TW201937920A - Coordinate system integration method, and device provided with columnar body - Google Patents

Coordinate system integration method, and device provided with columnar body Download PDF

Info

Publication number
TW201937920A
TW201937920A TW108104205A TW108104205A TW201937920A TW 201937920 A TW201937920 A TW 201937920A TW 108104205 A TW108104205 A TW 108104205A TW 108104205 A TW108104205 A TW 108104205A TW 201937920 A TW201937920 A TW 201937920A
Authority
TW
Taiwan
Prior art keywords
coordinate system
sensor
calibration
marker
markers
Prior art date
Application number
TW108104205A
Other languages
Chinese (zh)
Other versions
TWI702851B (en
Inventor
久保諒太郎
坂野肇
林俊寛
Original Assignee
日商Ihi股份有限公司
日商Ihi運搬機械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Ihi股份有限公司, 日商Ihi運搬機械股份有限公司 filed Critical 日商Ihi股份有限公司
Publication of TW201937920A publication Critical patent/TW201937920A/en
Application granted granted Critical
Publication of TWI702851B publication Critical patent/TWI702851B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This coordinate system integration method for mapping a sensor coordinate system of an object detecting sensor to a predetermined reference coordinate system includes: a measuring step of using a second measuring device to measure a calibration marker which is mounted on an attachment jig attaching the object detecting sensor to an arm and which defines a sensor coordinate system, and a reference marker which is mounted on the arm and which defines a reference coordinate system; and an integrating step of mapping the sensor coordinate system defined by a calibration marker unit to the reference coordinate system defined by the reference marker, on the basis of the results of the measurements in the measuring step.

Description

座標系整合方法、及具備柱狀體之裝置Coordinate system integration method and device having column body

本發明係關於一種座標系整合方法、及具備柱狀體之裝置。The present invention relates to a coordinate system integration method and a device having a columnar body.

例如,業界係於建設機械等安裝物體檢測感測器,而使用物體檢測感測器檢測建設機械等周圍之物體。於使用物體檢測感測器檢測物體之情形時,將對建設機械等預先設定之基準座標系與物體檢測感測器之設置位置及姿勢對應,即,將基準座標系與物體檢測感測器之感測器座標系建立對應。For example, the industry is attached to an object detecting sensor such as a construction machine, and an object detecting sensor is used to detect an object around a construction machine or the like. When the object detecting sensor detects the object, the preset coordinate coordinate system of the construction machine or the like is associated with the set position and posture of the object detecting sensor, that is, the reference coordinate system and the object detecting sensor are The sensor coordinates are mapped.

例如,於專利文獻(日本專利3897984號)中記載,於監視在道路上行駛之車輛之監視相機中,將道路平面與監視相機之設置位置及姿勢對應。For example, in the surveillance camera that monitors a vehicle traveling on a road, the road plane is associated with the installation position and posture of the surveillance camera, as described in the patent document (Japanese Patent No. 3,897,984).

於上述專利文獻所記載之方法中係藉由監視相機檢測特徵點,並基於特徵點之檢測結果將道路平面與監視相機之設置位置及姿勢對應。考慮與此同樣地,基於安裝於建設機械等之物體檢測感測器之檢測結果將基準座標系與物體檢測感測器之設置位置及姿勢對應。In the method described in the above patent document, the feature point is detected by the monitoring camera, and the road plane is associated with the installation position and posture of the monitoring camera based on the detection result of the feature point. In the same manner as described above, the reference coordinate system is associated with the installation position and posture of the object detection sensor based on the detection result of the object detection sensor attached to the construction machine or the like.

然而,於使用成為要進行設置位置及姿勢之對應建立之對象的物體檢測感測器之檢測結果之情形時,基準座標系與感測器座標系之對應建立之精度依賴於物體檢測感測器之檢測精度。However, when using the detection result of the object detecting sensor which is the object to be set corresponding to the set position and posture, the accuracy of the correspondence between the reference coordinate system and the sensor coordinate system depends on the object detecting sensor. Detection accuracy.

對此,本發明說明一種可不依賴於物體檢測感測器之檢測精度而將對象裝置之基準座標系與物體檢測感測器之感測器座標系建立對應的座標系整合方法、及具備柱狀體之裝置。In view of the above, the present invention describes a coordinate system integrating method for associating a reference coordinate system of a target device with a sensor coordinate system of an object detecting sensor without depending on the detection accuracy of the object detecting sensor, and having a columnar shape Body device.

本發明之一態樣係一種座標系整合方法,其將安裝於對象裝置並檢測對象裝置周圍之物體之物體檢測感測器之感測器座標系與對於對象裝置預先設定之基準座標系建立對應,且包括:測量步驟,其係藉由測量裝置對設置於將物體檢測感測器安裝至對象裝置之安裝治具並定義感測器座標系之3個以上之校準用標記物、及設置於對象裝置並定義基準座標系之3個以上之基準標記物進行測量;及整合步驟,其係基於測量步驟之測量結果,將由校準用標記物所定義之感測器座標系與由基準標記物所定義之基準座標系建立對應。One aspect of the present invention is a coordinate system integration method that associates a sensor coordinate system of an object detection sensor mounted on an object device and detects an object around the object device with a reference coordinate system preset for the target device And including: a measuring step of setting, by the measuring device, three or more calibration markers provided on the mounting fixture for mounting the object detecting sensor to the target device and defining the sensor coordinate system; The target device defines three or more reference markers of the reference coordinate system for measurement; and an integration step based on the measurement result of the measurement step, the sensor coordinate system defined by the calibration marker and the reference marker The defined base coordinates are mapped.

於該座標系整合方法中係於測量步驟中,藉由測量裝置對校準用標記物及基準標記物進行測量。並且,於整合步驟中,基於測量步驟之測量結果,將感測器座標系與基準座標系建立對應。即,基於測量裝置之測量結果特定出感測器座標系及基準座標系並將感測器座標系與基準座標系建立對應,不使用物體檢測感測器之檢測結果。因此,於該座標系整合方法中,可不依賴於物體檢測感測器之檢測精度而將對象裝置之基準座標系與物體檢測感測器之感測器座標系建立對應。In the coordinate system integration method, the measurement step is performed, and the calibration marker and the reference marker are measured by the measuring device. And, in the integration step, based on the measurement result of the measurement step, the sensor coordinate system is associated with the reference coordinate system. That is, the sensor coordinate system and the reference coordinate system are specified based on the measurement result of the measuring device, and the sensor coordinate system is associated with the reference coordinate system, and the detection result of the object detection sensor is not used. Therefore, in the coordinate system integration method, the reference coordinate system of the target device can be associated with the sensor coordinate system of the object detection sensor without depending on the detection accuracy of the object detection sensor.

亦可為,物體檢測感測器包括第1物體檢測感測器、及第2物體檢測感測器;安裝治具包括將第1物體檢測感測器安裝至對象裝置之第1安裝治具、及將第2物體檢測感測器安裝至對象裝置之第2安裝治具;校準用標記物包括設置於第1安裝治具並定義第1物體檢測感測器之第1感測器座標系之3個以上之第1校準用標記物、及設置於第2安裝治具並定義第2物體檢測感測器之第2感測器座標系之3個以上之第2校準用標記物;基準標記物係於對象裝置設置3個以上,測量裝置對3個以上之第1校準用標記物進行測量時,至少3個以上之基準標記物朝向與第1校準用標記物一起被測量之方向,測量裝置對3個以上之第2校準用標記物進行測量時,至少3個以上之基準標記物朝向與第2校準用標記物一起被測量之方向;於測量步驟中,藉由測量裝置對3個以上之第1校準用標記物及3個以上之基準標記物進行測量,並藉由測量裝置對3個以上之第2校準用標記物及3個以上之基準標記物進行測量;於整合步驟中,將由第1校準用標記物所定義之第1感測器座標系與基準座標系建立對應,並將由第2校準用標記物所定義之第2感測器座標系與基準座標系建立對應。於此情形時,即便第1物體檢測感測器及第2物體檢測感測器設於不同位置,亦可於測量步驟中對第1校準用標記物及基準標記物進行測量,並可對第2校準用標記物及基準標記物進行測量。又,即便設有複數個物體檢測感測器,亦可將各物體檢測感測器之感測器座標系與基準座標系建立對應。The object detecting sensor may include a first object detecting sensor and a second object detecting sensor, and the mounting jig includes a first mounting jig for attaching the first object detecting sensor to the target device, And attaching the second object detecting sensor to the second mounting jig of the target device; the calibration tag includes a first sensor coordinate system that is disposed on the first mounting jig and defines the first object detecting sensor Three or more first calibration markers and three or more second calibration markers provided in the second mounting fixture and defining the second sensor coordinate system of the second object detection sensor; When three or more objects are installed in the target device, and the measurement device measures three or more first calibration markers, at least three or more of the reference markers are measured in the direction in which they are measured together with the first calibration marker. When the device measures three or more second calibration markers, at least three or more of the reference markers are oriented in the direction of being measured together with the second calibration marker; in the measurement step, three pairs of measurement devices are used. The above first calibration marker and three or more The reference marker is measured, and three or more second calibration markers and three or more reference markers are measured by the measuring device; and in the integration step, the first calibration marker is defined 1 The sensor coordinate system is associated with the reference coordinate system, and the second sensor coordinate system defined by the second calibration mark is associated with the reference coordinate system. In this case, even if the first object detecting sensor and the second object detecting sensor are disposed at different positions, the first calibration mark and the reference mark can be measured in the measuring step, and 2 Calibration is performed with the marker and the reference marker. Moreover, even if a plurality of object detecting sensors are provided, the sensor coordinate system of each object detecting sensor can be associated with the reference coordinate system.

本發明之另一態樣係一種座標系整合方法,其將安裝於對象裝置並檢測對象裝置周圍之物體之物體檢測感測器之感測器座標系與對於對象裝置預先設定之基準座標系建立對應,且包括:第1測量步驟,其係藉由第1測量裝置對設於將物體檢測感測器安裝至對象裝置之安裝治具或物體檢測感測器並定義感測器座標系之感測器座標特定部、及設置於安裝治具並定義校準用標記物座標系之3個以上之校準用標記物進行測量;第1對應建立步驟,其係基於第1測量步驟之測量結果,將由感測器座標特定部所定義之感測器座標系與由校準用標記物所定義之校準用標記物座標系建立對應;第2測量步驟,其係藉由第2測量裝置對3個以上之校準用標記物、及設置於對象裝置並定義基準座標系之3個以上之基準標記物進行測量;第2對應建立步驟,其係基於第2測量步驟之測量結果,將由校準用標記物所定義之校準用標記物座標系與由基準標記物所定義之基準座標系建立對應;及整合步驟,其係基於第1對應建立步驟中建立了對應之感測器座標系及校準用標記物座標系、以及第2對應建立步驟中建立了對應之校準用標記物座標系及基準座標系,將感測器座標系與基準座標系建立對應。Another aspect of the present invention is a coordinate system integration method for establishing a sensor coordinate system of an object detecting sensor mounted on an object device and detecting an object around the object device, and establishing a reference coordinate system preset for the target device Correspondingly, and including: a first measuring step, by using the first measuring device, the mounting jig or the object detecting sensor provided on the object detecting sensor to the target device and defining the sensor coordinate system The measuring unit coordinate specifying unit and the three or more calibration marks provided in the mounting jig and defining the calibration mark coordinate system are measured; and the first corresponding establishing step is based on the measurement result of the first measuring step, The sensor coordinate system defined by the sensor coordinate specific portion is associated with the calibration marker coordinate system defined by the calibration marker; and the second measurement step is performed by the second measurement device for three or more The calibration marker and the three or more reference markers provided in the target device and defining the reference coordinate system are measured; the second correspondence establishing step is based on the measurement of the second measurement step Correspondingly, the calibration marker coordinate system defined by the calibration marker is associated with the reference coordinate system defined by the reference marker; and the integration step is based on the corresponding sensor established in the first correspondence establishment step The coordinate system and the calibration marker coordinate system and the corresponding calibration marker coordinate system and the reference coordinate system are established in the second correspondence establishing step, and the sensor coordinate system is associated with the reference coordinate system.

