TW202001263A - 具市電與環境雜訊屏蔽之電纜量測裝置及其方法 - Google Patents

具市電與環境雜訊屏蔽之電纜量測裝置及其方法 Download PDF

Info

Publication number
TW202001263A
TW202001263A TW107120368A TW107120368A TW202001263A TW 202001263 A TW202001263 A TW 202001263A TW 107120368 A TW107120368 A TW 107120368A TW 107120368 A TW107120368 A TW 107120368A TW 202001263 A TW202001263 A TW 202001263A
Authority
TW
Taiwan
Prior art keywords
cable
signal
pass filter
feedback signal
detection signal
Prior art date
Application number
TW107120368A
Other languages
English (en)
Other versions
TWI659219B (zh
Inventor
鄭湘原
Original Assignee
中原大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中原大學 filed Critical 中原大學
Priority to TW107120368A priority Critical patent/TWI659219B/zh
Application granted granted Critical
Publication of TWI659219B publication Critical patent/TWI659219B/zh
Publication of TW202001263A publication Critical patent/TW202001263A/zh

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

本發明主要提出一種具市電與環境雜訊屏蔽之電纜量測裝置,其僅由一點量測模組、一訊號產生模組與一耦合電容所構成,因此具備低設置成本的優勢。於電纜特性的檢測上,係透過訊號產生模組輸入一檢測訊號至電纜與點量測模組,使得該點量測模組可自該電纜的遮蔽導體處接收一反饋訊號。接著,點量測模組便可以藉由比較該檢測訊號與該反饋訊號而計算出電纜的劣化程度。除此之外,本發明之電纜量測裝置還能夠透過函式庫、變數或運算元的形式建立於一執行裝置之中,例如: 電腦,由此更顯現出本發明於實務應用上的高彈性。

