TW202005457A - 包括隨機存取的無線通訊 - Google Patents

包括隨機存取的無線通訊 Download PDF

Info

Publication number
TW202005457A
TW202005457A TW108116550A TW108116550A TW202005457A TW 202005457 A TW202005457 A TW 202005457A TW 108116550 A TW108116550 A TW 108116550A TW 108116550 A TW108116550 A TW 108116550A TW 202005457 A TW202005457 A TW 202005457A
Authority
TW
Taiwan
Prior art keywords
rach
random access
cell
ssb
csi
Prior art date
Application number
TW108116550A
Other languages
English (en)
Other versions
TWI755599B (zh
Inventor
穆罕默德納茲穆爾 伊斯萊
林海 何
畢賴爾 薩迪克
濤 駱
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202005457A publication Critical patent/TW202005457A/zh
Application granted granted Critical
Publication of TWI755599B publication Critical patent/TWI755599B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0838Random access procedures, e.g. with 4-step access using contention-free random access [CFRA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了用於無線通訊的方法、電腦可讀取媒體和裝置,其使得UE能夠基於針對第一細胞或第一頻帶的SSB/CSI-RS產生PRACH訊息,以及經由另一細胞或另一頻帶傳輸PRACH訊息。各態樣使得基地站能夠選擇用於在第一細胞/第一頻帶上向UE傳輸下行鏈路通訊的SSB索引。UE經由第一細胞從基地站接收SSB/CSI-RS,以及經由第二細胞向基地站傳輸針對該SSB/CSI-RS的隨機存取訊息。在另一態樣中,UE經由第一頻率範圍從基地站接收SSB/CSI-RS,以及經由第二頻率範圍基於該SSB/CSI-RS向基地站傳輸隨機存取訊息。