於該座標系整合方法中係於第1測量步驟中藉由第1測量裝置對感測器座標特定部及校準用標記物進行測量,於第2測量步驟中藉由第2測量裝置對校準用標記物及基準標記物進行測量。於第1對應建立步驟中將感測器座標系與校準用標記物座標系建立對應,於第2對應建立步驟中將校準用標記物座標系與基準座標系建立對應。並且,於整合步驟中,將感測器座標系與基準座標系建立對應。即,基於第1測量裝置及第2測量裝置之測量結果進行各座標系之對應建立,不使用物體檢測感測器之檢測結果。因此,於該座標系整合方法中,可不依賴於物體檢測感測器之檢測精度而將對象裝置之基準座標系與物體檢測感測器之感測器座標系建立對應。In the coordinate system integration method, the sensor measurement target portion and the calibration mark are measured by the first measurement device in the first measurement step, and the second measurement device is used for calibration in the second measurement step. The marker and the reference marker were measured. In the first correspondence establishing step, the sensor coordinate system is associated with the calibration marker coordinate system, and in the second correspondence establishing step, the calibration marker coordinate system is associated with the reference coordinate system. And, in the integration step, the sensor coordinate system is associated with the reference coordinate system. In other words, the correspondence between the coordinate systems is performed based on the measurement results of the first measurement device and the second measurement device, and the detection result of the object detection sensor is not used. Therefore, in the coordinate system integration method, the reference coordinate system of the target device can be associated with the sensor coordinate system of the object detection sensor without depending on the detection accuracy of the object detection sensor.

亦可為,物體檢測感測器包括第1物體檢測感測器、及第2物體檢測感測器;安裝治具包括將第1物體檢測感測器安裝至對象裝置之第1安裝治具、及將第2物體檢測感測器安裝至對象裝置之第2安裝治具;感測器座標特定部包括設於第1安裝治具或第1物體檢測感測器並定義第1物體檢測感測器之第1感測器座標系之第1感測器座標特定部、及設於第2安裝治具或第2物體檢測感測器並定義第2物體檢測感測器之第2感測器座標系之第2感測器座標特定部;校準用標記物包括設置於第1安裝治具並定義第1校準用標記物座標系之3個以上之第1校準用標記物、及設置於第2安裝治具並定義第2校準用標記物座標系之3個以上之第2校準用標記物;基準標記物係於對象裝置設置3個以上,第2測量裝置對3個以上之第1校準用標記物進行測量時,至少3個以上之基準標記物朝向與第1校準用標記物一起被測量之方向,第2測量裝置對3個以上之第2校準用標記物進行測量時,至少3個以上之基準標記物朝向與第2校準用標記物一起被測量之方向;於第1測量步驟中,藉由第1測量裝置對第1感測器座標特定部及3個以上之第1校準用標記物進行測量,並藉由第1測量裝置對第2感測器座標特定部及3個以上之第2校準用標記物進行測量;於第1對應建立步驟中,將由第1感測器座標特定部所定義之第1感測器座標系與由第1校準用標記物所定義之第1校準用標記物座標系建立對應,並將由第2感測器座標特定部所定義之第2感測器座標系與由第2校準用標記物所定義之第2校準用標記物座標系建立對應;於第2測量步驟中,藉由第2測量裝置對3個以上之第1校準用標記物及3個以上之基準標記物進行測量,並藉由第2測量裝置對3個以上之第2校準用標記物及3個以上之基準標記物進行測量;於第2對應建立步驟中,將由第1校準用標記物所定義之第1校準用標記物座標系與由基準標記物所定義之基準座標系建立對應,並將由第2校準用標記物所定義之第2校準用標記物座標系與由基準標記物所定義之基準座標系建立對應;於整合步驟中,基於第1對應建立步驟中建立了對應之第1感測器座標系及第1校準用標記物座標系、以及第2對應建立步驟中建立了對應之第1校準用標記物座標系及基準座標系,將第1感測器座標系與基準座標系建立對應,並基於第1對應建立步驟中建立了對應之第2感測器座標系及第2校準用標記物座標系、以及第2對應建立步驟中建立了對應之第2校準用標記物座標系及基準座標系,將第2感測器座標系與基準座標系建立對應。於此情形時,即便第1物體檢測感測器及第2物體檢測感測器設於不同位置,亦可於第2測量步驟中對第1校準用標記物及基準標記物進行測量,並可對第2校準用標記物及基準標記物進行測量。又,即便設有複數個物體檢測感測器,亦可將各物體檢測感測器之感測器座標系與基準座標系建立對應。The object detecting sensor may include a first object detecting sensor and a second object detecting sensor, and the mounting jig includes a first mounting jig for attaching the first object detecting sensor to the target device, And attaching the second object detecting sensor to the second mounting jig of the target device; the sensor coordinate specifying portion includes the first mounting jig or the first object detecting sensor and defining the first object detecting and sensing The first sensor coordinate specific portion of the first sensor coordinate system and the second sensor that is provided in the second mounting jig or the second object detecting sensor and defining the second object detecting sensor The second sensor coordinate specific portion of the coordinate system; the calibration marker includes three or more first calibration markers that are provided in the first mounting jig and define the first calibration marker coordinate system, and are provided in the first (2) Fixing the fixture and defining three or more second calibration markers of the second calibration marker coordinate system; the reference marker is provided in three or more target devices, and the second measurement device is configured on three or more first calibration schools. When measuring with a quasi-marker, at least three or more of the fiducial markers are oriented and aligned for the first calibration. When the second measuring device measures three or more second calibration markers, at least three or more of the reference markers are oriented in the direction of being measured together with the second calibration marker; In the first measurement step, the first sensor-specific portion and the three or more first calibration markers are measured by the first measuring device, and the second sensor coordinates are specified by the first measuring device. And the third or more calibration markers are measured; in the first correspondence establishing step, the first sensor coordinate system defined by the first sensor coordinate specifying unit and the first calibration marker are The first calibration marker coordinate system is defined, and the second sensor coordinate system defined by the second sensor coordinate specifying unit and the second calibration mark defined by the second calibration mark are used. The object coordinate system is associated with each other; in the second measurement step, three or more first calibration markers and three or more reference markers are measured by the second measuring device, and the second measuring device pair is used. More than two second calibration markers and three or more benchmarks Recording is performed; in the second correspondence establishing step, the first calibration marker coordinate system defined by the first calibration marker is associated with the reference coordinate system defined by the reference marker, and the second calibration is performed. The second calibration marker coordinate system defined by the quasi-marker is associated with the reference coordinate system defined by the fiducial marker; in the integration step, the corresponding first sensor coordinate is established based on the first correspondence establishment step And the first calibration marker coordinate system and the first calibration marker coordinate system and the reference coordinate system are established in the second correspondence establishing step, and the first sensor coordinate system is associated with the reference coordinate system. And based on the second sensor coordinate system and the second calibration marker coordinate system established in the first correspondence establishing step, and the second calibration marker coordinate system and the reference established in the second correspondence establishing step. The coordinate system associates the second sensor coordinate system with the reference coordinate system. In this case, even if the first object detecting sensor and the second object detecting sensor are disposed at different positions, the first calibration marker and the reference marker can be measured in the second measurement step, and The second calibration marker and the reference marker were measured. Moreover, even if a plurality of object detecting sensors are provided, the sensor coordinate system of each object detecting sensor can be associated with the reference coordinate system.

物體檢測感測器亦可為藉由向對象裝置之周圍照射複數束雷射光而檢測物體者。例如,考慮於藉由該物體檢測感測器檢測基準標記物之情形時,因雷射光之照射間隔不同而檢測不到基準標記物之情況。然而,於該座標系整合方法中,因可不使用物體檢測感測器之檢測結果,而將感測器座標系與基準座標系建立對應,故可不依賴於物體檢測感測器之檢測精度而進行座標系之對應建立。The object detecting sensor may also detect the object by illuminating a plurality of beams of laser light around the object device. For example, in consideration of the case where the reference detecting object is detected by the object detecting sensor, the reference mark is not detected due to the difference in the irradiation interval of the laser light. However, in the coordinate system integration method, since the detection result of the object detection sensor can be used, the sensor coordinate system is associated with the reference coordinate system, so that the detection accuracy of the object detection sensor can be performed without depending on the detection accuracy of the object detection sensor. The correspondence of the coordinate system is established.

本發明之又一態樣之具備柱狀體之裝置具備:可移動柱狀體;3個以上之基準標記物,其等係設於柱狀體,並定義對柱狀體預先設定之基準座標系;物體檢測感測器,其係隨柱狀體一起移動;及3個以上之校準用標記物,其等係設於物體檢測感測器或安裝於物體檢測感測器之安裝治具,並定義物體檢測感測器之感測器座標系;且3個以上之基準標記物及3個以上之校準用標記物以可自1個地點視認之方式設置。A device having a columnar body according to still another aspect of the present invention includes: a movable columnar body; three or more reference markers, which are disposed on the columnar body and define a reference coordinate set to the columnar body An object detecting sensor that moves along with the columnar body; and three or more calibration markers, which are disposed on the object detecting sensor or the mounting fixture mounted on the object detecting sensor, And defining a sensor coordinate system of the object detection sensor; and more than three reference markers and three or more calibration markers are set to be visible from one location.

於該具備柱狀體之裝置中,可自1個地點視認3個以上之基準標記物及3個以上之校準用標記物。藉此,藉由對校準用標記物及基準標記物進行測量,可將感測器座標系與基準座標系建立對應。即,可不使用物體檢測感測器之檢測結果,而將感測器座標系與基準座標系建立對應。因此,於該具備柱狀體之裝置中,可不依賴於物體檢測感測器之檢測精度而將對柱狀體設定之基準座標系與物體檢測感測器之感測器座標系建立對應。In the apparatus having the columnar body, three or more reference markers and three or more calibration markers can be visually recognized from one location. Thereby, by measuring the calibration marker and the reference marker, the sensor coordinate system can be associated with the reference coordinate system. That is, the sensor coordinate system can be associated with the reference coordinate system without using the detection result of the object detection sensor. Therefore, in the apparatus having the columnar body, the reference coordinate system set to the columnar body can be associated with the sensor coordinate system of the object detecting sensor without depending on the detection accuracy of the object detecting sensor.

根據本發明之各種態樣,可不依賴於物體檢測感測器之檢測精度,而將對象裝置之基準座標系與物體檢測感測器之感測器座標系建立對應。According to various aspects of the present invention, the reference coordinate system of the object device can be associated with the sensor coordinate system of the object detecting sensor without depending on the detection accuracy of the object detecting sensor.

以下,一面參照圖式,一面對本發明之實施形態進行說明。再者,於圖示之說明中,對同一要素標註同一符號,省略重複說明。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same components are denoted by the same reference numerals, and the description thereof will not be repeated.

於本實施形態中,針對將對圖1所示之油壓挖掘機(對象裝置、裝置)1預先設定之基準座標系與安裝於油壓挖掘機1之物體檢測感測器110A~110D(參照圖3(a)~圖3(d))之各感測器座標系建立對應之座標系整合方法進行說明。此處,將2個座標系建立對應係指,掌握相對於一座標系之另一座標系之位置及姿勢。即,將2個座標系建立對應係指,設為能獲得基於自一座標系向另一座標系之平移及旋轉之座標轉換參數,並將由一座標系所得之座標轉換成另一座標系之座標的狀態。In the present embodiment, the reference coordinate system in which the hydraulic excavator (target device, device) 1 shown in FIG. 1 is set in advance and the object detection sensors 110A to 110D attached to the hydraulic excavator 1 are referred to (refer to The sensor coordinate system of Fig. 3(a) to Fig. 3(d)) is described by establishing a corresponding coordinate system integration method. Here, the two coordinate systems are associated with each other, and the position and posture of the other coordinate system relative to one of the standard systems are grasped. That is, the two coordinate systems are associated with each other, so that coordinate conversion parameters based on translation and rotation from one standard to another coordinate system can be obtained, and the coordinates obtained by one calibration system can be converted into another coordinate system. The state of the coordinates.

油壓挖掘機1具備:移行體11,其用以使自身移行;回轉體10,其設於移行體11上;起重臂12,其安裝於回轉體10之前方;支臂(柱狀體)13,其安裝於起重臂12之前端;鏟鬥14,其安裝於支臂13之前端。藉由油壓,起重臂12相對於回轉體10擺動,支臂13相對於起重臂12擺動,鏟鬥14相對於支臂13擺動。The hydraulic excavator 1 is provided with: a moving body 11 for moving itself; a rotating body 10 provided on the moving body 11; a lifting arm 12 attached to the front of the rotating body 10; and an arm (columnar) 13 is mounted on the front end of the boom 12; the bucket 14 is mounted on the front end of the arm 13. By the oil pressure, the boom 12 is swung relative to the swing body 10, the arm 13 is swung relative to the boom 12, and the bucket 14 is swung relative to the arm 13.

