TW202001659A - 基於人工智慧的語音問答驗證系統及其方法 - Google Patents

基於人工智慧的語音問答驗證系統及其方法 Download PDF

Info

Publication number
TW202001659A
TW202001659A TW107120120A TW107120120A TW202001659A TW 202001659 A TW202001659 A TW 202001659A TW 107120120 A TW107120120 A TW 107120120A TW 107120120 A TW107120120 A TW 107120120A TW 202001659 A TW202001659 A TW 202001659A
Authority
TW
Taiwan
Prior art keywords
voice
signal
question
storage device
data
Prior art date
Application number
TW107120120A
Other languages
English (en)
Inventor
邱全成
Original Assignee
英業達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英業達股份有限公司 filed Critical 英業達股份有限公司
Priority to TW107120120A priority Critical patent/TW202001659A/zh
Publication of TW202001659A publication Critical patent/TW202001659A/zh

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

一種基於人工智慧的語音問答驗證系統,透過特徵辨識模組對語音請求信號進行聲紋驗證,以產生確認信號並取得某一身分資料,然後語音問答模組自問題資料庫中隨機選擇某一個人問題進行語音提問,當語音提問的結果與內建的答案相符時,對語音請求信號進行語音辨識與語義辨識,以連線對應的雲端儲存裝置,當連線雲端儲存裝置的時間超過預定時間時,依據接收的語音維持信號進行語音解析,進而判斷是否與雲端儲存裝置維持連線,用以達成提高身分驗證的安全性以及加強雲端儲存裝置的安全性管理之技術功效。