Description

包括隨機存取的無線通訊
本專利申請案主張於2018年5月23日提出申請的、標題為「WIRELESS COMMUNICATION INCLUDING RANDOM ACCESS」的美國臨時申請案序列第62/675,629號,以及於2019年2月7日提出申請的、標題為「WIRELESS COMMUNICATION INCLUDING RANDOM ACCESS」的美國專利申請案第16/270,476號的利益,其全部內容以引用方式明確地併入本文。
大體而言,本案內容係關於通訊系統,以及更具體而言,本案內容係關於在無線通訊中的隨機存取。
無線通訊系統被廣泛地部署以提供諸如電話、視訊、資料、訊息傳遞和廣播的各種電信服務。典型的無線通訊系統可以採用能夠經由共享可用的系統資源來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統和分時同步分碼多工存取(TD-SCDMA)系統。
該等多工存取技術在各種電信標準中已經被接受,以提供使得不同無線設備能夠在城市級、國家級、地域級、甚至全球級進行通訊的共用協定。示例性電信標準是5G新無線電(NR)。5G NR是由第三代合作夥伴計畫(3GPP)發佈的連續行動寬頻進化的一部分,以滿足與延時、可靠性、安全性、可擴展性(例如,與物聯網路(IoT))等等相關聯的新的要求以及其他要求。5G NR的一些態樣可以是基於4G長期進化(LTE)標準的。在5G NR技術中存在對進一步改良的需求。該等改良亦可以適用於其他多工存取技術以及採用該等技術的電信標準。
在下文中提供了一或多個態樣的簡要概括,以便提供對此種態樣的基本的理解。該概括不是對全部預期的態樣的廣泛概述,以及既不意欲辨識全部態樣的關鍵或重要元素,亦不意欲描述任何或全部態樣的範疇。其唯一目的是以簡單的形式提供一或多個態樣的一些概念,作為在後文中提供的更詳細的描述的前序。
網路可以將時間和頻率資源的集合配置為在時間和頻率上的RACH時機以及隨機存取通道(RACH)前序信號索引。在同步信號區塊(SSB)或通道狀態資訊參考信號(CSI-RS)與RACH時機和前序信號索引之間的映射使得UE能夠從該集合中選擇適當的RACH時機和前序信號索引,以便向網路傳送特定的SSB索引/CSI-RS。基地站可以基於所指示的SSB索引/CSI-RS利用下行鏈路通訊來回應對來自UE的RACH前序信號(例如,Msg 1(訊息1))的接收。例如,基地站可以基於所指示的SSB索引來傳輸RACH回應訊息(例如,Msg 2(訊息2))。在某些情況下,UE可能能夠在第一細胞或第一頻帶上接收下行鏈路通訊,但是被限制經由第一細胞/第一頻帶傳輸上行鏈路通訊。例如,在補充的下行鏈路操作中,UE可能能夠接收下行鏈路信號但不能傳輸上行鏈路信號。再如,由於對上行鏈路傳輸功率的約束性限制及/或較差的鏈路品質,UE可能不能使用特定的頻帶(例如,頻率範圍2(FR2))傳輸上行鏈路信號。基地站可能仍需要決定用以經由第一細胞/第一頻帶向UE傳輸下行鏈路通訊的SSB索引。各態樣使得基地站能夠選擇用於經由第一細胞向UE傳輸下行鏈路通訊的SSB索引。
在本文中提供如下的各態樣:使得UE能夠基於針對第一細胞或第一頻帶的SSB/CSI-RS來產生實體隨機存取通道(PRACH)訊息,以及經由另一細胞或另一頻帶來傳輸PRACH訊息。各態樣使得基地站能夠基於經由第二細胞/第二頻帶接收的RACH前序信號來選擇用於在第一細胞/第一頻帶上向UE傳輸下行鏈路通訊的SSB索引。
在本案內容的一態樣中,提供了用於在使用者設備(UE)處進行的無線通訊的方法、電腦可讀取媒體和裝置。裝置經由第一細胞從基地站接收同步信號區塊(SSB)或通道狀態資訊參考信號(CSI-RS)中的至少一者,以及經由第二細胞基於該SSB/CSI-RS向基地站傳輸隨機存取訊息。
在本案內容的另一態樣中,提供了用於在UE處進行的無線通訊的方法、電腦可讀取媒體和裝置。裝置經由第一頻率範圍從基地站接收SSB或CSI-RS中的至少一者,以及經由第二頻率範圍基於該SSB/CSI-RS向基地站傳輸隨機存取訊息。
在本案內容的另一態樣中,提供了用於在基地站處進行的無線通訊的方法、電腦可讀取媒體和裝置。裝置經由第一細胞傳輸SSB或CSI-RS中的至少一者,以及經由第二細胞從UE接收針對該SSB/CSI-RS的隨機存取訊息。
在本案內容的另一態樣中,提供了用於在基地站處進行的無線通訊的方法、電腦可讀取媒體和裝置。裝置在第一頻率範圍上傳輸SSB或CSI-RS中的至少一者,以及在第二頻率範圍上從UE接收針對該SSB/CSI-RS的隨機存取訊息。
為了實現前述目的和有關目的,一或多個態樣包括在下文中充分描述的和在請求項中特別指出的特徵。在下文中的描述和附圖詳細地闡述了一或多個態樣的某些說明性特徵。但是,該等特徵對於在其中可以採用各個態樣的原理的各種方法中的一些方法而言僅是指示性的,以及該描述意欲包括全部此種態樣及其均等物。
在下文中結合附圖闡述的具體實施方式意欲作為對各種配置的描述,以及不意欲表示在其中可以實踐在本文中描述的概念的唯一配置。出於提供對各種概念的全面理解的目的,具體實施方式包括特定的細節。然而,對於熟習此項技術者而言將顯而易見的是,可以在沒有該等特定細節的情況下實踐該等概念。在一些情況下,為了避免模糊此種概念,眾所周知的結構和元件是以方塊圖的形式圖示的。
現在將參考各種裝置和方法來提供電信系統的若干態樣。該等裝置和方法將是在下文中的具體實施方式中描述的,以及是在附圖中經由各種方塊、元件、電路、過程、演算法等等(共同稱為「元素」)來圖示的。可以使用電子硬體、電腦軟體或者其任意組合來實現該等元素。此種元素是實現為硬體還是實現為軟體,取決於特定的應用和施加在整體系統上的設計約束。
舉例而言,元素或者元素的任何部分或者元素的任意組合可以實現為包括一或多個處理器的「處理系統」。處理器的實例包括微處理器、微控制器、圖形處理單元(GPU)、中央處理單元(CPU)、應用處理器、數位信號處理器(DSP)、精簡指令集計算(RISC)處理器、晶片上系統(SoC)、基頻處理器、現場可程式設計閘陣列(FPGA)、可程式設計邏輯設備(PLD)、狀態機、閘控邏輯、個別硬體電路以及被配置為執行遍及本案內容描述的各種功能的其他合適的硬體。在處理系統中的一或多個處理器可以執行軟體。無論被稱為軟體、韌體、中間軟體、微代碼、硬體描述語言還是其他術語,軟體應當被廣泛地解釋為意指指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體元件、應用程式、軟體應用程式、套裝軟體、常式、子常式、物件、可執行檔案、執行的執行緒、程序、函數等等。
相應地,在一或多個示例性實施例中,描述的功能可以是以硬體、軟體或者其任意組合來實現的。若是以軟體來實現的,則該等功能可以儲存在電腦可讀取媒體上的一或多個指令或代碼上或者編碼為一或多個指令或代碼。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是由電腦能夠存取的任何可用的媒體。經由實例的方式而不是限制的方式,此種電腦可讀取媒體可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電子可抹除可程式設計ROM(EEPROM)、光碟儲存、磁碟儲存、其他磁儲存設備、前述類型的電腦可讀取媒體的組合,或者可以用以儲存可以由電腦存取的以指令或資料結構的形式的電腦可執行代碼的任何其他媒體。
圖1是圖示無線通訊系統和存取網路100的實例的示意圖。無線通訊系統(其亦稱為無線廣域網路(WWAN))可以包括基地站102、UE 104、進化封包核心(EPC)160及/或諸如5G核心(5GC)的另一核心網路190。基地站102可以包括巨集細胞(高功率蜂巢基地站)及/或小型細胞(低功率蜂巢基地站)。巨集細胞包括基地站。小型細胞包括毫微微細胞、微微細胞和微細胞。
被配置用於4G LTE(共同地稱為進化型通用行動電信系統(UMTS)陸地無線電存取網路(E-UTRAN))的基地站102可以經由回載鏈路132(例如,S1介面)來與EPC 160進行連接。被配置用於5G NR(共同地稱為下一代RAN(NG-RAN))的基地站102可以經由回載鏈路184來與核心網路190進行連接。除了其他功能之外,基地站102可以執行在下文中的功能中的一或多個功能:對使用者資料的傳送、無線電通道加密和解密、完整性保護、標頭壓縮、行動控制功能(例如,交遞、雙連接)、細胞間干擾協調、連接建立和釋放、負載均衡、針對非存取層(NAS)訊息的分發、NAS節點選擇、同步、無線電存取網路(RAN)共享、多媒體廣播多播服務(MBMS)、用戶和設備追蹤、RAN資訊管理(RIM)、傳呼、定位,以及對警告訊息的傳遞。基地站102可以在回載鏈路134(例如,X2介面)上彼此直接地或者間接地通訊(例如,經由EPC 160或核心網路190)。回載鏈路134可以是有線的或無線的。
基地站102可以與UE 104進行無線地通訊。基地站102中的各基地站可以為各自的地理覆蓋區域110提供通訊覆蓋。可能存在重疊的地理覆蓋區域110。例如,小型細胞102’可以具有與一或多個巨集基地站102的覆蓋區域110重疊的覆蓋區域110’。包括小型細胞和巨集細胞兩者的網路可以稱為異質網路。異質網路亦可以包括家庭進化型節點B(eNB)(HeNB),其可以向稱為封閉用戶群組(CSG)的受限制的群組提供服務。在基地站102與UE 104之間的通訊鏈路120可以包括從UE 104到基地站102的上行鏈路(UL)(亦稱為反向鏈路)傳輸及/或從基地站102到UE 104的下行鏈路(DL)(亦稱為前向鏈路)傳輸。通訊鏈路120可以使用多輸入多輸出(MIMO)天線技術,包括空間多工、波束成形及/或傳輸分集。通訊鏈路可以是經由一或多個載波的。基地站102/UE 104可以使用在用於在各方向上的傳輸的總共多達Yx MHz(x 個分量載波)的載波聚合中分配的、每載波多達Y MHz(例如,5、10、15、20、100、400 MHz等)頻寬的頻譜。載波可以是彼此鄰近的或彼此不鄰近的。對載波的分配可以是相對於DL和UL非對稱的(例如,可以針對DL分配比UL要多或者要少的載波)。分量載波可以包括主分量載波和一或多個次分量載波。主分量載波可以稱為主細胞(PCell),以及次分量載波可以稱為次細胞(SCell)。
某些UE 104可以使用設備到設備(D2D)通訊鏈路158來互相通訊。D2D通訊鏈路158可以使用DL/UL WWAN頻譜。D2D通訊鏈路158可以使用一或多個副鏈路通道,諸如實體副鏈路廣播通道(PSBCH)、實體副鏈路探索通道(PSDCH)、實體副鏈路共享通道(PSSCH)和實體副鏈路控制通道(PSCCH)。可以經由各種各樣的無線D2D通訊系統(諸如例如,快閃連結(FlashLinQ)、無線多媒體(WiMedia)、藍芽、紫蜂(ZigBee)、基於IEEE 802.11標準的Wi-Fi、LTE或者NR)來進行D2D通訊。
無線通訊系統可以進一步包括在5 GHz未授權頻譜中經由通訊鏈路154與Wi-Fi站(STA)152相通訊的Wi-Fi存取點(AP)150。當在未授權頻譜中進行通訊時,STA 152/AP 150可以在進行通訊之前執行閒置通道評估(CCA),以便決定該通道是否可用。
小型細胞102’可以在經授權的頻譜及/或未授權的頻譜中操作。當在未授權的頻譜中操作時,小型細胞102’可以採用NR,以及使用如與由Wi-Fi AP 150使用的頻譜相同的5 GHz未授權的頻譜。在未授權的頻譜下採用NR的小型細胞102’可以提升對存取網路的覆蓋及/或增加存取網路的容量。
基地站102(無論是小型細胞102’還是大型細胞(例如,巨集基地站))可以包括eNB、gNodeB(gNB)或者其他類型的基地站。諸如gNB 180的一些基地站可以在傳統的低於6 GHz頻譜中、在毫米波(mmW)頻率中及/或接近mmW頻率中操作以與UE 104相通訊。當gNB 180在mmW或接近mmW頻率中操作時,gNB 180可以稱為mmW基地站。在電磁頻譜中極高頻(EHF)是RF的一部分。EHF具有30 GHz至300 GHz的範圍,以及波長在1毫米與10毫米之間。在該頻帶中的無線電波可以稱為毫米波。接近mmW可以向下擴展至具有波長為100毫米的3 GHz的頻率。超高頻(SHF)頻帶在3 GHz與30 GHz之間擴展,亦稱為釐米波。使用mmW/接近mmW射頻頻帶的通訊具有極高的路徑損耗和較短的範圍。mmW基地站180可以與UE 104利用波束成形182來對極高的路徑損耗和較短的範圍進行補償。
基地站180可以在一或多個傳輸方向182’上向UE 104傳輸經波束成形的信號。UE 104可以在一或多個接收方向182’’上從基地站180接收經波束成形的信號。UE 104亦可以在一或多個傳輸方向上向基地站180傳輸經波束成形的信號。基地站180可以在一或多個接收方向上從UE 104接收經波束成形的信號。基地站180/UE 104可以執行波束訓練以決定針對基地站180/UE 104中的各基地站/UE的最佳接收方向和傳輸方向。針對基地站180的傳輸方向和接收方向可以是相同的,或可以不是相同的。針對UE 104的傳輸方向和接收方向可以是相同的,亦可以不是相同的。
EPC 160可以包括行動性管理實體(MME)162、其他MME 164、服務閘道166、多媒體廣播多播服務(MBMS)閘道168、廣播多播服務中心(BM-SC)170和封包資料網路(PDN)閘道172。MME 162可以與歸屬用戶伺服器(HSS)174相通訊。MME 162是在UE 104與EPC 160之間處理信號傳遞的控制節點。通常,MME 162提供承載和連接管理。全部使用者網際網路協定(IP)封包是經由服務閘道166來傳送的,該服務閘道166本身連接到PDN閘道172。PDN閘道172提供UE IP位址分配以及其他功能。PDN閘道172和BM-SC 170連接到IP服務176。IP服務176可以包括網際網路、網內網路、IP多媒體子系統(IMS)、PS串流服務及/或其他IP服務。BM-SC 170可以提供用於MBMS使用者服務供應和傳遞的功能。BM-SC 170可以用作針對內容供應商MBMS傳輸的進入點,可以用以授權和啟動在公用陸地行動網路(PLMN)內的MBMS承載服務,以及可以用以排程MBMS傳輸。MBMS閘道168可以用以向屬於廣播特定服務的多播廣播單頻網路(MBSFN)區域的基地站102分發MBMS訊務,以及可以負責通信期管理(開始/停止)以及負責收集與eMBMS相關的計費資訊。
核心網路190可以包括存取和行動管理功能(AMF)192、其他AMF 193、通信期管理功能(SMF)194和使用者平面功能(UPF)195。AMF 192可以與統一資料管理(UDM)196相通訊。AMF 192是在UE 104與核心網路190之間處理信號傳遞的控制節點。通常,AMF 192提供QoS流程和通信期管理。全部使用者網際網路協定(IP)封包是經由UPF 195進行傳送的。UPF 195提供UE IP位址分配以及其他功能。UPF 195連接到IP服務197。IP服務197可以包括網際網路、網內網路、IP多媒體子系統(IMS)、PS串流服務及/或其他IP服務。