如圖1及圖2所示,支臂13形成為四角柱狀。於本實施形態中,以支臂13之軸作為第1軸,以與第1軸正交之軸作為第2軸,以與第1軸及第2軸正交之軸作為第3軸時,以由第1軸、第2軸及第3軸所定義之座標系作為對油壓挖掘機1(支臂13)預先設定之基準座標系。基準座標系之原點係設為支臂13之軸向之特定位置。As shown in FIGS. 1 and 2, the arms 13 are formed in a quadrangular prism shape. In the present embodiment, the axis of the arm 13 is the first axis, the axis orthogonal to the first axis is the second axis, and the axis orthogonal to the first axis and the second axis is the third axis. The coordinate system defined by the first axis, the second axis, and the third axis is used as a reference coordinate system set in advance for the hydraulic excavator 1 (arm 13). The origin of the reference coordinate system is set to a specific position in the axial direction of the arm 13.

於支臂13之外周面之各面分別安裝有感測器單元100A~100D。如圖3(a)所示,於支臂13之安裝有感測器單元100A之面,設置有基準標記物部200A。基準標記物部200A包含3個基準標記物201A。基準標記物201A定義基準座標系。即,基準標記物201A以表示基準座標系之方式設置於支臂13之外周面。藉由對3個基準標記物201A進行測量,導出基準座標系。例如,於由3個基準標記物201A導出之三維座標系與基準座標系有偏差之情形時,亦可基於用以使所導出之三維座標系與基準座標系吻合之轉換資訊,而根據基準標記物201A之測量結果導出基準座標系。Sensor units 100A to 100D are attached to respective surfaces of the outer peripheral surface of the arm 13 respectively. As shown in FIG. 3(a), a reference mark portion 200A is provided on the surface of the arm 13 on which the sensor unit 100A is attached. The reference marker portion 200A includes three reference markers 201A. The fiducial marker 201A defines a reference coordinate system. That is, the reference mark 201A is provided on the outer peripheral surface of the arm 13 so as to represent the reference coordinate system. The reference coordinate system is derived by measuring the three reference markers 201A. For example, when the three-dimensional coordinate system derived from the three reference markers 201A deviates from the reference coordinate system, it may be based on the conversion information for matching the derived three-dimensional coordinate system with the reference coordinate system, and based on the reference mark. The measurement result of the object 201A is derived from the reference coordinate system.

作為基於3個基準標記物201A導出三維座標系之方法,可使用周知方法。例如,藉由2個基準標記物201A決定第1個軸。藉由3個基準標記物201A定義三角形之面,以面之法線作為第2個軸。以與該等2個軸正交之線作為第3個軸。再者,作為一例,基準標記物201A亦可為帶有十字之銀色平板。於各基準標記物201A中亦可附有識別資訊,使用識別資訊導出基準座標系。As a method of deriving a three-dimensional coordinate system based on three reference markers 201A, a well-known method can be used. For example, the first axis is determined by the two reference markers 201A. The face of the triangle is defined by the three reference marks 201A, and the normal of the face is used as the second axis. A line orthogonal to the two axes is used as the third axis. Further, as an example, the reference mark 201A may be a silver plate with a cross. Identification information may be attached to each of the reference markers 201A, and the reference coordinate system may be derived using the identification information.

如圖3(b)所示,於支臂13之安裝有感測器單元100B之面,設置有包含3個基準標記物201B之基準標記物部200B。如圖3(c)所示,於支臂13之安裝有感測器單元100C之面,設置有包含3個基準標記物201C之基準標記物部200C。如圖3(d)所示,於支臂13之安裝有感測器單元100D之面,設置有包含3個基準標記物201D之基準標記物部200D。3個基準標記物201B、3個基準標記物201C、及3個基準標記物201D係與3個基準標記物201A同樣地定義基準座標系。即,3個基準標記物201A、3個基準標記物201B、3個基準標記物201C、及3個基準標記物201D定義同一座標系(對油壓挖掘機1預先設定之基準座標系)。As shown in FIG. 3(b), a reference mark portion 200B including three reference marks 201B is provided on the surface of the arm 13 on which the sensor unit 100B is attached. As shown in FIG. 3(c), a reference mark portion 200C including three reference marks 201C is provided on the surface of the arm 13 on which the sensor unit 100C is attached. As shown in FIG. 3(d), a reference mark portion 200D including three reference marks 201D is provided on the surface of the arm 13 on which the sensor unit 100D is attached. The three reference marks 201B, the three reference marks 201C, and the three reference marks 201D define a reference coordinate system in the same manner as the three reference marks 201A. In other words, the three reference marks 201A, the three reference marks 201B, the three reference marks 201C, and the three reference marks 201D define the same coordinate system (the reference coordinate system set in advance for the hydraulic excavator 1).

感測器單元100A係如圖4(a)及圖4(b)所示,具有物體檢測感測器(第1物體檢測感測器)110A、及安裝治具(第1安裝治具)120A。物體檢測感測器110A係檢測支臂13周圍之物體之感測器。於本實施形態中,物體檢測感測器110A係藉由向支臂13之周圍照射複數束雷射光而檢測物體之感測器(例如LIDAR(Light Detection And Ranging,光雷達))。As shown in FIGS. 4(a) and 4(b), the sensor unit 100A includes an object detecting sensor (first object detecting sensor) 110A and a mounting jig (first mounting jig) 120A. . The object detecting sensor 110A is a sensor that detects an object around the arm 13. In the present embodiment, the object detecting sensor 110A detects a sensor (for example, LIDAR (Light Detection And Ranging)) by irradiating a plurality of beams of laser light around the arm 13.

安裝治具120A係將物體檢測感測器110A安裝至支臂13之治具。安裝治具120A具有感測器安裝板121A、及4個標記安裝板122A。於感測器安裝板121A之上表面安裝有物體檢測感測器110A。標記安裝板122A形成為剖面大致L字形。標記安裝板122A安裝於感測器安裝板121A之下表面。於標記安裝板122A設置有校準用標記物部130A。於本實施形態中,校準用標記物部130A包含8個校準用標記物(第1校準用標記物)131A。校準用標記物131A以2個一組之方式設置於各標記安裝板122A。The mounting jig 120A is a jig that mounts the object detecting sensor 110A to the arm 13. The mounting jig 120A has a sensor mounting plate 121A and four mark mounting plates 122A. An object detecting sensor 110A is mounted on the surface of the sensor mounting plate 121A. The mark mounting plate 122A is formed in a substantially L-shaped cross section. The marker mounting plate 122A is mounted to the lower surface of the sensor mounting plate 121A. A calibration marker portion 130A is provided on the marker mounting plate 122A. In the present embodiment, the calibration marker portion 130A includes eight calibration markers (first calibration markers) 131A. The calibration marker 131A is provided in each of the marker mounting plates 122A in a group of two.

校準用標記物部130A定義校準用標記物座標系(第1校準用標記物座標系)。藉由對校準用標記物部130A進行測量,而導出校準用標記物座標系。作為基於校準用標記物部130A導出校準用標記物座標系之方法,可使用周知之方法。例如,於基於3個校準用標記物131A之測量結果導出校準用標記物座標系之情形時,首先,藉由2個校準用標記物131A決定第1個軸。藉由3個校準用標記物131A定義面,以面之法線作為第2個軸。以與該等2個軸正交之線作為第3個軸。例如,能以設置於左端等特定位置之校準用標記物131A之位置作為校準用標記物座標系之原點。再者,作為一例,校準用標記物131A亦可為帶有十字之銀色平板。於各校準用標記物部130A中亦可附有識別資訊,使用識別資訊導出校準用標記物座標系。The calibration marker portion 130A defines a calibration marker coordinate system (first calibration marker coordinate system). The calibration marker coordinate system is derived by measuring the calibration marker portion 130A. As a method of deriving the calibration marker coordinate system based on the calibration marker portion 130A, a well-known method can be used. For example, when the calibration marker coordinate system is derived based on the measurement results of the three calibration markers 131A, first, the first axis is determined by the two calibration markers 131A. The plane is defined by three calibration markers 131A, and the normal of the plane is used as the second axis. A line orthogonal to the two axes is used as the third axis. For example, the position of the calibration marker 131A provided at a specific position such as the left end can be used as the origin of the calibration marker coordinate system. Further, as an example, the calibration marker 131A may be a silver plate with a cross. Identification information may be attached to each of the calibration marker portions 130A, and the calibration marker coordinate system may be derived using the identification information.

如圖4(c)所示,於感測器安裝板121A之上表面(感測器設置面)設有2個將物體檢測感測器110A進行定位之銷123A。物體檢測感測器110A藉由銷123A決定在感測器安裝板121A上之位置及朝向。即,物體檢測感測器110A之設置位置及姿勢係由感測器安裝板121A之上表面及銷123A決定。如此,感測器安裝板121A之上表面及銷123A作為表示物體檢測感測器110A之感測器座標系(第1感測器座標系)之感測器座標特定部(第1感測器座標特定部)而發揮功能。As shown in FIG. 4(c), two pins 123A for positioning the object detecting sensor 110A are provided on the upper surface (sensor mounting surface) of the sensor mounting plate 121A. The object detecting sensor 110A determines the position and orientation on the sensor mounting plate 121A by the pin 123A. That is, the installation position and posture of the object detecting sensor 110A are determined by the upper surface of the sensor mounting plate 121A and the pin 123A. Thus, the upper surface of the sensor mounting plate 121A and the pin 123A serve as the sensor coordinate specific portion (the first sensor) indicating the sensor coordinate system (the first sensor coordinate system) of the object detecting sensor 110A. It functions as a coordinate-specific part.

感測器單元100B具備與感測器單元100A相同之構成。具體而言,如圖4(a)及圖4(b)所示,感測器單元100B具有物體檢測感測器(第2物體檢測感測器)110B、及安裝治具(第2安裝治具)120B。安裝治具120B具有感測器安裝板121B、及4個標記安裝板122B。於感測器安裝板121B之上表面安裝物體檢測感測器110B。於標記安裝板122B設置有校準用標記物部130B。與校準用標記物部130A同樣,校準用標記物部130B包含8個校準用標記物(第2校準用標記物)131B。校準用標記物131B以2個一組之方式設置於各標記安裝板122B。The sensor unit 100B has the same configuration as the sensor unit 100A. Specifically, as shown in FIGS. 4( a ) and 4 ( b ), the sensor unit 100B includes an object detecting sensor (second object detecting sensor) 110B and a mounting jig (second mounting treatment). With) 120B. The mounting jig 120B has a sensor mounting plate 121B and four mark mounting plates 122B. An object detecting sensor 110B is mounted on the surface of the sensor mounting plate 121B. A calibration marker portion 130B is provided on the marker mounting plate 122B. Similarly to the calibration marker portion 130A, the calibration marker portion 130B includes eight calibration markers (second calibration markers) 131B. The calibration marker 131B is provided in each of the marker mounting plates 122B in a group of two.

校準用標記物部130B定義校準用標記物座標系(第2校準用標記物座標系)。藉由對校準用標記物部130B進行測量,而與校準用標記物部130A同樣地,導出校準用標記物座標系。校準用標記物部130B具備與校準用標記物部130A相同之構成。再者,校準用標記物部130A所定義之校準用標記物座標系與校準用標記物部130B所定義之校準用標記物座標系互不相同。The calibration marker portion 130B defines a calibration marker coordinate system (second calibration marker coordinate system). By measuring the calibration marker portion 130B, the calibration marker coordinate system is derived in the same manner as the calibration marker portion 130A. The calibration marker portion 130B has the same configuration as the calibration marker portion 130A. Further, the calibration marker coordinate system defined by the calibration marker portion 130A and the calibration marker coordinate system defined by the calibration marker portion 130B are different from each other.

如圖4(c)所示,於感測器安裝板121B之上表面設有2個將物體檢測感測器110B進行定位之銷123B。物體檢測感測器110B藉由銷123B決定在感測器安裝板121B上之位置及朝向。即,物體檢測感測器110B之設置位置及姿勢由感測器安裝板121B之上表面及銷123B決定。如此,感測器安裝板121B之上表面及銷123B作為表示物體檢測感測器110B之感測器座標系(第2感測器座標系)之感測器座標特定部(第2感測器座標特定部)而發揮功能。As shown in FIG. 4(c), two pins 123B for positioning the object detecting sensor 110B are provided on the upper surface of the sensor mounting plate 121B. The object detecting sensor 110B determines the position and orientation on the sensor mounting plate 121B by the pin 123B. That is, the installation position and posture of the object detecting sensor 110B are determined by the upper surface of the sensor mounting plate 121B and the pin 123B. Thus, the upper surface of the sensor mounting plate 121B and the pin 123B serve as the sensor coordinate specific portion (the second sensor) indicating the sensor coordinate system (the second sensor coordinate system) of the object detecting sensor 110B. It functions as a coordinate-specific part.

