TW201939315A - Service occurrence amount prediction method, apparatus and device - Google Patents

Service occurrence amount prediction method, apparatus and device Download PDF

Info

Publication number
TW201939315A
TW201939315A TW108100202A TW108100202A TW201939315A TW 201939315 A TW201939315 A TW 201939315A TW 108100202 A TW108100202 A TW 108100202A TW 108100202 A TW108100202 A TW 108100202A TW 201939315 A TW201939315 A TW 201939315A
Authority
TW
Taiwan
Prior art keywords
feature vector
business
vector
occurrence
historical
Prior art date
Application number
TW108100202A
Other languages
Chinese (zh)
Other versions
TWI703461B (en
Inventor
黃馨譽
吳蔚川
Original Assignee
香港商阿里巴巴集團服務有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港商阿里巴巴集團服務有限公司 filed Critical 香港商阿里巴巴集團服務有限公司
Publication of TW201939315A publication Critical patent/TW201939315A/en
Application granted granted Critical
Publication of TWI703461B publication Critical patent/TWI703461B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

A service occurrence amount prediction method, apparatus and device. The method comprises: discretizing historical service data prior to a predetermined time period to obtain a service occurrence amount vector of time granularity, and generating a service occurrence amount distribution feature vector according to the service occurrence amount in continuous time in the historical service data; and finally, determining, according to the service occurrence amount vector of time granularity and the service occurrence amount distribution feature vector, a service occurrence amount within the determined time period.

Description

業務發生量的預測方法、裝置及設備Method, device and equipment for predicting business volume

本說明書涉及電腦技術領域,尤其涉及一種業務發生量的預測方法、裝置及設備。This specification relates to the field of computer technology, and in particular, to a method, device, and equipment for predicting the amount of business occurrence.

隨著網路技術和終端技術的不斷發展,電子商務在人們日常生活中越來越重要,例如,人們可以透過網路支付在購物網站中購買各種商品等。不僅如此,線上海外購和線下當面付等業務也得到了迅猛發展,這樣,支付應用(如支付寶等)需要支持商戶、買家之間以不同的貨幣進行支付與收款。這樣,支付應用就需要結算相應國家的貨幣給相應的商家,因此,支付應用存在大量的換匯需求。
通常,支付應用需要在每個工作日購買一定數量的外匯以應對業務需求,為了儘量減少匯率波動對支付應用的影響,支付應用會在工作日當天與交易對手鎖定當天的購匯金額。在實際應用中,可以透過時間序列演算法,具體如移動平均法、滑動平均值、ARIMA(Autoregressive Integrated Moving Average Model,自回歸積分滑動平均模型)或者Holt-Winters等給出預定時間段的發展趨勢,但是,上述時間序列演算法對時間序列趨勢的一致性要求較高,如果最近的業務發展趨勢有異常,則根據上述演算法得出的預測結果很有可能也是異常的,造成預測值偏差較大,這樣,就需要提供一種能夠準確即時預測業務發生量,且能夠減少業務風險以及提高資金利用效率的方案。
With the continuous development of network technology and terminal technology, e-commerce is becoming more and more important in people's daily lives. For example, people can buy various goods in shopping websites through online payment. In addition, businesses such as online overseas purchases and offline face-to-face payments have also developed rapidly. In this way, payment applications (such as Alipay) need to support merchants and buyers to make payments and receive payments in different currencies. In this way, the payment application needs to settle the currency of the corresponding country to the corresponding merchant. Therefore, the payment application has a large amount of exchange requirements.
Generally, payment applications need to purchase a certain amount of foreign exchange every working day to meet business needs. In order to minimize the impact of exchange rate fluctuations on payment applications, the payment application locks the amount of foreign exchange purchases on the day with the counterparty on the working day. In practical applications, the development trend in a predetermined time period can be given through time series algorithms, such as moving average method, moving average, ARIMA (Autoregressive Integrated Moving Average Model) or Holt-Winters. However, the above-mentioned time series algorithm requires higher consistency of time series trends. If the recent business development trend is abnormal, the prediction results obtained based on the above algorithm are likely to be abnormal, resulting in a deviation in the predicted value. In this way, it is necessary to provide a solution that can accurately and instantly predict the amount of business occurrence, and can reduce business risks and improve capital utilization efficiency.

本說明書實施例的目的是提供一種業務發生量的預測方法、裝置及設備,以提供一種能夠準確即時預測業務發生量,同時,能夠減少業務風險以及提高資金利用效率的方案。
為實現上述技術方案,本說明書實施例是這樣實現的:
本說明書實施例提供的一種業務發生量的預測方法,所述方法包括:
將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量;
根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。
可選地,所述歷史業務資料包括距離所述預定時間段最近的第一時間段的第一歷史業務資料和除所述第一歷史業務資料外的第二歷史業務資料,
所述根據所述時間粒度的業務發生量向量和所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,包括:
根據所述第一歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第一特徵向量;
根據所述第二歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第二特徵向量。
可選地,所述根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量之前,所述方法還包括:
確定所述第一特徵向量和所述第二特徵向量之間的相似度;
根據所述第一特徵向量和所述第二特徵向量之間的相似度,確定所述第二特徵向量的權重。
可選地,所述確定所述第一特徵向量和所述第二特徵向量之間的相似度,包括:
透過以下任一種方法確定所述第一特徵向量和所述第二特徵向量之間的相似度:歐式距離、向量的夾角餘弦值,以及向量的差的絕對值。
可選地,所述根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量,包括:
分別將所述時間粒度的業務發生量向量與所述第一特徵向量和所述第二特徵向量進行合併,得到合併後的第一特徵向量和第二特徵向量;
基於所述第二特徵向量和所述第二特徵向量的權重,透過損失函數和預定參數優化演算法對初始參數進行優化,得到優化後的初始參數;
根據優化後的初始參數和所述第一特徵向量,確定所述預定時間段內的業務發生量。
可選地,所述預定參數優化演算法包括梯度下降演算法、牛頓法、擬牛頓法、共軛梯度法和啟發式優化演算法。
本說明書實施例提供的一種業務發生量的預測裝置,所述裝置包括:
處理模組,用於將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量;
業務發生量預測模組,用於根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。
可選地,所述歷史業務資料包括距離所述預定時間段最近的第一時間段的第一歷史業務資料和除所述第一歷史業務資料外的第二歷史業務資料,
所述處理模組,包括:
第一特徵向量產生單元,用於根據所述第一歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第一特徵向量;
第二特徵向量產生單元,用於根據所述第二歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第二特徵向量。
可選地,所述裝置還包括:
相似度確定模組,用於確定所述第一特徵向量和所述第二特徵向量之間的相似度;
權重確定模組,用於根據所述第一特徵向量和所述第二特徵向量之間的相似度,確定所述第二特徵向量的權重。
可選地,所述相似度確定模組,用於透過以下任一種裝置確定所述第一特徵向量和所述第二特徵向量之間的相似度:歐式距離、向量的夾角餘弦值,以及向量的差的絕對值。
可選地,所述業務發生量預測模組,包括:
合併單元,用於分別將所述時間粒度的業務發生量向量與所述第一特徵向量和所述第二特徵向量進行合併,得到合併後的第一特徵向量和第二特徵向量;
初始參數優化單元,用於基於所述第二特徵向量,透過損失函數和預定參數優化演算法對初始參數進行優化,得到優化後的初始參數;
業務發生量預測單元,用於根據優化後的初始參數和所述第一特徵向量,確定所述預定時間段內的業務發生量。
可選地,所述預定參數優化演算法包括梯度下降演算法、牛頓法、擬牛頓法、共軛梯度法和啟發式優化演算法。
本說明書實施例提供的一種業務發生量的預測設備,所述業務發生量的預測設備包括:
處理器;以及
被安排成儲存電腦可執行指令的記憶體,所述可執行指令在被執行時使所述處理器:
將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量;
根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。
由以上本說明書實施例提供的技術方案可見,本說明書實施例透過將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,另外,還可以根據歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,最終,可以根據時間粒度的業務發生量向量和業務發生量分佈特徵向量確定預定時間段內的業務發生量,這樣,透過業務發生量分佈特徵向量(可以包括多維特徵向量)來對預定時間段內的業務發生量進行預測,可以在短期業務發生量波動較大的情況下相應調節最終的預測結果,有效避免業務發生量在短期波動較大影響最終的預測結果的情況發生,而且,透過業務發生量分佈特徵向量的方式,還可以較好的捕捉到指定時間段中業務發生量的變化趨勢(如歷史業務資料中業務發生量的變化趨勢等),從而可以提高業務發生量的預測準確率,減少業務風險以及提高了資金利用效率。
The purpose of the embodiments of the present specification is to provide a method, an apparatus, and a device for predicting the amount of business occurrences, so as to provide a solution that can accurately and immediately predict the amount of business occurrences, and at the same time, can reduce business risks and improve capital utilization efficiency.
In order to implement the above technical solution, the embodiments of this specification are implemented as follows:
A method for predicting the amount of service occurrence provided in the embodiments of this specification, the method includes:
Discretizing historical business data before a predetermined period of time to obtain a time-granularity business volume vector, and generating a business volume distribution feature vector according to continuous-time business volume in the historical business data;
Determining the amount of business occurrences within the predetermined time period according to the time-granularity business occurrence vector and the business occurrence distribution feature vector.
Optionally, the historical service data includes a first historical service data in a first time period closest to the predetermined time period and a second historical service data other than the first historical service data,
The generating a feature vector of a service occurrence distribution according to the service occurrence vector of the time granularity and the continuous occurrence of the service occurrence in the historical service data includes:
Generating a first feature vector of the distribution of service occurrences according to the continuous service occurrences in the first historical service data;
And generating a second feature vector of the distribution of business occurrences according to the continuous business occurrences in the second historical business data.
Optionally, before determining the service occurrence volume within the predetermined time period according to the service occurrence vector and the service occurrence distribution feature vector of the time granularity, the method further includes:
Determining a similarity between the first feature vector and the second feature vector;
Determine the weight of the second feature vector according to the similarity between the first feature vector and the second feature vector.
Optionally, determining the similarity between the first feature vector and the second feature vector includes:
The similarity between the first feature vector and the second feature vector is determined by any of the following methods: Euclidean distance, the cosine of the angle of the vector, and the absolute value of the difference of the vector.
Optionally, the determining the service occurrence amount within the predetermined time period according to the service occurrence vector and the service occurrence distribution feature vector of the time granularity includes:
Merging the time-granularity business volume vector with the first feature vector and the second feature vector to obtain a combined first feature vector and a second feature vector;
Based on the second feature vector and the weight of the second feature vector, optimizing initial parameters through a loss function and a predetermined parameter optimization algorithm to obtain optimized initial parameters;
Determine the amount of traffic generated in the predetermined time period according to the optimized initial parameters and the first feature vector.
Optionally, the predetermined parameter optimization algorithm includes a gradient descent algorithm, a Newton method, a quasi-Newton method, a conjugate gradient method, and a heuristic optimization algorithm.
An apparatus for predicting the amount of traffic generated in the embodiments of the present specification, the apparatus includes:
A processing module, configured to discretize historical business data before a predetermined period of time, to obtain a time granularity business volume vector, and to generate a business volume distribution characteristic based on the continuous business volume in the historical business data vector;
The traffic occurrence forecasting module is configured to determine a traffic occurrence in the predetermined time period based on the time granularity traffic occurrence vector and the traffic occurrence distribution feature vector.
Optionally, the historical service data includes a first historical service data in a first time period closest to the predetermined time period and a second historical service data other than the first historical service data,
The processing module includes:
A first feature vector generating unit, configured to generate a first feature vector of a service volume distribution according to a service volume of continuous time in the first historical service data;
A second feature vector generating unit is configured to generate a second feature vector of a service volume distribution according to the service volume of continuous time in the second historical service data.
Optionally, the apparatus further includes:
A similarity determination module, configured to determine a similarity between the first feature vector and the second feature vector;
A weight determining module is configured to determine a weight of the second feature vector according to a similarity between the first feature vector and the second feature vector.
Optionally, the similarity determination module is configured to determine the similarity between the first feature vector and the second feature vector through any of the following devices: Euclidean distance, angle cosine of the vector, and vector The absolute value of the difference.
Optionally, the traffic occurrence prediction module includes:
A merging unit for merging the time-granularity business volume vector with the first feature vector and the second feature vector to obtain a merged first feature vector and a second feature vector;
An initial parameter optimization unit, configured to optimize the initial parameters based on the second feature vector through a loss function and a predetermined parameter optimization algorithm to obtain optimized initial parameters;
A traffic occurrence prediction unit is configured to determine a traffic occurrence in the predetermined time period according to the optimized initial parameters and the first feature vector.
Optionally, the predetermined parameter optimization algorithm includes a gradient descent algorithm, a Newton method, a quasi-Newton method, a conjugate gradient method, and a heuristic optimization algorithm.
An embodiment of this specification provides a device for predicting the amount of traffic generated. The device for predicting the amount of traffic generated includes:
A processor; and a memory arranged to store computer-executable instructions that, when executed, cause the processor to:
Discretizing historical business data before a predetermined period of time to obtain a time-granularity business volume vector, and generating a business volume distribution feature vector according to continuous-time business volume in the historical business data;
Determining the amount of business occurrences within the predetermined time period according to the time-granularity business occurrence vector and the business occurrence distribution feature vector.
As can be seen from the technical solutions provided by the embodiments of the present specification, the embodiments of the present specification obtain a time-granularity business volume vector by discretizing historical business data before a predetermined period of time. The amount of business occurrences over time generates a feature vector of business occurrences distribution. Finally, the amount of business occurrences in a predetermined period of time can be determined based on the time-granularity business occurrence vector and business occurrence distribution feature vector. Vector (which can include multi-dimensional feature vectors) to predict the business volume in a predetermined period of time, and the final forecast result can be adjusted accordingly when the short-term business volume fluctuates, effectively avoiding large business volume fluctuations in the short-term The situation that affects the final prediction result occurs. In addition, by using the feature vector of the business volume distribution, it is also possible to better capture the change trend of the business volume in a specified time period (such as the business volume change trend in historical business data). Etc.) to improve business The accuracy of the forecast of the occurrence amount reduces business risks and improves the efficiency of capital utilization.