基地站亦可以稱為gNB、節點B、進化型節點B(eNB)、存取點、基地站收發機、無線電基地站、無線電收發機、收發機功能、基本服務集(BSS)、擴展服務集(ESS)、傳輸接收點(TRP),或者某種其他合適的術語。基地站102為UE 104提供到EPC 160或核心網路190的存取點。UE 104的實例包括蜂巢式電話、智慧型電話、通信期啟動協定(SIP)電話、筆記型電腦、個人數位助理(PDA)、衛星無線電單元、全球定位系統、多媒體設備、視訊設備、數位音訊播放機(例如,MP3播放機)、照相機、遊戲控制台、平板設備、智慧設備、可穿戴設備、交通工具、電錶、氣泵、大型或小型廚房電器、醫療保健設備、植入物、感測器/致動器、顯示器或者任何其他類似功能的設備。UE 104中的一些UE可以稱為IoT設備(例如,停車計時表、氣泵、烤麵包機、交通工具、心臟監護器等等)。UE 104亦可以稱為站、行動站、用戶站、行動單元、用戶單元、無線單元、遠端單元、行動設備、無線設備、無線通訊設備、遠端設備、行動用戶站、存取終端、行動終端、無線終端、遠端終端機、手持裝置、使用者代理、行動服務客戶端、客戶端或者某種其他合適的術語。
再次參考圖1,在某些態樣中,UE 104可以包括RACH元件198,其被配置為在第一細胞/第一頻帶上接收SSB/CSI-RS,以及在第二細胞/第二頻帶上傳輸針對SSB/CSI-RS的RACH Msg 1。類似地,基地站180可以包括RACH元件199,其被配置為在第一細胞/第一頻帶上傳輸SSB/CSI-RS,以及在第二細胞/第二頻帶上接收針對SSB/CSI-RS的RACH Msg 1。
圖2A是圖示在5G/NR訊框結構內的第一子訊框的實例的示意圖200。圖2B是圖示在示例性5G/NR子訊框內的DL通道的實例的示意圖230。圖2C是圖示在5G/NR訊框結構內的第二子訊框的實例的示意圖250。圖2D是圖示在5G/NR子訊框內的UL通道的實例的示意圖280。5G/NR訊框結構可以是FDD,在FDD中對於特定的次載波集合(載波系統頻寬)而言,在次載波集合內的子訊框是專用於DL或UL二者之一的,或者5G/NR訊框結構可以是TDD,在TDD中對於特定的次載波集合(載波系統頻寬)而言,在次載波集合內的子訊框是專用於DL和UL二者的。在經由圖2A、圖2C提供的實例中,假設5G/NR訊框結構是TDD,其中子訊框4被配置具有時槽格式28(主要是DL),其中D是DL、U是UL,以及X是靈活用於DL/UL之間的,以及子訊框3被配置具有時槽格式34(主要是UL)。儘管子訊框3、子訊框4分別被圖示為具有時槽格式34、28,但是任何特定子訊框可以被配置具有各種可用的時槽格式0-61中的任何時槽格式。時槽格式0、時槽格式1分別是全DL、UL。其他時槽格式2-61包括DL、UL和靈活符號的混合。UE經由接收的時槽格式指示符(SFI)被配置具有時槽格式(經由DL控制資訊(DCI)動態地配置,或者經由無線電資源控制(RRC)信號傳遞半靜態地/靜態地配置)。要注意的是,下文的描述亦應用於是TDD的5G/NR訊框結構。
其他無線通訊技術可以具有不同的訊框結構及/或不同的通道。訊框(10毫秒)可以被劃分成10個相等大小的子訊框(1毫秒)。各子訊框可以包括一或多個時槽。子訊框亦可以包括微時槽,微時槽可以包括7、4或2個符號。取決於時槽配置,各時槽可以包括7或14個符號。對於時槽配置0,各時槽可以包括14個符號,以及對於時槽配置1,各時槽可以包括7個符號。在DL上的符號可以是循環字首(CP)OFDM(CP-OFDM)符號。在UL上的符號可以是(用於高輸送量場景的)CP-OFDM符號或(用於功率受限的場景的;限於單串流傳輸的)離散傅裡葉變換(DFT)擴展OFDM(DFT-s-OFDM)符號(亦稱為單載波分頻多工存取(SC-FDMA)符號)。在子訊框內的時槽的數量是基於時槽配置和參數集(numerology)的。對於時槽配置0,不同的參數集µ 0至5分別考慮每子訊框1、2、4、8、16和32個時槽。對於時槽配置1,不同的參數集0至2分別考慮每子訊框2、4和8個時槽。相應地,對於時槽配置0和參數集µ,存在14個符號/時槽和2µ 個時槽/子訊框。次載波間隔和符號長度/持續時間是根據參數集的。次載波間隔可以等於
Figure 02_image001
,其中µ是參數集0至5。照此,參數集µ=0具有15 kHz的次載波間隔,以及參數集µ=5具有480 kHz的次載波間隔。符號長度/持續時間與次載波間隔成反比。圖2A-圖2D提供了具有每時槽14個符號的時槽配置0的實例以及具有每子訊框1個時槽的參數集µ=0的實例。次載波間隔是15 kHz,以及符號持續時間近似地是66.7微秒。
資源網格可以用以表示訊框結構。各時槽包括擴展12個連續次載波的資源區塊(RB)(亦稱為實體RB(PRB))。資源網格被劃分成多個資源元素(RE)。由各RE攜帶的位元的數量取決於調制方案。
如在圖2A中圖示的,RE中的一些RE攜帶針對UE的參考(引導頻)信號(RS)。RS可以包括解調RS(DM-RS)(對於一種特定配置而言被指示為Rx ,其中100x是埠號,但其他DM-RS配置是可能的),以及針對在UE處的通道估計的通道狀態資訊參考信號(CSI-RS)。RS亦可以包括波束量測RS(BRS)、波束最佳化RS(BRRS)和相位追蹤RS(PT-RS)。
圖2B圖示在訊框的子訊框內的各種DL通道的實例。實體下行鏈路控制通道(PDCCH)在一或多個控制通道元素(CCE)內攜帶DCI,各CCE包括九個RE群組(REG),各REG在OFDM符號中包括四個連續RE。主要同步信號(PSS)可以是在訊框的特定子訊框的符號2內的。PSS是由UE 104使用的,以決定子訊框/符號時序和實體層辨識。次要同步信號(SSS)可以是在訊框的特定子訊框的符號4內的。SSS是由UE使用的,以決定實體層細胞辨識群組號和無線電訊框時序。基於實體層辨識和實體層細胞辨識群組號,UE可以決定實體細胞辨識符(PCI)。基於PCI,UE可以決定前述的DM-RS的位置。攜帶主資訊區塊(MIB)的實體廣播通道(PBCH)可以與PSS和SSS邏輯地分類,以形成同步信號(SS)/PBCH區塊。MIB在系統頻寬中提供RB的數量和系統訊框號(SFN)。實體下行鏈路共享通道(PDSCH)攜帶使用者資料,不經由PBCH傳輸的廣播系統資訊(諸如系統資訊區塊(SIB)),以及傳呼訊息。
如在圖2C中圖示的,RE中的一些RE攜帶用於在基地站處的通道估計的DM-RS(對於一種特定配置而言被指示為R,但其他DM-RS配置是可能的)。UE可以傳輸用於實體上行鏈路控制通道(PUCCH)的DM-RS和用於實體上行鏈路共享通道(PUSCH)的DM-RS。PUSCH DM-RS可以是在PUSCH的前一個或兩個符號中傳輸的。PUCCH DM-RS可以是以不同的配置傳輸的,取決於是傳輸短PUCCH還是長PUCCH以及取決於使用的特定PUCCH格式。儘管未圖示,但UE可以傳輸探測參考信號(SRS)。該SRS可以由基地站用於通道品質估計,以在UL上實現依賴頻率的排程。
圖2D圖示在訊框的子訊框內的各種UL通道的實例。PUCCH可以位於如在一種配置中指示的位置。PUCCH攜帶諸如排程請求、通道品質指示符(CQI)、預編碼矩陣指示符(PMI)、秩指示符(RI)和HARQ ACK/NACK回饋的上行鏈路控制資訊(UCI)。PUSCH攜帶資料,以及可以額外地用以攜帶緩衝器狀態報告(BSR)、功率餘量報告(PHR)及/或UCI。
圖3是在存取網路中基地站310與UE 350相通訊的方塊圖。在DL中,來自EPC 160的IP封包被提供給控制器/處理器375。控制器/處理器375實現層3功能和層2功能。層3包括無線電資源控制(RRC)層,以及層2包括封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層和媒體存取控制(MAC)層。控制器/處理器375提供:與對系統資訊(例如,MIB、SIB)的廣播、RRC連接控制(例如,RRC連接傳呼、RRC連接建立、RRC連接修改和RRC連接釋放)、無線電存取技術(RAT)間行動性,以及用於UE量測報告的量測配置相關聯的RRC層功能;與標頭壓縮/解壓縮、安全性(加密、解密、完整性保護、完整性驗證)以及交遞支援功能相關聯的PDCP層功能;與對上層封包資料單元(PDU)的傳送、經由ARQ的糾錯、對RLC服務資料單元(SDU)的連結、分段和重組、對RLC資料PDU的重新分段,以及對RLC資料PDU的重新排序相關聯的RLC層功能;及與在邏輯通道與傳輸通道之間的映射、對MAC SDU到傳輸塊(TB)上的多工、對來自TB的MAC SDU的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處理,以及邏輯通道優先化相關聯的MAC層功能。
傳輸(TX)處理器316和接收(RX)處理器370實現與各種信號處理功能相關聯的層1功能。包括實體(PHY)層的層1可以包括在傳輸通道上的錯誤偵測、對傳輸通道的前向糾錯(FEC)編碼/解碼、交錯、速率匹配、到實體通道上的映射、對實體通道的調制/解調,以及MIMO天線處理。TX處理器316基於各種調制方案(例如,二進位移相鍵控(BPSK)、正交移相鍵控(QPSK)、M移相鍵控(M-PSK)、M正交振幅調制(M-QAM))來處理對信號群集的映射。隨後經編碼和經調制的符號可以被分離成並行的串流中。各串流隨後可以被映射到OFDM次載波,在時域及/或頻域中與參考信號(例如,引導頻)進行多工處理,以及隨後使用快速傅裡葉逆變換(IFFT)組合在一起,以產生攜帶時域OFDM符號串流的實體通道。OFDM串流被空間地預編碼以產生多個空間串流。來自通道估計器374的通道估計可以用以決定編碼和調制方案,以及可以用於空間處理。通道估計可以是從由UE 350傳輸的參考信號及/或通道條件回饋推導出的。各空間串流隨後可以經由單獨的傳輸器318TX被提供給不同的天線320。各傳輸器318TX可以利用各自的空間串流對RF載波進行調制,以進行傳輸。
在UE 350處,各接收器354RX經由其各自的天線352來接收信號。各接收器354RX對調制到RF載波上的資訊進行恢復,以及將該資訊提供給接收(RX)處理器356。TX處理器368和RX處理器356實現與各種信號處理功能相關聯的層1功能。RX處理器356可以對該資訊執行空間處理,以恢復去往UE 350的任何空間串流。若多個空間串流是去往UE 350的,則該多個空間串流可以由RX處理器356組合成單一OFDM符號串流。RX處理器356隨後使用快速傅裡葉變換(FFT)將OFDM符號串流從時域轉換到頻域。頻域信號包括針對OFDM信號的各次載波的單獨的OFDM符號串流。經由決定由基地站310傳輸的最可能的信號群集點來恢復和解調在各次載波上的符號以及參考信號。該等軟決策可以是基於由通道估計器358計算的通道估計的。該等軟決策隨後可以被解碼和解交錯,以恢復由基地站310最初在實體通道上傳輸的資料和控制信號。資料和控制信號隨後被提供給實現層3功能和層2功能的控制器/處理器359。
控制器/處理器359可以是與儲存程式碼和資料的記憶體360相關聯的。記憶體360可以稱為電腦可讀取媒體。在UL中,控制器/處理器359提供在傳輸通道與邏輯通道之間的解多工、封包重組、解密、標頭解壓縮和控制信號處理,以恢復來自EPC 160的IP封包。控制器/處理器359亦負責使用ACK及/或NACK協定進行錯誤偵測,以支援HARQ操作。
類似於結合由基地站310進行的DL傳輸描述的功能,控制器/處理器359提供:與系統資訊(例如,MIB、SIB)獲取、RRC連接,以及量測報告相關聯的RRC層功能;與標頭壓縮/解壓縮以及安全性(加密、解密、完整性保護、完整性驗證)相關聯的PDCP層功能;與上層PDU的傳送、經由ARQ的糾錯、對RLC SDU的連結、分段和重組、對RLC資料PDU的重新分段,以及對RLC資料PDU的重新排序相關聯的RLC層功能;與在邏輯通道與傳輸通道之間的映射、對MAC SDU到TB上的多工、來自TB的MAC SDU的解多工、排程資訊報告、經由HARQ的糾錯、優先順序處理,以及邏輯通道優先化相關聯的MAC層功能。
由通道估計器358從由基地站310傳輸的參考信號或回饋推導出的通道估計可以由TX處理器368使用,以選擇適當的編碼和調制方案以及促進空間處理。由TX處理器368產生的空間串流可以經由單獨的傳輸器354TX被提供給不同的天線352。各傳輸器354TX可以利用各自的空間串流來對RF載波進行調制,以進行傳輸。
UL傳輸是以類似於結合在UE 350處的接收器功能描述的方式在基地站310處進行處理的。各接收器318RX經由其各自的天線320來接收信號。各接收器318RX對調制到RF載波上的資訊進行恢復,以及將該資訊提供給RX處理器370。
控制器/處理器375可以是與儲存程式碼和資料的記憶體376相關聯的。記憶體376可以稱為電腦可讀取媒體。在UL中,控制器/處理器375提供在傳輸通道與邏輯通道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理,以恢復來自UE 350的IP封包。來自控制器/處理器375的IP封包可以被提供給EPC 160。控制器/處理器375亦負責使用ACK及/或NACK協定進行錯誤偵測,以支援HARQ操作。
圖4是圖示基地站402與UE 404相通訊的示意圖400。參考圖4,基地站402可以在方向402a、402b、402c、402d、402e、402f、402g、402h中的一或多個方向上向UE 404傳輸經波束成形的信號。UE 404可以在一或多個接收方向404a、404b、404c、404d上從基地站402接收經波束成形的信號。UE 404亦可以在方向404a-404d中的一或多個方向上向基地站402傳輸經波束成形的信號。基地站402可以在接收方向402a-402h中的一或多個方向上從UE 404接收經波束成形的信號。基地站402/UE 404可以執行波束訓練以決定針對基地站402/UE 404中的各基地站/UE的最佳接收方向和傳輸方向。針對基地站402的傳輸方向和接收方向可以是相同的或可以不是相同的。針對UE 404的傳輸方向和接收方向可以是相同的或可以不是相同的。
網路可以將時間和頻率資源的集合配置為在時間和頻率上的RACH時機以及RACH前序信號索引。在SSB或通道狀態資訊參考信號(CSI-RS)與RACH時機和前序信號索引之間的映射使UE能夠從時間和頻率資源的集合中選擇適當的RACH時機和前序信號索引,以便向網路傳送特定的SSB索引/CSI-RS。基地站可以基於所指示的SSB索引/CSI-RS來回應對具有下行鏈路通訊的RACH前序信號(例如,Msg 1)的接收。例如,基地站可以基於所指示的SSB索引來傳輸RACH回應訊息(例如,Msg 2)。
在某些情況下,UE可能能夠在第一細胞或第一頻帶上接收下行鏈路通訊,但是可能被限制經由第一細胞/第一頻帶傳輸上行鏈路通訊。例如,在補充的下行鏈路操作中,UE可能能夠接收下行鏈路信號但不能傳輸上行鏈路信號。例如,在補充的下行鏈路操作中,某些頻帶可以在沒有任何上行鏈路傳輸的情況下用於下行鏈路傳輸。對上行鏈路通訊的限制亦可能出現在mmW通訊中。如結合圖4描述的,在mmW系統中的通訊可以是定向的。與全向信號(亦即,其是在全部方向上傳輸的)相比,對定向波束的使用可能導致對上行鏈路信號的傳輸的限制。此種限制可以對來自某些頻帶的上行鏈路信號進行限制。例如,由於對上行鏈路傳輸功率要滿足最大可允許暴露(MPE)限制的約束性限制及/或由於較差的鏈路品質,UE可能不能使用頻率範圍2(FR2)來傳輸上行鏈路信號。
