖中虛線表示不進行本實施形態之修正之情形時之第1基準值,圖中實線表示利用本實施形態進行修正之情形時之第2基準值。Fig. 8(a) is a graph showing the second reference value in the deflection direction. The dotted line in the figure indicates the first reference value when the correction of this embodiment is not performed, and the solid line in the figure indicates the second reference value when the correction is performed by this embodiment.

圖8(b)係表示X方向之運動向量資訊之方向之曲線圖。 例如,於如圖8(b)之時刻t1般運動向量資訊為正方向之情形時,如(a)所示般將第1基準值修正為負。 之後,於時刻t3之前,第2基準值根據基準值運算部34中運算出之值改變。 於時刻t3,當於正方向確認到運動向量資訊時,還將第1基準值修正為負。於本實施形態中,此時之修正量設為與時刻t1時固定。 其後,於確認到運動向量資訊之時刻與時刻之間,第1基準值亦根據基準值運算部34中運算出之值改變而成為修正後之第2基準值。 又,當於正方向確認到運動向量資訊時,將第1基準值修正為固定量負。 又,當如圖中之時刻t22或t25般於負方向確認到運動向量資訊時,將第1基準值修正為固定量正。Figure 8(b) is a graph showing the direction of motion vector information in the X direction. For example, when the motion vector information is in the positive direction as at time t1 in FIG. 8(b), the first reference value is corrected to be negative as shown in (a). After that, before time t3, the second reference value changes according to the value calculated by the reference value calculation unit 34. At time t3, when the motion vector information is confirmed in the positive direction, the first reference value is also corrected to be negative. In the present embodiment, the correction amount at this time is fixed at time t1. Thereafter, between the time when the motion vector information is confirmed and the time, the first reference value also changes according to the value calculated by the reference value calculation unit 34 to become the corrected second reference value. In addition, when the motion vector information is confirmed in the positive direction, the first reference value is corrected to a fixed amount negative. Also, when the motion vector information is confirmed in the negative direction as at time t22 or t25 in the figure, the first reference value is corrected to a fixed amount positive.

(變化形態) 並不限定於以上說明之實施形態,可進行如下所示之各種變化或變更,其等亦處於本發明之範圍內。(Change pattern) It is not limited to the embodiment described above, and various changes or modifications as shown below can be made, and the like are also within the scope of the present invention.

(1)於可自拍攝之圖像資料檢測出因被攝體移動而非因使用者之手抖動產生之所謂之被攝體抖動之情形時,亦可根據被攝體抖動之大小改變搜索範圍。於該情形時,隨著被攝體抖動變大,擴大搜索範圍。(1) When the so-called subject shake caused by the movement of the subject rather than the user's hand shake can be detected from the captured image data, the search range can also be changed according to the size of the subject shake . In this case, as the subject shake becomes larger, the search range is expanded.

(2)於實施形態中,基準值之修正量為正或負之固定量,但亦可根據變焦位置改變大小。又,有藉由釋放開關17之半按壓進行自動聚焦動作而使運動向量之運算停止固定時間之情況。於此種情形時,亦可使運動向量之運算停止固定時間後再開始後之運動向量之修正量增大。(2) In the embodiment, the correction amount of the reference value is a positive or negative fixed amount, but the size can also be changed according to the zoom position. In addition, there is a case where the auto-focusing operation is performed by the half-press of the release switch 17 to stop the calculation of the motion vector for a fixed time. In this case, the motion vector correction amount can also be increased after the motion vector calculation is stopped for a fixed time and then restarted.

(3)本實施形態係透鏡鏡筒1B具備角速度感測器12之構造,但並不限定於此,亦可於相機主體1A內具備角速度感測器12。(3) The present embodiment is a structure in which the lens barrel 1B includes the angular velocity sensor 12, but it is not limited to this, and the angular velocity sensor 12 may be provided in the camera body 1A.

(4)又,亦可為於相機主體1A或透鏡鏡筒1B內具備加速度感測器而非角速度感測器者。(4) In addition, it is also possible to provide an acceleration sensor instead of an angular velocity sensor in the camera body 1A or the lens barrel 1B.