本說明書實施例提供一種業務發生量的預測方法、裝置及設備。
為了使本技術領域的人員更好地理解本說明書中的技術方案,下面將結合本說明書實施例中的圖式,對本說明書實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例僅僅是本說明書一部分實施例,而不是全部的實施例。基於本說明書中的實施例,本領域普通技術人員在沒有作出創造性勞動前提下所獲得的所有其他實施例,都應當屬於本說明書保護的範圍。

實施例一
如圖1所示,本說明書實施例提供一種業務發生量的預測方法,該方法的執行主體可以為終端設備或伺服器,其中,該終端設備可以如個人電腦等設備,也可以如手機、平板電腦等移動終端設備,該終端設備可以為用戶使用的終端設備。該伺服器可以是獨立的伺服器,也可以是由多個伺服器組成的伺服器集群等。該方法可以用於準確的即時預測業務發生量等處理中,本實施例中以伺服器為例進行說明,對於終端設備的情況,可以根據下述相關內容處理,在此不再贅述。該方法具體可以包括以下步驟:
在步驟S102中,將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量。
其中,預定時間段可以根據實際情況設定,具體如預定時間段可以是未來的一定時長,如從當前時間點到間隔1小時後的時間點等,還可以是當前時間點之前的某一時間段等。離散化處理可以是把無限空間中有限的個體映射到有限的空間中去,以此來提高演算法的時空效率的處理方式,也即是離散化處理是在不改變資料相對大小的條件下,對資料進行相應的縮小的處理方式,離散化處理是在資料本身很大,其自身無法作為數組的下標保存對應的屬性,如果此時只是需要該資料的相對屬性,則可以對該資料進行離散化處理,也即是當資料只與它們之間的相對大小有關,而與資料的具體內容無關時,可以對該資料進行離散化處理。業務發生量向量可以是用戶在完成某一項或多項業務時產生的相關資料的向量。業務發生量可以是進行或完成某一項或多項業務的用戶數量,或者用戶進行或完成的業務的數量等,例如,如圖2所示,其中可以包括多個伺服器,不同的伺服器可以為不同的業務提供服務,人們可以透過不同的業務伺服器完成不同的業務,業務發生量可以包括多種,例如交易量、轉化量等。時間粒度可以是業務發生或業務發生量統計的基本時間單位,如10分鐘或15分鐘等。
在實施中,由於線上海外購,線下當面付業務的迅猛發展,支付應用(如支付寶等)支持商戶、買家之間以不同的貨幣進行支付與收款。如果商戶與買家(即用戶)分別屬於不同的國家或地區,則無論是線上還是線下,用戶只需要使用本地使用的貨幣進行支付,這樣,支付應用就需要結算相應的外幣給不同的商家,因此,支付應用存在大量的換匯需求,這樣,支付應用需要在每個工作日購買一定數量的外匯以應對業務需求。為了儘量減少匯率波動對支付應用的影響,支付應用會在工作日當天與交易對手鎖定當天的購匯金額,這樣,支付應用需要在每個工作日購買一定數量的外匯以應對業務需求,故需要一種準確的即時方法能夠預測業務發生量,減少業務風險以及提高資金利用效率。在實際應用中,可以透過時間序列演算法,具體如移動平均法、滑動平均值、ARIMA或者Holt-Winters等,其輸入參數是時間序列數值,並根據不同的演算法給出預定時間段的發展趨勢,但是,上述時間序列演算法對時間序列趨勢的一致性要求較高,即如果最近的業務發展趨勢有異常,則根據上述演算法得出的預測結果很有可能也是異常的,且上述時間序列演算法對於即時資料的利用率不高,在實踐中不能準確的捕捉當日最新業務發生量的變化趨勢,從而造成預測值偏差較大。
另外,還可以透過比例法來即時預測業務產生量,該方法透過每小時業務產生量所占的比例,結合即時的該小時內的業務產生量,計算出當日的總業務產生量。而該方法對每小時業務產生量所占的比例的一致性要求較高,如果該小時的業務產生量發生驟變,則根據該方法得出的預測結果很有可能是異常的。
可見,為了能夠準確捕捉當日最新的業務發生量的變化趨勢,減小預測誤差,可以透過以下方式處理,具體可以包括以下內容:
可以先確定需要預測的時間段,如從當前時間點到間隔2小時後的時間點具體如當前時間點為10點鐘,間隔2小時後的時間點為12點鐘,則需要預測的時間段(即預定時間段)可以為10點鐘~12點鐘;再如,當前時間點為10點鐘,需要預測的時間段(即預定時間段)可以為10點鐘~當日的24點鐘等。伺服器中可以儲存有某一項或多項業務的相關資料,該資料可以是用戶在請求相關的業務,並在完成該項業務後產生的相關資料。伺服器確定預定時間段後,可以從儲存的相應業務資料中提取在上述預定時間段(如當前時刻的10點鐘~當日的24點鐘)之前一定時長(例如當前時刻的10點鐘之前一個月或二個月等)的歷史業務資料。通常,該歷史業務資料的資料量較大,為了降低伺服器的處理壓力,可以對得到的歷史業務資料進行離散化處理。透過對歷史業務資料的離散化處理,可以將歷史業務資料按照預定的規則離散成時間粒度的業務發生量向量,其中,可以將歷史業務資料劃分為兩個部分,其中的一部分可以為從當日的零點至即時業務資料中最新業務發生時刻(即當前時間點)的歷史業務資料,該部分歷史業務資料可以按照上述規則被離散為業務發生量向量;另一個部分可以為當日的零點之前的歷史業務資料,該部分資料還可以劃分為兩個部分,其中的一個部分可以是每一日的零點至該日中當前時間點對應的時刻的歷史業務資料,例如,當前時間點為10點鐘,當日的日期為2月28日,則該部分的歷史業務資料可以包括2月27日零點鐘~10點鐘的歷史業務資料、2月26日零點鐘~10點鐘的歷史業務資料、2月25日零點鐘~10點鐘的歷史業務資料,以此類推;另一部分可以是每一日中當前時間點對應的時刻~該日24點鐘的歷史業務資料,例如,基於上述示例,該部分的歷史業務資料可以包括2月27日10點鐘~24點鐘的歷史業務資料、2月26日10點鐘~24點鐘的歷史業務資料、2月25日10點鐘~24點鐘的歷史業務資料,以此類推。上述每一個部分的歷史業務資料可以按照上述規則被離散為業務發生量向量。
需要說明的是,可以將當日剩餘時刻(即當前時刻的10點鐘~當日的24點鐘)的業務發生量之和的總業務發生量,也即是需要預測的業務發生量。
在步驟S104中,根據上述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量。
在實施中,伺服器中可以預先設定產生特徵向量的規則或演算法,相應的規則或演算法可以根據實際情況確定,本說明書實施例對此不做限定。伺服器可以先從得到的歷史業務資料中提取連續時間的業務發生量,可以透過上述設定的規則或演算法將歷史業務資料中連續時間的業務發生量產生相應特徵來表徵業務發生量的分佈情況,上述產生的特徵即可以為分佈特徵,然後,伺服器可以將上述得到的分佈特徵與上述步驟S102中得到的時間粒度的業務發生量向量進行合併,得到業務發生量分佈特徵向量。其中,業務發生量分佈特徵向量可以有多種表現形式,例如每小時平均業務發生量、每小時業務發生量的增幅和每小時業務發生量的增長速率等。
在實際應用中,除了上述常用的業務發生量分佈特徵向量外,還可以包括其他特徵向量,例如週期性業務發生量分佈特徵向量(具體如每星期業務發生量分佈特徵向量、每季度業務發生量分佈特徵向量,每個月份業務發生量分佈特徵向量)、活動業務發生量分佈特徵向量(具體如促銷日的業務發生量分佈特徵向量)、滑動移動平均業務發生量分佈特徵向量(具體如計算一定窗口一定週期內的平均業務發生量分佈特徵向量)等。
在步驟S104中,且根據上述時間粒度的業務發生量向量和業務發生量分佈特徵向量確定預定時間段內的業務發生量。
在實施中,根據上述時間粒度的業務發生量向量和業務發生量分佈特徵向量確定預定時間段內的業務發生量的具體處理過程可以透過多種方式實現,為了可以很好的從歷史業務資料所體現出的業務發生量趨勢(或可以稱為過往趨勢)中擬合出最符合某一時間段(即預定時間段)內業務發生量趨勢的分佈,可以採用字典學習演算法實現對預定時間段內的業務發生量的預測,其中,字典學習演算法可以包括兩個階段,即字典構建階段和利用字典表示業務發生量階段,上述兩個階段中的每個階段可以透過許多不同演算法實現。字典學習實質上是對於龐大資料集的一種降維表示,另外,字典學習總是嘗試學習蘊藏在歷史業務資料深層中的最質樸的特徵。字典學習可以是預測業務發生量所使用的業務發生量分佈特徵向量與初始參數的線性表示,其中,初始參數可以基於歷史業務資料透過損失函數和參數優化演算法進行不斷迭代優化而得到,其中的損失函數可以用於度量上述業務發生量分佈特徵向量與初始參數的線性函數的擬合程度,可以基於現有線性函數計算預測業務發生量與歷史實際的業務發生量的損失值和梯度,當得到的損失函數最小時,則意味著擬合程度最優,對應的初始參數即為最優參數,損失函數的最小值可以透過參數優化演算法進行求解。其中的參數優化演算法可以包括多種,例如,可以具體使用梯度下降方法,以獲取到最優參數。首先,可以確定當前位置的損失函數的梯度(該梯度的數值可以由損失函數計算得到),可以使用初始步長乘以損失函數的梯度,得到當前位置下降的距離,此時,可以判斷是否對於所有的係數來說,梯度下降的距離都小於設定的誤差值,如果梯度下降的距離小於設定的誤差值,則終止參數優化演算法,此時初始參數已為最優參數,如果梯度下降的距離大於設定的誤差值,則可以更新所有初始參數,並繼續進行上述迭代計算,直至梯度下降的距離小於設定的誤差值為止。
伺服器可以透過預先設定的處理規則或演算法對上述得到的時間粒度的業務發生量向量和業務發生量分佈特徵向量進行合併處理,得到與預測業務發生量相關的多維向量組合,從而得到合併後的業務發生量分佈特徵向量,合併後的業務發生量分佈特徵向量可以是與業務發生量的預測相關的特徵向量。伺服器可以基於歷史業務資料分別對上述損失函數和參數優化演算法進行訓練,確定損失函數和參數優化演算法中的相關參數,從而得到訓練後的損失函數和參數優化演算法,然後,可以基於訓練後的損失函數和參數優化演算法對初始參數進行不斷迭代優化,得到最優參數。然後,可以使用上述業務發生量分佈特徵向量(可以當日的零點至即時業務資料中最新業務發生時刻的歷史業務資料對應的業務發生量分佈特徵向量為主)與上述得到的最優參數進行線性回歸,可以得到預定時間段內的業務發生量。
需要說明的是,在實際應用中,對預定時間段內的業務發生量的預測的處理不僅僅可以透過字典學習演算法實現,還可以透過其它演算法實現,例如稀疏模型的相關演算法等,本說明書實施例對此不做限定。
本說明書實施例提供一種業務發生量的預測方法,透過將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,另外,還可以根據歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,最終,可以根據時間粒度的業務發生量向量和業務發生量分佈特徵向量確定預定時間段內的業務發生量,這樣,透過業務發生量分佈特徵向量(可以包括多維特徵向量)來對預定時間段內的業務發生量進行預測,可以在短期業務發生量波動較大的情況下相應調節最終的預測結果,有效避免業務發生量在短期波動較大影響最終的預測結果的情況發生,而且,透過業務發生量分佈特徵向量的方式,還可以較好的捕捉到指定時間段中業務發生量的變化趨勢(如歷史業務資料中業務發生量的變化趨勢等),從而可以提高業務發生量的預測準確率,減少業務風險以及提高了資金利用效率。