Description

基於人工智慧的語音問答驗證系統及其方法
本發明涉及一種語音問答驗證系統及其方法,特別是基於人工智慧的語音問答驗證系統及其方法。
隨著各類資訊設備的普遍應用,越來越多的用戶將檔案或資料電腦化儲存於各類的資訊設備,例如:雲端儲存裝置。然而,一般的雲端儲存裝置主要透過帳號與密碼的設定提供安全性保護,藉由帳號與密碼的驗證進行使用者的身分驗證,以保護雲端儲存裝置所儲存的檔案或資料。然而,此類檔案或資料的保護存在帳號與密碼可能被其他人盜用,而造成檔案或資料被竊取之問題。
綜上所述,可知先前技術中長期以來一直存在儲存於雲端儲存裝置的檔案或資料因帳號與密碼可能被其他人盜用而遭到竊取之問題,因此實有必要提出改進的技術手段,來解決此一問題。
本發明揭露一種基於人工智慧的語音問答驗證系統及其方法。
首先,本發明揭露一種基於人工智慧的語音問答驗證系統,此系統包含:聲紋資料庫、問題資料庫、身分辨識資料庫、接收模組、特徵辨識模組、語音問答模組及處理模組。其中,聲紋資料庫用以儲存多個身分資料與多個預設聲紋資料,該些身分資料以一對一方式對應該些預設聲紋資料;問題資料庫用以儲存問題模板,問題模板包含多個個人問題;身分辨識資料庫用以儲存多個身分辨識資料,每一身分辨識資料包含某一身分資料、該些個人問題及針對每一個人問題所回應的答案;接收模組用以接收語音請求信號與語音回復信號;特徵辨識模組用以對語音請求信號進行特徵分析,以取得聲音特徵資料,並比對聲音特徵資料與該些預設聲紋資料,當聲音特徵資料與該些預設聲紋資料其中之一相符時,產生確認信號並取得對應的某一身分資料;語音問答模組用以當特徵辨識模組產生確認信號時,自問題資料庫中隨機選擇某一個人問題進行語音提問,並針對回應個人問題的語音回復信號與特徵辨識模組取得的身分資料針對個人問題所回應的答案進行比對,當語音回復信號與特徵辨識模組取得的身分資料針對個人問題所回應的答案相符時,對語音請求信號進行語音辨識與語義辨識,以取得控制指令,其中,控制指令包含連結命令與裝置名稱;以及處理模組用以依據連結命令連線裝置名稱對應的雲端儲存裝置。其中,當連線雲端儲存裝置的時間超過預定時間時,處理模組請求輸入語音維持信號,接收模組接收語音維持信號,特徵辨識模組對語音維持信號進行聲紋辨識,待聲紋辨識驗證通過後,語音問答模組對語音維持信號進行語音解析,以使處理模組依據語音維持信號語音解析的結果判斷是否與雲端儲存裝置維持連線。
另外,本發明揭露一種基於人工智慧的語音問答驗證方法,其步驟包括:接收語音請求信號;對語音請求信號進行特徵分析,以取得聲音特徵資料,並比該聲音特徵資料與多個預設聲紋資料;當判斷聲音特徵資料與該些預設聲紋資料其中之一相符時,產生確認信號並取得身分資料;當產生確認信號時,自問題資料庫中隨機選擇一個人問題進行語音提問;接收回應該個人問題的語音回復信號;針對回應該個人問題的語音回復信號與身分辨識資料庫中該身分資料針對該個人問題所回應的答案進行比對;當語音回復信號與身分辨識資料庫中該身分資料針對該個人問題所回應的答案相符時,對語音請求信號進行語音辨識與語義辨識,以取得控制指令,其中,控制指令包含連結命令與裝置名稱;依據連結命令連線裝置名稱對應的雲端儲存裝置;當連線雲端儲存裝置的時間超過預定時間時,請求輸入語音維持信號;接收語音維持信號後,對語音維持信號進行聲紋辨識;待聲紋辨識驗證通過後,對語音維持信號進行語音解析;以及依據語音維持信號語音解析的結果判斷是否與雲端儲存裝置維持連線。
本發明所揭露之系統與方法如上,與先前技術的差異在於本發明是透過特徵辨識模組對語音請求信號進行聲紋驗證,以產生確認信號並取得某一身分資料,然後語音問答模組自問題資料庫中隨機選擇某一個人問題進行語音提問,並針對回應該個人問題的語音回復信號與該身分資料針對該個人問題所回應的答案進行比對,當該語音回復信號與該答案相符時,對語音請求信號進行語音辨識與語義辨識,以取得包含連結命令與裝置名稱的控制指令,使得處理模組依據連結命令連線裝置名稱對應的雲端儲存裝置。當連線雲端儲存裝置的時間超過預定時間時,依據接收的語音維持信號進行語音解析,進而判斷是否與雲端儲存裝置維持連線。
透過上述的技術手段,本發明可透過聲紋辨識與隨機語音問答驗證使用者身分,當使用者身分通過驗證時即可連線指定的雲端儲存裝置,進而達成提高身分驗證的安全性之技術功效。此外,當連線雲端儲存裝置的時間超過預定時間時,可請求輸入語音維持信號,並對接收到的語音維持信號進行語音解析,進一步判斷是否與雲端儲存裝置維持連線,以加強雲端儲存裝置的安全性管理。
以下將配合圖式及實施例來詳細說明本發明之實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。
在說明本發明所揭露之基於人工智慧的語音問答驗證系統及其方法之前,先對本發明所自行定義的名詞作說明,本發明所述的基於人工智慧的語音問答驗證系統所包含的接收模組、特徵辨識模組、語音問答模組及處理模組可以利用各種方式來實現,包含軟體、硬體、韌體或其任意組合。在實施中提出的技術使用軟體或韌體可以被儲存在機器可讀儲存媒體上,例如:唯讀記憶體(ROM)、隨機存取記憶體(RAM)、磁盤儲存媒體、光儲存媒體、快閃記憶體裝置等等,並且可以由一個或多個通用或專用的可程式化微處理器執行。本發明所述的基於人工智慧的語音問答驗證系統與雲端儲存裝置之間可通過網路,例如:行動通訊網路、網際網路、局域網路、廣域網路和/或無線網路相互連通。
請先參閱「第1圖」,「第1圖」為本發明基於人工智慧的語音問答驗證系統之一實施例系統方塊圖,基於人工智慧的語音問答驗證系統100用以連線任一雲端儲存裝置,基於人工智慧的語音問答驗證系統100可包含:聲紋資料庫30、問題資料庫40、身分辨識資料庫50、接收模組110、特徵辨識模組120、語音問答模組130及處理模組140。其中,聲紋資料庫30連接特徵辨識模組120,問題資料庫40連接語音問答模組130,身分辨識資料庫50連接語音問答模組130,接收模組110連接特徵辨識模組120與語音問答模組130,特徵辨識模組120連接語音問答模組130與處理模組140,語音問答模組130連接處理模組140。