感測器單元100C及100D具備與感測器單元100A相同之構成。具體而言,如圖3(c)所示,感測器單元100C具備物體檢測感測器110C、及校準用標記物部130C。進而,感測器單元100C與感測器單元100A同樣,具有安裝治具,該安裝治具包含設有銷之感測器安裝板及標記安裝板。如圖3(d)所示,感測器單元100D具備物體檢測感測器110D、及校準用標記物部130D。進而,感測器單元100D與感測器單元100A同樣,具有安裝治具,該安裝治具包含設有銷之感測器安裝板及標記安裝板。The sensor units 100C and 100D have the same configuration as the sensor unit 100A. Specifically, as shown in FIG. 3( c ), the sensor unit 100C includes an object detection sensor 110C and a calibration marker unit 130C. Further, the sensor unit 100C has a mounting jig similar to the sensor unit 100A, and the mounting jig includes a sensor mounting plate provided with a pin and a mark mounting plate. As shown in FIG. 3(d), the sensor unit 100D includes an object detection sensor 110D and a calibration marker portion 130D. Further, the sensor unit 100D has a mounting jig similar to the sensor unit 100A, and the mounting jig includes a sensor mounting plate provided with a pin and a mark mounting plate.

如圖5所示,油壓挖掘機1具備監視裝置20。監視裝置20基於物體檢測感測器110A~110D之檢測結果,對支臂13周圍之障礙物等進行監視。具體而言,監視裝置20基於物體檢測感測器110A~110D之檢測結果,掌握相對於基準座標系何處存在障礙物等。監視裝置20基於所掌握之障礙物等,進行障礙物之有無之報告等。As shown in FIG. 5, the hydraulic excavator 1 is provided with the monitoring device 20. The monitoring device 20 monitors an obstacle or the like around the arm 13 based on the detection results of the object detecting sensors 110A to 110D. Specifically, based on the detection results of the object detection sensors 110A to 110D, the monitoring device 20 grasps where an obstacle or the like exists with respect to the reference coordinate system. The monitoring device 20 performs a report of the presence or absence of an obstacle or the like based on the obstacle or the like that is grasped.

此處,為了掌握相對於基準座標系而言障礙物等之位置,需事先將基準座標系與物體檢測感測器110A~110D之各者之感測器座標系建立對應。以下,對將基準座標系與感測器座標系建立對應之座標系整合方法進行說明。Here, in order to grasp the position of the obstacle or the like with respect to the reference coordinate system, it is necessary to previously associate the reference coordinate system with the sensor coordinate system of each of the object detecting sensors 110A to 110D. Hereinafter, a coordinate system integration method in which a reference coordinate system and a sensor coordinate system are associated will be described.

基準座標系與感測器座標系之對應建立係藉由圖5所示之座標對應建立裝置300而進行。座標對應建立裝置300可配備於油壓挖掘機1以外之場所,亦可搭載於油壓挖掘機1。The correspondence between the reference coordinate system and the sensor coordinate system is performed by the coordinate corresponding establishing device 300 shown in FIG. The coordinate correspondence establishing device 300 may be provided in a place other than the hydraulic excavator 1 or may be mounted on the hydraulic excavator 1 .

於座標對應建立裝置300連接有第1測量裝置304、及第2測量裝置(測量裝置)305。第1測量裝置304對感測器單元100A之校準用標記物部130A、及感測器單元100A中之物體檢測感測器110A之設置位置及姿勢進行測量。具體而言,第1測量裝置304係將3個以上之校準用標記物131A作為校準用標記物部130A進行測量。第1測量裝置304係將感測器安裝板121A之上表面、及銷123A作為物體檢測感測器110A之設置位置及姿勢進行測量。再者,校準用標記物131A係至少3個校準用標記物131A設於與感測器安裝板121A之上表面及銷123A同時被測量之位置及朝向。A first measuring device 304 and a second measuring device (measuring device) 305 are connected to the coordinate correspondence establishing device 300. The first measuring device 304 measures the installation position and posture of the calibration marker portion 130A of the sensor unit 100A and the object detection sensor 110A in the sensor unit 100A. Specifically, the first measuring device 304 measures three or more calibration markers 131A as the calibration marker portion 130A. The first measuring device 304 measures the upper surface of the sensor mounting plate 121A and the pin 123A as the installation position and posture of the object detecting sensor 110A. Further, the calibration marker 131A is provided at least three calibration markers 131A at positions and orientations simultaneously measured on the upper surface of the sensor mounting plate 121A and the pin 123A.

第1測量裝置304對其他感測器單元100B~100D亦同樣地,分別對校準用標記物部130B~130D、及物體檢測感測器110B~110D之設置位置及姿勢進行測量。第1測量裝置304將測量結果輸入至座標對應建立裝置300。第1測量裝置304之測量可由操作員進行,亦可由第1測量裝置304自動進行。作為第1測量裝置304,例如,可使用三維雷射測量器。Similarly to the other sensor units 100B to 100D, the first measuring device 304 measures the installation position and posture of the calibration marker portions 130B to 130D and the object detection sensors 110B to 110D, respectively. The first measuring device 304 inputs the measurement result to the coordinate correspondence establishing device 300. The measurement by the first measuring device 304 may be performed by an operator or automatically by the first measuring device 304. As the first measuring device 304, for example, a three-dimensional laser measuring device can be used.

此處,第1測量裝置304之測量係於物體檢測感測器110A等未安裝於感測器安裝板121A等之狀態下進行。又,第1測量裝置304之測量可於安裝治具120A等未安裝於支臂13之狀態下進行,亦可於安裝治具120A等安裝於支臂13之狀態下進行。Here, the measurement by the first measuring device 304 is performed in a state where the object detecting sensor 110A or the like is not mounted on the sensor mounting plate 121A or the like. In addition, the measurement of the first measuring device 304 may be performed in a state where the attachment jig 120A or the like is not attached to the arm 13, or may be performed in a state where the attachment jig 120A or the like is attached to the arm 13.

第2測量裝置305對感測器單元100A之校準用標記物部130A、及設置於支臂13之基準標記物部200A進行測量。具體而言,第2測量裝置305係將3個以上之校準用標記物131A作為校準用標記物部130A進行測量。第2測量裝置305係將3個以上之基準標記物201A作為基準標記物部200A進行測量。再者,於本實施形態中,因基準標記物部200A包含3個基準標記物201A,故第2測量裝置305對3個基準標記物201A均進行測量。The second measuring device 305 measures the calibration marker portion 130A of the sensor unit 100A and the reference marker portion 200A provided on the arm 13 . Specifically, the second measuring device 305 measures three or more calibration markers 131A as the calibration marker portion 130A. The second measuring device 305 measures three or more reference markers 201A as the reference marker portion 200A. Further, in the present embodiment, since the reference marker portion 200A includes the three reference markers 201A, the second measuring device 305 measures all of the three reference markers 201A.

又,關於基準標記物部200A,第2測量裝置305對校準用標記物部130A進行測量時,至少3個以上之基準標記物201A朝向與校準用標記物部130A一起被測量之方向。再者,於本實施形態中,因基準標記物部200A包含3個基準標記物201A,故3個基準標記物201A均朝向與校準用標記物部130A一起被測量之方向。即,3個基準標記物201A及3個以上之校準用標記物131A係以可自1個視點視認之方式設置。Further, when the second measuring device 305 measures the calibration marker portion 130A with respect to the reference marker portion 200A, at least three or more of the reference markers 201A are directed toward the direction to be measured together with the calibration marker portion 130A. Further, in the present embodiment, since the reference marker portion 200A includes the three reference markers 201A, all of the three reference markers 201A are oriented in the direction in which they are measured together with the calibration marker portion 130A. In other words, the three reference markers 201A and the three or more calibration markers 131A are provided so as to be viewable from one viewpoint.

第2測量裝置305對其他感測器單元100B~100D亦同樣地,分別對校準用標記物部130B~130D、及設於支臂13之基準標記物部200B~200D進行測量。第2測量裝置305係將3個基準標記物201B均作為基準標記物部200B進行測量,將3個基準標記物201C均作為基準標記物部200C進行測量,並將3個基準標記物201D均作為基準標記物部200D進行測量。Similarly to the other sensor units 100B to 100D, the second measuring device 305 measures the calibration marker portions 130B to 130D and the reference marker portions 200B to 200D provided on the arm 13 in the same manner. In the second measuring device 305, all of the three reference markers 201B are measured as the reference marker portion 200B, and all three reference markers 201C are measured as the reference marker portion 200C, and the three reference markers 201D are used as the reference. The reference marker portion 200D performs measurement.

又,關於基準標記物部200B,第2測量裝置305對校準用標記物部130B進行測量時,3個基準標記物201B均朝向與校準用標記物部130B一起被測量之方向。關於基準標記物部200C,第2測量裝置305對校準用標記物部130C進行測量時,3個基準標記物201C均朝向與校準用標記物部130C一起被測量之方向。關於基準標記物部200D,第2測量裝置305對校準用標記物部130D進行測量時,3個基準標記物201D均朝向與校準用標記物部130D一起被測量之方向。Further, when the second measuring device 305 measures the calibration marker portion 130B with respect to the reference marker portion 200B, all of the three reference markers 201B are directed toward the direction to be measured together with the calibration marker portion 130B. When the second measuring device 305 measures the calibration marker portion 130C with respect to the reference marker portion 200C, all of the three reference markers 201C are directed toward the direction to be measured together with the calibration marker portion 130C. When the second measuring device 305 measures the calibration marker portion 130D with respect to the fiducial marker portion 200D, all of the three fiducial markers 201D are directed toward the direction to be measured together with the calibration marker portion 130D.

如此,於支臂13設置有3個基準標記物201A、3個基準標記物201B、3個基準標記物201C、及3個基準標記物201D共12個基準標記物。該等基準標記物之中,3個基準標記物201A朝向藉由第2測量裝置305而與校準用標記物部130A一起被測量之方向。同樣,該等基準標記物201A~201D之中,3個基準標記物201B朝向藉由第2測量裝置305而與校準用標記物部130B一起被測量之方向。該等基準標記物201A~201D之中,3個基準標記物201C朝向藉由第2測量裝置305而與校準用標記物部130C一起被測量之方向。該等基準標記物201A~201D之中,3個基準標記物201D朝向藉由第2測量裝置305而與校準用標記物部130D一起被測量之方向。In this manner, the reference arm 13 is provided with three reference marks 201A, three reference marks 201B, three reference marks 201C, and three reference marks 201D, and a total of twelve reference marks. Among the reference markers, the three reference markers 201A are oriented in the direction in which they are measured together with the calibration marker portion 130A by the second measuring device 305. Similarly, among the reference markers 201A to 201D, the three reference markers 201B are oriented in the direction in which they are measured together with the calibration marker portion 130B by the second measuring device 305. Among the reference markers 201A to 201D, the three reference markers 201C are oriented in the direction in which they are measured together with the calibration marker portion 130C by the second measuring device 305. Among the reference markers 201A to 201D, the three reference markers 201D are oriented in the direction in which they are measured together with the calibration marker portion 130D by the second measuring device 305.

第2測量裝置305將測量結果輸入至座標對應建立裝置300。第2測量裝置305之測量可由操作員進行,亦可由第2測量裝置305自動進行。作為第2測量裝置305,例如可使用全能測量儀等測量設備。The second measuring device 305 inputs the measurement result to the coordinate correspondence establishing device 300. The measurement by the second measuring device 305 can be performed by an operator or automatically by the second measuring device 305. As the second measuring device 305, for example, a measuring device such as a versatile measuring instrument can be used.

第2測量裝置305可移動,例如,可自與對校準用標記物部130A及基準標記物部200A進行測量時之位置不同之位置對校準用標記物部130B及基準標記物部200B進行測量。於第2測量裝置305固定於地面上之情形時,亦可例如使油壓挖掘機1移動或使支臂13等擺動,以使作為測量對象之校準用標記物部及基準標記物部進入測量範圍內。The second measuring device 305 is movable. For example, the calibration marker portion 130B and the reference marker portion 200B can be measured at positions different from the positions at which the calibration marker portion 130A and the reference marker portion 200A are measured. When the second measuring device 305 is fixed to the ground, for example, the hydraulic excavator 1 may be moved or the arm 13 or the like may be swung to allow the calibration target portion and the reference marker portion to be measured to enter the measurement. Within the scope.