實施例二
如圖3所示,本說明書實施例提供一種業務發生量的預測方法,該方法的執行主體可以為終端設備或伺服器,其中,該終端設備可以如個人電腦等設備,也可以如手機、平板電腦等移動終端設備,該終端設備可以為用戶使用的終端設備。該伺服器可以是獨立的伺服器,也可以是由多個伺服器組成的伺服器集群等。該方法可以用於準確的即時預測業務發生量等處理中,本實施例中以伺服器為例進行說明,對於終端設備的情況,可以根據下述相關內容處理,在此不再贅述。該方法具體可以包括以下步驟:
在步驟S302中,將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量。
在實施中,伺服器可以即時記錄各項業務產生的相關業務資料,記錄的相關業務資料中可以包括兩部分,一部分是當日(即從當日的零點到當前時刻)產生的業務資料,另一部分可以是當日之前的歷史業務資料。伺服器可以獲取上述兩部分的業務資料,可以對上述兩部分的業務資料根據一定的規則進行資料清洗。透過資料清洗可以對上述兩部分的業務資料進行重新審查和校驗,從而將兩部分的業務資料中的重複資訊刪除,並可以對其中存在的錯誤進行糾正等。得到糾正後的業務資料後,可以對其進行離散化處理,以得到時間粒度的業務發生量向量,其中對歷史業務資料進行離散化處理得到時間粒度的業務發生量向量的具體處理過程可以參見上述實施例一中步驟S102中的相關內容,在此不再贅述。
基於上述內容,伺服器中可以包括兩部分歷史業務資料,因此,歷史業務資料可以包括距離預定時間段最近的第一時間段的第一歷史業務資料和除所述第一歷史業務資料外的第二歷史業務資料,其中的距離預定時間段最近的第一時間段可以是指當日零點開始到當前時間點的時間段,第二歷史業務資料可以是當日之前的歷史業務資料,而第二歷史業務資料也可以包括兩部分,其中的一個部分可以是每一日的零點至該日中當前時間點對應的時刻的歷史業務資料,另一部分可以是每一日中當前時間點對應的時刻至該日24點鐘的歷史業務資料。對於上述劃分的多個部分的歷史業務資料可以分別執行以下步驟S304~步驟S316的處理。
在步驟S304中,根據上述第一歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第一特徵向量。
在實施中,伺服器中可以預先設定產生特徵向量的規則或演算法,相應的規則或演算法可以根據實際情況確定,本說明書實施例對此不做限定。伺服器可以先從得到的第一歷史業務資料中提取連續時間的業務發生量,可以透過上述設定的規則或演算法將第一歷史業務資料中連續時間的業務發生量產生業務發生量分佈的第一特徵向量。例如,如果第一歷史業務資料為當日零點開始到當前時間點的歷史業務資料,則基於第一歷史業務資料的時間粒度的業務發生量向量,可以得到1×N維的第一特徵向量。
在步驟S306中,根據上述第二歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第二特徵向量。
在實施中,伺服器可以先從得到的第二歷史業務資料中提取連續時間的業務發生量,可以透過上述設定的規則或演算法將第二歷史業務資料中連續時間的業務發生量產生業務發生量分佈的第二特徵向量。例如,對第二歷史業務資料中每一日零點開始到該日中當前時間點對應的時刻的歷史業務資料,則基於該歷史業務資料的時間粒度的業務發生量向量,可以得到1×N維的第二特徵向量;對第二歷史業務資料中每一日中當前時間點對應的時刻開始到該日24點鐘的歷史業務資料,則基於該歷史業務資料的時間粒度的業務發生量向量,可以得到1×N維的第二特徵向量。
在步驟S308中,分別將上述時間粒度的業務發生量向量與上述第一特徵向量和上述第二特徵向量進行合併,得到合併後的第一特徵向量和第二特徵向量。
在實施中,伺服器可以將上述得到的第一特徵向量和第二特徵向量分別與上述步驟S302中得到的時間粒度的業務發生量向量進行合併,得到合併後的業務發生量分佈特徵向量(即合併後的第一特徵向量和第二特徵向量)。其中,第一特徵向量和第二特徵向量可以有多種表現形式,例如每小時平均業務發生量、每小時業務發生量的增幅和每小時業務發生量的增長速率等。
需要說明的是,上述合併後的第一特徵向量和第二特徵向量可以包括如每小時平均業務發生量、每小時業務發生量的增幅和每小時業務發生量的增長速率等,此外,還可以包括如週期性業務發生量分佈特徵向量、活動業務發生量分佈特徵向量、滑動移動平均業務發生量分佈特徵向量等。
為了表明各個不同特徵向量的重要關係,可以為第一特徵向量和第二特徵向量分別設置相應的權重,具體可以參見下述步驟S310和步驟S312的處理。
在步驟S310中,確定上述第一特徵向量和上述第二特徵向量之間的相似度。
在實施中,可以透過第一特徵向量和第二特徵向量之間的相似度來判定兩者權重的數值,為此可以設定進行相似度計算的相關演算法,在實際應用中,可以透過以下任一種方法確定第一特徵向量和第二特徵向量之間的相似度:歐式距離、向量的夾角餘弦值,以及向量的差的絕對值。以歐式距離為例,伺服器可以計算第一特徵向量與第二特徵向量之間的歐氏距離,透過得到的歐式距離的資料,可以判定第一特徵向量和第二特徵向量之間的相似度,即當第一特徵向量與第二特徵向量之間的歐氏距離越小,則表明第一特徵向量與第二特徵向量之間越接近,兩者的相似度越高,在後續進行業務發生量預測時,該第二特徵向量的比重越大;當第一特徵向量與第二特徵向量之間的歐氏距離越大,則表明第一特徵向量與第二特徵向量之間相差越大(或差別越大),兩者的相似度越低,在後續進行業務發生量預測時,該第二特徵向量的比重越小。相應的,對於以向量的夾角餘弦值或向量的差的絕對值為相似度計算演算法的具體處理方式和判斷方式,可以與上述歐式距離的情況類似,具體可以參見歐式距離的處理過程,在此不再贅述。
在步驟S312中,根據第一特徵向量和第二特徵向量之間的相似度,確定第二特徵向量的權重。
在實施中,伺服器透過上述步驟S310的處理得到第一特徵向量和第二特徵向量之間的相似度後,可以基於兩者的相似度確定第二特徵向量的權重,在實際應用中可以將上述計算得到的第一特徵向量與第二特徵向量之間的歐氏距離的數值作為第二特徵向量的權重,或者,可以將第一特徵向量與第二特徵向量之間的夾角餘弦值作為第二特徵向量的權重,或者,可以將第一特徵向量與第二特徵向量的差的絕對值作為第二特徵向量的權重等。
可以透過字典學習演算法確定預定時間段內的業務發生量,其中的字典學習演算法中可以包括初始參數,而且,字典學習演算法中還涉及到損失函數和參數優化演算法,具體處理過程可以參見下述步驟S314和步驟S316的處理。
在步驟S314中,基於上述第二特徵向量和第二特徵向量的權重,透過損失函數和預定參數優化演算法對初始參數進行優化,得到優化後的初始參數。
其中,預定參數優化演算法可以包括多種,以下提供多種可選的演算法,可以包括梯度下降演算法、牛頓法、擬牛頓法、共軛梯度法和啟發式優化演算法等。損失函數可以是指一種將一個事件映射到一個表達與該事件相關的經濟成本或機會成本的實數上的函數。
在實施中,可以在伺服器中預先設定損失函數和參數優化演算法的具體內容,例如可以設定梯度下降演算法或牛頓法作為參數優化演算法,並可以將預先設定的損失函數的具體形式寫入到伺服器中。伺服器可以透過第二歷史業務資料對應的第二特徵向量和第二特徵向量的權重,以及預先設定的損失函數和參數優化演算法,對字典學習演算法中的初始參數進行迭代計算,可以透過多次的迭代計算,得到最優的初始參數,進而得到優化後的初始參數。
在步驟S316中,根據優化後的初始參數和上述第一特徵向量,確定預定時間段內的業務發生量。
上述步驟S316的具體處理過程可以參見上述實施例一中步驟S104中的相關內容,在此不再贅述。
透過上述步驟S302~步驟S316的處理過程,透過採用多維特徵向量的方式來預測業務發生量,該處理過程中對時間趨勢的一致性要求不高,例如近期或者臨近1小時內業務發生量波動較大(或者,上漲或下降明顯),則該處理過程可以自動調節最終得到的預測結果;另外,該處理過程可以較好的捕捉到指定時間段中業務發生量的變化趨勢,並透過字典學習演算法可以很好的從歷史業務資料中業務發生量的變化趨勢中擬合最符合即時資料的趨勢分佈。利用該處理過程可以在即時預測中取得優於透過時間序列方式進行預測的準確率。
本說明書實施例提供一種業務發生量的預測方法,透過將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,另外,還可以根據歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,最終,可以根據時間粒度的業務發生量向量和業務發生量分佈特徵向量確定預定時間段內的業務發生量,這樣,透過業務發生量分佈特徵向量(可以包括多維特徵向量)來對預定時間段內的業務發生量進行預測,可以在短期業務發生量波動較大的情況下相應調節最終的預測結果,有效避免業務發生量在短期波動較大影響最終的預測結果的情況發生,而且,透過業務發生量分佈特徵向量的方式,還可以較好的捕捉到指定時間段中業務發生量的變化趨勢(如歷史業務資料中業務發生量的變化趨勢等),從而可以提高業務發生量的預測準確率,減少業務風險以及提高了資金利用效率。

實施例三
以上為本說明書實施例提供的業務發生量的預測方法,基於同樣的思路,本說明書實施例還提供一種業務發生量的預測裝置,如圖4所示。
該業務發生量的預測裝置包括:處理模組401和業務發生量預測模組402,其中:
處理模組401,用於將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量;
業務發生量預測模組402,用於根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。
本說明書實施例中,所述歷史業務資料包括距離所述預定時間段最近的第一時間段的第一歷史業務資料和除所述第一歷史業務資料外的第二歷史業務資料,
所述處理模組401,包括:
第一特徵向量產生單元,用於根據所述第一歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第一特徵向量;
第二特徵向量產生單元,用於根據所述第二歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第二特徵向量。
本說明書實施例中,所述裝置還包括:
相似度確定模組,用於確定所述第一特徵向量和所述第二特徵向量之間的相似度;
權重確定模組,用於根據所述第一特徵向量和所述第二特徵向量之間的相似度,確定所述第二特徵向量的權重。
本說明書實施例中,所述相似度確定模組,用於透過以下任一種裝置確定所述第一特徵向量和所述第二特徵向量之間的相似度:歐式距離、向量的夾角餘弦值,以及向量的差的絕對值。
本說明書實施例中,所述業務發生量預測模組402,包括:
合併單元,用於分別將所述時間粒度的業務發生量向量與所述第一特徵向量和所述第二特徵向量進行合併,得到合併後的第一特徵向量和第二特徵向量;
初始參數優化單元,用於基於所述第二特徵向量和所述第二特徵向量的權重,透過損失函數和預定參數優化演算法對初始參數進行優化,得到優化後的初始參數;
業務發生量預測單元,用於根據優化後的初始參數和所述第一特徵向量,確定所述預定時間段內的業務發生量。
本說明書實施例中,所述預定參數優化演算法包括梯度下降演算法、牛頓法、擬牛頓法、共軛梯度法和啟發式優化演算法。
本說明書實施例提供一種業務發生量的預測裝置,透過將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,另外,還可以根據歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,最終,可以根據時間粒度的業務發生量向量和業務發生量分佈特徵向量確定預定時間段內的業務發生量,這樣,透過業務發生量分佈特徵向量(可以包括多維特徵向量)來對預定時間段內的業務發生量進行預測,可以在短期業務發生量波動較大的情況下相應調節最終的預測結果,有效避免業務發生量在短期波動較大影響最終的預測結果的情況發生,而且,透過業務發生量分佈特徵向量的方式,還可以較好的捕捉到指定時間段中業務發生量的變化趨勢(如歷史業務資料中業務發生量的變化趨勢等),從而可以提高業務發生量的預測準確率,減少業務風險以及提高了資金利用效率。