聲紋資料庫30可用以儲存多個身分資料與多個預設聲紋資料,該些身分資料以一對一方式對應該些預設聲紋資料。其中,每一身分資料代表一位可合法連線基於人工智慧的語音問答驗證系統100與雲端儲存裝置的使用者的識別資料,可為但不限於身分證字號,可依據實際需求進行調整。由於人在講話時使用的發聲器官都不盡相同,使得任何兩個人的聲紋圖譜都有差異,因此在一般情況下可透過聲紋圖譜區別不同的人的聲音,在本實施例中,聲紋資料庫30儲存有每一位可合法連線基於人工智慧的語音問答驗證系統100與雲端儲存裝置的使用者的識別資料(即身分資料)與其具有的聲音特徵資料(即對應的預設聲紋資料)。
問題資料庫40可用以儲存問題模板,問題模板包含多個個人問題。其中,個人問題的數量可依據實際需求進行調整,每一個人問題為可用以確認與區隔不同使用者身分的問題,例如:身分證字號、畢業的國小、出生年月日或家中寵物名稱等。
身分辨識資料庫50可用以儲存多個身分辨識資料,每一身分辨識資料包含某一身分資料、該些個人問題及針對每一個人問題所回應的答案。舉例而言,請參閱「第2圖」,「第2圖」為「第1圖」的身分辨識資料庫中每一身分辨識資料之一實施例示意圖,每一身分辨識資料可為一資料表,除了包含一個身分資料(例如:身分證字號)以外,還包含每一個人問題以及其對應的答案(即具有該身分資料的使用者針對每一個人問題所回應的答案),但本舉例並非用以限定本發明。換句話說,每一身分辨識資料中針對每一個人問題所回應的答案也可為預先儲存的聲音信號,每一該預先儲存的聲音信號為當時新增合法使用基於人工智慧的語音問答驗證系統100的新使用者時新使用者語音回應每一個人問題的聲音信號。
接收模組110可用以接收語音請求信號與多個語音回復信號。在實際實施中,接收模組110可為但不限於麥克風,用以接收使用者的語音輸入。其中,語音請求信號為使用者請求連線雲端儲存裝置時所說出的話語,舉例而言,當使用者欲連線裝置名稱為「CDrive」的雲端儲存裝置時,語音請求信號可為「連線CDrive」。每一語音回復信號為使用者回應某一個人問題所說出的話語,詳細的說明請容後詳述。
特徵辨識模組120可用以對語音請求信號進行特徵分析,以取得聲音特徵資料,並比對聲音特徵資料與該些預設聲紋資料,當聲音特徵資料與該些預設聲紋資料其中之一相符時,產生確認信號並取得對應的某一身分資料。由於任何兩個人的聲紋圖譜都有差異,因此,在本實施例中,特徵辨識模組120於接收來自接收模組110的語音請求信號後,可對語音請求信號進行特徵分析(即對語音請求信號轉換成聲紋圖譜,再提取聲紋圖譜的特徵參數),進而取得聲音特徵資料(即聲紋圖譜的特徵參數),並直接將聲音特徵資料與聲紋資料庫30所儲存的多個預設聲紋資料(即多個欲先設定為合法使用者的聲音特徵資料)進行比對,當聲音特徵資料與該些預設聲紋資料其中之一相符時,則代表說話人為合法的使用者,特徵辨識模組120可產生確認信號(即完成說話人的初步身分認證),而由於聲紋資料庫30中該些身分資料以一對一方式對應該些預設聲紋資料,因此當聲音特徵資料與該些預設聲紋資料其中之一相符時,特徵辨識模組120可從聲紋資料庫30中找到對應的某一身分資料(即取得代表說話人的身分資料)。
語音問答模組130可用以當特徵辨識模組120產生確認信號時,自問題資料庫40中隨機選擇某一個人問題進行語音提問,並針對回應該個人問題的語音回復信號與特徵辨識模組120取得的身分資料針對該個人問題所回應的答案進行比對,當語音回復信號與特徵辨識模組120取得的身分資料針對該個人問題所回應的答案相符時,對語音請求信號進行語音辨識與語義辨識,以取得控制指令,其中,控制指令包含連結命令與裝置名稱。
詳細地說,特徵辨識模組120產生確認信號並取得某一身分資料(即完成說話人的初步身分認證且取得代表說話人的身分資料)後,語音問答模組130可自問題資料庫40中隨機選擇任一個人問題進行語音提問,使用者(即說話人)可針對上述該個人問題以語音回復信號(即使用者回應該個人問題所說出的話語)對應回覆,接收模組110接收回應上述該個人問題的語音回復信號。在本實施例中,由於每一身分辨識資料可為「第2圖」所示的資料表,因此,語音問答模組130可先對語音回復信號執行語音轉文字轉換以產生文字表示(即進行語音解析),接著依據特徵辨識模組120所取得的身分資料在身分辨識資料庫50中找到對應的身分辨識資料,再將語音回復信號的語音解析結果(即該文字表示)與上述對應的身分辨識資料中針對上述該個人問題所回應的答案進行比對,當語音回復信號的語音解析結果與對應的身分辨識資料中針對上述該個人問題所回應的答案相符時,代表使用者通過進一步的身分驗證(即說話人確認為合法使用者);當語音回復信號的語音解析結果與對應的身分辨識資料中針對上述該個人問題所回應的答案不相符時,代表使用者無法通過進一步的身分驗證(即說話人非為合法使用者),無法執行後續程序(即無法連線雲端儲存裝置),但本實施例並非用以限定本發明。
舉例而言,由於每一身分辨識資料中針對每一個人問題所回應的答案也可為預先儲存的聲音信號,因此,語音問答模組130可先依據特徵辨識模組120所取得的身分資料在身分辨識資料庫50中找到對應的身分辨識資料,再依據該個人問題找到對應的預先儲存的聲音信號(即該個人問題的答案),接著直接將語音回復信號與該預先儲存的聲音信號進行比對(即聲音波形的比對),當語音回復信號與該預先儲存的聲音信號相符時,代表使用者通過進一步的身分驗證(即說話人確認為合法使用者);當語音回復信號與該預先儲存的聲音信號不相符時,代表使用者無法通過進一步的身分驗證(即說話人非為合法使用者),無法執行後續程序(即無法連線雲端儲存裝置)。
此外,在本實施例中,語音問答模組130僅自問題資料庫40中隨機選擇任一個人問題進行語音提問,以執行進一步的身分驗證,但本實施例並非用以限定本發明。舉例而言,為了提高身分驗證的準確率,語音問答模組130可自問題資料庫40中隨機選擇多個個人問題逐一進行語音提問,並可將使用者逐一回應每一個人問題的語音回復信號進行上述語音解析與比對,當有比對結果不相符的情況發生時,則代表使用者無法通過進一步的身分驗證,無法執行後續程序(即無法連線雲端儲存裝置)。
當使用者通過進一步的身分驗證後,語音問答模組130可對語音請求信號(即使用者請求連線雲端儲存裝置時所說出的話語)進行語音辨識,以取得至少一語音資料(即找到對應語音請求信號的字彙),再依據該至少一語音資料自語義資料庫60查詢該至少一語音資料所對應的類別,以取得對應該至少一語音資料的控制指令(即進行語義辨識),其中,控制指令包含連結命令與裝置名稱。