(5)於上述實施形態中,基於由目標位置運算部算出之抖動修正透鏡之目標位置,進行使用用以使抖動修正透鏡朝向其可動範圍之中心移動之向心力即中心偏壓之控制,但亦可進行不使用中心偏壓之控制。於該情形時,不具有中心偏壓運算部及中心偏壓去除部。(5) In the above embodiment, based on the target position of the shake correction lens calculated by the target position calculation unit, the control using the centripetal force to move the shake correction lens toward the center of its movable range, that is, the center bias, is performed. It can be controlled without using center bias. In this case, there is no central bias calculation unit and central bias removal unit.

1‧‧‧相機 1A‧‧‧相機主體 1B‧‧‧透鏡鏡筒 2‧‧‧CPU 3‧‧‧攝影感測器 4‧‧‧變焦透鏡 5‧‧‧聚焦透鏡 6‧‧‧抖動修正透鏡 7‧‧‧變焦透鏡驅動機構 8‧‧‧聚焦透鏡驅動機構 9‧‧‧抖動修正透鏡驅動機構 10‧‧‧光圈 11‧‧‧光圈驅動機構 12‧‧‧角速度感測器 13‧‧‧記錄媒體 14‧‧‧記憶部 15‧‧‧操作部 17‧‧‧釋放開關 18‧‧‧背面液晶 20‧‧‧快門 21‧‧‧抖動修正透鏡位置檢測部 31‧‧‧放大部 32‧‧‧第1A/D轉換部 33‧‧‧第2A/D轉換部 34‧‧‧基準值運算部 35‧‧‧基準值修正量運算部 36‧‧‧目標位置運算部 37‧‧‧中心偏壓運算部 38‧‧‧中心偏壓去除部 39‧‧‧透鏡驅動量運算部 40‧‧‧圖像產生部 40A‧‧‧前處理部 40B‧‧‧尺寸調整部 41‧‧‧運動向量運算部 42‧‧‧基準值減法加法部 43‧‧‧減法部 46‧‧‧感測器控制部 50‧‧‧基準值修正部 100‧‧‧抖動修正裝置1‧‧‧Camera 1A‧‧‧Camera main body 1B‧‧‧Lens lens barrel 2‧‧‧CPU 3‧‧‧Photographic sensor 4‧‧‧ zoom lens 5‧‧‧focus lens 6‧‧‧Shake correction lens 7‧‧‧ Zoom lens drive mechanism 8‧‧‧focus lens drive mechanism 9‧‧‧ Shaking correction lens driving mechanism 10‧‧‧ Aperture 11‧‧‧Iris drive mechanism 12‧‧‧Angular velocity sensor 13‧‧‧Recording media 14‧‧‧ Memory Department 15‧‧‧Operation Department 17‧‧‧Release switch 18‧‧‧ Rear LCD 20‧‧‧Shutter 21‧‧‧Shake correction lens position detection unit 31‧‧‧Enlargement 32‧‧‧The first A/D conversion section 33‧‧‧ 2nd A/D conversion section 34‧‧‧ Reference value calculation unit 35‧‧‧ Reference value correction amount calculation unit 36‧‧‧Target position calculation unit 37‧‧‧Center bias calculation unit 38‧‧‧Center bias removal section 39‧‧‧ Lens driving amount calculation unit 40‧‧‧Image generation department 40A‧‧‧Pre-processing department 40B‧‧‧Size adjustment department 41‧‧‧Motion Vector Operation Department 42‧‧‧Basic Value Subtraction and Addition Department 43‧‧‧Subtraction Division 46‧‧‧Sensor Control Department 50‧‧‧ Reference value correction unit 100‧‧‧Jitter correction device

圖1係示意性地表示相機之剖視圖。 圖2係表示相機所含之抖動修正裝置之方塊圖。 圖3係說明運動向量資訊之求出方法之一例之圖。 圖4係對運動向量運算部中之運動向量資訊之基本運算時序進行說明之圖。 圖5係表示抖動修正裝置之動作流程之流程圖。 圖6係表示基準值運算部之圖。 圖7係圖5之基準值修正步驟之詳細流程圖。 圖8(a)係表示偏轉方向之第2基準值之曲線圖,(b)係表示X方向之運動向量資訊之方向之曲線圖。FIG. 1 is a schematic cross-sectional view of a camera. FIG. 2 is a block diagram showing the shake correction device included in the camera. FIG. 3 is a diagram illustrating an example of a method of obtaining motion vector information. FIG. 4 is a diagram for explaining the basic operation timing of the motion vector information in the motion vector operation unit. 5 is a flowchart showing the operation flow of the shake correction device. 6 is a diagram showing a reference value calculation unit. FIG. 7 is a detailed flowchart of the reference value correction step of FIG. 5. Fig. 8 (a) is a graph showing the second reference value of the deflection direction, and (b) is a graph showing the direction of the motion vector information in the X direction.