實施例四
以上為本說明書實施例提供的業務發生量的預測裝置,基於同樣的思路,本說明書實施例還提供一種業務發生量的預測設備,如圖5所示。
所述業務發生量的預測設備可以為上述實施例提供的伺服器或終端設備。
業務發生量的預測設備可因配置或性能不同而產生比較大的差異,可以包括一個或一個以上的處理器501和記憶體502,記憶體502中可以儲存有一個或一個以上儲存應用程式或資料。其中,記憶體502可以是短暫儲存或持久儲存。儲存在記憶體502的應用程式可以包括一個或一個以上模組(圖示未示出),每個模組可以包括對業務發生量的預測設備中的一系列電腦可執行指令。更進一步地,處理器501可以設置為與記憶體502通信,在業務發生量的預測設備上執行記憶體502中的一系列電腦可執行指令。業務發生量的預測設備還可以包括一個或一個以上電源503,一個或一個以上有線或無線網路介面504,一個或一個以上輸入輸出介面505,一個或一個以上鍵盤506。
具體在本實施例中,業務發生量的預測設備包括有記憶體,以及一個或一個以上的程式,其中一個或者一個以上程式儲存於記憶體中,且一個或者一個以上程式可以包括一個或一個以上模組,且每個模組可以包括對業務發生量的預測設備中的一系列電腦可執行指令,且經配置以由一個或者一個以上處理器執行該一個或者一個以上程式包含用於進行以下電腦可執行指令:
將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量;
根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。
可選地,所述歷史業務資料包括距離所述預定時間段最近的第一時間段的第一歷史業務資料和除所述第一歷史業務資料外的第二歷史業務資料,
所述根據所述時間粒度的業務發生量向量和所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,包括:
根據所述第一歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第一特徵向量;
根據所述第二歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第二特徵向量。
可選地,所述根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量之前,所述方法還包括:
確定所述第一特徵向量和所述第二特徵向量之間的相似度;
根據所述第一特徵向量和所述第二特徵向量之間的相似度,確定所述第二特徵向量的權重。
可選地,所述確定所述第一特徵向量和所述第二特徵向量之間的相似度,包括:
透過以下任一種方法確定所述第一特徵向量和所述第二特徵向量之間的相似度:歐式距離、向量的夾角餘弦值,以及向量的差的絕對值。
可選地,所述根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量,包括:
分別將所述時間粒度的業務發生量向量與所述第一特徵向量和所述第二特徵向量進行合併,得到合併後的第一特徵向量和第二特徵向量;
基於所述第二特徵向量和所述第二特徵向量的權重,透過損失函數和預定參數優化演算法對初始參數進行優化,得到優化後的初始參數;
根據優化後的初始參數和所述第一特徵向量,確定所述預定時間段內的業務發生量。
可選地,所述預定參數優化演算法包括梯度下降演算法、牛頓法、擬牛頓法、共軛梯度法和啟發式優化演算法。
本說明書實施例提供一種業務發生量的預測設備,透過將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,另外,還可以根據歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,最終,可以根據時間粒度的業務發生量向量和業務發生量分佈特徵向量確定預定時間段內的業務發生量,這樣,透過業務發生量分佈特徵向量(可以包括多維特徵向量)來對預定時間段內的業務發生量進行預測,可以在短期業務發生量波動較大的情況下相應調節最終的預測結果,有效避免業務發生量在短期波動較大影響最終的預測結果的情況發生,而且,透過業務發生量分佈特徵向量的方式,還可以較好的捕捉到指定時間段中業務發生量的變化趨勢(如歷史業務資料中業務發生量的變化趨勢等),從而可以提高業務發生量的預測準確率,減少業務風險以及提高了資金利用效率。
上述對本說明書特定實施例進行了描述。其它實施例在所附申請專利範圍的範圍內。在一些情況下,在申請專利範圍中記載的動作或步驟可以按照不同於實施例中的順序來執行並且仍然可以實現期望的結果。另外,在圖式中描繪的過程不一定要求示出的特定順序或者連續順序才能實現期望的結果。在某些實施方式中,多任務處理和平行處理也是可以的或者可能是有利的。
在20世紀90年代,對於一個技術的改進可以很明顯地區分是硬體上的改進(例如,對二極體、電晶體、開關等電路結構的改進)還是軟體上的改進(對於方法流程的改進)。然而,隨著技術的發展,當今的很多方法流程的改進已經可以視為硬體電路結構的直接改進。設計人員幾乎都透過將改進的方法流程程式化到硬體電路中來得到相應的硬體電路結構。因此,不能說一個方法流程的改進就不能用硬體實體模組來實現。例如,可程式化邏輯器件(Programmable Logic Device,PLD)(例如現場可程式化閘陣列(Field Programmable Gate Array,FPGA))就是這樣一種積體電路,其邏輯功能由用戶對器件程式化來確定。由設計人員自行程式化來把一個數位系統“整合”在一片PLD上,而不需要請晶片製造廠商來設計和製作專用的積體電路晶片。而且,如今,取代手工地製作積體電路晶片,這種程式化也多半改用“邏輯編譯器(logic compiler)”軟體來實現,它與程式開發撰寫時所用的軟體編譯器相類似,而要編譯之前的原始碼也得用特定的程式化語言來撰寫,此稱之為硬體描述語言(Hardware Description Language,HDL),而HDL也並非僅有一種,而是有許多種,如ABEL(Advanced Boolean Expression Language)、AHDL (Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)與Verilog。本領域技術人員也應該清楚,只需要將方法流程用上述幾種硬體描述語言稍作邏輯程式化並程式化到積體電路中,就可以很容易得到實現該邏輯方法流程的硬體電路。
控制器可以按任何適當的方式實現,例如,控制器可以採取例如微處理器或處理器以及儲存可由該(微)處理器執行的電腦可讀程式碼(例如軟體或韌體)的電腦可讀媒體、邏輯閘、開關、專用積體電路(Application Specific Integrated Circuit,ASIC)、可程式化邏輯控制器和嵌入微控制器的形式,控制器的例子包括但不限於以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20 以及Silicone Labs C8051F320,記憶體控制器還可以被實現為記憶體的控制邏輯的一部分。本領域技術人員也知道,除了以純電腦可讀程式碼方式實現控制器以外,完全可以透過將方法步驟進行邏輯程式化來使得控制器以邏輯閘、開關、專用積體電路、可程式化邏輯控制器和嵌入微控制器等的形式來實現相同功能。因此這種控制器可以被認為是一種硬體部件,而對其內包括的用於實現各種功能的裝置也可以視為硬體部件內的結構。或者甚至,可以將用於實現各種功能的裝置視為既可以是實現方法的軟體模組又可以是硬體部件內的結構。
上述實施例闡明的系統、裝置、模組或單元,具體可以由電腦晶片或實體實現,或者由具有某種功能的產品來實現。一種典型的實現設備為電腦。具體的,電腦例如可以為個人電腦、膝上型電腦、蜂窩電話、相機電話、智慧電話、個人數位助理、媒體播放器、導航設備、電子郵件設備、遊戲控制台、平板電腦、可穿戴設備或者這些設備中的任何設備的組合。
為了描述的方便,描述以上裝置時以功能分為各種單元分別描述。當然,在實施本說明書一個或多個實施例時可以把各單元的功能在同一個或多個軟體和/或硬體中實現。
本領域內的技術人員應明白,本說明書的實施例可提供為方法、系統、或電腦程式產品。因此,本說明書一個或多個實施例可採用完全硬體實施例、完全軟體實施例、或結合軟體和硬體方面的實施例的形式。而且,本說明書一個或多個實施例可採用在一個或多個其中包含有電腦可用程式碼的電腦可用儲存媒體(包括但不限於磁碟記憶體、CD-ROM、光學記憶體等)上實施的電腦程式產品的形式。
本說明書的實施例是參照根據本說明書實施例的方法、設備(系統)、和電腦程式產品的流程圖和/或方塊圖來描述的。應理解可由電腦程式指令實現流程圖和/或方塊圖中的每一流程和/或方塊、以及流程圖和/或方塊圖中的流程和/或方塊的結合。可提供這些電腦程式指令到通用電腦、專用電腦、嵌入式處理機或其他可程式化資料處理設備的處理器以產生一個機器,使得透過電腦或其他可程式化資料處理設備的處理器執行的指令產生用於實現在流程圖一個流程或多個流程和/或方塊圖一個方塊或多個方塊中指定的功能的裝置。
這些電腦程式指令也可儲存在能引導電腦或其他可程式化資料處理設備以特定方式工作的電腦可讀記憶體中,使得儲存在該電腦可讀記憶體中的指令產生包括指令裝置的製造品,該指令裝置實現在流程圖一個流程或多個流程和/或方塊圖一個方塊或多個方塊中指定的功能。
這些電腦程式指令也可裝載到電腦或其他可程式化資料處理設備上,使得在電腦或其他可程式化設備上執行一系列操作步驟以產生電腦實現的處理,從而在電腦或其他可程式化設備上執行的指令提供用於實現在流程圖一個流程或多個流程和/或方塊圖一個方塊或多個方塊中指定的功能的步驟。
在一個典型的配置中,計算設備包括一個或多個處理器(CPU)、輸入/輸出介面、網路介面和記憶體。
記憶體可能包括電腦可讀媒體中的非永久性記憶體,隨機存取記憶體(RAM)和/或非揮發性記憶體等形式,如唯讀記憶體(ROM)或快閃記憶體(flash RAM)。記憶體是電腦可讀媒體的示例。
電腦可讀媒體包括永久性和非永久性、可移動和非可移動媒體可以由任何方法或技術來實現資訊儲存。資訊可以是電腦可讀指令、資料結構、程式的模組或其他資料。電腦的儲存媒體的例子包括,但不限於相變記憶體(PRAM)、靜態隨機存取記憶體(SRAM)、動態隨機存取記憶體(DRAM)、其他類型的隨機存取記憶體(RAM)、唯讀記憶體(ROM)、電可擦除可程式化唯讀記憶體(EEPROM)、快閃記憶體或其他記憶體技術、唯讀光碟唯讀記憶體(CD-ROM)、數位多功能光碟(DVD)或其他光學儲存、磁盒式磁帶,磁帶磁碟儲存或其他磁性儲存設備或任何其他非傳輸媒體,可用於儲存可以被計算設備存取的資訊。按照本文中的界定,電腦可讀媒體不包括暫存電腦可讀媒體(transitory media),如調變的資料信號和載波。
還需要說明的是,術語“包括”、“包含”或者其任何其他變體意在涵蓋非排他性的包含,從而使得包括一系列要素的過程、方法、商品或者設備不僅包括那些要素,而且還包括沒有明確列出的其他要素,或者是還包括為這種過程、方法、商品或者設備所固有的要素。在沒有更多限制的情況下,由語句“包括一個……”限定的要素,並不排除在包括所述要素的過程、方法、商品或者設備中還存在另外的相同要素。
本領域技術人員應明白,本說明書的實施例可提供為方法、系統或電腦程式產品。因此,本說明書一個或多個實施例可採用完全硬體實施例、完全軟體實施例或結合軟體和硬體方面的實施例的形式。而且,本說明書一個或多個實施例可採用在一個或多個其中包含有電腦可用程式碼的電腦可用儲存媒體(包括但不限於磁碟記憶體、CD-ROM、光學記憶體等)上實施的電腦程式產品的形式。
本說明書一個或多個實施例可以在由電腦執行的電腦可執行指令的一般上下文中描述,例如程式模組。一般地,程式模組包括執行特定任務或實現特定抽象資料類型的例程、程式、對象、組件、資料結構等等。也可以在分散式計算環境中實踐本說明書一個或多個實施例,在這些分散式計算環境中,由透過通信網路而被連接的遠端處理設備來執行任務。在分散式計算環境中,程式模組可以位於包括儲存設備在內的本地和遠端電腦儲存媒體中。
本說明書中的各個實施例均採用遞進的方式描述,各個實施例之間相同相似的部分互相參見即可,每個實施例重點說明的都是與其他實施例的不同之處。尤其,對於系統實施例而言,由於其基本相似於方法實施例,所以描述的比較簡單,相關之處參見方法實施例的部分說明即可。
以上所述僅為本說明書的實施例而已,並不用於限制本申請。對於本領域技術人員來說,本申請可以有各種更改和變化。凡在本申請的精神和原理之內所作的任何修改、等同替換、改進等,均應包含在本申請的申請專利範圍的範疇之內。
The embodiments of the present specification provide a method, a device, and a device for predicting the amount of traffic generated.
In order to enable those skilled in the art to better understand the technical solutions in this specification, the technical solutions in the embodiments of this specification will be clearly and completely described in combination with the drawings in the embodiments of this specification. Obviously, the described The examples are only a part of examples of this specification, but not all examples. Based on the embodiments in this specification, all other embodiments obtained by a person of ordinary skill in the art without creative efforts should fall within the protection scope of this specification.

