TW202000934A - Cu Core Ball, Solder Joint, Solder Paste and Formed Solder - Google Patents

Cu Core Ball, Solder Joint, Solder Paste and Formed Solder Download PDF

Info

Publication number
TW202000934A
TW202000934A TW108120075A TW108120075A TW202000934A TW 202000934 A TW202000934 A TW 202000934A TW 108120075 A TW108120075 A TW 108120075A TW 108120075 A TW108120075 A TW 108120075A TW 202000934 A TW202000934 A TW 202000934A
Authority
TW
Taiwan
Prior art keywords
solder
ball
less
core
mass ppm
Prior art date
Application number
TW108120075A
Other languages
Chinese (zh)
Other versions
TWI766168B (en
Inventor
川﨑浩由
近藤茂喜
須藤皓紀
��屋政人
八嶋崇志
六本木貴弘
相馬大輔
Original Assignee
日商千住金屬工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商千住金屬工業股份有限公司 filed Critical 日商千住金屬工業股份有限公司
Publication of TW202000934A publication Critical patent/TW202000934A/en
Application granted granted Critical
Publication of TWI766168B publication Critical patent/TWI766168B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/365Selection of non-metallic compositions of coating materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/951Balls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • G01N2021/95646Soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13575Plural coating layers
    • H01L2224/1358Plural coating layers being stacked
    • H01L2224/13582Two-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13657Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20105Temperature range 150 C=<T<200 C, 423.15 K =< T < 473.15K
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12104Particles discontinuous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12222Shaped configuration for melting [e.g., package, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12715Next to Group IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • Y10T428/12924Fe-base has 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

The Cu core ball contains a Cu ball and one or more metal layer for covering a surface of the Cu ball, each layer including one or more element selected from Ni, Co, Fe and Pd. The Cu ball contains at least one element selected from Fe, Ag, and Ni in a total amount of 5.0 or more to 50.0 ppm by mass or lower, S in an amount of 0 ppm by mass or more to 1.0 ppm by mass or lower, P in an amount of 0 ppm by mass or more to less than 3.0 ppm by mass, and remainder of Cu and inevitable impurities. The Cu ball contains purity which is 99.995% by mass or higher and 99.9995% or lower, sphericity which is 0.95 or higher.

Description

Cu核球、焊接頭、焊膏及泡沫焊料Cu core ball, solder joint, solder paste and foam solder

本發明係關於利用金屬層被覆Cu焊球的Cu核球、及使用該Cu核球的焊接頭、焊膏及泡沫焊料。The present invention relates to a Cu core ball covering a Cu solder ball with a metal layer, and a solder joint, solder paste, and foam solder using the Cu core ball.

近年,隨小型資訊機器的發達,所搭載的電子零件正急遽朝小型化演進。電子零件因小型化要求而採取連接端子窄小化、安裝面積縮小化因應,因而採用在背面設置電極的球柵陣列封裝(以下稱「BGA」)。In recent years, with the development of small information equipment, the electronic components carried are rapidly evolving toward miniaturization. Due to the miniaturization requirements of electronic components, the connection terminals are narrowed and the mounting area is reduced. Therefore, a ball grid array package (hereinafter referred to as "BGA") with electrodes on the back is adopted.

採用BGA的電子零件係有如半導體封裝。半導體封裝係將具有電極的半導體晶片利用樹脂密封。在半導體晶片的電極上形成焊料凸塊。該焊料凸塊係藉由將焊球接合於半導體晶片的電極而形成。採用BGA的半導體封裝係藉由將利用加熱而熔融的焊料凸塊、與印刷電路基板的導電性島予以接合,而搭載於印刷電路基板上。又,為因應更進一步高密度安裝的要求,針對半導體封裝朝高度方向重疊的三次元高密度安裝進行檢討。Electronic parts using BGA are like semiconductor packages. The semiconductor package seals the semiconductor wafer with electrodes with resin. Solder bumps are formed on the electrodes of the semiconductor wafer. The solder bumps are formed by bonding solder balls to the electrodes of the semiconductor wafer. A semiconductor package using BGA is mounted on a printed circuit board by bonding a solder bump melted by heating to a conductive island of a printed circuit board. In addition, in order to meet the requirements of further high-density mounting, a review is made on three-dimensional high-density mounting in which semiconductor packages overlap in the height direction.

電子零件高密度安裝會因α線進入半導體積體電路(IC)的記憶單元中,導致引發記憶內容被重寫的「軟錯誤」。所以,近年有進行開發降低放射性同位素含量的低α線焊料材料或Cu焊球。專利文獻1有揭示:含有Pb、Bi、純度99.9%以上且99.995%以下,且低α線量的Cu焊球。專利文獻2有揭示實現:純度99.9%以上且99.995%以下、真球度0.95以上、維氏硬度20HV以上且60HV以下的Cu焊球。High-density mounting of electronic parts can cause "soft errors" in which memory contents are rewritten due to the alpha line entering the memory cells of semiconductor integrated circuits (ICs). Therefore, in recent years, there has been the development of low alpha wire solder materials or Cu solder balls that reduce the content of radioisotopes. Patent Document 1 discloses a Cu solder ball containing Pb, Bi, and having a purity of 99.9% or more and 99.995% or less, and a low amount of α-line. Patent Document 2 discloses the realization of a Cu solder ball having a purity of 99.9% or more and 99.995% or less, a sphericity of 0.95 or more, and a Vickers hardness of 20 HV or more and 60 HV or less.

但是,因為Cu焊球係若晶粒微細,則維氏硬度會變大,因而對來自外部應力的耐久性會降低,導致耐墜落碰撞性變差。所以,針對電子零件安裝所使用的Cu焊球,要求既定的柔軟度,即既定值以下的維氏硬度。However, if the crystal grains of the Cu solder ball system are fine, the Vickers hardness becomes large, so the durability against external stress is reduced, and the drop impact resistance is deteriorated. Therefore, for the Cu solder balls used for the installation of electronic parts, a predetermined degree of flexibility, that is, a Vickers hardness below a predetermined value is required.

為製造柔軟的Cu焊球,慣例係採取提升Cu的純度。理由係因為雜質元素具有Cu焊球中之結晶核的功能,因而若雜質元素減少,則晶粒會大幅成長,結果導致Cu焊球的維氏硬度降低之緣故。但是,若提升Cu焊球的純度,則會導致Cu焊球的真球度降低。In order to manufacture soft Cu solder balls, the practice is to improve the purity of Cu. The reason is that the impurity element has the function of a crystal nucleus in the Cu solder ball, so if the impurity element is reduced, the crystal grains will grow greatly, and as a result, the Vickers hardness of the Cu solder ball is reduced. However, if the purity of the Cu solder ball is increased, the sphericity of the Cu solder ball will decrease.

若Cu焊球的真球度偏低,則在將Cu焊球安裝於電極上之時,會有無法確保自對準性的可能性,且在半導體晶片安裝時,會有Cu焊球的高度呈不均勻,導致引發接合不良的情況。If the true sphericity of the Cu solder ball is low, there is a possibility that the self-alignment cannot be ensured when the Cu solder ball is mounted on the electrode, and there is a height of the Cu solder ball when mounting the semiconductor chip It is not uniform, which leads to poor bonding.

專利文獻3所揭示的Cu焊球,係Cu質量比例超過99.995%、P與S的質量比例合計3ppm以上且30ppm以下,且具有較佳的真球度與維氏硬度。 [先行技術文獻] [專利文獻]The Cu solder ball disclosed in Patent Document 3 has a Cu mass ratio of more than 99.995%, a total mass ratio of P and S of 3 ppm or more and 30 ppm or less, and has better true sphericity and Vickers hardness. [Advanced technical literature] [Patent Literature]

[專利文獻1]日本專利第5435182號公報 [專利文獻2]日本專利第5585751號公報 [專利文獻3]日本專利第6256616號公報[Patent Document 1] Japanese Patent No. 5435182 [Patent Document 2] Japanese Patent No. 5585571 [Patent Document 3] Japanese Patent No. 6256616

(發明所欲解決之課題)(Problems to be solved by the invention)

然而,新發現含S達既定量以上的Cu焊球,在加熱時會形成硫化物、硫氧化物,導致容易變色的問題。Cu焊球的變色係導致潤濕性惡化的肇因,潤濕性惡化會造成發生不會潤濕、自對準性劣化。依此,容易變色的Cu焊球,會因Cu焊球表面與金屬層的密接性降低,且金屬層表面的氧化、反應性提高等因素,導致不適用於利用金屬層進行被覆。另一方面,若Cu焊球的真球度偏低,則利用金屬層被覆Cu焊球的Cu核球之真球度亦會降低。However, it is newly discovered that Cu solder balls containing more than a certain amount of S will form sulfides and sulfur oxides when heated, resulting in the problem of easy discoloration. The discoloration system of the Cu solder ball causes the deterioration of the wettability. The deterioration of the wettability may cause non-wetting and deterioration of self-alignment. Accordingly, Cu solder balls that are easily discolored will not be suitable for coating with a metal layer due to factors such as reduced adhesion between the surface of the Cu solder ball and the metal layer, and oxidation and reactivity of the metal layer surface. On the other hand, if the true sphericity of the Cu solder ball is low, the true sphericity of the Cu core ball covering the Cu solder ball with the metal layer will also decrease.

緣是,本發明目的在於提供:利用金屬層被覆實現高真球度與低硬度、且經抑制變色Cu焊球的Cu核球,以及使用該Cu核球的焊接頭、焊膏及泡沫焊料。 (解決課題之手段)The object of the present invention is to provide a Cu core ball that realizes high true sphericity and low hardness by coating with a metal layer and suppresses discoloration of Cu solder balls, and a soldering joint, solder paste, and foam solder using the Cu core ball. (Means to solve the problem)

本發明係如下述。 (1)一種Cu核球,係具備有:Cu焊球、與被覆在Cu焊球表面且由從Ni、Co、Fe、Pd中選擇1以上元素所形成1層以上的金屬層;其中,Cu焊球係Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下、S含量0質量ppm以上且1.0質量ppm以下、P含量0質量ppm以上且未滿3.0質量ppm、其餘係Cu及其他雜質元素;Cu焊球的純度係99.995質量%以上且99.9995質量%以下,真球度達0.95以上,Cu焊球之直徑係1μm以上且1000μm以下。 (2)如上述(1)所記載的Cu核球,其中,真球度係0.98以上。 (3)如上述(1)所記載的Cu核球,其中,真球度係0.99以上。 (4)如上述(1)~(3)中任一項所記載的Cu核球,其中,α線量係0.0200cph/cm2 以下。 (5)如上述(1)~(3)中任一項所記載的Cu核球,其中,α線量係0.0010cph/cm2 以下。 (6)如上述(1)~(3)中任一項所記載的Cu核球,其中,具備有被覆金屬層表面的焊料層,且真球度達0.95以上。 (7)如上述(6)所記載的Cu核球,其中,真球度係0.98以上。 (8)如上述(6)所記載的Cu核球,其中,真球度係0.99以上。 (9)如上述(6)所記載的Cu核球,其中,α線量係0.0200cph/cm2 以下。 (10)如上述(6)所記載的Cu核球,其中,α線量係0.0010cph/cm2 以下。 (11)如上述(1)~(3)中任一項所記載的Cu核球,其中,Cu焊球之直徑係1μm以上且1000μm以下。 (12)如上述(6)所記載的Cu核球,其中,Cu焊球之直徑係1μm以上且1000μm以下。 (13)一種焊接頭,係使用上述(1)~(12)中任一項所記載的Cu核球。 (14)一種焊膏,係使用上述(1)~(12)中任一項所記載的Cu核球。 (15)一種泡沫焊料,係使用上述(1)~(12)中任一項所記載的Cu核球。 [發明效果]The present invention is as follows. (1) A Cu core ball, comprising: a Cu solder ball and a metal layer formed by selecting one or more elements selected from Ni, Co, Fe, and Pd on the surface of the Cu solder ball and forming one or more metal layers; wherein, Cu The total content of at least one of solder ball-based Fe, Ag, and Ni is 5.0 mass ppm or more and 50.0 mass ppm or less, S content is 0 mass ppm or more and 1.0 mass ppm or less, P content is 0 mass ppm or more and less than 3.0 mass ppm, The rest are Cu and other impurity elements; the purity of Cu solder balls is 99.995 mass% or more and 99.9995 mass% or less, the true sphericity is 0.95 or more, and the diameter of Cu solder balls is 1 μm or more and 1000 μm or less. (2) The Cu core ball as described in (1) above, wherein the true sphericity is 0.98 or more. (3) The Cu core ball as described in (1) above, wherein the true sphericity is 0.99 or more. (4) The Cu core ball as described in any one of (1) to (3) above, wherein the amount of α line is 0.0200 cph/cm 2 or less. (5) The Cu core ball according to any one of (1) to (3) above, wherein the amount of α line is 0.0010 cph/cm 2 or less. (6) The Cu core ball according to any one of (1) to (3) above, which includes a solder layer covering the surface of the metal layer and has a sphericity of 0.95 or more. (7) The Cu core ball as described in (6) above, wherein the true sphericity is 0.98 or more. (8) The Cu core ball as described in (6) above, wherein the true sphericity is 0.99 or more. (9) The Cu core ball as described in (6) above, wherein the amount of α line is 0.0200 cph/cm 2 or less. (10) The Cu core ball described in (6) above, wherein the amount of α line is 0.0010 cph/cm 2 or less. (11) The Cu core ball according to any one of (1) to (3) above, wherein the diameter of the Cu solder ball is 1 μm or more and 1000 μm or less. (12) The Cu core ball described in (6) above, wherein the diameter of the Cu solder ball is 1 μm or more and 1000 μm or less. (13) A welding head using the Cu core ball described in any one of (1) to (12) above. (14) A solder paste using the Cu core ball described in any one of (1) to (12) above. (15) A foam solder using the Cu core ball described in any one of (1) to (12) above. [Effect of the invention]

根據本發明,實現Cu焊球的高真球度與低硬度,且抑制Cu焊球變色。藉由實現Cu焊球的高真球度,便可實現利用金屬層被覆Cu焊球的Cu核球之高真球度,便可確保Cu核球安裝於電極上之時的自對準性,且能抑制Cu核球的高度變動。又,藉由實現Cu焊球的低硬度,即便利用金屬層被覆Cu焊球的Cu核球,仍可提升耐墜落碰撞性。又,因為抑制Cu焊球的變色,因而可抑制因硫化物、硫氧化物對Cu焊球的不良影響,俾適用於利用金屬層被覆,且潤濕性良好。According to the present invention, high true sphericity and low hardness of Cu solder balls are realized, and discoloration of Cu solder balls is suppressed. By realizing the high sphericity of the Cu solder ball, the high sphericity of the Cu core ball covered with the Cu solder ball by the metal layer can be realized, and the self-alignment when the Cu core ball is mounted on the electrode can be ensured. And it can suppress the height variation of the Cu core ball. In addition, by realizing the low hardness of the Cu solder ball, even if the Cu core ball of the Cu solder ball is coated with the metal layer, the impact resistance against falling can be improved. In addition, since the discoloration of the Cu solder ball is suppressed, the adverse effects of the sulfide and sulfur oxide on the Cu solder ball can be suppressed, so that it is suitable for coating with a metal layer and has good wettability.