2‧‧‧CPU 2‧‧‧CPU

3‧‧‧攝影感測器 3‧‧‧Photographic sensor

4‧‧‧變焦透鏡 4‧‧‧ zoom lens

6‧‧‧抖動修正透鏡 6‧‧‧Shake correction lens

7‧‧‧變焦透鏡驅動機構 7‧‧‧ Zoom lens drive mechanism

9‧‧‧抖動修正透鏡驅動機構 9‧‧‧ Shaking correction lens driving mechanism

12‧‧‧角速度感測器 12‧‧‧Angular velocity sensor

14‧‧‧記憶部 14‧‧‧ Memory Department

15‧‧‧操作部 15‧‧‧Operation Department

21‧‧‧抖動修正透鏡位置檢測部 21‧‧‧Shake correction lens position detection unit

31‧‧‧放大部 31‧‧‧Enlargement

32‧‧‧第1A/D轉換部 32‧‧‧The first A/D conversion section

33‧‧‧第2A/D轉換部 33‧‧‧ 2nd A/D conversion section

34‧‧‧基準值運算部 34‧‧‧ Reference value calculation unit

35‧‧‧基準值修正量運算部 35‧‧‧ Reference value correction amount calculation unit

36‧‧‧目標位置運算部 36‧‧‧Target position calculation unit

37‧‧‧中心偏壓運算部 37‧‧‧Center bias calculation unit

38‧‧‧中心偏壓去除部 38‧‧‧Center bias removal section

39‧‧‧透鏡驅動量運算部 39‧‧‧ Lens driving amount calculation unit

40‧‧‧圖像產生部 40‧‧‧Image generation department

41‧‧‧運動向量運算部 41‧‧‧Motion Vector Operation Department

42‧‧‧基準值減法加法部 42‧‧‧Basic Value Subtraction and Addition Department

43‧‧‧減法部 43‧‧‧Subtraction Division

46‧‧‧感測器控制部 46‧‧‧Sensor Control Department

50‧‧‧基準值修正部 50‧‧‧ Reference value correction unit

100‧‧‧抖動修正裝置 100‧‧‧Jitter correction device

Claims (6)

