TW202005765A - Robotic arm calibration system and robotic arm calibration method - Google Patents

Robotic arm calibration system and robotic arm calibration method Download PDF

Info

Publication number
TW202005765A
TW202005765A TW108112994A TW108112994A TW202005765A TW 202005765 A TW202005765 A TW 202005765A TW 108112994 A TW108112994 A TW 108112994A TW 108112994 A TW108112994 A TW 108112994A TW 202005765 A TW202005765 A TW 202005765A
Authority
TW
Taiwan
Prior art keywords
sensing
robotic arm
arm
platform
sets
Prior art date
Application number
TW108112994A
Other languages
Chinese (zh)
Inventor
陳英材
黃俊銘
吳佳瑋
Original Assignee
大陸商康碩電子(蘇州)有限公司
和碩聯合科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商康碩電子(蘇州)有限公司, 和碩聯合科技股份有限公司 filed Critical 大陸商康碩電子(蘇州)有限公司
Publication of TW202005765A publication Critical patent/TW202005765A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator

Abstract

A robotic arm correction system including a platform, two sets of optical sensing devices, and a controller is provided. The two sets of optical sensing devices are arranged on the platform, and the intersections of the two sensing beams emitted by the two sets of optical sensing devices overlap the calibration point of the platform in the orthographic projection of the platform. The controller is adapted to move the robotic arm to pass through at least two different positions of each of the sensing beams to record a set of sensing coordinates of the corresponding platform. The controller controls the robotic arm to rotate for an angle and repeats the above process to record another set of sensing coordinates, and then the controller calculates the corrected coordinates of the robotic arm based on the two sets of sensing coordinates. In addition, a robotic arm correction method is also provided.

Description

機械手臂校正系統以及校正方法Robotic arm calibration system and calibration method

本發明是有關於一種校正系統以及校正方法,且特別是有關於一種機械手臂校正系統以及校正方法。The invention relates to a correction system and a correction method, and in particular to a correction system and a correction method of a robot arm.

在製造代工業中,許多的加工步驟都是單一且重複施做的。目前逐漸以機械方式取代人力,利用機台執行加工有助於提升產品的產量及減少人力支出等。此外,通過程式控制加工路徑,可減輕使用人力加工時的不確定性,因而機台加工的運用成為各類產品生產過程中的較佳選擇。In the manufacturing industry, many processing steps are single and repeated. At present, manpower is gradually replaced by mechanical means, and the use of machines to perform processing can help increase product output and reduce manpower expenditure. In addition, the processing path is controlled by the program, which can reduce the uncertainty when using human power processing, so the application of machine processing has become a better choice in the production process of various products.

然而,在現今的製造中,會透過機械手臂將樣品搬運至不同的機台,以進行不同階段的製程。然而,機械手臂容易因為一些非預期的因素而在運送樣品的過程中產生震動或抖動,或者發生實際運行偏離原先所預定路徑的情況。有時這些震動或抖動的細微程度並不易被人眼所察覺,但卻會對樣品的搬運過程造成嚴重的影響。因此,在搬運樣品的過程中,若因機械手臂的震動或抖動而導致樣品掉落或損毀,即可能會造成相當程度的損失。除此之外,目前在機械手臂的校正過程中常以人眼校正的方式為主,因此,容易因為不同操作人員的校正而產生偏差,且使用人眼校正的方式容易產生誤差而導致校正精準度不佳。However, in today's manufacturing, samples are transferred to different machines through a robotic arm to carry out different stages of the process. However, the robotic arm is prone to vibration or jitter during the transportation of the sample due to some unexpected factors, or the actual operation may deviate from the originally planned path. Sometimes the subtlety of these vibrations or jitters is not easy to be noticed by human eyes, but it will have a serious impact on the sample handling process. Therefore, in the process of carrying the sample, if the sample is dropped or damaged due to the vibration or shaking of the robot arm, it may cause a considerable loss. In addition, at present, the method of human eye correction is often used in the calibration process of the robotic arm. Therefore, it is easy to cause deviations due to the correction of different operators, and the method of using the human eye correction is prone to errors and lead to correction accuracy. Not good.

本發明提供一種機械手臂校正系統以及校正方法,可不需額外標記或配置附加工具以達到快速的校正。The invention provides a mechanical arm calibration system and a calibration method, which can achieve rapid calibration without additional marking or additional tools.