以下針對本發明進行更詳細說明。本說明書中,Cu核球的金屬層組成相關單位(ppm、ppb、及%),在無特別指定前提下,係表示相對於金屬層質量的比例(質量ppm、質量ppb、及質量%)。又,Cu焊球組成相關單位(ppm、ppb、及%),在無特別指定前提下,係表示相對於Cu焊球質量的比例(質量ppm、質量ppb、及質量%)。The present invention will be described in more detail below. In this specification, the unit (ppm, ppb, and %) of the metal layer composition of the Cu core ball indicates the ratio (mass ppm, mass ppb, and mass %) to the mass of the metal layer unless otherwise specified. In addition, the units related to the composition of the Cu solder ball (ppm, ppb, and %), unless otherwise specified, represent the ratio to the mass of the Cu solder ball (mass ppm, mass ppb, and mass %).

圖1所示係本發明第1實施形態的Cu核球11A之構成一例。如圖1所示,本發明第1實施形態的Cu核球11A,係具備有:Cu焊球1;以及被覆Cu焊球1的表面,且由從Ni、Co、Fe、Pd中選擇1以上元素構成1層以上的金屬層2。FIG. 1 shows an example of the configuration of the Cu core ball 11A according to the first embodiment of the present invention. As shown in FIG. 1, the Cu core ball 11A according to the first embodiment of the present invention includes: a Cu solder ball 1; and a surface covering the Cu solder ball 1, and one or more selected from Ni, Co, Fe, and Pd The element constitutes one or more metal layers 2.

圖2所示係本發明第2實施形態的Cu核球11B之構成一例。如圖2所示,本發明第2實施形態的Cu核球11B,係具備有:Cu焊球1;被覆Cu焊球1的表面,且由從Ni、Co、Fe、Pd中選擇1以上元素構成1層以上的金屬層2;以及被覆在金屬層2表面的焊料層3。FIG. 2 shows an example of the configuration of the Cu core ball 11B according to the second embodiment of the present invention. As shown in FIG. 2, the Cu core ball 11B according to the second embodiment of the present invention includes: a Cu solder ball 1; the surface of the Cu solder ball 1 is covered, and one or more elements selected from Ni, Co, Fe, and Pd are selected One or more metal layers 2 and a solder layer 3 covering the surface of the metal layer 2 are formed.

圖3所示係使用本發明第1實施形態的Cu核球11A,將半導體晶片10搭載於印刷電路基板40上的電子零件60之構成一例。如圖3所示,Cu核球11A係經由焊膏12,安裝於半導體晶片10的電極100上。本例,將在半導體晶片10的電極100已安裝Cu核球11A的構造,稱為「焊料凸塊30A」。在印刷電路基板40的電極41上印刷有焊膏42。半導體晶片10的焊料凸塊30A係經由焊膏42,接合於印刷電路基板40的電極41上。本例,將焊料凸塊30A已安裝於印刷電路基板40之電極41上的構造,稱為「焊接頭50A」。FIG. 3 shows an example of the configuration of the electronic component 60 in which the semiconductor wafer 10 is mounted on the printed circuit board 40 using the Cu core ball 11A according to the first embodiment of the present invention. As shown in FIG. 3, the Cu core ball 11A is mounted on the electrode 100 of the semiconductor wafer 10 via the solder paste 12. In this example, the structure in which the Cu core ball 11A has been mounted on the electrode 100 of the semiconductor wafer 10 is referred to as "solder bump 30A". Solder paste 42 is printed on the electrode 41 of the printed circuit board 40. The solder bump 30A of the semiconductor wafer 10 is bonded to the electrode 41 of the printed circuit board 40 via the solder paste 42. In this example, the structure in which the solder bump 30A has been mounted on the electrode 41 of the printed circuit board 40 is referred to as "solder head 50A".

圖4所示係使用本發明第2實施形態的Cu核球11B,將半導體晶片10搭載於印刷電路基板40上的電子零件60之構成一例。如圖4所示,Cu核球11B係藉由在半導體晶片10的電極100上塗佈助焊劑,使熔融的焊料層3潤濕展佈,在安裝於半導體晶片10的電極100上。本例中,將在半導體晶片10的電極100上安裝Cu核球11B的構造,稱為「焊料凸塊30B」。半導體晶片10的焊料凸塊30B係經由熔融的焊料層3、或由在電極41上所塗佈焊膏熔融的焊料,接合於印刷電路基板40的電極41上。本例,將焊料凸塊30B安裝於印刷電路基板40的電極41上之構造,稱為「焊接頭50B」。FIG. 4 shows an example of the configuration of the electronic component 60 in which the semiconductor wafer 10 is mounted on the printed circuit board 40 using the Cu core ball 11B of the second embodiment of the present invention. As shown in FIG. 4, the Cu core ball 11B is coated on the electrode 100 of the semiconductor wafer 10 by applying flux to the electrode 100 of the semiconductor wafer 10 to wet and spread the molten solder layer 3. In this example, the structure in which the Cu core ball 11B is mounted on the electrode 100 of the semiconductor wafer 10 is referred to as "solder bump 30B". The solder bumps 30B of the semiconductor wafer 10 are bonded to the electrodes 41 of the printed circuit board 40 via the molten solder layer 3 or the solder melted by the solder paste applied to the electrodes 41. In this example, the structure in which the solder bump 30B is mounted on the electrode 41 of the printed circuit board 40 is referred to as "solder head 50B".

各實施形態的Cu核球11A、11B,Cu焊球1係Fe、Ag及Ni中之至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下、S含量0質量ppm以上且1.0質量ppm以下、P含量0質量ppm以上且未滿3.0質量ppm、其餘為Cu與其他雜質元素,Cu焊球1的純度係4N5(99.995質量%)以上且5N5(99.9995質量%)以下,真球度達0.95以上。The Cu core balls 11A and 11B of each embodiment, and the content of at least one of the Cu solder balls 1 series Fe, Ag, and Ni total 5.0 mass ppm or more and 50.0 mass ppm or less, and the S content is 0 mass ppm or more and 1.0 mass ppm or less , P content 0 mass ppm or more and less than 3.0 mass ppm, the rest are Cu and other impurity elements, the purity of Cu solder ball 1 is 4N5 (99.995 mass%) or more and 5N5 (99.9995 mass%) or less, the true sphericity is 0.95 the above.

本發明第1實施形態的Cu核球11A係藉由提高被金屬層2所被覆Cu焊球1的真球度,便可提高Cu核球11A的真球度。又,本發明第2實施形態的Cu核球11B係藉由提高利用金屬層2與焊料層3所被覆Cu焊球1之真球度,便可提高Cu核球11B的真球度。以下,針對構成Cu核球11A、11B的Cu焊球1之較佳態樣進行說明。The Cu core ball 11A according to the first embodiment of the present invention can increase the true sphericity of the Cu core ball 11A by increasing the true sphericity of the Cu solder ball 1 covered by the metal layer 2. In addition, the Cu core ball 11B according to the second embodiment of the present invention can increase the true sphericity of the Cu core ball 11B by increasing the true sphericity of the Cu solder ball 1 covered with the metal layer 2 and the solder layer 3. Hereinafter, a preferred aspect of the Cu solder balls 1 constituting the Cu core balls 11A and 11B will be described.

‧Cu焊球的真球度:0.95以上 本發明中,所謂「真球度」係表示偏離真球的偏移度。真球度係500個Cu焊球的各直徑除以長徑時所計算出的算術平均值,越接近該值上限的1.00,則表示越接近真球。真球度係利用例如:最小平方圓法(LSC法)、最小環帶圓法(MZC法)、最大內切圓法(MIC法)、最小外接圓法(MCC法)等各種方法求取。本發明所謂「長徑長度」、及「直徑長度」係指利用MITUTOYO公司製Ultra Qucik Vision、ULTRA QV350-PRO測定裝置所測定的長度。‧Sphericality of Cu solder ball: over 0.95 In the present invention, the "true sphericity" means the degree of deviation from the true sphere. The sphericity is the arithmetic mean value calculated when each diameter of 500 Cu solder balls is divided by the long diameter, and the closer to the upper limit of 1.00, the closer to the true sphere. The spherical degree system is obtained by various methods such as the least square circle method (LSC method), the smallest annulus circle method (MZC method), the largest inscribed circle method (MIC method), and the smallest circumscribed circle method (MCC method). In the present invention, the "long diameter length" and "diameter length" refer to the length measured by the Ultra Qucik Vision and ULTRA QV350-PRO measuring device manufactured by MITUTOYO.

Cu焊球1係就從保持基板間適當空間的觀點,較佳係真球度達0.95以上、更佳係真球度達0.98以上、特佳係0.99以上。若Cu焊球1的真球度未滿0.95,則因為Cu焊球1呈不定形狀,因而在凸塊形成時會形成高度不均勻的凸塊,導致發生接合不良的可能性提高。若真球度達0.95以上,因為Cu焊球1在焊接溫度下並不會熔融,因而可抑制焊接頭50A、50B的高度變動。藉此,可確實防止半導體晶片10與印刷電路基板40的接合不良。From the viewpoint of maintaining an appropriate space between the substrates, the Cu solder ball 1 series preferably has a sphericity of 0.95 or more, more preferably a sphericity of 0.98 or more, and a particularly good system of 0.99 or more. If the true sphericity of the Cu solder ball 1 is less than 0.95, since the Cu solder ball 1 has an indefinite shape, a highly uneven bump is formed during the formation of the bump, resulting in an increased possibility of poor bonding. If the sphericity is 0.95 or more, since the Cu solder ball 1 does not melt at the welding temperature, the height variation of the welding heads 50A and 50B can be suppressed. With this, it is possible to surely prevent the defective bonding of the semiconductor wafer 10 and the printed circuit board 40.

‧Cu焊球的純度:99.995質量%以上且99.9995質量%以下 一般純度低的Cu相較於純度高的Cu之下,前者較能確保成為Cu焊球1之結晶核的雜質元素存在於Cu中,因而提高真球度。另一方面,純度低的Cu焊球1係導電率與熱導率差。‧Purity of Cu solder balls: 99.995% by mass or more and 99.9995% by mass or less Generally, low-purity Cu has a lower purity than higher-purity Cu. The former can ensure that the impurity element that becomes the nucleus of the Cu solder ball 1 exists in Cu, thereby improving the true sphericity. On the other hand, the low-purity Cu solder ball 1 system has poor electrical conductivity and thermal conductivity.