儘管UE被限制經由細胞/頻帶傳輸上行鏈路信號,但是基地站可能仍然需要決定用以經由第一細胞/頻帶向UE傳輸下行鏈路通訊的SSB索引。在本文中提供的各態樣提供了解決方案,在其中UE可以經由另一細胞/頻帶發送RACH前序信號訊息,該RACH前序信號訊息使得基地站能夠選擇用於經由具有上行鏈路限制的細胞/頻帶向UE傳輸下行鏈路通訊的SSB索引。
如在本文中提供的,UE可以在第一細胞或第一頻帶上接收諸如同步信號區塊(SSB)、CSI-RS等等的信號。UE可以在第二細胞或第二頻帶上發送關於在第一細胞或第一頻帶上所接收的信號的訊息。經由在第二細胞或第二頻帶上傳輸報告,關於在第一細胞/第一頻帶上的SSB或CSI-RS的報告可以有助於補充的下行鏈路操作、mmW通訊等。
在上行鏈路傳輸上具有限制的第一細胞可以是次細胞,以及在其上傳輸RACH訊息的第二細胞可以是主次細胞。在另一個實例中,第一頻帶可以包括在GHz頻帶上的頻率範圍2(FR2)頻帶,以及第二頻帶可以包括頻率範圍1(FR1)頻帶(低於6 GHz頻帶)。因為上行鏈路傳輸功率可能非常有限(例如,要滿足最大可允許暴露(MPE)限制)及/或上行鏈路品質可能較差,UE可能不能經由FR2傳輸上行鏈路通訊。因此,UE可以經由FR2接收SSB/CSI-RS,以及可以經由在FR1上傳輸RACH資訊來傳送關於經由FR2接收的SSB/CSI-RS的RACH資訊。
因此,在本文中提供的各態樣描述了在其中UE可以經由在另一細胞/頻帶上傳輸RACH資訊來向網路傳送細胞或頻帶的SSB索引的方式。
對於無爭用隨機存取(CFRA),網路配置與SSB或CSI-RS的子集對應的專用時頻RACH時機的集合和前序信號索引。網路亦可以配置用於選擇SSB/CSI-RS以執行CFRA的閾值。網路向UE提供專用的RACH時機(時間和頻率資源)的集合與每SSB及/或每CSI-RS的前序信號索引的組合。因此,網路提供SSB的集合,各SSB具有對應的RACH時間/頻率位置和RACH前序信號索引。對於基於爭用的隨機存取,網路配置用於選擇SSB的參考信號接收功率(RSRP)閾值。UE量測全部偵測到的SSB/CSI-RS的RSRP。若存在針對CFRA(其具有滿足閾值的RSRP量測)配置的多個SSB/CSI-RS,則UE可以靈活地選擇針對CFRA前序信號傳輸的多個SSB中的一個SSB。若不存在針對CFRA配置的並且具有超過閾值的RSRP的SSB/CSI-RS,則UE可以選擇任何SSB/CSI-RS。
對於在交遞期間的無爭用隨機存取,UE量測不同SSB的RSRP以及向網路報告量測。
在選擇一個SSB或CSI-RS之後,UE針對所選擇的SSB/CSI-RS使用對應的專用RACH時機和前序信號索引,來向使用與所選擇的SSB/CSI-RS對應的時間和頻率資源與前序信號索引的網路傳輸RACH前序信號(例如,Msg 1)。由於所配置的資源是專用於特定的SSB/CSI-RS的,因此網路能夠辨識何者UE傳輸該RACH前序信號,以及可以憑藉所選擇的SSB索引經由向UE傳輸隨機存取回應(例如,Msg 2)來進行回應。
針對CFRA資源的RACH參數可以是基於例如專用配置的,諸如RACH配置資訊元素(IE)(例如,RACHConfigDedicated IE(RACH專用配置IE))。IE可以例如基於系統資訊(SI)請求來提供關於針對Msg 1配置的資源的資訊。RACH配置資訊可以指示在時間和頻率上的CFRA資源。RACH配置資訊可以基於針對CFRA配置的RACH資源並且基於每RACH時機的SSB來指示CFRA時機。CFRA資源可以是使用具有對應的RACH時機索引的SSB資源列表來指示的。RACH前序信號索引亦可以被指示用於SSB列表中的各SSB。RSRP閾值可以被指示用於對針對CFRA的SSB的選擇。網路可以配置RSRP閾值,以便由UE在選擇用於執行CFRA的SSB時使用。UE可以量測全部偵測到的SSB的RSRP,以及可以決定是否SSB中的任何SSB皆滿足所配置的RSRP閾值。若針對SSB的RSRP滿足RSRP閾值,則UE可以選擇該SSB以用於決定針對CFRA的前序信號傳輸。類似的資訊可以被提供用於針對CFRA配置的CSI-RS,例如,包括針對CFRA配置的CSI-RS的集合的RACH時機索引、RACH前序信號索引及/或RSRP閾值資訊。
如描述的,CFRA SSB資源可以提供針對各對應的SSB/CSI-RS的一個RACH前序信號索引和一個RACH時間/頻率索引。針對與不同SSB/CSI-RS對應的RACH的RACH前序信號索引和時間/頻率資源的此種配置可以是由基地站向UE指示的。為了基於所接收的SSB/CSI-RS來傳輸RACH,UE選擇對應的RACH前序信號索引以及在從基地站接收的配置中指示的一個RACH時間/頻率資源。此舉使得基地站能夠基於所接收的RACH的RACH前序信號索引和時間/頻率資源來辨識SSB/CSI-RS。
在來自基地站的配置中的參數可以包括在表1-5中指示的參數中的任何參數。在表1-5中的示例性名稱僅是實例,以及提供此種資訊的參數亦可以是經由其他名稱來引用的。 表1
Figure 108116550-A0304-0001
表2
Figure 108116550-A0304-0002
表3
Figure 108116550-A0304-0003
表4
Figure 108116550-A0304-0004
表5
Figure 108116550-A0304-0005
為了與基地站進行通訊,UE可以使用隨機存取程序。例如,UE可以使用隨機存取程序來請求RRC連接,以重新建立RRC連接,恢復RRC連接等等。四步驟RACH程序410包括對四個訊息的交換。具體而言,UE可以經由向基地站發送包括前序信號的第一RACH訊息(例如,Msg 1)來啟動訊息交換。基地站經由發送包括隨機存取回應(RAR)的第二RACH訊息(例如,Msg 2)來回應第一RACH訊息。Msg 2可以包括RACH前序信號的辨識符、時序提前(TA)、用於UE傳輸資料的上行鏈路容許、細胞無線電網路臨時辨識符(C-RNTI)及/或後移指示符。在接收RAR之後,UE向基地站傳輸第三RACH訊息(例如,Msg 3),取決於用於啟動隨機存取程序的觸發器,該第三RACH訊息可以包括RRC連接請求、RRC連接重建請求或者RRC連接恢復請求。隨後基地站經由發送第四RACH訊息(例如,Msg 4)來完成四步驟RACH程序。第四RACH訊息可以包括RACH回應訊息,該RACH回應訊息包括時序提前資訊、爭用解決資訊及/或RRC連接建立資訊。
亦可以使用兩步驟RACH程序,與四步驟RACH相比,兩步驟RACH程序具有減少的信號傳遞。可以經由向基地站發送第一RACH訊息(例如,Msg 1)來啟動對兩步驟RACH程序的訊息交換。第一RACH訊息可以包括前序信號,以及亦可以包括有效負荷。回應於接收Msg 1,基地站可以經由向UE發送第二RACH訊息(例如,Msg 2)來完成RACH訊息交換。第二RACH訊息可以包括類似於針對四步驟RACH程序的Msg 4的RACH回應訊息。UE 502可以是使用諸如無線電網路臨時辨識符(RNTI)(例如,隨機存取(RA)RNTI、臨時RNTI等等)的辨識符(ID)來辨識的,該辨識符可以是在第一RACH訊息中被使用來向基地站指示的。第二RACH訊息包括在PDCCH中的控制資訊和在PDSCH中的資料。
對於基於爭用的隨機存取(CBRA),網路可以配置在時頻資源中的RACH時機的集合和前序信號索引。網路可以允許從SSB到RACH時機和前序信號索引的循環映射,以使UE可以經由從對應的RACH時機的集合和前序信號索引中選擇適當的RACH時機和前序信號索引,來選擇SSB以及傳輸Msg 1。UE根據對時頻資源的使用來向網路傳送SSB索引,以發送與針對特定SSB的前序信號索引對應的前序信號。網路憑藉所傳送的SSB索引經由傳輸Msg 2來回應Msg 1。在四步驟RACH程序的四個訊息完成之後,網路可以辨識傳輸Msg 1的UE以及建立與該UE的操作的連接模式。
SSB可以被循環地映射到時間/頻率資源的群組中,而不是網路提供在針對SSB中的各SSB的時間/頻率資源之間的映射。因此,UE使用循環映射來從時間/頻率資源的群組之中進行選擇,以及向網路傳送訊息。
圖6圖示SSB到RACH時機的循環映射的實例600。在圖6中,三個SSB(例如,SSB索引#1 602、SSB索引#2 604、SSB索引#4 608)是由基地站傳輸的。SSB索引#3 606是不傳輸的。在mmW中,基地站可以傳輸多達64個SSB。在低於6 GHz中,基地站可以傳輸多達4個。在mmW中,基地站具有對於不傳輸SSB中的全部SSB的靈活性。因此,基地站可以傳輸SSB1、SSB2、SSB7、SSB8等。針對RACH的時間頻率資源的集合是被配置的,其中各資源可以被映射到2個SSB。在時間和頻率上的RACH資源(例如,RACH資源610、612、614)可以被循環地映射到SSB。例如,RACH資源610可以被映射到SSB索引#4 608和SSB索引#1 602。RACH資源614可以被映射到SSB索引#1 602和SSB索引#2 604。RACH資源616可以被映射到SSB索引#2 604和SSB索引#4 608等等。在某一點之後,映射可以是重複的。因此,對於SSB索引#4,UE可以在針對610的前序信號資源的前半部分中傳輸RACH,或者在針對616的前序信號資源的後半部分中傳輸RACH。
針對CBRA資源的RACH參數可以是基於配置的RACH參數的,諸如RACH配置共用IE(例如,RACH-ConfigCommon IE)。針對CBRA的RACH配置IE可以連同RACH前序信號索引的總數一起指示通用RACH配置(例如,RACH-ConfigGeneric)。配置可以提供以每SSB的方式將SSB映射到RACH時機和RACH前序信號的映射資訊。映射資訊可以指示在SSB與RACH時機/RACH前序信號之間的循環映射。配置IE可以包括額外的資訊,該額外的資訊包括針對SSB的RSRP閾值資訊。
RACH參數可以提供在RACH前序信號與SSB之間的映射(例如,ssb-perRACH-OccasionAndCB-PreamblesPerSSB(ssb-每RACH-時機和CB-每SSB前序信號)),該映射可以被包括在RACH配置IE的一部分中。
在來自基地站的配置中的參數可以包括在表6中指示的參數的任何參數。 表6
Figure 108116550-A0304-0006
在另一實例中,通用RACH(例如,RACH-ConfigGeneric IE)配置可以被用以指定針對一般隨機存取以及針對波束故障恢復兩者的細胞特定隨機存取參數。配置可以例如使用PRACH配置索引(諸如prach-ConfigurationIndex(prach-配置索引))來指示在時間中的RACH資源以及針對RACH的頻率資源。針對RACH的頻率資源可以指示FDM是否應用於Msg 1(例如,msg1-FDM(訊息1-FDM))及/或起始頻率是否應用於針對RACH的Msg 1(例如,msg1-FrequencyStart(訊息1-起始頻率))。此種通用RACH配置IE可以包括針對RACH和波束故障恢復的通用RACH配置,該通用RACH配置包括以下各項中的任何項:PRACH配置索引、Msg1 FDM資訊、Msg1起始頻率資訊、零相關區配置資訊(例如,zeroCorrelationZoneConfig)、用於接收前序信號的目標功率(例如,preambleReceivedTargetPower)、針對前序信號的傳輸最大值(例如,preambleTransMax)、功率漸增梯級(power ramping step)資訊及/或關於用於接收RACH回應的訊窗的資訊。表7包括可以在來自基地站的通用RACH配置IE(例如,RACH-ConfigGeneric IE)中向UE指示的示例性RACH參數。 表7
Figure 108116550-A0304-0007
經由另一細胞的對 CBRA/CFRA 的傳輸
在本文中提供的各態樣使得UE能夠經由經由第二細胞傳輸訊息,來傳送經由第一細胞接收的針對SSB/CSI-RS的RACH Msg 1(無論是針對CBRA還是針對CFRA)。類似地,在本文中提供的各態樣使得UE能夠經由憑藉第二頻帶傳輸訊息,來傳送經由第一頻帶接收的針對SSB/CSI-RS的RACH Msg1。
在一個示例性態樣中,在向UE傳送RACH Msg1配置參數時,網路亦可以指示對應的細胞ID,以使UE知道SSB/CSI-RS的集合和所配置的Msg1參數對應的細胞。
例如,在來自基地站的配置資訊中的CFRA資源可以包括對細胞ID的指示(例如,由UE針對PRACH來量測和選擇其SSB/CSI-RS的細胞的ID)。包含細胞ID使得UE能夠找到針對在其上接收SSB/CSI-RS的特定細胞的對應的RACH參數(例如,時間和頻率資源)。例如,CFRA-SSB資源參數可以包括對細胞ID的指示,以使得UE能夠找到對應的RACH前序信號索引,該細胞ID辨識由UE針對RACH在其之中選擇其SSB的細胞。CFRA-SSB-資源參數可以指示SSB和對應的前序信號索引。類似地,例如,CFRA-CSI-RS資源參數可以包括對細胞ID的指示,以使得UE能夠找到對應的RACH前序信號索引,該細胞ID辨識針對其由UE針對RACH來量測和選擇SSB/CSI-RS的細胞。CFRA-CSI-RS-Resource(CFRA-CSI-RS-資源)參數可以指示CSI-RS和對應的前序信號索引。因此,RACH配置可以經由指示細胞ID連同針對被選擇以找到對應的RACH參數的細胞的SSB資源及/或CSI-RS資源,來指示CFRA資源。
在第一實例中,全部RACH資源可以是在為UL傳輸作準備的特定細胞(例如,細胞0)中配置的。在上文中用於指示細胞ID的實例中,網路可以向UE指示細胞ID連同在RACH配置中的SSB索引/CSI-RS索引和RACH時機/前序信號索引。例如,網路可以配置將在細胞0中發生的RACH時機1和前序信號索引1,以與細胞ID 1的SSB1對應。網路亦可以配置與不同細胞ID的SSB 1對應的RACH時機1和前序信號索引2。取決於UE想要傳輸何者細胞的對應的Msg 1,UE可以選擇前序信號1或前序信號2。隨後,UE經由細胞0來發送具有所選擇的前序信號的Msg 1。此舉使得基地站能夠例如基於UE用以傳輸Msg 1的前序信號來決定RACH所對應的細胞。
類似的態樣可以應用於CBRA。對於CBRA,細胞ID可以是連同對應的通用RACH配置(例如,rach-ConfigGeneric)一起被指示的,其中通用RACH配置可以針對所指示的細胞來指示每RACH時機的SSB和每SSB的CBRA前序信號。
細胞ID可以被指示用於SSB/CSI-RS,而RACH配置索引和次載波區域的數量可以發生在不同的細胞中。因此,不同RACH參數可以是對應於不同的細胞來提供的。例如,在FR1中的Msg 1傳輸可以對應於細胞的2個群組(例如,位於FR1中的UE和位於FR2中的UE)。網路可以配置與不同細胞對應的不同RACH參數,以使基地站清楚地知道RACH對應於何者細胞,即使基地站在同一細胞上接收兩個RACH。