Description

具市電與環境雜訊屏蔽之電纜量測裝置及其方法
本發明係關於電纜線的技術領域,尤指一種具市電與環境雜訊屏蔽之電纜量測裝置及其方法。
根據研究資料的統計,台灣電力公司於西元2003至2005年共發生了4027件與地下配電系統有關的事故,其中涉及高壓電纜的事故包含1300件。目前很多國家已經把電纜檢測與監控技術視為國家建設發展的主要重點之一。離線檢測(off-line)為一種傳統式的電纜監測技術,其主要在拆卸電纜的情況下,利用高阻計對至少一待測電纜進行絕緣電阻量測。肇因於必須拆卸電纜,離線檢測只能在夜間進行。另一方面,待測電纜的拆卸與復歸通常是仰賴人力,因此,想要在有限的時間內完成預定區段的電纜的檢測,勢必要花費許多人力費用。由此可知,如何在線(on-line)檢測電纜的絕緣電阻與洩漏電流遂成為電力公司最重要的技術發展目標。
圖1顯示美國專利號US9,335,380所揭示的一種絕緣劣化檢出裝置的架構圖。由圖1可知,所述絕緣劣化檢出裝置101’係電性連接於受控於一控制裝置2’的一電源裝置1’與一負載3’之間,並包括:一零相比流器(Zero-phase current transformer, ZCT)4’、一比流器(Current transformer, CT)5’、一頻率演算單元7’、一同步檢波單元8’、與一顯示單元9’;其中,零相比流器4’量測電纜線之中經由絕緣電阻流向大地的漏電流,而比流器5’則量測透過電纜線流至負載3’的相電流。此外,頻率演算單元7’係接收比流器5’所量測的相電流,並接著進行頻率演算。另一方面,同步檢波單元8’係接收零相比流器4’所量測的漏電流(亦即,零相電流),並接著對該零相電流實施傅立葉轉換。最終,同步檢波單元8’以相電流波形為基礎,而後自零相電流之中將相關雜訊去除。簡單地說,美國專利號US9,335,380B2主要係依據零相電流與相電流的比對結果,判斷電纜線的絕緣劣化程度。
長期涉及電纜線檢測裝置設計與開發的電子工程師應該可以發現,習知的電纜線劣化檢測裝置具有以下實務使用上的缺陷: (1)頻率演算單元7’與同步檢波單元8’須具備一定程度的運算能力,導致絕緣劣化檢出裝置101’的設置成本過高;以及 (2)零相比流器4’與比流器5’的體積係隨著相電流的數值而改變;可想而知,體積過大的零相比流器4’與比流器5’使得所述絕緣劣化檢出裝置101’的所有單元無法被整合於單一殼體內。
建立電纜的電熱老化模型為另外一種經常使用的電纜絕緣劣化檢測方法。例如,美國專利號US8,775,151B2揭示一種分佈式溫度偵測系統。該系統主要是以埋在電纜線之中的多數條光纖作為溫度感測器,並且,該些光纖最終連接到外部的一個電子運算裝置。如此設置,該電子運算裝置便可以從該光纖處接收光訊號,並根據光訊號建立電纜的電熱老化模型,而後根據所推算的電纜特性判讀電纜的劣化程度。然而,可惜的是,光纖的購置成本過高,導致以經營中、低價格電纜線為主的電纜製造商不願意製造內含光纖的電纜線,使得分佈式溫度偵測系統逐漸失去市場競爭力。
由上述說明可知,如何在兼顧監測裝置的運算能力及其建置成本的情況下設計出優秀的一套電纜絕緣劣化檢測系統,現已成為非常重要的課題。有鑑於此,本案之發明人係極力加以研究發明,而終於研發完成本發明之一種具市電與環境雜訊屏蔽之電纜量測裝置及其方法。
習知技術提供的絕緣劣化檢出裝置以及運用光纖達成的電纜絕緣劣化檢測方法皆顯示出設置成本過高的重要缺陷。不同地,本發明提出一種具市電與環境雜訊屏蔽之電纜量測裝置及其方法,其僅由一點量測模組、一訊號產生模組與一耦合電容所構成,因此具備低設置成本的優勢。於電纜特性的檢測上,係透過訊號產生模組輸入一檢測訊號至電纜與點量測模組,使得該點量測模組可自該電纜的遮蔽導體處接收一反饋訊號。接著,點量測模組便可以藉由比較該檢測訊號與該反饋訊號而計算出電纜的劣化程度。除此之外,本發明之電纜特性監測方法還能夠透過函式庫、變數或運算元的形式建立於一執行裝置之中,例如: 電腦、處理器或控制器,由此更顯現出本發明於實務應用上的高彈性。