Example one
As shown in FIG. 1, an embodiment of the present specification provides a method for predicting the amount of traffic generated. The method may be executed by a terminal device or a server. The terminal device may be a personal computer or a mobile phone or a tablet. A mobile terminal device such as a computer. The terminal device may be a terminal device used by a user. The server may be an independent server or a server cluster composed of multiple servers. This method can be used for accurate real-time prediction of the occurrence of traffic and the like. In this embodiment, a server is taken as an example for description. For the situation of a terminal device, it can be processed according to the following related content, which will not be repeated here. The method may specifically include the following steps:
In step S102, the historical service data before a predetermined time period is discretized to obtain a time-granularity service volume vector.
The predetermined time period can be set according to the actual situation. For example, the predetermined time period can be a certain time in the future, such as from the current time point to a time point after an interval of 1 hour, etc., or it can be a time before the current time point. Paragraph etc. The discretization process can be a method of mapping the limited individuals in infinite space to a limited space to improve the space-time efficiency of the algorithm. That is, the discretization process is performed without changing the relative size of the data. The corresponding reduction method of the data. The discretization process is large in the data itself, and it cannot save the corresponding attributes as the index of the array. If only the relative attributes of the data are needed at this time, the data can be processed. Discretization processing, that is, when the data is only related to the relative size between them, and has nothing to do with the specific content of the data, the data can be discretized. The traffic volume vector may be a vector of related data generated by a user when completing one or more services. The business volume can be the number of users who have performed or completed one or more services, or the number of services that users have performed or completed, for example, as shown in Figure 2, which can include multiple servers, and different servers can To provide services for different businesses, people can complete different businesses through different business servers. The amount of business occurrences can include multiple types, such as transaction volume and conversion volume. Time granularity can be the basic time unit for business occurrence or business volume statistics, such as 10 minutes or 15 minutes.
In the implementation, due to the rapid development of online overseas purchases and offline face-to-face payment services, payment applications (such as Alipay, etc.) support merchants and buyers to make payments and receive payments in different currencies. If the merchant and the buyer (that is, the user) belong to different countries or regions, then whether online or offline, the user only needs to use the local currency to pay. In this way, the payment application needs to settle the corresponding foreign currency to different merchants. Therefore, there is a large amount of exchange requirements for payment applications. In this way, payment applications need to purchase a certain amount of foreign exchange every working day to meet business needs. In order to minimize the impact of exchange rate fluctuations on the payment application, the payment application locks the amount of foreign exchange purchases on the day with the counterparty on the working day. In this way, the payment application needs to purchase a certain amount of foreign exchange on each working day to meet business needs. An accurate and real-time method can predict business volume, reduce business risks, and improve capital utilization efficiency. In practical applications, time series algorithms can be used, such as moving average, moving average, ARIMA, or Holt-Winters. The input parameters are time series values, and the development of the predetermined time period is given according to different algorithms. However, the above-mentioned time series algorithm requires higher consistency of time series trends, that is, if the recent business development trend is abnormal, the prediction results obtained based on the above algorithm are also likely to be abnormal, and the above time The sequence algorithm has a low utilization rate of real-time data. In practice, it cannot accurately capture the change trend of the latest business volume on the day, which causes a large deviation in the predicted value.
In addition, you can also use the ratio method to predict the business generation in real time. This method calculates the total business generation for the day by using the ratio of the business generation per hour and the real-time business generation in the hour. The method requires high consistency in the proportion of the hourly service generation. If the hourly service generation changes suddenly, the prediction result obtained by the method is likely to be abnormal.
It can be seen that, in order to accurately capture the latest trend of business occurrences on the day and reduce prediction errors, it can be handled in the following ways, which can specifically include the following:
You can first determine the time period that needs to be predicted. For example, from the current time point to the time point after 2 hours interval. For example, if the current time point is 10 o'clock and the time point after 2 hours is 12 o'clock, you need to predict the time period. (That is, the predetermined time period) can be 10 to 12 o'clock; for another example, the current time point is 10 o'clock, and the time period to be predicted (that is, the predetermined time period) can be 10 o'clock to 24 o'clock on the day, etc. . The server may store related data of one or more services, and the data may be related data generated after the user requests a related service and completes the service. After the server determines the predetermined time period, it can extract a certain length of time (such as before 10 o'clock in the current time) from the corresponding business data stored before the predetermined time period (such as 10 o'clock in the current time to 24 o'clock in the current day). One month or two months, etc.). Generally, the historical business data has a large amount of data. In order to reduce the processing pressure of the server, the obtained historical business data may be discretized. Through the discretization of historical business data, historical business data can be discretized into time-granularity business volume vectors according to predetermined rules. Among them, historical business data can be divided into two parts, and one part can be from the current day. The historical business data from the latest business occurrence time (that is, the current time point) in the real-time business data from zero to the current business data. This part of the historical business data can be discretized into the business volume vector according to the above rules. The other part can be the historical business before zero Data, this part of the data can also be divided into two parts, one of which can be the historical business data from the zero point of each day to the time corresponding to the current time point in the day, for example, the current time point is 10 o'clock on the day Date is February 28th, the historical business data of this part can include historical business data from February 27th to zero o'clock, February 10th, and historical business data from February 26th to 10 o'clock, February 25th. Historical business data from 0 to 10 o'clock, and so on; the other part can be the time corresponding to the current time point in each day Moments ~ Historical business data at 24 o'clock on that day. For example, based on the above example, historical business data in this part may include historical business data from 10 o'clock to 24 o'clock on February 27, and 10 o'clock on February 26 ~ Historical business data at 24 o'clock, historical business data from 10 o'clock to 24 o'clock on February 25, and so on. The historical business data of each of the above parts can be discretized into a business occurrence vector according to the above rules.
It should be noted that the total amount of business occurrences that can be summed up at the remaining time of the day (that is, 10 o'clock in the current time to 24 o'clock in the current day), that is, the amount of business that needs to be predicted.
In step S104, a service occurrence quantity distribution feature vector is generated according to the continuous occurrence service amount in the historical service data.
In implementation, a rule or algorithm for generating a feature vector may be set in the server in advance, and the corresponding rule or algorithm may be determined according to actual conditions, which is not limited in the embodiments of the present specification. The server can first extract continuous business volume from the historical business data obtained, and can use the rules or algorithms set above to generate corresponding characteristics of continuous business volume in historical business data to characterize the distribution of business volume. The generated feature may be a distribution feature. Then, the server may combine the obtained distribution feature with the time-granularity business volume vector obtained in step S102 to obtain a business volume distribution feature vector. Among them, the characteristic vector of the distribution of business occurrences can have various expressions, such as the average business occurrence per hour, the increase of the business occurrence per hour, and the growth rate of the business occurrence per hour.
In actual applications, in addition to the above-mentioned commonly used business volume distribution feature vectors, other feature vectors may be included, such as the periodic business volume distribution feature vector (specifically, such as the business volume distribution feature vector per week, the quarterly business volume Distribution feature vector, distribution feature vector of business volume for each month), distribution feature vector of activity business distribution (specifically, the distribution pattern vector of business volume on the promotion day), moving characteristic distribution feature vector of moving average (specificity, such as calculation Distribution of the average business volume within a certain period of the window).
In step S104, the service occurrence amount within a predetermined time period is determined according to the service occurrence vector and the service occurrence distribution feature vector of the time granularity.
In implementation, the specific process of determining the business volume in a predetermined time period according to the business granularity vector and the business volume distribution feature vector of the time granularity described above can be implemented in various ways, in order to be well reflected in historical business data. The outbound business volume trend (or the past trend) can be used to fit the distribution of the business volume trend in a certain period of time (that is, a predetermined period of time). A dictionary learning algorithm can be used to implement the The forecast of the business volume of the dictionary, the dictionary learning algorithm can include two phases, namely the dictionary construction phase and the use of a dictionary to represent the business volume phase, each of the above two phases can be achieved through many different algorithms. Dictionary learning is essentially a dimensionality reduction representation of a huge data set. In addition, dictionary learning always tries to learn the most rustic features hidden in the depth of historical business data. Dictionary learning can be a linear representation of the business volume distribution feature vector and initial parameters used to predict the business volume. The initial parameters can be obtained through continuous iterative optimization based on historical business data through loss functions and parameter optimization algorithms. The loss function can be used to measure the degree of fit between the above-mentioned business occurrence distribution feature vector and the linear function of the initial parameters. The loss value and gradient of the predicted business occurrence and historical actual business occurrence can be calculated based on the existing linear function. When the loss function is the smallest, it means that the fitting degree is the best, and the corresponding initial parameters are the optimal parameters. The minimum value of the loss function can be solved by the parameter optimization algorithm. The parameter optimization algorithm may include multiple types. For example, a gradient descent method may be specifically used to obtain an optimal parameter. First, you can determine the gradient of the loss function at the current position (the value of the gradient can be calculated from the loss function). You can use the initial step size multiplied by the gradient of the loss function to get the distance that the current position drops. At this time, you can determine whether For all coefficients, the distance of the gradient descent is less than the set error value. If the distance of the gradient descent is less than the set error value, the parameter optimization algorithm is terminated. At this time, the initial parameter is already the optimal parameter. If it is larger than the set error value, all the initial parameters can be updated and the above iterative calculation is continued until the distance of the gradient descent is less than the set error value.
The server can combine the time-granularity business volume vector and the business volume distribution feature vector obtained above by using a preset processing rule or algorithm to obtain a multi-dimensional vector combination related to the predicted business volume. The feature vector of the business volume distribution, the combined feature vector of the business volume distribution may be a feature vector related to the forecast of the business volume. The server can train the above-mentioned loss function and parameter optimization algorithm respectively based on historical business data, determine the relevant parameters in the loss function and parameter optimization algorithm, and then obtain the trained loss function and parameter optimization algorithm. Then, it can be based on After training, the loss function and parameter optimization algorithm continuously and iteratively optimize the initial parameters to obtain the optimal parameters. Then, a linear regression may be performed using the above-mentioned business occurrence distribution feature vector (the business occurrence distribution feature vector corresponding to the historical business data corresponding to the historical business data of the latest business occurrence time in the real-time business data from the current day) and the optimal parameters obtained above may be used for linear regression , You can get the business volume in a predetermined period of time.
It should be noted that, in actual applications, the processing of predicting the amount of traffic generated within a predetermined period of time can be implemented not only through dictionary learning algorithms, but also through other algorithms, such as related algorithms for sparse models. This embodiment of the present specification does not limit this.
The embodiment of the present specification provides a method for predicting the amount of business occurrence. By discretizing historical business data before a predetermined period of time, a time-granularity business occurrence vector can be obtained. In addition, continuous-time business data in historical business data can also be used. Occurrence, generating the business occurrence distribution feature vector. Finally, the business occurrence amount within a predetermined time period can be determined according to the time granularity business occurrence vector and the business occurrence distribution feature vector. In this way, the business occurrence distribution feature vector (may (Including multi-dimensional feature vectors) to predict the business volume in a predetermined period of time, and the final forecast result can be adjusted accordingly when the short-term business volume fluctuates greatly, effectively preventing the business volume from affecting the final short-term fluctuation. The situation of the prediction result occurs, and by using the feature vector of the business volume distribution, the change trend of the business volume (such as the trend of the business volume in the historical business data) can be better captured. This can improve the forecast of business volume. Measurement accuracy, reducing business risks and improving capital utilization efficiency.