所以,若Cu焊球1的純度為99.995質量%(4N5)以上且99.9995質量%(5N5)以下,便可確保充分的真球度。又,若Cu焊球1的純度為4N5以上且5N5以下,便可充分降低α線量,且可抑制因純度降低所導致的Cu焊球1之導電率與熱導率劣化Therefore, if the purity of the Cu solder ball 1 is 99.995 mass% (4N5) or more and 99.9995 mass% (5N5) or less, sufficient sphericity can be ensured. In addition, if the purity of the Cu solder ball 1 is 4N5 or more and 5N5 or less, the amount of α line can be sufficiently reduced, and the deterioration of the electrical conductivity and thermal conductivity of the Cu solder ball 1 due to the decrease in purity can be suppressed

製造Cu焊球1時,在既定形狀小片上所形成金屬材料一例的Cu材,利用加熱而熔融,熔融Cu利用表面張力形成球形,再經急冷而凝固便形成Cu焊球1。熔融Cu在從液體狀態凝固的過程中,晶粒會在球形熔融Cu中成長。此時,若雜質元素較多,則該雜質元素會成為結晶核,而抑制晶粒的成長。所以,球形熔融Cu便利用經抑制成長的微細晶粒,成為高真球度的Cu焊球1。另一方面,若雜質元素較少,則成為結晶核者相對性減少,導致晶粒成長會朝未受抑制的方向性成長。結果,球形熔融Cu突出於表面其中一部分並凝固,導致真球度降低。雜質元素係可認為例如:Fe、Ag、Ni、P、S、Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au、U、Th等。When manufacturing the Cu solder ball 1, a Cu material, which is an example of a metal material formed on a small piece of a predetermined shape, is melted by heating, and the molten Cu is formed into a spherical shape by surface tension, and then solidified by quenching to form the Cu solder ball 1. In the process of solidification of molten Cu from a liquid state, crystal grains will grow in spherical molten Cu. At this time, if there are many impurity elements, the impurity elements will become crystal nuclei, thereby suppressing the growth of crystal grains. Therefore, the spherical molten Cu facilitates the use of fine crystal grains with suppressed growth to become a Cu ball 1 with high true sphericity. On the other hand, if there are fewer impurity elements, the relative relativity of the crystal nucleus will decrease, and the grain growth will grow in an unrestricted direction. As a result, spherical molten Cu protrudes from a part of the surface and solidifies, resulting in a decrease in true sphericity. The impurity element system can be considered as Fe, Ag, Ni, P, S, Sb, Bi, Zn, Al, As, Cd, Pb, In, Sn, Au, U, Th, etc.

以下,針對規定Cu焊球1之純度與真球度的雜質含量進行說明。Hereinafter, the impurity content that defines the purity and the sphericity of the Cu solder ball 1 will be described.

‧Fe、Ag及Ni中至少1種的含量合計:5.0質量ppm以上且50.0質量ppm以下 Cu焊球1所含有的雜質元素中(特別係Fe、Ag及Ni中)至少1種的含量合計,較佳係5.0質量ppm以上且50.0質量ppm以下。即,當含有Fe、Ag及Ni中之任1種的情況,1種的含量較佳係5.0質量ppm以上且50.0質量ppm以下,又若含有Fe、Ag及Ni中之2種以上的情況,2種以上的合計含量較佳係5.0質量ppm以上且50.0質量ppm以下。Fe、Ag及Ni係在Cu焊球1的製造步驟中,於熔融時將成為結晶核,因而若Cu中含有一定量的Fe、Ag或Ni,便可製造高真球度的Cu焊球1。所以,Fe、Ag及Ni中之至少1種係屬於推定雜質元素含量的重要元素。又,藉由Fe、Ag及Ni中之至少1種的含量合計為5.0質量ppm以上且50.0質量ppm以下,便可抑制Cu焊球1出現變色,即便未施行在Cu焊球1徐緩加熱後進行漸冷,使Cu焊球1徐緩再結晶的退火步驟,仍可實現所需的維氏硬度。‧Total content of at least one of Fe, Ag and Ni: 5.0 mass ppm or more and 50.0 mass ppm or less The total content of at least one impurity element (particularly Fe, Ag, and Ni) contained in the Cu solder ball 1 is preferably 5.0 mass ppm or more and 50.0 mass ppm or less. That is, when any one of Fe, Ag, and Ni is contained, the content of one is preferably 5.0 mass ppm or more and 50.0 mass ppm or less, and if it contains two or more of Fe, Ag, and Ni, The total content of two or more kinds is preferably 5.0 mass ppm or more and 50.0 mass ppm or less. The Fe, Ag, and Ni series will become crystalline nuclei during melting in the manufacturing process of the Cu solder ball 1, so if a certain amount of Fe, Ag, or Ni is contained in Cu, a high-sphericity Cu solder ball 1 can be manufactured . Therefore, at least one of Fe, Ag, and Ni is an important element for estimating the content of impurity elements. In addition, when the total content of at least one of Fe, Ag, and Ni is 5.0 mass ppm or more and 50.0 mass ppm or less, the discoloration of the Cu solder ball 1 can be suppressed even if the Cu solder ball 1 is not slowly heated. The annealing step, which gradually recrystallizes the Cu solder ball 1 gradually, can still achieve the required Vickers hardness.

‧S含量:0質量ppm以上且1.0質量ppm以下 S含有達既定量以上的Cu焊球1,在加熱時會形成硫化物、硫氧化物,導致容易變色,造成潤濕性降低,因而S含量必需設為0質量ppm以上且1.0質量ppm以下。形成越多硫化物、硫氧化物的Cu焊球1,則Cu焊球表面的亮度越暗。所以,後有詳述,若Cu焊球表面的亮度測定結果在既定值以下,便可判斷硫化物、硫氧化物的形成受抑制,潤濕性良好。‧S content: 0 mass ppm or more and 1.0 mass ppm or less S contains Cu solder balls 1 of a certain amount or more, and when heated, sulfides and sulfur oxides are formed, which easily cause discoloration and reduce wettability. Therefore, the S content must be 0 mass ppm or more and 1.0 mass ppm or less. As the Cu solder ball 1 having more sulfide and sulfur oxides is formed, the brightness of the Cu solder ball surface becomes darker. Therefore, as described in detail later, if the brightness measurement result on the surface of the Cu solder ball is below a predetermined value, it can be judged that the formation of sulfides and sulfur oxides is suppressed and the wettability is good.

‧P含量:0質量ppm以上且未滿3.0質量ppm P會變化為磷酸、或成為Cu錯合物,導致對Cu焊球1造成不良影響。又,因為含有既定量P的Cu焊球1之硬度會變大,因而P含量較佳係0質量ppm以上且未滿3.0質量ppm、更佳係未滿1.0質量ppm。‧P content: 0 mass ppm or more and less than 3.0 mass ppm P will change to phosphoric acid or become Cu complex, which will cause adverse effects on the Cu solder ball 1. In addition, since the hardness of the Cu solder ball 1 containing a predetermined amount of P increases, the P content is preferably 0 mass ppm or more and less than 3.0 mass ppm, and more preferably less than 1.0 mass ppm.

‧其他雜質元素 Cu焊球1所含有除上述雜質元素以外,例如Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au等雜質元素(以下稱「其他雜質元素」)的含量,分別較佳係0質量ppm以上且未滿50.0質量ppm。‧Other impurity elements In addition to the above-mentioned impurity elements, the content of the Cu solder balls 1 such as Sb, Bi, Zn, Al, As, Cd, Pb, In, Sn, Au and other impurity elements (hereinafter referred to as "other impurity elements") are preferably respectively It is 0 mass ppm or more and less than 50.0 mass ppm.

另外,Cu焊球1係如上述,以Fe、Ag及Ni中之至少1種為必要元素並含有。但是,在Cu焊球1中,依目前的技術並無法防止Fe、Ag、Ni以外的元素混入,因而實質含有Fe、Ag、Ni以外的其他雜質元素。但,當其他雜質元素的含量未滿1質量ppm時,因各元素添加所造成的效果、影響不易顯現。又,分析Cu焊球中所含元素時,若雜質元素的含量未滿1質量ppm時,該值係在分析裝置的檢測極限能力以下。所以,當Fe、Ag及Ni中之至少1種的含量合計為50質量ppm時,若其他雜質元素的含量未滿1質量ppm,則Cu焊球1的純度便實質為4N5(99.995質量%)。又,當Fe、Ag及Ni中之至少1種的含量合計為5質量ppm時,若其他雜質元素的含量未滿1質量ppm,則Cu焊球1的純度便實質為5N5(99.9995質量%)。In addition, as described above, the Cu solder ball 1 contains at least one of Fe, Ag, and Ni as an essential element. However, the Cu solder ball 1 cannot prevent elements other than Fe, Ag, and Ni from being mixed according to the current technology, and therefore substantially contains other impurity elements other than Fe, Ag, and Ni. However, when the content of other impurity elements is less than 1 mass ppm, the effects and influences caused by the addition of each element are not likely to appear. Also, when analyzing the elements contained in the Cu solder ball, if the content of the impurity element is less than 1 mass ppm, the value is below the detection limit of the analyzer. Therefore, when the total content of at least one of Fe, Ag, and Ni is 50 mass ppm, if the content of other impurity elements is less than 1 mass ppm, the purity of the Cu solder ball 1 is substantially 4N5 (99.995 mass %) . In addition, when the total content of at least one of Fe, Ag, and Ni is 5 mass ppm, if the content of other impurity elements is less than 1 mass ppm, the purity of the Cu solder ball 1 is substantially 5N5 (99.9995 mass%) .

‧Cu焊球之維氏硬度:55.5HV以下 Cu焊球1的維氏硬度較佳係55.5HV以下。維氏硬度較大時,對來自外部應力的耐久性會降低,導致耐墜落碰撞性變差,且容易發生龜裂。又,當在形成三次元安裝之凸塊、接頭時賦予加壓等輔助力之際,若使用硬Cu焊球,便會有引發電極崩潰等可能性。又,理由係若Cu焊球1的維氏硬度較大時,因晶粒縮小至一定以上,便會導致導電性劣化的緣故。若Cu焊球1的維氏硬度在55.5HV以下,則耐墜落碰撞性佳、且可抑制龜裂,亦能抑制電極崩潰等,更亦能抑制導電性劣化。本實施例,維氏硬度的下限較佳係超過0HV、更佳係達20HV以上。‧Vickers hardness of Cu solder ball: below 55.5HV The Vickers hardness of the Cu solder ball 1 is preferably 55.5 HV or less. When the Vickers hardness is large, the durability against external stress is lowered, resulting in poor resistance to fall and collision, and cracks are likely to occur. In addition, when an auxiliary force such as pressurization is applied when forming a three-dimensionally mounted bump or joint, if a hard Cu solder ball is used, there is a possibility that the electrode may collapse. In addition, the reason is that if the Vickers hardness of the Cu solder ball 1 is large, the grain size shrinks to a certain level or more, which leads to deterioration in conductivity. If the Vickers hardness of the Cu solder ball 1 is 55.5 HV or less, the drop impact resistance is excellent, cracking can be suppressed, electrode collapse can be suppressed, and the deterioration of conductivity can also be suppressed. In this embodiment, the lower limit of the Vickers hardness preferably exceeds 0 HV, and more preferably exceeds 20 HV.

‧Cu焊球之α線量:0.0200cph/cm2 以下 電子零件在高密度安裝時,為設定為軟錯誤不會構成問題程度的α線量,因而Cu焊球1的α線量較佳係0.0200cph/cm2 以下。α線量就從更進一步抑制高密度安裝時的軟錯誤觀點,較佳係0.0100cph/cm2 以下、更佳係0.0050cph/cm2 以下、特佳係0.0020cph/cm2 以下、最佳係0.0010cph/cm2 以下。為抑制因α線量造成的軟錯誤,U、Th等放射性同位素的含量較佳係未滿5質量ppb。‧The amount of α line of Cu solder ball: 0.0200cph/cm 2 or less When the electronic components are mounted at high density, the amount of α line is set to a degree that does not cause problems with soft errors. Therefore, the amount of α line of Cu solder ball 1 is preferably 0.0200cph/ cm 2 or less. From the viewpoint of further suppressing soft errors during high-density mounting, the amount of α line is preferably 0.0100 cph/cm 2 or less, more preferably 0.0050 cph/cm 2 or less, particularly good 0.0020 cph/cm 2 or less, and most preferably 0.0010 cph/cm 2 or less. In order to suppress soft errors caused by the amount of α rays, the content of radioisotopes such as U and Th is preferably less than 5 mass ppb.

‧耐變色性:亮度達55以上 Cu焊球1的亮度較佳係達55以上。所謂「亮度」係指L* a* b* 表色系的L* 值。表面有形成源自S的硫化物、硫氧化物之Cu焊球1,因為亮度會降低,因而若亮度達55以上,可謂硫化物、硫氧化物受抑制。又,亮度達55以上的Cu焊球1,則安裝時的潤濕性良好。相對於此,若Cu焊球1的亮度未滿55,則可謂硫化物、硫氧化物形成未受充分抑制的Cu焊球1。硫化物、硫氧化物係會對Cu焊球1造成不良影響,且當Cu焊球1直接接合於電極上時會導致潤濕性惡化。潤濕性惡化會導致發生不會潤濕、與自對準性劣化。‧Discoloration resistance: The brightness of Cu solder ball 1 with a brightness of 55 or more is preferably 55 or more. The so-called "brightness" refers to the L * a * b * L * value of the color system. There are Cu solder balls 1 on the surface of which form sulfides and sulfur oxides derived from S, because the brightness will decrease, so if the brightness reaches 55 or more, it can be said that the sulfides and sulfur oxides are suppressed. In addition, the Cu solder ball 1 having a brightness of 55 or more has good wettability during mounting. On the other hand, when the brightness of the Cu solder ball 1 is less than 55, it can be said that the formation of sulfide and sulfur oxides is not sufficiently suppressed in the Cu solder ball 1. The sulfide and sulfur oxide system will adversely affect the Cu solder ball 1, and when the Cu solder ball 1 is directly bonded to the electrode, the wettability will deteriorate. The deterioration of the wettability may cause non-wetting and deterioration of self-alignment.

