TW201937896A - Prioritizing colliding transmissions in LTE and ultra-low latency LTE communications - Google Patents

Prioritizing colliding transmissions in LTE and ultra-low latency LTE communications Download PDF

Info

Publication number
TW201937896A
TW201937896A TW108121727A TW108121727A TW201937896A TW 201937896 A TW201937896 A TW 201937896A TW 108121727 A TW108121727 A TW 108121727A TW 108121727 A TW108121727 A TW 108121727A TW 201937896 A TW201937896 A TW 201937896A
Authority
TW
Taiwan
Prior art keywords
resource set
resource
communication
tti
enb
Prior art date
Application number
TW108121727A
Other languages
Chinese (zh)
Other versions
TWI687083B (en
Inventor
陳萬喜
區曼 艾文 派特爾
彼德 葛爾
豪 徐
永斌 魏
曼達凡 史里尼凡森 凡傑佩葉
艾利斯山德 丹恩傑佛克
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201937896A publication Critical patent/TW201937896A/en
Application granted granted Critical
Publication of TWI687083B publication Critical patent/TWI687083B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Abstract

Various aspects described herein relate to receiving a first communication over a first set of resources based on a first transmission time interval (TTI), receiving a second communication over a second set of resources based on a second TTI, where the second TTI is smaller than the first TTI, and where the second set of resources overlap the first set of resources defining a common set of resources, and determining whether to prioritize receiving the first communication or the second communication in decoding communications received over the common set of resources.

Description

於長期演進及超低延遲長期演進通信中優先權化碰撞傳輸Prioritized collision transmission in long-term evolution and ultra-low-latency long-term evolution communications

本文中所描述的為通常係關於通信系統的態樣,且更明確而言,係關於優先權化無線技術之通信。What is described in this article is generally about the communication system, and more specifically, about the communication of priority wireless technology.

無線通信網路經廣泛地部署以提供各種電信服務,諸如電話、視訊、資料、訊息傳遞及廣播。典型的無線通信系統可採用多重存取技術,該等多重存取技術能夠藉由共用可用的系統資源(例如,頻寬、傳輸功率)來支援與多個使用者之通信。此等多重存取技術之實例包括分碼多重存取(CDMA)系統、分時多重存取(TDMA)系統、分頻多重存取(FDMA)系統、正交分頻多重存取(OFDMA)系統、單載波分頻多重存取(SC-FDMA)系統及分時同步分碼多重存取(TD-SCDMA)系統。
各種電信標準中已採用此等多重存取技術以提供使不同無線器件能夠在城市、國家、地區及甚至全球層面上通信之共同協定。電信標準之實例為長期演進(LTE)。LTE為由第三代合作夥伴計劃(3GPP)頒佈之全球行動電信系統(UMTS)行動標準之增強集合。其經設計以藉由改良頻譜效率而更好地支援行動寬頻網際網路存取,降低成本,改良服務,利用新頻譜,及使用下行鏈路(DL)上之OFDMA、上行鏈路(UL)上之SC-FDMA及多輸入多輸出(MIMO)天線技術與其他開放標準更好地整合。然而,隨著對行動寬頻存取之需求繼續增加,可需要LTE技術之進一步改良。較佳地,此等改良應適用於其他多重存取技術及使用此等技術之電信標準。
在採用傳統LTE之無線通信系統中,由特定eNodeB伺服的多個UE可為用於使用約1毫秒子訊框之傳輸時間間隔(TTI)經由一或多個頻道與eNodeB通信的經排程資源。由於UE能力及對頻寬之要求增強,因此可能需要減少通信中之延遲。
Wireless communication networks are widely deployed to provide various telecommunications services such as telephone, video, data, messaging and broadcasting. A typical wireless communication system may employ multiple access technologies, which can support communication with multiple users by sharing available system resources (eg, bandwidth, transmission power). Examples of such multiple access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems 1, single carrier frequency division multiple access (SC-FDMA) system and time division synchronous code division multiple access (TD-SCDMA) system.
These multiple access technologies have been adopted in various telecommunication standards to provide common protocols that enable different wireless devices to communicate at the city, national, regional, and even global levels. An example of a telecommunications standard is Long Term Evolution (LTE). LTE is an enhanced set of Global Mobile Telecommunications System (UMTS) mobile standards promulgated by the 3rd Generation Partnership Project (3GPP). It is designed to better support mobile broadband Internet access by improving spectrum efficiency, reducing costs, improving services, using new spectrum, and using OFDMA on the downlink (DL), uplink (UL) SC-FDMA and Multiple Input Multiple Output (MIMO) antenna technology are better integrated with other open standards. However, as the demand for mobile broadband access continues to increase, further improvements in LTE technology may be required. Preferably, these improvements should be applicable to other multiple access technologies and telecommunication standards using these technologies.
In a wireless communication system employing traditional LTE, multiple UEs served by a specific eNodeB may be scheduled resources for communicating with the eNodeB via one or more channels using a transmission time interval (TTI) of about 1 millisecond sub-frame. . Due to the increased UE capability and bandwidth requirements, it may be necessary to reduce delays in communication.

以下呈現一或多個態樣之簡化概述以便提供對此等態樣之基本理解。此概述並非所有涵蓋態樣之擴展綜述,且既不意欲識別所有態樣之關鍵或重要元素,亦不意欲描繪任何或所有態樣之範疇。此概述之唯一目的在於以簡化形式呈現一或多個態樣之一些概念,以作為隨後呈現之更詳細描述的序言。
根據一實例,提供一種無線通信之方法。該方法包括接收一第一資源集合上的基於一第一傳輸時間間隔(TTI)的一第一通信,及接收一第二資源集合上的基於一第二TTI的一第二通信。該第二TTI小於該第一TTI,且該第二資源集合重疊該第一資源集合,從而界定一共同資源集合。該方法亦包括在解碼在該共同資源集合上接收之通信時判定是否優先權化接收該第一通信或該第二通信。
在其他態樣中,提供一種用於無線通信之使用者設備。該使用者設備包括一收發器、經由一匯流排與該收發器通信耦接以用於在一無線網路中傳達信號之至少一個處理器,及經由該匯流排與該至少一個處理器及/或該收發器通信耦接之一記憶體。該至少一個處理器及該記憶體可操作以經由該收發器接收一第一資源集合上的基於一第一TTI的一第一通信,及經由該收發器接收一第二資源集合上的基於一第二TTI的一第二通信。該第二TTI小於該第一TTI,且該第二資源集合重疊該第一資源集合,從而界定一共同資源集合。該至少一個處理器及該記憶體亦可操作以在解碼在該共同資源集合上接收之通信時判定是否優先權化接收該第一通信或該第二通信。
在另一實例中,提供一種無線通信之方法。該方法包括分配一第一資源集合以用於傳輸根據一第一TTI之一第一通信,及分配一第二資源集合以用於傳輸根據一第二TTI之一第二通信。該第二TTI小於該第一TTI。該方法亦包括在一下行鏈路控制頻道上傳輸對應於該第一資源集合之一第一資源授與,及在該下行鏈路控制頻道上傳輸對應於該第二資源集合之一第二資源授與。
在其他態樣中,提供一種用於無線通信之演進型節點B (eNB)。該eNB包括一收發器、經由一匯流排與該收發器通信耦接以用於在一無線網路中傳達信號之至少一個處理器及經由該匯流排與該至少一個處理器及/或該收發器通信耦接之一記憶體。該至少一個處理器及該記憶體可操作以分配一第一資源集合以用於傳輸根據一第一TTI之一第一通信,及分配一第二資源集合以用於傳輸根據一第二TTI之一第二通信。該第二TTI小於該第一TTI。該至少一個處理器及該記憶體亦可操作以經由該收發器在一下行鏈路控制頻道上傳輸對應於該第一資源集合之一第一資源授與,及經由該收發器在該下行鏈路控制頻道上傳輸對應於該第二資源集合之一第二資源授與。
為實現前述及相關目的,一或多個態樣包含在下文中充分描述且在申請專利範圍中特別指出的特徵。以下描述及隨附圖式詳細闡述一或多個態樣之某些說明性特徵。然而,此等特徵僅指示可採用各種態樣原理之各種方式中之少許,且此描述意欲包括所有此類態樣及其等效物。
A simplified overview of one or more aspects is presented below to provide a basic understanding of these aspects. This summary is not an extensive overview of all aspects, and it is neither intended to identify key or important elements of all aspects nor to describe the scope of any or all aspects. The sole purpose of this summary is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
According to an example, a method for wireless communication is provided. The method includes receiving a first communication based on a first transmission time interval (TTI) on a first resource set, and receiving a second communication based on a second TTI on a second resource set. The second TTI is smaller than the first TTI, and the second resource set overlaps the first resource set, thereby defining a common resource set. The method also includes determining whether to prioritize receiving the first communication or the second communication when decoding a communication received on the common resource set.
In other aspects, a user equipment for wireless communication is provided. The user equipment includes a transceiver, at least one processor communicatively coupled to the transceiver via a bus for communicating signals in a wireless network, and via the bus to the at least one processor and / Or the transceiver is communicatively coupled to a memory. The at least one processor and the memory are operable to receive a first communication based on a first TTI on a first resource set via the transceiver, and receive a communication based on a first TTI on a second resource set via the transceiver. A second communication of the second TTI. The second TTI is smaller than the first TTI, and the second resource set overlaps the first resource set, thereby defining a common resource set. The at least one processor and the memory are also operable to determine whether to prioritize receiving the first communication or the second communication when decoding a communication received on the common resource set.
In another example, a method of wireless communication is provided. The method includes allocating a first resource set for transmitting a first communication according to a first TTI, and allocating a second resource set for transmitting a second communication according to a second TTI. The second TTI is smaller than the first TTI. The method also includes transmitting a first resource grant corresponding to one of the first resource sets on a downlink control channel, and transmitting a second resource corresponding to one of the second resource sets on the downlink control channel. Granted.
In other aspects, an evolved Node B (eNB) for wireless communication is provided. The eNB includes a transceiver, at least one processor communicatively coupled to the transceiver via a bus for communicating signals in a wireless network, and the at least one processor and / or the transceiver via the bus The device is communicatively coupled to one of the memories. The at least one processor and the memory are operable to allocate a first resource set for transmitting a first communication according to a first TTI, and allocate a second resource set for transmitting a first communication according to a second TTI. A second communication. The second TTI is smaller than the first TTI. The at least one processor and the memory are also operable to transmit a first resource grant corresponding to one of the first resource set on a downlink control channel via the transceiver, and on the downlink via the transceiver A second resource grant corresponding to one of the second resource sets is transmitted on the channel control channel.
To achieve the foregoing and related objectives, one or more aspects include features described fully below and specifically pointed out in the scope of the patent application. The following description and the accompanying drawings detail certain illustrative features of one or more aspects. However, these features indicate only a few of the various ways in which the principles of various aspects can be employed, and this description is intended to include all such aspects and their equivalents.