Example two
As shown in FIG. 3, an embodiment of the present specification provides a method for predicting the amount of traffic generated. The method may be executed by a terminal device or a server. The terminal device may be a personal computer or a mobile phone or a tablet. A mobile terminal device such as a computer. The terminal device may be a terminal device used by a user. The server may be an independent server or a server cluster composed of multiple servers. This method can be used for accurate real-time prediction of the occurrence of traffic and the like. In this embodiment, a server is taken as an example for description. For the situation of a terminal device, it can be processed according to the following related content, which will not be repeated here. The method may specifically include the following steps:
In step S302, the historical service data before a predetermined time period is discretized to obtain a time-granularity service volume vector.
In implementation, the server can record the relevant business data generated by various services in real time. The recorded related business data can include two parts, one is the business data generated on the day (that is, from the zero point of the day to the current time), and the other part can be It is historical business data before that day. The server can obtain the business data of the above two parts, and can perform data cleaning on the business data of the above two parts according to certain rules. Through the data cleaning, the above two parts of the business data can be re-examined and verified, so that the duplicate information in the two parts of the business data can be deleted, and errors can be corrected. After the corrected business data is obtained, it can be discretized to obtain a time-granularity business volume vector. The specific process of discretizing historical business data to obtain a time-granularity business volume vector can be found above. The relevant content in step S102 in the first embodiment will not be repeated here.
Based on the above, the server may include two parts of historical business data. Therefore, the historical business data may include the first historical business data for the first time period closest to the predetermined time period and the first historical business data other than the first historical business data. Second historical business data, where the first time period closest to the predetermined time period may refer to a time period starting from zero on the current day to the current time point, the second historical business data may be historical business data before the current day, and the second historical business The data can also include two parts, one of which can be the historical business data of each day from the zero point to the time corresponding to the current time point in that day, and the other part can be the time corresponding to the current time point in each day to 24 hours of the day Bell's historical business profile. For the historical service data of the multiple divided sections, the following steps S304 to S316 may be performed respectively.
In step S304, a first feature vector of the service volume distribution is generated according to the service volume for continuous time in the first historical service data.
In implementation, a rule or algorithm for generating a feature vector may be set in the server in advance, and the corresponding rule or algorithm may be determined according to actual conditions, which is not limited in the embodiments of the present specification. The server may first extract continuous service occurrences from the obtained first historical service data, and may use the rules or algorithms set above to generate continuous service occurrences in the first historical service data to generate the first A feature vector. For example, if the first historical business data is historical business data starting from zero on the current day to the current time point, based on the time-granularity business volume vector of the first historical business data, a first feature vector of 1 × N dimensions can be obtained.
In step S306, a second feature vector of the service volume distribution is generated according to the continuous service volume in the second historical service data.
In the implementation, the server may first extract continuous service occurrences from the second historical service data obtained, and may generate continuous service occurrences from the second historical service data to generate service occurrences through the rules or algorithms set above. The second eigenvector of the quantity distribution. For example, for the historical business data in the second historical business data starting from zero on each day to the time corresponding to the current time point in that day, based on the time granularity of the historical business data, the business volume vector can be obtained 1 × N dimensions The second feature vector of the historical business data from the time corresponding to the current time point in each day in the second historical business data to 24 o'clock on that day, the business volume vector based on the time granularity of the historical business data can be obtained 1 × N-dimensional second feature vector.
In step S308, the time-granularity business volume vector is combined with the first feature vector and the second feature vector, respectively, to obtain a combined first feature vector and a second feature vector.
In implementation, the server may combine the first feature vector and the second feature vector obtained above with the time-granularity business volume vector obtained in step S302 above to obtain a combined business volume distribution feature vector (i.e., (Merged first feature vector and second feature vector). Among them, the first feature vector and the second feature vector may have multiple expressions, for example, an average hourly service occurrence amount, an increase in an hourly service occurrence amount, and an increase rate of an hourly service occurrence amount.
It should be noted that the above-mentioned combined first feature vector and second feature vector may include, for example, the average business volume per hour, the increase in the volume of business per hour, and the growth rate of the volume of business per hour. Including, for example, the distribution feature vector of the periodic business occurrence amount, the distribution feature vector of the active business occurrence amount, the moving feature distribution vector of the moving average business occurrence, and the like.
In order to indicate the important relationship between different feature vectors, corresponding weights may be set for the first feature vector and the second feature vector. For details, refer to the processing in steps S310 and S312 described below.
In step S310, a similarity between the first feature vector and the second feature vector is determined.
In implementation, the weights of the first feature vector and the second feature vector can be used to determine the value of the two weights. To this end, a related algorithm for calculating the similarity can be set. In practical applications, you can use any of the following A method determines the similarity between the first eigenvector and the second eigenvector: the Euclidean distance, the cosine of the angle of the vector, and the absolute value of the difference of the vector. Taking the Euclidean distance as an example, the server can calculate the Euclidean distance between the first eigenvector and the second eigenvector. Through the obtained Euclidean distance data, the similarity between the first eigenvector and the second eigenvector can be determined. That is, when the Euclidean distance between the first feature vector and the second feature vector is smaller, it indicates that the closer the first feature vector and the second feature vector are, the higher the similarity between the two, and the subsequent business occurs When predicting the quantity, the proportion of the second feature vector is greater; when the Euclidean distance between the first feature vector and the second feature vector is larger, it indicates that the difference between the first feature vector and the second feature vector is greater ( Or the greater the difference), the lower the similarity between the two, and the smaller the proportion of the second feature vector when the subsequent business volume forecast is performed. Correspondingly, the specific processing method and judgment method of the similarity calculation algorithm based on the angle cosine of the vector or the absolute value of the difference of the vector can be similar to the above-mentioned Euclidean distance. For details, refer to the process of Euclidean distance. This will not be repeated here.
In step S312, the weight of the second feature vector is determined according to the similarity between the first feature vector and the second feature vector.
In implementation, after the server obtains the similarity between the first feature vector and the second feature vector through the processing in step S310, the weight of the second feature vector can be determined based on the similarity between the two. In practical applications, the weight of the second feature vector can be determined. The calculated Euclidean distance between the first feature vector and the second feature vector is used as the weight of the second feature vector, or the cosine of the angle between the first feature vector and the second feature vector may be used as the first The weight of the two feature vectors, or the absolute value of the difference between the first feature vector and the second feature vector may be used as the weight of the second feature vector.
A dictionary learning algorithm can be used to determine the amount of business in a predetermined period of time. The dictionary learning algorithm can include initial parameters, and the dictionary learning algorithm also involves a loss function and parameter optimization algorithm. The specific processing process can be See the processing of steps S314 and S316 below.
In step S314, based on the weights of the second feature vector and the second feature vector, the initial parameters are optimized through a loss function and a predetermined parameter optimization algorithm to obtain optimized initial parameters.
Among them, the predetermined parameter optimization algorithm may include multiple types, and a variety of optional algorithms are provided below, including gradient descent algorithm, Newton method, quasi-Newton method, conjugate gradient method, and heuristic optimization algorithm. The loss function can refer to a function that maps an event to a real number that expresses the economic or opportunity cost associated with the event.
In implementation, the specific content of the loss function and the parameter optimization algorithm can be set in the server in advance. For example, a gradient descent algorithm or Newton's method can be set as the parameter optimization algorithm, and the specific form of the preset loss function can be written. Into the server. The server can iteratively calculate the initial parameters in the dictionary learning algorithm through the weights of the second feature vector and the second feature vector corresponding to the second historical business data, and the preset loss function and parameter optimization algorithm. After multiple iterations, the optimal initial parameters are obtained, and then the optimized initial parameters are obtained.
In step S316, the amount of traffic generated in a predetermined period of time is determined according to the optimized initial parameters and the first feature vector.
For the specific processing procedure of the above step S316, reference may be made to the related content in step S104 in the foregoing first embodiment, and details are not described herein again.
Through the above-mentioned process of steps S302 to S316, the multi-dimensional feature vector is used to predict the amount of business occurrence. In this process, the consistency of the time trend is not high. Large (or, the rise or fall is obvious), this process can automatically adjust the final prediction result; in addition, this process can better capture the change trend of business volume in a specified time period, and learn the calculation through the dictionary The method can well fit the trend distribution of the real-time data from the changing trend of business volume in historical business data. By using this process, the accuracy of real-time prediction is better than that of time series prediction.
The embodiment of the present specification provides a method for predicting the amount of business occurrence. By discretizing historical business data before a predetermined period of time, a time-granularity business occurrence vector can be obtained. In addition, continuous-time business data based on historical business data Occurrence, generating the business occurrence distribution feature vector. Finally, the business occurrence amount within a predetermined time period can be determined according to the time granularity business occurrence vector and the business occurrence distribution feature vector. In this way, the business occurrence distribution feature vector (may (Including multi-dimensional feature vectors) to predict the business volume in a predetermined period of time, and the final forecast result can be adjusted accordingly when the short-term business volume fluctuates greatly, effectively preventing the business volume from affecting the final short-term fluctuation. The situation of the prediction result occurs, and by using the feature vector of the business volume distribution, the change trend of the business volume (such as the trend of the business volume in the historical business data) can be better captured. This can improve the forecast of business volume. Measurement accuracy, reducing business risks and improving capital utilization efficiency.

Example three
The above is a method for predicting the amount of traffic generated by the embodiment of the present specification. Based on the same idea, the embodiment of the present specification also provides a device for predicting the amount of traffic generated, as shown in FIG. 4.
The device for predicting the occurrence of business includes a processing module 401 and a prediction module for business occurrence 402, of which:
The processing module 401 is configured to discretize historical business data before a predetermined period of time, to obtain a time granularity business volume vector, and to generate a business volume distribution based on the continuous business volume in the historical business data. Feature vector;
The traffic occurrence prediction module 402 is configured to determine a traffic occurrence within the predetermined time period according to the time granularity traffic occurrence vector and the traffic occurrence distribution feature vector.
In the embodiment of the present specification, the historical service data includes a first historical service data in a first time period closest to the predetermined time period and a second historical service data other than the first historical service data.
The processing module 401 includes:
A first feature vector generating unit, configured to generate a first feature vector of a service volume distribution according to a service volume of continuous time in the first historical service data;
A second feature vector generating unit is configured to generate a second feature vector of a service volume distribution according to the service volume of continuous time in the second historical service data.
In the embodiment of the present specification, the device further includes:
A similarity determination module, configured to determine a similarity between the first feature vector and the second feature vector;
A weight determining module is configured to determine a weight of the second feature vector according to a similarity between the first feature vector and the second feature vector.
In the embodiment of the present specification, the similarity determination module is configured to determine the similarity between the first feature vector and the second feature vector through any one of the following devices: Euclidean distance, and the angle cosine of the vector, And the absolute value of the difference of the vectors.
In the embodiment of the present specification, the traffic occurrence prediction module 402 includes:
A merging unit for merging the time-granularity business volume vector with the first feature vector and the second feature vector to obtain a merged first feature vector and a second feature vector;
An initial parameter optimization unit, configured to optimize the initial parameters based on the second feature vector and the weight of the second feature vector through a loss function and a predetermined parameter optimization algorithm to obtain optimized initial parameters;
A traffic occurrence prediction unit is configured to determine a traffic occurrence in the predetermined time period according to the optimized initial parameters and the first feature vector.
In the embodiment of the present specification, the predetermined parameter optimization algorithm includes a gradient descent algorithm, a Newton method, a quasi-Newton method, a conjugate gradient method, and a heuristic optimization algorithm.
The embodiment of the present specification provides a device for predicting the amount of traffic generated by discretizing historical service data before a predetermined period of time to obtain a time-granularity service volume vector. In addition, the service can also be based on continuous-time services in the historical service data. Occurrence, generating the business occurrence distribution feature vector. Finally, the business occurrence amount within a predetermined time period can be determined according to the time granularity business occurrence vector and the business occurrence distribution feature vector. In this way, the business occurrence distribution feature vector (may (Including multi-dimensional feature vectors) to predict the business volume in a predetermined period of time, and the final forecast result can be adjusted accordingly when the short-term business volume fluctuates greatly, effectively preventing the business volume from affecting the final short-term fluctuation. The situation of the prediction result occurs, and by using the feature vector of the business volume distribution, the change trend of the business volume (such as the trend of the business volume in the historical business data) can be better captured. This can improve the forecast of business volume. Measurement accuracy, reducing business risks and improving capital utilization efficiency.

