TW202004263A - Stereoscopic image display device and stereoscopic image display method - Google Patents

Stereoscopic image display device and stereoscopic image display method Download PDF

Info

Publication number
TW202004263A
TW202004263A TW107116988A TW107116988A TW202004263A TW 202004263 A TW202004263 A TW 202004263A TW 107116988 A TW107116988 A TW 107116988A TW 107116988 A TW107116988 A TW 107116988A TW 202004263 A TW202004263 A TW 202004263A
Authority
TW
Taiwan
Prior art keywords
image
display device
stereoscopic image
stereoscopic
lens array
Prior art date
Application number
TW107116988A
Other languages
Chinese (zh)
Other versions
TWI684027B (en
Inventor
英時 余
徐旭昇
王倉鴻
施立偉
利錦洲
王鈞平
周秉彥
李昕學
吳瑞翊
謝博元
黃乙白
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW107116988A priority Critical patent/TWI684027B/en
Publication of TW202004263A publication Critical patent/TW202004263A/en
Application granted granted Critical
Publication of TWI684027B publication Critical patent/TWI684027B/en

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

A stereoscopic image display device includes a display panel, a lens array, a light controller, a polarizer film, and a magnifying lens. The lens array is disposed on the display panel. The light controller is disposed on the lens array. The polarizer film is disposed on the light controller. The magnifying lens is disposed on the polarizer film. A display method of the stereoscopic image is also provided.

Description

立體影像顯示裝置及立體影像顯示方法Stereoscopic image display device and stereoscopic image display method

本發明是有關於一種影像顯示裝置及顯示方法,且特別是有關於一種立體影像顯示裝置及立體影像顯示方法。The invention relates to an image display device and a display method, and in particular to a stereoscopic image display device and a stereoscopic image display method.

隨著虛擬實境(Virtual Reality)、擴增實境(Augmented Reality)以及混合實境(Mixed Reality)的技術日趨成熟,市場上出現了許多相關的電子產品,例如:頭戴式顯示器(Head mounted display)等。一般來說,頭戴式顯示器係創造出獨特的場景,例如包含對應組合的物件以及環境影像,讓使用者能透過雙目視差(binocular parallax)的方式,沉浸於具有深度資訊的影像中。然而,以視差方式所產生的立體影像會帶給使用者視覺幅輳調節衝突(accommodation-convergence conflict, A.C. conflict),而產生視力模糊、暈眩複視、甚至噁心嘔吐等視覺疲勞的症狀。As the technologies of Virtual Reality, Augmented Reality, and Mixed Reality are maturing, many related electronic products have appeared on the market, such as: head mounted display (Head mounted display) display) etc. In general, head-mounted displays create unique scenes, including objects and environmental images in corresponding combinations, allowing users to immerse themselves in images with depth information through binocular parallax. However, the stereoscopic images generated by parallax will bring the user to adjustment-convergence conflict (A.C. conflict), which may cause visual fatigue symptoms such as blurred vision, dizziness, double vision, and even nausea and vomiting.

為了解決視覺幅輳調節衝突的問題,目前已提出光場顯示技術(light field technique),以產生重組的立體光場影像,重組的立體光場影像可以呈現自然的立體物件,並提供具有景深資訊的可聚焦影像。不過,為了記錄視角以及景深資訊,使用光場顯示技術的顯示裝置必須犧牲整體的解析度。因此,解決視覺幅輳調節衝突並提升解析度的顯示裝置為本領域研究的重點。In order to solve the problem of conflicting adjustment of visual amplitude, light field display technology has been proposed to produce a reconstructed stereoscopic light field image. The reconstructed stereoscopic light field image can present a natural three-dimensional object and provide depth of field information Focusable image. However, in order to record viewing angle and depth of field information, display devices using light field display technology must sacrifice overall resolution. Therefore, a display device that solves the conflict of visual amplitude adjustment and improves resolution is the focus of research in this field.

本發明之一實施例的立體影像顯示裝置,包含顯示面板、透鏡陣列、控光器、偏光片以及放大透鏡。透鏡陣列位於顯示面板上,控光器位於透鏡陣列上,偏光片位於控光器上,放大透鏡位於偏光片上。A stereoscopic image display device according to an embodiment of the present invention includes a display panel, a lens array, a light controller, a polarizer, and a magnifying lens. The lens array is located on the display panel, the light controller is located on the lens array, the polarizer is located on the light controller, and the magnifying lens is located on the polarizer.

在本發明的一實施例中,上述的顯示面板適於提供第一原始影像及第二原始影像。第一原始影像係被轉換為第一虛擬影像於第一虛擬平面。第二原始影像係被轉換為第二虛擬影像於第二虛擬平面。In an embodiment of the invention, the above display panel is suitable for providing a first original image and a second original image. The first original image is converted into a first virtual image on the first virtual plane. The second original image is converted into a second virtual image on the second virtual plane.

本發明之一實施例的立體影像之顯示方法,包含以下步驟:提供上述的立體影像顯示裝置;於第一時段執行第一模式;以及於第二時段執行第二模式。第一模式包含以下步驟:藉由顯示面板提供第一原始影像;以及藉由透鏡陣列、控光器、偏光片及放大透鏡將第一原始影像轉換為第一放大影像。第二模式包含以下步驟:藉由顯示面板提供第二原始影像;以及藉由透鏡陣列、控光器、偏光片及放大透鏡將第二原始影像轉換為第二放大影像。控光器將第二原始影像之偏光方向旋轉90度。第一放大影像及第二放大影像構成混合影像。混合影像之解析度高於第一放大影像之解析度。A three-dimensional image display method according to an embodiment of the present invention includes the following steps: providing the aforementioned three-dimensional image display device; executing the first mode during the first period; and performing the second mode during the second period. The first mode includes the following steps: providing the first original image through the display panel; and converting the first original image into the first enlarged image through the lens array, the light control device, the polarizer, and the magnifying lens. The second mode includes the following steps: providing a second original image through a display panel; and converting the second original image into a second enlarged image through a lens array, a light controller, a polarizer, and a magnifying lens. The light controller rotates the polarization direction of the second original image by 90 degrees. The first enlarged image and the second enlarged image constitute a mixed image. The resolution of the mixed image is higher than the resolution of the first enlarged image.

在本發明一實施例的立體影像顯示裝置及立體影像顯示方法中,由於顯示面板適於在第一時段執行第一模式以透過透鏡陣列、控光器、偏光片及放大透鏡將第一原始影像轉換為第一放大影像,而在第二時段執行第二模式將第二原始影像透過透鏡陣列、控光器、偏光片及放大透鏡轉換為第二放大影像,因此可透過分時多工的方式將第一放大影像及第二放大影像重疊並構成混合影像。由於第一放大影像為立體影像,實質上具有真實深度資訊,因此可以降低使用者的視覺幅輳調節衝突。此外,第二放大影像為高解析度的平面影像。如此,重疊的平面影像以及立體影像所構成的混合影像具有良好的解析度。因此,可以提升立體影像的解析度並提升立體影像顯示裝置的顯示品質。In the stereoscopic image display device and the stereoscopic image display method according to an embodiment of the present invention, since the display panel is adapted to execute the first mode during the first time period to transmit the first original image through the lens array, light controller, polarizer and magnifying lens Convert to the first magnified image, and execute the second mode in the second time period to convert the second original image through the lens array, light control device, polarizer and magnifying lens to the second magnified image, so it can be shared by time-multiplexing The first enlarged image and the second enlarged image are overlapped to form a mixed image. Since the first zoomed-in image is a stereoscopic image, which actually has real depth information, it is possible to reduce the user's conflict of visual amplitude adjustment. In addition, the second enlarged image is a high-resolution planar image. In this way, the mixed image composed of the overlapping planar image and the stereoscopic image has a good resolution. Therefore, the resolution of the stereoscopic image and the display quality of the stereoscopic image display device can be improved.

本發明之目的之一係為降低使用者的視覺幅輳調節衝突。One of the purposes of the present invention is to reduce the user's conflict of visual amplitude adjustment.

本發明之目的之一係為紓緩使用者觀看立體影像顯示裝置時視力模糊、暈眩複視、噁心嘔吐等視覺疲勞的症狀。One of the purposes of the present invention is to relieve the symptoms of visual fatigue such as blurred vision, dizziness, double vision, nausea and vomiting when the user views the stereoscopic image display device.

本發明之目的之一係為提升立體影像的解析度。One of the objectives of the present invention is to improve the resolution of stereoscopic images.

本發明之目的之一係為提升立體影像顯示裝置的視角(field of view, FOV)範圍。One of the objectives of the present invention is to increase the field of view (FOV) range of a stereoscopic image display device.

本發明之目的之一係為提升立體影像顯示裝置的顯示品質。One of the objectives of the present invention is to improve the display quality of a stereoscopic image display device.