座標對應建立裝置300物理上構成為具備CPU(Central Processing Unit,中央處理單元)、作為主記憶裝置之RAM(Random Access Memory,隨機存取記憶體)及ROM(Read Only Memory,唯讀記憶體)、與其他設備進行通信之通信模組、以及硬碟等輔助記憶裝置等硬體的電腦。座標對應建立裝置300亦可包含複數個電腦單元。The coordinate correspondence establishing device 300 is physically configured to include a CPU (Central Processing Unit), a RAM (Random Access Memory) as a main memory device, and a ROM (Read Only Memory). A communication module that communicates with other devices, and a hard-working computer such as an auxiliary memory device such as a hard disk. The coordinate correspondence establishing device 300 may also include a plurality of computer units.

座標對應建立裝置300功能上具有第1對應建立部301、第2對應建立部302、及整合部303。第1對應建立部301基於第1測量裝置304之測量結果,如圖6所示,分別將物體檢測感測器110A~110D之感測器座標系與由校準用標記物部130A~130D所定義之校準用標記物座標系建立對應。The coordinate correspondence establishing device 300 functionally includes a first correspondence establishing unit 301, a second correspondence establishing unit 302, and an integrating unit 303. Based on the measurement result of the first measuring device 304, the first correspondence establishing unit 301 defines the sensor coordinate system of the object detecting sensors 110A to 110D and the calibration target portions 130A to 130D, respectively, as shown in Fig. 6 . The calibration uses the marker coordinate system to establish a correspondence.

具體而言,第1對應建立部301係基於感測器安裝板121A之上表面及銷123A之測量結果,對物體檢測感測器110A之感測器座標系進行運算。第1對應建立部301係基於校準用標記物部130A之測量結果,算出由校準用標記物部130A所定義之校準用標記物座標系。第1對應建立部301將算出之物體檢測感測器110A之感測器座標系與由校準用標記物部130A所定義之校準用標記物座標系建立對應。Specifically, the first correspondence establishing unit 301 calculates the sensor coordinate system of the object detecting sensor 110A based on the measurement result of the upper surface of the sensor mounting plate 121A and the pin 123A. The first correspondence establishing unit 301 calculates the calibration marker coordinate system defined by the calibration marker portion 130A based on the measurement result of the calibration marker portion 130A. The first correspondence establishing unit 301 associates the calculated sensor coordinate system of the object detecting sensor 110A with the calibration tag coordinate system defined by the calibration marker unit 130A.

又,第1對應建立部301係基於感測器安裝板121B之上表面及銷123B之測量結果,算出物體檢測感測器110B之感測器座標系。第1對應建立部301係基於校準用標記物部130B之測量結果,算出由校準用標記物部130B所定義之校準用標記物座標系。第1對應建立部301將算出之物體檢測感測器110B之感測器座標系與由校準用標記物部130B所定義之校準用標記物座標系建立對應。Further, the first correspondence establishing unit 301 calculates the sensor coordinate system of the object detecting sensor 110B based on the measurement result of the upper surface of the sensor mounting plate 121B and the pin 123B. The first correspondence establishing unit 301 calculates the calibration marker coordinate system defined by the calibration marker portion 130B based on the measurement result of the calibration marker portion 130B. The first correspondence establishing unit 301 associates the sensor coordinate system of the calculated object detecting sensor 110B with the calibration tag coordinate system defined by the calibration marker unit 130B.

同樣,第1對應建立部301算出物體檢測感測器110C之感測器座標系及校準用標記物部130C之校準用標記物座標系,並將算出之座標系彼此建立對應。第1對應建立部301算出物體檢測感測器110D之感測器座標系及校準用標記物部130D之校準用標記物座標系,並將算出之座標系彼此建立對應。Similarly, the first correspondence establishing unit 301 calculates the calibration coordinate system of the sensor coordinate system of the object detection sensor 110C and the calibration marker unit 130C, and associates the calculated coordinate systems with each other. The first correspondence establishing unit 301 calculates the calibration coordinate system of the sensor coordinate system of the object detection sensor 110D and the calibration marker portion 130D, and associates the calculated coordinate systems with each other.

第2對應建立部302基於第2測量裝置305之測量結果,如圖6所示,分別將由校準用標記物部130A~130D所定義之校準用標記物座標系與由基準標記物部200A~200D所定義之基準座標系建立對應。Based on the measurement result of the second measuring device 305, the second correspondence establishing unit 302 respectively displays the calibration marker coordinate system defined by the calibration marker portions 130A to 130D and the reference marker portion 200A to 200D, as shown in Fig. 6 . The defined reference coordinates are mapped.

具體而言,第2對應建立部302係基於校準用標記物部130A之測量結果,算出由校準用標記物部130A所定義之校準用標記物座標系。第2對應建立部302係基於基準標記物部200A之測量結果算出基準座標系。第2對應建立部302將算出之由校準用標記物部130A所定義之校準用標記物座標系與基準座標系建立對應。Specifically, the second correspondence establishing unit 302 calculates the calibration marker coordinate system defined by the calibration marker portion 130A based on the measurement result of the calibration marker portion 130A. The second correspondence establishing unit 302 calculates a reference coordinate system based on the measurement result of the reference marker portion 200A. The second correspondence establishing unit 302 associates the calculated calibration marker coordinate system defined by the calibration marker portion 130A with the reference coordinate system.

又,第2對應建立部302係基於校準用標記物部130B之測量結果,算出由校準用標記物部130B所定義之校準用標記物座標系。第2對應建立部302係基於基準標記物部200B之測量結果算出基準座標系。第2對應建立部302將算出之由校準用標記物部130B所定義之校準用標記物座標系與基準座標系建立對應。Further, the second correspondence establishing unit 302 calculates the calibration marker coordinate system defined by the calibration marker portion 130B based on the measurement result of the calibration marker portion 130B. The second correspondence establishing unit 302 calculates a reference coordinate system based on the measurement result of the reference marker portion 200B. The second correspondence establishing unit 302 associates the calculated calibration marker coordinate system defined by the calibration marker portion 130B with the reference coordinate system.

同樣,第2對應建立部302算出校準用標記物部130C之校準用標記物座標系及基準座標系,並將算出之座標系彼此建立對應。第2對應建立部302算出校準用標記物部130D之校準用標記物座標系及基準座標系,並將算出之座標系彼此建立對應。Similarly, the second correspondence establishing unit 302 calculates the calibration marker coordinate system and the reference coordinate system of the calibration marker portion 130C, and associates the calculated coordinate systems with each other. The second correspondence establishing unit 302 calculates the calibration marker coordinate system and the reference coordinate system of the calibration marker portion 130D, and associates the calculated coordinate systems with each other.

此處,由第1對應建立部301建立對應後之對應建立結果與由第2對應建立部302建立對應後之對應建立結果,校準用標記物座標系與之共通。因此,整合部303藉由將由第1對應建立部301建立了對應之感測器座標系及校準用標記物座標系、與由第2對應建立部302建立了對應之校準用標記物座標系及基準座標系整合,而將感測器座標系與基準座標系建立對應。Here, the first correspondence establishing unit 301 establishes a correspondence result between the corresponding correspondence establishment result and the correspondence establishment result by the second correspondence establishing unit 302, and the calibration marker coordinate system is common thereto. Therefore, the integration unit 303 establishes the corresponding sensor coordinate system and the calibration marker coordinate system by the first correspondence establishing unit 301, and the calibration marker coordinate system associated with the second correspondence establishing unit 302. The reference coordinates are integrated and the sensor coordinate system is associated with the reference coordinate system.

具體而言,整合部303係藉由將物體檢測感測器110A之感測器座標系及由校準用標記物部130A所定義之校準用標記物座標系之對應建立結果、與由校準用標記物部130A所定義之校準用標記物座標系及基準座標系之對應建立結果整合,而將物體檢測感測器110A之感測器座標系與基準座標系建立對應。又,整合部303係藉由將物體檢測感測器110B之感測器座標系及由校準用標記物部130B所定義之校準用標記物座標系之對應建立結果、與由校準用標記物部130B所定義之校準用標記物座標系及基準座標系之對應建立結果整合,而將物體檢測感測器110B之感測器座標系與基準座標系建立對應。Specifically, the integration unit 303 establishes the result of the correspondence between the sensor coordinate system of the object detection sensor 110A and the calibration marker coordinate system defined by the calibration marker unit 130A, and the calibration mark. The corresponding calibration result of the calibration marker coordinate system and the reference coordinate system defined by the object portion 130A is integrated, and the sensor coordinate system of the object detection sensor 110A is associated with the reference coordinate system. Further, the integration unit 303 establishes the result of the correspondence between the sensor coordinate system of the object detection sensor 110B and the calibration marker coordinate system defined by the calibration marker portion 130B, and the calibration marker portion. The corresponding calibration result of the calibration marker coordinate system and the reference coordinate system defined by 130B is integrated, and the sensor coordinate system of the object detection sensor 110B is associated with the reference coordinate system.

同樣,整合部303將物體檢測感測器110C之感測器座標系與基準座標系建立對應,並將物體檢測感測器110D之感測器座標系與基準座標系建立對應。Similarly, the integration unit 303 associates the sensor coordinate system of the object detection sensor 110C with the reference coordinate system, and associates the sensor coordinate system of the object detection sensor 110D with the reference coordinate system.

由座標對應建立裝置300所進行之基準座標系與感測器座標系之對應建立結果輸入至監視裝置20,並用於監視裝置20中之障礙物等之監視。The result of the correspondence between the reference coordinate system and the sensor coordinate system performed by the coordinate correspondence establishing device 300 is input to the monitoring device 20, and is used for monitoring the obstacle or the like in the monitoring device 20.

繼而,對使用座標對應建立裝置300、第1測量裝置304、及第2測量裝置305進行之座標系整合方法之處理流程進行說明。如圖7所示,第1測量裝置304分別對校準用標記物部130A~130D、及物體檢測感測器110A~110D之設置位置及姿勢進行測量(S101:第1測量步驟)。第1對應建立部301基於第1測量步驟之測量結果,分別將物體檢測感測器110A~110D之感測器座標系與由校準用標記物部130A~130D所定義之校準用標記物座標系建立對應(S102:第1對應建立步驟)。Next, a processing flow of the coordinate system integration method performed by the coordinate correspondence establishing device 300, the first measuring device 304, and the second measuring device 305 will be described. As shown in FIG. 7, the first measuring device 304 measures the installation position and posture of the calibration marker portions 130A to 130D and the object detection sensors 110A to 110D (S101: first measurement step). The first correspondence establishing unit 301 sets the sensor coordinate system of the object detecting sensors 110A to 110D and the calibration tag coordinate system defined by the calibration marker portions 130A to 130D based on the measurement results of the first measurement step. Correspondence is established (S102: first correspondence establishment step).

第2測量裝置305分別對校準用標記物部130A~130D、及基準標記物部200A~200D進行測量(S103:第2測量步驟)。第2對應建立部302基於第2測量步驟之測量結果,分別將由校準用標記物部130A~130D所定義之校準用標記物座標系與由基準標記物部200A~200D所定義之基準座標系建立對應(S104:第2對應建立步驟)。整合部303將第1對應建立步驟中之對應建立結果與第2對應建立步驟中之對應建立結果整合,分別將物體檢測感測器110A~110D之感測器座標系與基準座標系建立對應(S105:整合步驟)。The second measuring device 305 measures the calibration marker portions 130A to 130D and the reference marker portions 200A to 200D (S103: second measurement step). The second correspondence establishing unit 302 establishes the calibration marker coordinate system defined by the calibration marker portions 130A to 130D and the reference coordinate system defined by the reference marker portions 200A to 200D based on the measurement results of the second measurement step. Correspondence (S104: second correspondence establishment step). The integration unit 303 integrates the corresponding establishment result in the first correspondence establishing step with the corresponding establishment result in the second correspondence establishing step, and respectively associates the sensor coordinate system of the object detecting sensors 110A to 110D with the reference coordinate system ( S105: integration step).