本發明提出一種機械手臂校正系統,適於校正機械手臂。機械手臂校正系統包括平台、兩組光學感應裝置以及控制器。兩組光學感應裝置配置於平台,且兩組光學感應裝置發出的兩感測光束連線交點在平台的正投影重疊於平台的校正點。控制器電性連接於機械手臂,適於移動機械手臂以經過兩感測光束,其中控制器控制機械手臂經過每一感測光束的至少兩個不同位置以記錄對應平台的一組感測座標。控制器控制機械手臂旋轉一角度後重複執行上述過程以記錄對應的另一組感測座標,隨後控制器根據兩組感測座標計算得出機械手臂的校正座標。The invention provides a correction system for a mechanical arm, which is suitable for correcting a mechanical arm. The robotic arm calibration system includes a platform, two sets of optical sensing devices and a controller. The two sets of optical sensing devices are arranged on the platform, and the orthographic projection of the connection lines of the two sensing beams emitted by the two sets of optical sensing devices on the platform overlaps the correction points of the platform. The controller is electrically connected to the robot arm, and is suitable for moving the robot arm to pass the two sensing beams. The controller controls the robot arm to pass through at least two different positions of each sensing beam to record a set of sensing coordinates of the corresponding platform. The controller controls the robot arm to rotate by an angle and repeats the above process to record another corresponding set of sensing coordinates, and then the controller calculates the calibration coordinates of the robot arm according to the two sets of sensing coordinates.

在本發明的一實施例中,上述的兩組光學感應裝置的兩感測光束連線相互垂直。In an embodiment of the present invention, the two sensing beam lines of the above two sets of optical sensing devices are perpendicular to each other.

在本發明的一實施例中,上述的兩組光學感應裝置分別為光纖感測器。In an embodiment of the invention, the above two sets of optical sensing devices are optical fiber sensors.

在本發明的一實施例中,上述的控制器控制機械手臂分別自四個不同的起點朝對應的感測光束移動。當機械手臂觸碰到對應的感測光束時,控制器控制機械手臂停止運動,並記錄對應的感測座標。In an embodiment of the invention, the above-mentioned controller controls the robot arms to move from the four different starting points toward the corresponding sensing beams, respectively. When the robot arm touches the corresponding sensing beam, the controller controls the robot arm to stop moving, and records the corresponding sensing coordinates.

在本發明的一實施例中,上述的控制器控制機械手臂自起點呈口字型運動,以先後觸碰兩感測光束的不同位置。In an embodiment of the invention, the above-mentioned controller controls the robot arm to move in a mouth shape from the starting point, so as to successively touch different positions of the two sensing beams.

本發明另提出一種機械手臂校正方法,包括:(a)提供機械手臂校正系統,包括平台、配置於平台的兩組光學感應裝置以及電性連接於機械手臂的控制器;(b)啟動兩組光學感應裝置以產生兩感測光束並於平台的校正點處形成交點;(c)控制機械手臂經過每一感測光束的至少兩個不同位置;(d)記錄對應平台的一組感測座標;(e)控制所述機械手臂旋轉一角度;(f)重複上述步驟(b)~(c);(g)記錄對應的另一組感測座標;以及(h)根據兩組感測座標計算出機械手臂的校正座標。The invention also proposes a robotic arm calibration method, including: (a) providing a robotic arm calibration system, including a platform, two sets of optical sensing devices arranged on the platform, and a controller electrically connected to the robotic arm; (b) starting two sets The optical sensing device generates two sensing beams and forms an intersection at the calibration point of the platform; (c) controls the robot arm to pass through at least two different positions of each sensing beam; (d) records a set of sensing coordinates corresponding to the platform ; (E) control the mechanical arm to rotate by an angle; (f) repeat the above steps (b) ~ (c); (g) record another corresponding set of sensing coordinates; and (h) according to the two sets of sensing coordinates Calculate the calibration coordinates of the robotic arm.

在本發明的一實施例中,上述的兩組光學感應裝置的兩感測光束連線相互垂直。In an embodiment of the present invention, the two sensing beam lines of the above two sets of optical sensing devices are perpendicular to each other.

在本發明的一實施例中,上述的兩組光學感應裝置分別為光纖感測器。In an embodiment of the invention, the above two sets of optical sensing devices are optical fiber sensors.

在本發明的一實施例中,上述控制機械手臂經過每一感測光束上的至少兩個不同位置的步驟還包括:控制機械手臂分別自四個不同的起點朝對應的感測光束移動,當機械手臂觸碰到對應的感測光束時,控制機械手臂停止運動。In an embodiment of the present invention, the step of controlling the robot arm to pass through at least two different positions on each sensing beam further includes: controlling the robot arm to move from the four different starting points toward the corresponding sensing beam respectively, when When the robot arm touches the corresponding sensing beam, the robot arm is controlled to stop moving.

在本發明的一實施例中,上述控制機械手臂經過每一感測光束上的至少兩個不同位置的步驟還包括:控制機械手臂自起點呈口字型運動,以先後觸碰兩感測光束的不同位置。In an embodiment of the present invention, the step of controlling the robotic arm to pass through at least two different positions on each sensing beam further includes: controlling the robotic arm to move in a zigzag pattern from the starting point to touch the two sensing beams successively Different locations.