本發明之目的之一係為提升使用者的立體視覺感受。One of the purposes of the present invention is to enhance the user's stereoscopic visual experience.

本發明之目的之一係為促進使用者使用立體影像顯示裝置的體驗。One of the objectives of the present invention is to promote the user experience of using a stereoscopic image display device.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and understandable, the embodiments are specifically described below in conjunction with the accompanying drawings for detailed description as follows.

圖1為本發明一實施例的立體影像顯示裝置的立體爆炸示意圖。請參考圖1,在本實施例中,立體影像顯示裝置100包含顯示面板110、透鏡陣列120、控光器130以及偏光片140。在本實施例中,透鏡陣列120位於顯示面板110上,控光器130位於透鏡陣列120上,且偏光片140位於控光器130上。此外,根據其他實施例,立體影像顯示裝置100更包含放大透鏡150,放大透鏡150位於偏光片140上,且具有聚焦平面F,但本發明不以此為限。FIG. 1 is a schematic diagram of a three-dimensional explosion of a three-dimensional image display device according to an embodiment of the invention. Please refer to FIG. 1. In this embodiment, the stereoscopic image display device 100 includes a display panel 110, a lens array 120, a light controller 130 and a polarizer 140. In this embodiment, the lens array 120 is located on the display panel 110, the light controller 130 is located on the lens array 120, and the polarizer 140 is located on the light controller 130. In addition, according to other embodiments, the stereoscopic image display device 100 further includes a magnifying lens 150, which is located on the polarizer 140 and has a focusing plane F, but the invention is not limited thereto.

在本實施例中,顯示面板110可為液晶顯示面板、有機發光二極體顯示面板、微型發光二極體顯示面板、次毫米發光二極體顯示面板、量子點發光二極體顯示面板、電漿顯示面板、電泳顯示面板或是其他合適之顯示面板,本發明不以此為限。由於上述各種顯示面板為熟習本技術領域者所熟知,因此不再贅述。在以下的實施例中,顯示面板110係以有機發光二極體顯示面板為例。In this embodiment, the display panel 110 may be a liquid crystal display panel, an organic light-emitting diode display panel, a miniature light-emitting diode display panel, a sub-millimeter light-emitting diode display panel, a quantum dot light-emitting diode display panel, an electric The plasma display panel, the electrophoretic display panel or other suitable display panels are not limited to this invention. Since the above various display panels are well known to those skilled in the art, they will not be described in detail. In the following embodiments, the display panel 110 takes an organic light-emitting diode display panel as an example.

圖2A為本發明一實施例的立體影像顯示裝置的透鏡陣列的剖面示意圖。請參考圖1及圖2A,在本實施例中,透鏡陣列120包含第一基底121、第二基底122、網狀電極123、面狀電極124以及第一液晶層125。在本實施例中,網狀電極123位於第一基底121上,面狀電極124位於第二基底122上,且第一液晶層125位於網狀電極123與面狀電極124之間。舉例而言,第一基底121以及第二基底122的材料可為玻璃、石英或有機聚合物。第一液晶層125的材料例如是液晶分子、電泳顯示介質或是其他可適用的介質,但本發明不以此為限。2A is a schematic cross-sectional view of a lens array of a stereoscopic image display device according to an embodiment of the invention. 1 and 2A, in this embodiment, the lens array 120 includes a first substrate 121, a second substrate 122, a mesh electrode 123, a planar electrode 124, and a first liquid crystal layer 125. In this embodiment, the mesh electrode 123 is located on the first substrate 121, the planar electrode 124 is located on the second substrate 122, and the first liquid crystal layer 125 is located between the mesh electrode 123 and the planar electrode 124. For example, the materials of the first substrate 121 and the second substrate 122 may be glass, quartz, or organic polymer. The material of the first liquid crystal layer 125 is, for example, liquid crystal molecules, electrophoretic display media or other applicable media, but the invention is not limited thereto.

在本實施例中,請同時參考圖1及圖2A,網狀電極123例如是具有多個六邊形圖案的電極層,但本發明不限於此。在本實施例的設計下,多個六邊形圖案的電極層可產生最密集的排列方式以達成空間最有效利用率,並達成電場最佳化的效果,進而提升透鏡陣列120之光轉換效果。基於導電性的考量,網狀電極123之材料一般是使用金屬材料,可以包含鋁、銀或銅,但本發明不以此為限。在本實施例中,片狀電極124係全面地設置於第二基底122上,但本發明不以此為限。片狀電極124之材料可包含透明導電膜,例如:氧化銦錫、氧化銦鋅(IZO)或氧化銦鎵鋅(IGZO),但本發明不限於此。在其他實施例中,片狀電極124之材料也可以包含導電性高分子(PEDOT)、奈米碳材、或其他合適之材料。In this embodiment, please refer to FIGS. 1 and 2A at the same time. The mesh electrode 123 is, for example, an electrode layer having a plurality of hexagonal patterns, but the present invention is not limited thereto. Under the design of this embodiment, a plurality of hexagonal patterned electrode layers can produce the densest arrangement to achieve the most effective space utilization and achieve the effect of electric field optimization, thereby improving the light conversion effect of the lens array 120 . Based on the consideration of conductivity, the material of the mesh electrode 123 is generally a metal material, which may include aluminum, silver or copper, but the invention is not limited thereto. In the present embodiment, the sheet electrode 124 is completely disposed on the second substrate 122, but the invention is not limited thereto. The material of the sheet electrode 124 may include a transparent conductive film, such as indium tin oxide, indium zinc oxide (IZO), or indium gallium zinc oxide (IGZO), but the present invention is not limited thereto. In other embodiments, the material of the sheet electrode 124 may also include conductive polymer (PEDOT), nano carbon material, or other suitable materials.

在本實施例中,透鏡陣列120更包含高阻值層127位於網狀電極123及第一液晶層125之間。舉例而言,高阻值層127位於第一基底121上並覆蓋網狀電極123。在本實施例的設計下,高阻值層127可以使網狀電極所產生的電場平滑化,使得位於網狀電極123邊緣的電場平穩,以進一步降低驅動電壓並簡單化驅動的方式。高阻值層127之材料包含氧化鈮(Nb2 O5 )或氧化鋅(ZnO),但本發明不以此為限。在本實施例中,高阻值層127的厚度例如為20奈米,但本發明不以此為限。In this embodiment, the lens array 120 further includes a high-resistance layer 127 between the mesh electrode 123 and the first liquid crystal layer 125. For example, the high resistance layer 127 is located on the first substrate 121 and covers the mesh electrode 123. Under the design of this embodiment, the high-resistance layer 127 can smooth the electric field generated by the mesh electrode, so that the electric field at the edge of the mesh electrode 123 is smooth, to further reduce the driving voltage and simplify the driving method. The material of the high resistance layer 127 includes niobium oxide (Nb 2 O 5 ) or zinc oxide (ZnO), but the invention is not limited thereto. In this embodiment, the thickness of the high-resistance layer 127 is, for example, 20 nm, but the invention is not limited thereto.

在本實施例中,透鏡陣列120還可以選擇性地包括取向膜126及框膠128。取向膜126位於高阻值層127與第一液晶層125之間或片狀電極124與第一液晶層125之間。取向膜126之材料包含聚醯亞胺(polyimide)或其他合適之材料,但本發明不以此為限。框膠128位於第一基底121與第二基底122之間。框膠128之材料包含環氧樹脂(epoxy resin)或其他合適之材料,但本發明不以此為限。In this embodiment, the lens array 120 may optionally include an alignment film 126 and a sealant 128. The alignment film 126 is located between the high resistance layer 127 and the first liquid crystal layer 125 or between the sheet electrode 124 and the first liquid crystal layer 125. The material of the alignment film 126 includes polyimide or other suitable materials, but the invention is not limited thereto. The sealant 128 is located between the first substrate 121 and the second substrate 122. The material of the frame glue 128 includes epoxy resin or other suitable materials, but the invention is not limited thereto.

圖2B為本發明一實施例的立體影像顯示裝置的控光器的局部剖面示意圖。請參考圖1及圖2B,在本實施例中,控光器130包含扭曲向列型液晶層135。舉例而言,控光器130還包含第三基底131、第四基底132、第一電極133以及第二電極134。第一電極133位於第三基底131上,第二電極134位於第四基底132上。扭曲向列型液晶層135位於第一電極133與及第二電極134之間。第三基底131及第四基底132的材料可為玻璃、石英或有機聚合物。第一電極133及第二電極134的材料可以與片狀電極124之材料相同,第一電極133及第二電極134的材料例如為氧化銦錫、氧化銦鋅或氧化銦鎵鋅,但本發明不限於此。2B is a schematic partial cross-sectional view of a light controller of a stereoscopic image display device according to an embodiment of the invention. Please refer to FIGS. 1 and 2B. In this embodiment, the light controller 130 includes a twisted nematic liquid crystal layer 135. For example, the light controller 130 further includes a third substrate 131, a fourth substrate 132, a first electrode 133, and a second electrode 134. The first electrode 133 is located on the third substrate 131, and the second electrode 134 is located on the fourth substrate 132. The twisted nematic liquid crystal layer 135 is located between the first electrode 133 and the second electrode 134. The material of the third substrate 131 and the fourth substrate 132 may be glass, quartz or organic polymer. The material of the first electrode 133 and the second electrode 134 may be the same as the material of the sheet electrode 124. The material of the first electrode 133 and the second electrode 134 is, for example, indium tin oxide, indium zinc oxide, or indium gallium zinc oxide, but the present invention Not limited to this.