在本實施例中,上述的語音辨識可透過直接聲波比對方式或是以聲學模型比對方式進行。其中,直接聲波比對方式即是直接將語音請求信號與語音資料庫70內的語音信號進行聲音波形的比對,而比對出最相近的可能字彙(每一字彙對應一語音資料),而聲學模型比對方式則是透過隱藏式馬可夫模型(Hidden Markov Model,HMM)、神經網路(Neural Networks)、動態時間校準(Dynamic Time Warping,DTW)或是語音模版比對(Template Matching)等各式聲學模型來進行語音辨識。當語音問答模組130以聲學模型比對方式來進行語音辨識時,語音問答模組130可先從語音請求信號中擷取多個聲學特徵(即得到語音請求信號對應的線性預測倒頻譜係數(Linear Predictive Cepstral Coefficient,LPCC)、梅爾倒頻譜係數(Mel Frequency Cepstral Coefficient,MFCC)、MPEG7及對數能量(Log Energy)等參數),接著,將該些聲學特徵與上述其中一聲學模型進行比對,找出與該些聲學特徵最為匹配的對應字彙(每一字彙對應一語音資料)。舉例而言,當語音請求信號為「連線CDrive」時,語音問答模組130經語音解析所獲得的對應字彙可為「『連線』、『CDrive』」。
上述的語義辨識可為語音問答模組130依據該至少一語音資料自語義資料庫60查詢該至少一語音資料所對應的類別,以取得對應該至少一語音資料的控制指令,其中,控制指令可包含連結命令與雲端儲存裝置的裝置名稱。具體而言,語音問答模組130可依據對應字彙自語義資料庫60查詢每一字彙對應的類別,其中,類別可為行為、裝置或檔案。更具體而言,語義資料庫60可記錄有字彙與對應的類別之關係(如「第3圖」所示,「第3圖」為「第1圖」的基於人工智慧的語音問答驗證系統中語義資料庫所記錄之字彙與類別的一實施例對照表),每一個語音資料對應一個類別(即每一字彙對應一個類別)。由於一個完整的控制指令可包含一行為類別(即說話者欲執行的操作)與一裝置類別(即說話者欲操作的裝置),因此,語音問答模組130需自語義資料庫60查詢其解析語音請求信號所獲得的該些字彙是否至少對應一行為類別或一裝置類別,進而確認是否已收集完整的控制指令,其中,控制指令可具有一特定格式,其可包含連結命令以及裝置名稱(如「第4A圖」所示,「第4A圖」為「第1圖」的基於人工智慧的語音問答驗證系統中控制指令的一實施例格式),於實際運用上,裝置名稱與連結命令的排序可依據實際需求進行調整,裝置名稱用於表示欲被操作的雲端儲存裝置,連結命令用於表示說話者欲執行的操作。舉例而言,當語音問答模組130所獲得的對應字彙為「『連線』、『CDrive』」時,語音問答模組130可根據語義資料庫60得到查詢到「連線」對應的類別為“行為”,「CDrive」對應的類別為“裝置”,因此,控制指令的內容可能如「第4B圖」所示,「第4B圖」為「第1圖」的基於人工智慧的語音問答驗證系統中控制指令的一實施例內容,「第4B圖」表示說話者想要「連線」雲端儲存裝置,該雲端儲存裝置的裝置名稱為「CDrive」。
需注意的是,語音問答模組130所獲得的字彙可能無法自語義資料庫60查詢到對應的類別(即代表該字彙無法辨識其類別),但語義資料庫60所記錄之字彙與類別的對照表可隨時依據需求進行更新,其中,對照表中的字彙需包含每一雲端儲存裝置的裝置名稱且該些裝置名稱所對應的類別為“裝置"。此外,當語音問答模組130確認該些字彙對應的類別缺少行為類別或裝置類別,或者確認該些字彙對應多個行為類別或多個裝置類別時,則判斷無法收集完整的控制指令,而無法取得控制指令。
處理模組140可用以依據連結命令連線裝置名稱對應的雲端儲存裝置。更詳細地說,當處理模組140接收到控制指令時,可執行一應用程式,使該應用程式依據連結命令登入裝置名稱所對應的雲端儲存裝置。舉例而言,當控制指令所包含的裝置名稱為「CDrive」,連結命令為「連線」時,處理模組140可執行應用程式使其「連線」裝置名稱為「CDrive」的雲端儲存裝置。
此外,為了加強雲端儲存裝置的安全性管理,當連線雲端儲存裝置的時間超過一預定時間時,處理模組140可透過語音方式或顯示於顯示裝置的方式請求使用者輸入語音維持信號,使得使用者藉由語音輸入方式回應語音維持信號,其中,語音維持信號可為但不限於使用者朗誦基於人工智慧的語音問答驗證系統100所預設的維持語句,例如:保持連線。當接收模組110接收該語音維持信號後,特徵辨識模組120對該語音維持信號進行聲紋辨識(即確認是否為合法使用者,詳細說明已於上述段落進行說明,於此不再贅述),待聲紋辨識驗證通過後,語音問答模組130對該語音維持信號進行語音解析(即執行語音轉文字),以使處理模組140依據該語音維持信號語音解析的結果判斷是否與雲端儲存裝置維持連線。進一步地說,當該語音維持信號語音解析的結果與基於人工智慧的語音問答驗證系統100所預設的維持語句不同時,處理模組140判斷離線雲端儲存裝置(即不與雲端儲存裝置連線);當該語音維持信號語音解析的結果與基於人工智慧的語音問答驗證系統100所預設的維持語句相同時,處理模組140判斷與雲端儲存裝置維持連線。其中,預定時間可為但不限於十分鐘,可依據實際需求進行調整。本實施例可避免合法使用者離開座位時雲端儲存裝置中的檔案被他人盜取的情形。
在本實施例中,基於人工智慧的語音問答驗證系統100可新增合法使用者,詳細說明如下。新使用者(即欲新增的合法使用者)可語音輸入一註冊請求信號,當接收模組110接收該註冊請求信號後,處理模組140可透過語音方式或顯示於顯示裝置的方式請求新使用者輸入語音註冊信號,使得新使用者藉由語音輸入方式回應語音註冊信號,其中,語音註冊信號可為新使用者朗誦基於人工智慧的語音問答驗證系統100所預設的註冊語句。
當接收模組110接收該語音註冊信號後,特徵辨識模組120對該語音註冊信號進行特徵分析(即對語音註冊信號轉換成聲紋圖譜,再提取聲紋圖譜的特徵參數),進而取得聲音特徵資料(即聲紋圖譜的特徵參數),以在該聲紋資料庫30儲存與新增一新的預設聲紋資料,接著,語音問答模組130依據問題資料庫40所提供的全部該些個人問題逐一進行語音提問,並透過接收模組110逐一接收回應每一個人問題的語音答案信號,以在問題資料庫40儲存與新增一新的身分辨識資料以及在聲紋資料庫30儲存對應該新的預設聲紋資料的一新的身分資料。在本實施例中,語音問答模組130可對每一語音答案信號進行語音解析(即執行語音轉文字),以取得對應的字彙,進而儲存為問題資料庫40中對應的個人問題的答案以及儲存為聲紋資料庫30的身分資料(即身分證字號),但本實施例並非用以限定本發明。換句話說,在其他實施例中,除了對應為聲紋資料庫30的身分資料(即身分證字號)之外的語音答案信號可不進行語音解析,直接儲存為新的身分辨識資料中針對每一個人問題所回應的答案,之後欲進行比對時以聲波方式進行比對。