一種攝影裝置,其具有: 攝影元件,其拍攝利用光學系統所得之被攝體之像並輸出訊號; 圖像資料產生部,其基於上述訊號產生圖像資料;及 運動向量算出部,其於第2圖像資料中在基於上述光學系統之焦點距離設定之範圍內,檢測第1圖像資料中檢測出之上述被攝體,而算出上述被攝體之像之運動向量,上述第1圖像資料係於上述圖像資料產生部產生,上述第2圖像資料係於與上述第1圖像資料不同之時刻拍攝並於上述圖像資料產生部產生。A photographic device having: Photographic element, which takes an image of a subject obtained by an optical system and outputs a signal; An image data generating section that generates image data based on the above signals; and The motion vector calculation unit detects the subject detected in the first image data in the second image data within a range set based on the focal distance of the optical system, and calculates the image of the subject For the motion vector, the first image data is generated by the image data generation unit, and the second image data is captured at a different time from the first image data and generated by the image data generation unit. 如請求項1所述之攝影裝置,其中,上述運動向量算出部係上述光學系統之焦點距離越長則將上述範圍設定得越寬。The photographing device according to claim 1, wherein the motion vector calculation unit sets the wider the range as the focal length of the optical system becomes longer. 如請求項1或2所述之攝影裝置,其具有: 感測器,其檢測上述攝影裝置之抖動並輸出抖動訊號; 元件,其於與上述光學系統之光軸交叉之方向上移動,而使上述被攝體之像之位置變更;及 移動量運算部,其使用上述運動向量及上述抖動訊號對上述元件之移動量進行運算。The photographing device according to claim 1 or 2, which has: A sensor, which detects the jitter of the above-mentioned camera device and outputs a jitter signal; An element that moves in a direction crossing the optical axis of the optical system to change the position of the image of the subject; and The movement amount calculation unit calculates the movement amount of the element using the motion vector and the jitter signal. 如請求項3所述之攝影裝置,其具有: 基準值運算部,其基於上述抖動訊號對成為上述抖動訊號之基準的第1基準值進行運算;及 基準值修正部,其基於上述運動向量修正上述第1基準值,而求出第2基準值;且 上述移動量運算部基於上述抖動訊號及上述第2基準值對上述元件之移動量進行運算。The photographing device according to claim 3, which has: A reference value calculation unit that calculates the first reference value that becomes the reference of the jitter signal based on the jitter signal; and The reference value correction unit corrects the first reference value based on the motion vector to obtain a second reference value; and The movement amount calculation unit calculates the movement amount of the element based on the jitter signal and the second reference value. 如請求項3所述之攝影裝置,其中,上述運動向量算出部係 上述抖動訊號越大則將上述範圍設定得越寬。The photographing device according to claim 3, wherein the motion vector calculation unit is The larger the above-mentioned jitter signal, the wider the above-mentioned range is set. 如請求項3所述之攝影裝置,其中,上述元件係形成上述光學系統之複數個透鏡中之一部分。The photographing device according to claim 3, wherein the element forms part of a plurality of lenses of the optical system.
TW108123059A 2018-07-09 2019-07-01 Imaging device TW202007138A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129973 2018-07-09
JPJP2018-129973 2018-07-09

Publications (1)

Publication Number Publication Date
TW202007138A true TW202007138A (en) 2020-02-01

Family

ID=69142338

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123059A TW202007138A (en) 2018-07-09 2019-07-01 Imaging device

Country Status (2)

Country Link
TW (1) TW202007138A (en)
WO (1) WO2020012961A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592007B2 (en) * 1996-11-15 2004-11-24 キヤノン株式会社 Imaging device and lens unit
JP2002333644A (en) * 2001-05-10 2002-11-22 Canon Inc Image blur detector
JP4366484B2 (en) * 2004-03-12 2009-11-18 カシオ計算機株式会社 Digital camera and program
JP6420888B2 (en) * 2017-11-30 2018-11-07 キヤノン株式会社 Image blur correction apparatus, control method therefor, program, and storage medium

Also Published As

Publication number Publication date
WO2020012961A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6700872B2 (en) Image blur correction apparatus and control method thereof, image pickup apparatus, program, storage medium
JP6776062B2 (en) Imaging device and its control method
JP2007288726A (en) Imaging apparatus
JP6932531B2 (en) Image blur correction device, image pickup device, control method of image pickup device
US10992867B2 (en) Image capturing apparatus and control method thereof and storage medium
JP6171575B2 (en) Blur correction device and optical apparatus
JP7532040B2 (en) Imaging device and control method thereof
JP6268981B2 (en) Blur correction device, interchangeable lens and camera
TW202007138A (en) Imaging device
JP6171576B2 (en) Blur correction device and optical apparatus
JP6873841B2 (en) Image blur correction device, imaging device, imaging system, control method, program and storage medium
TW202017355A (en) Imaging device
JP2020118789A (en) Imaging apparatus, imaging system, control method of imaging apparatus, and program
WO2019203147A1 (en) Imaging device
JP7451152B2 (en) Imaging device, control method and computer program
JP6590013B2 (en) Interchangeable lens and imaging device
JP5541661B2 (en) LENS DEVICE, IMAGING SYSTEM, AND CONTROL METHOD THEREOF
JP6485499B2 (en) Blur correction device and optical apparatus
JP2010145500A (en) Optical equipment
JP6590018B2 (en) Blur correction device and camera
JP6299188B2 (en) Blur correction device, lens barrel and camera
JP2013162185A (en) Optical instrument and imaging apparatus
JP2015166771A (en) Imaging apparatus and method for controlling the same
JP6318502B2 (en) Blur correction device and optical apparatus
JP2015106086A (en) Tremor correction device and optical device