圖3A為本發明一實施例的立體影像顯示裝置執行第一模式的示意圖。圖3B為本發明一實施例的立體影像顯示裝置執行第二模式的示意圖。在此需先說明的是,圖3A及圖3B中具有三個方向的軸線x、y、z且彼此垂直。此外,圖3A及3B僅繪示使用者單眼所觀察到的影像,例如為使用者的右眼所觀察到的影像。然而,使用者的左眼所觀察到的影像及其顯示方法與右眼相同,因此本發明不再贅述。另一方面來說,立體顯示系統舉例係包含兩個上述立體顯示裝置100以分別適用於使用者之左眼及右眼。FIG. 3A is a schematic diagram of a first embodiment of a three-dimensional image display device according to an embodiment of the present invention. FIG. 3B is a schematic diagram of a stereoscopic image display device according to an embodiment of the present invention performing the second mode. It should be noted here that in FIGS. 3A and 3B, the axes x, y, and z in three directions are perpendicular to each other. In addition, FIGS. 3A and 3B only show the image observed by the user's single eye, for example, the image observed by the user’s right eye. However, the image and the display method of the user's left eye are the same as those of the right eye, so the present invention will not repeat them. On the other hand, an example of a stereoscopic display system includes two of the aforementioned stereoscopic display devices 100 to be suitable for the left and right eyes of the user, respectively.

以下將以一實施例來說明立體顯示裝置100的立體影像之顯示方法。請同時參考圖1、圖3A及圖3B,本實施例的顯示面板110適於以分時多工(multiplexing)的方式提供第一原始影像210及第二原始影像220(繪示於圖3A及圖3B中)。第一原始影像210係被轉換為第一虛擬影像212於第一虛擬平面212P。第二原始影像220係被轉換為第二虛擬影像222於第二虛擬平面222P。在本實施例的設計下,聚焦平面F與第一虛擬平面212P之間的距離t舉例為約1.64mm。請參考圖1以及圖3A,在本實施例中,使用者的眼睛E透過放大透鏡150所觀察到的影像是於第一時段T1(繪示於圖4)執行第一模式M1所產生的立體影像。第一模式M1產生立體影像的步驟包含藉由立體影像顯示裝置100的顯示面板110提供第一原始影像210,以及藉由透鏡陣列120、控光器130、偏光片140及放大透鏡150將第一原始影像210轉換為第一放大影像232,其中第一原始影像210係藉由透鏡陣列120、控光器130及偏光片140將第一原始影像210被轉換為第一虛擬影像212。In the following, a method for displaying a stereoscopic image of the stereoscopic display device 100 will be described with an embodiment. Please refer to FIG. 1, FIG. 3A and FIG. 3B at the same time. The display panel 110 of this embodiment is suitable for providing the first original image 210 and the second original image 220 in a multiplexing manner (shown in FIGS. 3A and 3B). (Figure 3B). The first original image 210 is converted into the first virtual image 212 on the first virtual plane 212P. The second original image 220 is converted into a second virtual image 222 on the second virtual plane 222P. Under the design of this embodiment, the distance t between the focus plane F and the first virtual plane 212P is about 1.64 mm, for example. Please refer to FIG. 1 and FIG. 3A. In this embodiment, the image observed by the user's eye E through the magnifying lens 150 is a stereo generated by executing the first mode M1 during the first period T1 (shown in FIG. 4). image. The step of generating the stereoscopic image in the first mode M1 includes providing the first original image 210 through the display panel 110 of the stereoscopic image display device 100, and converting the first image through the lens array 120, the light controller 130, the polarizer 140, and the magnifying lens 150. The original image 210 is converted into the first enlarged image 232, wherein the first original image 210 is converted into the first virtual image 212 by the lens array 120, the light controller 130, and the polarizer 140.

詳細而言,首先,顯示面板110顯示第一原始影像210。第一原始影像210例如是透過演算法所呈現之高解析度的積體成像(elemental image)。第一原始影像210係具有非偏光的影像L。換句話說,第一原始影像210具有多種偏光態,包含朝x軸方向以及y軸方向偏光的影像。In detail, first, the display panel 110 displays the first original image 210. The first original image 210 is, for example, a high-resolution elemental image presented by an algorithm. The first original image 210 is an unpolarized image L. In other words, the first original image 210 has multiple polarization states, including images polarized in the x-axis direction and the y-axis direction.

接著,透鏡陣列120對第一原始影像210產生作用,透鏡陣列120可以將特定偏光方向的影像進行聚焦,而其他偏光方向的影像不進行聚焦。在本實施例中,透鏡陣列120將朝x軸方向偏光的影像聚焦形成聚焦影像A,而朝y軸或任何非x軸方向偏光的影像係直接穿透透鏡陣列而形成非聚焦影像B,但本發明不以此為限。在其他實施例中,透過透鏡陣列120,聚焦影像也可以是朝y軸方向偏光的影像,而朝x軸或任何非y軸方向偏光的影像為非聚焦影像,可依據使用者實際上的需求而設計。Next, the lens array 120 acts on the first original image 210. The lens array 120 can focus images in a specific polarization direction, while images in other polarization directions are not focused. In this embodiment, the lens array 120 focuses the image polarized in the x-axis direction to form a focused image A, and the image polarized in the y-axis or any non-x-axis direction directly penetrates the lens array to form an unfocused image B, but The invention is not limited to this. In other embodiments, through the lens array 120, the focused image may also be an image polarized in the y-axis direction, and an image polarized in the x-axis or any non-y-axis direction is an unfocused image, according to the actual needs of the user And design.

再來,由於控光器130包含扭曲向列型液晶層135,因此當提供驅動電壓於控光器130時,扭曲向列液晶層135的液晶分子會順著電場排列,而讓聚焦影像A以及非聚焦影像B直接穿透控光器130。在控光器130被提供驅動電壓的情況下,聚焦影像A以及非聚焦影像B之偏光方向不會被改變,而是保持其原始的偏光方向。Furthermore, since the light controller 130 includes the twisted nematic liquid crystal layer 135, when the driving voltage is supplied to the light controller 130, the liquid crystal molecules of the twisted nematic liquid crystal layer 135 will be aligned along the electric field, so that the focused image A and The unfocused image B directly penetrates the light controller 130. When the driving voltage is supplied to the light controller 130, the polarization directions of the focused image A and the unfocused image B will not be changed, but the original polarization directions will be maintained.

接下來,聚焦影像A以及非聚焦影像B進入偏光片140。在本實施例中,偏光片140具有特定的偏光方向。舉例而言,偏光片140為朝x軸方向偏光的偏光片。換句話說,偏光片140可以讓朝x軸方向偏光的影像穿透,而阻絕/或吸收朝y軸方向偏光的影像或任何非x軸方向偏光的影像。在本實施例中,聚焦影像A係朝x軸方向偏光的影像,因此可以穿透偏光片140,而非聚焦影像B會被過濾掉。藉此,可以形成第一虛擬影像212於第一虛擬平面212P,在本實施例中,第一虛擬影像212為立體影像(3D影像)。且在放大透鏡150的作用下,第一虛擬影像212進一步被轉換為第一放大影像232,亦即為被放大的立體影像(3D影像)。Next, the focused image A and the unfocused image B enter the polarizer 140. In this embodiment, the polarizer 140 has a specific polarization direction. For example, the polarizer 140 is a polarizer polarized in the x-axis direction. In other words, the polarizer 140 can transmit the image polarized in the x-axis direction, and block/or absorb the image polarized in the y-axis direction or any image polarized in the non-x-axis direction. In this embodiment, the focused image A is an image polarized in the x-axis direction, and therefore can pass through the polarizer 140, and the non-focused image B is filtered out. In this way, the first virtual image 212 can be formed on the first virtual plane 212P. In this embodiment, the first virtual image 212 is a stereoscopic image (3D image). And under the action of the magnifying lens 150, the first virtual image 212 is further converted into a first magnified image 232, that is, an enlarged stereoscopic image (3D image).