Embodiment 4
The above is a device for predicting the amount of traffic generated by the embodiment of the present specification. Based on the same idea, the embodiment of the present specification also provides a device for predicting the amount of traffic generated, as shown in FIG. 5.
The device for predicting the amount of service occurrence may be a server or a terminal device provided in the foregoing embodiment.
The forecasting device for business volume may vary greatly due to different configurations or performance. It may include one or more processors 501 and memory 502. The memory 502 may store one or more storage applications or data. . The memory 502 may be temporarily stored or persistently stored. The application program stored in the memory 502 may include one or more modules (not shown), and each module may include a series of computer-executable instructions in a device for predicting the amount of traffic generated. Furthermore, the processor 501 may be configured to communicate with the memory 502 and execute a series of computer-executable instructions in the memory 502 on a device for predicting the amount of traffic generated. The traffic generation prediction device may further include one or more power sources 503, one or more wired or wireless network interfaces 504, one or more input / output interfaces 505, and one or more keyboards 506.
Specifically, in this embodiment, the device for predicting the amount of traffic generated includes a memory and one or more programs. One or more programs are stored in the memory, and one or more programs may include one or more programs. Modules, and each module may include a series of computer-executable instructions in a device for predicting business volume, and configured to be executed by one or more processors. The one or more programs include the following computers. Executable instructions:
Discretizing historical business data before a predetermined period of time to obtain a time-granularity business volume vector, and generating a business volume distribution feature vector according to continuous-time business volume in the historical business data;
Determining the amount of business occurrences within the predetermined time period according to the time-granularity business occurrence vector and the business occurrence distribution feature vector.
Optionally, the historical service data includes a first historical service data in a first time period closest to the predetermined time period and a second historical service data other than the first historical service data,
The generating a feature vector of a service occurrence distribution according to the service occurrence vector of the time granularity and the continuous occurrence of the service occurrence in the historical service data includes:
Generating a first feature vector of the distribution of service occurrences according to the continuous service occurrences in the first historical service data;
And generating a second feature vector of the distribution of business occurrences according to the continuous business occurrences in the second historical business data.
Optionally, before determining the service occurrence volume within the predetermined time period according to the service occurrence vector and the service occurrence distribution feature vector of the time granularity, the method further includes:
Determining a similarity between the first feature vector and the second feature vector;
Determine the weight of the second feature vector according to the similarity between the first feature vector and the second feature vector.
Optionally, determining the similarity between the first feature vector and the second feature vector includes:
The similarity between the first feature vector and the second feature vector is determined by any of the following methods: Euclidean distance, the cosine of the angle of the vector, and the absolute value of the difference of the vector.
Optionally, the determining the service occurrence amount within the predetermined time period according to the service occurrence vector and the service occurrence distribution feature vector of the time granularity includes:
Merging the time-granularity business volume vector with the first feature vector and the second feature vector to obtain a combined first feature vector and a second feature vector;
Based on the second feature vector and the weight of the second feature vector, optimizing initial parameters through a loss function and a predetermined parameter optimization algorithm to obtain optimized initial parameters;
Determine the amount of traffic generated in the predetermined time period according to the optimized initial parameters and the first feature vector.
Optionally, the predetermined parameter optimization algorithm includes a gradient descent algorithm, a Newton method, a quasi-Newton method, a conjugate gradient method, and a heuristic optimization algorithm.
The embodiment of the present specification provides a device for predicting the amount of traffic generated by discretizing historical service data before a predetermined period of time to obtain a time-granularity service volume vector. In addition, the service can also be based on continuous-time services in historical service data Occurrence, generating the business occurrence distribution feature vector. Finally, the business occurrence amount within a predetermined time period can be determined according to the time granularity business occurrence vector and the business occurrence distribution feature vector. In this way, the business occurrence distribution feature vector (may (Including multi-dimensional feature vectors) to predict the business volume in a predetermined period of time, and the final forecast result can be adjusted accordingly when the short-term business volume fluctuates greatly, effectively preventing the business volume from affecting the final short-term fluctuation. The situation of the prediction result occurs, and by using the feature vector of the business volume distribution, the change trend of the business volume (such as the trend of the business volume in the historical business data) can be better captured. This can improve the forecast of business volume. Measurement accuracy, reducing business risks and improving capital utilization efficiency.
The specific embodiments of the present specification have been described above. Other embodiments are within the scope of the appended patent applications. In some cases, the actions or steps described in the scope of the patent application may be performed in a different order than in the embodiments and still achieve the desired result. In addition, the processes depicted in the figures do not necessarily require the particular order shown or sequential order to achieve the desired result. In certain embodiments, multi-tasking and parallel processing are also possible or may be advantageous.
In the 1990s, for a technical improvement, it can be clearly distinguished whether it is an improvement in hardware (for example, the improvement of circuit structures such as diodes, transistors, switches, etc.) or an improvement in software (for method and process Improve). However, with the development of technology, the improvement of many methods and processes can be regarded as a direct improvement of the hardware circuit structure. Designers almost always get the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that the improvement of a method flow cannot be realized by a hardware entity module. For example, a programmable logic device (Programmable Logic Device (PLD)) (such as a Field Programmable Gate Array (FPGA)) is such an integrated circuit whose logic function is determined by the user's programming of the device. Designers program themselves to "integrate" a digital system on a PLD, without having to ask a chip manufacturer to design and fabricate a dedicated integrated circuit chip. Moreover, today, instead of making integrated circuit chips manually, this programming is mostly implemented with "logic compiler" software, which is similar to the software compiler used in program development and writing. The source code before compilation must also be written in a specific programming language. This is called the Hardware Description Language (HDL), and there is not only one kind of HDL, but many types, such as ABEL (Advanced Boolean Expression Language), AHDL (Altera Hardware Description Language), Confluence, CUPL (Cornell University Programming Language), HDCal, JHDL (Java Hardware Description Language), Lava, Lola, MyHDL, PALASM, RHDL (Ruby Hardware Description Language), etc. Currently, the most commonly used are Very-High-Speed Integrated Circuit Hardware Description Language (VHDL) and Verilog. Those skilled in the art should also be clear that as long as the method flow is logically programmed and integrated into the integrated circuit using the above-mentioned several hardware description languages, the hardware circuit that implements the logic method flow can be easily obtained.
The controller may be implemented in any suitable manner, for example, the controller may take the form of a microprocessor or processor and a computer-readable storage of computer-readable code (such as software or firmware) executable by the (micro) processor. Media, logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers. Examples of controllers include, but are not limited to, the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicone Labs C8051F320, the memory controller can also be implemented as part of the control logic of the memory. Those skilled in the art also know that, in addition to implementing the controller in a pure computer-readable code manner, the controller can be controlled by logic gates, switches, dedicated integrated circuits, and programmable logic by programming the method steps logically. Controller and embedded microcontroller to achieve the same function. Therefore, the controller can be considered as a hardware component, and the device included in the controller for implementing various functions can also be considered as a structure in the hardware component. Or even, a device for implementing various functions can be regarded as a structure that can be both a software module implementing the method and a hardware component.
The system, device, module, or unit described in the foregoing embodiments may be specifically implemented by a computer chip or entity, or by a product having a certain function. A typical implementation is a computer. Specifically, the computer may be, for example, a personal computer, a laptop, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or A combination of any of these devices.
For the convenience of description, when describing the above device, the functions are divided into various units and described separately. Of course, when implementing one or more embodiments of the present specification, the functions of each unit may be implemented in the same software or hardware.
Those skilled in the art should understand that the embodiments of the present specification may be provided as a method, a system, or a computer program product. Therefore, one or more embodiments of the present specification may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, one or more embodiments of this specification may be implemented on one or more computer-usable storage media (including but not limited to disk memory, CD-ROM, optical memory, etc.) containing computer-usable code therein. In the form of a computer program product.
Embodiments of the present specification are described with reference to flowcharts and / or block diagrams of methods, devices (systems), and computer program products according to the embodiments of the present specification. It should be understood that each flow and / or block in the flowchart and / or block diagram, and a combination of the flow and / or block in the flowchart and / or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to generate a machine for instructions executed by the processor of the computer or other programmable data processing device Generate means for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory generate a manufactured article including a command device , The instruction device implements the functions specified in a flowchart or a plurality of processes and / or a block or a block of the block diagram.
These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operating steps can be performed on the computer or other programmable equipment to generate computer-implemented processing, so that the computer or other programmable equipment can The instructions executed on the steps provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
In a typical configuration, a computing device includes one or more processors (CPUs), input / output interfaces, network interfaces, and memory.
Memory may include non-persistent memory, random access memory (RAM), and / or non-volatile memory in computer-readable media, such as read-only memory (ROM) or flash memory (flash) RAM). Memory is an example of a computer-readable medium.
Computer-readable media includes permanent and non-permanent, removable and non-removable media. Information can be stored by any method or technology. Information can be computer-readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), and other types of random access memory (RAM) , Read-only memory (ROM), electrically erasable and programmable read-only memory (EEPROM), flash memory or other memory technology, read-only disc read-only memory (CD-ROM), digital multifunction Optical discs (DVDs) or other optical storage, magnetic tape cartridges, magnetic tape storage or other magnetic storage devices or any other non-transmitting media may be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include temporary computer-readable media (transitory media), such as modulated data signals and carrier waves.
It should also be noted that the terms "including,""including," or any other variation thereof are intended to encompass non-exclusive inclusion, so that a process, method, product, or device that includes a range of elements includes not only those elements, but also Other elements not explicitly listed, or those that are inherent to such a process, method, product, or device. Without more restrictions, the elements defined by the sentence "including a ..." do not exclude the existence of other identical elements in the process, method, product or equipment including the elements.
Those skilled in the art should understand that the embodiments of the present specification may be provided as a method, a system, or a computer program product. Therefore, one or more embodiments of the present specification may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, one or more embodiments of this specification may be implemented on one or more computer-usable storage media (including but not limited to disk memory, CD-ROM, optical memory, etc.) containing computer-usable code therein. In the form of a computer program product.
One or more embodiments of the present specification may be described in the general context of computer-executable instructions executed by a computer, such as program modules. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types. One or more embodiments of the present specification may also be practiced in distributed computing environments in which tasks are performed by remote processing devices connected through a communication network. In a decentralized computing environment, program modules can be located in local and remote computer storage media, including storage devices.
Each embodiment in this specification is described in a progressive manner, and the same or similar parts between the various embodiments can be referred to each other. Each embodiment focuses on the differences from other embodiments. In particular, for the system embodiment, since it is basically similar to the method embodiment, the description is relatively simple. For the relevant part, refer to the description of the method embodiment.
The above are only examples of the present specification, and are not intended to limit the application. For those skilled in the art, this application may have various modifications and changes. Any modification, equivalent replacement, and improvement made within the spirit and principle of this application shall be included in the scope of the patent application for this application.

S102、S104、S106‧‧‧步驟S102, S104, S106‧‧‧ steps

S302、S304、S306、S308、S310、S312、S314、S316‧‧‧步驟 S302, S304, S306, S308, S310, S312, S314, S316‧‧‧ steps

401‧‧‧處理模組 401‧‧‧Processing Module

402‧‧‧業務發生量預測模組 402‧‧‧Business Volume Forecast Module

501‧‧‧處理器 501‧‧‧ processor

502‧‧‧記憶體 502‧‧‧Memory

503‧‧‧電源 503‧‧‧ Power

504‧‧‧有線或無線網路介面 504‧‧‧Wired or wireless network interface

505‧‧‧輸入輸出介面 505‧‧‧I / O interface

506‧‧‧鍵盤 506‧‧‧Keyboard

為了更清楚地說明本說明書實施例或現有技術中的技術方案,下面將對實施例或現有技術描述中所需要使用的圖式作簡單地介紹,顯而易見地,下面描述中的圖式僅僅是本說明書中記載的一些實施例,對於本領域普通技術人員來講,在不付出創造性勞動性的前提下,還可以根據這些圖式獲得其他的圖式。In order to more clearly explain the embodiments of the present specification or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings in the following description are only For some ordinary people skilled in the art, some embodiments described in the specification can also obtain other drawings according to these drawings without paying creative labor.

圖1為本說明書一種業務發生量的預測方法實施例; FIG. 1 is an embodiment of a method for predicting the amount of service occurrence in this specification;

圖2為本說明書一種業務發生量的預測系統的結構示意圖; FIG. 2 is a schematic structural diagram of a system for predicting the amount of traffic generated in this specification;

圖3為本說明書另一種業務發生量的預測方法實施例; FIG. 3 is another embodiment of a method for predicting the amount of business generated in this specification;

圖4為本說明書一種業務發生量的預測裝置實施例; FIG. 4 is an embodiment of a device for predicting the amount of traffic generated in this specification;

圖5為本說明書一種業務發生量的預測設備實施例。 FIG. 5 is an embodiment of a device for predicting the amount of traffic generated in this specification.

