TW201935981A - Sidelink resource pool activation - Google Patents

Sidelink resource pool activation Download PDF

Info

Publication number
TW201935981A
TW201935981A TW108104596A TW108104596A TW201935981A TW 201935981 A TW201935981 A TW 201935981A TW 108104596 A TW108104596 A TW 108104596A TW 108104596 A TW108104596 A TW 108104596A TW 201935981 A TW201935981 A TW 201935981A
Authority
TW
Taiwan
Prior art keywords
side link
wtru
resource pool
link resource
resource
Prior art date
Application number
TW108104596A
Other languages
Chinese (zh)
Inventor
阿塔 艾爾漢斯
濤 鄧
馬提諾M 法瑞達
伯努瓦 佩勒特爾
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201935981A publication Critical patent/TW201935981A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections

Abstract

Processing for activating and deactivating sidelink resource pools is described. A WTRU may be configured with a plurality of sidelink resource pools and may activate one or more resource pools for use in communicate with other WTRUs. The WTRU may autonomously and dynamically determine which resource pools to activate and deactivate. For example, the WTRU may determine, based upon the characteristics of the data that it will be sending and/or receiving, to activate a resource pool suitable for transmitting and receiving the data. The WTRU may determine, based upon indications that it receives from another WTRU, to activate a resource pool compatible with that being used by the other WTRU. The WTRU may determine, based upon instructions and/or communications that it receives from a radio access network to activate a particular resource pool.

Description

側鏈資源場啟動Start of sidechain resource field

相關申請案的交叉引用Cross-reference to related applications

本申請案主張於2018年2月13日申請的題為“NR EV2X中的動態資源配置(Dynamic Resource Allocation in NR EV2X)”的美國臨時申請案No. 62/629,977的權益,並主張於2018年4月3日申請的題為“NR EV2X中的動態資源分配(Dynamic Resource Allocation in NR EV2X)”的美國臨時申請案No. 62/652,016的權益、並且主張於2018年9月24日申請的題為“NR eV2X中的動態資源分配(Dynamic Resource Allocation in NR eV2X)”的美國臨時申請案No. 62/735,237的權益,其全部內容在此引入以作為參考。This application claims the benefit of US Provisional Application No. 62 / 629,977 entitled "Dynamic Resource Allocation in NR EV2X" filed on February 13, 2018, and asserted in 2018 Interest of U.S. Provisional Application No. 62 / 652,016 entitled "Dynamic Resource Allocation in NR EV2X" filed on April 3, and claiming the question filed on September 24, 2018 This is the benefit of US Provisional Application No. 62 / 735,237 for "Dynamic Resource Allocation in NR eV2X", the entire contents of which are incorporated herein by reference.

無線通訊裝置可以經由一個或多個網路建立彼此的通信。例如,第一無線通訊裝置可以形成與例如e節點B之類的無線電存取網路(RAN)裝置的無線連接,e節點B經由有線網路將資料轉發到第二無線通訊裝置可能已與其形成無線連接的另一e節點B。在無線裝置之間傳遞的資料遍歷在裝置之間的路徑上的無線電存取網路以及介入的有線網路。Wireless communication devices can establish communication with each other via one or more networks. For example, a first wireless communication device may form a wireless connection with a radio access network (RAN) device such as eNodeB, and eNodeB may forward data to a second wireless communication device via a wired network, and may have formed with it. Wireless connection to another eNodeB. Data passed between wireless devices traverses radio access networks and intervening wired networks on paths between the devices.

在一些情況下,無線通訊裝置可以建立彼此的直接通信。可以在無需遍歷無線電存取網路及/或相關通信網路下直接在無線裝置之間傳遞資料。這種裝置到裝置通信可以稱為側鏈路通信。側鏈路通信可以使用資源池,該資源池定義了可用於在無線裝置之間攜帶控制以及訊務(traffic)資料的時間以及頻率中的實體資源。側鏈路資源池可以指定可用於在無線裝置之間直接傳遞資料的資源塊以及對應的子訊框。In some cases, wireless communication devices can establish direct communication with each other. Data can be transferred directly between wireless devices without having to traverse a radio access network and / or related communication network. Such device-to-device communication may be referred to as side-link communication. Side-link communication can use a resource pool, which defines the physical resources in time and frequency that can be used to carry control and traffic data between wireless devices. The side-link resource pool can specify resource blocks and corresponding sub-frames that can be used to directly transfer data between wireless devices.

這裡揭露了用於裝置到裝置通信的側鏈路資源池啟動的系統以及方法。可以是例如無線傳輸及接收單元(WTRU)的行動裝置可以被配置有多個側鏈路資源池。WTRU可以利用所啟動的第一側鏈路資源池以用於與第二WTRU的側鏈路通信。WTRU使用由第一側鏈路資源池指明的資源塊以及子訊框以直接與第二WTRU通信。Systems and methods for side-link resource pool activation for device-to-device communication are disclosed here. A mobile device, which may be, for example, a wireless transmit and receive unit (WTRU), may be configured with multiple side-link resource pools. The WTRU may utilize the activated first side link resource pool for side link communication with the second WTRU. The WTRU uses the resource blocks and sub-frames indicated by the first side link resource pool to communicate directly with the second WTRU.