請繼續參考圖1及圖3A,在本實施例中,使用者的眼睛E觀察到的第一放大影像232是第一原始影像210經轉換後的立體虛像,且第一放大影像232之解析度不同於第一原始影像210之解析度,第一放大影像232為具有優秀品質的光場型立體影像,故可減緩或解決使用者視覺疲勞的情況,但本發明不以此為限。在此須說明的是,圖3A僅示意性地繪示第一原始影像210藉由透鏡陣列120、控光器130、偏光片140以及放大透鏡150而轉換為在x軸方向偏光且聚焦的位於第一最終平面232P之第一放大影像232。實際上,第一虛擬影像212係成像於第一虛擬平面212P,並與放大透鏡150的聚焦平面F具有距離t,且距離t約為1.64mm,但本發明不以此為限。Please continue to refer to FIG. 1 and FIG. 3A. In this embodiment, the first enlarged image 232 observed by the user's eye E is a converted three-dimensional virtual image of the first original image 210, and the resolution of the first enlarged image 232 Different from the resolution of the first original image 210, the first enlarged image 232 is a light-field stereoscopic image with excellent quality, so it can slow down or solve the user's visual fatigue, but the present invention is not limited to this. It should be noted here that FIG. 3A only schematically shows that the first original image 210 is converted into a polarized and focused position in the x-axis direction by the lens array 120, the light controller 130, the polarizer 140, and the magnifying lens 150. The first enlarged image 232 of the first final plane 232P. In fact, the first virtual image 212 is imaged on the first virtual plane 212P and has a distance t from the focal plane F of the magnifying lens 150, and the distance t is about 1.64 mm, but the invention is not limited thereto.

接著,請參考圖1及圖3B,在本實施例中,使用者的眼睛E透過放大透鏡150所觀察到的影像是於第二時段T2(繪示於圖4)執行第二模式M2所產生的平面影像。第二模式M2產生平面影像的步驟包含藉由立體影像顯示裝置100的顯示面板110提供第二原始影像220,以及藉由透鏡陣列120、控光器130、偏光片140及放大透鏡150將第二原始影像220轉換為第二放大影像242。Next, please refer to FIGS. 1 and 3B. In this embodiment, the image observed by the user’s eye E through the magnifying lens 150 is generated by executing the second mode M2 during the second period T2 (shown in FIG. 4) Flat image. The step of generating the planar image in the second mode M2 includes providing the second original image 220 through the display panel 110 of the stereoscopic image display device 100, and converting the second image through the lens array 120, the light controller 130, the polarizer 140, and the magnifying lens 150. The original image 220 is converted into the second enlarged image 242.

首先,顯示面板110顯示第二原始影像220。第二原始影像220例如是高解析度影像。第二原始影像220係具有非偏光的影像L。換句話說,第二原始影像220具有多種偏光態,包含朝x軸方向以及y軸方向偏光的影像。First, the display panel 110 displays the second original image 220. The second original image 220 is, for example, a high-resolution image. The second original image 220 is an unpolarized image L. In other words, the second original image 220 has multiple polarization states, including images polarized in the x-axis direction and the y-axis direction.

接著,透鏡陣列120對第二原始影像220產生作用,透鏡陣列120可以將特定偏光方向的影像進行聚焦,而其他偏光方向的影像不進行聚焦。在本實施例中,透鏡陣列120將朝x軸方向偏光的影像聚焦形成聚焦影像A,而朝y軸或任何非x軸方向偏光的影像係直接穿透透鏡陣列而形成非聚焦影像B,但本發明不以此為限。在其他實施例中,透過透鏡陣列120,聚焦影像也可以是朝y軸方向偏光的影像,而朝x軸或任何非y軸方向偏光的影像為非聚焦影像,可依據使用者實際上的需求而設計。Next, the lens array 120 acts on the second original image 220. The lens array 120 can focus images in a specific polarization direction, while images in other polarization directions are not focused. In this embodiment, the lens array 120 focuses the image polarized in the x-axis direction to form a focused image A, and the image polarized in the y-axis or any non-x-axis direction directly penetrates the lens array to form an unfocused image B, but The invention is not limited to this. In other embodiments, through the lens array 120, the focused image may also be an image polarized in the y-axis direction, and an image polarized in the x-axis or any non-y-axis direction is an unfocused image, according to the actual needs of the user And design.

再來,由於控光器130包含扭曲向列型液晶層135,因此當不提供驅動電壓於控光器130時,扭曲向列液晶層135的液晶分子會呈螺旋狀排列,而使聚焦影像A的偏光方向以及非聚焦影像B的偏光方向逐漸扭曲,藉此使得聚焦影像A以及非聚焦影像B的偏光方向均會扭曲90度。在本實施例中,朝x軸方向偏光的聚焦影像A在經控光器130作用後,會成為朝y軸方向偏光的聚焦影像A,朝y軸方向偏光的非聚焦影像B會成為朝x軸方向偏光的非聚焦影像B。Furthermore, since the light controller 130 includes the twisted nematic liquid crystal layer 135, when no driving voltage is provided to the light controller 130, the liquid crystal molecules of the twisted nematic liquid crystal layer 135 are arranged in a spiral shape, so that the focused image A The polarization direction of the and the non-focused image B are gradually twisted, so that the polarized directions of the focused image A and the unfocused image B are both distorted by 90 degrees. In this embodiment, the focused image A polarized in the x-axis direction will become a focused image A polarized in the y-axis direction after acting by the light controller 130, and the unfocused image B polarized in the y-axis direction will become x. Unfocused image B polarized in the axial direction.

接下來,聚焦影像A以及非聚焦影像B進入偏光片140。在本實施例中,偏光片140具有特定的偏光方向。舉例而言,偏光片140為朝x軸方向的偏光片。換句話說,偏光片140可以讓朝x軸方向偏光的影像穿透,而阻絕/或吸收朝y軸方向偏光的影像或任何非x軸方向偏光的影像。在本實施例中,非聚焦影像B係朝x軸方向偏光的影像,因此可以穿透偏光片140,而聚焦影像A會被過濾掉。藉此,可以形成第二虛擬影像222於第二虛擬平面222P,在本實施例中,第二虛擬影像222為平面影像(2D影像),第二虛擬影像222舉例係包含具有高解析度的主角影像及背景影像。且在放大透鏡150的作用下,第二虛擬影像222進一步被轉換為第二放大影像242,亦即為被放大的平面影像(2D影像)。Next, the focused image A and the unfocused image B enter the polarizer 140. In this embodiment, the polarizer 140 has a specific polarization direction. For example, the polarizer 140 is a polarizer in the x-axis direction. In other words, the polarizer 140 can transmit the image polarized in the x-axis direction, and block/or absorb the image polarized in the y-axis direction or any image polarized in the non-x-axis direction. In this embodiment, the non-focused image B is an image polarized in the x-axis direction, so it can penetrate the polarizer 140, and the focused image A is filtered out. In this way, a second virtual image 222 can be formed on the second virtual plane 222P. In this embodiment, the second virtual image 222 is a planar image (2D image). The second virtual image 222 for example includes a protagonist with high resolution Image and background image. And under the action of the magnifying lens 150, the second virtual image 222 is further converted into a second magnified image 242, that is, a magnified planar image (2D image).

請繼續參考圖1及圖3B,在本實施例中,使用者的眼睛E觀察到的第二虛擬影像222實質上相同於第二原始影像220。因此,第二虛擬影像222與第二放大影像242均為高解析度的影像,但本發明不以此為限。在此須說明的是,圖3B僅示意性地繪示第二原始影像220係藉由透鏡陣列120、控光器130、偏光片140以及放大透鏡150轉換為具x軸方向之偏光方向且位於第二最終平面242P之第二放大影像242。請參考圖1,第一最終平面232P及第二最終平面242P之間對應的屈光度差Δx約為0.4屈光度(diopter)至0.8屈光度,如此一來,使用者觀察到的第一放大影像232之深度近似於觀察到的第二放大影像242之深度,藉此,可以降低使用者的視覺幅輳調節衝突,舒緩使用者視力模糊、暈眩複視、噁心嘔吐等視覺疲勞的症狀,並促進使用者使用立體顯示裝置的體驗。在本實施例中,第一虛擬平面212P與第二虛擬平面222P之間之距離d約為0.95毫米。Please continue to refer to FIG. 1 and FIG. 3B. In this embodiment, the second virtual image 222 observed by the user's eye E is substantially the same as the second original image 220. Therefore, the second virtual image 222 and the second enlarged image 242 are both high-resolution images, but the invention is not limited thereto. It should be noted here that FIG. 3B only schematically shows that the second original image 220 is converted into a polarization direction with an x-axis direction by the lens array 120, the light controller 130, the polarizer 140, and the magnifying lens 150 and is located in The second enlarged image 242 of the second final plane 242P. Please refer to FIG. 1, the corresponding diopter difference Δx between the first final plane 232P and the second final plane 242P is about 0.4 diopters to 0.8 diopters, so that the depth of the first enlarged image 232 observed by the user Approximately the depth of the second magnified image 242 observed, which can reduce the user's conflict of vision adjustment, relieve the symptoms of visual fatigue such as blurred vision, dizziness, double vision, nausea and vomiting, and promote the user Experience using a stereoscopic display device. In this embodiment, the distance d between the first virtual plane 212P and the second virtual plane 222P is about 0.95 mm.