Claims (13)

一種業務發生量的預測方法,所述方法包括: 將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量; 根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。A method for predicting the occurrence of business, the method includes: Discretizing historical business data before a predetermined period of time to obtain a time-granularity business volume vector, and generating a business volume distribution feature vector according to continuous-time business volume in the historical business data; Determining the amount of business occurrences within the predetermined time period according to the time-granularity business occurrence vector and the business occurrence distribution feature vector. 根據申請專利範圍第1項所述的方法,其中,所述歷史業務資料包括距離所述預定時間段最近的第一時間段的第一歷史業務資料和除所述第一歷史業務資料外的第二歷史業務資料, 所述根據所述時間粒度的業務發生量向量和所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量,包括: 根據所述第一歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第一特徵向量; 根據所述第二歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第二特徵向量。The method according to item 1 of the scope of patent application, wherein the historical business data includes a first historical business data of a first time period closest to the predetermined time period and a first historical business data other than the first historical business data. Historical business information, The generating a feature vector of a service occurrence distribution according to the service occurrence vector of the time granularity and the continuous occurrence of the service occurrence in the historical service data includes: Generating a first feature vector of the distribution of service occurrences according to the continuous service occurrences in the first historical service data; And generating a second feature vector of the distribution of business occurrences according to the continuous business occurrences in the second historical business data. 根據申請專利範圍第2項所述的方法,其中,所述根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量之前,所述方法還包括: 確定所述第一特徵向量和所述第二特徵向量之間的相似度; 根據所述第一特徵向量和所述第二特徵向量之間的相似度,確定所述第二特徵向量的權重。The method according to item 2 of the scope of patent application, wherein the service occurrence vector and the service occurrence distribution feature vector according to the time granularity are determined before the service occurrence amount in the predetermined time period is determined. The method also includes: Determining a similarity between the first feature vector and the second feature vector; Determine the weight of the second feature vector according to the similarity between the first feature vector and the second feature vector. 根據申請專利範圍第3項所述的方法,其中,所述確定所述第一特徵向量和所述第二特徵向量之間的相似度,包括: 透過以下任一種方法確定所述第一特徵向量和所述第二特徵向量之間的相似度:歐式距離、向量的夾角餘弦值,以及向量的差的絕對值。The method according to item 3 of the scope of patent application, wherein determining the similarity between the first feature vector and the second feature vector includes: The similarity between the first feature vector and the second feature vector is determined by any of the following methods: Euclidean distance, the cosine of the angle of the vector, and the absolute value of the difference of the vector. 根據申請專利範圍第3項所述的方法,其中,所述根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量,包括: 分別將所述時間粒度的業務發生量向量與所述第一特徵向量和所述第二特徵向量進行合併,得到合併後的第一特徵向量和第二特徵向量; 基於所述第二特徵向量和所述第二特徵向量的權重,透過損失函數和預定參數優化演算法對初始參數進行優化,得到優化後的初始參數; 根據優化後的初始參數和所述第一特徵向量,確定所述預定時間段內的業務發生量。The method according to item 3 of the scope of patent application, wherein the determining the service occurrence amount in the predetermined time period according to the service occurrence amount vector and the service occurrence distribution feature vector according to the time granularity includes: Merging the time-granularity business volume vector with the first feature vector and the second feature vector to obtain a combined first feature vector and a second feature vector; Based on the second feature vector and the weight of the second feature vector, optimizing initial parameters through a loss function and a predetermined parameter optimization algorithm to obtain optimized initial parameters; Determine the amount of traffic generated in the predetermined time period according to the optimized initial parameters and the first feature vector. 根據申請專利範圍第5項所述的方法,其中,所述預定參數優化演算法包括梯度下降演算法、牛頓法、擬牛頓法、共軛梯度法和啟發式優化演算法。The method according to item 5 of the scope of patent application, wherein the predetermined parameter optimization algorithm includes a gradient descent algorithm, Newton method, quasi-Newton method, conjugate gradient method, and heuristic optimization algorithm. 一種業務發生量的預測裝置,所述裝置包括: 處理模組,用於將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量; 業務發生量預測模組,用於根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。A device for predicting the occurrence of traffic, the device includes: A processing module, configured to discretize historical business data before a predetermined period of time, to obtain a time granularity business volume vector, and to generate a business volume distribution characteristic based on the continuous business volume in the historical business data vector; The traffic occurrence forecasting module is configured to determine a traffic occurrence in the predetermined time period based on the time granularity traffic occurrence vector and the traffic occurrence distribution feature vector. 根據申請專利範圍第7項所述的裝置,其中,所述歷史業務資料包括距離所述預定時間段最近的第一時間段的第一歷史業務資料和除所述第一歷史業務資料外的第二歷史業務資料, 其中,所述處理模組,包括: 第一特徵向量產生單元,用於根據所述第一歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第一特徵向量; 第二特徵向量產生單元,用於根據所述第二歷史業務資料中連續時間的業務發生量,產生業務發生量分佈的第二特徵向量。The device according to item 7 of the scope of patent application, wherein the historical service data includes a first historical service data in a first time period closest to the predetermined time period and a first Historical business information, The processing module includes: A first feature vector generating unit, configured to generate a first feature vector of a service volume distribution according to a service volume of continuous time in the first historical service data; A second feature vector generating unit is configured to generate a second feature vector of a service volume distribution according to the service volume of continuous time in the second historical service data. 根據申請專利範圍第8項所述的裝置,其中,所述裝置還包括: 相似度確定模組,用於確定所述第一特徵向量和所述第二特徵向量之間的相似度; 權重確定模組,用於根據所述第一特徵向量和所述第二特徵向量之間的相似度,確定所述第二特徵向量的權重。The device according to item 8 of the scope of patent application, wherein the device further comprises: A similarity determination module, configured to determine a similarity between the first feature vector and the second feature vector; A weight determining module is configured to determine a weight of the second feature vector according to a similarity between the first feature vector and the second feature vector. 根據申請專利範圍第9項所述的裝置,其中,所述相似度確定模組,用於透過以下任一種裝置確定所述第一特徵向量和所述第二特徵向量之間的相似度:歐式距離、向量的夾角餘弦值,以及向量的差的絕對值。The device according to item 9 of the scope of patent application, wherein the similarity determination module is configured to determine the similarity between the first feature vector and the second feature vector through any one of the following devices: European The absolute value of the distance, the angle cosine of the vector, and the difference of the vector. 根據申請專利範圍第9項所述的裝置,其中,所述業務發生量預測模組,包括: 合併單元,用於分別將所述時間粒度的業務發生量向量與所述第一特徵向量和所述第二特徵向量進行合併,得到合併後的第一特徵向量和第二特徵向量; 初始參數優化單元,用於基於所述第二特徵向量,透過損失函數和預定參數優化演算法對初始參數進行優化,得到優化後的初始參數; 業務發生量預測單元,用於根據優化後的初始參數和所述第一特徵向量,確定所述預定時間段內的業務發生量。The device according to item 9 of the scope of patent application, wherein the business occurrence prediction module includes: A merging unit for merging the time-granularity business volume vector with the first feature vector and the second feature vector to obtain a merged first feature vector and a second feature vector; An initial parameter optimization unit, configured to optimize the initial parameters based on the second feature vector through a loss function and a predetermined parameter optimization algorithm to obtain optimized initial parameters; A traffic occurrence prediction unit is configured to determine a traffic occurrence in the predetermined time period according to the optimized initial parameters and the first feature vector. 根據申請專利範圍第11項所述的裝置,其中,所述預定參數優化演算法包括梯度下降演算法、牛頓法、擬牛頓法、共軛梯度法和啟發式優化演算法。The device according to item 11 of the scope of patent application, wherein the predetermined parameter optimization algorithm includes a gradient descent algorithm, Newton method, quasi-Newton method, conjugate gradient method, and heuristic optimization algorithm. 一種業務發生量的預測設備,所述業務發生量的預測設備包括: 處理器;以及 被安排成儲存電腦可執行指令的記憶體,所述可執行指令在被執行時使所述處理器: 將預定時間段之前的歷史業務資料進行離散化處理,得到時間粒度的業務發生量向量,以及根據所述歷史業務資料中連續時間的業務發生量,產生業務發生量分佈特徵向量; 根據所述時間粒度的業務發生量向量和所述業務發生量分佈特徵向量,確定所述預定時間段內的業務發生量。A device for predicting the amount of business occurrences. The device for predicting the amount of business occurrences includes: Processor; and Memory arranged to store computer-executable instructions that, when executed, cause the processor to: Discretize historical business data before a predetermined period of time to obtain a time granularity business volume vector, and generate a business volume distribution feature vector based on the continuous business volume in the historical business data; Determining the amount of business occurrences in the predetermined time period according to the time-granularity business occurrence vector and the business occurrence distribution feature vector.
TW108100202A 2018-03-16 2019-01-03 Method, device and equipment for forecasting business volume TWI703461B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810220193.XA CN108460490A (en) 2018-03-16 2018-03-16 A kind of prediction technique, device and the equipment of business occurrence quantity
??201810220193.X 2018-03-16
CN201810220193.X 2018-03-16

Publications (2)

Publication Number Publication Date
TW201939315A true TW201939315A (en) 2019-10-01
TWI703461B TWI703461B (en) 2020-09-01

Family

ID=63236790

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108100202A TWI703461B (en) 2018-03-16 2019-01-03 Method, device and equipment for forecasting business volume

Country Status (3)

Country Link
CN (1) CN108460490A (en)
TW (1) TWI703461B (en)
WO (1) WO2019174410A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108460490A (en) * 2018-03-16 2018-08-28 阿里巴巴集团控股有限公司 A kind of prediction technique, device and the equipment of business occurrence quantity
CN109242519B (en) * 2018-09-25 2022-12-16 创新先进技术有限公司 Abnormal behavior identification method, device and equipment
CN110059847B (en) * 2019-03-01 2021-07-13 创新先进技术有限公司 Model prediction acceleration method and device
CN110163417B (en) * 2019-04-26 2023-09-01 创新先进技术有限公司 Traffic prediction method, device and equipment
CN110335067A (en) * 2019-06-18 2019-10-15 平安普惠企业管理有限公司 A kind of transaction prediction model construction method and device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740341B (en) * 2011-04-02 2014-11-19 中国联合网络通信集团有限公司 Method and device for predicting network traffic
CN103024762B (en) * 2012-12-26 2015-04-15 北京邮电大学 Service feature based communication service forecasting method
CN103490956A (en) * 2013-09-22 2014-01-01 杭州华为数字技术有限公司 Self-adaptive energy-saving control method, device and system based on traffic predication
US10262268B2 (en) * 2013-10-04 2019-04-16 Mattersight Corporation Predictive analytic systems and methods
CN103886391B (en) * 2014-03-21 2017-08-25 广州杰赛科技股份有限公司 Traffic prediction method and apparatus
CN106161525B (en) * 2015-04-03 2019-09-17 阿里巴巴集团控股有限公司 A kind of more cluster management methods and equipment
CN107093096B (en) * 2016-12-15 2022-03-25 口碑(上海)信息技术有限公司 Traffic prediction method and device
CN108460490A (en) * 2018-03-16 2018-08-28 阿里巴巴集团控股有限公司 A kind of prediction technique, device and the equipment of business occurrence quantity

Also Published As

Publication number Publication date
TWI703461B (en) 2020-09-01
WO2019174410A1 (en) 2019-09-19
CN108460490A (en) 2018-08-28

Similar Documents

Publication Publication Date Title
TWI703461B (en) Method, device and equipment for forecasting business volume
TWI715880B (en) Credit risk control method, device and equipment based on graph structure model
Gorovoi et al. Black's model of interest rates as options, eigenfunction expansions and Japanese interest rates
WO2019154162A1 (en) Risk control rule generation method and apparatus
TWI769190B (en) Risk management method and device
TW202008257A (en) Method for processing data of buy-now-pay-later transaction, device, processing apparatus, and server
CN110415119A (en) Model training, bill business prediction technique, device, storage medium and equipment
CN109242519B (en) Abnormal behavior identification method, device and equipment
US20190066109A1 (en) Long-term short-term cascade modeling for fraud detection
WO2020168845A1 (en) Method, system and device for optimizing transaction costs
TWI718379B (en) Evaluation method, device and equipment for users using shared items
TW201833851A (en) Risk control event automatic processing method and apparatus
CN112765867B (en) General smooth boundary modeling method based on particle method
CN110503435A (en) Transaction method for early warning, device and equipment based on block chain
US11810187B2 (en) Hierarchical deep neural network forecasting of cashflows with linear algebraic constraints
CN110134860B (en) User portrait generation method, device and equipment
CN107992601A (en) Trend prediction analysis method, equipment and storage medium
CN107038127A (en) Application system and its buffer control method and device
US9965503B2 (en) Data cube generation
WO2021239084A1 (en) Blockchain-based commission
TW202018646A (en) Method, device and equipment for adjusting accounting tail error in foreign currency accounting
CN111401641B (en) Service data processing method and device and electronic equipment
CN111723202B (en) Processing device, method and system for public opinion data
CN107392408A (en) The prompt message output intent and device of a kind of credit score
CN110413614A (en) A kind of method and device that tables of data generates