根據 35 U.S.C. §119 主張優先權
本專利申請案主張2014年12月11日申請的題為「於長期演進及超低延遲長期演進通信中優先權化碰撞傳輸(PRIORITIZING COLLIDING TRANSMISSIONS IN LTE AND ULTRA-LOW LATENCY LTE COMMUNICATIONS)」之臨時申請案第62/090,826號的優先權,該案讓與給本受讓人且藉此明確地以引用的方式併入本文中。
下文結合附圖闡述之詳細描述意欲作為各種組態之描述,且不欲表示可實踐本文中所描述之概念的僅有組態。出於提供對各種概念之透徹理解之目的,詳細描述包括具體細節。然而,熟習此項技術者而言將顯而易見可在無此等具體細節之情況下實踐此等概念。在一些情況下,熟知結構及組件係以方塊圖形式展示以便避免混淆此等概念。
現將參考各種裝置及方法來呈現電信系統之若干態樣。此等裝置及方法將藉由各種區塊、模組、組件、電路、步驟、處理程序、演算法等(共同地被稱作「元素」)在以下詳細描述中予以描述且在附圖中予以說明。此等元素可使用電子硬體、電腦軟體或其任何組合來實施。是否將此類元素實施為硬體或軟體取決於特定應用及強加於整個系統之設計約束。
借助於實例,元件或元件之任何部分或元件之任何組合可用包括一或多個處理器之「處理系統」來實施。處理器之實例包括微處理器、微控制器、數位信號處理器(DSP)、場可程式化閘陣列(FPGA)、可程式化邏輯器件(PLD)、狀態機、閘控邏輯、離散硬體電路及經組態以執行貫穿本發明所描述之各種功能性的其他合適硬體。處理系統中之一或多個處理器可執行軟體。軟體應廣泛地解釋為意謂指令、指令集、代碼、碼段、程式碼、程式、子程式、軟體模組、應用程式、軟體應用程式、軟體套件、常式、次常式、物件、可執行文件、執行線緒、程序、功能等,而不管其是否被稱作軟體、韌體、中間體、微碼、硬體描述語言或其他者。
因此,在一或多個態樣中,所描述之功能可在硬體、軟體、韌體或其任何組合中實施。若以軟體實施,則功能可儲存於電腦可讀媒體上或作為一或多個指令或代碼而編碼於電腦可讀媒體上。電腦可讀媒體包括電腦儲存媒體。儲存媒體可為可由電腦存取之任何可用媒體。借助於實例而非限制,此電腦可讀媒體可包含RAM、ROM、EEPROM、CD-ROM或其他光碟儲存器件、磁碟儲存器件或其他磁性儲存器件,或可用以攜載或儲存呈指令或資料結構之形式之所要程式碼且可由電腦存取的任何其他媒體。如本文所使用之磁碟及光碟包括緊密光碟(CD)、雷射光碟、光學光碟、數位化通用光碟(DVD)及軟性磁碟,其中磁碟通常以磁性方式再生資料,而光碟用雷射以光學方式再生資料。以上之組合亦應包括於電腦可讀媒體之範疇內。
本文中所描述的係關於優先權化對應於傳統通信技術及超低延遲(ULL)通信技術之碰撞通信的各種態樣,其中該等通信技術可基於不同長度傳輸時間間隔(TTI) (例如,ULL通信技術具有比傳統通信技術短的TTI持續時間)。舉例而言,傳統LTE技術可利用具有在LTE中定義的子訊框之持續時間的TTI,其中超低延遲(ULL) LTE技術可基於具有小於子訊框之持續時間的TTI (例如,一個符號、兩個符號、子訊框時槽等)。就此而言,通信中之較低延遲係藉由更短、更頻繁之TTI獲得。在一些情況下,傳統技術可為不同於傳統LTE技術之傳統蜂巢式技術。網路可支援類似頻帶上的傳統及ULL通信技術兩者,且因此可潛在地排程碰撞的下行鏈路資源,一或多個使用者設備(UE)在該等碰撞的下行鏈路資源上自網路接收信號。舉例而言,下行鏈路資源之碰撞可部分地由與ULL相關聯的縮短TTI引起,因為與傳統通信技術相比可更頻繁地分配資源,且經排程用於傳統通信技術傳輸的資源亦可經至少部分地排程以用於ULL通信技術傳輸以滿足ULL通信技術中的排程需求。應瞭解,LTE及ULL LTE在本文中分別用作傳統及ULL通信技術的實例,但應瞭解,前述概念可應用於其中一通信技術具有比另一通信技術更短TTI的通信技術之實質上任何組合。
在一個實例中,UE可基於在UE中組態的一或多個規則而優先權化在通信技術(例如,傳統LTE及ULL LTE資源)上碰撞的通信之接收,該一或多個規則可至少部分地基於資源上之通信的類型。舉例而言,在傳統技術通信包括廣播資料、解調變參考信號(DM-RS)及/或其類似者之情況下,UE可在重疊的相關資源中相對於ULL技術通信優先權化傳統技術通信之接收。在另一實例中,支援傳統及ULL技術且傳輸相關聯通信的網路可利用資源組態UE,且可避免重疊的傳統及ULL技術資源及/或可以其他方式指導UE在特定重疊資源上優先權化傳統或ULL技術通信。
首先參看圖1,圖式說明根據本文中所描述的態樣之無線通信系統100之實例。無線通信系統100包括多個存取點(例如,基地台、eNB或WLAN存取點) 105、許多使用者設備(UE) 115,及核心網路130。存取點105可包括經組態以使用傳統通信技術及基於較小TTI之ULL通信技術(例如,傳統LTE及ULL LTE)來排程UE 115且與其通信的排程組件302。類似地,UE 115中之一或多者可包括經組態以優先權化傳統通信技術(例如,LTE)及ULL通信技術(例如,ULL LTE)之通信的通信組件361。存取點105中之一些可在基地台控制器(未圖示)的控制下與UE 115通信,基地台控制器在各種實例中可為核心網路130或某些存取點105(例如,基地台或eNB)之部分。存取點105可經由骨幹網路鏈路132與核心網路130通信控制資訊及/或使用者資料。在實例中,存取點105可經由骨幹網路鏈路134(其可為有線或無線通信鏈路)彼此直接或間接地通信。無線通信系統100可支援多個載波(不同頻率之波形信號)上之操作。多載波傳輸器可在多個載波上同時傳輸經調變信號。舉例而言,每一通信鏈路125可為根據上文所描述之各種無線電技術調變的多載波信號。每一經調變信號可在不同載波上發送且可攜載控制資訊(例如,參考信號、控制頻道等)、額外負擔資訊、資料等。
在一些實例中,無線通信系統100之至少一部分可經組態以在多個層級層上操作,在該等層級層中,UE 115中之一或多者及存取點105中之一或多者可經組態以支援具有相對於另一層級層減少之延遲的層級層上之傳輸。在一些實例中,混合式UE 115-a可在支援使用第一TTI之第一層傳輸(其可係關於「傳統通信技術」)的第一層級層及支援使用可比第一TTI短的第二TTI之第二層傳輸(其可係關於「ULL通信技術」)的第二層級層兩者上與存取點105-a通信。
在其他實例中,第二層UE 115-b可僅在第二層級層上與存取點105-b通信。因此,混合式UE 115-a及第二層UE 115-b可屬於可在第二層級層上通信之UE 115的第二等級,而傳統UE 115可屬於可僅在第一層級層上通信之UE 115的第一等級。存取點105-b及UE 115-b可經由第二子訊框類型之子訊框之傳輸在第二層級層上通信。存取點105-b可傳輸僅與第一或第二層級層有關的通信或可傳輸關於第一及第二層級層兩者的通信。在存取點105-b支援第一及第二層級層兩者之情況下,通信組件361可經組態以優先權化自存取點105-b接收的與第一及第二層級層有關的通信,如本文所描述。
存取點105可經由一或多個存取點天線與UE 115以無線方式通信。存取點105位點中之每一者可為各別涵蓋範圍區域110提供通信涵蓋範圍。在一些實例中,存取點105可被稱作基地收發器台、無線電基地台、無線電收發器、基本服務集合(BSS)、擴展服務集合(ESS)、NodeB、eNodeB、本籍NodeB、本籍eNodeB或某一其他合適術語。基地台之涵蓋範圍區域110可分成僅組成涵蓋範圍區域之一部分的多個扇區(未圖示)。無線通信系統100可包括不同類型之存取點105 (例如,巨型、微型及/或微微型基地台)。存取點105亦可利用不同無線電技術,諸如蜂巢式及/或WLAN無線電存取技術(RAT)。存取點105可與相同或不同存取網路或操作者部署相關聯。包括相同或不同類型之存取點105之涵蓋範圍區域、利用相同或不同無線電技術及/或屬於相同或不同存取網路的不同存取點105之涵蓋範圍區域可重疊。
在使用LTE/LTE-A及/或ULL LTE通信技術之網路通信系統中,術語演進型節點B (eNodeB或eNB)可一般用以描述存取點105。無線通信系統100可為其中不同類型之存取點為各種地理區提供涵蓋範圍的異質LTE/LTE-A/ULL LTE網路。舉例而言,每一存取點105可為巨型小區、微微型小區、超微型小區及/或其他類型之小區提供通信涵蓋範圍。諸如微微型小區、超微型小區及/或其他類型小區的小型小區可包括低功率節點或LPN。巨型小區一般涵蓋相對大的地理區域(例如,半徑為若干公里)且可允許在藉由網路提供者之服務訂用的情況下由UE 115進行無限制存取。小型小區一般將涵蓋相對較小的地理區域且可允許在藉由網路提供者之服務訂用的情況下由UE 115進行無限制存取,且(例如)除無限制存取外,亦可提供由具有與小型小區之關聯的UE 115 (例如,在封閉用戶群組(CSG)中之UE、針對本籍中之使用者之UE及類似者)進行的受限制存取。用於巨型小區之eNB可被稱作巨型eNB。用於小型小區之eNB可被稱作小型小區eNB。eNB可支援一個或多個(例如,兩個、三個、四個及類似個)小區。
核心網路130可經由一或多個骨幹網路鏈路132(例如,S1介面等)與eNB或其他存取點105通信。存取點105亦可(例如)經由骨幹網路鏈路134 (例如,X2介面等)及/或經由骨幹網路鏈路132 (例如,經由核心網路130)彼此直接或間接通信。無線通信系統100可支援同步或非同步操作。對於同步操作,存取點105可具有類似訊框時序,且來自不同存取點105之傳輸在時間上可大致對準。對於異步操作,存取點105可具有不同訊框時序,且來自不同存取點105之傳輸在時間上可不對準。此外,第一層級層及第二層級層中之傳輸在存取點105間可能或可不同步。本文所描述之技術可用於同步或異步操作。
UE 115分散在無線通信系統100各處,且每一UE 115可為靜止的或行動的。UE 115亦可由熟習此項技術者稱作行動台、用戶台、行動單元、用戶單元、無線單元、遠端單元、行動器件、無線器件、無線通信器件、遠端器件、行動用戶台、存取終端、行動終端、無線終端、遠端終端、手持機、使用者代理、行動用戶端、用戶端或某一其他合適術語。UE 115可為蜂巢式電話、個人數位助理(PDA)、無線數據機、無線通信器件、手持式器件、平板電腦、膝上型電腦、無線電話、穿戴式物件(諸如手錶或眼鏡)、無線區域迴路(WLL)台或類似者。UE 115可能夠與巨型eNodeB、小型小區eNodeB、中繼站及類似者通信。UE 115亦可能夠經由不同存取網路(諸如蜂巢式或其他WWAN存取網路或WLAN存取網路)通信。
無線通信系統100中所示之通信鏈路125可包括自UE 115至存取點105之上行鏈路(UL)傳輸,及/或自存取點105至UE 115之下行鏈路(DL)傳輸。下行鏈路傳輸亦可稱為前向鏈路傳輸,而上行鏈路傳輸亦可稱為反向鏈路傳輸。通信鏈路125可攜載每一層級層之傳輸,該等傳輸在一些實例中可在通信鏈路125中經多工。UE 115可經組態以經由(例如)多輸入多輸出(MIMO)、載波聚合(CA)、協調多點(CoMP)或其他方案與多個存取點105合作地通信。MIMO技術在存取點105上使用多個天線及/或在UE 115上使用多個天線以傳輸多個資料流。載波聚合可利用相同或不同伺服小區上之兩個或兩個以上分量載波用於資料傳輸。CoMP可包括用於協調藉由多個存取點105進行之傳輸及接收以改良UE 115之總體傳輸品質以及增加網路及頻譜利用率的技術。
如所提及,在一些實例中,存取點105及UE 115可利用載波聚合在多個載波上傳輸。在一些實例中,存取點105及UE 115可在訊框內在第一層級層中並行傳輸,一或多個子訊框每一者具有使用兩個或兩個以上獨立載波之第一子訊框類型。每一載波可具有(例如)20 MHz之頻寬,但可利用其他頻寬。混合式UE 115-a及/或第二層UE 115-b在某些實例中可利用單一載波在第二層級層中接收及/或傳輸一或多個子訊框,該單一載波具有大於獨立載波中之一或多者之頻寬的頻寬。舉例而言,若四個獨立20 MHz載波用於第一層級層中之載波聚合方案中,則單一80 MHz載波可用於第二層級層中。80 MHz載波可佔用射頻頻譜之一部分,該射頻頻譜至少部分地重疊由四個20 MHz載波中之一或多者使用之射頻頻譜。在一些實例中,第二層級層類型之可縮放頻寬可為(諸如上文所述)提供較短RTT、提供進一步增強型資料速率之組合技術。
可由無線通信系統100採用之不同操作模式中之每一者可根據分頻雙工(FDD)或分時雙工(TDD)操作。在一些實例中,不同層級層可根據不同TDD或FDD模式操作。舉例而言,第一層級層可根據FDD操作,而第二層級層可根據TDD操作。在一些實例中,OFDMA通信信號可用於通信鏈路125中以用於每一層級層之LTE下行鏈路傳輸,而單載波分頻多重存取(SC-FDMA)通信信號可用於通信鏈路125中以用於每一層級層中之LTE上行鏈路傳輸。下文參考以下圖式提供關於系統(諸如無線通信系統100)中之層級層之實施的額外細節以及關於此等系統中之通信之其他特徵及功能。
圖2為說明LTE或ULL LTE網路架構中之存取網路200之實例的圖式。在此實例中,存取網路200被劃分成多個蜂巢式區(小區) 202。一或多個較低功率等級eNB 208可具有與小區202中之一或多者重疊之蜂巢式區210。較低功率等級eNB 208可為超微型小區(例如,本籍eNB (HeNB))、微微型小區、微型小區或遠端無線電裝置頭端(RRH)。巨型eNB 204各自經指派給各別小區202且經組態以為小區202中之所有UE 206提供至核心網路130的存取點。在一態樣中,eNB 204可包括經組態以使用傳統通信技術及基於較小TTI之ULL通信技術(例如,傳統LTE及ULL LTE)排程UE 206且與其通信的排程組件302。類似地,UE 206中之一或多者可包括經組態以優先權化傳統通信技術(例如,LTE)及ULL通信技術(例如,ULL LTE)之通信的通信組件361。在存取網路200之此實例中不存在集中式控制器,但在替代組態中可使用集中式控制器。eNB 204對包括以下各者的所有無線電相關功能負責:無線電承載控制、許可控制、行動性控制、排程、安全及至核心網路130之一或多個組件的連接。
由存取網路200採用之調變及多重存取方案可取決於經部署之特定電信標準而變化。在LTE或ULL LTE應用中,可在DL上使用OFDM且可在UL上使用SC-FDMA以支援分頻雙工(FDD)及分時雙工(TDD)兩者。如熟習此項技術者將容易自以下詳細描述瞭解以遵循的,本文中所呈現之各種概念較適用於LTE應用。然而,此等概念可容易擴展至採用其他調變及多重存取技術之其他電信標準。藉由實例,此等概念可擴展至演進資料最佳化(EV-DO)或超行動寬頻(UMB)。EV-DO及UMB為由第三代合作夥伴計劃2(3GPP2)頒佈作為CDMA2000標準家族之部分且採用CDMA以提供至行動台之寬頻網際網路存取的空中介面標準。此等概念亦可擴展至採用寬頻CDMA(W-CDMA)及CDMA之其他變體(諸如TD-SCDMA)之通用陸地無線電存取(UTRA);採用TDMA之全球行動通信系統(GSM);及演進UTRA(E-UTRA)、IEEE 802.11 (Wi-Fi)、IEEE 802.16 (WiMAX)、IEEE 802.20及採用OFDMA之快閃OFDM。UTRA、E-UTRA、UMTS、LTE及GSM在來自3GPP組織之文獻中描述。CDMA2000及UMB在來自3GPP2組織之文獻中描述。所採用之實際無線通信標準及多重存取技術將取決於特定應用及強加於系統之總體設計約束。
eNB 204可具有支援MIMO技術之多個天線。使用MIMO技術使得eNB 204能夠開拓空間域以支援空間多工、波束成形及傳輸分集。空間多工可用以在相同頻率上同時傳輸不同資料流。資料流可傳輸至單一UE 206以增加資料速率或傳輸至多個UE 206以增加總體系統容量。此藉由在空間上預編碼每一資料流(亦即,應用振幅及相位之按比例調整)且接著經由DL上之多個傳輸天線傳輸每一空間經預編碼之串流而達成。在空間上經預編碼之資料流藉由不同空間特徵到達UE 206處,其使得UE 206中之每一者能夠恢復前往彼UE 206之一或多個資料流。在UL上,每一UE 206傳輸在空間上經預編碼之資料流,其使得eNB 204能夠識別每一在空間上經預編碼之資料流之來源。
當頻道條件良好時,一般使用空間多工。當頻道條件較不大有利時,波束成形可用以在一或多個方向上聚焦傳輸能量。此可藉由經由多個天線在空間上預編碼資料以供傳輸而達成。為達成小區邊緣處之良好涵蓋範圍,單一串流波束成形傳輸可與傳輸分集組合使用。
在以下詳細描述中,存取網路之各種態樣將參考支援DL上之OFDM的MIMO系統來描述。OFDM為調變OFDM符號內之大量副載波之上的資料之分散頻譜技術。將副載波以精確頻率間隔開。該間隔提供使得接收器能夠恢復來自副載波之資料的「正交性」。在時域中,保護區間(例如,循環首碼)可添加至每一OFDM符號以對抗OFDM符號間干擾。UL可使用呈DFT分散OFDM信號形式之SC-FDMA以補償高峰值平均功率比(PAPR)。
圖3為在存取網路中與UE 350通信之eNB 310之方塊圖。在DL中,將來自核心網路之上層封包提供至控制器/處理器375。控制器/處理器375實施L2層之功能性。在DL中,控制器/處理器375提供標頭壓縮、加密、封包分段及重定序、邏輯頻道與輸送頻道之間的多工及基於各種優先權度量值的至UE 350之無線電資源分配。控制器/處理器375亦負責HARQ操作、丟失封包之重新傳輸及至UE 350的信號傳遞。
傳輸(TX)處理器316實施用於L1層(亦即,實體層)之各種信號處理功能。信號處理功能包括以下各者:在UE 350處促進前向錯誤校正(FEC)之編碼及交錯及基於各種調變方案(例如,二元相移鍵控(BPSK)、正交相移鍵控(QPSK)、M相移鍵控(M-PSK)、M正交振幅調變(M-QAM))至信號群集之映射。接著將經編碼及經調變之符號分裂成平行串流。接著將每一串流映射至OFDM副載波,與時域及/或頻域中之參考信號(例如,導頻)多工,且接著使用快速傅立葉逆變換(IFFT)組合在一起以產生攜載時域OFDM符號串流之實體頻道。OFDM串流經在空間上預編碼以產生多個空間串流。來自頻道估計器374之頻道估計可用以判定編碼及調變方案以及用於空間處理。頻道估計可自藉由UE 350傳輸之參考信號及/或頻道條件回饋導出。每一空間串流接著經由獨立傳輸器318TX提供至不同天線320。每一傳輸器318TX使用各別空間串流調變RF載波以供傳輸。另外,eNB 310可包括經組態以使用傳統通信技術及基於較小TTI之ULL通信技術(例如,傳統LTE及ULL LTE)排程UE 350且與其通信的排程組件302。
在UE 350處,每一接收器354RX經由其各別天線352接收信號。每一接收器354RX恢復調變至RF載波上之資訊且提供該資訊至接收(RX)處理器356。RX處理器356實施L1層之各種信號處理功能。RX處理器356對資訊執行空間處理以恢復前往UE 350之任何空間串流。若多個空間串流前往UE 350,則該等空間串流可由RX處理器356組合成單一OFDM符號串流。RX處理器356接著使用快速傅立葉變換(FFT)將OFDM符號串流自時域轉換至頻域。頻域信號包含用於OFDM信號之每一副載波的獨立OFDM符號串流。藉由判定由eNB 310傳輸之最可能的信號群集點來恢復及解調變每一副載波上之符號及參考信號。此等軟決策可基於由頻道估計器358計算的頻道估計。接著解碼及解交錯軟決策以恢復原先由eNB 310在實體頻道上傳輸的資料及控制信號。接著將資料及控制信號提供至控制器/處理器359。
控制器/處理器359實施L2層。控制器/處理器可與儲存程式碼及資料之記憶體360相關聯。記憶體360可被稱作電腦可讀媒體。在UL中,控制器/處理器359提供輸送頻道與邏輯頻道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理以恢復來自核心網路之上層封包。上層封包接著經提供至表示L2層以上之所有協定層的資料儲集器362。各種控制信號亦可提供至資料儲集器362以用於L3處理。控制器/處理器359亦對使用應答(ACK)及/或否定應答(NACK)協定以支援HARQ操作之錯誤偵測負責。另外,通信組件361經組態以優先權化傳統通信技術(例如,LTE)及ULL通信技術(例如,ULL LTE)之通信。
在UL中,資料源367用以將上層封包提供至控制器/處理器359。資料源367表示L2層以上之所有協定層。類似於結合由eNB 310進行之DL傳輸所描述之功能性,控制器/處理器359藉由提供標頭壓縮、加密、封包分段及重排序以及邏輯頻道與傳輸頻道之間的基於由eNB 310進行之無線電資源分配的多工來實施用於使用者平面及控制平面之L2層。控制器/處理器359亦對HARQ操作、丟失封包之重新傳輸及至eNB 310的信號傳遞負責。
由頻道估計器358自參考信號或由eNB 310傳輸之回饋導出之頻道估計可由TX處理器368使用,以選擇適當編碼及調變方案,且促進空間處理。由TX處理器368產生之空間串流係經由獨立傳輸器354TX提供至不同天線352。每一傳輸器354TX用各別空間串流調變RF載波以供傳輸。
以與結合UE 350處之接收器功能所描述之方式類似的方式在eNB 310處處理UL傳輸。每一接收器318RX經由其各別天線320接收信號。每一接收器318RX恢復調變至RF載波上之資訊且將該資訊提供至RX處理器370。RX處理器370可實施L1層。
控制器/處理器375實施L2層。控制器/處理器375可與儲存程式碼及資料之記憶體376相關聯。記憶體376可被稱作電腦可讀媒體。在UL中,控制器/處理器375提供輸送頻道與邏輯頻道之間的解多工、封包重組、解密、標頭解壓縮、控制信號處理以恢復來自UE 350之上層封包。可將來自控制器/處理器375之上層封包提供至核心網路。控制器/處理器375亦對使用ACK及/或NACK協定以支援HARQ操作之錯誤偵測負責。
圖4為說明用於管理無線通信系統中之ULL通信的ULL時線400、402之非限制性實例之圖式,在圖中時間發展自左至右擴展。在此實例中,時線400、402包括子訊框之每一符號中之符號持續時間之ULL訊框。時線400、402兩者描繪表示用於ULL實體下行鏈路控制頻道(uPDCCH)及/或ULL實體下行鏈路共用頻道(uPDSCH)之TTI的符號及表示包括ULL實體上行鏈路控制通道(uPUCCH)及/或ULL實體上行鏈路共用頻道(uPUSCH)之TTI的符號。在時線400中,14個符號展示於給定子訊框內(例如,對於正常CP),且在時線402中,12個符號展示於給定子訊框內(例如,對於擴展CP)。在任一情況下,較低延遲係藉由利用基於符號之TTI在ULL中實現。將瞭解,在其他實例中,TTI可為兩個或兩個以上符號、子訊框之時槽(其中子訊框包括兩個時槽)等。另外,HARQ處理程序回應時間可為3個符號(或4個符號、3個雙重符號、3個時槽等)。在所描繪實例中,在子訊框中,uPDCCH/uPDSCH係在符號0中發送,且HARQ係在符號4中被處理及發送等。
圖5為說明包括用於傳統通信技術的傳統下行鏈路傳輸資源502之1ms子訊框500之非限制性實例的圖式。傳統下行鏈路傳輸資源502可對應於例如LTE中之實體資料共用頻道(PDSCH)/增強型實體下行鏈路控制頻道(EPDCCH)傳輸,且可包括一或多個非DM-RS區504及一或多個DM-RS區506,其中DM-RS區506包括經組態用於DM-RS傳輸的資源元素(例如資源元素之相連群組)。因此,如所示,ULL傳輸資源可如此指派以不重疊傳統下行鏈路傳輸資源502,如由實例ULL傳輸資源510所示。然而,在其他實例中,ULL傳輸資源可經指派以在非DM-RS區540中重疊傳統下行鏈路傳輸資源502,如由ULL傳輸資源512所示,或經指派以在DM-RS區506中重疊傳統下行鏈路傳輸資源502,如由ULL傳輸資源514所示。此可(例如)在eNB指派ULL傳輸資源514同時在傳統下行鏈路傳輸資源上傳輸之情況下出現(因為指派可由於縮短之TTI而以較快速率在ULL中出現)。
UE因此可經組態以優先權化傳統下行鏈路傳輸資源與ULL傳輸資源重疊(例如,對於ULL傳輸資源512及514)的通信,如本文中進一步描述。在一個實例中,傳統下行鏈路傳輸資源502及ULL傳輸資源510、512或514可有關於給定UE。因此,UE可經組態以優先權化在傳統下行鏈路傳輸資源502及重疊之ULL傳輸資源512或514上所接收之通信。在另一實例中,傳統下行鏈路傳輸資源502及ULL傳輸資源512、514可有關於不同UE,且與ULL傳輸資源512、514有關的UE則可經組態以在傳統下行鏈路傳輸資源502對應於與一或多個其他UE之通信的情況下優先權化在重疊ULL傳輸資源512及514上所接收之通信,如本文中進一步描述。
應瞭解,在LTE中,eNB可在一或多個分碼多工(CDM)群組中傳輸DM-RS,其中DM-RS可基於秩(例如,用以傳輸DM-RS的天線之數目)在每一CDM群組中經多工。舉例而言,對於小於或等於四的秩,eNB可基於展頻因子二而傳輸DM-RS,以使得DM-RS在時間上跨越兩個連續OFDM符號展開。舉例而言,對於大於四的秩,eNB可基於展頻因子四傳輸DM-RS,以使得DM-RS在時間上跨越四個連續OFDM符號展開。
參看圖6至圖8,參考可執行本文中所描述之動作或功能的一或多個組件及一或多個方法描繪態樣。在一態樣中,如本文中所使用之術語「組件」可為構成系統之部分中之一者,可為硬體或軟體或其某一組合,且可劃分成其他組件。雖然下文在圖7及圖8中所描述之操作以特定次序呈現及/或呈現為由實例組件執行,但應理解,動作之排序及執行動作之組件可視實施變化。此外,應理解,以下動作或功能可由專門程式化處理器、執行專門程式化軟體或電腦可讀媒體之處理器或由能夠執行所描述動作或功能的硬體組件及/或軟體組件之任何其他組合執行。
圖6說明用於優先權化傳統或ULL通信的實例系統600。系統600包括與eNB 604 (其實例在上文於圖1至圖3中描述(例如,存取點105、eNB 204、較低功率等級eNB 208、eNB 310、UE 115、206、350等))通信以存取無線網路的UE 602。在一態樣中,eNB 604及UE 602可已建立一或多個下行鏈路頻道,在該等下行鏈路頻道上經由下行鏈路信號609通信,該等下行鏈路信號可藉由eNB 604 (例如,經由收發器656)傳輸及藉由UE 602 (例如,經由收發器606)接收以用於在經組態通信資源上將控制及/或資料訊息(例如,在信號傳遞中)自eNB 604傳達至UE 602。此外,例如,eNB 604及UE 602可已建立一或多個上行鏈路頻道,在該等上行鏈路頻道上經由上行鏈路信號608通信,該等上行鏈路信號可藉由UE 602 (例如,經由收發器606)傳輸及藉由eNB 604 (例如,經由收發器656)接收以用於在經組態通信資源上將控制及/或資料訊息(例如,在信號傳遞中)自UE 602傳達至eNB 604。如本文中進一步描述,例如,eNB 604可傳達可指示資源的資源授與680,UE 602在該等資源上與eNB 604通信(例如,傳輸或接收)資料,其中該等資源可對應於傳統及/或ULL通信技術,如所描述。舉例而言,與ULL通信技術有關的資源可有關於ULL時線(例如,具有小於持續時間中的子訊框之TTI的時線,諸如圖4中之時線400、402)。
在一態樣中,UE 602可包括可(例如)經由一或多個匯流排607通信耦接的一個或多個處理器603及/或記憶體605,且可結合用於自eNB 604接收用於傳統及/或ULL通信技術之資源授及基於資源授與在該等資源上通信的通信組件361而操作或以其他方式實施該通信組件。舉例而言,與通信組件361有關之各種操作可由一或多個處理器603實施或以其他方式執行,且在一態樣中,可由單一處理器執行,而在其他態樣中,操作中之不同者可由兩個或兩個以上不同處理器之組合執行。舉例而言,在一態樣中,一或多個處理器603可包括數據機處理器或基頻處理器或數位信號處理器或特殊應用積體電路(ASIC)或傳輸處理器、接收處理器或與收發器606相關聯之收發器處理器中之任一者或任何組合。另外,例如,記憶體605可為非暫時性電腦可讀媒體,其包括(但不限於)隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可程式化ROM (PROM)、可抹除PROM (EPROM)、電可抹除PROM (EEPROM)、磁性儲存器件(例如,硬碟、軟性磁碟、磁帶)、光碟(例如,緊密光碟(CD)、數位化通用光碟(DVD))、智慧型卡、快閃記憶體器件(例如,卡、棒、隨身碟)、暫存器、可移式磁碟及用於儲存軟體及/或可由電腦或一或多個處理器603存取及讀取之電腦可讀程式碼或指令的任何其他合適媒體。此外,記憶體605或電腦可讀儲存媒體可駐留於一或多個處理器603中、在一或多個處理器603外部、跨包括一或多個處理器603之多個實體分散等。
詳言之,一或多個處理器603及/或記憶體605可執行由通信組件361或其子組件定義之動作或操作。舉例而言,一或多個處理器603及/或記憶體605可執行由通信優先權化組件610定義的用於判定是否優先權化分別與基於在共同資源上接收的不同TTI之第一及第二資源有關的第一或第二通信的動作或操作。舉例而言,在一態樣中,通信優先權化組件610可包括硬體(例如,一或多個處理器603之一或多個處理器模組)及/或儲存於記憶體605中且由一或多個處理器603中之至少一者可執行以執行本文中所描述之專門經組態之通信優先權化操作的電腦可讀程式碼或指令。另外,例如,一或多個處理器603及/或記憶體605可執行由可選共同資源判定組件612定義的用於判定第一及第二通信重疊所在之共同資源的動作或操作。舉例而言,在一態樣中,共同資源判定組件612可包括硬體(例如,一或多個處理器603之一或多個處理器模組)及/或儲存於記憶體605中且由一或多個處理器603中之至少一者可執行以執行本文中所描述之專門經組態之資源判定操作的電腦可讀程式碼或指令。另外,例如,一或多個處理器603及/或記憶體605可視情況執行由可選優先權化資訊接收組件614定義的用於獲得關於在共同資源上優先權化第一或第二通信之資訊的動作或操作。舉例而言,在一態樣中,優先權化資訊接收組件614可包括硬體(例如,一或多個處理器603之一或多個處理器模組)及/或儲存於記憶體605中且由一或多個處理器603中之至少一者可執行以執行本文中所描述之專門經組態之資訊接收操作的電腦可讀程式碼或指令。
類似地,在一態樣中,eNB 604可包括可(例如)經由一或多個匯流排657通信耦接的一個或多個處理器653及/或記憶體655,且可結合用於根據資源產生用於UE 602及/或其他UE之資源授與的排程組件302而操作或以其他方式實施該排程組件。舉例而言,與排程組件302有關之各種功能可由一或多個處理器653實施或以其他方式執行,且在一態樣中可由單一處理器執行,而在其他態樣中,功能中之不同者可由兩個或兩個以上不同處理器之組合執行,如上所述。應瞭解,在一個實例中,一或多個處理器653及/或記憶體655可如上文關於UE 602之一或多個處理器603及/或記憶體605之實例中所描述地組態。
在一實例中,一或多個處理器653及/或記憶體655可執行由排程組件302或其子組件定義之動作或操作。舉例而言,一或多個處理器653及/或記憶體655可執行由傳統資源分配組件620定義的用於分配至一或多個UE之第一資源集合(例如,基於第一TTI操作的傳統通信技術上之資源)的動作或操作。舉例而言,在一態樣中,傳統資源分配組件620可包括硬體(例如,一或多個處理器653之一或多個處理器模組)及/或儲存於記憶體655中且由一或多個處理器653中之至少一者可執行以執行本文中所描述之專門經組態之傳統資源分配操作的電腦可讀程式碼或指令。另外,例如,一或多個處理器653及/或記憶體655可執行由ULL資源分配組件622定義的用於分配至一或多個UE之第二資源集合(例如,基於比第一TTI短的第二TTI操作的ULL通信技術上之資源)的動作或操作。舉例而言,在一態樣中,ULL資源分配組件622可包括硬體(例如,一或多個處理器653之一或多個處理器模組)及/或儲存於記憶體655中且由一或多個處理器653中之至少一者可執行以執行本文中所描述之專門經組態之ULL資源分配操作的電腦可讀程式碼或指令。另外,例如,一或多個處理器653及/或記憶體655可執行由可選通信優先權化指示組件624定義的用於向一或多個UE指示關於優先權化在第一及第二資源分配中重疊的資源上之通信的資訊的動作或操作。舉例而言,在一態樣中,通信優先權化指示組件624可包括硬體(例如,一或多個處理器653之一或多個處理器模組)及/或儲存於記憶體655中且由一或多個處理器653中之至少一者可執行以執行本文中所描述之專門優先權化指示操作的電腦可讀程式碼或指令。
應瞭解,收發器606、656可經組態以經由一或多個天線、RF前端、一或多個傳輸器及一或多個接收器來傳輸及接收無線信號。在一態樣中,收發器606、656可經調諧以在指定頻率下操作,以使得UE 602及/或eNB 604可在某一頻率下通信。在一態樣中,一或多個處理器603可組態收發器606及/或一或多個處理器653可組態收發器656以基於組態、通信協定等在指定頻率及功率位準下操作,以分別在相關上行鏈路或下行鏈路通信頻道上傳達上行鏈路信號608及/或下行鏈路信號609。
在一態樣中,收發器606、656可(例如,使用多頻帶多模式數據機,未圖示)在多個頻帶中操作,如此以處理使用收發器606、656發送及接收之數位資料。在一態樣中,收發器606、656可為多頻帶且經組態以支援用於特定通信協定之多個頻帶。在一態樣中,收發器606、656可經組態以支援多個操作網路及通信協定。因此,例如,收發器606、656可基於指定數據機組態而啟用信號之傳輸及/或接收。
圖7說明用於優先權化(例如,藉由UE)由基於第一TTI之第一通信(例如,傳統通信)及基於較短第二TTI之第二通信(例如,ULL通信)共用的資源集合上之通信的方法700。在區塊702處,UE可接收一第一資源集合上的基於一第一TTI的一第一通信。在一態樣中,通信組件361 (圖6)可接收(例如,經由收發器606)第一資源集合上的基於第一TTI的第一通信。在一個實例中,第一通信可對應於藉由eNB 604傳輸的廣播資料,諸如與系統資訊傳輸、傳呼傳輸、隨機存取傳輸等有關的控制或訊務資料。在另一實例中,第一通信可對應於可或可不相關於UE 602的單播資料,諸如控制或訊務資料、參考信號等。在一特定實例中,第一通信可對應於傳統通信技術(例如,LTE)之PDSCH/EPDCCH、一或多個DM-RS符號及/或其類似者。應瞭解,eNB 604可分配第一及/或第二資源至UE 602以用於接收來自eNB 604之通信,如本文中進一步描述。
在區塊704處,UE可接收一第二資源集合上的基於一第二TTI的一第二通信,其中該第二TTI小於該第一TTI,且其中該第二資源集合重疊該第一資源集合,從而界定一共同資源集合。在一態樣中,通信組件361可類似地接收(例如,經由收發器606)第二資源集合上的基於第二TTI的第二通信,其中該第二TTI小於該第一TTI,且其中該第二資源集合重疊該第一資源集合,從而界定一共同資源集合。在一個實例中,第二通信可對應於具有比第一通信之傳統通信技術小的TTI之ULL通信技術(例如,ULL LTE)的控制或訊務資料。在一個實例中,第一TTI可為持續時間中之子訊框(例如,其中第一通信與LTE有關),且該第二TTI可為持續時間中之一符號、兩個符號、時槽等。如所描述,第一及第二資源集合可例如如圖5中所示地重疊,其中第一資源集合可對應於傳統下行鏈路傳輸資源502中之資源,且第二資源集合可對應於ULL傳輸資源512或514中之一或多者中的資源。
因此,在區塊706處,UE可在解碼在該共同資源集合上接收之通信時判定是否優先權化接收該第一通信或該第二通信。在一態樣中,通信優先權化組件610可在解碼在該共同資源集合上接收之通信時判定是否優先權化接收該第一通信或該第二通信。此可包括共同資源判定組件612判定第一及第二通信間的共同資源集合,及通信優先權化組件610判定該等共同資源之某些態樣。舉例而言,共同資源判定組件612可至少部分地基於自eNB 604接收用於第一資源集合及/或第二資源集合之分配資訊及判定在第一及第二資源集合間重疊的資源而判定共同資源集合。在一實例中,UE 602可經組態有第二資源集合以用於接收ULL通信技術中之第二通信,且可接收與傳統通信技術有關的控制資料中之通信以判定用於第一通信之第一資源集合。舉例而言,共同資源判定組件612可自eNB 604接收與第一資源集合有關的實體下行鏈路控制頻道(PDCCH),其可指定第一資源集合之利用(例如,用於廣播資料、單播資料,諸如PDSCH/PDCCH等)。通信優先權化組件610因此可至少部分地基於共同資源判定組件612偵測到共同資源集合而判定優先權化通信。
另外,在一實例中,通信優先權化組件610可基於共同資源集合之一或多個態樣而優先權化第一或第二通信。舉例而言,在區塊708處,UE可視情況判定共同資源集合中之第一資源集合是否對應於廣播資料,包括DM-RS資源,包括EPDCCH,或包括對應於特定MCS、資源分配大小或層之數目的資料。在一實例中,共同資源判定組件612可判定共同資源集合中之至少第一資源集合是否對應於廣播資料,包括DM-RS資源,包括EPDCCH,或包括對應於特定MCS、資源分配大小或層之數目的資料。舉例而言,通信優先權化組件610可經組態用於基於由共同資源判定組件612進行之判定而判定是否優先權化第一通信或第二通信。在一實例中,該判定可進一步基於自eNB 604或另一網路節點接收之組態或其他資訊、儲存於UE 602之記憶體中的組態等,其基於共同資源集合中之第一資源集合的相關聯內容指定何時優先權化第一或第二通信。在特定實例中,通信優先權化組件610可在共同資源集合中之第一資源集合對應於廣播資料、包括DM-RS資源,包括EPDCCH,或包括對應於特定MCS、資源分配大小或層之數目的資料中的至少一者情況下在解碼在共同資源集合上接收之通信時優先權化接收第一通信。類似地,通信優先權化組件610可在解碼在共同資源集合上接收之通信時以其他方式優先權化接收第二通信。
舉例而言,通信優先權化組件610可判定共同資源集合中之第一資源集合是否對應於廣播資料。舉例而言,UE 602可察覺傳統廣播頻道(例如,基於解碼來自eNB 604之PDCCH)及ULL頻道(例如,基於接收對應於ULL頻道之第二資源集合之分配)兩者。在一個實例中,通信組件361可解碼對應於UE 602之無線電網路暫時識別符(RNTI) (例如,系統資訊(SI)-RNTI、傳呼(P)-RNTI、隨機存取(RA)-RNTI等)的PDCCH以判定廣播資料是否存在於第一資源集合中。若存在,則共同資源判定組件612可判定第一資源集合是否重疊第二資源集合上之第二通信(例如,ULL資料),其中該等重疊資源界定一共同資源集合。在存在重疊之情況下,通信優先權化組件610可判定優先權化接收至少在共同資源集合中之廣播資料而非接收第二通信。在此實例中,通信優先權化組件610可判定在第二資源集合之不重疊的剩餘資源中接收第二通信。在任一情況下,優先權化廣播資料就此而言可確保UE 602接收來自eNB 604之廣播資料,其可比ULL資料更關鍵。
在另一實例中,通信優先權化組件610可判定共同資源集合中之該第一資源集合是否對應於用於DM-RS傳輸的DM-RS資源或以其他方式包括傳統通信技術中的一或多個DM-RS傳輸。此可包括:通信組件361將第一資源集合判定為與經保留用於傳輸傳統通信技術中之DM-RS的資源之DM-RS區(例如,圖5中之DM-RS區506)有關或包括該DM-RS區,此可部分地基於解碼在資源區上之DM-RS;優先權化資訊接收組件614自eNB 604接收用於DM-RS傳輸的DM-RS區內之實際資源元素的指示(例如,在自eNB 604或另一網路實體接收之DM-RS組態中),其可包括用於在解碼傳統通信中圍繞DM-RS速率匹配的DM-RS組態等。在DM-RS資源與ULL資料資源重疊之情況下,若DM-RS之一個時槽穿孔,則對於小於或等於四之秩,有可能基於DM-RS來解碼傳統頻道。然而,若DM-RS之兩個時槽穿孔,則可能不能解碼傳統頻道,此係因為DM-RS可能未經有效處理。
在任何情況下,UE 602可察覺經保留或用於傳統通信技術(例如,在第一資源集合上)中之DM-RS傳輸的資源(被稱作DM-RS相關資源)及ULL頻道(例如,基於接收對應於ULL頻道的第二資源集合之分配)。共同資源判定組件612因此可判定DM-RS相關資源是否重疊在第二資源集合上之第二通信(例如,ULL資料),其中重疊之資源可界定一共同資源集合。重疊ULL資源之實例在圖5中展示為重疊DM-RS區506的ULL傳輸資源514。在共同資源集合中存在重疊之情況下,通信優先權化組件610可判定優先權化接收至少在共同資源集合中的第一通信(例如,在DM-RS相關資源上)而非接收第二通信。在此實例中,通信優先權化組件610可判定接收在第二資源集合之剩餘資源中的第二通信。
在更特定實例中,通信優先權化組件610可判定優先權化接收共同資源集合上之第一通信及/或接收共同資源集合內之特定資源上之第一通信,在該等特定資源上傳輸DM-RS。舉例而言,通信優先權化組件610可判定優先權化接收對應於傳統通信技術中之DM-RS符號、對應於傳輸DM-RS所在之特定資源元素等的共同資源集合上之第一通信。在一個實例中,優先權化資訊接收組件614可接收符號包括DM-RS傳輸(例如,在來自eNB 604之DM-RS組態中)的哪些資源元素的指示。因此,通信優先權化組件610可判定優先權化接收共同資源集合外的第二資源集合上之第二通信及/或接收共同資源集合內的除符號或在傳輸DM-RS所在的符號內之特定資源元素外的資源元素上之第二通信。在又一實例中,通信優先權化組件610可判定優先權化接收傳輸DM-RS所在的共同資源集合內之特定資源元素中之部分或單一者上之第一通信,且通信優先權化組件610因此可判定在共同資源集合中之剩餘資源元素中接收第二通信。