‧Cu焊球之直徑:1μm以上且1000μm以下 Cu焊球1的直徑較佳係1μm以上且1000μm以下、更佳係50μm以上且300μm。若在此範圍內,便可穩定地製造球狀Cu焊球1,且可抑制端子間呈窄間距時的連接短路情形。此處,例如Cu焊球1被使用於糊膏時,「Cu焊球」亦可稱為「Cu粉」。當「Cu焊球」係使用於「Cu粉」時,一般Cu焊球的直徑較佳係1~300μm。‧Cu solder ball diameter: above 1μm and below 1000μm The diameter of the Cu solder ball 1 is preferably 1 μm or more and 1000 μm or less, and more preferably 50 μm or more and 300 μm. Within this range, the spherical Cu solder balls 1 can be stably manufactured, and the connection short circuit when the terminals have a narrow pitch can be suppressed. Here, for example, when the Cu solder ball 1 is used as a paste, the "Cu solder ball" may also be referred to as "Cu powder". When the "Cu solder ball" is used for "Cu powder", the diameter of the Cu solder ball is preferably 1 to 300 μm.

其次,針對本發明第1實施形態的Cu核球11A及第2實施形態的Cu核球11B中,被覆Cu焊球1的金屬層2進行說明。Next, the metal layer 2 covering the Cu solder ball 1 in the Cu core ball 11A of the first embodiment of the present invention and the Cu core ball 11B of the second embodiment will be described.

‧金屬層 金屬層2係由例如:鍍鎳層、鍍Co層、鍍Fe層、鍍Pd層、或含有Ni、Co、Fe、Pd等元素中之2以上的電鍍層(單層或複數層)構成。金屬層2係Cu核球11A、11B使用於焊料凸塊時,在焊接溫度下不會熔融而殘留,對焊接頭的高度具有貢獻,因而構成真球度高、直徑變動少。又,就從抑制軟錯誤的觀點,最好構成α線量較低。‧Metal layer The metal layer 2 is composed of, for example, a nickel-plated layer, a Co-plated layer, an Fe-plated layer, a Pd-plated layer, or an electroplated layer (single layer or plural layers) containing two or more of elements such as Ni, Co, Fe, and Pd. When the metal layer 2 system Cu core balls 11A and 11B are used for solder bumps, they do not melt at the soldering temperature and remain, and contribute to the height of the solder joint. Therefore, the structure has a high degree of sphericity and little variation in diameter. In addition, from the viewpoint of suppressing soft errors, it is preferable to make the amount of α line low.

‧金屬層之組成與膜厚 當金屬層2的組成係由單一的Ni、Co、Fe或Pd構成金屬層2時,若剔除不可避免的雜質,則Ni、Co、Fe、Pd係100%。又,金屬層2所使用的金屬並不僅侷限於單一金屬,亦可使用由Ni、Co、Fe或Pd中之2元素以上組合的合金。又,金屬層2亦可由:由單一的Ni、Co、Fe或Pd所構成之層、及由Ni、Co、Fe或Pd中之2元素以上組合的合金所構成之層,適當組合的複數層構成。又,亦將由從金屬層2所選擇元素以外之Ni、Co、Fe、Pd所構成單體金屬或合金形成的第2金屬層,被覆金屬層2的表面。在金屬層2或第2金屬層中,亦可既定量添加不會對Ni、Co、Fe、Pd所具有阻障功能、磁性功能構成影響程度的其他元素。所添加的元素係可舉例如:Sn、Ag、Cu、In、Sb、Ge、P等。金屬層2或第2金屬層的膜厚T係例如1μm~20μm。‧Composition and thickness of metal layer When the composition of the metal layer 2 is composed of a single Ni, Co, Fe, or Pd, if the inevitable impurities are removed, Ni, Co, Fe, and Pd are 100%. In addition, the metal used for the metal layer 2 is not limited to a single metal, and an alloy composed of two or more elements of Ni, Co, Fe, or Pd may also be used. In addition, the metal layer 2 may also be composed of a single layer composed of Ni, Co, Fe, or Pd, and a layer composed of an alloy in which two or more elements in Ni, Co, Fe, or Pd are combined, and a plurality of layers are appropriately combined constitute. In addition, the surface of the metal layer 2 is covered with a second metal layer formed of a single metal or alloy composed of Ni, Co, Fe, and Pd other than the elements selected from the metal layer 2. In the metal layer 2 or the second metal layer, other elements that do not affect the degree of barrier function and magnetic function of Ni, Co, Fe, and Pd may be added in quantitative amounts. Examples of the added element system include Sn, Ag, Cu, In, Sb, Ge, and P. The thickness T of the metal layer 2 or the second metal layer is, for example, 1 μm to 20 μm.

其次,針對本發明第2實施形態的Cu核球11B中,被覆金屬層2的焊料層3進行說明。Next, the solder layer 3 covering the metal layer 2 in the Cu core ball 11B according to the second embodiment of the present invention will be described.

‧焊料層 焊料層3係例如:鍍Sn層、或由以Sn為主成分的合金之電鍍層構成。‧Solder layer The solder layer 3 is, for example, a Sn-plated layer or an electroplated layer made of an alloy containing Sn as a main component.

‧焊料層之組成及膜厚 當構成焊料層的焊料組成係合金的情況,在以Sn為主成分的焊料合金之合金組成前提下,其餘並無特別的限定。又,焊料層亦可為Sn電鍍被膜。例如:Sn、Sn-Ag合金、Sn-Cu合金、Sn-Ag-Cu合金、Sn-In合金、及在該等中添加既定合金元素者。任一情況的Sn含量均達40質量%以上。所添加的合金元素係可例如:Ag、Cu、In、Ni、Co、Sb、Ge、P、Fe、Bi、Pb、Zn、Ga等。該等之中,就從墜落碰撞特性的觀點,焊料層3的合金組成較佳係Sn-3Ag-0.5Cu合金。又,藉由焊料層3係使用低α線量的焊料,亦可構成低α線的Cu核球11B。焊料層的厚度並無特別的限制,較佳係單側在100μm以下便足夠,更佳係單側為20~50μm。‧Solder layer composition and film thickness When the solder composition constituting the solder layer is an alloy, the rest is not particularly limited on the premise of the alloy composition of the solder alloy mainly composed of Sn. In addition, the solder layer may be a Sn plating film. For example: Sn, Sn-Ag alloy, Sn-Cu alloy, Sn-Ag-Cu alloy, Sn-In alloy, and those in which a predetermined alloy element is added. In either case, the Sn content is more than 40% by mass. The alloy element system to be added may be, for example, Ag, Cu, In, Ni, Co, Sb, Ge, P, Fe, Bi, Pb, Zn, Ga, or the like. Among these, the alloy composition of the solder layer 3 is preferably a Sn-3Ag-0.5Cu alloy from the viewpoint of falling collision characteristics. In addition, by using a solder with a low α-line amount for the solder layer 3, a Cu core ball 11B with a low α-line can also be formed. The thickness of the solder layer is not particularly limited. It is preferable that one side is less than 100 μm, and more preferably 20-50 μm on one side.

‧Cu核球之α線量:0.0200cph/cm2 以下 本發明第1實施形態的Cu核球11A及第2實施形態的Cu核球11B之α線量,較佳係0.0200cph/cm2 以下。此係在電子零件高密度安裝時,軟錯誤不會構成問題程度的α線量。本發明第1實施形態的Cu核球11A之α線量,係藉由構成Cu核球11A的金屬層2之α線量設在0.0200cph/cm2 以下而達成。所以,本發明第1實施形態的Cu核球11A,因為係被此種金屬層2所被覆,因而呈現低α線量。本發明第2實施形態的Cu核焊球11B之α線量,係藉由構成Cu核球11B的金屬層2與焊料層3之α線量設在0.0200cph/cm2 以下而達成。所以,本發明第2實施形態的Cu核球11B,因為被此種金屬層2與焊料層3所被覆,因而呈低α線量。α線量係就從更加抑制高密度安裝時的軟錯誤觀點,較佳係0.0100cph/cm2 以下、更佳係0.0050cph/cm2 以下、特佳係0.0020cph/cm2 以下、最佳係0.0010cph/cm2 以下。金屬層2與焊料層3的U及Th含量,係為能將Cu焊球1的α線量設在0.0200cph/cm2 以下,因而分別設在5ppb以下。又,就從抑制目前或未來高密度安裝時的軟錯誤之觀點,U及Th的含量分別較佳係2ppb以下。The amount of α-line of Cu core ball: 0.0200cph/cm 2 or less The amount of α-line of Cu core ball 11A in the first embodiment of the present invention and Cu core ball 11B in the second embodiment is preferably 0.0200cph/cm 2 or less. In this system, when the electronic components are mounted in high density, soft errors do not constitute a problematic amount of α-line. The α-line amount of the Cu core ball 11A according to the first embodiment of the present invention is achieved by setting the α-line amount of the metal layer 2 constituting the Cu core ball 11A to 0.0200 cph/cm 2 or less. Therefore, the Cu core ball 11A according to the first embodiment of the present invention is covered with such a metal layer 2 and therefore exhibits a low amount of α-line. The amount of α line of the Cu core solder ball 11B according to the second embodiment of the present invention is achieved by setting the amount of α line of the metal layer 2 and the solder layer 3 constituting the Cu core ball 11B to 0.0200 cph/cm 2 or less. Therefore, the Cu core ball 11B according to the second embodiment of the present invention is covered with such a metal layer 2 and the solder layer 3, and thus has a low α-line amount. From the viewpoint of further suppressing soft errors during high-density mounting, the α-line quantity system is preferably 0.0100 cph/cm 2 or less, more preferably 0.0050 cph/cm 2 or less, particularly good 0.0020 cph/cm 2 or less, and most preferably 0.0010 cph/cm 2 or less. The U and Th contents of the metal layer 2 and the solder layer 3 are such that the amount of α-line of the Cu solder ball 1 can be set to 0.0200 cph/cm 2 or less, so they are set to 5 ppb or less. In addition, from the viewpoint of suppressing soft errors in current or future high-density mounting, the contents of U and Th are preferably 2 ppb or less, respectively.

‧Cu核球之真球度:0.95以上 利用金屬層2被覆Cu焊球1的本發明第1實施形態Cu核球11A、與利用金屬層2及焊料層3被覆Cu焊球1的本發明第2實施形態Cu核球11B之真球度,較佳係達0.95以上、真球度更佳係達0.98以上、特佳係達0.99以上。若Cu核球11A、11B的真球度未滿0.95,則因為Cu核球11A、11B呈不定形狀,因而在將Cu核球11A、11B搭載於電極上並施行迴焊時,會引發Cu核球11A、11B出現位置偏移,且自對準性亦惡化。若Cu核球11A、11B的真球度達0.95以上,則將Cu核球11A、11B安裝於半導體晶片10的電極100等之時,可確保自對準性。而,藉由Cu焊球1的真球度亦達0.95以上,則Cu核球11A、11B因為Cu焊球1與金屬層2在焊接溫度下不會熔融,因而可抑制焊接頭50A、50B的高度變動。藉此,可確實防止半導體晶片10與印刷電路基板40的接合不良。‧Sphericality of Cu core ball: 0.95 or more The true sphericity of the Cu core ball 11A according to the first embodiment of the present invention covering the Cu solder ball 1 with the metal layer 2 and the Cu core ball 11B according to the second embodiment of the present invention covering the Cu solder ball 1 with the metal layer 2 and the solder layer 3 , The preferred system is above 0.95, the true sphericity is more than 0.98 and the best is 0.99. If the true sphericity of the Cu core balls 11A and 11B is less than 0.95, the Cu core balls 11A and 11B have an indefinite shape, so when the Cu core balls 11A and 11B are mounted on the electrode and reflowed, the Cu core will be caused. The balls 11A and 11B are out of position, and the self-alignment deteriorates. If the true sphericity of the Cu core balls 11A and 11B is 0.95 or more, the self-alignment can be ensured when the Cu core balls 11A and 11B are mounted on the electrode 100 of the semiconductor wafer 10 or the like. However, since the Cu sphere 1 has a true sphericity of 0.95 or more, the Cu core balls 11A and 11B will not melt at the welding temperature because the Cu sphere 1 and the metal layer 2 will suppress the welding joints 50A and 50B. Altitude changes. With this, it is possible to surely prevent the defective bonding of the semiconductor wafer 10 and the printed circuit board 40.

‧金屬層之磁性功能 Cu核球11A、11B係藉由在Cu焊球1的表面上被覆著由強磁性體所構成的金屬層2,因而焊球全體具有磁性。依此,藉由對Cu核球11A、11B賦予磁性,便可獲得下述效果。即,當利用饋入方法將Cu核球11A、11B安裝於電極上時,可利用在平台內所設置磁石的磁力,將在基板上所載置遮罩上散佈的Cu核球11A、11B,明確地饋入於遮罩的開口部。藉此,因為不會有如習知饋入手段般的使刮刀、刷毛直接性接觸Cu核球11A、11B,便可防止因饋入手段而造成Cu核球11A、11B遭損傷與變形,並可防止異物混入。又,因為利用磁石的作用可調整Cu核球11A、11B的位置,因而亦可確保Cu核球11A、11B安裝於電極上時的對準性。‧Magnetic function of metal layer Since the Cu core balls 11A and 11B are coated with the metal layer 2 made of a ferromagnetic material on the surface of the Cu solder ball 1, the entire solder ball has magnetism. Accordingly, by imparting magnetism to the Cu core balls 11A and 11B, the following effects can be obtained. That is, when the Cu core balls 11A, 11B are mounted on the electrode by the feeding method, the Cu core balls 11A, 11B scattered on the mask placed on the substrate can be dispersed using the magnetic force of the magnet provided in the platform, The opening of the mask is clearly fed. In this way, because the scraper and the bristles do not directly contact the Cu core balls 11A and 11B like the conventional feeding means, the Cu core balls 11A and 11B can be prevented from being damaged and deformed by the feeding means, and Prevent foreign matter from entering. In addition, since the position of the Cu core balls 11A and 11B can be adjusted by the action of the magnet, the alignment when the Cu core balls 11A and 11B are mounted on the electrode can also be ensured.