在本實施例中,基於人工智慧的語音問答驗證系統100也可透過語音控制的方式進行雲端儲存裝置的檔案存取,當連線雲端儲存裝置後,使用者可藉由接收模組110輸入語音存取信號,語音存取信號可包含檔案名稱(即連線的雲端儲存裝置所儲存的任一檔案的名稱),使得接收模組110接收語音存取信號後,語音問答模組130可對語音存取信號進行語音辨識與語義辨識,以使處理模組140依據語音辨識與語義辨識的結果對應存取連線的雲端儲存裝置中對應該檔案名稱的檔案。舉例而言,當語音存取信號為「讀取說明書」時,語音問答模組130經語音解析所獲得的對應字彙可為「『讀取』、『說明書』」,再根據語義資料庫60得到查詢到「讀取」對應的類別為“行為”,「說明書」對應的類別為“檔案”,使得語義辨識的結果為使用者想要「讀取」檔案名稱為「說明書」的檔案,因此,處理模組140依據語音辨識與語義辨識的結果「讀取」連線的雲端儲存裝置中檔案名稱為「說明書」的檔案。
此外,在本實施例中,處理模組140也可將基於人工智慧的語音問答驗證系統100對連線的雲端儲存裝置中的檔案進行存取的次數與每一次存取檔案的時間記錄於儲存模組(未繪製),若處理模組140判斷短時間內基於人工智慧的語音問答驗證系統100對雲端儲存裝置的檔案進行存取的次數過多時,可判斷使用狀態發生異常,直接與該雲端儲存裝置進行斷線,或者請求使用者輸入語音判斷信號,使得使用者藉由語音輸入方式輸入語音判斷信號,特徵辨識模組120可對該語音判斷信號進行聲紋辨識(即確認是否為合法使用者,詳細說明已於上述段落進行說明,於此不再贅述),以使處理模組140依據聲紋辨識的結果判斷是否與雲端儲存裝置維持連線,進而加強對雲端儲存裝置的安全性管理。其中,處理模組140判斷多長時間內對雲端儲存裝置的檔案進行多少存取次數為使用狀態發生異常,可依據實際需求進行調整,舉例而言,處理模組140可判斷十分鐘內對雲端儲存裝置的檔案進行五次存取為使用狀態發生異常。
在本實施例中,每一身分辨識資料還可儲存其包含的身分資料連線或離線雲端儲存裝置的紀錄及存取雲端儲存裝置內任一檔案的存取紀錄,上述紀錄可包含時間標記(即連線或離線雲端儲存裝置的時間以及存取雲端儲存裝置內任一檔案的時間)。由於使用者連線或離線雲端儲存裝置的紀錄或存取雲端儲存裝置內某一檔案的紀錄為該使用者的操作紀錄,其他使用者不會知道,因此,語音問答模組130自問題資料庫40中隨機提問以進行身分辨識時,除了可以隨機選擇某一個人問題以外,還可以提問使用者前一次連線或離線雲端儲存裝置的時間或前一次存取雲端儲存裝置內某一檔案的時間,以進行身分辨識,當語音問答模組130提問使用者前一次連線或離線雲端儲存裝置的時間或前一次存取雲端儲存裝置內某一檔案的時間時,語音問答模組130對回應上述問題的語音回復信號與該使用者所對應的身分辨識資料中連線或離線雲端儲存裝置的紀錄或存取雲端儲存裝置內任一檔案的存取紀錄進行比對,當比對結果相符時,代表使用者通過進一步的身分驗證(即說話人確認為合法使用者);當比對結果不相符時,代表使用者無法通過進一步的身分驗證(即說話人非為合法使用者),無法執行後續程序(即無法連線雲端儲存裝置)。
接著,請參閱「第5圖」,「第5圖」為「第1圖」的基於人工智慧的語音問答驗證系統執行基於人工智慧的語音問答驗證方法之一實施例方法流程圖,其步驟包括:接收語音請求信號(步驟210);對語音請求信號進行特徵分析,以取得聲音特徵資料,並比該聲音特徵資料與多個預設聲紋資料(步驟220);當判斷聲音特徵資料與該些預設聲紋資料其中之一相符時,產生確認信號並取得身分資料(步驟230);當產生確認信號時,自問題資料庫中隨機選擇一個人問題進行語音提問(步驟240);接收回應該個人問題的語音回復信號(步驟250);針對回應該個人問題的語音回復信號與身分辨識資料庫中該身分資料針對該個人問題所回應的答案進行比對(步驟260);當語音回復信號與身分辨識資料庫中該身分資料針對該個人問題所回應的答案相符時,對語音請求信號進行語音辨識與語義辨識,以取得控制指令,其中,控制指令包含連結命令與裝置名稱(步驟270);依據連結命令連線裝置名稱對應的雲端儲存裝置(步驟280);當連線雲端儲存裝置的時間超過預定時間時,請求輸入語音維持信號(步驟290);接收語音維持信號後,對語音維持信號進行聲紋辨識(步驟292);待聲紋辨識驗證通過後,對語音維持信號進行語音解析(步驟294);以及依據語音維持信號語音解析的結果判斷是否與雲端儲存裝置維持連線(步驟296)。
其中,聲紋資料庫可用以儲存多個身分資料與多個預設聲紋資料,該些身分資料以一對一方式對應該些預設聲紋資料;問題資料庫可用以儲存問題模板,問題模板包含多個個人問題;身分辨識資料庫可用以儲存多個身分辨識資料,每一身分辨識資料包含某一身分資料、該些個人問題及針對每一個人問題所回應的答案,此外,每一身分辨識資料還儲存其包含的身分資料連線或離線雲端儲存裝置的紀錄及存取雲端儲存裝置內任一檔案的存取紀錄。
透過上述步驟,即可透過聲紋辨識與隨機語音問答驗證使用者身分,當使用者身分通過驗證時即可連線指定的雲端儲存裝置,進而達成提高身分驗證的安全性之技術功效。此外,當連線雲端儲存裝置的時間超過預定時間時,可請求輸入語音維持信號,並對接收到的語音維持信號進行語音解析,進一步判斷是否與雲端儲存裝置維持連線,以加強雲端儲存裝置的安全性管理。
其中,請參閱「第6圖」,「第6圖」為「第1圖」的基於人工智慧的語音問答驗證系統用以新增合法使用者的方法之一實施例方法流程圖,其步驟包括:當接收註冊請求信號後,請求輸入語音註冊信號(步驟310);接收語音註冊信號後,對該語音註冊信號進行特徵分析,以在聲紋資料庫儲存與新增一新的預設聲紋資料(步驟320);以及依據問題資料庫所提供的全部該些個人問題逐一進行語音提問及逐一接收回應每一個人問題的語音答案信號,以在問題資料庫儲存與新增一新的身分辨識資料以及在聲紋資料庫儲存對應該新的預設聲紋資料的一新的身分資料(步驟330)。詳細描述已於上述段落加以說明,於此不再贅述。