圖4為本發明一實施例的立體影像顯示裝置的時序示意圖。請參考圖1、圖3A、圖3B及圖4,在本實施例中,立體影像顯示裝置100是以分時多工的方式重疊第一虛擬影像212及第二虛擬影像222,以構成混合影像250(繪示於圖9A及9B)。舉例而言,立體影像之顯示方法是透過在第一時段T1執行第一模式M1以產生第一放大影像232,接著在第二時段T2執行第二模式M2以產生第二放大影像242,然後再於第三時段T3執行第一模式M1以產生另一第一放大影像232,接著再於第四時段T4執行第二模式M2以產生另一第二放大影像242,並以上述方式持續交替執行第一模式M1及第二模式M2。如此一來,透過視覺暫留的現象,可以將在第一時段T1顯示的第一放大影像232,以及在第二時段T2顯示的第二放大影像242重疊並構成混合影像250。第一模式M1及第二模式M2之運作方式請參考圖3A、圖3B及前述對應說明,在此不贅述。4 is a timing diagram of a stereoscopic image display device according to an embodiment of the invention. Please refer to FIG. 1, FIG. 3A, FIG. 3B and FIG. 4. In this embodiment, the stereoscopic image display device 100 overlaps the first virtual image 212 and the second virtual image 222 in a time-sharing multiplex manner to form a mixed image 250 (shown in Figures 9A and 9B). For example, the display method of the stereoscopic image is to generate the first enlarged image 232 by executing the first mode M1 during the first period T1, and then execute the second mode M2 to generate the second enlarged image 242 during the second period T2, and then The first mode M1 is executed in the third period T3 to generate another first enlarged image 232, and then the second mode M2 is executed in the fourth period T4 to generate another second enlarged image 242, and the second mode is continuously executed in the above manner. A mode M1 and a second mode M2. In this way, through the phenomenon of persistence of vision, the first enlarged image 232 displayed in the first period T1 and the second enlarged image 242 displayed in the second period T2 can be overlapped to form a mixed image 250. Please refer to FIG. 3A, FIG. 3B and the corresponding descriptions above for the operation modes of the first mode M1 and the second mode M2, which will not be repeated here.

在本實施例中,第一原始影像210或第二原始影像220之幀率為60赫茲、70赫茲、90赫茲、120赫茲、144赫茲或240赫茲。第一時段T1或/及第二時段T2的時間ΔT約為4毫秒至17毫秒。在本發明的一實施例中,第一時段T1或/及第二時段T2例如為13毫秒,但本發明不以此為限。In this embodiment, the frame rate of the first original image 210 or the second original image 220 is 60 Hz, 70 Hz, 90 Hz, 120 Hz, 144 Hz or 240 Hz. The time ΔT of the first period T1 or/and the second period T2 is about 4 milliseconds to 17 milliseconds. In an embodiment of the present invention, the first time period T1 or/and the second time period T2 is, for example, 13 milliseconds, but the present invention is not limited thereto.

簡言之,本發明一實施例的立體影像之顯示方法,可以透過顯示面板110於第一時段T1提供第一放大影像232,而於第二時段T2提供第二放大影像242。由於使用者觀察到的第一放大影像232之深度近似於觀察到的第二放大影像242之深度,藉此,可以降低使用者的視覺幅輳調節衝突,舒緩使用者視力模糊、暈眩複視、噁心嘔吐等視覺疲勞的症狀,並促進使用者使用立體顯示裝置的體驗。此外,因第二放大影像242之解析度較高於第一放大影像232之解析度,當第一放大影像232與第二放大影像242透過分時多工的方式重疊並構成混合影像時,混合影像之解析度高於第一放大影像232之解析度。如此,本實施例的立體影像顯示裝置100可以提升立體影像的解析度,並提升立體影像顯示裝置100的顯示品質。此外,還可以提升使用者的立體視覺感受,更可以促進使用者使用立體影像顯示裝置的體驗。In short, the stereoscopic image display method according to an embodiment of the present invention can provide the first enlarged image 232 through the display panel 110 during the first time period T1 and provide the second enlarged image 242 during the second time period T2. Since the depth of the first magnified image 232 observed by the user is similar to the depth of the second magnified image 242 observed, it is possible to reduce the conflict of the user's visual amplitude adjustment and relieve the blurred vision and dizzy double vision of the user , Nausea and vomiting and other symptoms of visual fatigue, and promote the user experience of using a stereoscopic display device. In addition, since the resolution of the second enlarged image 242 is higher than the resolution of the first enlarged image 232, when the first enlarged image 232 and the second enlarged image 242 overlap and form a mixed image through time-division multiplexing, the mixed image The resolution of the image is higher than the resolution of the first enlarged image 232. As such, the stereoscopic image display device 100 of this embodiment can improve the resolution of the stereoscopic image and improve the display quality of the stereoscopic image display device 100. In addition, the stereoscopic visual experience of the user can be improved, and the user's experience of using the stereoscopic image display device can be further promoted.

請再次參考圖1,在本實施例中,放大透鏡150可將第一虛擬影像212轉換為第一放大影像232於第一最終平面232P,以及將第二虛擬影像222轉換為第二放大影像242於第二最終平面242P。第一放大影像232具有高解析度,可補償第一虛擬影像212之解析度上的損失。舉例來說,立體影像顯示裝置100的放大透鏡150具有如凸透鏡的效果。第一虛擬影像212以及第二虛擬影像222成像的位置位於放大透鏡150與其聚焦平面F之間,經過放大透鏡150的作用,第一放大影像232以及第二放大影像242係與使用者的眼睛E之間具有更大之距離FD。放大透鏡150可以提供使用者清晰且廣泛的視野,還可以使第一放大影像232與第二放大影像242的成像位置接近,進一步提升使用者的立體視覺感受。Please refer to FIG. 1 again. In this embodiment, the magnifying lens 150 can convert the first virtual image 212 into the first magnified image 232 on the first final plane 232P, and convert the second virtual image 222 into the second magnified image 242. On the second final plane 242P. The first enlarged image 232 has a high resolution, which can compensate for the loss in resolution of the first virtual image 212. For example, the magnifying lens 150 of the stereoscopic image display device 100 has an effect like a convex lens. The position where the first virtual image 212 and the second virtual image 222 are imaged is located between the magnifying lens 150 and its focus plane F. After the action of the magnifying lens 150, the first magnified image 232 and the second magnified image 242 are in contact with the user's eye E There is a larger distance FD. The magnifying lens 150 can provide the user with a clear and wide field of view, and can also make the imaging positions of the first magnified image 232 and the second magnified image 242 close, further enhancing the user's stereoscopic vision.

舉例來說,在本實施例中,使用者的眼睛E與放大透鏡150之間的適眼距ER為18毫米。放大透鏡150之尺寸約為34毫米。放大透鏡150至聚焦平面F之距離fM 約為30毫米至50毫米。放大透鏡150至顯示面板110之距離約為38.32毫米。透鏡陣列120至顯示面板110之距離g約為0.8毫米至1.2毫米。在上述的設計下,所形成的第一虛擬影像212可以接近聚焦平面F,且具有接近人眼的景深(depth of field)效果。此外,第一放大影像232更可以為具有優秀品質的光場型立體影像,且第二放大影像242為高解析度的平面影像。因此,可以提升立體影像顯示裝置100的顯示品質。此外,使用者可以透過放大透鏡150,觀察由第一虛擬影像212以及第二虛擬影像所形成的第一放大影像232與第二放大影像242,進一步地提升使用者的立體視覺感受並促進使用者使用立體影像顯示裝置100的體驗。For example, in this embodiment, the appropriate eye distance ER between the user's eye E and the magnifying lens 150 is 18 mm. The size of the magnifying lens 150 is about 34 mm. The distance f M from the magnifying lens 150 to the focus plane F is about 30 mm to 50 mm. The distance from the magnifying lens 150 to the display panel 110 is about 38.32 mm. The distance g between the lens array 120 and the display panel 110 is about 0.8 mm to 1.2 mm. Under the above design, the formed first virtual image 212 can be close to the focusing plane F, and has a depth of field effect close to the human eye. In addition, the first enlarged image 232 may be a light-field stereoscopic image with excellent quality, and the second enlarged image 242 is a high-resolution planar image. Therefore, the display quality of the stereoscopic image display device 100 can be improved. In addition, the user can observe the first enlarged image 232 and the second enlarged image 242 formed by the first virtual image 212 and the second virtual image through the magnifying lens 150 to further enhance the user's stereoscopic perception and promote the user Experience using the stereoscopic image display device 100.