‧金屬層之阻障功能 迴焊時,若Cu焊球1的Cu擴散於為將Cu核球11A、11B與電極間予以接合而使用的焊料(糊膏)中,則焊料層中與連接界面處會大量形成硬脆的Cu6 Sn5 、Cu3 Sn介金屬化合物,當呈受衝擊時會促進龜裂,有導致破壞連接部的可能性。所以,為能獲得充分的連接強度,便必需抑制(阻障)Cu從Cu焊球1朝焊料的擴散。本實施例中,因為發揮阻障層功能的金屬層2形成於Cu焊球1的表面上,因而可抑制Cu焊球1的Cu擴散於糊膏狀焊料中。‧When the barrier function of the metal layer is reflowed, if the Cu of the Cu solder ball 1 diffuses in the solder (paste) used to join the Cu core balls 11A, 11B and the electrode, the solder layer and the connection interface A large amount of hard and brittle Cu 6 Sn 5 and Cu 3 Sn intermetallic compounds will be formed everywhere, and when they are impacted, they will promote cracking, which may cause damage to the connection. Therefore, in order to obtain sufficient connection strength, it is necessary to suppress (barrier) the diffusion of Cu from the Cu solder ball 1 toward the solder. In this embodiment, since the metal layer 2 functioning as a barrier layer is formed on the surface of the Cu solder ball 1, the diffusion of Cu in the Cu solder ball 1 into the paste solder can be suppressed.

‧焊膏、泡沫焊料、焊接頭 再者,藉由使Cu核球11A或Cu核球11B含於焊料中,亦可構成焊膏。藉由使Cu核球11A或Cu核球11B分散於焊料中,便可構成泡沫焊料。Cu核球11A或Cu核球11B亦可使用於將電極間予以接合的焊接頭形成時。‧Solder paste, foam solder, solder joint Furthermore, by including the Cu core ball 11A or the Cu core ball 11B in the solder, the solder paste can also be constituted. By dispersing the Cu core ball 11A or the Cu core ball 11B in the solder, a foam solder can be constituted. The Cu core ball 11A or the Cu core ball 11B can also be used when forming a welded joint for joining electrodes.

‧Cu焊球之製造方法 其次,針對Cu焊球1之製造方法一例進行說明。金屬材料一例係將Cu材放置於如陶瓷之類的耐熱性板(以下稱「耐熱板」)上,並與耐熱板一起在爐中加熱。耐熱板設有底部呈半球狀的多數圓形溝。溝的直徑與深度係配合Cu焊球1的粒徑再行適當設定,例如直徑0.8mm、深度0.88mm。又,將由切斷Cu細線所獲得的碎片形狀Cu材,一個個丟入耐熱板的溝內。溝內已有丟入Cu材的耐熱板,在經填充氨分解氣體的爐內升溫至1100~1300℃,施行30~60分鐘的加熱處理。此時,若爐內溫度達Cu的熔點以上,Cu材便熔融形成球狀。然後,將爐內冷卻,藉由Cu焊球1在耐熱板的溝內急冷而成形。‧Cu solder ball manufacturing method Next, an example of a method for manufacturing Cu solder balls 1 will be described. An example of a metal material is to place a Cu material on a heat-resistant plate such as ceramic (hereinafter referred to as "heat-resistant plate"), and heat it together with the heat-resistant plate in an oven. The heat-resistant plate is provided with a plurality of circular grooves with a hemispherical bottom. The diameter and depth of the groove are appropriately set in accordance with the particle diameter of the Cu solder ball 1, for example, a diameter of 0.8 mm and a depth of 0.88 mm. In addition, the scrap-shaped Cu materials obtained by cutting the Cu thin wires are thrown into the grooves of the heat-resistant plate one by one. A heat-resistant plate thrown with Cu material has been placed in the ditch, and the temperature is raised to 1100 to 1300°C in a furnace filled with ammonia decomposition gas, and heat treatment is performed for 30 to 60 minutes. At this time, if the temperature in the furnace reaches the melting point of Cu or more, the Cu material melts to form a spherical shape. Then, the inside of the furnace is cooled, and the Cu solder ball 1 is rapidly cooled in the groove of the heat-resistant plate to form.

再者,另一方法係有如:從坩堝底部所設置的節流孔滴下熔融Cu,該液滴急冷至室溫(例如25℃),而造球成Cu焊球1的噴霧法;利用熱電漿將Cu切割金屬加熱至1000℃以上而造球的方法。Furthermore, another method is as follows: a spray method in which molten Cu is dropped from an orifice provided at the bottom of the crucible, the drop is rapidly cooled to room temperature (for example, 25°C), and the ball is formed into a Cu solder ball 1; A method of pelletizing by heating Cu-cut metal to more than 1000°C.

Cu焊球1之製造方法中,在造球成Cu焊球1前,亦可將Cu焊球1原料的Cu材依800~1000℃施行加熱處理。In the manufacturing method of the Cu solder ball 1, before forming the Cu solder ball 1, the Cu material of the Cu solder ball 1 may be subjected to heat treatment at 800 to 1000°C.

Cu焊球1原料的Cu材,係可使用例如點熔接塊材、焊線材、板材等。Cu材的純度,就從不會降低Cu焊球1之純度的觀點,較佳超過4N5且在6N以下。For the Cu material of the Cu solder ball 1, for example, spot welding blocks, wire rods, and plate materials can be used. From the viewpoint of not reducing the purity of the Cu solder ball 1, the purity of the Cu material is preferably more than 4N5 and less than 6N.

依此當使用高純度Cu材時,亦可未施行前述加熱處理,而與習知同樣地將熔融Cu的保持溫度降低至1000℃程度。依此,前述加熱處理亦可配合Cu材的純度、α線量,而適當省略或變更。又,當製造高α線量Cu焊球1、或異形Cu焊球1時,亦可將該等Cu焊球1再利用為原料,便可更進一步降低α線量。Accordingly, when using a high-purity Cu material, the above-mentioned heat treatment may not be performed, and the holding temperature of molten Cu may be reduced to about 1000° C. as in the conventional art. According to this, the aforementioned heat treatment may be combined with the purity of the Cu material and the amount of α line, and may be omitted or changed as appropriate. In addition, when manufacturing a high-amount Cu solder ball 1, or a shaped Cu solder ball 1, the Cu solder ball 1 can be reused as a raw material, and the amount of α wire can be further reduced.

在所製作Cu焊球1上形成金屬層2的方法,係可採用公知的電解電鍍法等方法。例如形成鍍鎳層的情況,針對鍍鎳的浴種,係使用Ni基底金屬或Ni金屬鹽調製鎳鍍液,浸漬Cu焊球1,藉由使析出便在Cu焊球1的表面上形成鍍鎳層。又,形成鍍鎳層等金屬層2的其他方法亦可採用公知的無電解電鍍法等。The method of forming the metal layer 2 on the produced Cu solder ball 1 can be a method such as a well-known electrolytic plating method. For example, in the case of forming a nickel-plated layer, for a nickel plating bath, a nickel plating solution is prepared using a Ni base metal or a Ni metal salt, and the Cu solder ball 1 is immersed to form a plating on the surface of the Cu solder ball 1 by precipitation Nickel layer. In addition, as another method of forming the metal layer 2 such as a nickel plating layer, a well-known electroless plating method or the like can also be used.

在所製作Cu焊球1上形成金屬層2與焊料層3的方法,係可採用公知的電解電鍍法等方法。當在金屬層2的表面上形成由Sn合金所構成的焊料層3時,針對Sn合金的電鍍浴種,係使用Sn基底金屬或Sn金屬鹽調整Sn電鍍液,在該Sn電鍍液中浸漬已被金屬層2被覆的Cu焊球1,藉由使析出便在金屬層2的表面上形成焊料層3。又,形成焊料層3的其他方法亦可採用公知的無電解電鍍法等。 [實施例]The method of forming the metal layer 2 and the solder layer 3 on the produced Cu solder ball 1 can be a method such as a well-known electrolytic plating method. When the solder layer 3 composed of Sn alloy is formed on the surface of the metal layer 2, for the plating bath species of Sn alloy, Sn base metal or Sn metal salt is used to adjust the Sn plating solution, and the Sn plating solution is immersed in The Cu solder balls 1 covered with the metal layer 2 form a solder layer 3 on the surface of the metal layer 2 by precipitation. In addition, as another method of forming the solder layer 3, a well-known electroless plating method or the like may be used. [Example]

以下,針對本發明實施例進行說明,惟本發明並不僅侷限於該等。依照以下的表1、表2所示組成製作實施例與比較例的Cu焊球,測定該Cu核球的真球度、維氏硬度、α線量及耐變色性。又,利用金屬層2被覆上述實施例與比較例的Cu焊球,而製作實施例、比較例的Cu核球,測定該Cu核球的真球度及α線量。下述表中,沒有單位的數字係表示質量ppm或質量ppb。詳言之,表中表示Fe、Ag、Ni、P、S、Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au含有比例的數值,係表示質量ppm。「<1」係表示相對於該雜質元素的Cu焊球含有比例未滿1質量ppm。又,表中表示U、Th含有比例的數值,係表示質量ppb。「<5」係表示相對於該雜質元素的Cu焊球含有比例未滿5質量ppb。「雜質合計量」係表示Cu焊球所含有雜質元素的合計比例。Hereinafter, the embodiments of the present invention will be described, but the present invention is not limited to these. The Cu solder balls of Examples and Comparative Examples were prepared according to the compositions shown in Tables 1 and 2 below, and the sphericity, Vickers hardness, α-line amount, and discoloration resistance of the Cu core balls were measured. Furthermore, the Cu solder balls of the above-mentioned Examples and Comparative Examples were coated with the metal layer 2 to produce Cu core balls of Examples and Comparative Examples, and the true sphericity and α-ray amount of the Cu core balls were measured. In the following table, the numbers without units indicate mass ppm or mass ppb. In detail, the values in the table showing Fe, Ag, Ni, P, S, Sb, Bi, Zn, Al, As, Cd, Pb, In, Sn, Au content ratios represent mass ppm. "<1" means that the content ratio of Cu solder balls to the impurity element is less than 1 mass ppm. In addition, the table shows the numerical values of the U and Th content ratio, and the masses represent ppb. "<5" means that the content ratio of Cu solder balls to the impurity element is less than 5 mass ppb. "Total Impurity" means the total proportion of impurity elements contained in Cu solder balls.

‧Cu焊球之製作 檢討Cu焊球的製作條件。金屬材料一例的Cu材,係準備點熔接塊材。實施例1~13、22、與比較例1~12的Cu材係使用純度6N者,實施例14~21的Cu材係使用純度5N者。各Cu材丟入坩堝中之後,將坩堝溫度升溫至1200℃,加熱45分鐘而使Cu材熔融,從坩堝底部所設置的節流孔滴下熔融Cu,所生成的液滴急冷至室溫(18℃)而造球為Cu焊球。藉此,製得平均粒徑成為下述各表所示值得Cu焊球。元素分析係若使用感應耦合電漿質譜(ICP-MS分析)、輝光放電質量分析(GD-MS分析),便可高精度分析,本例係利用ICP-MS分析實施。‧Cu solder ball production Review the manufacturing conditions of Cu solder balls. Cu material as an example of metal material is prepared by spot welding block material. For the Cu material systems of Examples 1 to 13, 22 and Comparative Examples 1 to 12, a purity of 6N was used, and for the Cu material systems of Examples 14 to 21, a purity of 5N was used. After throwing each Cu material into the crucible, the temperature of the crucible was raised to 1200°C and heated for 45 minutes to melt the Cu material, the molten Cu was dropped from the orifice provided at the bottom of the crucible, and the generated droplets were quenched to room temperature (18 ℃) and the ball is Cu solder ball. By this, the average particle diameter was obtained as Cu solder balls as shown in the following tables. The elemental analysis system can be analyzed with high accuracy if it uses inductively coupled plasma mass spectrometry (ICP-MS analysis) and glow discharge mass analysis (GD-MS analysis). In this example, ICP-MS analysis was used.

‧Cu核球之製作 使用上述各實施例與各比較例的Cu焊球,依單側2μm的厚度形成當作金屬層用的鍍鎳層,製作實施例、比較例的Cu核球。‧Cu core ball production Using the Cu solder balls of the above Examples and Comparative Examples, a nickel plating layer for a metal layer was formed with a thickness of 2 μm on one side, and Cu core balls of Examples and Comparative Examples were produced.

以下,針對Cu焊球及Cu核球的真球度、α線量、Cu焊球之維氏硬度、及耐變色性的各評價方法進行詳述Hereinafter, each evaluation method of the sphericity, the amount of α line, the Vickers hardness of the Cu solder ball and the Cu core ball, and the discoloration resistance will be described in detail

‧真球度 Cu焊球及Cu核球的真球度係利用CNC影像測定系統進行測定。裝置係MITUTOYO公司製的Ultra Qucik Vision、ULTRA QV350-PRO。‧Sphericality The sphericity of Cu solder balls and Cu core balls is measured by CNC image measuring system. The device is Ultra Qucik Vision and ULTRA QV350-PRO manufactured by MITUTOYO.