為了達成上述本發明之主要目的,本案發明人係提供所述具市電與環境雜訊屏蔽之電纜量測裝置的一實施例,係包括: 一點量測模組,係電性連接至一電纜的一導體與一遮蔽導體;以及 一訊號產生模組,係電性連接至該點量測模組與該電纜的該導體; 其中,該訊號產生模組用以輸入一檢測訊號至該電纜與該點量測模組,使得該點量測模組可自該電纜的該遮蔽導體處接收一反饋訊號; 其中,該點量測模組係藉由比較該檢測訊號與該反饋訊號而計算出該電纜的劣化程度。
於前述電纜量測裝置的實施例之中,係更包括: 一耦合電容,係耦接於該導體與該遮蔽導體之間;其中,傳輸於該導體內的該檢測訊號經過該耦合電容之後係成為所述反饋訊號,且該反饋訊號進一步地經由該遮蔽導體傳送至該點量測模組。
並且,為了達成上述本發明之主要目的,本案發明人係提供所述電纜量測方法的一實施例,係包括以下步驟: (1)於該執行裝置建立一點量測模組與一訊號產生模組;並且,將該執行裝置係電性連接至一電纜的一導體與一遮蔽導體; (2)該訊號產生模組產生一檢測訊號,並透過該執行裝置將該檢測訊號輸入至該電纜的該導體以及該點量測模組; (3)傳輸於該導體內的該檢測訊號係經過一耦合電容而成為一反饋訊號; (4)該執行裝置自該電纜的該遮蔽導體處接收該反饋訊號,並將該反饋訊號提供至該點量測模組;以及 (5)該點量測模組藉由比較該檢測訊號與該反饋訊號計算出該電纜的劣化程度。
於前述電纜量測方法的實施例之中,其中,該執行裝置內係更進一步建立有: 一通訊介面,係電性連接至該點量測模組與一電子裝置之間,使得該點量測模組可將一量測資料傳送至該電子裝置。
於前述電纜量測方法的實施例之中,係更包括以下步驟: (6)該執行裝置透過該通訊介面將該電纜的該量測資料傳送至該電子裝置。
為了能夠更清楚地描述本發明所提出之一種具市電與環境雜訊屏蔽之電纜量測裝置及其方法,以下將配合圖式,詳盡說明本發明之較佳實施例。
第一實施例
開始說明本發明之一種具市電與環境雜訊屏蔽之電纜量測裝置及其方法之前,必須先介紹電纜的基本結構。雖然電機工程師或具有電機背景的工程人員應當熟悉電纜的基本結構,但為了讓相關技術人員能夠更容易地理解本發明之技術特徵,在此還是簡單地描述電纜的基本結構。圖2顯示習知的電纜的側面剖視圖。習知的電纜2的基本結構包括:包覆有複數導體CT的一內半導層20、包覆該內半導層20的一絕緣層23、包覆該絕緣層23的一外半導層24、以及包覆該外半導層24的一外護層25;其中,該外半導層24之中係嵌有複數遮蔽導體SC。
圖3顯示本發明之一種具市電與環境雜訊屏蔽之電纜量測裝置的第一實施例的架構圖。如圖3所示,所述電纜量測裝置1係包括:一點量測模組11、一訊號產生模組12與一耦合電容Cc;其中,該點量測模組11係電性連接至電纜2的導體CT與遮蔽導體SC,且該訊號產生模組12係電性連接至該點量測模組11與電纜2的導體CT。另一方面,該耦合電容Cc係耦接於該導體CT與該遮蔽導體SC之間。執行電纜特性之監測時,本發明係透過訊號產生模組12同時輸入一檢測訊號DS至電纜2與點量測模組11,使得該點量測模組11可從電纜2的遮蔽導體SC接收一反饋訊號RS。如此,點量測模組11便可以藉由比較該檢測訊號DS與該反饋訊號RS的方式,進而計算出電纜2的劣化程度。
根據本發明之設計,該點量測模組11係包括一電壓量測單元111與一相位量測單元112。請同時參閱圖4與圖5;其中,圖4係顯示電壓量測單元的電路方塊圖,且圖5係顯示相位量測單元的電路方塊圖。由圖3與圖4可知,電壓量測單元111係包括:一第一帶通濾波器BF1、一第一低通濾波器LF1、一第二帶通濾波器BF2、一第二低通濾波器LF2、以及一取樣與保持電路SH,其主要係用以自該檢測訊號DS與該反饋訊號RS之中分別取樣出一第一電壓與一第二電壓訊號。操作上,檢測訊號DS係輸入電壓量測單元111的第一帶通濾波器BF1,並受到第一帶通濾波器BF1的帶通濾波處理。並且,檢測訊號DS被進一步地自第一帶通濾波器BF1輸入第一低通濾波器LF1,並受到第一低通濾波器LF1的低通濾波處理。最後,取樣與保持電路SH接收完成兩道濾波處理程序的該檢測訊號DS,並從該檢測訊號DS取樣出所述第一電壓。