基於上述,在本發明的機械手臂校正系統及機械手臂校正方法中,機械手臂經由控制器的控制移動而碰觸兩組光學感應裝置所產生的兩感測光束各別的至少兩個不同位置,且根據所碰觸的位置記錄為一組感測座標,隨後在控制機械手臂旋轉一角度後,重複上述過程以記錄另一組感測座標,最終根據這兩組感測座標以計算得出機械手臂的校正座標。因此,可不需額外標記或配置附加工具以達到快速的校正。Based on the above, in the robotic arm calibration system and the robotic arm calibration method of the present invention, the robotic arm touches at least two different positions of the two sensing beams generated by the two sets of optical sensing devices through the movement of the controller, And record a set of sensing coordinates according to the touched position, then after controlling the robot arm to rotate an angle, repeat the above process to record another set of sensing coordinates, and finally calculate the machinery according to these two sets of sensing coordinates The calibration coordinates of the arm. Therefore, no additional marking or additional tools are needed to achieve fast calibration.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

圖1為本發明一實施例的機械手臂校正系統及機械手臂的側視示意圖。圖2為圖1的機械手臂校正系統俯視示意圖。請參考圖1及圖2,在本實施例中,手臂校正系統100適於校正機械手臂50。手臂校正系統包括平台110、兩組光學感應裝置120以及控制器130。兩組光學感應裝置120配置於平台110,且兩組光學感應裝置120所發出的兩感測光束L連線交點I在平台110的正投影重疊於平台110的校正點C。在本實施例中,機械手臂50例如為用以工業加工的四軸機械手臂,但也可以是三軸機械手臂,本發明並不限於此。FIG. 1 is a schematic side view of a robot arm calibration system and a robot arm according to an embodiment of the invention. FIG. 2 is a schematic top view of the robotic arm correction system of FIG. 1. Please refer to FIGS. 1 and 2. In this embodiment, the arm calibration system 100 is adapted to calibrate the robot arm 50. The arm calibration system includes a platform 110, two sets of optical sensing devices 120, and a controller 130. The two sets of optical sensing devices 120 are disposed on the platform 110, and the orthographic projection of the connection point I of the two sensing beams L emitted by the two sets of optical sensing devices 120 on the platform 110 overlaps the calibration point C of the platform 110. In this embodiment, the robot arm 50 is, for example, a four-axis robot arm for industrial processing, but it may also be a three-axis robot arm, and the present invention is not limited thereto.

光學感應裝置120例如是為光纖感測器或其他可產生直線光束的光感測器,本發明並不限於此。每一組光學感應裝置120在平台上相對配置,且兩組光學感應裝置120在平台110上呈交叉配置。詳細而言,在本實施例中,一組光學感應裝置120_1配置於平台110的相對兩對邊的中點上,另一組光學感應裝置120_2則配置於平台110的另相對兩對邊的中點上,以使兩組光學感應裝置120_1、120_2所發射出的感測光束L連線相互垂直,並且在平台110的校正點C處形成交點I,如圖3所繪示。在本實施例中,校正點C即為平台110的中心點,因此可使校正後的機械手臂50有最大工作範圍,但本發明並不限於此。The optical sensing device 120 is, for example, an optical fiber sensor or other optical sensors that can generate a linear beam, and the invention is not limited thereto. Each set of optical sensing devices 120 is relatively arranged on the platform, and two sets of optical sensing devices 120 are arranged in a cross configuration on the platform 110. In detail, in this embodiment, one set of optical sensing devices 120_1 is disposed at the midpoints of two opposite sides of the platform 110, and the other set of optical sensing devices 120_2 is disposed between the other two opposite sides of the platform 110 At the point, the connection lines of the sensing beams L emitted by the two sets of optical sensing devices 120_1 and 120_2 are perpendicular to each other, and the intersection point I is formed at the calibration point C of the platform 110, as shown in FIG. 3. In this embodiment, the calibration point C is the center point of the platform 110, so the robot arm 50 after calibration can have a maximum working range, but the present invention is not limited to this.

控制器130電性連接於機械手臂50,在校正機械手臂50時,控制器130適於移動機械手臂50以經過感測光束L。此外,當機械手臂50碰觸到感測光束L時,控制器130適於記錄對應的感測座標,經多次移動後,獲得一組感測座標。The controller 130 is electrically connected to the robot arm 50. When the robot arm 50 is calibrated, the controller 130 is adapted to move the robot arm 50 to pass the sensing beam L. In addition, when the robotic arm 50 touches the sensing beam L, the controller 130 is adapted to record the corresponding sensing coordinates, and after multiple movements, obtain a set of sensing coordinates.