在另一實例中,在第一資源集合不相關於廣播資料且不包括DM-RS(例如,非DM-RS區504中的資源)之情況下,通信優先權化組件610可判定共同資源集合中的第一資源集合是否包括EPDCCH或對應於特定MCS、資源分配大小或層之數目的資料,在一些實例中可被給定較高優先權。此可包括通信組件361解碼來自eNB 604的對應於第一資源集合之PDCCH以判定第一資源集合是否包括EPDCCH、特定MCS、特定資源分配大小或層之特定數目。舉例而言,具有較高MCS (例如,達到臨限MCS或對應於一或多個指定MCS之MCS)、資源分配大小(例如,達到臨限分配大小或對應於一或多個指定分配大小之資源分配大小)或層之數目(例如,達到層之臨限數目或對應於層之一或多個指定數目的層之數目)的資料可指示對資源可用性敏感的資料。作為實例,若所分配資源中之一些經再分配且因此變得不可用,則導致高編碼大小(例如,> 0.5)的MCS與資源分配大小之組合可對資源可用性敏感。作為另一實例,具有兩個或兩個以上層之資料傳輸亦可對超過之資源更敏感。因此,例如,在此等情況下,通信優先權化組件610可判定優先權化此資料以幫助確保資料之接收。共同資源判定組件612因此可判定包括EPDCCH或與特定MCS、資源分配大小或層之數目有關的第一資源是否重疊第二資源集合上之第二通信(例如,ULL資料),此可界定一共同資源集合。在共同資源集合中存在重疊之情況下,通信優先權化組件610可判定優先權化接收至少在共同資源集合中的第一通信(例如,EPDCCH或具有特定MCS、資源分配大小、層之數目等之資料)而非第二通信。在此實例中,通信優先權化組件610可判定在第二資源集合之剩餘資源中接收第二通信。
在上述實例中,描述了共同資源判定組件612在判定第一資源集合有關於特定傳輸之後判定共同資源集合是否存在。然而,應瞭解,共同資源判定組件612可在判定第一資源集合是否有關於特定傳輸之前判定共同資源。在此實例中,在共同資源判定組件612未偵測到與第二資源集合之重疊資源之情況下,可不需要進行關於在第一資源集合上出現之傳輸的判定。
此外,應瞭解,通信優先權化指示組件624可組態通信優先權化組件610之上述功能,優先權化資訊接收組件614可接收上述功能且通信優先權化組件610在提供在授與UE 602之資源上的通信的上述優先權化時可利用上述功能。就此而言,排程組件302可傳輸第一資源集合上之第一通信及第二資源集合上之第二通信,同時選擇第一或第二通信用於在共同資源集合上傳輸以促進UE 602根據上文所描述的組態接收適當通信。
在另一實例中,UE 602可將重疊之第一及第二資源集合之狀況處理為錯誤事件。換言之,UE 602可不預期接收使用共同資源集合的第一通信及第二通信。在此狀況下,若共同資源判定組件612偵測到用於第一通信及第二通信之重疊傳輸,則通信組件361可丟棄兩個通信中的至少一者。丟棄可取決於類似於上文所論述之規則的一些規則,其可組態於UE 602中(例如,藉由eNB 604或另一網路實體)或以其他方式在UE 602處儲存於相關組態中,等。
另外,例如,通信組件361可同時接收共同資源集合上之第一通信及第二通信,且可在解碼各別通信時執行干擾消除。另外,在一實例中,通信組件361可同時接收不在共同資源集合中的第一及第二資源集合上之第一通信及第二通信。因此,例如,在共同資源判定組件612未判定第一及第二通信間之共同資源之情況下,通信組件361可在未由通信優先權化組件610優先權化的情況下接收並解碼第一及第二通信兩者。
在另一實例中,第一或第二資源集合可對應於不同UE,且因此一個UE可能未察覺資源與指派給另一個UE之資源重疊。圖8說明用於管理(例如,藉由eNB)資源分配以避免重疊及/或提供資訊至與優先權化通信有關的UE的方法800。在區塊802處,eNB可分配一第一資源集合以用於傳輸根據一第一TTI之一第一通信,且在區塊804處,eNB可分配一第二資源集合以用於傳輸根據一第二TTI之一第二通信,其中該第二TTI小於該第一TTI。在一態樣中,傳統資源分配組件620 (圖6)可分配該第一資源集合以用於傳輸根據該第一TTI之該第一通信,且ULL資源分配組件622可分配該第二資源集合以用於傳輸根據該第二TTI之該第二通信。如所描述,第一TTI可為持續時間中之子訊框(例如,其中第一通信與LTE有關),且第二TTI可為在持續時間中之一符號、兩個符號、時槽等。此外,第一資源集合及第二資源集合可對應於相同或不同UE。在任何情況下,ULL資源分配組件622可嘗試在分配第二資源集合時避免與第一資源集合重疊及/或反之亦然。
舉例而言,然而,重疊之完全避免可不出現或在一些狀況下可係不可能的。在一實例中,ULL資源分配組件622可嘗試藉由將第一資源集合判定為與對穿孔不大敏感的一或多個頻道有關而分配共同資源集合中之重疊第一資源集合之第二資源集合。舉例而言,ULL資源分配組件622可判定與傳統無線技術中之頻道有關的具有特定MCS、資源分配大小、層之數目等(諸如,低於臨限值的MCS、資源分配大小、層之數目等)的第二資源集合以用於分配給UE 602以促進ULL通信。在另一實例中,ULL資源分配組件622可嘗試分配在共同資源集合中之重疊非DM-RS區中之第一資源集合之第二資源集合,如此以避免干擾DM-RS傳輸(或至少避免重疊DM-RS之所有符號)。
在此等或其他實例中,在區塊806處,eNB可視情況向UE指示關於優先權化在該第一或該第二資源集合之至少一部分上接收之通信的一或多個參數。在一態樣中,通信優先權化指示組件624可向UE 602指示關於優先權化在重疊的第一或第二資源集合之至少一部分上接收之通信的一或多個參數。優先權化資訊接收組件614可接收該指示,且通信優先權化組件610因此可至少部分地基於該指示而優先權化第一或第二資源上之通信。舉例而言,該指示可指示第二資源集合(例如,用於uPDCCH指派)中與第一資源集合有關的資源不可用性(例如,用於第二資源集合上的通信(其可有關於另一UE)的第二資源集合之至少一部分的穿孔),且因此通信優先權化組件610可基於該指示而判定在可與第一資源集合重疊的第二資源集合之至少一部分中未接收到第二通信,如所描述。舉例而言,該指示可包括可由ULL UE處理的一或多個uPDCCH位元。在另一實例中,第一資源集合可包括傳輸DM-RS所在的一或多個RE(例如,用於不同UE)。在此實例中,該指示可指定DM-RS符號、DM-RS資源元素,或以其他方式有關於是否執行圍繞所指派資源區塊中之DM-RS RE的用於第二通信的速率匹配(例如,在DM-RS RE可與第一資源集合中之傳統傳輸重疊之情況下)。在此實例中,通信優先權化組件610因此可基於該指示而在解碼第二通信時判定是否圍繞相關聯DM-RS RE進行速率匹配。
在區塊808處,eNB可在一下行鏈路控制頻道上傳輸對應於第一資源集合之第一資源授與,且在區塊810處,可在該下行鏈路控制頻道上傳輸對應於第二資源集合之第二資源授與。在一態樣中,排程組件302可在該下行鏈路控制頻道上傳輸對應於第一資源集合之第一資源授與(例如,資源授與680) (例如,至一或多個UE),且可在該下行鏈路控制頻道上傳輸對應於第二資源集合之第二資源授與(例如,資源授與680) (例如,至一或多個UE或一或多個不同UE)。在一實例中,ULL資源分配組件622可分配第二資源集合(例如,在區塊804處)而排程組件302傳輸所分配第一資源集合上之第一通信。此情形可不允許規劃ULL資源之分配,其可導致圖5中所描述之重疊資源。
應理解,所揭示之處理程序中之步驟的特定次序或層級為例示性方法之說明。基於設計偏好,應理解,可重新配置處理程序中之步驟的特定次序或層級。此外,可組合或省略一些步驟。隨附方法技術方案以樣本次序呈現各種步驟之要素且不意謂限於所呈現之特定次序或層級。
提供先前描述以使任何熟習此項技術者能夠實踐本文中所描述之各種態樣。對此等態樣之各種修改對於熟習此項技術者而言將為顯而易見的,且本文中定義之一般原理可應用於其他態樣。因此,申請專利範圍不欲限於本文中所展示之態樣,而將被賦予與語言申請專利範圍一致的完整範疇,其中以單數形式參考元件不欲意謂「一個且僅有一個」(除非明確地如此陳述),而意謂「一或多個」。除非另外明確地陳述,否則術語「一些」指代一或多個。一般熟習此項技術者已知或稍後將知曉的本文中所描述之各種態樣之元件的所有結構及功能等效物係以引用方式明確地併入本文中,且意欲由申請專利範圍涵蓋。此外,本文中所揭示之任何內容均不意欲專用於公眾,無論申請專利範圍中是否明確地敍述此揭示內容。沒有申請專利範圍元件將被解釋為手段加功能,除非元件係使用片語「用於……之構件」明確地敍述。
according to 35 USC §119 Claim priority
This patent application claims a provisional application entitled "PRIORITIZING COLLIDING TRANSMISSIONS IN LTE AND ULTRA-LOW LATENCY LTE COMMUNICATIONS" filed on December 11, 2014 No. 62 / 090,826, which was assigned to the assignee and is hereby expressly incorporated herein by reference.
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein can be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts can be practiced without these specific details. In some cases, well-known structures and components are shown in block diagram form in order to avoid obscuring these concepts.
Several aspects of telecommunication systems will now be presented with reference to various devices and methods. These devices and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processing procedures, algorithms, etc. (collectively referred to as "elements") Instructions. These elements can be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element or any part of an element or any combination of elements may be implemented with a "processing system" that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware Circuitry and other suitable hardware configured to perform the various functionalities described throughout this disclosure. One or more processors in the processing system may execute software. Software should be broadly interpreted as meaning instructions, instruction sets, codes, code segments, code, programs, subroutines, software modules, applications, software applications, software packages, routines, subnormals, objects, Executing files, threads, programs, functions, etc., regardless of whether they are called software, firmware, intermediates, microcode, hardware description language, or others.
Thus, in one or more aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on a computer-readable medium or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, this computer-readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices, or other magnetic storage devices, or may be used to carry or store instructions or information Any other media in the form of structured required code and accessible by a computer. Disks and optical discs as used herein include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), and flexible disks, where magnetic disks typically reproduce data magnetically, and optical disks use lasers Optically reproduce data. The above combinations should also be included in the scope of computer-readable media.
The descriptions herein relate to various aspects of prioritization of collision communications corresponding to traditional communication technologies and ultra-low-latency (ULL) communication technologies, which can be based on different length transmission time intervals (TTI) (for example, ULL communication technology has a shorter TTI duration than traditional communication technology). For example, traditional LTE technology can utilize a TTI with the duration of a sub-frame defined in LTE, where ultra-low latency (ULL) LTE technology can be based on a TTI with a duration less than the sub-frame (e.g. , Two symbols, the time slot of the subframe, etc.). In this regard, lower delays in communication are obtained through shorter and more frequent TTIs. In some cases, the traditional technology may be a traditional honeycomb technology different from the traditional LTE technology. The network can support both traditional and ULL communication technologies on similar frequency bands, and therefore can potentially schedule collision downlink resources with one or more user equipments (UEs) on those collision downlink resources Receive signals from the network. For example, the collision of downlink resources may be caused in part by the shortened TTI associated with ULL, because resources can be allocated more frequently than traditional communication technologies, and resources scheduled for transmission by traditional communication technologies are also It may be at least partially scheduled for ULL communication technology transmission to meet the scheduling requirements in ULL communication technology. It should be understood that LTE and ULL LTE are used herein as examples of traditional and ULL communication technologies respectively, but it should be understood that the foregoing concepts can be applied to virtually any communication technology in which one communication technology has a shorter TTI than the other combination.
In one example, the UE may prioritize the reception of communications colliding on communication technologies (e.g., traditional LTE and ULL LTE resources) based on one or more rules configured in the UE, the one or more rules may Based at least in part on the type of communication over the resource. For example, where traditional technology communication includes broadcast data, demodulation reference signal (DM-RS), and / or the like, the UE may prioritize traditional technology over ULL communication in overlapping related resources Reception of communications. In another example, a network that supports traditional and ULL technologies and transmits associated communications can use resources to configure the UE, and can avoid overlapping traditional and ULL technology resources and / or can otherwise guide the UE to prioritize on specific overlapping resources Empower traditional or ULL technology communications.
Referring first to FIG. 1, a diagram illustrates an example of a wireless communication system 100 according to aspects described herein. The wireless communication system 100 includes a plurality of access points (for example, a base station, an eNB, or a WLAN access point) 105, a plurality of user equipment (UE) 115, and a core network 130. The access point 105 may include a scheduling component 302 configured to schedule and communicate with the UE 115 using conventional communication technologies and ULT communication technologies based on smaller TTIs (eg, traditional LTE and ULL LTE). Similarly, one or more of the UEs 115 may include a communication component 361 configured to prioritize communications for traditional communication technologies (e.g., LTE) and ULL communication technologies (e.g., ULL LTE). Some of the access points 105 may communicate with the UE 115 under the control of a base station controller (not shown), which in various instances may be the core network 130 or some access points 105 (e.g., Base station or eNB). The access point 105 may communicate control information and / or user data with the core network 130 via the backbone network link 132. In an example, the access points 105 may communicate with each other directly or indirectly via a backbone network link 134, which may be a wired or wireless communication link. The wireless communication system 100 can support operations on multiple carriers (waveform signals of different frequencies). Multi-carrier transmitters can simultaneously transmit modulated signals on multiple carriers. For example, each communication link 125 may be a multi-carrier signal modulated according to various radio technologies described above. Each modulated signal can be sent on a different carrier and can carry control information (for example, reference signals, control channels, etc.), additional burden information, data, and so on.
In some examples, at least a portion of the wireless communication system 100 may be configured to operate on multiple levels, in which one or more of the UEs 115 and one or more of the access points 105 One can be configured to support transmissions on a hierarchical level with reduced delay relative to another hierarchical level. In some examples, the hybrid UE 115-a may support a first layer of transmission that supports the use of a first TTI (which may be about "traditional communication technologies") and a second layer that supports the use of a second TTI that is shorter than the first TTI. TTI's second layer transmission (which may be related to "ULL communication technology") communicates with the access point 105-a on both the second layer layers.
In other examples, the second layer UE 115-b may communicate with the access point 105-b only on the second layer layer. Therefore, the hybrid UE 115-a and the second-layer UE 115-b may belong to the second level of the UE 115 that can communicate at the second-level layer, while the traditional UE 115 may belong to the second level that can communicate at the first-level layer only. First level of UE 115. The access point 105-b and the UE 115-b can communicate on the second level through the transmission of the sub-frames of the second sub-frame type. The access point 105-b may transmit communications related to only the first or second hierarchical layers or may transmit communications regarding both the first and second hierarchical layers. Where the access point 105-b supports both the first and second level layers, the communication component 361 may be configured to prioritize the first and second level layers received from the access point 105-b. Communication as described in this article.
The access point 105 may communicate wirelessly with the UE 115 via one or more access point antennas. Each of the access point 105 locations may provide communication coverage for a respective coverage area 110. In some examples, the access point 105 may be referred to as a base transceiver station, radio base station, radio transceiver, basic service set (BSS), extended service set (ESS), NodeB, eNodeB, home NodeB, home eNodeB, or Some other suitable term. The coverage area 110 of the base station can be divided into a plurality of sectors (not shown) constituting only a part of the coverage area. The wireless communication system 100 may include different types of access points 105 (e.g., macro, micro, and / or pico base stations). The access point 105 may also utilize different radio technologies, such as cellular and / or WLAN radio access technology (RAT). The access point 105 may be associated with the same or different access networks or operator deployments. The coverage area including the same or different types of access points 105, the coverage area of different access points 105 using the same or different radio technologies, and / or belonging to the same or different access networks may overlap.
In a network communication system using LTE / LTE-A and / or ULL LTE communication technologies, the term evolved Node B (eNodeB or eNB) may be generally used to describe the access point 105. The wireless communication system 100 can provide a heterogeneous LTE / LTE-A / ULL LTE network for different types of access points for various geographical areas. For example, each access point 105 may provide communication coverage for a macro cell, a pico cell, a pico cell, and / or other types of cells. Small cells such as pico cells, pico cells, and / or other types of cells may include low power nodes or LPNs. A macro cell generally covers a relatively large geographic area (e.g., a radius of several kilometers) and may allow unlimited access by the UE 115 in case of subscription by a service of a network provider. Small cells will generally cover a relatively small geographic area and allow unrestricted access by the UE 115 if subscribed by the service of the network provider, and for example, in addition to unrestricted access, Restricted access is provided by a UE 115 having an association with a small cell (e.g., a UE in a closed user group (CSG), a UE for users in the home directory, and the like). An eNB for a giant cell may be referred to as a giant eNB. An eNB for a small cell may be referred to as a small cell eNB. An eNB may support one or more (e.g., two, three, four, and similar) cells.
The core network 130 may communicate with the eNB or other access points 105 via one or more backbone network links 132 (eg, S1 interfaces, etc.). The access points 105 may also communicate with each other directly or indirectly, for example, via a backbone network link 134 (eg, an X2 interface, etc.) and / or via a backbone network link 132 (eg, via a core network 130). The wireless communication system 100 may support synchronous or asynchronous operation. For synchronous operation, the access points 105 may have similar frame timing, and transmissions from different access points 105 may be roughly aligned in time. For asynchronous operation, the access points 105 may have different frame timings, and transmissions from different access points 105 may be misaligned in time. In addition, the transmissions in the first layer and the second layer may or may not be synchronized between the access points 105. The techniques described herein can be used for synchronous or asynchronous operations.
UEs 115 are scattered throughout the wireless communication system 100, and each UE 115 may be stationary or mobile. UE 115 can also be referred to by those skilled in the art as mobile station, user station, mobile unit, user unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile user station, access Terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, user terminal, or some other suitable term. UE 115 can be a cellular phone, personal digital assistant (PDA), wireless modem, wireless communication device, handheld device, tablet computer, laptop, wireless phone, wearable object (such as a watch or glasses), wireless area Loop (WLL) station or similar. The UE 115 may be able to communicate with a giant eNodeB, a small cell eNodeB, a relay station, and the like. The UE 115 may also be able to communicate via different access networks, such as a cellular or other WWAN access network or a WLAN access network.
The communication link 125 shown in the wireless communication system 100 may include an uplink (UL) transmission from the UE 115 to the access point 105 and / or a downlink (DL) transmission from the access point 105 to the UE 115 . Downlink transmissions can also be referred to as forward link transmissions, and uplink transmissions can also be referred to as reverse link transmissions. The communication link 125 may carry transmissions at each level, and these transmissions may be multiplexed in the communication link 125 in some examples. The UE 115 may be configured to cooperatively communicate with multiple access points 105 via, for example, multiple-input multiple-output (MIMO), carrier aggregation (CA), coordinated multipoint (CoMP), or other schemes. MIMO technology uses multiple antennas on the access point 105 and / or multiple antennas on the UE 115 to transmit multiple data streams. Carrier aggregation can use two or more component carriers on the same or different servo cells for data transmission. CoMP may include techniques for coordinating transmission and reception through multiple access points 105 to improve the overall transmission quality of the UE 115 and increase network and spectrum utilization.