當訊號產生模組12輸入檢測訊號DS至電纜2之後,傳輸於導體CT內的該檢測訊號DS經過耦合電容Cc而後成為所述反饋訊號RS,且該反饋訊號RS進一步地經由該遮蔽導體SC傳送至該點量測模組11。接著,反饋訊號RS係輸入電壓量測單元111的第二帶通濾波器BF2,並受到第二帶通濾波器BF2的帶通濾波處理。並且,反饋訊號RS被進一步地自第二帶通濾波器BF2輸入第二低通濾波器LF2,並受到第二低通濾波器LF2的低通濾波處理。最後,取樣與保持電路SH接收完成兩道濾波處理程序的該反饋訊號RS,並從該反饋訊號RS取樣出所述第二電壓訊號。
由圖3與圖5可知,相位量測單元112係包括:一第三帶通濾波器BF3、一第三低通濾波器LF3、一第四帶通濾波器BF4、一第四低通濾波器LF4、以及一相位檢出電路PD。於操作上,檢測訊號DS係輸入相位量測單元112的第三帶通濾波器BF3,並受到第三帶通濾波器BF3的帶通濾波處理。並且,檢測訊號DS被進一步地自第三帶通濾波器BF3輸入第三低通濾波器LF3,並受到第三低通濾波器LF3的低通濾波處理。最後,一相位檢出電路PD接收完成兩道濾波處理程序的該檢測訊號DS,並從該檢測訊號DS檢出一第一相位。
當訊號產生模組12輸入檢測訊號DS至電纜2之後,傳輸於導體CT內的該檢測訊號DS經過耦合電容Cc而後成為所述反饋訊號RS,且該反饋訊號RS進一步地經由該遮蔽導體SC傳送至該點量測模組11。接著,反饋訊號RS係輸入相位量測單元112的第四帶通濾波器BF4,並受到第四帶通濾波器BF4的帶通濾波處理。並且,反饋訊號RS被進一步地自第四帶通濾波器BF4輸入第四低通濾波器LF4,並受到第四低通濾波器LF4的低通濾波處理。最後,相位檢出電路PD接收完成兩道濾波處理程序的該反饋訊號RS,並從該反饋訊號RS檢出一第二相位。
圖6顯示檢測訊號與反饋訊號的波形圖。由圖6可知,當電纜2的劣化程度越高時,所測出的檢測訊號DS的第一電壓V1 與反饋訊號RS的第二電壓V2 之間的電壓差也會高;或者,所測出的檢測訊號DS的第一相位θ1 與反饋訊號RS的第二相位θ2 之間的相位值也會高。在未來,可根據檢測訊號DS與反饋訊號RS的多筆量測數據,進一步地建立電纜2的老化(劣化)模型。
第二實施例
圖7係顯示本發明之電纜量測裝置的第二實施例的架構圖;並且,圖8係顯示本發明之電纜量測裝置的第二實施例的示意性立體圖。比較圖7與圖3可以發現,所述電纜量測裝置1的第二實施例更包括一通訊介面13,可為一有線通訊介面或一無線通訊介面,其係電性連接至該點量測模組11。由圖7與圖8可知,透過該通訊介面13,此電纜量測裝置1便可以將相關量測資料傳送至外部的一個電子裝置3,例如:桌上型電腦、筆記型電腦、智慧型手機、智慧型手表、智慧型眼鏡、或平板電腦。值得說明的是,長期涉及韌體設計與開發的工程師應當知道,前述的電纜的老化模型可以整合在一電纜特性監測程式之中,並安裝在例如智慧型手機的電子裝置3之中。如此,當工程人員操作智慧型手機並啟用該電纜特性監測程式之後,該電纜特性監測程式便會透過智慧型手機的通訊介面13自電纜量測裝置1取得相關量測資料。接著,電纜特性監測程式內的電纜的老化模型可以立即計算出電纜2的現階段的老化程度。一旦電纜2因過度老化而需要立即更換時,電纜特性監測程式也會發出警示訊號通知工程人員。
必須強調的是,雖然圖7與圖8意指本發明之電纜量測裝置1係為硬體電路,但不應以此限制本發明之實施態樣。如長期涉及數位濾波器之程式開發設計的工程師所熟知的,數位濾波器也可以利用數學演算法軟體編程,然後透過應用程式、函式庫、變數或運算元的形式被並建立於例如電腦、處理器或控制器等執行裝置之中。因此,本發明同時提供可應用於一執行裝置之中的一種電纜量測方法;其中,該執行裝置係電性連接於該電纜2。