此外,請參閱「第7圖」,「第7圖」為「第1圖」的基於人工智慧的語音問答驗證系統用以加強雲端儲存裝置的安全性管理方法之一實施例方法流程圖,其步驟包括:當語音維持信號語音解析的結果與預設的維持語句不同時,判斷不與雲端儲存裝置維持連線(步驟410);以及當語音維持信號語音解析的結果與預設的維持語句相同時,判斷與雲端儲存裝置維持連線(步驟420)。此外,在本實施例中,當處理模組判斷短時間內基於人工智慧的語音問答驗證系統對雲端儲存裝置的檔案進行存取的次數過多時,可判斷使用狀態發生異常,直接與該雲端儲存裝置進行斷線,或者請求使用者輸入語音判斷信號,使得使用者藉由語音輸入方式輸入語音判斷信號,特徵辨識模組可對該語音判斷信號進行聲紋辨識(即確認是否為合法使用者,詳細說明已於上述段落進行說明,於此不再贅述),以使處理模組依據聲紋辨識的結果判斷是否與雲端儲存裝置維持連線,進而加強對雲端儲存裝置的安全性管理。詳細描述已於上述段落加以說明,於此不再贅述。
再者,請參閱「第8圖」,「第8圖」為「第1圖」的基於人工智慧的語音問答驗證系統以語音控制方式進行雲端儲存裝置的檔案存取方法之一實施例方法流程圖,其步驟包括:當連線雲端儲存裝置後,接收語音存取信號,語音存取信號包含檔案名稱(步驟510);以及對語音存取信號進行語音辨識與語義辨識,並依據語音存取信號語音辨識與語義辨識的結果對應存取連線的雲端儲存裝置中對應檔案名稱的一檔案(步驟520)。詳細描述已於上述段落加以說明,於此不再贅述。
綜上所述,可知本發明與先前技術之間的差異在於透過特徵辨識模組對語音請求信號進行聲紋驗證,以產生確認信號並取得某一身分資料,然後語音問答模組自問題資料庫中隨機選擇某一個人問題進行語音提問,並針對回應該個人問題的語音回復信號與該身分資料針對該個人問題所回應的答案進行比對,當語音解析結果與該答案相符時,對語音請求信號進行語音辨識與語義辨識,以取得包含連結命令與裝置名稱的控制指令,使得處理模組依據連結命令連線裝置名稱對應的雲端儲存裝置,藉由此一技術手段可以解決先前技術所存在的問題,進而達成提高身分驗證的安全性之技術功效。此外,當連線雲端儲存裝置的時間超過預定時間時,依據接收的語音維持信號進行語音解析,進而判斷是否與雲端儲存裝置維持連線,以加強雲端儲存裝置的安全性管理。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明,任何熟習相像技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。
30‧‧‧聲紋資料庫40‧‧‧問題資料庫50‧‧‧身分辨識資料庫60‧‧‧語義資料庫70‧‧‧語音資料庫100‧‧‧基於人工智慧的語音問答驗證系統110‧‧‧接收模組120‧‧‧特徵辨識模組130‧‧‧語音問答模組140‧‧‧處理模組步驟210‧‧‧接收語音請求信號步驟220‧‧‧對語音請求信號進行特徵分析,以取得聲音特徵資料,並比該聲音特徵資料與多個預設聲紋資料步驟230‧‧‧當判斷聲音特徵資料與該些預設聲紋資料其中之一相符時,產生確認信號並取得身分資料步驟240‧‧‧當產生確認信號時,自問題資料庫中隨機選擇一個人問題進行語音提問步驟250‧‧‧接收回應該個人問題的語音回復信號步驟260‧‧‧針對回應該個人問題的語音回復信號與身分辨識資料庫中該身分資料針對該個人問題所回應的答案進行比對步驟270‧‧‧當語音回復信號與身分辨識資料庫中該身分資料針對該個人問題所回應的答案相符時,對語音請求信號進行語音辨識與語義辨識,以取得控制指令,其中,控制指令包含連結命令與裝置名稱步驟280‧‧‧依據連結命令連線裝置名稱對應的雲端儲存裝置步驟290‧‧‧當連線雲端儲存裝置的時間超過一預定時間時,請求輸入語音維持信號步驟292‧‧‧接收語音維持信號後,對語音維持信號進行聲紋辨識步驟294‧‧‧待聲紋辨識驗證通過後,對語音維持信號進行語音解析步驟296‧‧‧依據語音維持信號語音解析的結果判斷是否與雲端儲存裝置維持連線步驟310‧‧‧當接收註冊請求信號後,請求輸入語音註冊信號步驟320‧‧‧接收語音註冊信號後,對該語音註冊信號進行特徵分析,以在聲紋資料庫儲存與新增一新的預設聲紋資料步驟330‧‧‧依據問題資料庫所提供的全部該些個人問題逐一進行語音提問及逐一接收回應每一個人問題的語音答案信號,以在問題資料庫儲存與新增一新的身分辨識資料以及在聲紋資料庫儲存對應該新的預設聲紋資料的一新的身分資料步驟410‧‧‧當語音維持信號語音解析的結果與預設的維持語句不同時,判斷不與雲端儲存裝置維持連線步驟420‧‧‧當語音維持信號語音解析的結果與預設的維持語句相同時,判斷與雲端儲存裝置維持連線步驟510‧‧‧當連線雲端儲存裝置後,接收語音存取信號,語音存取信號包含檔案名稱步驟520‧‧‧對語音存取信號進行語音辨識與語義辨識,並依據語音存取信號語音辨識與語義辨識的結果對應存取連線的雲端儲存裝置中對應檔案名稱的一檔案
第1圖為本發明基於人工智慧的語音問答驗證系統之一實施例系統方塊圖。 第2圖為為第1圖的身分辨識資料庫中每一身分辨識資料之一實施例示意圖。 第3圖為第1圖的基於人工智慧的語音問答驗證系統中語義資料庫所記錄之字彙與類別的一實施例對照表。 第4A圖為第1圖的基於人工智慧的語音問答驗證系統中控制指令的一實施例格式。 第4B圖為第1圖的基於人工智慧的語音問答驗證系統中控制指令的一實施例內容。 第5圖為第1圖的基於人工智慧的語音問答驗證系統執行基於人工智慧的語音問答驗證方法之一實施例方法流程圖。 第6圖為第1圖的基於人工智慧的語音問答驗證系統用以新增合法使用者的方法之一實施例方法流程圖。 第7圖為第1圖的基於人工智慧的語音問答驗證系統用以加強雲端儲存裝置的安全性管理方法之一實施例方法流程圖。 第8圖為第1圖的基於人工智慧的語音問答驗證系統以語音控制方式進行雲端儲存裝置的檔案存取方法之一實施例方法流程圖。
30‧‧‧聲紋資料庫
40‧‧‧問題資料庫
50‧‧‧身分辨識資料庫
60‧‧‧語義資料庫
70‧‧‧語音資料庫
100‧‧‧基於人工智慧的語音問答驗證系統
110‧‧‧接收模組
120‧‧‧特徵辨識模組
130‧‧‧語音問答模組
140‧‧‧處理模組