As mentioned, in some examples, the access point 105 and the UE 115 may utilize carrier aggregation to transmit on multiple carriers. In some examples, the access point 105 and the UE 115 may be transmitted in parallel in the first level of the frame, and each of the one or more sub-frames has a first sub-frame using two or more independent carriers Types of. Each carrier may have a bandwidth of, for example, 20 MHz, but other bandwidths may be utilized. The hybrid UE 115-a and / or the second-layer UE 115-b may, in some instances, use a single carrier to receive and / or transmit one or more sub-frames in the second layer, the single carrier having more The bandwidth of one or more of them. For example, if four independent 20 MHz carriers are used in the carrier aggregation scheme in the first layer, a single 80 MHz carrier can be used in the second layer. The 80 MHz carrier may occupy a portion of the radio frequency spectrum, which at least partially overlaps the radio frequency spectrum used by one or more of the four 20 MHz carriers. In some examples, the scalable bandwidth of the second tier type may provide (such as described above) a combination of techniques that provide shorter RTTs and further enhanced data rates.
Each of the different operation modes that can be adopted by the wireless communication system 100 can operate according to frequency division duplex (FDD) or time division duplex (TDD). In some examples, different layers may operate according to different TDD or FDD modes. For example, the first hierarchical layer may operate according to FDD, and the second hierarchical layer may operate according to TDD. In some examples, OFDMA communication signals may be used in communication link 125 for LTE downlink transmission at each level, and single-carrier frequency division multiple access (SC-FDMA) communication signals may be used in communication link 125. China and Israel are used for LTE uplink transmission in each layer. The following provides additional details regarding the implementation of layers in a system, such as the wireless communication system 100, and other features and functions regarding communication in such systems, with reference to the following figures.
FIG. 2 is a diagram illustrating an example of an access network 200 in an LTE or ULL LTE network architecture. In this example, the access network 200 is divided into a plurality of cellular areas (cells) 202. One or more lower power level eNBs 208 may have a honeycomb area 210 that overlaps one or more of the cells 202. The lower power level eNB 208 may be a pico cell (e.g., a home eNB (HeNB)), a pico cell, a pico cell, or a remote radio head end (RRH). The giant eNBs 204 are each assigned to a respective cell 202 and configured to provide access points to the core network 130 for all UEs 206 in the cell 202. In one aspect, the eNB 204 may include a scheduling component 302 configured to schedule and communicate with the UE 206 using conventional communication technologies and ULT communication technologies based on smaller TTIs (eg, traditional LTE and ULL LTE). Similarly, one or more of the UEs 206 may include a communication component 361 configured to prioritize communications for traditional communication technologies (e.g., LTE) and ULL communication technologies (e.g., ULL LTE). A centralized controller does not exist in this example of the access network 200, but a centralized controller may be used in alternative configurations. The eNB 204 is responsible for all radio related functions including: radio bearer control, admission control, mobility control, scheduling, security, and connection to one or more components of the core network 130.
The modulation and multiple access schemes employed by the access network 200 may vary depending on the particular telecommunications standard deployed. In LTE or ULL LTE applications, OFDM can be used on DL and SC-FDMA can be used on UL to support both frequency division duplex (FDD) and time division duplex (TDD). As those skilled in the art will easily understand and follow from the detailed description below, the concepts presented in this article are more applicable to LTE applications. However, these concepts can be easily extended to other telecommunication standards using other modulation and multiple access technologies. By way of example, these concepts can be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB). EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 standard family and using CDMA to provide broadband Internet access to mobile stations. These concepts can also be extended to Universal Terrestrial Radio Access (UTRA) using Wideband CDMA (W-CDMA) and other variants of CDMA (such as TD-SCDMA); Global System for Mobile Communications (GSM) using TDMA; and evolution UTRA (E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20 and flash OFDM using OFDMA. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and multiple access technology used will depend on the particular application and the overall design constraints imposed on the system.
The eNB 204 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables the eNB 204 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmission diversity. Spatial multiplexing can be used to simultaneously transmit different data streams on the same frequency. The data stream can be transmitted to a single UE 206 to increase the data rate or to multiple UEs 206 to increase the overall system capacity. This is achieved by spatially precoding each data stream (i.e., applying a scaling of amplitude and phase) and then transmitting each spatially precoded stream via multiple transmission antennas on the DL. The spatially pre-coded data stream arrives at the UE 206 through different spatial characteristics, which enables each of the UEs 206 to resume one or more data streams destined for that UE 206. On the UL, each UE 206 transmits a spatially precoded data stream, which enables the eNB 204 to identify the source of each spatially precoded data stream.
When channel conditions are good, space multiplexing is generally used. When channel conditions are less favorable, beamforming can be used to focus transmission energy in one or more directions. This can be achieved by spatially precoding the data for transmission via multiple antennas. To achieve good coverage at the cell edge, a single stream beamforming transmission can be used in combination with transmission diversity.
In the following detailed description, various aspects of the access network will be described with reference to a MIMO system supporting OFDM over DL. OFDM is a decentralized spectrum technique that modulates data on a large number of subcarriers within an OFDM symbol. The subcarriers are spaced at precise frequencies. This interval provides "orthogonality" that enables the receiver to recover data from the subcarriers. In the time domain, a guard interval (eg, a cyclic first code) may be added to each OFDM symbol to combat inter-OFDM symbol interference. UL may use SC-FDMA in the form of a DFT-dispersed OFDM signal to compensate for the high peak-to-average power ratio (PAPR).
FIG. 3 is a block diagram of an eNB 310 communicating with a UE 350 in an access network. In the DL, the upper layer packets from the core network are provided to the controller / processor 375. The controller / processor 375 implements the functionality of the L2 layer. In DL, the controller / processor 375 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical channels and transport channels, and radio resource allocation to the UE 350 based on various priority metrics. The controller / processor 375 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 350.
The transmission (TX) processor 316 implements various signal processing functions for the L1 layer (ie, the physical layer). Signal processing functions include the following: facilitating coding and interleaving of forward error correction (FEC) at the UE 350 and based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying ( QPSK), M phase shift keying (M-PSK), M quadrature amplitude modulation (M-QAM)) to signal cluster mapping. The encoded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., a pilot) in the time and / or frequency domain, and then combined using an inverse fast Fourier transform (IFFT) to generate a carrier Physical channel for time-domain OFDM symbol streams. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from the channel estimator 374 can be used to determine encoding and modulation schemes and for spatial processing. Channel estimates may be derived from reference signals and / or channel condition feedback transmitted by the UE 350. Each spatial stream is then provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX uses a separate spatial stream to modulate the RF carrier for transmission. In addition, the eNB 310 may include a scheduling component 302 configured to schedule and communicate with the UE 350 using conventional communication technologies and ULL communication technologies based on smaller TTIs (eg, traditional LTE and ULL LTE).
At the UE 350, each receiver 354RX receives a signal via its respective antenna 352. Each receiver 354RX restores the information modulated onto the RF carrier and provides that information to a receive (RX) processor 356. The RX processor 356 implements various signal processing functions of the L1 layer. The RX processor 356 performs spatial processing on the information to resume any spatial streaming to the UE 350. If multiple spatial streams go to the UE 350, these spatial streams can be combined into a single OFDM symbol stream by the RX processor 356. The RX processor 356 then uses a Fast Fourier Transform (FFT) to convert the OFDM symbol stream from the time domain to the frequency domain. The frequency domain signal contains an independent OFDM symbol stream for each subcarrier of the OFDM signal. The symbols and reference signals on each subcarrier are recovered and demodulated by determining the most likely signal cluster point transmitted by the eNB 310. Such soft decisions may be based on channel estimates calculated by the channel estimator 358. The soft decision is then decoded and deinterleaved to recover the data and control signals originally transmitted by the eNB 310 on the physical channel. The data and control signals are then provided to the controller / processor 359.
The controller / processor 359 implements the L2 layer. The controller / processor may be associated with a memory 360 that stores code and data. The memory 360 may be referred to as a computer-readable medium. In UL, the controller / processor 359 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between transport channels and logical channels to recover packets from the upper layers of the core network. The upper layer packet is then provided to a data store 362 representing all protocol layers above the L2 layer. Various control signals can also be provided to the data reservoir 362 for L3 processing. The controller / processor 359 is also responsible for error detection using acknowledgement (ACK) and / or negative acknowledgement (NACK) protocols to support HARQ operations. In addition, the communication component 361 is configured to prioritize communication between a conventional communication technology (for example, LTE) and a ULL communication technology (for example, ULL LTE).
In UL, the data source 367 is used to provide the upper layer packet to the controller / processor 359. The data source 367 represents all the protocol layers above the L2 layer. Similar to the functionality described in connection with the DL transmission by the eNB 310, the controller / processor 359 provides a header compression, encryption, packet segmentation and reordering based on the transmission by the eNB 310 between the logical channel and the transmission channel. The multiplexing of radio resource allocation is performed to implement the L2 layer for the user plane and the control plane. The controller / processor 359 is also responsible for HARQ operation, retransmission of lost packets, and signaling to the eNB 310.
Channel estimates derived by the channel estimator 358 from a reference signal or feedback transmitted by the eNB 310 may be used by the TX processor 368 to select an appropriate encoding and modulation scheme, and to promote spatial processing. The spatial streams generated by the TX processor 368 are provided to different antennas 352 via independent transmitters 354TX. Each transmitter 354TX uses a separate spatial stream to modulate the RF carrier for transmission.
UL transmissions are processed at the eNB 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives signals via its respective antenna 320. Each receiver 318RX restores the information modulated onto the RF carrier and provides this information to the RX processor 370. The RX processor 370 may implement an L1 layer.
The controller / processor 375 implements the L2 layer. The controller / processor 375 may be associated with a memory 376 that stores code and data. The memory 376 may be referred to as a computer-readable medium. In UL, the controller / processor 375 provides demultiplexing, packet reassembly, decryption, header decompression, and control signal processing between transport channels and logical channels to recover packets from the UE 350 upper layer. The upper layer packets from the controller / processor 375 can be provided to the core network. The controller / processor 375 is also responsible for error detection using ACK and / or NACK protocols to support HARQ operations.
FIG. 4 is a diagram illustrating a non-limiting example of a ULL timeline 400, 402 for managing ULL communication in a wireless communication system, in which time development extends from left to right. In this example, the timeline 400, 402 includes a ULL frame of the symbol duration in each symbol of the sub-frame. Timelines 400 and 402 both depict symbols representing TTIs for ULL entity downlink control channel (uPDCCH) and / or ULL entity downlink shared channel (uPDSCH) and representations including ULL entity uplink control channel (uPUCCH ) And / or the TTI symbol of the ULL entity uplink shared channel (uPUSCH). In the timeline 400, 14 symbols are displayed in a given sub-frame (for example, for a normal CP), and in the timeline 402, 12 symbols are displayed in a given sub-frame (for example, for an extended CP). In either case, lower latency is achieved in ULL by using symbol-based TTI. It will be understood that in other examples, the TTI may be two or more symbols, a time slot of a sub-frame (where the sub-frame includes two time slots), and the like. In addition, the response time of the HARQ handler can be 3 symbols (or 4 symbols, 3 double symbols, 3 time slots, etc.). In the depicted example, in the subframe, uPDCCH / uPDSCH is transmitted in symbol 0, and HARQ is processed and transmitted in symbol 4, and so on.
5 is a diagram illustrating a non-limiting example of a 1ms sub-frame 500 including a conventional downlink transmission resource 502 for a conventional communication technology. The traditional downlink transmission resource 502 may correspond to, for example, physical data shared channel (PDSCH) / enhanced physical downlink control channel (EPDCCH) transmission in LTE, and may include one or more non-DM-RS regions 504 and one Or multiple DM-RS areas 506, where the DM-RS area 506 includes resource elements (eg, connected groups of resource elements) configured for DM-RS transmission. Therefore, as shown, the ULL transmission resources may be assigned so as not to overlap the traditional downlink transmission resources 502, as shown by the example ULL transmission resources 510. However, in other examples, the ULL transmission resource may be assigned to overlap the traditional downlink transmission resource 502 in the non-DM-RS region 540, as shown by the ULL transmission resource 512, or assigned to the DM-RS region 506. The middle-downlink traditional downlink transmission resource 502 is as shown by the ULL transmission resource 514. This may occur, for example, if the eNB assigns ULL transmission resources 514 while transmitting on traditional downlink transmission resources (as assignments may occur in the ULL at a faster rate due to the shortened TTI).
The UE may therefore be configured to prioritize communications in which traditional downlink transmission resources overlap with ULL transmission resources (eg, for ULL transmission resources 512 and 514), as described further herein. In one example, traditional downlink transmission resources 502 and ULL transmission resources 510, 512, or 514 may be related to a given UE. Therefore, the UE may be configured to prioritize communications received on the traditional downlink transmission resource 502 and the overlapping ULL transmission resource 512 or 514. In another example, traditional downlink transmission resources 502 and ULL transmission resources 512, 514 may be related to different UEs, and UEs related to ULL transmission resources 512, 514 may be configured to transmit resources in traditional downlink 502 corresponds to prioritizing communications received on overlapping ULL transmission resources 512 and 514 in the case of communications with one or more other UEs, as further described herein.
It should be understood that in LTE, an eNB may transmit DM-RS in one or more Division Code Multiplexing (CDM) groups, where the DM-RS may be based on rank (eg, the number of antennas used to transmit the DM-RS) Multiplexed in each CDM group. For example, for a rank less than or equal to four, the eNB may transmit a DM-RS based on a spreading factor of two so that the DM-RS is spread across two consecutive OFDM symbols in time. For example, for ranks greater than four, the eNB may transmit a DM-RS based on a spreading factor of four, so that the DM-RS spreads in time across four consecutive OFDM symbols.