圖3為機械手臂在一實施例中的俯視移動路徑圖。請參考圖3,在本實施例的校正方法中,控制器130控制機械手臂50分別自四個不同的起點朝對應的感測光束L1、L2移動而觸碰形成四個不同位置A1、A2、A3、A4,並且將四個不同位置A1、A2、A3、A4記錄為一組感測座標。且當機械手臂50觸碰到對應的感測光束L1、L2時,控制器130控制機械手臂50停止運動。詳細而言,控制器130先控制機械手臂50由位置P1移動至位置A1,並且藉由光學感應裝置120_1記錄為第一座標(即位置A1)。接著,控制器130再移動機械手臂50至位置P2,並控制機械手臂50由位置P2移動至位置A2,並且藉由光學感應裝置120_1記錄為第二座標(即位置A2)。因此,可藉由第一座標以及第二座標計算得出光學感應裝置120_1所發出感測光束L1的直線方程式。FIG. 3 is a plan view of the movement path of the robot arm in one embodiment. Referring to FIG. 3, in the calibration method of this embodiment, the controller 130 controls the robot arm 50 to move from four different starting points toward the corresponding sensing beams L1, L2 to form four different positions A1, A2, A3, A4, and record four different positions A1, A2, A3, A4 as a set of sensing coordinates. And when the robot arm 50 touches the corresponding sensing beams L1, L2, the controller 130 controls the robot arm 50 to stop moving. In detail, the controller 130 first controls the robot arm 50 to move from the position P1 to the position A1, and records the first coordinate (ie, position A1) by the optical sensing device 120_1. Then, the controller 130 moves the robot arm 50 to the position P2, and controls the robot arm 50 to move from the position P2 to the position A2, and is recorded as the second coordinate (ie, position A2) by the optical sensing device 120_1. Therefore, the linear equation of the sensing beam L1 emitted by the optical sensing device 120_1 can be calculated by the first coordinate and the second coordinate.

在上述的實施例中,控制器130另控制機械手臂50由位置P3移動至位置A3,並且藉由光學感應裝置120_2記錄為第三座標(即位置A3)。接著,控制器130再移動機械手臂50至位置P4,並控制機械手臂50由位置P4移動至位置A4,並且藉由光學感應裝置120_2記錄為第四座標(即位置A4)。因此,可藉由第三座標以及第四座標計算得出光學感應裝置120_2所發出感測光束L2的直線方程式。換句話說,控制器130控制機械手臂50經過每一感測光束L上的至少兩個不同位置,以從對應的座標計算得出光束的直線方程式。因此,可經由感測光束L1的直線方程式以及感測光束L2的直線方程式計算得出感測光束L1及感測光束L2的連線交點I的座標。如此一來,可在機械手臂50旋轉為另一角度後重複上述過程,以得出另一個連線交點的座標,進而計算得出機械手臂50的校正座標。In the above embodiment, the controller 130 further controls the robot arm 50 to move from the position P3 to the position A3, and is recorded as the third coordinate (ie, position A3) by the optical sensing device 120_2. Then, the controller 130 moves the robot arm 50 to the position P4, and controls the robot arm 50 to move from the position P4 to the position A4, and records the fourth coordinate (ie, position A4) by the optical sensing device 120_2. Therefore, the linear equation of the sensing beam L2 emitted by the optical sensing device 120_2 can be calculated by the third coordinate and the fourth coordinate. In other words, the controller 130 controls the robotic arm 50 to pass through at least two different positions on each sensing beam L to calculate the straight line equation of the beam from the corresponding coordinates. Therefore, the coordinates of the intersection point I of the connection line between the sensing beam L1 and the sensing beam L2 can be calculated by the linear equation of the sensing beam L1 and the linear equation of the sensing beam L2. In this way, the above process can be repeated after the robot arm 50 rotates to another angle to obtain the coordinates of another intersection point, and then calculate the calibration coordinates of the robot arm 50.

在上述實施例中,機械手臂50藉由控制器130移動而碰觸至光學感應裝置120_1、120_2的座標可記錄為第一座標

Figure 02_image001
、第二座標
Figure 02_image003
、第三座標
Figure 02_image005
以及第四座標
Figure 02_image007
,且感測光束L1及感測光束L2的直線方程式及連線交點I(即校正座標)可經由下列公式(1)至公式(4)計算得出:
Figure 02_image009
----------------- (1)
Figure 02_image011
---------------- (2)
Figure 02_image013
----------------------------------- (3)
Figure 02_image015
-------------------- (4) 其中,公式(1)為感測光束L1的直線方程式,公式(2)為感測光束L2的直線方程式,公式(3)為連線交點I的X座標,公式(4)為連線交點I的Y座標。因此,藉由上述公式計算得出連線交點座標後,藉由控制器130將機械手臂50沿中心軸U旋轉 180度,再次進行校正流程以藉由上述公式計算得到另一連線交點座標,進而根據兩連線交點座標以得出校正座標而完成校正。如此一來,可不需額外在平台110上進行額外標記或配置附加工具,進而達到快速的校正。在一些實施例中,將機械手臂50沿中心軸U所選旋轉的角度亦可以為90度、270度或其他角度,本發明並不限於此。In the above embodiment, the coordinates of the robot arm 50 moved by the controller 130 to touch the optical sensing devices 120_1, 120_2 can be recorded as the first coordinates
Figure 02_image001
, Second coordinate
Figure 02_image003
, The third coordinate
Figure 02_image005
And the fourth coordinate
Figure 02_image007
, And the linear equation of the sensing beam L1 and the sensing beam L2 and the intersection point I (that is, the calibration coordinates) can be calculated by the following formula (1) to formula (4):
Figure 02_image009
----------------- (1)
Figure 02_image011
---------------- (2)
Figure 02_image013
----------------------------------- (3)
Figure 02_image015
-------------------- (4) Among them, the formula (1) is the linear equation of the sensing beam L1, and the formula (2) is the linear equation of the sensing beam L2 , Formula (3) is the X coordinate of the intersection I of the line, and Formula (4) is the Y coordinate of the intersection I of the line. Therefore, after calculating the coordinate of the connection intersection point by the above formula, the controller 130 rotates the robot arm 50 along the central axis U by 180 degrees, and performs the calibration process again to calculate another coordinate of the connection intersection point by the above formula. Then, according to the coordinates of the intersection point of the two connecting lines to obtain the calibration coordinates, the calibration is completed. In this way, there is no need to additionally mark or configure additional tools on the platform 110, thereby achieving rapid calibration. In some embodiments, the selected rotation angle of the robot arm 50 along the central axis U may also be 90 degrees, 270 degrees, or other angles, and the present invention is not limited thereto.