請參閱圖9,係顯示本發明之一種電纜量測方法的流程圖。如圖8與圖9所示,本發明之電纜量測方法係包括以下幾個主要的執行步驟: 步驟S1:於該執行裝置內建立一點量測模組11與一訊號產生模組12;並且,將該執行裝置係電性連接至一電纜2的一導體CT與一遮蔽導體SC; 步驟S2:該訊號產生模組12產生一檢測訊號DS,並透過該執行裝置將該檢測訊號DS輸入至該電纜2的該導體CT以及該點量測模組11; 步驟S3:傳輸於該導體CT內的該檢測訊號DS係經過一耦合電容Cc而成為一反饋訊號RS; 步驟S4:該執行裝置自該電纜2的該遮蔽導體SC處接收該反饋訊號RS,並將該反饋訊號RS提供至該點量測模組11; 步驟S5:該點量測模組11藉由比較該檢測訊號DS與該反饋訊號RS計算出該電纜2的劣化程度。
值得注意的是,若該執行裝置內同時建立有一通訊介面13,如圖9所示,本發明之電纜量測方法則會進一步執行步驟S6:當該執行裝置與一電子裝置3建立連線之後,該執行裝置透過該通訊介面13將該電纜2的該量測資料傳送至該電子裝置3。
如此,上述係已完整且清楚地說明本發明之具市電與環境雜訊屏蔽之電纜量測裝置及其方法;並且,經由上述可知本發明係具有下列之優點:
(1)習知技術提供的絕緣劣化檢出裝置以及運用光纖達成的電纜絕緣劣化檢測方法皆顯示出設置成本過高的重要缺陷。不同地,本發明提出一種電纜量測裝置1,僅由一點量測模組11、一訊號產生模組12與一耦合電容Cc所構成,因此具備低設置成本的優勢。於電纜特性的檢測上,係透過訊號產生模組12輸入一檢測訊號DS至電纜2與點量測模組11,使得該點量測模組11可自該電纜2的該遮蔽導體SC處接收一反饋訊號RS。接著,點量測模組11便可以藉由比較該檢測訊號DS與該反饋訊號RS而計算出電纜2的劣化程度。
(2)除此之外,本發明之電纜量測裝置1的電路架構還能夠透過函式庫、變數或運算元的形式建立於一執行裝置之中,例如: 電腦、處理器或控制器,由此更顯現出本發明之電纜量測裝置1於實務應用上的高彈性。
必須加以強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。
<本發明>2‧‧‧電纜CT‧‧‧導體20‧‧‧內半導層23‧‧‧絕緣層24‧‧‧外半導層25‧‧‧外護層SC‧‧‧遮蔽導體1‧‧‧電纜量測裝置11‧‧‧點量測模組12‧‧‧訊號產生模組Cc‧‧‧耦合電容DS‧‧‧檢測訊號RS‧‧‧反饋訊號111‧‧‧電壓量測單元112‧‧‧相位量測單元BF1‧‧‧第一帶通濾波器LF1‧‧‧第一低通濾波器BF2‧‧‧第二帶通濾波器LF2‧‧‧第二低通濾波器SH‧‧‧取樣與保持電路BF3‧‧‧第三帶通濾波器LF3‧‧‧第三低通濾波器BF4‧‧‧第四帶通濾波器LF4‧‧‧第四低通濾波器PD‧‧‧相位檢出電路V1‧‧‧第一電壓V2‧‧‧第二電壓θ1‧‧‧第一相位θ2‧‧‧第二相位13‧‧‧通訊介面3‧‧‧電子裝置S1-S5‧‧‧步驟S6‧‧‧步驟
<習知>101’‧‧‧絕緣劣化檢出裝置2’‧‧‧控制裝置1’‧‧‧電源裝置3’‧‧‧負載4’‧‧‧零相比流器5’‧‧‧比流器7’‧‧‧頻率演算單元8’‧‧‧同步檢波單元9’‧‧‧顯示單元
圖1係顯示美國專利號US9,335,380所揭示的一種絕緣劣化檢出裝置的架構圖; 圖2係顯示習知的電纜的側面剖視圖; 圖3係顯示本發明之一種具市電與環境雜訊屏蔽之電纜量測裝置的第一實施例的架構圖; 圖4係顯示電壓量測單元的電路方塊圖; 圖5係顯示相位量測單元的電路方塊圖; 圖6係顯示檢測訊號與反饋訊號的波形圖; 圖7係顯示本發明之電纜量測裝置的第二實施例的架構圖; 圖8係顯示本發明之電纜量測裝置的第二實施例的示意性立體圖;以及 圖9係顯示本發明之一種電纜量測方法的流程圖。
2‧‧‧電纜
CT‧‧‧導體
SC‧‧‧遮蔽導體
Cc‧‧‧耦合電容
1‧‧‧電纜量測裝置
11‧‧‧點量測模組
111‧‧‧電壓量測單元
112‧‧‧相位量測單元
12‧‧‧訊號產生模組
DS‧‧‧檢測訊號
RS‧‧‧反饋訊號