[真球度之評價基準] 下述各表中,Cu焊球與Cu核球的真球度評價基準,係如下。 ○○○:真球度達0.99以上 ○○:真球度0.98以上且未滿0.99 ○:真球度0.95以上且未滿0.98 ╳:真球度未滿0.95[Evaluation Criteria of Sphericality] In the following tables, the evaluation criteria for the sphericity of Cu solder balls and Cu core balls are as follows. ○○○: The true sphericity is over 0.99 ○○: Sphericality 0.98 or more and less than 0.99 ○: The true sphericity is 0.95 or more and less than 0.98 ╳: The true sphericity is less than 0.95

‧維氏硬度 Cu焊球之維氏硬度係根據「維氏硬度試驗-試驗方法 JIS Z2244」進行測定。裝置係使用明石製作所製的微小維氏硬度測試器、AKASHI微小硬度計MVK-F 12001-Q。‧Vickers hardness The Vickers hardness of Cu solder balls is measured according to "Vickers hardness test-test method JIS Z2244". The device used a micro Vickers hardness tester made by Akashi, and AKASHI micro hardness tester MVK-F 12001-Q.

[維氏硬度之評價基準] 下述各表中,Cu焊球之維氏硬度的評價基準,係如下。 ○:超過0HV且在55.5HV以下 ╳:超過55.5HV[Vickers hardness evaluation criteria] In the following tables, the evaluation criteria for the Vickers hardness of Cu solder balls are as follows. ○: Over 0HV and below 55.5HV ╳: More than 55.5HV

‧α線量 Cu焊球及Cu核球的α線量之測定方法係如下。α線量測定時係使用氣流氣正比計數管的α線測定裝置。測定樣品係在300mm×300mm平面淺底容器中填鋪Cu焊球直到看不到容器底部為止。將該測定樣品放入α線測定裝置內,在PR-10氣體流動中放置24小時後,測定α線量。針對Cu核球亦依照同樣方法測定α線量。‧Α line The method of measuring the α-ray amount of Cu solder balls and Cu core balls is as follows. When measuring the α-line quantity, it is an α-line measuring device using a gas flow proportional counter tube. The measurement sample was filled with Cu solder balls in a 300mm×300mm flat shallow bottom container until the bottom of the container could not be seen. The measurement sample was placed in an α-ray measuring device, and after being left in a PR-10 gas flow for 24 hours, the amount of α-ray was measured. For the Cu core ball, the α-ray amount was also measured according to the same method.

[α線量之評價基準] 下述各表中,Cu焊球及Cu核球的α線量評價基準係如下。 ○:α線量在0.0200cph/cm2 以下 ╳:α線量超過0.0200cph/cm2 [Evaluation Criteria for Alpha Line Quantity] In the following tables, the evaluation criteria for the alpha line quantity of Cu solder balls and Cu core balls are as follows. ○: The amount of α line is below 0.0200cph/cm 2 ╳: The amount of α line exceeds 0.0200cph/cm 2

另外,測定時所使用的PR-10氣體(氬90%-甲烷10%)係將PR-10氣體填充於氣體鋼瓶中之後經3周以上者。使用經放置3周以上鋼瓶的理由,係為使不會因進入氣體鋼瓶的大氣中之氡產生α線,而依照JEDEC(Joint Electron Device Engineering Council)所規定的JEDEC STANDARD-Alpha Radiation Measurement in Electronic Materials JESD221。In addition, PR-10 gas (90% of argon-10% of methane) used for a measurement is the thing which filled PR-10 gas in the gas cylinder for 3 weeks or more. The reason for using steel cylinders that have been placed for more than 3 weeks is that JEDEC STANDARD-Alpha Radiation Measurement in Electronic Materials is in accordance with JEDEC (Joint Electron Device Engineering Council) in order to prevent alpha rays from entering the atmosphere of gas cylinders. JESD221.

‧耐變色性 為測定Cu焊球的耐變色性,將Cu焊球使用大氣環境下的恆溫槽,設定為200℃施行420秒鐘加熱,測定亮度變化,評價是否屬於能充分承受經時變化的Cu焊球。亮度係使用Konica Minolta製CM-3500d型分光測色計,依D65光源、10度視野,根據JIS Z 8722「顏色之測定方法-反射及穿透物體色」測定分光穿透率,再從色彩值(L* ,a* ,b* )求取。另外,(L* ,a* ,b* )係JIS Z 8729「顏色之顯示方法-L* a* b* 表色系及L* u* v* 表色系」所規定。L* 係亮度,a* 係紅色色度,b* 係黃色色度。‧Discoloration resistance is to measure the discoloration resistance of Cu solder balls. The Cu solder balls are used in a constant temperature bath in an atmospheric environment, set to 200°C, and heated for 420 seconds. The change in brightness is measured to evaluate whether it is able to withstand the changes over time. Cu solder balls. The brightness is measured by the spectrophotometer CM-3500d made by Konica Minolta, according to D65 light source, 10 degree field of view, according to JIS Z 8722 "Measurement method of color-reflection and penetrating object color" to determine the spectral transmittance, and then from the color value (L * , a * , b * ). In addition, (L * , a * , b * ) is stipulated in JIS Z 8729 "Display method of colors-L * a * b * table color system and L * u * v * table color system". L * is the brightness, a * is the red chroma, and b * is the yellow chroma.

[耐變色性之評價基準] 下述各表中,Cu焊球的耐變色性評價基準係如下。 ○:經420秒後的亮度達55以上 ╳:經420秒後的亮度未滿55。[Evaluation criteria for discoloration resistance] In the following tables, the evaluation criteria for the discoloration resistance of Cu solder balls are as follows. ○: The brightness after 420 seconds reaches 55 or more ╳: The brightness is less than 55 after 420 seconds.

‧綜合評價 將依照上述評價方法與評價基準,所獲得真球度、維氏硬度、α線量及耐變色性均為○或○○或○○○的Cu焊球,綜合評價評為「○」。另一方面,將真球度、維氏硬度、α線量及耐變色性中有任一項為╳的Cu焊球,綜合評價評為「╳」。‧Overview According to the above-mentioned evaluation method and evaluation criteria, the obtained Cu spheres with all sphericity, Vickers hardness, α-line amount, and discoloration resistance were ○ or ○○ or ○○○, and the overall evaluation was evaluated as “○”. On the other hand, a Cu solder ball having any one of sphericity, Vickers hardness, α-line amount, and discoloration resistance as ╳ was evaluated as “╳” in a comprehensive evaluation.

再者,將依照上述評價方法與評價基準,所獲得真球度及α線量均為○或○○或○○○的Cu核球,同Cu焊球的評價將綜合評價評為「○」。另一方面,將真球度與α線量中有任一項為╳的Cu核球,綜合評價評為「╳」。In addition, according to the above-mentioned evaluation method and evaluation criteria, the obtained Cu spheres with both the degree of sphericity and the amount of α line are ○ or ○○ or ○○○, and the evaluation with the Cu solder ball is evaluated as “○”. On the other hand, the Cu core ball with any one of the degree of true sphericity and the amount of α line as ╳ is evaluated as “╳” in the comprehensive evaluation.

另外,因為Cu核球的維氏硬度係依存於金屬層一例的鍍鎳層,因而未評價Cu核球的維氏硬度。但,Cu核球中,若Cu焊球的維氏硬度在本發明所規定範圍內,則耐墜落碰撞性亦良好、能抑制龜裂、亦能抑制電極崩潰等,且亦能抑制導電性劣化。In addition, because the Vickers hardness of the Cu core ball depends on the nickel plating layer as an example of the metal layer, the Vickers hardness of the Cu core ball is not evaluated. However, in the Cu core ball, if the Vickers hardness of the Cu solder ball is within the range specified by the present invention, the drop collision resistance is also good, cracking can be suppressed, electrode collapse can also be suppressed, and the deterioration of conductivity can also be suppressed .

另一方面,當Cu焊球的維氏硬度大於本發明所規定範圍時,對來自外部應力的耐久性降低,耐墜落碰撞性變差,且無法解決容易發生龜裂的課題。On the other hand, when the Vickers hardness of the Cu solder ball is greater than the range specified by the present invention, the durability against external stress is reduced, the drop collision resistance is deteriorated, and the problem that cracks easily occur cannot be solved.

所以,使用比較例8~11,維氏硬度超過55.5HV之Cu焊球的Cu核球,因為不適於維氏硬度評價,所以綜合評價評為「╳」。Therefore, the Cu core balls using Cu solder balls with a Vickers hardness exceeding 55.5HV in Comparative Examples 8 to 11 were not suitable for Vickers hardness evaluation, so the comprehensive evaluation was rated as "╳".

再者,因為Cu核球的耐變色性係依存於金屬層一例的鍍鎳層,因而Cu核球的耐變色性並未評價。但,Cu核球若Cu焊球的亮度在本發明所規定範圍內,則Cu焊球表面的硫化物、硫氧化物受抑制,適用於鍍鎳層等金屬層的被覆。Furthermore, since the discoloration resistance of the Cu core ball depends on the nickel plating layer as an example of the metal layer, the discoloration resistance of the Cu core ball is not evaluated. However, when the brightness of the Cu core ball is within the range specified by the present invention, the sulfide and sulfur oxide on the surface of the Cu core ball are suppressed, and it is suitable for coating a metal layer such as a nickel plating layer.

另一方面,若Cu焊球的亮度低於本發明所規定範圍,則Cu焊球表面的硫化物、硫氧化物未受抑制,不適用於鍍鎳層等金屬層的被覆。On the other hand, if the brightness of the Cu solder ball is lower than the range specified by the present invention, the sulfide and sulfur oxide on the surface of the Cu solder ball are not suppressed, and it is not suitable for the coating of a metal layer such as a nickel plating layer.

所以,因為使用比較例1~6,經420秒後亮度未滿55之Cu焊球的Cu核球,並不適用於耐變色性評價,因而綜合評價評為「╳」。Therefore, since Comparative Examples 1 to 6 were used, the Cu core balls of Cu solder balls with a brightness of less than 55 after 420 seconds were not suitable for the evaluation of discoloration resistance, so the comprehensive evaluation was evaluated as "╳".

[表1]

Figure 108120075-A0304-0001
[Table 1]
Figure 108120075-A0304-0001

[表2]

Figure 108120075-A0304-0002
[Table 2]
Figure 108120075-A0304-0002

如表1所示,純度4N5以上且5N5以下的各實施例Cu焊球、及利用鍍鎳層被覆各實施例Cu焊球的各實施例Cu核球,綜合評價均可獲得良好的結果。此現象可謂Cu焊球的純度較佳係4N5以上且5N5以下。As shown in Table 1, the Cu solder balls of each example having a purity of 4N5 or more and 5N5 or less, and the Cu core balls of each example in which the Cu solder balls of each example were coated with a nickel-plated layer can obtain good results in comprehensive evaluation. This phenomenon can be said that the purity of the Cu solder ball is preferably 4N5 or more and 5N5 or less.

如實施例1~12、21,純度4N5以上且5N5以下、且Fe、Ag或Ni含有5.0質量ppm以上且50.0質量ppm以下的Cu焊球,以及利用鍍鎳層被覆各實施例Cu焊球的Cu核球,綜合評價均可獲得良好的結果。如實施例13~20、22所示,純度4N5以上且5N5以下、且Fe、Ag及Ni合計含有5.0質量ppm以上且50.0質量ppm以下的Cu焊球,以及利用鍍鎳層被覆各實施例Cu焊球的Cu核球,亦是綜合評價均獲得良好的結果。另外,雖表中無記載,由實施例1、18~22分別將Fe含量變更為0質量ppm以上且未滿5.0質量ppm、Ag含量變更為0pp以上且未滿5.0質量ppm、Ni含量變更為0質量ppm以上且未滿5.0質量ppm、Fe、Ag及Ni合計設為5.0質量ppm以上的Cu焊球,以及利用鍍鎳層被覆各實施例Cu焊球的Cu核球,亦是綜合評價均獲得良好的結果。As in Examples 1 to 12, 21, Cu solder balls with a purity of 4N5 or more and 5N5 or less, and Fe, Ag, or Ni containing 5.0 mass ppm or more and 50.0 mass ppm or less, and the Cu solder balls of each embodiment coated with a nickel plating layer Cu core ball, comprehensive evaluation can get good results. As shown in Examples 13 to 20 and 22, Cu solder balls with a purity of 4N5 or more and 5N5 or less, and a total of Fe, Ag, and Ni containing 5.0 mass ppm or more and 50.0 mass ppm or less, and each example Cu was coated with a nickel plating layer The Cu core ball of the solder ball also obtained good results in comprehensive evaluation. In addition, although there is no description in the table, in Examples 1, 18 to 22, the Fe content was changed to 0 mass ppm or more and less than 5.0 mass ppm, the Ag content was changed to 0 pp or more and less than 5.0 mass ppm, and the Ni content was changed to The Cu solder balls of 0 mass ppm or more and less than 5.0 mass ppm, the total Fe, Ag, and Ni are set to 5.0 mass ppm or more, and the Cu core balls of the Cu solder balls of each example coated with a nickel plating layer are also comprehensive evaluations. Get good results.