6 to 8, aspects are depicted with reference to one or more components and one or more methods that can perform the actions or functions described herein. In one aspect, the term "component" as used herein may be one of the parts constituting a system, may be hardware or software, or some combination thereof, and may be divided into other components. Although the operations described below in FIG. 7 and FIG. 8 are presented in a specific order and / or presented as being performed by the instance components, it should be understood that the ordering of the actions and the components that perform the actions may vary depending on the implementation. In addition, it should be understood that the following actions or functions may be performed by a specially-programmed processor, a processor executing specially-programmed software or a computer-readable medium, or any other hardware component and / or software component capable of performing the described action or function. Combined execution.
FIG. 6 illustrates an example system 600 for prioritizing traditional or ULL communications. System 600 includes communication with eNB 604 (examples of which are described above in FIGS. 1-3 (e.g., access point 105, eNB 204, lower power level eNB 208, eNB 310, UE 115, 206, 350, etc.)) UE 602 communicating to access a wireless network. In one aspect, the eNB 604 and the UE 602 may have established one or more downlink channels, and communicate on the downlink channels via a downlink signal 609, and the downlink signals may be transmitted by the eNB 604. Transmitted (e.g., via transceiver 656) and received by UE 602 (e.g., via transceiver 606) for transmitting control and / or data messages (e.g., in signaling) from the eNB over the configured communication resources 604 is communicated to UE 602. In addition, for example, the eNB 604 and the UE 602 may have established one or more uplink channels on which to communicate via an uplink signal 608, which may be transmitted by the UE 602 (e.g., (Via transceiver 606) and received by eNB 604 (e.g., via transceiver 656) for communicating control and / or data messages (e.g., in signaling) from the UE 602 over the configured communication resources Go to eNB 604. As further described herein, for example, the eNB 604 may communicate resource grants 680 that may indicate resources on which the UE 602 communicates (eg, transmits or receives) data with the eNB 604, where the resources may correspond to traditional and / Or ULL communication technology, as described. For example, resources related to ULL communication technology may be related to the ULL timeline (e.g., a timeline with a TTI smaller than a sub-frame in duration, such as timelines 400, 402 in FIG. 4).
In one aspect, the UE 602 may include one or more processors 603 and / or memory 605 that may be communicatively coupled, for example, via one or more buses 607, and may be used in combination to receive data from the eNB 604. The grant of resources in traditional and / or ULL communication technologies and the operation or other implementation of communication components based on the grant of communication components 361 to communicate over those resources. For example, various operations related to the communication component 361 may be performed or otherwise performed by one or more processors 603, and in one aspect, may be performed by a single processor, while in other aspects, the operations in The difference may be performed by a combination of two or more different processors. For example, in one aspect, the one or more processors 603 may include a modem processor or a baseband processor or a digital signal processor or a special application integrated circuit (ASIC) or a transmission processor or a reception processor. Or any one or any combination of transceiver processors associated with the transceiver 606. In addition, for example, the memory 605 may be a non-transitory computer-readable medium, which includes (but is not limited to) random access memory (RAM), read-only memory (ROM), programmable ROM (PROM), Erase PROM (EPROM), electrically erasable PROM (EEPROM), magnetic storage devices (e.g., hard disks, flexible disks, magnetic tapes), optical disks (e.g. compact discs (CD), digital versatile discs (DVD)) , Smart cards, flash memory devices (e.g., cards, sticks, flash drives), registers, removable disks, and for storing software and / or accessible by a computer or one or more processors 603 And any other suitable medium that reads computer-readable code or instructions. In addition, the memory 605 or computer-readable storage medium may reside in one or more processors 603, external to one or more processors 603, dispersed across multiple entities including one or more processors 603, and the like.
Specifically, the one or more processors 603 and / or the memory 605 may perform actions or operations defined by the communication component 361 or its sub-components. For example, the one or more processors 603 and / or the memory 605 may execute the first and the first defined by the communication prioritization component 610 for determining whether to prioritize and respectively based on different TTIs received on a common resource. The action or operation of the first or second communication related to the second resource. For example, in one aspect, the communication prioritization component 610 may include hardware (eg, one or more processor modules of one or more processors 603) and / or stored in the memory 605 and Computer readable code or instructions executable by at least one of the one or more processors 603 to perform the specially configured communication prioritization operations described herein. In addition, for example, the one or more processors 603 and / or the memory 605 may perform actions or operations defined by the optional common resource determination component 612 for determining a common resource where the first and second communications overlap. For example, in one aspect, the common resource determination component 612 may include hardware (e.g., one or more processor modules of one or more processors 603) and / or stored in the memory 605 and configured by Computer-readable code or instructions executable by at least one of the one or more processors 603 to perform the specifically configured resource determination operations described herein. In addition, for example, the one or more processors 603 and / or the memory 605 may optionally perform the operations defined by the optional prioritization information receiving component 614 for obtaining information about prioritizing the first or second communication on a common resource Information action or operation. For example, in one aspect, the prioritized information receiving component 614 may include hardware (eg, one or more processor modules of one or more processors 603) and / or stored in the memory 605 And computer-readable code or instructions executable by at least one of the one or more processors 603 to perform the specially configured information receiving operations described herein.
Similarly, in one aspect, the eNB 604 may include one or more processors 653 and / or memory 655 that may be communicatively coupled, for example, via one or more buses 657, and may be combined for Generate a scheduling component 302 for resource granting by the UE 602 and / or other UEs to operate or otherwise implement the scheduling component. For example, various functions related to the scheduling component 302 may be implemented or otherwise performed by one or more processors 653, and may be performed by a single processor in one aspect, and in other aspects, among the functions The difference may be performed by a combination of two or more different processors, as described above. It should be understood that in one example, one or more processors 653 and / or memory 655 may be configured as described above in the example of one or more processors 603 and / or memory 605 of UE 602.
In one example, one or more processors 653 and / or memory 655 may perform actions or operations defined by the scheduling component 302 or its sub-components. For example, one or more processors 653 and / or memory 655 may execute a first resource set (e.g., based on a first TTI operation) defined by the traditional resource allocation component 620 for allocation to one or more UEs. (Resources in traditional communication technology). For example, in one aspect, the traditional resource allocation component 620 may include hardware (e.g., one or more processor modules of one or more processors 653) and / or stored in the memory 655 and configured by Computer-readable code or instructions executable by at least one of the one or more processors 653 to perform the specially configured traditional resource allocation operations described herein. In addition, for example, one or more processors 653 and / or memory 655 may execute a second resource set defined by the ULL resource allocation component 622 for allocation to one or more UEs (e.g., based on being shorter than the first TTI The second TTI operation (ULL communication technology resource) action or operation. For example, in one aspect, the ULL resource allocation component 622 may include hardware (e.g., one or more processor modules of one or more processors 653) and / or stored in the memory 655 and configured by Computer-readable code or instructions executable by at least one of the one or more processors 653 to perform the specifically configured ULL resource allocation operations described herein. In addition, for example, the one or more processors 653 and / or the memory 655 may execute, as defined by the optional communication prioritization indicating component 624, instructions to the one or more UEs regarding the prioritization in the first and second The action or operation of information communicated on overlapping resources in resource allocation. For example, in one aspect, the communication prioritization indication component 624 may include hardware (eg, one or more processor modules of one or more processors 653) and / or stored in the memory 655 And computer-readable code or instructions executable by at least one of the one or more processors 653 to perform the specialized prioritized instruction operations described herein.
It should be understood that the transceivers 606, 656 may be configured to transmit and receive wireless signals via one or more antennas, an RF front end, one or more transmitters, and one or more receivers. In one aspect, the transceivers 606, 656 can be tuned to operate at a specified frequency so that the UE 602 and / or the eNB 604 can communicate at a certain frequency. In one aspect, the one or more processors 603 may configure the transceiver 606 and / or the one or more processors 653 may configure the transceiver 656 to operate at a specified frequency and power level based on a configuration, a communication protocol, etc. Down operation to communicate the uplink signal 608 and / or the downlink signal 609 on the relevant uplink or downlink communication channel, respectively.
In one aspect, the transceivers 606, 656 can operate in multiple frequency bands (eg, using a multi-band multi-mode modem, not shown), so as to process digital data transmitted and received using the transceivers 606, 656. In one aspect, the transceivers 606, 656 may be multi-band and configured to support multiple frequency bands for a particular communication protocol. In one aspect, the transceivers 606, 656 can be configured to support multiple operating networks and communication protocols. Thus, for example, the transceivers 606, 656 may enable transmission and / or reception of signals based on a given modem configuration.
FIG. 7 illustrates resources used for prioritization (e.g., by a UE) shared by a first communication based on a first TTI (e.g., traditional communication) and a second communication based on a shorter second TTI (e.g., ULL communication) Method 700 of communication on a set. At block 702, the UE may receive a first communication based on a first TTI on a first resource set. In one aspect, the communication component 361 (FIG. 6) may receive (e.g., via the transceiver 606) a first TTI-based first communication on a first set of resources. In one example, the first communication may correspond to broadcast data transmitted by the eNB 604, such as control or traffic data related to system information transmission, paging transmission, random access transmission, and the like. In another example, the first communication may correspond to unicast data, which may or may not be related to the UE 602, such as control or traffic data, reference signals, and the like. In a specific example, the first communication may correspond to a PDSCH / EPDCCH, one or more DM-RS symbols, and / or the like of a conventional communication technology (eg, LTE). It should be understood that the eNB 604 may allocate the first and / or second resources to the UE 602 for receiving communications from the eNB 604, as described further herein.
At block 704, the UE may receive a second communication based on a second TTI on a second resource set, wherein the second TTI is smaller than the first TTI, and wherein the second resource set overlaps the first resource Set, thus defining a set of common resources. In one aspect, the communication component 361 may similarly receive (eg, via the transceiver 606) a second TTI-based second communication on a second resource set, wherein the second TTI is smaller than the first TTI, and wherein the The second resource set overlaps the first resource set, thereby defining a common resource set. In one example, the second communication may correspond to control or traffic data of a ULL communication technology (eg, ULL LTE) with a smaller TTI than the traditional communication technology of the first communication. In one example, the first TTI may be a sub-frame in a duration (eg, where the first communication is related to LTE), and the second TTI may be one symbol, two symbols, a time slot, etc. in the duration. As described, the first and second resource sets may overlap, for example, as shown in FIG. 5, where the first resource set may correspond to a resource in a traditional downlink transmission resource 502, and the second resource set may correspond to a ULL A resource in one or more of the transmission resources 512 or 514.
Therefore, at block 706, the UE may determine whether to prioritize receiving the first communication or the second communication when decoding a communication received on the common resource set. In one aspect, the communication prioritization component 610 may determine whether to prioritize the reception of the first communication or the second communication when decoding a communication received on the common resource set. This may include a common resource determination component 612 determining a common resource set between the first and second communications, and a communication prioritization component 610 determining some aspects of the common resources. For example, the common resource determination component 612 may determine based at least in part on receiving allocation information for the first resource set and / or the second resource set from the eNB 604 and determining resources that overlap between the first and second resource sets Common resource collection. In an example, the UE 602 may be configured with a second set of resources for receiving the second communication in the ULL communication technology, and may receive the communication in the control data related to the traditional communication technology to determine for the first communication. The first resource collection. For example, the common resource determination component 612 may receive a physical downlink control channel (PDCCH) related to the first resource set from the eNB 604. Data, such as PDSCH / PDCCH, etc.). The communication prioritization component 610 may therefore determine the prioritized communication based at least in part on the common resource determination component 612 detecting the common resource set.
In addition, in one example, the communication prioritization component 610 may prioritize the first or second communication based on one or more aspects of a common resource set. For example, at block 708, the UE may determine whether the first resource set in the common resource set corresponds to broadcast data, including DM-RS resources, including EPDCCH, or includes corresponding to a specific MCS, resource allocation size, or layer. The number of data. In an example, the common resource determination component 612 may determine whether at least a first resource set in the common resource set corresponds to broadcast data, including DM-RS resources, including EPDCCH, or includes information corresponding to a specific MCS, resource allocation size, or layer. Number of data. For example, the communication prioritization component 610 may be configured to determine whether to prioritize the first communication or the second communication based on a determination made by the common resource determination component 612. In an example, the determination may be further based on the configuration or other information received from the eNB 604 or another network node, the configuration stored in the memory of the UE 602, etc., which is based on the first resource in the common resource set The associated content of the collection specifies when to prioritize the first or second communication. In a specific example, the communication prioritization component 610 may correspond to a broadcast resource including a DM-RS resource, including an EPDCCH, or a first resource set in a common resource set, or a number corresponding to a specific MCS, resource allocation size, or layer In the case of at least one of the data, the first communication is prioritized when decoding the communication received on the common resource set. Similarly, the communication prioritization component 610 may otherwise prioritize receiving a second communication when decoding a communication received on a common set of resources.