如上所述,根據本實施形態之座標系整合方法,於第1測量步驟中使用第1測量裝置304,分別對校準用標記物部130A~130D及物體檢測感測器110A~110D之設置位置及姿勢進行測量。於第2測量步驟中使用第2測量裝置305,分別對校準用標記物部130A~130D及基準標記物部200A~200D進行測量。即,基於第1測量裝置304及第2測量裝置305之測量結果,將物體檢測感測器110A~110D之感測器座標系與基準座標系建立對應,不使用物體檢測感測器110A~110D之檢測結果。因此,於該座標系整合方法中,可不依賴於物體檢測感測器110A~110D之檢測精度而分別將油壓挖掘機1之基準座標系與物體檢測感測器110A~110D之感測器座標系建立對應。As described above, according to the coordinate system integration method of the present embodiment, the first measurement device 304 is used in the first measurement step, and the positions of the calibration marker portions 130A to 130D and the object detection sensors 110A to 110D are respectively set and The posture is measured. In the second measurement step, the second measurement device 305 is used to measure the calibration marker portions 130A to 130D and the reference marker portions 200A to 200D, respectively. That is, based on the measurement results of the first measuring device 304 and the second measuring device 305, the sensor coordinate systems of the object detecting sensors 110A to 110D are associated with the reference coordinate system, and the object detecting sensors 110A to 110D are not used. The test results. Therefore, in the coordinate system integration method, the sensor coordinates of the reference coordinate system of the hydraulic excavator 1 and the object detection sensors 110A to 110D can be respectively independent of the detection accuracy of the object detection sensors 110A to 110D. Establish a correspondence.

基準標記物201A係朝向與校準用標記物部130A一起由第2測量裝置305測量之方向。同樣地,基準標記物201B~201D分別朝向與校準用標記物部130B~130D一起由第2測量裝置305測量之方向。於此情形時,例如,即便物體檢測感測器110A及物體檢測感測器110B設於不同位置,亦可於第2測量步驟中對校準用標記物部130A及基準標記物201A進行測量,並可對校準用標記物部130B及基準標記物201B進行測量。又,於本實施形態之座標系整合方法中,即便如物體檢測感測器110A~110D般設有複數個物體檢測感測器,亦可將各物體檢測感測器110A~110D之感測器座標系與基準座標系建立對應。The reference marker 201A is oriented in the direction measured by the second measuring device 305 together with the calibration marker portion 130A. Similarly, the reference marks 201B to 201D are directed to the direction measured by the second measuring device 305 together with the calibration marker portions 130B to 130D. In this case, for example, even if the object detecting sensor 110A and the object detecting sensor 110B are disposed at different positions, the calibration marker portion 130A and the reference marker 201A can be measured in the second measuring step, and The calibration marker portion 130B and the reference marker 201B can be measured. Further, in the coordinate system integration method of the present embodiment, even if a plurality of object detection sensors are provided as the object detection sensors 110A to 110D, the sensors of the respective object detection sensors 110A to 110D can be detected. The coordinate system corresponds to the reference coordinate system.

物體檢測感測器110A~110D係藉由向支臂13之周圍照射複數束雷射光而檢測物體之感測器。考慮於此情形時,例如於藉由該物體檢測感測器110A~110D檢測基準標記物201A~201D之情形時,因雷射光之照射間隔不同而檢測不到201A~201D之情況。然而,於本實施形態之座標系整合方法中,因可不使用物體檢測感測器110A~110D之檢測結果,而將感測器座標系與基準座標系建立對應,故可不依賴於物體檢測感測器110A~110D之檢測精度而進行座標系之對應建立。The object detecting sensors 110A to 110D detect the object by irradiating a plurality of beams of laser light around the arm 13. In consideration of this situation, for example, when the object detecting sensors 110A to 110D detect the reference marks 201A to 201D, the cases where 201A to 201D are not detected due to the difference in the irradiation interval of the laser light are not detected. However, in the coordinate system integration method of the present embodiment, since the detection result of the object detection sensors 110A to 110D can be used, the sensor coordinate system is associated with the reference coordinate system, so that the object detection detection can be performed independently. The detection accuracy of the devices 110A to 110D is established correspondingly to the coordinate system.

於油壓挖掘機1中,例如,可自1個地點視認3個基準標記物201A及3個以上之校準用標記物131A。藉此,藉由對校準用標記物131A及基準標記物201A進行測量,可將感測器座標系與基準座標系建立對應。即,可不使用物體檢測感測器110A~110D之檢測結果而將感測器座標系與基準座標系建立對應。因此,於該油壓挖掘機1中,可不依賴於物體檢測感測器110A~110D之檢測精度而將設定於支臂13之基準座標系與物體檢測感測器110A~110D之感測器座標系建立對應。In the hydraulic excavator 1, for example, three reference marks 201A and three or more calibration marks 131A can be visually recognized from one place. Thereby, by measuring the calibration marker 131A and the reference marker 201A, the sensor coordinate system can be associated with the reference coordinate system. That is, the sensor coordinate system can be associated with the reference coordinate system without using the detection results of the object detection sensors 110A to 110D. Therefore, in the hydraulic excavator 1, the sensor coordinates set by the reference coordinate system of the arm 13 and the object detecting sensors 110A to 110D can be set independently of the detection accuracy of the object detecting sensors 110A to 110D. Establish a correspondence.

以上,對本發明之實施形態進行了說明,但本發明並不限定於上述實施形態。例如,雖於形成為四角柱狀之支臂13設置了基準標記物201A等,但如圖8所示,亦可於圓柱形狀之支臂15設置基準標記物部200。於此情形時,構成基準標記物部200之複數個基準標記物201於支臂15之外周面按特定之角度分別設置。按特定之角度設置之複數個基準標記物201之組於支臂15之軸向上設置複數組。基準標記物201定義基準座標系。作為基於3個基準標記物201導出三維座標系之方法,可使用周知之方法。例如,於按特定之角度設置之基準標記物201之組中,根據3個基準標記物201定義圓形面,並以面之法線作為第1個軸。以通過圓形面之中心及特定基準標記物201之直線作為第2個軸。並且,可以與該等2個軸正交之線作為第3個軸。即,複數個基準標記物201之中,排列於周向之至少3個基準標記物201以可藉由第2測量裝置305測量之方式配置即可。Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments. For example, although the reference mark 201A or the like is provided on the arm 13 formed in a quadrangular prism shape, the reference mark portion 200 may be provided on the cylindrical arm 15 as shown in FIG. 8 . In this case, the plurality of reference marks 201 constituting the reference marker portion 200 are respectively provided at a specific angle on the outer peripheral surface of the arm 15. A plurality of sets of fiducial markers 201 arranged at a specific angle are provided with a complex array in the axial direction of the arm 15. The fiducial marker 201 defines a reference coordinate system. As a method of deriving a three-dimensional coordinate system based on three reference markers 201, a well-known method can be used. For example, in the group of the reference markers 201 set at a specific angle, a circular surface is defined by the three reference markers 201, and the normal of the surface is used as the first axis. A straight line passing through the center of the circular surface and the specific reference mark 201 is used as the second axis. Further, a line orthogonal to the two axes may be used as the third axis. In other words, among the plurality of reference markers 201, at least three reference markers 201 arranged in the circumferential direction may be arranged so as to be measurable by the second measuring device 305.

於實施形態中,雖係以基於支臂13之軸設定基準座標系之情形為例進行說明,但基準座標系並不限定於基於支臂13之軸而設定。基準座標系定於油壓挖掘機1之適當位置即可。In the embodiment, the case where the reference coordinate system is set based on the axis of the arm 13 will be described as an example. However, the reference coordinate system is not limited to being set based on the axis of the arm 13 . The reference coordinate is set at the appropriate position of the hydraulic excavator 1.

圖7中係於第1測量步驟(S101)及第1對應建立步驟(S102)之後進行第2測量步驟(S103)及第2對應建立步驟(S104),但亦可於第2測量步驟及第2對應建立步驟之後進行第1測量步驟及第1對應建立步驟。In FIG. 7, after the first measurement step (S101) and the first correspondence establishment step (S102), the second measurement step (S103) and the second correspondence establishment step (S104) are performed, but the second measurement step and the second measurement step may be performed. 2 Corresponding to the establishing step, the first measuring step and the first corresponding establishing step are performed.

又,例如,有時已知物體檢測感測器110A之設置位置及姿勢與校準用標記物131A之位置關係由加工之精度決定等。或者,亦可因校準用標記物131A直接設置於物體檢測感測器110A,而已知物體檢測感測器110A之設置位置及姿勢與校準用標記物131A之位置關係。即,由校準用標記物部130A所定義之座標系成為物體檢測感測器110A之感測器座標系。於此情形時,無需使用第1測量裝置304之第1測量步驟。因此,只需使用第2測量裝置305對校準用標記物部130A及基準標記物部200A進行測量(測量步驟),並由整合部303對該測量結果進行整合(整合步驟),便可將由校準用標記物部130A所定義之物體檢測感測器110A之感測器座標系與由基準標記物部200A所定義之基準座標系建立對應。關於物體檢測感測器110B~110D,亦係於已知物體檢測感測器110B~110D之設置位置及姿勢與構成校準用標記物部130B之校準用標記物131B及構成校準用標記物部130C、130D之各校準用標記物之位置關係之情形時,無需使用第1測量裝置304之第1測量步驟。於此情形時,可不進行第1測量步驟,而將物體檢測感測器110A~110D之感測器座標系與基準座標系建立對應。Further, for example, it is known that the positional relationship between the installation position and posture of the object detection sensor 110A and the calibration marker 131A is determined by the accuracy of processing. Alternatively, the calibration marker 131A may be directly provided to the object detection sensor 110A, and the positional relationship between the installation position and posture of the object detection sensor 110A and the calibration marker 131A may be known. That is, the coordinate system defined by the calibration marker portion 130A serves as the sensor coordinate system of the object detection sensor 110A. In this case, it is not necessary to use the first measurement step of the first measuring device 304. Therefore, it is only necessary to measure the calibration marker portion 130A and the reference marker portion 200A using the second measuring device 305 (measurement step), and the integration portion 303 integrates the measurement results (integration step), so that the calibration can be performed. The sensor coordinate of the object detecting sensor 110A defined by the quasi-marker portion 130A is associated with the reference coordinate system defined by the fiducial marker portion 200A. The object detecting sensors 110B to 110D are also disposed at the position and posture of the known object detecting sensors 110B to 110D, the calibration mark 131B constituting the calibration marker portion 130B, and the calibration marker portion 130C. In the case of the positional relationship of each of the calibration markers of 130D, it is not necessary to use the first measurement step of the first measuring device 304. In this case, the sensor coordinate system of the object detecting sensors 110A to 110D may be associated with the reference coordinate system without performing the first measuring step.

雖將感測器單元100A等安裝至支臂13,但感測器單元100A等亦可安裝於支臂13以外之其他部位。又,雖使用油壓挖掘機1作為將物體檢測感測器110A等之感測器座標系建立對應之對象裝置,但並不限定於油壓挖掘機1。例如,亦可以卸載機、油壓挖掘機1以外之建設機械、進行特定作業等之重型機械等作為對象裝置。Although the sensor unit 100A or the like is attached to the arm 13, the sensor unit 100A or the like may be attached to other portions than the arm 13. In addition, the hydraulic excavator 1 is used as a target device for associating the sensor coordinate system such as the object detecting sensor 110A, but is not limited to the hydraulic excavator 1. For example, a construction machine other than the unloader or the hydraulic excavator 1 or a heavy machine that performs a specific work or the like may be used as the target device.

例如,雖藉由感測器安裝板121A之上表面及銷123A而特定出物體檢測感測器110A之感測器座標系,但亦可基於設置於物體檢測感測器110A之表面之標記(感測器座標特定部)等特定出感測器座標系。For example, although the sensor coordinate system of the object detecting sensor 110A is specified by the upper surface of the sensor mounting plate 121A and the pin 123A, it may be based on the mark provided on the surface of the object detecting sensor 110A ( A specific sensor coordinate system such as a sensor coordinate specific portion).

雖基準標記物部200A包含3個基準標記物201A,但亦可包含4個以上之基準標記物201A。於此情形時,4個以上之基準標記物201A中至少3個以上之基準標記物201A以可藉由第2測量裝置305測量之方式配置即可。並且,可使用由第2測量裝置305所測量之3個基準標記物201A而導出基準座標系,亦可使用4個以上之基準標記物201A並藉由周知之方法而導出基準座標系。基準標記物部200B~200D亦同樣,可分別包含4個以上之基準標記物201B~201D。The reference marker portion 200A includes three reference markers 201A, but may include four or more reference markers 201A. In this case, at least three or more of the reference markers 201A of the four or more reference markers 201A may be disposed so as to be measurable by the second measuring device 305. Further, the reference coordinate system can be derived using the three reference markers 201A measured by the second measuring device 305, and the reference coordinate system can be derived by using a known method using four or more reference markers 201A. Similarly to the reference marker portions 200B to 200D, four or more reference markers 201B to 201D may be included.