Claims (10)

  1. 一種電纜量測裝置,係包括: 一點量測模組,係電性連接至一電纜的一導體與一遮蔽導體;以及 一訊號產生模組,係電性連接至該點量測模組與該電纜的該導體; 其中,該訊號產生模組用以輸入一檢測訊號至該電纜與該點量測模組,使得該點量測模組可自該電纜的該遮蔽導體處接收一反饋訊號; 其中,該點量測模組係藉由比較該檢測訊號與該反饋訊號而計算出該電纜的劣化程度。
  2. 如申請專利範圍第1項所述之電纜量測裝置,其中,該點量測模組係包括: 一電壓量測單元,係用以自該檢測訊號與該反饋訊號之中分別取樣出一第一電壓與一第二電壓訊號;以及 一相位量測單元,係用以自該檢測訊號與該反饋訊號之中分別取樣出一第一相位與一第二相位。
  3. 如申請專利範圍第1項所述之電纜量測裝置,係更包括: 一耦合電容,係耦接於該導體與該遮蔽導體之間;其中,傳輸於該導體內的該檢測訊號經過該耦合電容之後係成為所述反饋訊號,且該反饋訊號進一步地經由該遮蔽導體傳送至該點量測模組。
  4. 如申請專利範圍第1項所述之電纜量測裝置,更包括: 一通訊介面,係電性連接至該點量測模組,用以使得該點量測模組可將一量測資料傳送至一電子裝置。
  5. 如申請專利範圍第2項所述之電纜量測裝置,其中,該電壓量測單元係包括: 一第一帶通濾波器,係用以接收該檢測訊號,並對該檢測訊號進行帶通濾波處理; 一第一低通濾波器,係電性連接至該第一帶通濾波器,用以接著對該檢測訊號進行低通濾波處理; 一第二帶通濾波器,係用以接收該反饋訊號,並對該反饋訊號進行帶通濾波處理; 一第二低通濾波器,係電性連接至該第二帶通濾波器,用以接著對該反饋訊號進行低通濾波處理;以及 一取樣與保持電路,係電性連接至該第一低通濾波器與該第二低通濾波器,用以接收完成兩道濾波處理程序的該檢測訊號與該反饋訊號,並從該檢測訊號與該反饋訊號之中分別取樣出所述第一電壓與所述第二電壓訊號。
  6. 如申請專利範圍第4項所述之電纜量測裝置,其中,該通訊介面為一有線通訊介面或一無線通訊介面;並且,該電子裝置可為下列任一者:桌上型電腦、筆記型電腦、智慧型手機、智慧型手表、智慧型眼鏡、或平板電腦。
  7. 如申請專利範圍第5項所述之電纜量測裝置,其中,該相位量測單元係包括: 一第三帶通濾波器,係用以接收該檢測訊號,並對該檢測訊號進行帶通濾波處理; 一第三低通濾波器,係電性連接至該第一帶通濾波器,用以接著對該檢測訊號進行低通濾波處理; 一第四帶通濾波器,係用以接收該反饋訊號,並對該反饋訊號進行帶通濾波處理; 一第四低通濾波器,係電性連接至該第二帶通濾波器,用以接著對該反饋訊號進行低通濾波處理;以及 一相位檢出電路,係電性連接至該第三低通濾波器與該第四低通濾波器,並從該檢測訊號與該反饋訊號之中檢測出所述第一相位與所述第二相位。
  8. 一種電纜量測方法,係包括以下步驟: (1)於該執行裝置建立一點量測模組與一訊號產生模組;並且,將該執行裝置係電性連接至一電纜的一導體與一遮蔽導體; (2)該訊號產生模組產生一檢測訊號,並透過該執行裝置將該檢測訊號輸入至該電纜的該導體以及該點量測模組; (3)傳輸於該導體內的該檢測訊號係經過一耦合電容而成為一反饋訊號; (4)該執行裝置自該電纜的該遮蔽導體處接收該反饋訊號,並將該反饋訊號提供至該點量測模組;以及 (5)該點量測模組藉由比較該檢測訊號與該反饋訊號計算出該電纜的劣化程度。
  9. 如申請專利範圍第8項所述之電纜量測方法,其中,該執行裝置內係更進一步建立有: 一通訊介面,係電性連接至該點量測模組與一電子裝置之間,使得該點量測模組可將一量測資料傳送至該電子裝置。
  10. 如申請專利範圍第9項所述之電纜量測方法,更包括以下步驟: (6)該執行裝置透過該通訊介面將該電纜的該量測資料傳送至該電子裝置。
TW107120368A 2018-06-13 2018-06-13 具市電與環境雜訊屏蔽之電纜量測裝置及其方法 TWI659219B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107120368A TWI659219B (zh) 2018-06-13 2018-06-13 具市電與環境雜訊屏蔽之電纜量測裝置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107120368A TWI659219B (zh) 2018-06-13 2018-06-13 具市電與環境雜訊屏蔽之電纜量測裝置及其方法