圖4為機械手臂在另一實施例中的俯視移動路徑圖。請參考圖4,在本實施例的校正方法中,控制器130移動機械手臂50環繞兩感測光束L1、L2連線交點I以碰觸兩感測光束L1、L2,並將發生碰觸的多個不同位置B1、B2、B3、B4記錄為一組感測座標。詳細而言,控制器130控制機械手臂50由位置P5移動經過位置P6、位置P7、位置P8至位置B4,並且在移動過程中碰觸感測光束L1、L2的位置B1、位置B2、位置B3以及位置B4分別記錄為第一座標、第二座標、第三座標以及第四座標。換句話說,控制器130控制機械手臂50自起點呈口字型運動,以先後觸碰兩感測光束L1、L2的不同位置。FIG. 4 is a plan view of a moving path of a robot arm in another embodiment. Referring to FIG. 4, in the calibration method of this embodiment, the controller 130 moves the robot arm 50 around the intersection point I of the two sensing beams L1, L2 to touch the two sensing beams L1, L2, and the touched Multiple different positions B1, B2, B3, B4 are recorded as a set of sensing coordinates. In detail, the controller 130 controls the robot arm 50 to move from position P5 through position P6, position P7, position P8 to position B4, and touches the position B1, position B2, and position B3 of the sensing beams L1, L2 during the movement And the position B4 is recorded as the first coordinate, the second coordinate, the third coordinate, and the fourth coordinate, respectively. In other words, the controller 130 controls the robotic arm 50 to move in a mouth shape from the starting point, so as to successively touch different positions of the two sensing beams L1, L2.

因此,可藉由第一座標以及第三座標依據上述公式計算得出光學感應裝置120_1所發出感測光束L1的直線方程式,且藉由第二座標以及第四座標依據上述公式計算得出光學感應裝置120_2所發出感測光束L2的直線方程式,再藉由兩直線方程式依據上述公式計算得出交點I的X座標。如此一來,除了可不需額外在平台110上進行額外標記或配置附加工具,進而達到快速的校正之外,還可進一步簡化機械手臂50的移動路徑以使校正過程更迅速。Therefore, the linear equation of the sensing beam L1 emitted by the optical sensing device 120_1 can be calculated by the first coordinate and the third coordinate according to the above formula, and the optical sensing can be calculated by the second coordinate and the fourth coordinate according to the above formula The straight line equation of the sensing beam L2 emitted by the device 120_2, and then calculate the X coordinate of the intersection point I according to the above formula through the two straight line equations. In this way, in addition to the need for additional marking or additional tools on the platform 110 to achieve rapid calibration, the movement path of the robot arm 50 can be further simplified to make the calibration process faster.

圖5為本發明一實施例的機械手臂校正方法流程圖。本實施例的機械手臂50校正方法至少可應用於圖1至圖4的機械手臂校正系統中,但本發明並不限於此。以下說明將以圖3的機械手臂校正系統100為例,請參考圖3及圖5。在本實施例的機械手臂校正方法中,首先,執行步驟S500,提供機械手臂校正系統100,包括平台110、配置於平台110的兩組光學感應裝置120以及電性連接於機械手臂50的控制器130。接著,執行步驟S510,啟動兩組光學感應裝置120_1、120_2以產生兩感測光束L1、L2並於平台110的校正點C(見如圖2)處形成交點I。FIG. 5 is a flowchart of a calibration method for a robot arm according to an embodiment of the invention. The calibration method of the robot arm 50 of this embodiment can be applied to at least the robot arm calibration system of FIGS. 1 to 4, but the invention is not limited thereto. The following description will take the robotic arm calibration system 100 of FIG. 3 as an example, please refer to FIGS. 3 and 5. In the robotic arm calibration method of this embodiment, first, step S500 is performed to provide a robotic arm calibration system 100, including a platform 110, two sets of optical sensing devices 120 disposed on the platform 110, and a controller electrically connected to the robotic arm 50 130. Next, step S510 is executed to activate two sets of optical sensing devices 120_1 and 120_2 to generate two sensing beams L1 and L2 and form an intersection point I at the calibration point C (see FIG. 2) of the platform 110.