再者,如實施例21所示,Fe、Ag或Ni含有5.0質量ppm以上且50.0質量ppm以下、且其他雜質元素的Sb、Bi、Zn、Al、As、Cd、Pb、In、Sn、Au分別在50.0質量ppm以下的實施例21之Cu焊球,以及利用鍍鎳層被覆該實施例Cu焊球的Cu核球,亦是綜合評價均獲得良好的結果。Furthermore, as shown in Example 21, Fe, Ag, or Ni contains Sb, Bi, Zn, Al, As, Cd, Pb, In, Sn, Au, and other impurity elements of 5.0 mass ppm or more and 50.0 mass ppm or less. The Cu solder balls of Example 21 at 50.0 mass ppm or less, respectively, and the Cu core balls of which the Cu solder balls of this example were coated with a nickel plating layer also obtained good results in comprehensive evaluation.

另一方面,比較例7的Cu焊球係Fe、Ag及Ni的含量合計未滿5.0質量ppm,且U,Th含有未滿5質量ppb,其他雜質元素亦係未滿1質量ppm,將比較例7的Cu焊球,以及利用鍍鎳層被覆比較例7之Cu焊球的Cu核球,真球度係未滿0.95。又,即便未含有雜質元素,但Fe、Ag及Ni中至少1種的含量合計未滿5.0質量ppm的比較例12之Cu焊球,以及利用鍍鎳層被覆比較例12之Cu焊球的Cu核球,亦是真球度未滿0.98。由該等結果,可謂Fe、Ag及Ni中至少1種的含量合計未滿5.0質量ppm的Cu焊球,以及將該Cu焊球利用鍍鎳層被覆的Cu核球,均無法實現高真球度。On the other hand, the total content of Fe, Ag, and Ni in the Cu solder ball system of Comparative Example 7 is less than 5.0 mass ppm, U, Th contains less than 5 mass ppb, and other impurity elements are less than 1 mass ppm. The Cu solder balls of Example 7 and the Cu core balls of the Cu solder balls of Comparative Example 7 covered with a nickel-plated layer had a true sphericity of less than 0.95. In addition, even if no impurity elements are contained, the total content of at least one of Fe, Ag, and Ni is less than 5.0 mass ppm of the Cu solder ball of Comparative Example 12, and the Cu that covers the Cu solder ball of Comparative Example 12 with a nickel plating layer The nuclear ball is also under 0.98. From these results, it can be said that the Cu solder balls with a total content of at least one of Fe, Ag, and Ni less than 5.0 mass ppm, and the Cu core balls covered with the nickel plating layer on the Cu solder balls, cannot achieve high-true balls. degree.

再者,比較例10的Cu焊球,雖Fe、Ag及Ni的含量合計153.6質量ppm、其他雜質元素的含量分別在50質量ppm以下,但維氏硬度超過55.5HV,無法獲得良好的結果。又,比較例8的Cu焊球,係Fe、Ag及Ni的含量合計為150.0質量ppm,且其他雜質元素的含量,特別係Sn為151.0質量ppm,大幅超過50.0質量ppm,維氏硬度超過55.5HV,無法獲得良好的結果。所以,即便純度4N5以上且5N5以下的Cu焊球,但若Fe、Ag及Ni中至少1種的含量合計超過50.0質量ppm之Cu焊球,會導致維氏硬度變大,可謂無法實現低硬度。依此,Cu焊球之維氏硬度過大超過本發明所規定範圍時,針對來自外部應力的耐久性降低,耐墜落碰撞性變差,且無法解決容易發生龜裂的課題。又,可謂其他雜質元素亦係最好分別不要含有超過50.0質量ppm範圍。In addition, in the Cu solder ball of Comparative Example 10, although the total contents of Fe, Ag, and Ni were 153.6 ppm by mass and the contents of other impurity elements were 50 ppm by mass or less, the Vickers hardness exceeded 55.5 HV, and good results could not be obtained. In addition, in the Cu solder ball of Comparative Example 8, the total content of Fe, Ag, and Ni is 150.0 mass ppm, and the content of other impurity elements, particularly Sn, is 151.0 mass ppm, which greatly exceeds 50.0 mass ppm, and the Vickers hardness exceeds 55.5. HV, good results cannot be obtained. Therefore, even with Cu solder balls with a purity of 4N5 or more and 5N5 or less, if the total content of at least one of Fe, Ag, and Ni exceeds 50.0 mass ppm of Cu solder balls, the Vickers hardness will increase and it can be said that low hardness cannot be achieved . Accordingly, when the Vickers hardness of the Cu solder ball is excessively larger than the range specified in the present invention, the durability against external stress is reduced, the drop collision resistance is deteriorated, and the problem that cracks easily occur cannot be solved. In addition, it can be said that other impurity elements should not contain more than 50.0 ppm by mass.

由該等結果可謂純度4N5以上且5N5以下、且所含有Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下的Cu焊球,能實現高真球度及低硬度,且抑制變色。將此種Cu焊球利用鍍鎳層被覆的Cu核球,可實現高真球度,且藉由Cu焊球實現低硬度,則即便Cu核球亦係耐墜落碰撞性良好、能抑制龜裂、亦能抑制電極崩潰等,且亦能抑制導電性劣化。又,藉由抑制Cu焊球變色,便適用於利用鍍鎳層等金屬層被覆。其他雜質元素的含量分別較佳係50.0質量ppm以下。These results can be described as Cu solder balls with a purity of 4N5 or more and 5N5 or less, and the content of at least one of Fe, Ag, and Ni contained in a total of 5.0 mass ppm or more and 50.0 mass ppm or less, which can achieve high sphericality and low hardness. And suppress discoloration. The Cu core ball coated with a nickel plating layer can achieve a high degree of sphericity, and the Cu core ball achieves a low hardness. Even if the Cu core ball has a good impact resistance, it can suppress cracking. , Can also suppress electrode collapse, etc., and can also suppress the deterioration of conductivity. In addition, by suppressing the discoloration of Cu solder balls, it is suitable for coating with a metal layer such as a nickel plating layer. The content of other impurity elements is preferably 50.0 mass ppm or less.

實施例17~20的Cu焊球,雖組成相同,但焊球徑不同,任一者的綜合評價均獲得良好的結果。將實施例17~20的Cu焊球利用由鍍鎳層被覆的Cu核球,亦是綜合評價均獲得良好的結果。雖表中未記載,若與該等實施例相同組成、焊球徑1μm以上且1000μm以下的Cu焊球,任一者的綜合評價均能獲得良好的結果。由此現象,Cu焊球的焊球徑可謂較佳係1μm以上且1000μm以下、更佳係50μm以上且300μm以下。Although the Cu solder balls of Examples 17 to 20 have the same composition, the solder ball diameters are different, and all of the comprehensive evaluations obtained good results. The Cu solder balls of Examples 17 to 20 used Cu core balls covered with a nickel-plated layer, and good results were obtained in all comprehensive evaluations. Although not shown in the table, if Cu solder balls having the same composition as those in the above examples and having a solder ball diameter of 1 μm or more and 1000 μm or less, a comprehensive evaluation of any of them can obtain good results. From this phenomenon, the solder ball diameter of the Cu solder ball is preferably 1 μm or more and 1000 μm or less, and more preferably 50 μm or more and 300 μm or less.

實施例22的Cu焊球係Fe、Ag及Ni的含量合計5.0質量ppm以上且50.0質量ppm以下,P含有2.9質量ppm,綜合評價獲得良好結果。將實施例22的Cu焊球利用鍍鎳層被覆的Cu核球,亦是綜合評價獲得良好的結果。比較例11的Cu焊球,雖Fe、Ag及Ni的含量合計係與實施例22的Cu焊球同樣均在50.0質量ppm以下,但維氏硬度超過5.5HV,便獲得與實施例22之Cu焊球不同的結果。又,比較例9亦是維氏硬度超過5.5HV。理由可認為比較例9、11的P含量明顯增多的緣故所致,由該結果得知,若P含量增加,則維氏硬度會變大。所以,P含量可謂較佳係未滿3質量ppm、更佳係未滿1質量ppm。The total content of Fe, Ag, and Ni of the Cu solder ball system of Example 22 was 5.0 mass ppm or more and 50.0 mass ppm or less, and P contained 2.9 mass ppm, and good results were obtained in the comprehensive evaluation. The Cu core ball coated with the nickel plating layer of the Cu solder ball of Example 22 also obtained a good result by comprehensive evaluation. In the Cu solder ball of Comparative Example 11, although the total content of Fe, Ag, and Ni is the same as the Cu solder ball of Example 22, all of which are 50.0 mass ppm or less, but the Vickers hardness exceeds 5.5HV, and the Cu of Example 22 is obtained. Solder ball different results. Also, in Comparative Example 9, the Vickers hardness exceeded 5.5 HV. The reason is considered to be that the P content of Comparative Examples 9 and 11 is significantly increased. From this result, it is known that the Vickers hardness increases as the P content increases. Therefore, it can be said that the P content is preferably less than 3 mass ppm, and more preferably less than 1 mass ppm.

各實施例的Cu焊球及Cu核球係α線量在0.0200cph/cm2 以下。所以,當電子零件的高密度安裝係使用各實施例的Cu核球時,可抑制軟錯誤。The amount of α line of the Cu solder ball and Cu core ball system of each example is 0.0200 cph/cm 2 or less. Therefore, when the high-density mounting system of electronic parts uses the Cu core balls of the embodiments, soft errors can be suppressed.

比較例7的Cu焊球係耐變色性可獲得良好的結果,另一方面,比較例1~6的耐變色性卻無法獲得良好的結。若將比較例1~6的Cu焊球、與比較例7的Cu焊球進行比較,該等的組成差異僅在於S含量而已。所以,可謂為使耐變色性能獲得良好結果,S含量必需設成未滿1質量ppm。各實施例的Cu焊球均係S含量未滿1質量ppm,可謂S含量較佳係未滿1質量ppm。The discoloration resistance of the Cu solder ball system of Comparative Example 7 can obtain good results. On the other hand, the discoloration resistance of Comparative Examples 1 to 6 cannot obtain a good junction. If the Cu solder balls of Comparative Examples 1 to 6 are compared with the Cu solder balls of Comparative Example 7, the compositional difference of these is only the S content. Therefore, it can be said that in order to obtain good results in the resistance to discoloration, the S content must be set to less than 1 mass ppm. The Cu solder balls of each embodiment are S content less than 1 mass ppm, and it can be said that the S content is preferably less than 1 mass ppm.

接著,為確認S含量與耐變色性的關係,便將實施例14、比較例1及比較例5的Cu焊球依200℃加熱,拍攝加熱前、經加熱60秒後、180秒後、420秒後的照片,且測定亮度。表3與圖5係各Cu焊球的加熱時間與亮度之關係圖。Next, in order to confirm the relationship between the S content and the discoloration resistance, the Cu solder balls of Example 14, Comparative Example 1 and Comparative Example 5 were heated at 200° C. Before shooting, after heating for 60 seconds, after 180 seconds, 420 Photographs after seconds, and the brightness is measured. Table 3 and FIG. 5 are the relationship between the heating time and brightness of each Cu solder ball.

[表3]

Figure 108120075-A0304-0003
[table 3]
Figure 108120075-A0304-0003

由該表得知,若將加熱前的亮度、與經加熱420秒後的亮度進行比較,則實施例14、比較例1、5的亮度,在加熱前呈現接近64、65附近的數值。若經加熱420秒後,S含有30.0質量ppm的比較例5之亮度變為最低,其次依序係S含有10.0質量ppm的比較例1、S含量未滿1質量ppm的實施例14。由此現象可謂S含量越多,則加熱後的亮度越低。比較例1、5的Cu焊球,因為亮度低於55,因而S含有達10.0質量ppm以上的Cu焊球,可謂在加熱時會形成硫化物、硫氧化物,而容易變色。又,若S含量係0質量ppm以上且1.0質量ppm以下,則可謂硫化物、硫氧化物的形成受抑制,且潤濕性良好。另外,將實施例14的Cu焊球安裝於電極上,呈現良好的潤濕性。From this table, if the brightness before heating is compared with the brightness after 420 seconds of heating, the brightness of Example 14, Comparative Examples 1, and 5 shows values near 64 and 65 before heating. After heating for 420 seconds, the brightness of Comparative Example 5 where S contained 30.0 mass ppm became the lowest, followed by Comparative Example 1 where S contained 10.0 mass ppm, and Example 14 where S content was less than 1 mass ppm. From this phenomenon, it can be said that the greater the S content, the lower the brightness after heating. In the Cu solder balls of Comparative Examples 1 and 5, since the brightness is lower than 55, S contains Cu solder balls of 10.0 mass ppm or more, which can be said to form sulfides and sulfur oxides when heated, and is easily discolored. In addition, if the S content is 0 mass ppm or more and 1.0 mass ppm or less, it can be said that the formation of sulfides and sulfur oxides is suppressed and the wettability is good. In addition, the Cu solder ball of Example 14 was mounted on the electrode and exhibited good wettability.