圖5A為本發明一實施例的透鏡陣列的點擴散量測圖。圖5B為本發明一實施例的透鏡陣列的干涉條紋圖。圖5A顯示經透鏡陣列120聚焦後的光點,故可表示透鏡陣列120之透鏡具有在特定焦距進行聚焦的功能。請參考圖5B,經由量測透鏡陣列120的相位延遲效應,以看出透鏡表面的相位變化。在圖5B中,透鏡表面具有同心環狀且平均分布的亮暗紋,故可知透鏡具有良好且對稱的曲面表面。如此,本實施例的透鏡陣列120具有良好的光學效果,可以提供品質優良的聚焦功能。FIG. 5A is a point spread measurement diagram of a lens array according to an embodiment of the invention. FIG. 5B is an interference fringe diagram of a lens array according to an embodiment of the invention. FIG. 5A shows the light spot focused by the lens array 120, so it can be said that the lens of the lens array 120 has a function of focusing at a specific focal length. Referring to FIG. 5B, the phase delay effect of the lens array 120 is measured to see the phase change of the lens surface. In FIG. 5B, the lens surface has concentric annular and evenly distributed light and dark lines, so it can be seen that the lens has a good and symmetric curved surface. As such, the lens array 120 of this embodiment has a good optical effect and can provide a focusing function with excellent quality.

圖6A為水平視角的測試圖案。圖6B為本發明一實施例的立體影像於水平視角的量測圖。請參考圖6A及圖6B,在本實施例中,透過立體影像顯示裝置100將圖6A的水平視角的測試圖案以立體影像之顯示方式顯示並照相,以得到圖6B的立體影像於水平視角的量測圖。舉例而言,在圖6A的測試圖案中,位於左側的相鄰線條之間的間距例如為2°。相似地,位於右側的相鄰線條之間的間距例如為2°。左、右兩側的線條之間最接近的距離表示視角(field of view, FOV)為70°。左、右兩側的線條之間最疏遠的距離表示視角為86°。當圖6A的測試圖案做為立體影像顯示時,透過計算放大透鏡150所觀察到位於最左側的線條與位於最右側的線條,可以得到立體影像於水平視角的範圍。在本實施例中,立體影像的水平視角為73.5°至82.6°。Fig. 6A is a test pattern with a horizontal viewing angle. 6B is a measurement view of a stereoscopic image in a horizontal viewing angle according to an embodiment of the invention. Please refer to FIGS. 6A and 6B. In this embodiment, the stereoscopic image display device 100 displays the horizontal horizontal viewing angle test pattern of FIG. 6A in a stereoscopic image display mode and photographs, to obtain the stereoscopic image of FIG. 6B at a horizontal perspective Measurement chart. For example, in the test pattern of FIG. 6A, the spacing between adjacent lines on the left is, for example, 2°. Similarly, the spacing between adjacent lines on the right is, for example, 2°. The closest distance between the lines on the left and right indicates that the field of view (FOV) is 70°. The farthest distance between the left and right lines means the viewing angle is 86°. When the test pattern of FIG. 6A is displayed as a stereoscopic image, the line located on the leftmost side and the line located on the rightmost side observed through the calculation magnifying lens 150 can obtain the range of the horizontal viewing angle of the stereoscopic image. In this embodiment, the horizontal viewing angle of the stereoscopic image is 73.5° to 82.6°.

圖6C為垂直視角的測試圖案。圖6D為本發明一實施例的立體影像於垂直視角的量測圖。請參考圖6C及圖6D,在本實施例中,透過立體影像顯示裝置100將圖6C的垂直視角的測試圖案以立體影像之顯示方式顯示並照相,以得到圖6D的立體影像於垂直視角的量測圖。舉例而言,在圖6C的測試圖案中,位於上側的相鄰線條之間的間距例如為2°。相似地,位於下側的相鄰線條之間的間距例如為2°。上、下兩側的線條之間最接近的距離表示視角(field of view, FOV)為70°。上、下兩側的線條之間最疏遠的距離表示視角為86°。當圖6C的測試圖案做為立體影像顯示時,透過計算放大透鏡150所觀察到位於最上側的線條與位於最下側的線條,可以得到立體影像於垂直視角的範圍。在本實施例中,立體影像的垂直視角為73.5°至82.6°。Fig. 6C is a test pattern with a vertical viewing angle. FIG. 6D is a measurement view of a stereoscopic image in a vertical viewing angle according to an embodiment of the invention. Please refer to FIG. 6C and FIG. 6D. In this embodiment, the stereoscopic image display device 100 displays the test pattern of the vertical viewing angle of FIG. 6C in a stereoscopic image display mode and photographs to obtain the stereoscopic image of FIG. 6D at the vertical viewing angle Measurement chart. For example, in the test pattern of FIG. 6C, the spacing between adjacent lines on the upper side is, for example, 2°. Similarly, the spacing between adjacent lines on the lower side is, for example, 2°. The closest distance between the upper and lower lines indicates that the field of view (FOV) is 70°. The most distant distance between the upper and lower lines means the viewing angle is 86°. When the test pattern of FIG. 6C is displayed as a stereoscopic image, the uppermost line and the lowermost line observed by the calculation magnifying lens 150 can obtain the range of the vertical viewing angle of the stereoscopic image. In this embodiment, the vertical viewing angle of the stereoscopic image is 73.5° to 82.6°.

簡言之,本發明一實施例的立體影像顯示裝置100具有單眼之水平視角以及垂直視角可達73.5°至82.6°的優異效果。相較於人類單眼之視角為100°,本實施例的立體影像顯示裝置100可以提供近似人類之視角、提升立體影像顯示裝置的視角範圍、舒緩使用者視覺疲勞的症狀、提升立體影像顯示裝置的顯示品質並提升使用者的立體視覺感受並促進使用者使用立體影像顯示裝置的體驗。In short, the stereoscopic image display device 100 according to an embodiment of the present invention has an excellent effect of a horizontal viewing angle of one eye and a vertical viewing angle of 73.5° to 82.6°. Compared with a human single-eye viewing angle of 100°, the stereoscopic image display device 100 of this embodiment can provide a human-like viewing angle, improve the viewing angle range of the stereoscopic image display device, relieve the symptoms of visual fatigue of the user, and improve the stereoscopic image display device’s The display quality improves the user's stereoscopic visual experience and promotes the user's experience of using the stereoscopic image display device.

圖7A為本發明一實施例的第二放大影像的照片。圖7B為圖7A的第二放大影像的局部放大的照片。請參考圖7A及圖7B,在本實施例中,立體影像顯示裝置100提供的第二放大影像242係為高解析度的平面影像。7A is a photograph of a second enlarged image according to an embodiment of the invention. 7B is a partially enlarged photograph of the second enlarged image of FIG. 7A. 7A and 7B, in this embodiment, the second enlarged image 242 provided by the stereoscopic image display device 100 is a high-resolution planar image.

圖8A為本發明一實施例的第一放大影像的照片。圖8B為圖8A的第一放大影像的局部放大的照片。請參考圖8A及圖8B,在本實施例中,相較於第二放大影像242,立體影像顯示裝置100提供的第一放大影像232係為具有較低解析度的立體影像。8A is a photograph of a first enlarged image according to an embodiment of the invention. 8B is a partially enlarged photograph of the first enlarged image of FIG. 8A. Please refer to FIGS. 8A and 8B. In this embodiment, compared to the second enlarged image 242, the first enlarged image 232 provided by the stereoscopic image display device 100 is a stereoscopic image with a lower resolution.

圖9A為本發明一實施例的混合影像的照片。圖9B為圖9A的混合影像的局部放大的照片。請參考圖9A及圖9B,在本實施例中,混合影像250係透過分時多工的方式重疊第一放大影像232以及第二放大影像242所構成,混合影像250之解析度高於第一放大影像232。9A is a photograph of a mixed image according to an embodiment of the invention. 9B is a partially enlarged photograph of the mixed image of FIG. 9A. Please refer to FIGS. 9A and 9B. In this embodiment, the mixed image 250 is formed by overlapping the first enlarged image 232 and the second enlarged image 242 by time-division multiplexing. The resolution of the mixed image 250 is higher than the first Enlarge image 232.

綜上所述,本發明一實施例的立體影像顯示裝置以及立體影像顯示方法可以提供做為立體影像的第一放大影像,以及做為平面背景影像的第二放大影像。藉由將第一放大影像以及第二放大影像構成混合影像,且混合影像之解析度高於第一放大影像之解析度。如此,立體影像顯示裝置可以提升立體影像的解析度及立體影像顯示裝置的顯示品質,還可以提升使用者的立體視覺感受,並促進使用者使用立體影像顯示裝置的體驗。In summary, the stereoscopic image display device and stereoscopic image display method according to an embodiment of the present invention can provide a first enlarged image as a stereoscopic image and a second enlarged image as a planar background image. The first enlarged image and the second enlarged image constitute a mixed image, and the resolution of the mixed image is higher than the resolution of the first enlarged image. In this way, the stereoscopic image display device can improve the resolution of the stereoscopic image and the display quality of the stereoscopic image display device, can also improve the stereoscopic visual experience of the user, and promote the user's experience of using the stereoscopic image display device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be subject to the scope defined in the appended patent application.