在上述步驟之後,執行步驟S520,控制機械手臂50經過每一感測光束L1、L2上的至少兩個不同位置。接著,執行步驟S530,記錄對應平台110的一組感測座標(包括多個感測座標)。接著,在第一次執行步驟S530之後,執行步驟S540,控制機械手臂50旋轉一角度,並且隨後重覆執行步驟S510至步驟S530以記錄另一組對應的感測座標。最後,執行步驟S550,根據多個感測座標(即前述獲得的兩組感應座標)計算出機械手臂50的校正座標。After the above steps, step S520 is executed to control the robot arm 50 to pass through at least two different positions on each sensing beam L1, L2. Next, step S530 is executed to record a set of sensing coordinates (including multiple sensing coordinates) corresponding to the platform 110. Next, after step S530 is executed for the first time, step S540 is executed to control the robot arm 50 to rotate by an angle, and then steps S510 to S530 are repeatedly executed to record another set of corresponding sensing coordinates. Finally, step S550 is executed to calculate the calibration coordinates of the robot arm 50 according to a plurality of sensing coordinates (ie, the two sets of sensing coordinates obtained above).

在圖3的實施例中,上述步驟S520還包括:控制機械手臂50分別自四個不同的起點朝對應的感測光束L1、L2移動,當機械手臂50觸碰到對應的感測光束L1、L2時,控制機械手臂50停止運動。或者是,在圖4的實施例中,上述步驟S520還包括:控制機械手臂50自起點呈口字型運動,以先後觸碰兩感測光束L1、L2的不同位置。In the embodiment of FIG. 3, the above step S520 further includes: controlling the robot arm 50 to move from the four different starting points toward the corresponding sensing beams L1, L2 respectively, when the robot arm 50 touches the corresponding sensing beams L1 At L2, the control mechanical arm 50 stops moving. Alternatively, in the embodiment of FIG. 4, the above step S520 further includes: controlling the robot arm 50 to move in a mouth shape from the starting point, so as to successively touch different positions of the two sensing beams L1 and L2.

綜上所述,在本發明較佳實施例的機械手臂校正系統及機械手臂校正方法中,機械手臂經由控制器的控制移動而碰觸兩組光學感應裝置所產生的兩感測光束各別的至少兩個不同位置,且根據所碰觸的位置記錄為一組感測座標,隨後在控制機械手臂旋轉一角度後,重複上述過程以記錄另一組感測座標,最終根據這兩組感測座標以計算得出機械手臂的校正座標。因此,可不需額外標記或配置附加工具以達到快速的校正。In summary, in the robot arm calibration system and robot arm calibration method according to the preferred embodiment of the present invention, the robot arm moves through the control of the controller and touches the two sensing beams generated by the two sets of optical sensing devices. At least two different positions, and recorded as a set of sensing coordinates according to the touched position, then after controlling the robot arm to rotate an angle, repeat the above process to record another set of sensing coordinates, and finally based on these two sets of sensing Coordinates to calculate the calibration coordinates of the robot arm. Therefore, no additional marking or additional tools are needed to achieve fast calibration.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

50‧‧‧機械手臂 100‧‧‧機械手臂校正系統 110‧‧‧平台 120、120_1、120_2‧‧‧光學感應裝置 130‧‧‧控制器 A1、A2、A3、A4、B1、B2、B3、B4、P1、P2、P3、P4、P5、P6、P7、P8‧‧‧位置 C‧‧‧校正點 L、L1、L2‧‧‧感測光束 I‧‧‧交點 U‧‧‧中心軸 S500、S510、S520、S530、S540‧‧‧步驟50‧‧‧Robot 100‧‧‧ Robotic Arm Calibration System 110‧‧‧platform 120, 120_1, 120_2‧‧‧ optical sensing device 130‧‧‧Controller A1, A2, A3, A4, B1, B2, B3, B4, P1, P2, P3, P4, P5, P6, P7, P8 C‧‧‧ Calibration point L, L1, L2‧‧‧sensing beam I‧‧‧Intersection U‧‧‧Central axis S500, S510, S520, S530, S540

圖1為本發明一實施例的機械手臂校正系統及機械手臂的側視示意圖。 圖2為圖1的機械手臂校正系統俯視示意圖。 圖3為機械手臂在一實施例中的俯視移動路徑圖。 圖4為機械手臂在另一實施例中的俯視移動路徑圖。 圖5為本發明一實施例的機械手臂校正方法流程圖。FIG. 1 is a schematic side view of a robot arm calibration system and a robot arm according to an embodiment of the invention. FIG. 2 is a schematic top view of the robotic arm correction system of FIG. 1. FIG. 3 is a plan view of the movement path of the robot arm in one embodiment. FIG. 4 is a plan view of a moving path of a robot arm in another embodiment. FIG. 5 is a flowchart of a calibration method for a robot arm according to an embodiment of the invention.