For example, the communication prioritization component 610 may determine whether the first resource set in the common resource set corresponds to the broadcast material. For example, the UE 602 may perceive both a traditional broadcast channel (e.g., based on decoding a PDCCH from the eNB 604) and a ULL channel (e.g., based on receiving an allocation of a second resource set corresponding to the ULL channel). In one example, the communication component 361 may decode a Radio Network Temporary Identifier (RNTI) corresponding to the UE 602 (e.g., System Information (SI) -RNTI, Paging (P) -RNTI, Random Access (RA) -RNTI Etc.) to determine whether the broadcast material exists in the first resource set. If there is, the common resource determination component 612 may determine whether the first resource set overlaps the second communication (eg, ULL data) on the second resource set, where the overlapping resources define a common resource set. In the case where there is overlap, the communication prioritization component 610 may determine to prioritize receiving broadcast material at least in the common resource set instead of receiving the second communication. In this example, the communication prioritization component 610 may determine to receive the second communication in the non-overlapping remaining resources of the second resource set. In either case, prioritizing broadcast data in this regard can ensure that UE 602 receives broadcast data from eNB 604, which can be more critical than ULL data.
In another example, the communication prioritization component 610 may determine whether the first resource set in the common resource set corresponds to a DM-RS resource for DM-RS transmission or otherwise includes one or more of traditional communication technologies. Multiple DM-RS transmissions. This may include: the communication component 361 determines that the first resource set is related to a DM-RS area (e.g., the DM-RS area 506 in FIG. 5) reserved for transmitting resources for transmitting the DM-RS in the conventional communication technology or Including the DM-RS area, this may be based in part on the DM-RS decoded on the resource area; the priority information receiving component 614 receives from the eNB 604 the actual resource elements in the DM-RS area for DM-RS transmission The indication (e.g., in a DM-RS configuration received from the eNB 604 or another network entity) may include a DM-RS configuration for matching around the DM-RS rate in decoding traditional communications, and the like. In the case where the DM-RS resource and the ULL data resource overlap, if one time slot of the DM-RS is punctured, it is possible to decode a traditional channel based on the DM-RS for a rank less than or equal to four. However, if the two time slots of the DM-RS are punctured, the traditional channel may not be decoded because the DM-RS may not be effectively processed.
In any case, the UE 602 can perceive resources (referred to as DM-RS related resources) and ULL channels (e.g., DM-RS related resources) that are reserved or used for DM-RS transmission in traditional communication technologies (e.g., on a first resource set) Based on receiving the allocation of the second resource set corresponding to the ULL channel). The common resource determination component 612 can therefore determine whether the DM-RS related resources overlap the second communication (eg, ULL data) on the second resource set, where the overlapping resources can define a common resource set. An example of overlapping ULL resources is shown in FIG. 5 as the ULL transmission resources 514 of the overlapping DM-RS region 506. In the case where there is overlap in the common resource set, the communication prioritization component 610 may determine to prioritize receiving the first communication (for example, on the DM-RS related resource) in at least the common resource set instead of receiving the second communication . In this example, the communication prioritization component 610 may determine to receive the second communication among the remaining resources of the second resource set.
In a more specific example, the communication prioritization component 610 may determine to prioritize receiving the first communication on a common resource set and / or receiving the first communication on a specific resource within the common resource set and transmitting on those specific resources. DM-RS. For example, the communication prioritization component 610 may determine to prioritize receiving the first communication on a common resource set corresponding to a DM-RS symbol in a conventional communication technology, corresponding to a specific resource element where the DM-RS is transmitted, and the like. In one example, the prioritized information receiving component 614 may receive an indication of which resource elements the symbol includes a DM-RS transmission (eg, in the DM-RS configuration from the eNB 604). Therefore, the communication prioritization component 610 may determine to prioritize the reception of the second communication on the second resource set other than the common resource set and / or the reception of symbols other than the common resource set or among the symbols in which the DM-RS is transmitted A second communication on a resource element outside a specific resource element. In yet another example, the communication prioritization component 610 may determine to prioritize the first communication on a part or a single one of the specific resource elements in the common resource set where the DM-RS is received and transmitted, and the communication prioritization component 610 may therefore decide to receive the second communication in the remaining resource elements in the common resource set.
In another example, in a case where the first resource set is not related to the broadcast material and does not include a DM-RS (eg, resources in the non-DM-RS area 504), the communication prioritization component 610 may determine the common resource set Whether the first resource set in the EPDCCH includes data corresponding to a specific MCS, resource allocation size, or number of layers may be given a higher priority in some examples. This may include the communication component 361 decoding the PDCCH corresponding to the first resource set from the eNB 604 to determine whether the first resource set includes an EPDCCH, a specific MCS, a specific resource allocation size, or a specific number of layers. For example, having a higher MCS (e.g., reaching a threshold MCS or an MCS corresponding to one or more designated MCSs), a resource allocation size (e.g., reaching a threshold allocation size or corresponding to one or more designated MCS sizes) Data on resource allocation size) or number of tiers (eg, reaching a threshold number of tiers or corresponding to one or more specified number of tiers) may indicate data that is sensitive to resource availability. As an example, if some of the allocated resources are reallocated and thus become unavailable, a combination of MCS and resource allocation size that results in a high coding size (eg,> 0.5) may be sensitive to resource availability. As another example, data transmission with two or more layers may also be more sensitive to excess resources. Thus, for example, in these cases, the communication prioritization component 610 may decide to prioritize this material to help ensure receipt of the material. The common resource determination component 612 can therefore determine whether the first resource including the EPDCCH or a specific MCS, resource allocation size, or number of layers overlaps the second communication (eg, ULL data) on the second resource set, which can define a common Resource collection. In the case where there is overlap in the common resource set, the communication prioritization component 610 may determine to prioritize receiving the first communication (for example, EPDCCH or having a specific MCS, resource allocation size, number of layers, etc.) in the common resource set. Information) rather than second communications. In this example, the communication prioritization component 610 may determine to receive the second communication in the remaining resources of the second resource set.
In the above example, it is described that the common resource determination component 612 determines whether the common resource set exists after determining that the first resource set is related to a specific transmission. It should be appreciated, however, that the common resource determination component 612 may determine a common resource before determining whether the first set of resources is related to a particular transmission. In this example, in a case where the common resource determination component 612 does not detect an overlapping resource with the second resource set, it may not be necessary to make a determination about transmissions occurring on the first resource set.
In addition, it should be understood that the communication prioritization indicating component 624 can configure the above functions of the communication prioritization component 610, the priority information receiving component 614 can receive the above functions and the communication prioritization component 610 is providing the information to the UE 602 The above functions can be used when prioritizing communication on resources. In this regard, the scheduling component 302 may transmit the first communication on the first resource set and the second communication on the second resource set, while selecting the first or second communication for transmission on the common resource set to facilitate the UE 602 Receive the appropriate communication according to the configuration described above.
In another example, the UE 602 may process the status of the overlapping first and second resource sets as an error event. In other words, the UE 602 may not expect to receive the first communication and the second communication using a common resource set. In this case, if the common resource determination component 612 detects overlapping transmissions for the first communication and the second communication, the communication component 361 may discard at least one of the two communications. Discarding may depend on some rules similar to those discussed above, which may be configured in the UE 602 (e.g., by the eNB 604 or another network entity) or otherwise stored in the relevant group at the UE 602 State, etc.
In addition, for example, the communication component 361 can simultaneously receive the first communication and the second communication on the common resource set, and can perform interference cancellation when decoding the individual communications. In addition, in an example, the communication component 361 may receive the first communication and the second communication on the first and second resource sets that are not in the common resource set at the same time. Therefore, for example, in a case where the common resource determination component 612 does not determine a common resource between the first and second communications, the communication component 361 may receive and decode the first without prioritization by the communication prioritization component 610. And second communication.
In another example, the first or second set of resources may correspond to different UEs, and therefore one UE may not perceive that the resources overlap with resources assigned to another UE. FIG. 8 illustrates a method 800 for managing (e.g., by an eNB) resource allocation to avoid overlap and / or provide information to UEs related to prioritized communications. At block 802, the eNB may allocate a first resource set for transmission of one of the first communications according to a first TTI, and at block 804, the eNB may allocate a second resource set for transmitting according to a One of the second TTIs is a second communication, wherein the second TTI is smaller than the first TTI. In one aspect, the traditional resource allocation component 620 (FIG. 6) may allocate the first resource set for transmitting the first communication according to the first TTI, and the ULL resource allocation component 622 may allocate the second resource set For transmitting the second communication according to the second TTI. As described, the first TTI may be a sub-frame in a duration (eg, where the first communication is related to LTE), and the second TTI may be one symbol, two symbols, a time slot, etc. in the duration. In addition, the first resource set and the second resource set may correspond to the same or different UEs. In any case, the ULL resource allocation component 622 may attempt to avoid overlapping with the first resource set and / or vice versa when allocating the second resource set.
For example, complete avoidance of overlap may not occur or may not be possible in some situations. In an example, the ULL resource allocation component 622 may attempt to allocate a second resource that overlaps the first resource set in the common resource set by determining that the first resource set is related to one or more channels that are not sensitive to puncturing. set. For example, the ULL resource allocation component 622 may determine that a specific MCS, resource allocation size, number of layers, etc. (such as MCS below a threshold, resource allocation size, number of layers, etc.) are related to channels in traditional wireless technologies. Etc.) of a second set of resources for allocation to the UE 602 to facilitate ULL communication. In another example, the ULL resource allocation component 622 may attempt to allocate a second resource set of a first resource set in an overlapping non-DM-RS area in a common resource set, so as to avoid interference with DM-RS transmission (or at least avoid All symbols of DM-RS are overlapped).
In these or other examples, at block 806, the eNB may optionally indicate to the UE one or more parameters regarding prioritizing communications received on at least a portion of the first or the second set of resources. In one aspect, the communication prioritization indication component 624 may indicate to the UE 602 one or more parameters regarding prioritization of communications received on at least a portion of the overlapping first or second set of resources. The priority information receiving component 614 can receive the instruction, and the communication priority component 610 can therefore prioritize the communication on the first or second resource based at least in part on the instruction. For example, the indication may indicate that a resource related to the first resource set in the second resource set (e.g., for uPDCCH assignment) is unavailable (e.g., for communication on the second resource set (which may be related to another UE), and therefore the communication prioritization component 610 may determine that the second resource set is not received in at least a part of the second resource set that may overlap the first resource set based on the indication. Communication, as described. For example, the indication may include one or more uPDCCH bits that can be processed by the ULL UE. In another example, the first set of resources may include one or more REs (eg, for different UEs) where the DM-RS is transmitted. In this example, the indication may specify a DM-RS symbol, a DM-RS resource element, or otherwise relate to whether to perform rate matching for the second communication around the DM-RS RE in the assigned resource block ( For example, in the case where the DM-RS RE may overlap with the traditional transmission in the first resource set). In this example, the communication prioritization component 610 may therefore determine whether to perform rate matching around the associated DM-RS RE when decoding the second communication based on the indication.
At block 808, the eNB may transmit a first resource grant corresponding to the first resource set on a downlink control channel, and at block 810, may transmit a corresponding resource grant on the downlink control channel. The second resource grant of the second resource set. In one aspect, the scheduling component 302 may transmit a first resource grant (eg, a resource grant 680) corresponding to a first resource set on the downlink control channel (eg, to one or more UEs) And a second resource grant (eg, resource grant 680) corresponding to the second resource set (eg, to one or more UEs or one or more different UEs) may be transmitted on the downlink control channel. In one example, the ULL resource allocation component 622 may allocate a second resource set (eg, at block 804) and the scheduling component 302 transmits a first communication on the allocated first resource set. This situation may not allow the allocation of ULL resources to be planned, which may result in overlapping resources as described in FIG. 5.
It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based on design preferences, it is understood that the specific order or hierarchy of steps in the process can be reconfigured. In addition, some steps may be combined or omitted. The accompanying method solutions present the elements of the various steps in a sample order and are not meant to be limited to the specific order or level presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be apparent to those skilled in the art, and the general principles defined herein may be applied to other aspects. Therefore, the scope of patent application is not intended to be limited to the form shown herein, but will be given a complete category consistent with the scope of patent application in the language. State so)), and means "one or more." Unless explicitly stated otherwise, the term "some" refers to one or more. All structural and functional equivalents of the elements in the various aspects described herein that are generally known to or will become known to those skilled in the art are expressly incorporated herein by reference, and are intended to be covered by the scope of the patent application . Furthermore, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the scope of the patent application. Elements not covered by the patent will be construed as means plus function, unless the element is explicitly stated using the phrase "component for ..."