例如,網路可以在低於6頻帶中傳輸多達8個SSB,以及在高於6頻帶中傳輸多達64個SSB。因此,對於低於6的RACH,網路可以配置對應於多達8個SSB的RACH前序信號和RACH時機。例如,該8個SSB可以被循環地映射到在低於6中的不同RACH時機和前序信號索引。另一態樣,64個SSB可以被循環地映射到在低於6中的不同RACH時機和前序信號索引。
如在本文中提供的,網路可以在低於6中配置兩個不同的RACH時頻區域。第一個可以是從低於6的SSB中映射的。第二個可以是從高於6的SSB中映射的,亦即64個高於6 GHz的SSB將被映射到在該第二區域中的RACH時機和前序信號索引。
在一般的細胞中,全部RACH參數(例如,共用RACH配置參數、專用RACH配置參數及/或通用RACH配置參數)可以是取決於網路正在使用的細胞/頻率範圍的組合來變化的。例如,不同的配置可以是取決於網路是將在FR1上的SSB配置到在FR1上的RACH、還是將在FR2上的SSB配置到在FR1上的RACH、還是將在FR1上的SSB配置到在FR2上的RACH等等來使用的。網路具有配置不同參數和不同映射的靈活性,取決於針對具有在不同細胞/頻率範圍上的對應的RACH的SSB/CSI-RS的傳輸的細胞/頻率範圍的各種可能組合。
圖5圖示在UE 502與基地站504之間的通訊500的實例,在其中UE在與在其上該UE接收到提示RACH的SSB/CSI-RS的細胞/頻帶不同的細胞/頻帶上傳輸RACH。在501處,基地站基於針對SSB的第一細胞和針對與SSB對應的RACH的第二細胞的組合來決定RACH參數。類似地,基地站可以基於針對SSB的第一頻帶和針對與SSB對應的RACH的第二頻帶的組合來決定RACH參數。基地站可以針對SSB/RACH的各種組合來配置不同的RACH參數。隨後,基地站基於在501處決定的參數來配置(503)UE 502用於RACH。基地站可以指示針對RACH參數所應用於的SSB的細胞ID或頻率範圍。如前述,在RACH配置中的細胞ID可以使UE能夠辨識針對在特定細胞上接收的SSB的RACH參數,而RACH參數可以適用於經由不同細胞傳輸的RACH。
在505處,UE在第一細胞/第一頻帶上接收SSB或CSI-RS。在507處,UE選擇SSB/CSI-RS,該UE將針對該SSB/CSI-RS來傳輸RACH訊息(例如,RACH前序信號或Msg 1)。在509處,UE使用從基地站接收的RACH配置來決定針對在第1細胞/第1頻率範圍上接收的SSB/CSI-RS的RACH參數。RACH參數用於在不同細胞/不同頻率範圍上的對RACH的傳輸。針對第一細胞的SSB/CSI-RS配置的RACH參數可以包括在表1-7中描述的參數的任何組合。例如,第一細胞/第一頻率範圍可以對應於不考慮上行鏈路傳輸的補充的下行鏈路操作。在其他實例中,細胞/頻率範圍對於上行鏈路傳輸可能是不可靠的。但在其他實例中,可能存在使得對於RACH而言更期望第二細胞/第二頻帶的其他原因。在一實例中,在其上接收SSB/CSI-RS的第一細胞可以包括次細胞,以及RACH可以是基於SSB/CSI-RS在主次細胞上傳輸的。在另一實例中,SSB/CSI-RS可以是在FR2頻帶上接收的,以及RACH可以是基於SSB/CSI-RS在FR1頻帶上傳輸的。
UE 502傳輸針對經由第一細胞/頻帶接收的所選擇的SSB/CSI-RS的Msg 1 511,該Msg 1是經由第二細胞/頻帶傳輸的。Msg 1是根據從基地站接收的RACH配置來使用針對所選擇的SSB/CSI-RS的RACH參數進行傳輸的。RACH參數可以包括針對RACH的時間/頻率資源(例如,RACH時機)、RACH前序信號索引等。針對第一細胞/頻帶的所選擇的SSB/CSI-RS配置的RACH參數可以包括在表1-7中描述的參數的任何組合。
基地站504經由第二細胞/頻帶從UE接收RACH訊息。基地站基於用以傳輸Msg 1的RACH參數,來決定RACH訊息所屬的SSB/CSI-RS的細胞/頻帶(例如,第一細胞/第一頻帶)。因此,基地站可以經由以下方式來辨識與在其上接收RACH的細胞/頻帶不同的細胞/頻帶:決定何者RACH參數被用以傳輸Msg 1,以及將該等RACH參數與在503處提供給UE的RACH配置進行比較。
一旦基地站在513處決定由UE選擇的SSB/CSI-RS以及對應的細胞/頻帶,基地站就可以繼續在第一細胞/第一頻帶上向UE傳輸下行鏈路通訊。例如,基地站可以經由使用第一細胞及/或第一頻帶傳輸隨機存取回應(RAR)515,來在511處回應RACH訊息。RAR 515(例如,Msg 2)可以包括實體下行鏈路控制通道及/或實體下行鏈路共享通道。RAR可以是經由第一細胞或者使用第一頻帶來傳輸的。
圖7是無線通訊的方法的流程圖700。方法可以由UE(例如,UE 104、UE 350、UE 404、UE 502、裝置902、裝置902’)來執行。該方法使得UE能夠基於針對第一細胞的SSB/CSI-RS來產生實體隨機存取通道(PRACH)訊息,以及經由另一細胞來傳輸PRACH訊息。例如,當UE被配置為以使該UE能夠在第一細胞上接收下行鏈路通訊但不能經由第一細胞傳輸上行鏈路通訊時,經由另一細胞傳輸針對第一細胞的PRACH訊息的能力可能是重要的。基地站可能仍然需要決定用以經由第一細胞向UE傳輸下行鏈路通訊的SSB索引。各態樣使得基地站能夠選擇用於經由第一細胞向UE傳輸下行鏈路通訊的SSB索引。
在704處,例如,如在圖5中的505處圖示的,UE經由第一細胞從基地站接收SSB及/或CSI-RS。例如,第一細胞可以包括次細胞。在706處,例如,如在圖5中的511處圖示的,UE經由第二細胞向基地站傳輸隨機存取訊息。例如,第二細胞可以包括主次細胞。在另一實例中,第二細胞可以包括主細胞。隨機存取訊息可以包括使用第二細胞向基地站傳輸的針對第一細胞的RACH前序信號(例如,Msg 1)。
在702處,UE可以從基地站接收RACH配置,其中該RACH配置包括對細胞ID的指示。RACH配置的示例性態樣連同對細胞ID的指示是一起結合圖5的501和503進行描述的。在該配置中,各SSB或CSI-RS可以被映射到不同的RACH時頻時機及/或不同的前序信號索引中的一者或多者。可以提供不同的RACH參數以使基地站能夠根據經由不同的細胞接收的RACH訊息中來決定SSB/CSI-RS和對應的細胞。不同的RACH參數可以包括在表1-7中描述的RACH參數的任何組合。
因此,隨機存取訊息(例如,Msg 1)可以是根據在702處接收的RACH配置以及使用與在其上接收SSB或CSI-RS的第一細胞對應的RACH參數來傳輸的。RACH可以是基於爭用的隨機存取或者無爭用的隨機存取。
圖8是無線通訊的方法的流程圖800。方法可以由UE(例如,UE 104、UE 350、UE 404、UE 502、裝置902、裝置902’)來執行。除了使用不同的頻帶而不是使用不同的細胞之外,圖8的方法類似於圖7的方法。方法使得UE能夠基於在第一頻帶上接收的SSB/CSI-RS來產生實體隨機存取通道(PRACH)訊息,以及經由另一頻帶來傳輸PRACH訊息。例如,當UE被配置為使得該UE能夠在第一頻帶上接收下行鏈路通訊但不能在第一頻帶上傳輸上行鏈路通訊時,經由另一頻帶傳輸針對第一頻帶的PRACH訊息的能力可能是重要的。基地站可能仍然需要決定用以在第一頻帶上向UE傳輸下行鏈路通訊的SSB索引。各態樣使得基地站能夠選擇用於在第一頻帶上向UE傳輸下行鏈路通訊的SSB索引。
在804處,例如,如在圖5中的503圖示的,UE在第一頻帶上從基地站接收SSB及/或CSI-RS。例如,第一頻帶可以包括在6 GHz之上的FR2頻帶。第一頻帶可以具有對上行鏈路傳輸施加限制的要求。
在806處,例如,如在圖5中的511圖示的,UE在第二頻帶上向基地站傳輸隨機存取訊息。例如,第二頻帶可以包括在6 GHz之下的FR1頻帶。隨機存取訊息可以包括使用第二頻帶向基地站傳輸的針對第一頻帶的RACH前序信號(例如,Msg 1)。
在802處,UE可以從基地站接收RACH配置,其中該RACH配置包括對細胞ID的指示。RACH配置的示例性態樣連同對細胞ID的指示一起是結合圖5的501和503進行描述的。在該配置中,各SSB或CSI-RS可以被映射到不同的RACH時頻時機及/或不同的前序信號索引中的一者或多者。可以提供不同的RACH參數以使基地站能夠根據經由不同的頻帶接收的RACH訊息來決定SSB/CSI-RS和對應的頻帶。不同的RACH參數可以包括在表1-7中描述的RACH參數的任何組合。
因此,隨機存取訊息(例如,Msg 1)可以是根據在802處接收的RACH配置以及使用與在其上接收SSB或CSI-RS的第一頻帶對應的RACH參數來傳輸的。RACH可以是基於爭用的隨機存取或無爭用的隨機存取。
圖9是圖示在示例性裝置902中的不同構件/元件之間的資料流程的概念性資料流程示意圖900。裝置可以是與基地站950進行無線通訊的UE(例如,UE 104、UE 350、UE 404、UE 502)。裝置包括:接收元件904,其從基地站950接收下行鏈路通訊;及傳輸元件906,其向基地站950傳輸上行鏈路通訊。裝置包括:SSB元件908,其被配置為經由第一細胞/第一頻率範圍接收SSB;及CSI-RS元件910,其被配置為經由第一細胞/第一頻率範圍接收CSI-RS。裝置包括RACH元件912,其被配置為回應於SSB/CSI-RS向基地站傳輸隨機存取訊息,其中隨機存取訊息是經由第二細胞來傳輸的。裝置亦可以包括RACH配置元件914,其被配置為從基地站接收RACH配置,其中RACH配置包括對細胞辨識符ID的指示。
裝置可以包括在圖5、圖6和圖7的前述流程圖中執行演算法的方塊中的各方塊的額外的元件。照此,在圖5、圖6和圖7的前述流程圖中的各方塊可以由元件來執行,以及裝置可以包括該等元件中的一或多個元件。該等元件可以是專門被配置為執行所闡明的過程/演算法的一或多個硬體元件,由被配置為執行所闡明的過程/演算法的處理器來實現的,儲存在用於由處理器進行的實現方式的電腦可讀取媒體之內的,或者是其某種組合。
圖10是圖示用於採用處理系統1014的裝置902’的硬體實現方式的實例的示意圖1000。處理系統1014可以是利用通常經由匯流排1024表示的匯流排架構來實現的。取決於處理系統1014的特定應用和整體設計約束,匯流排1024可以包括任何數量的相互連接的匯流排和橋接器。匯流排1024將包括一或多個處理器及/或硬體元件(經由處理器1004、元件904、元件906、元件908、元件910、元件912、元件914表示)的各種電路與電腦可讀取媒體/記憶體1006連結在一起。匯流排1024亦可以連結諸如定時源、周邊設備、穩壓器和功率管理電路等等的各種其他電路,其在本領域中是眾所周知的,以及因此將不進行任何進一步的描述。
處理系統1014可以耦合到收發機1010。收發機1010被耦合到一或多個天線1020。收發機1010提供用於經由傳輸媒體與各種其他裝置進行通訊的構件。收發機1010從一或多個天線1020接收信號,從所接收的信號中提取資訊,以及將所提取的資訊提供給處理系統1014(具體而言是接收元件904)。另外,收發機1010從處理系統1014(具體而言是傳輸元件906)接收資訊,以及基於所接收的資訊來產生要應用於該一或多個天線1020的信號。處理系統1014包括耦合到電腦可讀取媒體/記憶體1006的處理器1004。處理器1004負責通用處理,包括執行在電腦可讀取媒體/記憶體1006上儲存的軟體。軟體當由處理器1004執行時,使得處理系統1014執行在上文中針對任何特定裝置描述的各種功能。電腦可讀取媒體/記憶體1006亦可以用於儲存由處理器1004在執行軟體時操作的資料。處理系統1014進一步包括元件904、906、908、910、912、914中的至少一者。該等元件可以是在處理器1004中執行、在電腦可讀取媒體/記憶體1006中常駐/儲存的軟體元件,耦合到處理器1004的一或多個硬體元件或者其某種組合。處理系統1014可以是UE 350的元件,以及可以包括記憶體360及/或TX處理器368、RX處理器356和控制器/處理器359中的至少一者。
在一個配置中,用於無線通訊的裝置902/902’包括:用於經由第一細胞從基地站接收同步信號區塊(SSB)或通道狀態資訊參考信號(CSI-RS)中的至少一者的構件;用於經由第二細胞向基地站傳輸隨機存取訊息的構件;用於從基地站接收隨機存取通道(RACH)配置的構件,其中該RACH配置包括對細胞辨識符(ID)的指示;用於在第一頻帶上從基地站接收同步信號區塊(SSB)或通道狀態資訊參考信號(CSI-RS)中的至少一者的構件;及用於在第二頻帶上向基地站傳輸隨機存取訊息的構件。前述的構件可以是裝置902的前述元件中的一或多個元件,及/或被配置為執行由該等前述構件記載的功能的裝置902’的處理系統1014。如前述,處理系統1014可以包括TX處理器368、RX處理器356和控制器/處理器359。照此,在一個配置中,前述的構件可以是被配置為執行經由前述構件記載的功能的TX處理器368、RX處理器356和控制器/處理器359。
圖11是無線通訊的方法的流程圖1100。方法可以由基地站(例如,基地站102、基地站180、基地站310、基地站402、基地站504、基地站950、裝置1302、裝置1302’)來執行。可選的態樣是利用虛線來指示的。方法的各態樣使得基地站能夠基於實體隨機存取通道(PRACH)訊息來選擇用於經由第一細胞向UE傳輸下行鏈路通訊的SSB索引,其中該PRACH訊息是基於針對第一細胞的但是經由另一個細胞接收的SSB/CSI-RS的。例如,當UE被配置為使得該UE可以在第一細胞上接收下行鏈路通訊但不能經由第一細胞傳輸上行鏈路通訊時,經由另一細胞接收針對第一細胞的PRACH訊息的能力可能是重要的。基地站可能仍然需要決定用以經由第一細胞向UE傳輸下行鏈路通訊的SSB索引。各態樣使得基地站能夠選擇用於經由第一細胞向UE傳輸下行鏈路通訊的SSB索引。
在1104處,基地站經由第一細胞傳輸SSB或CSI-RS中的至少一者。圖5圖示從基地站504向UE 502傳輸的示例性SSB/CSI-RS 503。UE可以使用SSB/CSI-RS來產生RACH前序信號。
在1106處,例如,如在圖5中的511圖示的,基地站經由第二細胞從UE接收隨機存取訊息。因此,隨機存取訊息可以包括針對經由第二細胞從UE接收的針對第一細胞的RACH前序信號(例如,Msg 1)。在一實例中,第一細胞可以包括次細胞。第二細胞可以包括主次細胞。在另一實例中,第二細胞可以包括主細胞。
如在1102處圖示的,在傳輸SSB/CSI-RS之前,基地站可以配置針對UE的RACH配置,其中該RACH配置包括對細胞ID的指示。該RACH可以是基於爭用的隨機存取或無爭用的隨機存取。
隨後,在1106處,隨機存取訊息可以是根據RACH配置使用與在其上接收SSB或CSI-RS的第一細胞對應的RACH參數來從UE接收的。RACH配置的示例性態樣連同對細胞ID的指示一起是結合圖5的501和503進行描述的。在該配置中,各SSB或CSI-RS可以被映射到不同的RACH時頻時機及/或不同的前序信號索引中的一者或多者。可以提供不同的RACH參數以使基地站能夠根據經由第二細胞接收的RACH訊息來決定SSB/CSI-RS和對應的第一細胞。不同的RACH參數可以包括在表1-7中描述的RACH參數的任何組合。