100‧‧‧機械手臂校正系統 100‧‧‧ Robotic Arm Calibration System

110‧‧‧平台 110‧‧‧platform

120_1、120_2‧‧‧光學感應裝置 120_1, 120_2‧‧‧ Optical sensing device

A、A2、A3、A4、P1、P2、P3、P4‧‧‧位置 A, A2, A3, A4, P1, P2, P3, P4

L1、L2‧‧‧感測光束 L1, L2‧‧‧sensing beam

I‧‧‧交點 I‧‧‧Intersection

Claims (10)

一種機械手臂校正系統,適於校正機械手臂,所述機械手臂校正系統包括: 平台; 兩組光學感應裝置,配置於所述平台,且所述兩組光學感應裝置發出的兩感測光束連線交點在所述平台的正投影重疊於所述平台的校正點;以及 控制器,電性連接於所述機械手臂,適於移動所述機械手臂以經過所述兩感測光束,其中所述控制器控制所述機械手臂經過每一所述感測光束的至少兩個不同位置以記錄對應所述平台的一組感測座標,所述控制器控制所述機械手臂旋轉一角度後重複執行上述過程以記錄對應的另一組感測座標,隨後所述控制器根據所述兩組感測座標計算得出所述機械手臂的校正座標。A mechanical arm correction system is suitable for correcting a mechanical arm. The mechanical arm correction system includes: platform; Two sets of optical sensing devices are arranged on the platform, and the intersection point of the two sensing beam lines emitted by the two sets of optical sensing devices on the platform orthographic projection overlaps the correction point of the platform; and A controller, electrically connected to the robot arm, adapted to move the robot arm to pass the two sensing beams, wherein the controller controls the robot arm to pass through at least two of each sensing beam To record a set of sensing coordinates corresponding to the platform at different positions, the controller controls the robot arm to rotate an angle and repeat the above process to record another corresponding set of sensing coordinates, and then the controller The two sets of sensing coordinates are calculated to obtain the corrected coordinates of the mechanical arm. 如申請專利範圍第1項所述的機械手臂校正系統,其中所述兩組光學感應裝置的所述兩感測光束連線相互垂直。The robotic arm calibration system as described in item 1 of the patent application range, wherein the two sensing beams of the two sets of optical sensing devices are perpendicular to each other. 如申請專利範圍第1項所述的機械手臂校正系統,其特徵在於,所述兩組光學感應裝置分別為光纖感測器。The robotic arm calibration system as described in item 1 of the patent application range, wherein the two sets of optical sensing devices are fiber optic sensors, respectively. 如申請專利範圍第1項所述的機械手臂校正系統,其中所述控制器控制所述機械手臂分別自四個不同的起點朝對應的所述感測光束移動,當所述機械手臂觸碰到對應的所述感測光束時,所述控制器控制所述機械手臂停止運動,並記錄對應的所述感測座標。The robotic arm correction system as described in item 1 of the patent application scope, wherein the controller controls the robotic arm to move from the four different starting points toward the corresponding sensing beam respectively, when the robotic arm touches When corresponding to the sensing beam, the controller controls the mechanical arm to stop moving, and records the corresponding sensing coordinates. 如申請專利範圍第1項所述的機械手臂校正系統,其中所述控制器控制所述機械手臂自起點呈口字型運動,以先後觸碰所述兩感測光束的不同位置。The robotic arm correction system as described in item 1 of the patent application scope, wherein the controller controls the robotic arm to move in a mouth shape from a starting point to successively touch different positions of the two sensing beams. 一種機械手臂校正方法,包括: (a)提供機械手臂校正系統,包括平台、配置於所述平台的兩組光學感應裝置以及電性連接於機械手臂的控制器; (b)啟動所述兩組光學感應裝置以產生兩感測光束並於所述平台的校正點處形成交點; (c)控制所述機械手臂經過每一所述感測光束的至少兩個不同位置; (d)記錄對應所述平台的一組感測座標; (e)控制所述機械手臂旋轉一角度; (f)重複上述步驟(b)~(c); (g)記錄對應的另一組感測座標;以及 (h)根據所述兩組感測座標計算出所述機械手臂的校正座標。A calibration method for a mechanical arm, including: (a) Provide a robotic arm calibration system, including a platform, two sets of optical sensing devices arranged on the platform, and a controller electrically connected to the robotic arm; (b) Activate the two sets of optical sensing devices to generate two sensing beams and form an intersection at the calibration point of the platform; (c) controlling the robot arm to pass through at least two different positions of each of the sensing beams; (d) Record a set of sensing coordinates corresponding to the platform; (e) control the mechanical arm to rotate by an angle; (f) Repeat the above steps (b)~(c); (g) record another set of corresponding sensing coordinates; and (h) Calculate the calibration coordinates of the robot arm based on the two sets of sensing coordinates. 如申請專利範圍第6項所述的機械手臂校正方法,其中所述兩組光學感應裝置的所述兩感測光束連線相互垂直。The method for calibrating a robotic arm as described in item 6 of the patent application, wherein the two sensing beams of the two sets of optical sensing devices are perpendicular to each other. 如申請專利範圍第6項所述的機械手臂校正方法,其中所述兩組光學感應裝置分別為光纖感測器。The method for calibrating a robotic arm as described in item 6 of the patent scope, wherein the two sets of optical sensing devices are optical fiber sensors. 如申請專利範圍第6項所述的機械手臂校正方法,其中所述控制所述機械手臂經過每一所述感測光束上的至少兩個不同位置的步驟包括: 控制所述機械手臂分別自四個不同的起點朝對應的所述感測光束移動,當所述機械手臂觸碰到對應的所述感測光束時,控制所述機械手臂停止運動。The method for correcting a robot arm as described in item 6 of the patent application range, wherein the step of controlling the robot arm to pass through at least two different positions on each of the sensing beams includes: The robotic arm is controlled to move from four different starting points toward the corresponding sensing beam, and when the robotic arm touches the corresponding sensing beam, the robotic arm is controlled to stop moving. 如申請專利範圍第6項所述的機械手臂校正方法,其中所述控制所述機械手臂經過每一所述感測光束上的至少兩個不同位置的步驟包括: 控制所述機械手臂自起點呈口字型運動,以先後觸碰所述兩感測光束的不同位置。The method for correcting a robot arm as described in item 6 of the patent application range, wherein the step of controlling the robot arm to pass through at least two different positions on each of the sensing beams includes: The robotic arm is controlled to move in a mouth shape from the starting point to successively touch different positions of the two sensing beams.
TW108112994A 2018-07-06 2019-04-15 Robotic arm calibration system and robotic arm calibration method TW202005765A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810737097.2A CN110682285A (en) 2018-07-06 2018-07-06 Mechanical arm correction system and correction method
CN201810737097.2 2018-07-06