於實施形態中,雖示出了基於3個校準用標記物131A導出校準用標記物座標系之例,但亦可基於4個以上之校準用標記物131A導出校準用標記物座標系。構成校準用標記物部130B之校準用標記物131B及構成校準用標記物部130C、130D之各校準用標記物亦同樣,可基於4個以上之校準用標記物分別導出校準用標記物座標系。In the embodiment, an example in which the calibration marker coordinate system is derived based on the three calibration markers 131A is shown. However, the calibration marker coordinate system may be derived based on the four or more calibration markers 131A. Similarly, each of the calibration markers 131B constituting the calibration marker portion 130B and the calibration markers constituting the calibration marker portions 130C and 130D can derive the calibration marker coordinate system based on the four or more calibration markers. .

1‧‧‧油壓挖掘機(對象裝置、具備柱狀體之裝置)1‧‧‧Hydraulic excavator (target device, device with columnar body)

10‧‧‧回轉體 10‧‧‧Revolving body

11‧‧‧移行體 11‧‧‧Transition body

12‧‧‧起重臂 12‧‧‧ lifting arm

13‧‧‧支臂(柱狀體) 13‧‧‧arm (columnar)

14‧‧‧鏟鬥 14‧‧‧Boiler

15‧‧‧支臂 15‧‧‧ Arm

20‧‧‧監視裝置 20‧‧‧Monitor

100A‧‧‧感測器單元 100A‧‧‧Sensor unit

100B‧‧‧感測器單元 100B‧‧‧Sensor unit

100C‧‧‧感測器單元 100C‧‧‧Sensor unit

100D‧‧‧感測器單元 100D‧‧‧Sensor unit

110A‧‧‧物體檢測感測器(第1物體檢測感測器) 110A‧‧‧ Object Detection Sensor (1st Object Detection Sensor)

110B‧‧‧物體檢測感測器(第2物體檢測感測器) 110B‧‧‧ Object Detection Sensor (2nd Object Detection Sensor)

110C‧‧‧物體檢測感測器 110C‧‧‧ Object Detection Sensor

110D‧‧‧物體檢測感測器 110D‧‧‧ Object Detection Sensor

120A‧‧‧安裝治具(第1安裝治具) 120A‧‧‧Installation fixture (1st installation fixture)

120B‧‧‧安裝治具(第2安裝治具) 120B‧‧‧Installation fixture (2nd installation fixture)

121A‧‧‧感測器安裝板(感測器座標特定部、第1感測器座標特定部) 121A‧‧‧Sensor mounting plate (sensor specific part, first sensor coordinate specific part)

121B‧‧‧感測器安裝板(感測器座標特定部、第2感測器座標特定部) 121B‧‧‧Sensor mounting plate (sensor specific part, second sensor coordinate specific part)

122A‧‧‧標記安裝板 122A‧‧‧ mark mounting plate

122B‧‧‧標記安裝板 122B‧‧‧Marking Mounting Plate

123A‧‧‧銷(感測器座標特定部、第1感測器座標特定部) 123A‧‧‧ Pin (sensor specific part, first sensor coordinate specific part)

123B‧‧‧銷(感測器座標特定部、第2感測器座標特定部) 123B‧‧ ‧ pin (sensor specific part, second sensor coordinate specific part)

130A‧‧‧校準用標記物部 130A‧‧‧Marking parts for calibration

130B‧‧‧校準用標記物部 130B‧‧‧ Calibration Marking Department

130C‧‧‧校準用標記物部 130C‧‧‧Marking part for calibration

130D‧‧‧校準用標記物部 130D‧‧‧ Calibration Marking Department

131A‧‧‧校準用標記物(第1校準用標記物) 131A‧‧ ‧ calibration mark (first calibration mark)

131B‧‧‧校準用標記物(第2校準用標記物) 131B‧‧ ‧ calibration mark (second calibration mark)

200‧‧‧基準標記物部 200‧‧‧ benchmark mark department

200A‧‧‧基準標記物部 200A‧‧ Reference Marking Department

200B‧‧‧基準標記物部 200B‧‧‧ benchmark mark department

200C‧‧‧基準標記物部 200C‧‧‧ benchmark mark

200D‧‧‧基準標記物部 200D‧‧‧ benchmark mark department

201‧‧‧基準標記物 201‧‧‧ benchmark mark

201A‧‧‧基準標記物 201A‧‧‧ benchmark mark

201B‧‧‧基準標記物 201B‧‧‧ benchmark mark

201C‧‧‧基準標記物 201C‧‧‧ benchmark mark

201D‧‧‧基準標記物 201D‧‧‧ benchmark mark

300‧‧‧座標對應建立裝置 300‧‧‧ coordinates corresponding to the establishment of the device

301‧‧‧第1對應建立部 301‧‧‧1st Correspondence Department

302‧‧‧第2對應建立部 302‧‧‧2nd Correspondence Establishment Department

303‧‧‧整合部 303‧‧‧ Integration Department

304‧‧‧第1測量裝置 304‧‧‧1st measuring device

305‧‧‧第2測量裝置(測量裝置) 305‧‧‧2nd measuring device (measuring device)

S101‧‧‧第1測量步驟 S101‧‧‧1st measurement step

S102‧‧‧第1對應建立步驟 S102‧‧‧1st correspondence establishment step

S103‧‧‧第2測量步驟 S103‧‧‧2nd measurement step

S104‧‧‧第2對應建立步驟 S104‧‧‧2nd correspondence establishment step

S105‧‧‧整合步驟 S105‧‧‧ integration steps

圖1係表示實施形態之油壓挖掘機之概略構成之圖。Fig. 1 is a view showing a schematic configuration of a hydraulic excavator according to an embodiment.

圖2係沿圖1之II-II線之剖視圖。 Figure 2 is a cross-sectional view taken along line II-II of Figure 1.

圖3(a)~圖3(d)係模式性表示安裝於支臂之外周面之感測器單元及基準標記物之圖。 3(a) to 3(d) are diagrams schematically showing the sensor unit and the reference mark attached to the outer peripheral surface of the arm.

圖4(a)係表示感測器單元之上表面之立體圖。圖4(b)係表示感測器單元之下表面之立體圖。圖4(c)係表示物體檢測感測器之安裝面之立體圖。 Fig. 4(a) is a perspective view showing the upper surface of the sensor unit. Figure 4(b) is a perspective view showing the lower surface of the sensor unit. Fig. 4 (c) is a perspective view showing a mounting surface of the object detecting sensor.

圖5係表示座標對應建立裝置周圍之構成之方塊圖。 Fig. 5 is a block diagram showing the configuration of coordinates around the building device.

圖6係表示座標系之對應關係之概念圖。 Fig. 6 is a conceptual diagram showing the correspondence relationship between coordinate systems.

圖7係表示座標系整合方法之處理流程之流程圖。 Fig. 7 is a flow chart showing the processing flow of the coordinate system integration method.

圖8係表示基準標記物部之其他例之側視圖。 Fig. 8 is a side view showing another example of the reference mark portion.

Claims (6)