Claims (10)

  1. 一種基於人工智慧的語音問答驗證系統,其包含: 一聲紋資料庫,用以儲存多個身分資料與多個預設聲紋資料,該些身分資料以一對一方式對應該些預設聲紋資料; 一問題資料庫,用以儲存一問題模板,該問題模板包含多個個人問題; 一身分辨識資料庫,用以儲存多個身分辨識資料,每一該身分辨識資料包含某一該身分資料、該些個人問題及針對每一該個人問題所回應的一答案; 一接收模組,用以接收一語音請求信號與一語音回復信號; 一特徵辨識模組,用以對該語音請求信號進行特徵分析,以取得一聲音特徵資料,並比對該聲音特徵資料與該些預設聲紋資料,當該聲音特徵資料與該些預設聲紋資料其中之一相符時,產生一確認信號並取得對應的某一該身分資料; 一語音問答模組,用以當該特徵辨識模組產生該確認信號時,自該問題資料庫中隨機選擇某一該個人問題進行語音提問,並針對回應該個人問題的該語音回復信號與該特徵辨識模組取得的該身分資料針對該個人問題所回應的該答案進行比對,當該語音回復信號與該特徵辨識模組取得的該身分資料針對該個人問題所回應的該答案相符時,對該語音請求信號進行語音辨識與語義辨識,以取得一控制指令,其中,該控制指令包含一連結命令與一裝置名稱;以及 一處理模組,用以依據該連結命令連線對應該裝置名稱的一雲端儲存裝置; 其中,當連線該雲端儲存裝置的時間超過一預定時間時,該處理模組請求輸入一語音維持信號,該接收模組接收該語音維持信號,該特徵辨識模組對該語音維持信號進行聲紋辨識,待聲紋辨識驗證通過後,該語音問答模組對該語音維持信號進行語音解析,以使該處理模組依據該語音維持信號語音解析的結果判斷是否與該雲端儲存裝置維持連線。
  2. 根據申請專利範圍第1項之基於人工智慧的語音問答驗證系統,其中,當該接收模組接收一註冊請求信號後,該處理模組請求輸入一語音註冊信號,該接收模組接收該語音註冊信號,使得該特徵辨識模組對該語音註冊信號進行特徵分析,以在該聲紋資料庫儲存與新增一新的預設聲紋資料,接著,該語音問答模組依據該問題資料庫所提供的全部該些個人問題逐一進行語音提問,並透過該接收模組逐一接收回應每一該個人問題的一語音答案信號,以在該問題資料庫儲存與新增一新的身分辨識資料以及在該聲紋資料庫儲存對應該新的預設聲紋資料的一新的身分資料。
  3. 根據申請專利範圍第1項之基於人工智慧的語音問答驗證系統,其中,每一該身分辨識資料還儲存其包含的該身分資料連線或離線該雲端儲存裝置的紀錄及存取該雲端儲存裝置內任一檔案的存取紀錄。
  4. 根據申請專利範圍第1項之基於人工智慧的語音問答驗證系統, 其中,當該語音維持信號語音解析的結果與預設的一維持語句不同時,該處理模組判斷不與該雲端儲存裝置維持連線;當該語音維持信號語音解析的結果與預設的該維持語句相同時,該處理模組判斷與該雲端儲存裝置維持連線。
  5. 根據申請專利範圍第1項之基於人工智慧的語音問答驗證系統,其中,當連線該雲端儲存裝置後,該接收模組接收一語音存取信號,該語音存取信號包含一檔案名稱,該語音問答模組對該語音存取信號進行語音辨識與語義辨識,以使該處理模組依據語音辨識與語義辨識的結果對應存取連線的該雲端儲存裝置中對應該檔案名稱的一檔案。
  6. 一種基於人工智慧的語音問答驗證方法,其步驟包括: 接收一語音請求信號; 對該語音請求信號進行特徵分析,以取得一聲音特徵資料,並比對該聲音特徵資料與多個預設聲紋資料; 當判斷該聲音特徵資料與該些預設聲紋資料其中之一相符時,產生一確認信號並取得一身分資料; 當產生該確認信號時,自一問題資料庫中隨機選擇一個人問題進行語音提問; 接收回應該個人問題的一語音回復信號; 針對回應該個人問題的該語音回復信號與一身分辨識資料庫中該身分資料針對該個人問題所回應的一答案進行比對; 當該語音回復信號與該身分辨識資料庫中該身分資料針對該個人問題所回應的該答案相符時,對該語音請求信號進行語音辨識與語義辨識,以取得一控制指令,其中,該控制指令包含一連結命令與一裝置名稱; 依據該連結命令連線該裝置名稱對應的一雲端儲存裝置; 當連線該雲端儲存裝置的時間超過一預定時間時,請求輸入一語音維持信號; 接收該語音維持信號後,對該語音維持信號進行聲紋辨識; 待聲紋辨識驗證通過後,對該語音維持信號進行語音解析;以及 依據該語音維持信號語音解析的結果判斷是否與該雲端儲存裝置維持連線。
  7. 根據申請專利範圍第6項之基於人工智慧的語音問答驗證方法,其中,該基於人工智慧的語音問答驗證方法還包含: 當接收一註冊請求信號後,請求輸入一語音註冊信號; 接收該語音註冊信號後,對該語音註冊信號進行特徵分析,以在該聲紋資料庫儲存與新增一新的預設聲紋資料;以及 依據該問題資料庫所提供的全部該些個人問題逐一進行語音提問及逐一接收回應每一該個人問題的一語音答案信號,以在該問題資料庫儲存與新增一新的身分辨識資料以及在該聲紋資料庫儲存對應該新的預設聲紋資料的一新的身分資料。
  8. 根據申請專利範圍第6項之基於人工智慧的語音問答驗證方法,其中,每一該身分辨識資料還儲存其包含的該身分資料連線或離線該雲端儲存裝置的紀錄及存取該雲端儲存裝置內任一檔案的存取紀錄。
  9. 根據申請專利範圍第6項之基於人工智慧的語音問答驗證方法,其中,該基於人工智慧的語音問答驗證方法還包含: 當該語音維持信號語音解析的結果與預設的一維持語句不同時,判斷不與該雲端儲存裝置維持連線;以及 當該語音維持信號語音解析的結果與預設的該維持語句相同時,判斷與該雲端儲存裝置維持連線。
  10. 根據申請專利範圍第6項之基於人工智慧的語音問答驗證方法,其中,該基於人工智慧的語音問答驗證方法還包含: 當連線該雲端儲存裝置後,接收一語音存取信號,該語音存取信號包含一檔案名稱;以及 對該語音存取信號進行語音辨識與語義辨識,並依據該語音存取信號語音辨識與語義辨識的結果對應存取連線的該雲端儲存裝置中對應該檔案名稱的一檔案。
TW107120120A 2018-06-12 2018-06-12 基於人工智慧的語音問答驗證系統及其方法 TW202001659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107120120A TW202001659A (zh) 2018-06-12 2018-06-12 基於人工智慧的語音問答驗證系統及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107120120A TW202001659A (zh) 2018-06-12 2018-06-12 基於人工智慧的語音問答驗證系統及其方法