Publications (1)

Publication Number Publication Date
TW202005765A true TW202005765A (en) 2020-02-01

Family

ID=69107194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108112994A TW202005765A (en) 2018-07-06 2019-04-15 Robotic arm calibration system and robotic arm calibration method

Country Status (2)

Country Link
CN (1) CN110682285A (en)
TW (1) TW202005765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806111B (en) * 2021-07-27 2023-06-21 達明機器人股份有限公司 Method of tool calibration for robot arm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442133A (en) * 2021-06-09 2021-09-28 配天机器人技术有限公司 Method and system for calibrating tool center point of robot, and storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396545B2 (en) * 1994-09-28 2003-04-14 株式会社リコー Robot origin calibration device and dual-arm robot device
JP3733364B2 (en) * 2003-11-18 2006-01-11 ファナック株式会社 Teaching position correction method
DE102004010312B8 (en) * 2004-03-03 2009-07-30 Advintec Gmbh Method for calibrating an operating point
CN102825602B (en) * 2012-08-21 2015-03-25 华北电力大学(保定) PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device
US10547796B2 (en) * 2015-07-14 2020-01-28 Industrial Technology Research Institute Calibration equipment and calibration method of a mechanical system
CN105945948B (en) * 2016-05-25 2018-03-23 南京工程学院 A kind of online quick calibrating methods of TCP applied to industrial robot and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806111B (en) * 2021-07-27 2023-06-21 達明機器人股份有限公司 Method of tool calibration for robot arm

Also Published As

Publication number Publication date
CN110682285A (en) 2020-01-14

Similar Documents

Publication Publication Date Title
KR102469258B1 (en) Robot adaptive placement system with end-effector position estimation
JP5670416B2 (en) Robot system display device
JPH07186073A (en) Industrial robot calibration method and industrial robot device
JP6384195B2 (en) Robot system and robot teaching method
TW201915625A (en) System and method for calibrating tool center point of robot
JP2014508050A (en) Device, system and method for robotic cell calibration
TWI572468B (en) Automatic adjustment method of offset automatic adjustment device and robot
US20110265311A1 (en) Workpiece holding method
CN105773609A (en) Robot kinematics calibration method based on vision measurement and distance error model
JP2016052695A (en) Robot device and control method of robot device
TWI632389B (en) Precise positioning method, positioning system and manipulator device
TW201622925A (en) Robot system and end-effector deformation detection method
JPH11502776A (en) Apparatus and method for calibration of multi-axis industrial robot
TW202005765A (en) Robotic arm calibration system and robotic arm calibration method
JP2010284728A (en) Conveyance robot and automatic teaching method
TW202128378A (en) Calibrating method and calibrating system
TWI748312B (en) Method of correcting position of robot and robot
JP6485620B2 (en) Robot control system and robot control method
US11745349B2 (en) Origin calibration method of manipulator
WO2018119642A1 (en) Method and device for calibrating tool coordinate system origin of industrial robot
JP7097722B2 (en) How to restore the location information of the robot
JP3840973B2 (en) Robot teaching data correction method
JP2013039635A (en) Robot control system and robot control method
TWI721730B (en) Method of correcting position of robot and robot
WO2023013740A1 (en) Robot control device, robot control system, and robot control method