如上述,純度4N5以上且5N5以下、且Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下、S含量0質量ppm以上且1.0質量ppm以下、P含量0質量ppm以上且未滿3.0質量ppm的本實施例Cu焊球,因為真球度均達0.98以上,因而可實現高真球度。藉由實現高真球度,可確保Cu焊球安裝於電極等之時的自對準性,且可抑制Cu焊球的高度變動。將本實施例Cu焊球利用金屬層被覆的Cu核球、以及更將金屬層利用焊料層被覆的Cu核球,亦均可獲得同樣的效果。As described above, the purity is 4 N5 or more and 5 N5 or less, and the content of at least one of Fe, Ag, and Ni totals 5.0 mass ppm or more and 50.0 mass ppm or less, the S content is 0 mass ppm or more and 1.0 mass ppm or less, and the P content is 0 mass ppm. The Cu solder balls of this embodiment above and less than 3.0 mass ppm have a true sphericity of 0.98 or more, and therefore a high true sphericity can be achieved. By realizing a high degree of sphericity, the self-alignment when the Cu solder ball is mounted on the electrode or the like can be ensured, and the height variation of the Cu solder ball can be suppressed. The Cu core ball covered with the metal layer of the Cu solder ball of this embodiment and the Cu core ball covered with the metal layer of the solder layer can also obtain the same effect.

再者,本實施例的Cu焊球,因為維氏硬度均在55HV以下,因而可實現低硬度。藉由實現低硬度,便可提升Cu焊球的耐墜落碰撞性。藉由實現Cu焊球的低硬度,將本實施例的Cu焊球利用金屬層被覆的Cu核球,以及更將金屬層利用焊料層被覆的Cu核球,耐墜落碰撞性亦均良好、且能抑制龜裂、亦能抑制電極崩潰等,亦能抑制導電性劣化。In addition, the Cu solder balls of the present embodiment have a Vickers hardness of 55 HV or less, and thus can achieve a low hardness. By realizing low hardness, the resistance of Cu solder balls to falling and collision can be improved. By realizing the low hardness of the Cu solder ball, the Cu core ball coated with the metal layer of the Cu solder ball of this embodiment, and the Cu core ball coated with the metal layer with the solder layer also have good resistance to falling and collision, and It can suppress cracking, also suppress electrode collapse, etc., and can also suppress the deterioration of conductivity.

再者,本實施例的Cu焊球,變色均受抑制。藉由抑制Cu焊球的變色,便可抑制因硫化物、硫氧化物所造成對Cu焊球的不良影響,並可提升將Cu焊球安裝於電極上之時的潤濕性。藉由抑制Cu焊球的變色,便適用於鍍鎳層等金屬層的被覆。In addition, the Cu solder balls of this embodiment are suppressed from discoloration. By suppressing the discoloration of the Cu solder balls, the adverse effects on the Cu solder balls caused by sulfides and sulfur oxides can be suppressed, and the wettability when the Cu solder balls are mounted on the electrodes can be improved. By suppressing the discoloration of Cu solder balls, it is suitable for the coating of metal layers such as nickel plating.

另外,本實施例的Cu材係使用純度超過4N5且在6N以下的Cu點熔接塊材,製作純度4N5以上且5N5以下的Cu焊球,但即便使用超過4N5且在6N以下的焊線材、板材等,相關Cu焊球、Cu核球雙方在綜合評價時亦均能獲得良好的結果。In addition, the Cu material system of this embodiment uses Cu spot welding blocks with a purity of more than 4N5 and less than 6N to produce Cu solder balls with a purity of 4N5 or more and 5N5 or less, but even if a wire or sheet material exceeding 4N5 and less than 6N is used Etc., both the related Cu solder ball and Cu core ball can also get good results in the comprehensive evaluation.

1‧‧‧Cu焊球 11A、11B‧‧‧Cu核球 2‧‧‧金屬層 3‧‧‧焊料層 10‧‧‧半導體晶片 100、41‧‧‧電極 12、42‧‧‧焊膏 30A、30B‧‧‧焊料凸塊 40‧‧‧印刷電路基板 50A、50B‧‧‧焊接頭 60‧‧‧電子零件1‧‧‧Cu solder ball 11A, 11B‧‧‧Cu core ball 2‧‧‧Metal layer 3‧‧‧ solder layer 10‧‧‧Semiconductor chip 100、41‧‧‧electrode 12, 42‧‧‧ solder paste 30A, 30B ‧‧‧ solder bump 40‧‧‧ printed circuit board 50A, 50B‧‧‧welding head 60‧‧‧Electronic parts

[圖1]係本發明第1實施形態的Cu核球; [圖2]係本發明第2實施形態的Cu核球; [圖3]係使用本發明第1實施形態Cu核球的電子零件構成例; [圖4]係使用本發明第2實施形態Cu核球的電子零件構成例; [圖5]係實施例與比較例的Cu焊球依200℃施行加熱時,加熱時間與亮度的關係圖。[Figure 1] A Cu core ball according to the first embodiment of the present invention; [FIG. 2] A Cu core ball according to the second embodiment of the present invention; [FIG. 3] An example of the configuration of an electronic component using the Cu core ball according to the first embodiment of the present invention; [FIG. 4] An example of the configuration of an electronic component using the Cu core ball according to the second embodiment of the present invention; [Fig. 5] A graph of the relationship between heating time and brightness when Cu solder balls of Examples and Comparative Examples are heated at 200°C.

Claims (15)

一種Cu核球,係具備有: Cu焊球;及 被覆在上述Cu焊球表面且由從Ni、Co、Fe、Pd中選擇1以上元素所形成1層以上的金屬層; 其中,Cu焊球係Fe、Ag及Ni中至少1種的含量合計5.0質量ppm以上且50.0質量ppm以下; S含量0質量ppm以上且1.0質量ppm以下; P含量0質量ppm以上且未滿3.0質量ppm; 其餘係Cu及其他雜質元素;上述Cu焊球的純度係99.995質量%以上且99.9995質量%以下; 真球度達0.95以上。A Cu core ball, with: Cu solder balls; and One or more metal layers formed by coating the surface of the Cu solder ball and selecting one or more elements from Ni, Co, Fe, and Pd; Among them, the total content of at least one of Cu solder ball-based Fe, Ag, and Ni is 5.0 mass ppm or more and 50.0 mass ppm or less; S content: 0 mass ppm or more and 1.0 mass ppm or less; P content 0 mass ppm or more and less than 3.0 mass ppm; The rest is Cu and other impurity elements; the purity of the above Cu solder balls is 99.995 mass% or more and 99.9995 mass% or less; The true sphericity is above 0.95. 如申請專利範圍第1項之Cu核球,其中,真球度係0.98以上。For example, the Cu core ball of item 1 of the patent application scope, in which the true sphericity is above 0.98. 如申請專利範圍第1項之Cu核球,其中,真球度係0.99以上。For example, the Cu core ball in the first scope of patent application, in which the true sphericity is above 0.99. 如申請專利範圍第1至3項中任一項之Cu核球,其中,α線量係0.0200cph/cm2 以下。For example, the Cu core ball according to any one of the items 1 to 3 of the patent application, wherein the amount of α line is 0.0200 cph/cm 2 or less. 如申請專利範圍第1至3項中任一項之Cu核球,其中,α線量係0.0010cph/cm2 以下。For example, the Cu core ball according to any one of the items 1 to 3 of the patent application scope, wherein the amount of α line is 0.0010 cph/cm 2 or less. 如申請專利範圍第1至3項中任一項之Cu核球,其中,具備有被覆上述金屬層表面的焊料層; 真球度達0.95以上。For example, the Cu core ball according to any one of claims 1 to 3, which includes a solder layer covering the surface of the metal layer; The true sphericity is above 0.95. 如申請專利範圍第6項之Cu核球,其中,真球度係0.98以上。For example, the Cu core ball in the 6th range of patent application, in which the true sphericity is above 0.98. 如申請專利範圍第6項之Cu核球,其中,真球度係0.99以上。For example, the Cu core ball in the 6th range of patent application, in which the true sphericity is above 0.99. 如申請專利範圍第6項之Cu核球,其中,α線量係0.0200cph/cm2 以下。For example, the Cu core ball in the 6th range of the patent application, in which the amount of α line is 0.0200cph/cm 2 or less. 如申請專利範圍第6項之Cu核球,其中,α線量係0.0010cph/cm2 以下。For example, the Cu core ball in the 6th range of patent application, in which the amount of α line is 0.0010cph/cm 2 or less. 如申請專利範圍第1至3項中任一項之Cu核球,其中,上述Cu焊球之直徑係1μm以上且1000μm以下。A Cu core ball according to any one of claims 1 to 3, wherein the diameter of the Cu solder ball is 1 μm or more and 1000 μm or less. 如申請專利範圍第6項之Cu核球,其中,上述Cu焊球之直徑係1μm以上且1000μm以下。For example, the Cu core ball of claim 6, the diameter of the Cu solder ball is 1 μm or more and 1000 μm or less. 一種焊接頭,係使用申請專利範圍第1至12項中任一項之Cu核球。A welding head using the Cu core ball according to any one of the patent application items 1 to 12. 一種焊膏,係使用申請專利範圍第1至12項中任一項之Cu核球。A solder paste that uses the Cu core ball according to any one of patent application items 1 to 12. 一種泡沫焊料,係使用申請專利範圍第1至12項中任一項之Cu核球。A foam solder, which uses the Cu core ball according to any one of the patent application items 1 to 12.
TW108120075A 2018-06-12 2019-06-11 Cu core balls, solder joints, solder paste and foam solder TWI766168B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111872A JP6485580B1 (en) 2018-06-12 2018-06-12 Cu core ball, solder joint, solder paste and foam solder
JP2018-111872 2018-06-12

Publications (2)

Publication Number Publication Date
TW202000934A true TW202000934A (en) 2020-01-01
TWI766168B TWI766168B (en) 2022-06-01

Family

ID=65802347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108120075A TWI766168B (en) 2018-06-12 2019-06-11 Cu core balls, solder joints, solder paste and foam solder

Country Status (3)

Country Link
US (1) US10639749B2 (en)
JP (1) JP6485580B1 (en)
TW (1) TWI766168B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764727B (en) * 2020-06-10 2022-05-11 日商千住金屬工業股份有限公司 Method for forming bump electrode substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102420126B1 (en) * 2016-02-01 2022-07-12 삼성전자주식회사 Semiconductor Device
US11581239B2 (en) * 2019-01-18 2023-02-14 Indium Corporation Lead-free solder paste as thermal interface material
KR102489331B1 (en) * 2019-12-31 2023-01-17 덕산하이메탈(주) Solder ball and the manufacturing method thereof
CN112264732B (en) * 2020-10-16 2023-11-14 大连理工大学 Welding wire for copper/steel dissimilar welding, preparation method of welding wire and copper/steel dissimilar welding method
KR20220107851A (en) * 2021-01-26 2022-08-02 삼성전자주식회사 Metal particle for adhesive paste, solder paste composition including the same, and method of preparing the metal particle for adhesive paste

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102016864B1 (en) 2012-12-06 2019-08-30 센주긴조쿠고교 가부시키가이샤 Cu BALL
WO2015118611A1 (en) * 2014-02-04 2015-08-13 千住金属工業株式会社 Cu BALL, Cu CORE BALL, SOLDER JOINT, SOLDER PASTE, AND SOLDER FOAM
JP5534122B1 (en) * 2014-02-04 2014-06-25 千住金属工業株式会社 Core ball, solder paste, foam solder, flux coated core ball and solder joint
KR101912550B1 (en) * 2014-11-05 2018-10-26 센주긴조쿠고교 가부시키가이샤 Solder material, solder paste, foam solder, solder joint, and method for controlling solder material
JP6256616B2 (en) 2015-04-22 2018-01-10 日立金属株式会社 Metal particles and production method thereof, coated metal particles, metal powder
JP6217836B1 (en) * 2016-12-07 2017-10-25 千住金属工業株式会社 Nuclear material, semiconductor package and bump electrode forming method
JP6341330B1 (en) * 2017-12-06 2018-06-13 千住金属工業株式会社 Cu ball, OSP-treated Cu ball, Cu core ball, solder joint, solder paste, foam solder, and method for producing Cu ball
JP6493603B1 (en) * 2018-06-12 2019-04-03 千住金属工業株式会社 Cu core ball, solder joint, solder paste and foam solder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764727B (en) * 2020-06-10 2022-05-11 日商千住金屬工業股份有限公司 Method for forming bump electrode substrate
US11478869B2 (en) 2020-06-10 2022-10-25 Senju Metal Industry Co., Ltd. Method for forming bump electrode substrate

Also Published As

Publication number Publication date
US10639749B2 (en) 2020-05-05
JP2019214755A (en) 2019-12-19
JP6485580B1 (en) 2019-03-20
TWI766168B (en) 2022-06-01
US20190375054A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
TW202000934A (en) Cu Core Ball, Solder Joint, Solder Paste and Formed Solder
TWI527643B (en) Copper balls, copper ball, soft solder joints, soft solder paste and foam solder
JP5967316B2 (en) Cu core ball, solder paste, foam solder and solder joint
TWI761683B (en) Cu core balls, solder joints, solder paste and foam solder
JP5652560B1 (en) Cu core ball, solder paste, foam solder and solder joint
TWI753220B (en) Cu balls, OSP-treated Cu balls, Cu core balls, solder joints, solder pastes, foamed solders, and Cu balls
TWI755603B (en) Cu core balls, solder joints, solder paste and foam solder
TWI783150B (en) Cu nuclei, solder joints, solder paste and foam solder
TWI770385B (en) Cu core balls, solder joints, solder paste and foam solder
TWI783149B (en) Cu nuclei, solder joints, solder paste and foam solder
TWI702299B (en) Cu core balls, solder joints, solder paste and foam solder