Publications (1)

Publication Number Publication Date
TW202001659A true TW202001659A (zh) 2020-01-01

Family

ID=69941560

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120120A TW202001659A (zh) 2018-06-12 2018-06-12 基於人工智慧的語音問答驗證系統及其方法

Country Status (1)

Country Link
TW (1) TW202001659A (zh)

Similar Documents

Publication Publication Date Title
AU2016216737B2 (en) Voice Authentication and Speech Recognition System
US20160372116A1 (en) Voice authentication and speech recognition system and method
US7447632B2 (en) Voice authentication system
AU2013203139A1 (en) Voice authentication and speech recognition system and method
CN101467204B (zh) 用于生物计量声纹认证的方法和系统
US8010367B2 (en) Spoken free-form passwords for light-weight speaker verification using standard speech recognition engines
WO2016092807A1 (ja) 話者識別装置および話者識別用の登録音声の特徴量登録方法
Jin et al. Speaker de-identification via voice transformation
KR20170105034A (ko) 동적 패스워드 음성에 기반한 자체 학습 기능을 구비한 신분 인증 시스템 및 방법
CN104462912B (zh) 改进的生物密码安全
JPH1173195A (ja) 話者の申し出識別を認証する方法
CN109003612B (zh) 基于人工智能的语音问答验证系统及其方法
Jelil et al. SpeechMarker: A Voice Based Multi-Level Attendance Application.
US10957318B2 (en) Dynamic voice authentication
WO2022236386A1 (en) Access control system
CN117321678A (zh) 用于说话者标识的注意力评分功能
JP2024510798A (ja) ハイブリッド多言語テキスト依存およびテキスト非依存の話者検証
KR20140076056A (ko) 음성 기반 캡차 방법 및 장치
JPH1173196A (ja) 話者の申し出識別を認証する方法
TW202001659A (zh) 基於人工智慧的語音問答驗證系統及其方法
JP4440414B2 (ja) 話者照合装置及び方法
JP7548316B2 (ja) 音声処理装置、音声処理方法、プログラム、および音声認証システム
Bouziane et al. Towards an objective comparison of feature extraction techniques for automatic speaker recognition systems
US20240211570A1 (en) Identity authentication device
JP5436951B2 (ja) 本人認証装置および本人認証方法