100‧‧‧立體影像顯示裝置110‧‧‧顯示面板120‧‧‧透鏡陣列121‧‧‧第一基底122‧‧‧第二基底123‧‧‧網狀電極124‧‧‧面狀電極125‧‧‧第一液晶層126‧‧‧取向層127‧‧‧高阻值層128‧‧‧框膠130‧‧‧控光器131‧‧‧第三基底132‧‧‧第四基底133‧‧‧第一電極134‧‧‧第二電極135‧‧‧扭曲向列型液晶層140‧‧‧偏光片150‧‧‧放大透鏡210‧‧‧第一原始影像212‧‧‧第一虛擬影像212P‧‧‧第一虛擬平面220‧‧‧第二原始影像222‧‧‧第二虛擬影像222P‧‧‧第二虛擬平面232‧‧‧第一放大影像232P‧‧‧第一最終平面242‧‧‧第二放大影像242P‧‧‧第二最終平面250‧‧‧混合影像A‧‧‧聚焦影像B‧‧‧非聚焦影像d、FD、fM、g、t‧‧‧距離E‧‧‧眼睛ER‧‧‧適眼距F‧‧‧聚焦平面L‧‧‧非偏光的影像M1‧‧‧第一模式M2‧‧‧第二模式T1‧‧‧第一時段T2‧‧‧第二時段T3‧‧‧第三時段T4‧‧‧第四時段x、y、z‧‧‧軸線Δx‧‧‧屈光度差100‧‧‧Stereoscopic image display device 110‧‧‧Display panel 120‧‧‧ Lens array 121‧‧‧First substrate 122‧‧‧Second substrate 123‧‧‧Net electrode 124‧‧‧Flat electrode 125‧ ‧‧First liquid crystal layer 126‧‧‧Alignment layer 127‧‧‧High resistance layer 128‧‧‧Frame sealant 130‧‧‧Light controller 131‧‧‧ Third substrate 132‧‧‧Fourth substrate 133‧‧ ‧First electrode 134‧‧‧Second electrode 135‧‧‧Twisted nematic liquid crystal layer 140‧‧‧ Polarizer 150‧‧‧Magnifying lens 210‧‧‧First original image 212‧‧‧First virtual image 212P ‧‧‧First virtual plane 220‧‧‧Second original image 222‧‧‧Second virtual image 222P‧‧‧Second virtual plane 232‧‧‧First enlarged image 232P‧‧‧First final plane 242‧‧ ‧Second enlarged image 242P‧‧‧Second final plane 250‧‧‧ Mixed image A‧‧‧ Focused image B‧‧‧Unfocused image d, FD, f M , g, t‧‧‧Distance E‧‧‧ Eye ER‧‧‧Focus distance F‧‧‧Focus plane L‧‧‧ Unpolarized image M1‧‧‧ First mode M2‧‧‧ Second mode T1‧‧‧ First period T2‧‧‧ Second period T3‧‧‧ Third period T4‧‧‧ Fourth period x, y, z‧‧‧ axis Δx‧‧‧ diopter difference

圖1為本發明一實施例的立體影像顯示裝置的立體爆炸示意圖。 圖2A為本發明一實施例的立體影像顯示裝置的透鏡陣列的剖面示意圖。 圖2B為本發明一實施例的立體影像顯示裝置的控光器的局部剖面示意圖。 圖3A為本發明一實施例的立體影像顯示裝置執行第一模式的示意圖。 圖3B為本發明一實施例的立體影像顯示裝置執行第二模式的示意圖。 圖4為本發明一實施例的立體影像之顯示方法的時序示意圖。 圖5A為本發明一實施例的透鏡陣列的點擴散量測圖。 圖5B為本發明一實施例的透鏡陣列的干涉條紋圖。 圖6A為水平視角的測試圖案。 圖6B為本發明一實施例的立體影像的水平視角的量測圖。 圖6C為垂直視角的測試圖案。 圖6D為本發明一實施例的立體影像的垂直視角的量測圖。 圖7A為本發明一實施例的第二放大影像的照片。 圖7B為圖7A的第二放大影像的局部放大的照片。 圖8A為本發明一實施例的第一放大影像的照片。 圖8B為圖8A的第一放大影像的局部放大的照片。 圖9A為本發明一實施例的混合影像的照片。 圖9B為圖9A的混合影像的局部放大的照片。FIG. 1 is a schematic diagram of a three-dimensional explosion of a three-dimensional image display device according to an embodiment of the invention. 2A is a schematic cross-sectional view of a lens array of a stereoscopic image display device according to an embodiment of the invention. 2B is a schematic partial cross-sectional view of a light controller of a stereoscopic image display device according to an embodiment of the invention. FIG. 3A is a schematic diagram of a first embodiment of a three-dimensional image display device according to an embodiment of the present invention. FIG. 3B is a schematic diagram of a stereoscopic image display device according to an embodiment of the present invention performing the second mode. FIG. 4 is a timing diagram of a three-dimensional image display method according to an embodiment of the invention. FIG. 5A is a point spread measurement diagram of a lens array according to an embodiment of the invention. FIG. 5B is an interference fringe diagram of a lens array according to an embodiment of the invention. Fig. 6A is a test pattern with a horizontal viewing angle. 6B is a measurement view of the horizontal viewing angle of the stereoscopic image according to an embodiment of the invention. Fig. 6C is a test pattern with a vertical viewing angle. FIG. 6D is a measurement view of the vertical viewing angle of a stereoscopic image according to an embodiment of the invention. 7A is a photograph of a second enlarged image according to an embodiment of the invention. 7B is a partially enlarged photograph of the second enlarged image of FIG. 7A. 8A is a photograph of a first enlarged image according to an embodiment of the invention. 8B is a partially enlarged photograph of the first enlarged image of FIG. 8A. 9A is a photograph of a mixed image according to an embodiment of the invention. 9B is a partially enlarged photograph of the mixed image of FIG. 9A.

100‧‧‧立體影像顯示裝置 100‧‧‧stereoscopic image display device

110‧‧‧顯示面板 110‧‧‧Display panel

120‧‧‧透鏡陣列 120‧‧‧lens array

130‧‧‧控光器 130‧‧‧Light control

140‧‧‧偏光片 140‧‧‧ Polarizer

150‧‧‧放大透鏡 150‧‧‧ magnifying lens

212‧‧‧第一虛擬影像 212‧‧‧The first virtual image

212P‧‧‧第一虛擬平面 212P‧‧‧The first virtual plane

222‧‧‧第二虛擬影像 222‧‧‧Second virtual image

222P‧‧‧第二虛擬平面 222P‧‧‧Second Virtual Plane

232‧‧‧第一放大影像 232‧‧‧The first enlarged image

232P‧‧‧第一最終平面 232P‧‧‧First final plane

242‧‧‧第二放大影像 242‧‧‧The second enlarged image

242P‧‧‧第二最終平面 242P‧‧‧Second final plane

d、FD、fM、g、t‧‧‧距離 d, FD, f M , g, t‧‧‧ distance

E‧‧‧眼睛 E‧‧‧Eye

ER‧‧‧適眼距 ER‧‧‧ suitable eye distance

F‧‧‧聚焦平面 F‧‧‧Focus plane

x、y、z‧‧‧軸線 x, y, z‧‧‧ axis

Δx‧‧‧屈光度差 Δx‧‧‧Diopter difference

Claims (10)