在1108處,基地站可以基於從UE接收的隨機存取訊息的RACH參數來決定與SSB或CSI-RS對應的細胞ID。如結合在圖5中的513描述的,基地站可以基於由UE用以傳輸隨機存取訊息的RACH參數和提供給UE的RACH配置來辨識針對RACH的細胞。
圖12是無線通訊的方法的流程圖1200。方法可以由基地站(例如,基地站102、基地站180、基地站310、基地站402、基地站504、基地站950、裝置1302、裝置1302’)來執行。可選的態樣是利用虛線來指示的。方法的各態樣使得基地站能夠基於實體隨機存取通道(PRACH)訊息來選擇用於經由第一頻帶向UE傳輸下行鏈路通訊的SSB索引,其中該PRACH訊息是基於針對第一頻帶的但是經由另一個頻帶接收的SSB/CSI-RS的。例如,當UE被配置為使得該UE可以在第一頻帶上接收下行鏈路通訊但不能經由第一頻帶傳輸上行鏈路通訊時,經由另一頻帶接收針對第一頻帶的PRACH訊息的能力可能是重要的。基地站可能仍然需要決定用以經由第一頻帶向UE傳輸下行鏈路通訊的SSB索引。各態樣使得基地站能夠選擇用於經由第一頻帶向UE傳輸下行鏈路通訊的SSB索引。
在1204處,基地站在第一頻帶上傳輸SSB或CSI-RS中的至少一者。圖5圖示從基地站504向UE 502傳輸的示例性SSB/CSI-RS 503。UE可以使用該SSB/CSI-RS來產生RACH前序信號。
在1206處,例如,如在圖5中的511圖示的,基地站在第二頻帶上從UE接收隨機存取訊息。因此,隨機存取訊息可以包括在第二頻帶上從UE接收的針對第一頻帶的RACH前序信號(例如,Msg 1)。在一實例中,第一頻率範圍可以包括在6 GHz之上的頻率範圍2(FR2)頻帶,以及第二頻帶可以包括在6 GHz之下的頻率範圍1(FR1)頻帶。
如在1202處圖示的,在傳輸SSB/CSI-RS之前,基地站可以配置針對UE的 RACH配置,其中該RACH配置包括對細胞ID的指示。該RACH可以是基於爭用的隨機存取或無爭用的隨機存取。
隨後,在1206處,隨機存取訊息可以是根據RACH配置使用與在其上接收SSB或CSI-RS的第一頻帶對應的RACH參數來從UE接收的。RACH配置的示例性態樣連同對細胞ID的指示一起是結合圖5的501和503進行描述的。在該配置中,各SSB或CSI-RS可以被映射到不同RACH時頻時機及/或不同前序信號索引中的一者或多者。可以提供不同的RACH參數以使基地站能夠根據在第二頻帶上接收的RACH訊息來決定SSB/CSI-RS和對應的第一頻帶。不同的RACH參數可以包括在表1-7中描述的RACH參數的任何組合。
在1208處,基地站可以基於從UE接收的隨機存取訊息的RACH參數來決定與SSB或CSI-RS對應的細胞ID。如結合在圖5中的513描述的,基地站可以基於由UE用以傳輸隨機存取訊息的RACH參數和提供給UE的RACH配置來辨識針對RACH的第一頻帶。
圖13是圖示在示例性裝置1302中的不同構件/元件之間的資料流程的概念性資料流程示意圖1300。裝置可以是基地站(例如,基地站102、基地站180、基地站310、基地站402、基地站504、基地站950)。裝置包括:接收元件1304,其從UE 1350接收上行鏈路通訊;及傳輸元件1306,其向UE 1350傳輸下行鏈路通訊。裝置可以包括:SSB元件1308,其被配置為經由第一細胞或者在第一頻帶上傳輸SSB;及CSI-RS元件1310,其被配置為經由第一細胞或者在第一頻帶上傳輸CSI-RS。如結合圖5、圖11和圖12描述的,裝置可以包括RACH元件1312,其被配置為經由第二細胞或者在第二頻帶上從UE接收隨機存取訊息。例如,如結合1102、1202描述的,裝置可以包括RACH配置元件1314,其被配置為配置針對UE的RACH配置,其中該RACH配置包括對細胞ID的指示。如結合1108、1208描述的,裝置可以包括決定元件,其被配置為基於從UE接收的隨機存取訊息的RACH參數來決定與SSB或CSI-RS對應的細胞ID。
裝置可以包括在圖5、圖11和圖12的前述流程圖中執行演算法的方塊中的各方塊的額外的元件。照此,圖5、圖11和圖12的前述流程圖中的各方塊可以由元件來執行,以及裝置可以包括該等元件中的一或多個元件。該等元件可以是專門被配置為執行所闡明的過程/演算法的一或多個硬體元件,由配置為執行所闡明的過程/演算法的處理器來實現的,儲存在用於由處理器進行的實現方式的電腦可讀取媒體之內的,或者是其某種組合。
圖14是圖示用於採用處理系統1414的裝置1302’的硬體實現方式的實例的示意圖1400。處理系統1414可以利用通常經由匯流排1424表示的匯流排架構來實現。取決於處理系統1414的特定應用和整體設計約束,匯流排1424可以包括任何數量的相互連接的匯流排和橋接器。匯流排1424將包括一或多個處理器及/或硬體部件(經由處理器1404、元件1304、元件1306、元件1308、元件1310、元件1312、元件1314、元件1316表示)的各種電路與電腦可讀取媒體/記憶體1406連結在一起。匯流排1424亦可以連結諸如定時源、周邊設備、穩壓器和功率管理電路等等的各種其他電路,其在本領域是眾所周知的,以及因此將不進行任何進一步的描述。
處理系統1414可以耦合到收發機1410。收發機1410被耦合到一或多個天線1420。收發機1410提供用於經由傳輸媒體與各種其他裝置進行通訊的構件。收發機1410從該一或多個天線1420接收信號,從所接收的信號中提取資訊,以及將所提取的資訊提供給處理系統1414(具體而言是接收元件1304)。另外,收發機1410亦從處理系統1414(具體而言是傳輸元件1306)接收資訊,以及基於所接收的資訊來產生要應用於該一或多個天線1420的信號。處理系統1414包括耦合到電腦可讀取媒體/記憶體1406的處理器1404。處理器1404負責通用處理,包括執行在電腦可讀取媒體/記憶體1406上儲存的軟體。軟體在由處理器1404執行時使得處理系統1414執行在上文中針對任何特定裝置描述的各種功能。電腦可讀取媒體/記憶體1406亦可以用於儲存由處理器1404在執行軟體時操作的資料。處理系統1414進一步包括元件1304、元件1306、元件1308、元件1310、元件1312、元件1314、元件1316中的至少一者。該等元件可以是在處理器1404中執行、在電腦可讀取媒體/記憶體1406中常駐/儲存的軟體元件,耦合到處理器1404的一或多個硬體元件或者其某種組合。處理系統1414可以是基地站310的元件,以及可以包括記憶體376及/或TX處理器316、RX處理器370和控制器/處理器375中的至少一者。
在一個配置中,用於無線通訊的裝置1302/1302’包括:用於在第一頻帶上傳輸同步信號區塊(SSB)或通道狀態資訊參考信號(CSI-RS)中的至少一者的構件;用於在第二頻帶上從使用者設備(UE)接收隨機存取訊息的構件;用於配置針對UE的隨機存取通道(RACH)配置的構件,其中該RACH配置包括對細胞辨識符(ID)的指示;用於基於從UE接收的隨機存取訊息的RACH參數來決定與SSB或CSI-RS對應的細胞ID的構件。前述的構件可以是裝置1302的前述元件中的一或多個元件,及/或被配置為執行經由前述構件記載的功能的裝置1302’的處理系統1414。如前述,處理系統1414可以包括TX處理器316、RX處理器370和控制器/處理器375。照此,在一個配置中,前述的構件可以是配置為執行經由前述構件記載的功能的TX處理器316、RX處理器370和控制器/處理器375。
要理解的是,在揭示的過程/流程圖中方塊的特定順序或者層次是示例性方法的說明。要理解的是,基於設計偏好,在過程/流程圖中方塊的特定順序或層次可以重新排列。進一步地,一些方塊可以被組合或省略。所附的方法請求項以取樣順序提供各種方塊的元素,以及不意指其受限於提供的特定順序或層次。
提供先前的描述以使任何熟習此項技術者能夠實現在本文中描述的各個態樣。對於熟習此項技術者而言,對該等態樣的各種修改皆將是顯而易見的,以及在本文中定義的通用原理可以適用於其他態樣。因此,請求項不意欲受限於在本文中展示的各態樣,而是符合與請求項所表達的內容相一致的全部範疇,其中除非明確地聲明如此,否則提及單數形式的元素不意欲意指「一個和僅僅一個」,而是「一或多個」。詞語「示例性的」在本文中用以意指「用作示例、實例或說明」。在本文中描述為「示例性」的任何態樣不必然地被解釋為比其他態樣更佳或有優勢。除非另外明確地聲明,否則術語「一些」指的是一或多個。諸如「A、B或C中的至少一個」、「A、B或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」以及「A、B、C或者其任何組合」的組合,包括A、B及/或C的任何組合,以及可以包括倍數的A、倍數的B或者倍數的C。特別地,諸如「A、B或C中的至少一個」、「A、B或C中的一或多個」、「A、B和C中的至少一個」、「A、B和C中的一或多個」以及「A、B、C或者其任何組合」的組合可以僅是A、僅是B、僅是C、A和B、A和C、B和C或者A和B和C,其中任何此種組合可以包含A、B或C中的一或多個成員或者一些成員。遍及本案內容描述的各個態樣的元素的、對於一般技術者而言是已知的或是稍後將知的全部結構和功能的均等物以引用方式明確地併入本文中,以及意欲由請求項來包含。此外,本文中沒有任何揭示內容是想要奉獻給公眾的,不管此種揭示內容是否明確記載在請求項中。詞語「模組」、「機制」、「元素」、「設備」等等可以不是詞語「構件」的替代詞。照此,除非元素是明確地使用短語「用於……的構件」記載的,否則沒有請求項元素要被解釋為功能構件。
100‧‧‧存取網路 102‧‧‧基地站 102'‧‧‧小型細胞 104‧‧‧UE 110‧‧‧地理覆蓋區域 110’‧‧‧覆蓋區域 120‧‧‧通訊鏈路 132‧‧‧回載鏈路 134‧‧‧回載鏈路 150‧‧‧Wi-Fi存取點(AP) 152‧‧‧Wi-Fi站(STA) 154‧‧‧通訊鏈路 158‧‧‧D2D通訊鏈路 160‧‧‧EPC 162‧‧‧行動性管理實體(MME) 164‧‧‧其他MME 166‧‧‧服務閘道 168‧‧‧多媒體廣播多播服務(MBMS)閘道 170‧‧‧廣播多播服務中心(BM-SC) 172‧‧‧封包資料網路(PDN)閘道 174‧‧‧歸屬用戶伺服器(HSS) 176‧‧‧IP服務 180‧‧‧基地站 182‧‧‧波束成形 182'‧‧‧傳輸方向 182"‧‧‧接收方向 184‧‧‧回載鏈路 190‧‧‧核心網路 192‧‧‧存取和行動管理功能(AMF) 193‧‧‧其他AMF 194‧‧‧通信期管理功能(SMF) 195‧‧‧使用者平面功能(UPF) 196‧‧‧統一資料管理(UDM) 197‧‧‧IP服務 198‧‧‧RACH元件 199‧‧‧RACH元件 200‧‧‧示意圖 230‧‧‧示意圖 250‧‧‧示意圖 280‧‧‧示意圖 310‧‧‧基地站 316‧‧‧傳輸(TX)處理器 318‧‧‧傳輸器/接收器 320‧‧‧天線 350‧‧‧UE 352‧‧‧天線 354‧‧‧接收器/傳輸器 356‧‧‧接收(RX)處理器 358‧‧‧通道估計器 359‧‧‧控制器/處理器 360‧‧‧記憶體 368‧‧‧TX處理器 370‧‧‧RX處理器 374‧‧‧通道估計器 375‧‧‧控制器/處理器 376‧‧‧記憶體 400‧‧‧示意圖 402‧‧‧基地站 402a‧‧‧方向 402b‧‧‧方向 402c‧‧‧方向 402d‧‧‧方向 402e‧‧‧方向 402f‧‧‧方向 402g‧‧‧方向 402h‧‧‧方向 404‧‧‧UE 404a‧‧‧接收方向 404b‧‧‧接收方向 404c‧‧‧接收方向 404d‧‧‧接收方向 500‧‧‧通訊 501‧‧‧步驟 502‧‧‧UE 503‧‧‧配置 504‧‧‧基地站 505‧‧‧步驟 507‧‧‧步驟 509‧‧‧步驟 511‧‧‧步驟 513‧‧‧步驟 515‧‧‧隨機存取回應(RAR) 600‧‧‧實例 602‧‧‧SSB索引#1 604‧‧‧SSB索引#2 606‧‧‧SSB索引#3 608‧‧‧SSB索引#4 610‧‧‧RACH資源 612‧‧‧RACH資源 614‧‧‧RACH資源 616‧‧‧RACH資源 700‧‧‧流程圖 702‧‧‧步驟 704‧‧‧步驟 706‧‧‧步驟 800‧‧‧流程圖 802‧‧‧步驟 804‧‧‧步驟 806‧‧‧步驟 900‧‧‧概念性資料流程示意圖 902‧‧‧裝置 902'‧‧‧裝置 904‧‧‧接收元件 906‧‧‧傳輸元件 908‧‧‧SSB元件 910‧‧‧CSI-RS元件 912‧‧‧RACH元件 914‧‧‧RACH配置元件 950‧‧‧基地站 1000‧‧‧示意圖 1004‧‧‧處理器 1006‧‧‧電腦可讀取媒體/記憶體 1010‧‧‧收發機 1014‧‧‧處理系統 1020‧‧‧天線 1024‧‧‧匯流排 1100‧‧‧流程圖 1102‧‧‧步驟 1104‧‧‧步驟 1106‧‧‧步驟 1108‧‧‧步驟 1200‧‧‧流程圖 1202‧‧‧步驟 1204‧‧‧步驟 1206‧‧‧步驟 1208‧‧‧步驟 1300‧‧‧概念性資料流程示意圖 1302‧‧‧裝置 1302'‧‧‧裝置 1304‧‧‧接收元件 1306‧‧‧傳輸元件 1308‧‧‧SSB元件 1310‧‧‧CSI-RS元件 1312‧‧‧RACH元件 1314‧‧‧RACH配置元件 1316‧‧‧元件 1350‧‧‧UE 1400‧‧‧示意圖 1404‧‧‧處理器 1406‧‧‧電腦可讀取媒體/記憶體 1410‧‧‧收發機 1414‧‧‧處理系統 1420‧‧‧天線 1424‧‧‧匯流排
圖1是圖示無線通訊系統和存取網路的實例的示意圖。
圖2A、圖2B、圖2C和圖2D是分別圖示第一5G/NR訊框、5G/NR子訊框內的DL通道、第二5G/NR訊框和5G/NR子訊框內的UL通道的實例的示意圖。
圖3是圖示在存取網路中的基地站和使用者設備(UE)的實例的示意圖。
圖4是圖示基地站與UE相通訊的示意圖。
圖5圖示在UE與基地站之間的通訊的實例。
圖6圖示SSB/CSI-RS索引與在時間和頻率上的RACH資源之間的示例性映射。
圖7是無線通訊的方法的流程圖。
圖8是無線通訊的方法的流程圖。
圖9是圖示在示例性裝置中的不同構件/元件之間的資料流程的概念性資料流程示意圖。
圖10是圖示針對採用處理系統的裝置的硬體實現方式的實例的示意圖。
圖11是無線通訊的方法的流程圖。
圖12是無線通訊的方法的流程圖。
圖13是圖示在示例性裝置中的不同構件/元件之間的資料流程的概念性資料流程示意圖。
圖14是圖示針對採用處理系統的裝置的硬體實現的實例的示意圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
500‧‧‧通訊
501‧‧‧步驟
502‧‧‧UE
503‧‧‧配置
504‧‧‧基地站
505‧‧‧步驟
507‧‧‧步驟
509‧‧‧步驟
511‧‧‧步驟
513‧‧‧步驟
515‧‧‧隨機存取回應(RAR)