Publications (2)

Publication Number Publication Date
TWI659219B TWI659219B (zh) 2019-05-11
TW202001263A true TW202001263A (zh) 2020-01-01

Family

ID=67348127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120368A TWI659219B (zh) 2018-06-13 2018-06-13 具市電與環境雜訊屏蔽之電纜量測裝置及其方法

Country Status (1)

Country Link
TW (1) TWI659219B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452482B1 (en) * 1999-12-30 2002-09-17 Ambient Corporation Inductive coupling of a data signal to a power transmission cable
US7098647B2 (en) * 2003-12-17 2006-08-29 Advantest Corporation Coaxial cable unit, test apparatus, and CPU system
CN204028205U (zh) * 2014-08-18 2014-12-17 广东电网公司电力科学研究院 一种用于交联聚乙烯中压电缆的极化-去极化电流检测装置
DE102014116908A1 (de) * 2014-11-19 2016-05-19 Aiq Dienstleistungen Ug (Haftungsbeschränkt) Faser ausgerichtet und in Bezug auf Bewegung gekoppelt mit einem elektrischem Kabel
CN206961592U (zh) * 2017-05-27 2018-02-02 重庆渝丰鑫新线缆科技有限公司 可进行断点检测的电缆及其检测系统

Also Published As

Publication number Publication date
TWI659219B (zh) 2019-05-11

Similar Documents

Publication Publication Date Title
CN106093593B (zh) 电容式电力设备介质损耗在线检测方法和系统
Lim et al. Fault detection and localization of shielded cable via optimal detection of time–frequency-domain reflectometry
WO2016011897A1 (zh) 开关设备主电路电气连接异常的检测方法与装置
CN105866555A (zh) 使用电压探头测量高电压幅值和相位以提高在线套管监测相关性
CN109188197A (zh) 一种用于高压电缆健康指数的评估系统及方法
Lee et al. Monitoring method for an unbalanced three-phase HTS cable system via time-frequency domain reflectometry
Swamy et al. Sweep frequency response based statistical approach for locating faults in transformer windings using sliding window technique
CN105353332B (zh) 一种电子式互感器长期带电性能考核方法及系统
CN114236212A (zh) 电压测量方法、电压测量电路及设备
Zhang et al. Physical defect localizing methodology for coaxial cable based on quadratic propagation coefficient model
CN117434386A (zh) 一种基于护层接地回路宽频阻抗谱的高压电缆护套缺陷定位方法
CN117214774A (zh) Xlpe电缆的在线故障检测装置、方法及设备
TWI659219B (zh) 具市電與環境雜訊屏蔽之電纜量測裝置及其方法
Gao et al. Research on electric field characteristics under different length interface air gap defects in cable terminals of high-speed train
Su et al. Multi‐type defect detection and location based on non‐destructive impedance spectrum measurement for underground power cables
US9915720B2 (en) Apparatus and methods for field testing an electrical panel meter system
KR102436316B1 (ko) 태양광발전설비의 아크검출 방법 및 시스템
CN116381358A (zh) 一种高压电力电缆局部缺陷在线检测方法及装置
Zhou et al. Identification and assessment method of cable joint health status based on traveling wave reflection
TWI676808B (zh) 電纜特性量測裝置
Yuqing Study for the Condition Monitoring and Status Assessment of Optical fiber composite low-voltage cable
CN106383290A (zh) 一种在线测试直流避雷器漏电流的试验方法
Yang et al. Improving the polarisation and depolarisation current measuring method to avoid ground wire interference
CN205015445U (zh) 一种局部放电自动测试装置
CN117554763B (zh) 一种10kV电力电缆多段敷设击穿原因判定及定位方法