100‧‧‧無線通信系統100‧‧‧Wireless communication system

105‧‧‧存取點 105‧‧‧Access point

105-a‧‧‧存取點 105-a‧‧‧Access Point

105-b‧‧‧存取點 105-b‧‧‧Access Point

110‧‧‧涵蓋範圍區域 110‧‧‧ Covered Area

115‧‧‧使用者設備(UE) 115‧‧‧User Equipment (UE)

115-a‧‧‧混合式UE 115-a‧‧‧ Hybrid UE

115-b‧‧‧第二層UE 115-b‧‧‧Layer 2 UE

125‧‧‧通信鏈路 125‧‧‧ communication link

130‧‧‧核心網路 130‧‧‧ Core Network

132‧‧‧骨幹網路鏈路 132‧‧‧ Backbone Network Link

134‧‧‧骨幹網路鏈路 134‧‧‧ Backbone Network Link

200‧‧‧存取網路 200‧‧‧ access network

202‧‧‧蜂巢式區(小區) 202‧‧‧Honeycomb Zone (Community)

204‧‧‧巨型eNB 204‧‧‧ Giant eNB

206‧‧‧UE 206‧‧‧UE

208‧‧‧較低功率等級eNB 208‧‧‧Lower power eNB

210‧‧‧蜂巢式區 210‧‧‧ Honeycomb area

302‧‧‧排程組件 302‧‧‧Schedule

310‧‧‧演進型節點B (eNB) 310‧‧‧Evolved Node B (eNB)

316‧‧‧傳輸(TX)處理器 316‧‧‧Transfer (TX) processor

318TX‧‧‧傳輸器 318TX‧‧‧Transmitter

318RX‧‧‧接收器 318RX‧‧‧Receiver

320‧‧‧天線 320‧‧‧ Antenna

350‧‧‧UE 350‧‧‧UE

352‧‧‧天線 352‧‧‧antenna

354RX‧‧‧接收器 354RX‧‧‧Receiver

354TX‧‧‧傳輸器 354TX‧‧‧Transmitter

356‧‧‧接收(RX)處理器 356‧‧‧Receive (RX) Processor

358‧‧‧頻道估計器 358‧‧‧ Channel Estimator

359‧‧‧控制器/處理器 359‧‧‧Controller / Processor

360‧‧‧記憶體 360‧‧‧Memory

361‧‧‧通信組件 361‧‧‧Communication component

362‧‧‧資料儲集器 362‧‧‧Data Store

367‧‧‧資料源 367‧‧‧Source

368‧‧‧TX處理器 368‧‧‧TX processor

370‧‧‧RX處理器 370‧‧‧RX processor

374‧‧‧頻道估計器 374‧‧‧Channel Estimator

375‧‧‧控制器/處理器 375‧‧‧Controller / Processor

376‧‧‧記憶體 376‧‧‧Memory

400‧‧‧時線 400‧‧‧timeline

402‧‧‧時線 402‧‧‧Timeline

500‧‧‧子訊框 500‧‧‧ subframe

502‧‧‧傳統下行鏈路傳輸資源 502‧‧‧ traditional downlink transmission resources

504‧‧‧非解調變參考信號(DM-RS)區 504‧‧‧non-demodulation reference signal (DM-RS) area

506‧‧‧解調變參考信號(DM-RS)區 506‧‧‧ Demodulation Reference Signal (DM-RS) area

510‧‧‧超低延遲(ULL)傳輸資源 510‧‧‧Ultra-low-latency (ULL) transmission resources

512‧‧‧超低延遲(ULL)傳輸資源 512‧‧‧ultra-low-latency (ULL) transmission resources

514‧‧‧超低延遲(ULL)傳輸資源 514‧‧‧Ultra Low Latency (ULL) Transmission Resources

600‧‧‧系統 600‧‧‧ system

602‧‧‧UE 602‧‧‧UE

603‧‧‧處理器 603‧‧‧ processor

604‧‧‧eNB 604‧‧‧eNB

605‧‧‧記憶體 605‧‧‧Memory

606‧‧‧收發器 606‧‧‧ Transceiver

607‧‧‧匯流排 607‧‧‧Bus

608‧‧‧上行鏈路信號 608‧‧‧ uplink signal

609‧‧‧下行鏈路信號 609‧‧‧ downlink signal

610‧‧‧通信優先權化組件 610‧‧‧Communication Prioritization Component

612‧‧‧共同資源判定組件 612‧‧‧Common resource determination component

614‧‧‧優先權化資訊接收組件 614‧‧‧ Priority information receiving component

620‧‧‧傳統資源分配組件 620‧‧‧ traditional resource allocation component

622‧‧‧ULL資源分配組件 622‧‧‧ULL resource allocation component

624‧‧‧通信優先權化指示組件 624‧‧‧Communication Priority Indication Component

653‧‧‧處理器 653‧‧‧Processor

655‧‧‧記憶體 655‧‧‧Memory

656‧‧‧收發器 656‧‧‧Transceiver

657‧‧‧匯流排 657‧‧‧Bus

680‧‧‧資源授與 680‧‧‧ Grant of resources

700‧‧‧方法 700‧‧‧ Method

702‧‧‧區塊 702‧‧‧block

704‧‧‧區塊 704‧‧‧block

706‧‧‧區塊 706‧‧‧block

708‧‧‧區塊 708‧‧‧block

800‧‧‧方法 800‧‧‧ Method

802‧‧‧區塊 802‧‧‧block

804‧‧‧區塊 804‧‧‧block

806‧‧‧區塊 806‧‧‧block

808‧‧‧區塊 808‧‧‧block

810‧‧‧區塊 810‧‧‧block

為了有助於更全面理解本文中所描述的態樣,現在參考附圖,其中相同的元件用相同的數字來參考。此等圖式不應解釋為限制本發明,而是意欲僅為說明性的。To facilitate a more complete understanding of the aspects described herein, reference is now made to the drawings, in which like elements are referenced by like numbers. These drawings should not be construed as limiting the invention, but are intended to be illustrative only.

圖1展示在概念上說明根據本文所描述之態樣的電信系統之實例的方塊圖。 FIG. 1 shows a block diagram conceptually illustrating an example of a telecommunications system according to the aspects described herein.

圖2為說明存取網路之實例的圖式。 FIG. 2 is a diagram illustrating an example of accessing a network.

圖3為說明存取網路中之演進型節點B及使用者設備之實例的圖式。 FIG. 3 is a diagram illustrating an example of an evolved Node B and a user equipment in an access network.

圖4為說明用於上行鏈路頻寬分配之實例時線的圖式。 FIG. 4 is a diagram illustrating an example timeline for uplink bandwidth allocation.

圖5為說明具有碰撞傳統及超低延遲(ULL)資源的實例子訊框的圖式。 FIG. 5 is a diagram illustrating an example sub-frame with collision legacy and ultra-low-latency (ULL) resources.

圖6為說明根據本文中所描述之態樣的用於判定是否優先權化傳統或ULL通信的實例系統之圖式。 FIG. 6 is a diagram illustrating an example system for determining whether to prioritize traditional or ULL communications according to aspects described herein.

圖7為根據本文中所描述之態樣的用於判定是否優先權化傳統或ULL通信的實例方法之流程圖。 FIG. 7 is a flowchart of an example method for determining whether to prioritize traditional or ULL communications according to aspects described herein.

圖8為根據本文中所描述之態樣的用於分配傳統及ULL通信資源的實例方法之流程圖。 FIG. 8 is a flowchart of an example method for allocating traditional and ULL communication resources according to aspects described herein.