一種立體影像顯示裝置,包含: 一顯示面板; 一透鏡陣列,位於該顯示面板上; 一控光器,位於該透鏡陣列上; 一偏光片,位於該控光器上;以及 一放大透鏡,位於該偏光片上。A stereoscopic image display device includes: a display panel; a lens array on the display panel; a light control device on the lens array; a polarizer on the light control device; and a magnifying lens on the The polarizer. 如申請專利範圍第1項所述的立體影像顯示裝置,其中該透鏡陣列包含: 一第一基底; 一第二基底; 一網狀電極,位於該第一基底上; 一面狀電極,位於該第二基底上;以及 一第一液晶層,位於該網狀電極及該面狀電極之間。The stereoscopic image display device according to item 1 of the patent application scope, wherein the lens array includes: a first substrate; a second substrate; a mesh electrode on the first substrate; a planar electrode on the first Two substrates; and a first liquid crystal layer, located between the mesh electrode and the planar electrode. 如申請專利範圍第2項所述的立體影像顯示裝置,其中該透鏡陣列更包含一高阻值層位於該網狀電極及該第一液晶層之間,該高阻值層之材料包含氧化鈮或氧化鋅。The stereoscopic image display device as described in item 2 of the patent application range, wherein the lens array further includes a high-resistance layer between the mesh electrode and the first liquid crystal layer, and the material of the high-resistance layer includes niobium oxide Or zinc oxide. 如申請專利範圍第2項所述的立體影像顯示裝置,其中該網狀電極具有多個六邊形圖案,且該網狀電極之材料包含鋁、銀或銅。The stereoscopic image display device as described in item 2 of the patent application scope, wherein the mesh electrode has a plurality of hexagonal patterns, and the material of the mesh electrode includes aluminum, silver, or copper. 如申請專利範圍第1項所述的立體影像顯示裝置,其中該控光器包含一扭曲向列型液晶層。The stereoscopic image display device as described in item 1 of the patent application range, wherein the light control device includes a twisted nematic liquid crystal layer. 如申請專利範圍第1項所述的立體影像顯示裝置,其中該顯示面板適於提供一第一原始影像及一第二原始影像,該第一原始影像係被轉換為一第一虛擬影像於一第一虛擬平面,該第二原始影像係被轉換為一第二虛擬影像於一第二虛擬平面,該第一虛擬平面與該第二虛擬平面之間具有一距離。The stereoscopic image display device as described in item 1 of the patent application range, wherein the display panel is adapted to provide a first original image and a second original image, the first original image is converted into a first virtual image on a In the first virtual plane, the second original image is converted into a second virtual image in a second virtual plane, and there is a distance between the first virtual plane and the second virtual plane. 一種立體影像之顯示方法,包含: 提供如申請專利範圍第1項所述的立體影像顯示裝置; 於一第一時段執行一第一模式,包含: 藉由該顯示面板提供一第一原始影像;以及 藉由該透鏡陣列、該控光器、該偏光片及該放大透鏡將該第一原始影像轉換為一第一放大影像;以及 於一第二時段執行一第二模式,包含: 藉由該顯示面板提供一第二原始影像;以及 藉由該透鏡陣列、該控光器、該偏光片及該放大透鏡將該第二原始影像轉換為一第二放大影像,其中該控光器將該第二原始影像之偏光方向旋轉90度,其中該第一放大影像及該第二放大影像構成一混合影像,該混合影像之解析度高於該第一放大影像之解析度。A stereoscopic image display method, comprising: providing a stereoscopic image display device as described in item 1 of the scope of patent application; executing a first mode in a first period, including: providing a first original image through the display panel; And converting the first original image into a first enlarged image by the lens array, the light controller, the polarizer and the magnifying lens; and executing a second mode in a second time period, including: by the The display panel provides a second original image; and the second original image is converted into a second enlarged image by the lens array, the light controller, the polarizer and the magnifying lens, wherein the light controller The polarization directions of the two original images are rotated by 90 degrees, wherein the first enlarged image and the second enlarged image constitute a mixed image, and the resolution of the mixed image is higher than the resolution of the first enlarged image. 如申請專利範圍第7項所述的立體影像之顯示方法,其中該第一原始影像或該第二原始影像之幀率為60赫茲、70赫茲、90赫茲、120赫茲、144赫茲或240赫茲。The method for displaying a stereoscopic image as described in item 7 of the patent application, wherein the frame rate of the first original image or the second original image is 60 Hz, 70 Hz, 90 Hz, 120 Hz, 144 Hz or 240 Hz. 如申請專利範圍第7項所述的立體影像之顯示方法,其中該第一時段或/及該第二時段為13毫秒。The method for displaying a stereoscopic image as described in item 7 of the patent application scope, wherein the first period or/and the second period is 13 milliseconds. 如申請專利範圍第7項所述的立體影像之顯示方法,其中於該第一時段中,該透鏡陣列、該控光器及該偏光片將該第一原始影像轉換為一第一虛擬影像於一第一虛擬平面,該放大透鏡將該第一虛擬影像轉換為該第一放大影像於一第一最終平面;其中於該第二時段中,該透鏡陣列、該控光器及該偏光片將該第二原始影像轉換為一第二虛擬影像於一第二虛擬平面,該放大透鏡將該第二虛擬影像轉換為該第二放大影像於一第二最終平面;其中該第一最終平面及該第二最終平面之間對應的屈光度差約為0.4屈光度(diopter)至0.8屈光度。The method for displaying a stereoscopic image as described in item 7 of the patent application range, wherein in the first period, the lens array, the light control device and the polarizer convert the first original image into a first virtual image A first virtual plane, the magnifying lens converts the first virtual image into the first magnified image on a first final plane; wherein in the second time period, the lens array, the light controller and the polarizer will The second original image is converted into a second virtual image on a second virtual plane, and the magnifying lens converts the second virtual image into the second magnified image on a second final plane; wherein the first final plane and the The corresponding diopter difference between the second final planes is about 0.4 diopters to 0.8 diopters.
TW107116988A 2018-05-18 2018-05-18 Stereoscopic image display device and stereoscopic image display method TWI684027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107116988A TWI684027B (en) 2018-05-18 2018-05-18 Stereoscopic image display device and stereoscopic image display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107116988A TWI684027B (en) 2018-05-18 2018-05-18 Stereoscopic image display device and stereoscopic image display method

Publications (2)

Publication Number Publication Date
TW202004263A true TW202004263A (en) 2020-01-16
TWI684027B TWI684027B (en) 2020-02-01

Family

ID=69942194

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107116988A TWI684027B (en) 2018-05-18 2018-05-18 Stereoscopic image display device and stereoscopic image display method

Country Status (1)

Country Link
TW (1) TWI684027B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808802A (en) * 1996-11-15 1998-09-15 Daewoo Electronics Co. Ltd. Head-mounted display apparatus with a single image display device
US6961177B2 (en) * 2001-06-01 2005-11-01 Sony Corporation Stereoscopic image display apparatus, display apparatus, divided wave plate filter, plate-shared filter, and filter position adjusting mechanism attached to the display apparatus, aligning apparatus, filter position adjusting method, and filter aligning method
CN1727940A (en) * 2004-07-26 2006-02-01 周龙交 Stereoscopic display unit
WO2011129625A2 (en) * 2010-04-14 2011-10-20 (주)Lg화학 Stereoscopic image display device
TWI432013B (en) * 2011-06-30 2014-03-21 Acer Inc 3d image display method and image timing control unit
US20150070607A1 (en) * 2012-04-06 2015-03-12 Sharp Kabushiki Kaisha Stereoscopic display apparatus
CN103293687B (en) * 2012-05-29 2016-07-13 钟磊 The huge curtain 3D movie mirror of panel computer
US9841537B2 (en) * 2012-07-02 2017-12-12 Nvidia Corporation Near-eye microlens array displays
TWI600949B (en) * 2014-07-29 2017-10-01 可隆股份有限公司 2d/3d switching lens and display device thereof
TW201734572A (en) * 2016-03-10 2017-10-01 Omron Tateisi Electronics Co Stereoscopic display device
CN105700166A (en) * 2016-04-05 2016-06-22 武汉华星光电技术有限公司 Naked eye stereoscopic display

Also Published As

Publication number Publication date
TWI684027B (en) 2020-02-01

Similar Documents

Publication Publication Date Title
KR102707610B1 (en) Virtual and augmented reality systems and methods having improved diffractive grating structures
JP7204808B2 (en) Improved manufacturing for virtual and augmented reality systems and components
EP2730963B1 (en) 3D image display apparatus including electrowetting lens array and 3D image pickup apparatus including electrowetting lens array
JP5490759B2 (en) Video display device and manufacturing method thereof
JP5394108B2 (en) 3D image display device
KR20210130672A (en) Head mounted display apparatus
CN201765418U (en) Naked-eye stereoscopic display device
US20130286053A1 (en) Direct view augmented reality eyeglass-type display
EP3518025B1 (en) Near-eye display device
JP5921376B2 (en) 3D display device
JP6654281B2 (en) Liquid crystal lenticular lens element and driving method thereof, stereoscopic display device, terminal device
CN101576662B (en) Display device and method for displaying three-dimensional stereo image
TWI435594B (en) Display device and method of displaying three dimentional stereoscopic image
CN103513311B (en) A kind of 3 D grating and bore hole 3D display device
US8319902B2 (en) 2D/3D switchable integral imaging systems
TW201105111A (en) Autostereoscopic display device
WO2014198104A1 (en) Double layer-structured liquid crystal lens and three-dimensional display device
WO2017028435A1 (en) Control method and control apparatus for 3d display device, and 3d display device
CN105700166A (en) Naked eye stereoscopic display
TW201237474A (en) Method for forming a microretarder film
TW200530675A (en) Display panel and display device
TWI660202B (en) Naked-eyes type stereoscopic display and stereoscopic image display method thereof
KR20150037012A (en) Autostereoscopic 3D image display apparatus using micro lens array
TWI684027B (en) Stereoscopic image display device and stereoscopic image display method
JP2013195536A (en) Display device, electronic apparatus and control circuit