Claims (46)

  1. 一種在一使用者設備(UE)處進行的無線通訊的方法,包括以下步驟: 經由一第一細胞從一基地站接收一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及經由一第二細胞向該基地站傳輸一隨機存取訊息,其中該隨機存取訊息是基於經由該第一細胞接收的該SSB或該CSI-RS的。
  2. 根據請求項1之方法,其中該第一細胞包括一次細胞。
  3. 根據請求項1之方法,其中該第二細胞包括一主次細胞。
  4. 根據請求項1之方法,其中該第二細胞包括一主細胞。
  5. 根據請求項1之方法,其中該隨機存取訊息包括使用該第二細胞向該基地站傳輸的針對該第一細胞的一隨機存取通道(RACH)前序信號。
  6. 根據請求項1之方法,亦包括以下步驟: 從該基地站接收一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  7. 根據請求項6之方法,其中該隨機存取訊息是根據該RACH配置使用與在其上接收該SSB或該CSI-RS的該第一細胞對應的RACH參數來傳輸的。
  8. 根據請求項1之方法,其中各SSB或CSI-RS被映射到以下各項中的一項或多項: 不同的RACH時頻時機;或不同的前序信號索引。
  9. 根據請求項1之方法,其中該隨機存取訊息包括基於爭用的隨機存取或無爭用的隨機存取。
  10. 一種用於無線通訊的裝置,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:經由一第一細胞從一基地站接收一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及經由一第二細胞向該基地站傳輸一隨機存取訊息,其中該隨機存取訊息是基於經由該第一細胞接收的該SSB或該CSI-RS的。
  11. 根據請求項10之裝置,其中該至少一個處理器亦被配置為: 從該基地站接收一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  12. 一種在一使用者設備(UE)處進行的無線通訊的方法,包括以下步驟: 在一第一頻帶上從一基地站接收一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及在一第二頻帶上向該基地站傳輸一隨機存取訊息,其中該隨機存取訊息是基於在該第一頻帶上接收的該SSB或該CSI-RS的。
  13. 根據請求項12之方法,其中該第一頻帶包括在6 GHz之上的一頻率範圍2(FR2)頻帶。
  14. 根據請求項13之方法,其中該第二頻帶包括在6 GHz之下的一頻率範圍1(FR1)頻帶。
  15. 根據請求項12之方法,其中該隨機存取訊息包括使用該第二頻帶向該基地站傳輸的針對該第一頻帶的一隨機存取通道(RACH)前序信號。
  16. 根據請求項12之方法,亦包括以下步驟: 從該基地站接收一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  17. 根據請求項16之方法,其中該隨機存取訊息是根據該RACH配置使用與在其上接收該SSB或該CSI-RS的該第一頻帶對應的RACH參數來傳輸的。
  18. 根據請求項12之方法,其中各SSB或CSI-RS被映射到以下各項中的一項或多項: 不同的RACH時頻時機;或不同的前序信號索引。
  19. 根據請求項12之方法,其中該隨機存取訊息包括基於爭用的隨機存取或無爭用的隨機存取。
  20. 一種用於無線通訊的裝置,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:在一第一頻帶上從一基地站接收一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及在一第二頻帶上向該基地站傳輸一隨機存取訊息,其中該隨機存取訊息是基於在該第一頻帶上接收的該SSB或該CSI-RS的。
  21. 根據請求項20之裝置,其中該至少一個處理器亦被配置為: 從該基地站接收一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  22. 一種在一基地站處進行的無線通訊的方法,包括以下步驟: 經由一第一細胞傳輸一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及經由一第二細胞從一使用者設備(UE)接收一隨機存取訊息,其中該隨機存取訊息是基於經由該第一細胞傳輸的該SSB或該CSI-RS的。
  23. 根據請求項22之方法,亦包括以下步驟: 配置針對該UE的一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  24. 根據請求項23之方法,其中該隨機存取訊息是根據該RACH配置使用與在其上接收該SSB或該CSI-RS的該第一細胞對應的RACH參數來從該UE接收的。
  25. 根據請求項24之方法,亦包括以下步驟: 基於從該UE接收的該隨機存取訊息的該等RACH參數,來決定與該SSB或該CSI-RS對應的該細胞ID。
  26. 根據請求項22之方法,其中該第一細胞包括一次細胞。
  27. 根據請求項22之方法,其中該第二細胞包括一主次細胞。
  28. 根據請求項22之方法,其中該第二細胞包括一主細胞。
  29. 根據請求項22之方法,其中該隨機存取訊息包括經由該第二細胞從該UE接收的針對該第一細胞的一隨機存取通道(RACH)前序信號。
  30. 根據請求項22之方法,其中各SSB或CSI-RS被映射到以下中的一或多個: 不同的RACH時頻時機;或不同的前序信號索引。
  31. 根據請求項22之方法,其中該隨機存取訊息包括基於爭用的隨機存取或無爭用的隨機存取。
  32. 一種用於無線通訊的裝置,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:經由一第一細胞傳輸一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及經由一第二細胞從一使用者設備(UE)接收一隨機存取訊息,其中該隨機存取訊息是基於經由該第一細胞傳輸的該SSB或該CSI-RS的。
  33. 根據請求項32之裝置,其中該至少一個處理器亦被配置為: 配置針對該UE的一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  34. 根據請求項33之裝置,其中該隨機存取訊息是根據該RACH配置使用與在其上接收該SSB或該CSI-RS的該第一細胞對應的RACH參數來從該UE接收的,並且其中該至少一個處理器亦被配置為: 基於從該UE接收的該隨機存取訊息的該等RACH參數來決定與該SSB或該CSI-RS對應的該細胞ID。
  35. 一種在一基地站處進行的無線通訊的方法,包括以下步驟: 在一第一頻帶上傳輸一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及在一第二頻帶上從一使用者設備(UE)接收一隨機存取訊息,其中該隨機存取訊息是基於在該第一頻帶上傳輸的該SSB或該CSI-RS的。
  36. 根據請求項35之方法,亦包括以下步驟: 配置針對該UE的一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  37. 根據請求項36之方法,其中該隨機存取訊息是根據該RACH配置使用與在其上接收該SSB或該CSI-RS的該第一頻帶對應的RACH參數來從該UE接收的。
  38. 根據請求項37之方法,亦包括以下步驟: 基於從該UE接收的該隨機存取訊息的該等RACH參數來決定與該SSB或該CSI-RS對應的該細胞ID。
  39. 根據請求項35之方法,其中該第一頻帶包括在6 GHz之上的一頻率範圍2(FR2)頻帶。
  40. 根據請求項39之方法,其中該第二頻帶包括在6 GHz之下的一頻率範圍1(FR1)頻帶。
  41. 根據請求項35之方法,其中該隨機存取訊息包括在該第二頻帶上從該UE接收的針對該第一頻帶的一隨機存取通道(RACH)前序信號。
  42. 根據請求項35之方法,其中各SSB或CSI-RS被映射到以下各項中的一項或多項: 不同的RACH時頻時機;或不同的前序信號索引。
  43. 根據請求項35之方法,其中該隨機存取訊息包括基於爭用的隨機存取或無爭用的隨機存取。
  44. 一種用於無線通訊的裝置,包括: 一記憶體;及至少一個處理器,其耦合到該記憶體並且被配置為:在一第一頻帶上傳輸一同步信號區塊(SSB)或一通道狀態資訊參考信號(CSI-RS)中的至少一者;及在一第二頻帶上從一使用者設備(UE)接收一隨機存取訊息,其中該隨機存取訊息是基於在該第一頻帶上傳輸的該SSB或該CSI-RS的。
  45. 根據請求項44之裝置,其中該至少一個處理器亦被配置為: 配置針對該UE的一隨機存取通道(RACH)配置,其中該RACH配置包括對一細胞辨識符(ID)的一指示。
  46. 根據請求項45之裝置,其中該隨機存取訊息是根據該RACH配置使用與在其上接收該SSB或該CSI-RS的該第一頻帶對應的RACH參數來從該UE接收的,並且其中該至少一個處理器亦被配置為: 基於從該UE接收的該隨機存取訊息的該等RACH參數來決定與該SSB或該CSI-RS對應的該細胞ID。
TW108116550A 2018-05-23 2019-05-14 包括隨機存取的無線通訊 TWI755599B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862675629P 2018-05-23 2018-05-23
US62/675,629 2018-05-23
US16/270,476 US11057938B2 (en) 2018-05-23 2019-02-07 Wireless communication including random access
US16/270,476 2019-02-07