Claims (12)

一種無線通信之方法,其包含: 分配一第一資源集合以用於傳輸根據一第一傳輸時間間隔(TTI)之一第一通信; 分配一第二資源集合以用於傳輸根據一第二TTI之一第二通信,其中該第二TTI小於該第一TTI; 在一下行鏈路控制頻道上傳輸對應於該第一資源集合之一第一資源授與;及 在該下行鏈路控制頻道上傳輸對應於該第二資源集合之一第二資源授與。A method of wireless communication includes: Allocate a first resource set for transmitting a first communication according to a first transmission time interval (TTI); Allocate a second resource set for transmitting a second communication according to a second TTI, wherein the second TTI is smaller than the first TTI; Transmitting a first resource grant corresponding to one of the first resource sets on a downlink control channel; and A second resource grant corresponding to one of the second resource sets is transmitted on the downlink control channel. 如請求項1之方法,其進一步包含向一使用者設備指示與該第一資源集合之至少一部分有關的資源不可用性。The method of claim 1, further comprising indicating to a user equipment an unavailability of resources related to at least a portion of the first resource set. 如請求項1之方法,其中分配該第二資源集合包含至少部分地基於對應於該第一資源集合之一或多個頻道之一調變及編碼方案、一資源分配大小或層之一數目中的至少一者分配該第二資源集合以部分重疊該第一資源集合。The method of claim 1, wherein allocating the second resource set includes at least in part a modulation and coding scheme, a resource allocation size, or a number of layers corresponding to one or more channels corresponding to the first resource set. At least one of allocates the second resource set to partially overlap the first resource set. 如請求項1之方法,其進一步包含至少部分地基於判定該第二資源集合重疊該第一資源集合而向一使用者設備指示是否圍繞該第一資源集合中之一或多個解調變參考信號資源元素進行速率匹配。The method of claim 1, further comprising indicating to a user equipment whether to surround one or more demodulation references in the first resource set based at least in part on determining the second resource set overlaps the first resource set. Signal resource elements perform rate matching. 如請求項1之方法,其中分配該第二資源集合包含分配該第二資源集合以避免在該第一資源集合之對應於一或多個解調變參考信號之一部分中重疊該第一資源集合。The method of claim 1, wherein allocating the second resource set includes allocating the second resource set to avoid overlapping the first resource set in a portion of the first resource set corresponding to one or more demodulation reference signals. . 如請求項1之方法,其進一步包含根據該第一資源授與傳輸該第一通信,其中該第二資源集合係在該第一通信之傳輸期間分配。The method of claim 1, further comprising granting and transmitting the first communication according to the first resource, wherein the second resource set is allocated during the transmission of the first communication. 一種用於無線通信之演進型節點B (eNB),其包含: 一收發器; 至少一個處理器,其經由一匯流排與該收發器通信耦接以用於在一無線網路中傳達信號;及 一記憶體,其經由該匯流排與該至少一個處理器及/或該收發器通信耦接; 其中該至少一個處理器及該記憶體可操作以: 分配一第一資源集合以用於傳輸根據一第一傳輸時間間隔(TTI)之一第一通信; 分配一第二資源集合以用於傳輸根據一第二TTI之一第二通信,其中該第二TTI小於該第一TTI; 經由該收發器在一下行鏈路控制頻道上傳輸對應於該第一資源集合之一第一資源授與;及 經由該收發器在該下行鏈路控制頻道上傳輸對應於該第二資源集合之一第二資源授與。An evolved Node B (eNB) for wireless communication, including: A transceiver; At least one processor communicatively coupled to the transceiver via a bus for communicating signals in a wireless network; and A memory, which is communicatively coupled to the at least one processor and / or the transceiver via the bus; The at least one processor and the memory are operable to: Allocate a first resource set for transmitting a first communication according to a first transmission time interval (TTI); Allocate a second resource set for transmitting a second communication according to a second TTI, wherein the second TTI is smaller than the first TTI; Transmitting a first resource grant corresponding to one of the first resource sets on a downlink control channel via the transceiver; and A second resource grant corresponding to one of the second resource sets is transmitted on the downlink control channel via the transceiver. 如請求項7之eNB,其中該至少一個處理器及該記憶體可進一步操作以向一使用者設備指示與該第一資源集合之至少一部分有關的資源不可用性。For example, the eNB of claim 7, wherein the at least one processor and the memory are further operable to indicate to a user equipment the unavailability of resources related to at least a portion of the first resource set. 如請求項7之eNB,其中該至少一個處理器及該記憶體可操作以至少部分地基於對應於該第一資源集合之一或多個頻道之一調變及編碼方案、一資源分配大小或層之一數目中的至少一者分配該第二資源集合以部分重疊該第一資源集合。As in the eNB of claim 7, wherein the at least one processor and the memory are operable to be based at least in part on a modulation and coding scheme corresponding to one or more channels of the first resource set, a resource allocation size, or At least one of the number of layers allocates the second resource set to partially overlap the first resource set. 如請求項7之eNB,其中該至少一個處理器及該記憶體可進一步操作以至少部分地基於判定該第二資源集合重疊該第一資源集合而向一使用者設備指示是否圍繞該第一資源集合中之一或多個解調變參考信號資源元素進行速率匹配。As in the eNB of claim 7, wherein the at least one processor and the memory are further operable to indicate to a user equipment whether to surround the first resource based at least in part on determining that the second resource set overlaps the first resource set. One or more demodulated reference signal resource elements in the set perform rate matching. 如請求項7之eNB,其中該至少一個處理器及該記憶體可操作以分配該第二資源集合以避免在該第一資源集合之對應於一或多個解調變參考信號之一部分中重疊該第一資源集合。For example, the eNB of claim 7, wherein the at least one processor and the memory are operable to allocate the second resource set to avoid overlapping in a part of the first resource set corresponding to one or more demodulation reference signals The first resource set. 如請求項7之eNB,其中該至少一個處理器及該記憶體可進一步操作以經由該收發器根據該第一資源授與傳輸該第一通信,其中該第二資源集合係在該第一通信之傳輸期間分配。For example, the eNB of claim 7, wherein the at least one processor and the memory are further operable to grant and transmit the first communication according to the first resource via the transceiver, wherein the second resource set is at the first communication Allocated during transmission.
TW108121727A 2014-12-11 2015-11-03 Prioritizing colliding transmissions in lte and ultra-low latency lte communications TWI687083B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462090826P 2014-12-11 2014-12-11
US62/090,826 2014-12-11
US14/930,017 US10939454B2 (en) 2014-12-11 2015-11-02 Prioritizing colliding transmissions in LTE and ultra-low latency LTE communications
US14/930,017 2015-11-02

Publications (2)

Publication Number Publication Date
TW201937896A true TW201937896A (en) 2019-09-16
TWI687083B TWI687083B (en) 2020-03-01

Family

ID=54695826

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104136242A TWI666904B (en) 2014-12-11 2015-11-03 Prioritizing colliding transmissions in lte and ultra-low latency lte communications
TW108121727A TWI687083B (en) 2014-12-11 2015-11-03 Prioritizing colliding transmissions in lte and ultra-low latency lte communications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104136242A TWI666904B (en) 2014-12-11 2015-11-03 Prioritizing colliding transmissions in lte and ultra-low latency lte communications

Country Status (11)

Country Link
US (2) US10939454B2 (en)
EP (2) EP3231240B1 (en)
JP (2) JP6615894B2 (en)
KR (1) KR102148069B1 (en)
CN (2) CN110557841B (en)
AU (2) AU2015361136B2 (en)
BR (1) BR112017012211B1 (en)
ES (1) ES2783281T3 (en)
HU (1) HUE049034T2 (en)
TW (2) TWI666904B (en)
WO (1) WO2016093981A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9942881B2 (en) 2014-03-14 2018-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Uplink multi-TTI scheduling in TDD system
US10939454B2 (en) 2014-12-11 2021-03-02 Qualcomm Incorporated Prioritizing colliding transmissions in LTE and ultra-low latency LTE communications
US10104683B2 (en) 2015-02-06 2018-10-16 Qualcomm Incorporated Parallel low latency awareness
KR102091610B1 (en) * 2015-03-08 2020-03-20 엘지전자 주식회사 Time delay adaptive signal transmission and reception method in wireless communication system and apparatus therefor
US10321455B2 (en) 2015-11-06 2019-06-11 Motorola Mobility Llc Method and apparatus for low latency transmissions
US10075949B2 (en) * 2016-02-02 2018-09-11 Motorola Mobility Llc Method and apparatus for low latency transmissions
US9801175B2 (en) 2015-11-06 2017-10-24 Motorola Mobility Llc Method and apparatus for low latency transmissions
TWI747864B (en) * 2015-12-30 2021-12-01 美商Idac控股公司 A device and a method associated with receiving a transmission
KR102222905B1 (en) 2016-03-02 2021-03-05 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Methods and devices that operate with fine timing reference signals that are sometimes transmitted
US11595173B2 (en) 2016-03-30 2023-02-28 Interdigital Patent Holdings, Inc. Long term evolution-assisted NR flexible radio access
KR102458074B1 (en) * 2016-03-31 2022-10-24 삼성전자 주식회사 Method and Device for providing different services
US11206578B2 (en) * 2016-07-29 2021-12-21 Samsung Electronics Co., Ltd. Method and apparatus for handling collisions in next generation communication system
CN109565861B (en) 2016-08-11 2021-03-23 三星电子株式会社 Method and apparatus for data transmission in next generation cellular networks
CN107734665B (en) * 2016-08-11 2020-12-04 中国移动通信有限公司研究院 Resource indication method, resource determination method, resource indication device, resource determination device, network side equipment and mobile communication terminal
US10448372B2 (en) * 2016-08-12 2019-10-15 Motorola Mobility Llc Method of control channel monitoring for reduced latency operation
EP3499773B1 (en) * 2016-08-12 2021-04-07 Huawei Technologies Co., Ltd. Method and apparatus for transmitting uplink channel
TWI749039B (en) * 2016-09-15 2021-12-11 日商索尼股份有限公司 Wireless telecommunications apparatus and methods
US10432387B2 (en) * 2016-09-26 2019-10-01 Qualcomm Incorporated Dynamic time division duplexing
CN107889223B (en) 2016-09-29 2020-04-10 电信科学技术研究院 Data transmission method and device
EP3523917B1 (en) * 2016-10-10 2022-08-24 Nokia Technologies Oy Uplink control information multiplexing
US10499371B2 (en) 2016-11-03 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus of flexible data transmissions and receptions in next generation cellular networks
US10447457B2 (en) * 2016-11-09 2019-10-15 Qualcomm Incorporated Reference signal pattern and pilot sharing for shortened transmission time interval wireless communications
EP3539339A1 (en) 2016-11-11 2019-09-18 Sony Corporation Wireless telecommunications apparatus and methods
CN108207032A (en) * 2016-12-16 2018-06-26 华硕电脑股份有限公司 The method and apparatus for disposing uplink resource conflict in a wireless communication system
EP3366072B1 (en) 2016-12-30 2022-09-21 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for multi-connection transmission
GB2558564B (en) * 2017-01-05 2021-11-24 Tcl Communication Ltd Methods and devices for downlink resource sharing between URLLC and eMBB transmissions in wireless communication systems
KR101779104B1 (en) * 2017-03-20 2017-09-18 창원대학교 산학협력단 thermally assisted apparatus using multi heat source
US10524264B2 (en) * 2017-03-20 2019-12-31 Samsung Electronics Co., Ltd. Wireless communication device including memory de-allocator for efficient memory usage and method of operating the same
WO2018203278A1 (en) * 2017-05-04 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Reference signals puncturing within a channel block
CN109391442B (en) 2017-08-11 2020-12-08 电信科学技术研究院 Data transmission method and device
CN110011774B (en) * 2017-12-21 2021-10-22 华硕电脑股份有限公司 Method and apparatus for backhaul link transmission and reception in wireless communication system
US11018742B2 (en) * 2018-02-16 2021-05-25 Qualcomm Incorporated Downlink transmission beam configuration techniques for wireless communications
US11089558B2 (en) * 2018-03-29 2021-08-10 Qualcomm Incorporated Resynchronization signal transmission in wireless communications
US11357002B2 (en) 2018-05-07 2022-06-07 Qualcomm Incorporated Transmission time interval integration for multiple radio access technologies
US11218289B2 (en) * 2018-12-17 2022-01-04 Qualcomm Incorporated Priority based coexistence
JP2022534467A (en) * 2019-03-28 2022-08-01 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Communication device, communication method and integrated circuit
WO2020201618A1 (en) * 2019-04-01 2020-10-08 Nokia Technologies Oy Intra-ue multiplexing in 5g wireless networks
WO2021002784A1 (en) * 2019-07-01 2021-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Uplink scheduling
US20230054255A1 (en) * 2021-08-17 2023-02-23 Qualcomm Incorporated Techniques for managing partially overlapping transmission and reception
CN114449601A (en) * 2022-01-27 2022-05-06 浙江大华技术股份有限公司 Method and device for sharing traffic under networking

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324565B2 (en) * 2003-05-14 2008-01-29 Nokia Corporation Method and device for channel multiplexing or demultiplexing
US20050073985A1 (en) * 2003-10-04 2005-04-07 Samsung Electronics Co., Ltd. System and method for controlling a TTI in a W-CDMA communication system supporting enhanced uplink dedicated transport channel
JP4732808B2 (en) * 2005-06-14 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ Device for generating radio parameter group
US8644292B2 (en) * 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
CN100455124C (en) 2006-01-17 2009-01-21 华为技术有限公司 Method for user equipment start service and selecting small area
US7738416B2 (en) * 2006-04-28 2010-06-15 Research In Motion Limited Data burst communication techniques for mobile communication devices operating in packet data sessions
JP4698498B2 (en) * 2006-06-19 2011-06-08 株式会社エヌ・ティ・ティ・ドコモ Base station, mobile station and communication method
US8400998B2 (en) 2006-08-23 2013-03-19 Motorola Mobility Llc Downlink control channel signaling in wireless communication systems
US8363606B2 (en) * 2006-09-05 2013-01-29 Qualcomm Incorporated Method and apparatus for data and control multiplexing
US8462746B2 (en) * 2006-12-27 2013-06-11 Altair Semiconductor Ltd. Wireless receiver with intermittent shut-off of RF circuits
CN101400072B (en) 2007-09-30 2012-12-12 电信科学技术研究院 Transmission method, system and apparatus for enhancing coverage capability
US8451961B2 (en) * 2007-11-21 2013-05-28 Qualcomm Incorporated Method of reducing interference
US8477697B2 (en) 2007-12-06 2013-07-02 Telefonaktiebolaget Lm Ericsson (Publ) Interlacing wireless communication frames
EP2245800B1 (en) * 2008-02-12 2012-02-08 Telefonaktiebolaget LM Ericsson (publ) Allocation and priority handling of uplink and downlink resources
EP2757846B1 (en) 2008-04-24 2016-03-09 Huawei Technologies Co., Ltd. Mobile station device, mobile communication system, and communication method
JP2009296537A (en) 2008-06-09 2009-12-17 Fujitsu Ltd Control method of radio resource assignment request transmission period
US9008605B2 (en) * 2008-06-20 2015-04-14 Interdigital Patent Holdings, Inc. Emergency information in system information broadcast
US8873522B2 (en) 2008-08-11 2014-10-28 Qualcomm Incorporated Processing measurement gaps in a wireless communication system
US8666389B2 (en) * 2009-08-05 2014-03-04 Htc Corporation Method of handling system information reception with measurement gap configuration and related communication device
KR101641388B1 (en) * 2009-08-19 2016-07-21 엘지전자 주식회사 Method for using reference signal of relay station and relay station using the method
US20120275380A1 (en) * 2009-11-03 2012-11-01 Qualcomm Incorporated Methods and Apparatus for Scheduling Paging Monitoring Intervals in TD-SCDMA Multimode Terminal
CN102123503B (en) * 2010-01-07 2016-02-10 中兴通讯股份有限公司 A kind of resource allocation methods of Physical Downlink Shared Channel of repeated link and device
US9820273B2 (en) 2010-03-02 2017-11-14 Xiaoxia Zhang Uplink coordinated multipoint communications in a wireless network
US9277564B2 (en) 2010-08-05 2016-03-01 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
JP5503464B2 (en) * 2010-08-30 2014-05-28 沖電気工業株式会社 BAND ALLOCATION DEVICE, BAND ALLOCATION METHOD, BAND ALLOCATION PROGRAM, AND COMMUNICATION TERMINAL
CN102404689B (en) * 2010-09-13 2015-08-12 电信科学技术研究院 Receive and send the method and apparatus of CSI-RS configuration information
WO2012147479A1 (en) 2011-04-28 2012-11-01 株式会社 エヌ・ティ・ティ・ドコモ Base station in mobile communication system, and resource allocation method
US9252918B2 (en) * 2011-08-15 2016-02-02 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
US20140226607A1 (en) * 2011-09-21 2014-08-14 Nokia Solutions And Networks Oy Apparatus and Method for Communication
EP2765820A4 (en) 2011-10-03 2015-06-03 Ntt Docomo Inc Wireless communications system, wireless base station device, user terminal, and wireless communications method
KR20130049573A (en) 2011-11-04 2013-05-14 삼성전자주식회사 Method and apparatus for transmitting contol signal
US9113463B2 (en) 2011-11-04 2015-08-18 Qualcomm Incorporated Resource management for enhanced PDCCH
GB2487267B (en) * 2011-11-07 2013-02-27 Renesas Mobile Corp Methods and apparatuses for configuring communications resources
US8483215B2 (en) * 2011-11-08 2013-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for identifying other user equipment operating in a wireless communication network
EP2637344B1 (en) * 2012-03-05 2022-01-12 Samsung Electronics Co., Ltd. HARQ-ACK signal transmission in response to detection of control channel type in case of multiple control channel types
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
CN104106296A (en) * 2013-02-08 2014-10-15 华为技术有限公司 Information sending method, information receiving method and device thereof
EP3346789B1 (en) * 2013-06-17 2019-11-20 Alcatel Lucent Base station and method of operating a base station
EP3840264A1 (en) * 2014-09-08 2021-06-23 Interdigital Patent Holdings, Inc. Controlling the operation of dci based reception
US10939454B2 (en) 2014-12-11 2021-03-02 Qualcomm Incorporated Prioritizing colliding transmissions in LTE and ultra-low latency LTE communications

Also Published As

Publication number Publication date
ES2783281T3 (en) 2020-09-17
EP3634069A1 (en) 2020-04-08
AU2015361136B2 (en) 2019-08-08
CN110557841B (en) 2023-05-30
KR20170094188A (en) 2017-08-17
CN110557841A (en) 2019-12-10
BR112017012211A2 (en) 2017-12-26
EP3231240B1 (en) 2020-01-01
US20200214019A1 (en) 2020-07-02
AU2019203550A1 (en) 2019-06-13
TWI666904B (en) 2019-07-21
JP6615894B2 (en) 2019-12-04
AU2019203550B2 (en) 2021-04-22
WO2016093981A1 (en) 2016-06-16
AU2015361136A1 (en) 2017-05-18
BR112017012211B1 (en) 2023-09-26
KR102148069B1 (en) 2020-08-25
US20160174238A1 (en) 2016-06-16
JP2020048200A (en) 2020-03-26
CN107006027B (en) 2019-12-24
TW201624959A (en) 2016-07-01
EP3231240A1 (en) 2017-10-18
JP2018504023A (en) 2018-02-08
CN107006027A (en) 2017-08-01
JP7034999B2 (en) 2022-03-14
US10939454B2 (en) 2021-03-02
HUE049034T2 (en) 2020-09-28
TWI687083B (en) 2020-03-01

Similar Documents

Publication Publication Date Title
JP7034999B2 (en) Prioritization of conflicting transmissions in LTE and ultra-low latency LTE communications
CN107637153B (en) Techniques for scheduling data communications with shortened time duration
EP3375119B1 (en) Techniques for providing channels in low latency lte wireless communications
KR102246787B1 (en) Downlink channel design for lte with low latency
KR102552620B1 (en) Uplink control resource allocation for dynamic time-division duplex systems
CN106716904B (en) Ultra-low delay lte downlink frame structure
KR101940745B1 (en) Single tti transmission of control data in wireless communications
JP6530073B2 (en) Traffic data allocation in low latency LTE downlink communication