一種座標系整合方法,其係將安裝於對象裝置並檢測上述對象裝置周圍之物體之物體檢測感測器之感測器座標系與對上述對象裝置預先設定之基準座標系建立對應,且包括: 測量步驟,其係藉由測量裝置對設置於將上述物體檢測感測器安裝至上述對象裝置之安裝治具並定義上述感測器座標系之3個以上之校準用標記物、及設置於上述對象裝置並定義上述基準座標系之3個以上之基準標記物進行測量;及 整合步驟,其係基於上述測量步驟之測量結果,將由上述校準用標記物所定義之上述感測器座標系與由上述基準標記物所定義之上述基準座標系建立對應。A method for integrating a coordinate system, wherein a sensor coordinate system of an object detection sensor mounted on an object device and detecting an object around the target device is associated with a reference coordinate system preset to the target device, and includes: a measuring step of arranging three or more calibration markers provided on the mounting fixture that mounts the object detecting sensor to the target device and defining the sensor coordinate system by the measuring device, and The target device defines three or more reference markers of the above reference coordinate system for measurement; and And an integration step of determining, based on the measurement result of the measuring step, the sensor coordinate system defined by the calibration marker and the reference coordinate system defined by the reference marker. 如請求項1之座標系整合方法,其中上述物體檢測感測器包括第1物體檢測感測器、及第2物體檢測感測器; 上述安裝治具包括將上述第1物體檢測感測器安裝至上述對象裝置之第1安裝治具、及將上述第2物體檢測感測器安裝至上述對象裝置之第2安裝治具; 上述校準用標記物包括設置於上述第1安裝治具並定義上述第1物體檢測感測器之第1感測器座標系之3個以上之第1校準用標記物、及設置於上述第2安裝治具並定義上述第2物體檢測感測器之第2感測器座標系之3個以上之第2校準用標記物; 上述基準標記物係於上述對象裝置設置3個以上,上述測量裝置對3個以上之上述第1校準用標記物進行測量時,至少3個以上之上述基準標記物朝向與上述第1校準用標記物一起被測量之方向,上述測量裝置對3個以上之上述第2校準用標記物進行測量時,至少3個以上之上述基準標記物朝向與上述第2校準用標記物一起被測量之方向; 於上述測量步驟中,藉由上述測量裝置對3個以上之上述第1校準用標記物及3個以上之基準標記物進行測量,並藉由上述測量裝置對3個以上之上述第2校準用標記物及3個以上之基準標記物進行測量; 於上述整合步驟中,將由上述第1校準用標記物所定義之上述第1感測器座標系與上述基準座標系建立對應,並將由上述第2校準用標記物所定義之上述第2感測器座標系與上述基準座標系建立對應。The coordinate system integration method of claim 1, wherein the object detection sensor comprises a first object detection sensor and a second object detection sensor; The mounting jig includes a first mounting jig that mounts the first object detecting sensor to the target device, and a second mounting jig that attaches the second object detecting sensor to the target device; The calibration marker includes three or more first calibration markers provided in the first attachment jig and defining a first sensor coordinate system of the first object detection sensor, and is provided in the second Installing the jig and defining three or more second calibration markers of the second sensor coordinate system of the second object detecting sensor; The reference marker is provided in three or more of the target devices, and when the measuring device measures three or more of the first calibration markers, at least three or more of the reference markers are oriented toward the first calibration marker. When the object is measured together, when the measuring device measures three or more of the second calibration markers, at least three or more of the reference markers are oriented in a direction to be measured together with the second calibration marker; In the measuring step, three or more of the first calibration markers and three or more reference markers are measured by the measuring device, and three or more of the second calibrations are used by the measuring device. The marker and more than three reference markers are measured; In the integration step, the first sensor coordinate system defined by the first calibration marker is associated with the reference coordinate system, and the second sensing defined by the second calibration marker is The coordinate system of the device is associated with the above reference coordinate system. 一種座標系整合方法,其係將安裝於對象裝置並檢測上述對象裝置周圍之物體之物體檢測感測器之感測器座標系與對上述對象裝置預先設定之基準座標系建立對應,且包括: 第1測量步驟,其係藉由第1測量裝置對設於將上述物體檢測感測器安裝至上述對象裝置之安裝治具或上述物體檢測感測器並定義上述感測器座標系之感測器座標特定部、及設置於上述安裝治具並定義校準用標記物座標系之3個以上之校準用標記物進行測量; 第1對應建立步驟,其係基於上述第1測量步驟之測量結果,將由上述感測器座標特定部所定義之上述感測器座標系與由上述校準用標記物所定義之校準用標記物座標系建立對應; 第2測量步驟,其係藉由第2測量裝置對3個以上之上述校準用標記物、及設置於上述對象裝置並定義上述基準座標系之3個以上之基準標記物進行測量; 第2對應建立步驟,其係基於上述第2測量步驟之測量結果,將由上述校準用標記物所定義之上述校準用標記物座標系與由上述基準標記物所定義之上述基準座標系建立對應;及 整合步驟,其係基於上述第1對應建立步驟中建立了對應之上述感測器座標系及上述校準用標記物座標系、以及上述第2對應建立步驟中建立了對應之上述校準用標記物座標系及上述基準座標系,將上述感測器座標系與上述基準座標系建立對應。A method for integrating a coordinate system, wherein a sensor coordinate system of an object detection sensor mounted on an object device and detecting an object around the target device is associated with a reference coordinate system preset to the target device, and includes: a first measuring step of sensing, by the first measuring device, a mounting jig or the object detecting sensor provided to mount the object detecting sensor to the target device and defining the sensor coordinate system a specific portion of the device and three or more calibration markers disposed on the mounting fixture and defining a calibration marker coordinate system; a first correspondence establishing step of, based on the measurement result of the first measuring step, the sensor coordinate system defined by the sensor coordinate specifying unit and the calibration mark coordinate defined by the calibration mark Establish a correspondence; a second measuring step of measuring three or more of the calibration markers by the second measuring device and three or more reference markers provided in the target device and defining the reference coordinate system; a second correspondence establishing step of correlating the calibration marker coordinate system defined by the calibration marker with the reference coordinate system defined by the reference marker based on a measurement result of the second measurement step; and And an integration step of the calibration target coordinate system and the calibration marker coordinate system established in the first correspondence establishing step, and the calibration marker coordinates established in the second correspondence establishing step And the reference coordinate system, wherein the sensor coordinate system is associated with the reference coordinate system. 如請求項3之座標系整合方法,其中上述物體檢測感測器包括第1物體檢測感測器、及第2物體檢測感測器; 上述安裝治具包括將上述第1物體檢測感測器安裝至上述對象裝置之第1安裝治具、及將上述第2物體檢測感測器安裝至上述對象裝置之第2安裝治具; 上述感測器座標特定部包括設於上述第1安裝治具或上述第1物體檢測感測器並定義上述第1物體檢測感測器之第1感測器座標系之第1感測器座標特定部、及設於上述第2安裝治具或上述第2物體檢測感測器並定義上述第2物體檢測感測器之第2感測器座標系之第2感測器座標特定部; 上述校準用標記物包括設置於上述第1安裝治具並定義第1校準用標記物座標系之3個以上之第1校準用標記物、及設置於上述第2安裝治具並定義第2校準用標記物座標系之3個以上之第2校準用標記物; 上述基準標記物係於上述對象裝置設置3個以上,上述第2測量裝置對3個以上之上述第1校準用標記物進行測量時,至少3個以上之上述基準標記物朝向與上述第1校準用標記物一起被測量之方向,上述第2測量裝置對3個以上之上述第2校準用標記物進行測量時,至少3個以上之上述基準標記物朝向與上述第2校準用標記物一起被測量之方向; 於上述第1測量步驟中,藉由上述第1測量裝置對上述第1感測器座標特定部及3個以上之上述第1校準用標記物進行測量,並藉由上述第1測量裝置對上述第2感測器座標特定部及3個以上之上述第2校準用標記物進行測量; 於上述第1對應建立步驟中,將由上述第1感測器座標特定部所定義之上述第1感測器座標系與由上述第1校準用標記物所定義之上述第1校準用標記物座標系建立對應,並將由上述第2感測器座標特定部所定義之上述第2感測器座標系與由上述第2校準用標記物所定義之上述第2校準用標記物座標系建立對應; 於上述第2測量步驟中,藉由上述第2測量裝置對3個以上之上述第1校準用標記物及3個以上之上述基準標記物進行測量,並藉由上述第2測量裝置對3個以上之上述第2校準用標記物及3個以上之上述基準標記物進行測量; 於上述第2對應建立步驟中,將由上述第1校準用標記物所定義之上述第1校準用標記物座標系與由上述基準標記物所定義之上述基準座標系建立對應,並將由上述第2校準用標記物所定義之上述第2校準用標記物座標系與由上述基準標記物所定義之上述基準座標系建立對應; 於上述整合步驟中, 基於上述第1對應建立步驟中建立了對應之上述第1感測器座標系及上述第1校準用標記物座標系、以及第2對應建立步驟中建立了對應之上述第1校準用標記物座標系及上述基準座標系,將上述第1感測器座標系與上述基準座標系建立對應,並 基於上述第1對應建立步驟中建立了對應之上述第2感測器座標系及上述第2校準用標記物座標系、以及第2對應建立步驟中建立了對應之上述第2校準用標記物座標系及上述基準座標系,將上述第2感測器座標系與上述基準座標系建立對應。The coordinate system integration method of claim 3, wherein the object detection sensor comprises a first object detection sensor and a second object detection sensor; The mounting jig includes a first mounting jig that mounts the first object detecting sensor to the target device, and a second mounting jig that attaches the second object detecting sensor to the target device; The sensor coordinate specifying unit includes a first sensor coordinate set on the first mounting jig or the first object detecting sensor and defining a first sensor coordinate system of the first object detecting sensor a specific portion and a second sensor coordinate specifying portion provided in the second mounting jig or the second object detecting sensor and defining a second sensor coordinate system of the second object detecting sensor; The calibration label includes three or more first calibration markers that are provided in the first mounting fixture and define a first calibration marker coordinate system, and are provided in the second mounting fixture and define a second calibration 3 or more second calibration markers of the standard marker coordinate system; The reference marker is provided in three or more of the target devices, and when the second measuring device measures three or more of the first calibration markers, at least three or more of the reference markers are oriented toward the first school. When the second measuring device measures three or more of the second calibration markers, at least three or more of the reference markers are oriented together with the second calibration marker. Direction of measurement; In the first measuring step, the first measuring device coordinate portion and the three or more first calibration markers are measured by the first measuring device, and the first measuring device pairs the first measuring device Measuring the second sensor coordinate specific portion and three or more of the second calibration markers; In the first correspondence establishing step, the first sensor coordinate system defined by the first sensor coordinate specifying unit and the first calibration mark coordinate defined by the first calibration mark Correspondingly, the second sensor coordinate system defined by the second sensor coordinate specifying unit is associated with the second calibration mark coordinate system defined by the second calibration mark; In the second measuring step, three or more of the first calibration markers and three or more of the reference markers are measured by the second measuring device, and three of the second measuring devices are used by the second measuring device. Measuring the above second calibration marker and three or more of the above reference markers; In the second correspondence establishing step, the first calibration marker coordinate system defined by the first calibration marker is associated with the reference coordinate system defined by the reference marker, and the second coordinate The second calibration marker coordinate system defined by the calibration marker is associated with the reference coordinate system defined by the reference marker; In the above integration step, And the first calibration marker coordinate system and the first calibration marker coordinate system established in the first correspondence establishing step, and the first calibration marker coordinates established in the second correspondence establishing step. And the reference coordinate system, wherein the first sensor coordinate system is associated with the reference coordinate system, and The second calibration marker coordinate system and the second calibration marker coordinate system established in the first correspondence establishing step, and the second calibration marker coordinates corresponding to the second correspondence establishment step are established. And the reference coordinate system, wherein the second sensor coordinate system is associated with the reference coordinate system. 如請求項1至4中任一項之座標系整合方法,其中上述物體檢測感測器係藉由向上述對象裝置之周圍照射複數束雷射光而檢測物體者。The coordinate system integration method according to any one of claims 1 to 4, wherein the object detecting sensor detects the object by irradiating a plurality of beams of laser light to the periphery of the object device. 一種具備柱狀體之裝置,其具備: 可移動柱狀體; 3個以上之基準標記物,其等係設於上述柱狀體,並定義對上述柱狀體預先設定之基準座標系; 物體檢測感測器,其係與上述柱狀體一起移動;及 3個以上之校準用標記物,其等係設於上述物體檢測感測器或安裝於上述物體檢測感測器之安裝治具,並定義上述物體檢測感測器之感測器座標系;且 3個以上之上述基準標記物及3個以上之上述校準用標記物係以可自1個地點視認之方式設置。A device having a columnar body, comprising: Movable columnar body; 3 or more reference markers, which are disposed in the columnar body, and define a reference coordinate system preset for the columnar body; An object detecting sensor that moves together with the columnar body; and 3 or more calibration markers, which are disposed on the object detection sensor or the mounting fixture mounted on the object detection sensor, and define a sensor coordinate system of the object detection sensor; Three or more of the above-mentioned reference markers and three or more of the above-described calibration markers are provided to be viewable from one location.
TW108104205A 2018-02-02 2019-02-01 Coordinate system integration method and device with columnar body TWI702851B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-017053 2018-02-02
JP2018017053 2018-02-02

Publications (2)

Publication Number Publication Date
TW201937920A true TW201937920A (en) 2019-09-16
TWI702851B TWI702851B (en) 2020-08-21

Family

ID=67478111

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104205A TWI702851B (en) 2018-02-02 2019-02-01 Coordinate system integration method and device with columnar body

Country Status (3)

Country Link
JP (1) JP6912604B2 (en)
TW (1) TWI702851B (en)
WO (1) WO2019151238A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764511A (en) * 1995-06-20 1998-06-09 Caterpillar Inc. System and method for controlling slope of cut of work implement
JP4284765B2 (en) * 1999-07-27 2009-06-24 株式会社豊田中央研究所 Robot hand position measuring device
JP2002107128A (en) * 2000-10-02 2002-04-10 Sanyo Electric Co Ltd Shape-measuring apparatus
JP2003282238A (en) * 2002-03-25 2003-10-03 Pioneer Electronic Corp Organic electroluminescence display panel and its manufacturing method
KR101477481B1 (en) * 2007-03-05 2014-12-30 이노스 오토메이션스소프트웨어 게엠베하 Determining positions
JP2009199247A (en) * 2008-02-20 2009-09-03 Fuji Xerox Co Ltd Object recognition apparatus, indicating device and program
JP2010025759A (en) * 2008-07-18 2010-02-04 Fuji Xerox Co Ltd Position measuring system
DE102008062624A1 (en) * 2008-12-17 2010-06-24 Kuka Roboter Gmbh Hand-held device and method for detecting the spatial position of an operating point of a manipulator
JP5843531B2 (en) * 2010-09-27 2016-01-13 株式会社ミツトヨ Coordinate measuring head unit and coordinate measuring machine
US9168654B2 (en) * 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
JP2012233353A (en) * 2011-05-02 2012-11-29 Komatsu Ltd Calibration system for hydraulic shovel and calibration method for the hydraulic shovel
WO2015089403A1 (en) * 2013-12-12 2015-06-18 The Regents Of The University Of Michigan Estimating three-dimensional position and orientation of articulated machine using one or more image-capturing devices and one or more markers
JP5736622B1 (en) * 2014-05-01 2015-06-17 機械設計中畑株式会社 Detection device and operation control of manipulator equipped with the device
JP2016048172A (en) * 2014-08-27 2016-04-07 株式会社トプコン Image processor, image processing method, and program
WO2016044658A1 (en) * 2014-09-19 2016-03-24 Hexagon Metrology, Inc. Multi-mode portable coordinate measuring machine
JP6126067B2 (en) * 2014-11-28 2017-05-10 ファナック株式会社 Collaborative system with machine tool and robot

Also Published As

Publication number Publication date
WO2019151238A1 (en) 2019-08-08
JP6912604B2 (en) 2021-08-04
TWI702851B (en) 2020-08-21
JPWO2019151238A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
EP2381214B1 (en) Optical measurement system
US8812257B2 (en) Method for determining a virtual tool center point
CN101322071B (en) System for projecting flaws and inspection locations and associated method
AU711728B2 (en) Method and apparatus for determining the alignment of motor vehicle wheels
CN107209003B (en) Laser measuring instrument for robot calibration and monitoring
US9996931B2 (en) Method for calibrating camera measurement system
NO174025B (en) POINT MEASUREMENT OF SPACIAL COORDINATES
WO2012041687A1 (en) A method, means, and system for acquiring location parameters
KR20010113704A (en) Method and apparatus of automatically identifying faults in a machine vision measuring system
US20090143670A1 (en) Optical tracking cas system
EP3711908B1 (en) Calibration device for robot arm
JP2001264062A (en) Method and device for calibrating contactless gauging sensor to external coordinate system
CN208968469U (en) Industrial robot repetitive positioning accuracy analysis system
CN106168468A (en) Hole detecting system and method
JPH1163952A (en) Three-dimensional shape measuring target and method for measuring inclination of collimation face
US7461463B1 (en) Eccentricity gauge for wire and cable and method for measuring concentricity
TW201937920A (en) Coordinate system integration method, and device provided with columnar body
CN211626384U (en) Automobile detection non-common-view-field camera global calibration system based on surface light field
CN112082482A (en) Visual positioning method for object with edge characteristic only, application and precision evaluation method
JPH02194302A (en) Method for calibrating coordinate system of visual robot and displacement measuring instrument for coordinate calibration used for the method
US20060271332A1 (en) Method for calibrating a non-contact sensor using a robot
US11162776B2 (en) Measuring device
FR2835603A1 (en) Optical measurement of displacement and or deformation of an object, e.g. for civil engineering and industrial use, whereby a simple camera is used in conjunction with a calibrated target fixed to the object to be monitored
JPH1089957A (en) Three-dimensional measuring method for structure member
JPH0259922B2 (en)