Publications (2)

Publication Number Publication Date
TW202005457A true TW202005457A (zh) 2020-01-16
TWI755599B TWI755599B (zh) 2022-02-21

Family

ID=68614297

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108116550A TWI755599B (zh) 2018-05-23 2019-05-14 包括隨機存取的無線通訊

Country Status (5)

Country Link
US (1) US11057938B2 (zh)
EP (1) EP3797559A1 (zh)
CN (1) CN112166642B (zh)
TW (1) TWI755599B (zh)
WO (1) WO2019226420A1 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11102738B2 (en) * 2018-04-06 2021-08-24 Apple Inc. Synchronization signal design for unlicensed spectrum access using cellular communications
US11553527B2 (en) * 2018-06-01 2023-01-10 Samsung Electronics Co., Ltd. Method and system for handling random access procedure in non-terrestrial communication system
CN112335186B (zh) * 2018-06-22 2023-06-16 日本电气株式会社 波束管理
KR102571061B1 (ko) * 2018-06-29 2023-08-25 삼성전자주식회사 이동통신 시스템에서 무선 링크 실패 보고 방법 및 그 장치
CN110876205B (zh) * 2018-08-31 2022-02-11 展讯通信(上海)有限公司 Ro的指示、确定方法及装置、存储介质、基站、终端
EP3858079A1 (en) * 2018-09-26 2021-08-04 Lenovo (Singapore) Pte. Ltd. Performing a two-step random access channel procedure
US10893547B2 (en) 2019-01-22 2021-01-12 Qualcomm Incorporated Configuration of a first message for a two-step random access channel procedure
US12041670B2 (en) * 2019-02-14 2024-07-16 Panasonic Intellectual Property Corporation Of America Terminal and communication method
CN111565471B (zh) * 2019-02-14 2022-05-03 大唐移动通信设备有限公司 一种信息传输方法、装置及设备
US10893544B2 (en) * 2019-02-14 2021-01-12 Nokia Technologies Oy Beam refinement in two-step random access channel (RACH) procedure
AU2019436991A1 (en) * 2019-03-27 2021-10-21 Panasonic Intellectual Property Corporation Of America Terminal and transmission method
US11558853B2 (en) * 2019-04-05 2023-01-17 Qualcomm Incorporated Physical uplink shared channel occasion aggregation
MX2021012854A (es) * 2019-04-26 2021-12-10 Ericsson Telefon Ab L M Dispositivo de red, dispositivo terminal y metodos en los mismos.
US11129109B2 (en) 2019-05-06 2021-09-21 Qualcomm Incorporated Uplink transmission techniques for exposure limited transmissions
EP4040904B1 (en) * 2019-12-04 2024-07-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and terminal device
KR20220129535A (ko) * 2020-01-20 2022-09-23 엘지전자 주식회사 무선 통신 시스템에서 브로드캐스트-멀티캐스트 서비스를 위한 선택적 연결 설정을 위한 방법 및 장치
CN115023963B (zh) * 2020-01-24 2023-11-28 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统
US11595919B2 (en) * 2020-01-31 2023-02-28 Qualcomm Incorporated SSB channel cancelation
CN113259072B (zh) * 2020-02-07 2022-07-29 大唐移动通信设备有限公司 一种参考信号传输方法、终端及网络设备
US11683839B2 (en) * 2020-02-24 2023-06-20 Qualcomm Incorporated Physical random access channel configuration for a maximum permissible exposure condition
US20230209605A1 (en) 2020-03-20 2023-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods, access network node and terminal device for random access procedure
WO2021199200A1 (ja) * 2020-03-30 2021-10-07 株式会社Nttドコモ 端末
CN115299143A (zh) 2020-03-30 2022-11-04 鸿颖创新有限公司 用于小数据传输的方法和用户设备
US12021598B2 (en) * 2020-04-24 2024-06-25 Qualcomm Incorporated Modification of SSB burst pattern
WO2021219756A1 (en) * 2020-04-29 2021-11-04 Telefonaktiebolaget Lm Ericsson (Publ) First message differentiation in cfra procedure
EP4169298A1 (en) * 2020-06-23 2023-04-26 Telefonaktiebolaget LM Ericsson (publ) Overlayed cell access handling
EP4178285A4 (en) * 2020-07-01 2024-04-10 Beijing Xiaomi Mobile Software Co., Ltd. POSITIONING METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM
US11864238B2 (en) * 2020-07-01 2024-01-02 Qualcomm Incorporated Mapping aspects of random access channel procedure
US11800564B2 (en) * 2020-08-10 2023-10-24 Electronics And Telecommunications Research Institute Method and apparatus for random access layered preambles
CN114158059B (zh) * 2020-09-07 2024-04-16 大唐移动通信设备有限公司 一种信息处理方法、装置、终端设备及网络侧设备
US20220312498A1 (en) * 2020-10-14 2022-09-29 Apple Inc. Random Access Message Transmissions for Reduced Capability User Equipment
US20220140877A1 (en) * 2020-10-30 2022-05-05 Qualcomm Incorporated Techniques for scheduling of channel state information reference signals and feedback during a random access channel operation
US20240073963A1 (en) * 2020-12-22 2024-02-29 Telefonaktiebolaget Lm Ericsson (Publ) Network Device, Terminal Device, and Methods Therein
US20240107471A1 (en) * 2021-03-31 2024-03-28 Qualcomm Incorporated Methods and apparatuses for selecting a synchronization block
CN117581607A (zh) * 2021-06-23 2024-02-20 中兴通讯股份有限公司 用于参考信令设计和配置的系统及方法
CN118575569A (zh) * 2022-01-28 2024-08-30 高通股份有限公司 用于具有波束预测的四步随机接入信道规程的消息
WO2023173394A1 (en) * 2022-03-18 2023-09-21 Qualcomm Incorporated Computing power aware random access procedure
CN117460081A (zh) * 2022-07-15 2024-01-26 中国移动通信有限公司研究院 随机接入方法、装置、终端及网络侧设备
WO2024092486A1 (en) * 2022-11-01 2024-05-10 Qualcomm Incorporated Rach transmission in a candidate cell for l1 and l2 mobility
WO2024207134A1 (en) * 2023-04-03 2024-10-10 Qualcomm Incorporated Physical random access channel communications scheduled for a candidate cell

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974445A (zh) * 2013-01-28 2014-08-06 电信科学技术研究院 一种随机接入信道传输方法和设备
CN110061824B (zh) * 2013-02-06 2021-11-19 Lg 电子株式会社 收发信号的方法和用于其的装置
EP3022982B1 (en) * 2013-07-19 2018-10-31 LG Electronics Inc. Method and apparatus for performing random access procedure in wireless communication system
US10219257B2 (en) * 2014-06-17 2019-02-26 Lg Electronics Inc. Method and device for transmitting uplink control information
US11234273B2 (en) * 2016-08-12 2022-01-25 Qualcomm Incorporated RACH conveyance of DL synchronization beam information for various DL-UL correspondence states
WO2018049274A1 (en) * 2016-09-09 2018-03-15 Intel IP Corporation Low latency random access channel procedures for beamformed systems
EP3585125A1 (en) * 2016-09-30 2019-12-25 Telefonaktiebolaget LM Ericsson (publ) Random access method for multiple numerology operation
WO2018203308A1 (en) * 2017-05-05 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Channel state information reference signal (csi-rs) configuration activation before handover completion
US11647544B2 (en) * 2017-07-27 2023-05-09 Samsung Electronics Co., Ltd. Method and apparatus for performing random access procedure
US10686573B2 (en) * 2017-09-11 2020-06-16 Lenovo (Singapore) Pte Ltd Reference signals for radio link monitoring
CN111226486B (zh) * 2017-11-18 2024-08-09 联想(新加坡)私人有限公司 随机接入配置
US11050478B2 (en) * 2017-12-19 2021-06-29 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems
CN112929985A (zh) * 2018-01-11 2021-06-08 华硕电脑股份有限公司 通过随机接入程序恢复波束失效的方法和设备
WO2019166016A1 (en) * 2018-03-02 2019-09-06 FG Innovation Company Limited Scell selection for beam failure recovry
US11039350B2 (en) * 2018-04-02 2021-06-15 Comcast Cable Communications, Llc Beam failure recovery

Also Published As

Publication number Publication date
US20190364599A1 (en) 2019-11-28
CN112166642A (zh) 2021-01-01
CN112166642B (zh) 2024-04-19
TWI755599B (zh) 2022-02-21
EP3797559A1 (en) 2021-03-31
WO2019226420A1 (en) 2019-11-28
US11057938B2 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
TWI755599B (zh) 包括隨機存取的無線通訊
TWI696402B (zh) 用於波束成形通訊的rach設計
EP3857755B1 (en) Early termination of pusch with new uplink grant
JP7389804B2 (ja) Coresetのサブセットに基づくデフォルトビーム選択
TW202127939A (zh) 針對srs/pucch的預設空間關係
US11166267B2 (en) DCI triggered SRS enhancements
US11044589B2 (en) V2X network based relaying
US10897752B2 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
US11012979B2 (en) Signaling a subset of coresets selected in COT
US11653321B2 (en) Methods and apparatus to facilitate beam-based sequence spaces for synchronization signals
WO2020247678A1 (en) Methods and apparatus to facilitate automatic association of pathloss reference and spatial relations for fast uplink beam switching
TW202005432A (zh) 動態搜尋空間配置
TW202029807A (zh) 對ne-dc中的潛在nr ul傳輸的指示
WO2022035540A1 (en) Methods and apparatus for monitoring dl communication with timing offsets
US20210391948A1 (en) Pdcch interleaving enhancement for monitoring aggregation
US11889464B2 (en) Reliable paging and short message transmission with repetition
TW202245518A (zh) 定義prs和srs關聯以改進處理能力受限情況下的多rtt定位
US20230403715A1 (en) User equipment cooperation
WO2020191716A1 (en) Ra-rnti formula for extended random access response windows
TW202102042A (zh) 用於兩步rach資源配置的參考座標