WTRU可以確定啟動來自為WTRU配置的多個資源池的第二側鏈路資源池。此確定可以由WTRU基於一個或多個因素自主地進行。例如,WTRU可以基於與側鏈路封包相關聯的優先序來確定所啟動的第一側鏈路資源池不適合用於該側鏈路封包的傳輸及/或接收、並且還可以確定第二側鏈路資源池適合用於該側鏈路封包的傳輸及/或接收。在另一範例中,WTRU可以確定所啟動的第一側鏈路資源池不支援與側鏈路封包相關聯的傳輸潛時、並且可以確定第二側鏈路池支援該傳輸潛時。在另一範例中,在確定所啟動的第一側鏈路資源池上的能量滿足臨界值時,WTRU可以確定啟動第二側鏈路資源池。在確定所啟動的第一側鏈路資源池上的測量通道忙碌比(CBR)滿足臨界值時,WTRU還可以確定啟動第二資源池。The WTRU may determine to start a second side link resource pool from multiple resource pools configured for the WTRU. This determination may be made autonomously by the WTRU based on one or more factors. For example, the WTRU may determine that the activated first side link resource pool is not suitable for transmission and / or reception of the side link packet based on the priority associated with the side link packet, and may also determine the second side chain The channel resource pool is suitable for transmitting and / or receiving the side link packets. In another example, the WTRU may determine that the activated first side link resource pool does not support the transmission latency associated with the side link packet, and may determine that the second side link pool supports the transmission latency. In another example, when it is determined that the energy on the activated first side link resource pool meets a critical value, the WTRU may determine to activate the second side link resource pool. When it is determined that the measurement channel busy ratio (CBR) on the activated first-side link resource pool meets a critical value, the WTRU may also determine to start the second resource pool.

WTRU可以啟動第二側鏈路資源池。啟動第二側鏈路資源池可以包括WTRU識別由第二側鏈路資源池指定的資源可用於WTRU的側鏈路通信。WTRU可以使用由側鏈路資源池指定的資源塊以及子訊框以傳遞資料。The WTRU may start the second-side link resource pool. Initiating the second side link resource pool may include the WTRU identifying that the resources specified by the second side link resource pool are available for the side link communication of the WTRU. The WTRU may use the resource blocks and sub-frames specified by the side-link resource pool to transfer data.

WTRU可以向其他裝置傳遞行動裝置已啟動第二側鏈路資源池的指示。可以明確地或隱含地傳遞該指示。例如,可以使用側鏈路控制資訊(SCI)訊息中的指示、單獨的實體通道中的指示及/或活動資源池中的指示以明確地傳遞側鏈路資源池已被啟動的指示。The WTRU may transmit an indication to other devices that the mobile device has activated the second-side link resource pool. This indication may be communicated explicitly or implicitly. For example, an indication in a side link control information (SCI) message, an indication in a separate physical channel, and / or an indication in an active resource pool may be used to explicitly convey an indication that the side link resource pool has been activated.

WTRU可以被配置為基於來自另一個WTRU的通信來確定啟動側鏈路資源池。第一WTRU可以從第二WTRU接收啟動第一側鏈路資源池的指示,第一側鏈路資源池是為第一WTRU配置的多個側鏈路資源池中的一個。例如,WTRU可以從另一個WTRU接收表明啟動第一側鏈路資源池的側鏈路控制資訊(SCI)訊息。該訊息可以包括識別要啟動的特定資源池的資源池指示符(RPI)。該訊息可以表明啟動與特定優先序或潛時分類相關聯的資源池。在從另一個行動裝置接收以及處理該指示時,WTRU可以啟動所識別的資源池。A WTRU may be configured to determine an initiating-side link resource pool based on communication from another WTRU. The first WTRU may receive an instruction to start the first side link resource pool from the second WTRU. The first side link resource pool is one of a plurality of side link resource pools configured for the first WTRU. For example, the WTRU may receive a side link control information (SCI) message from another WTRU indicating that the first side link resource pool is activated. The message may include a resource pool indicator (RPI) identifying the specific resource pool to be started. The message may indicate that a resource pool associated with a particular priority or latent classification is initiated. Upon receiving and processing the indication from another mobile device, the WTRU may initiate the identified resource pool.

WTRU可以被配置為基於來自網路的通信來確定啟動側鏈路資源池。WTRU可以被配置為從網路(例如,RAN網路(例如,gNB、eNB等))接收明確指示,以啟動及/或停用側鏈路資源池。例如,WTRU可以針對用於啟動側鏈路資源池的指示而監視下鏈控制資訊(DCI)。WTRU可以被配置為監視來自網路的隱含指示以啟動及/或停用側鏈路資源池。例如,WTRU可以被配置為監視操作參數(例如,動態波束配置及/或動態頻寬配置)的變化,WTRU可以被配置為將其解釋為啟動及/或停用側鏈路資源池的請求。The WTRU may be configured to determine the initiating-side link resource pool based on communication from the network. The WTRU may be configured to receive explicit instructions from a network (eg, a RAN network (eg, gNB, eNB, etc.)) to activate and / or deactivate a side link resource pool. For example, the WTRU may monitor the downlink control information (DCI) for an indication for starting the side link resource pool. The WTRU may be configured to monitor implicit indications from the network to activate and / or deactivate the side link resource pool. For example, the WTRU may be configured to monitor changes in operating parameters (eg, dynamic beam configuration and / or dynamic bandwidth configuration), and the WTRU may be configured to interpret it as a request to activate and / or deactivate the side link resource pool.

提供本發明內容是為了以簡化的形式介紹一些概念,這些概念將在本文的實施方式中進一步描述。本發明內容不旨在限制所要求保護的主題的範圍。本文描述了其他特徵。This summary is provided to introduce a selection of concepts in a simplified form that are further described in the embodiments herein. This summary is not intended to limit the scope of the claimed subject matter. This article describes other features.

WTRU可以被配置為執行用於啟動以及停用用於與一個或多個其他WTRU直接通信的側鏈路資源池的處理。WTRU可以被配置有一組或多組接收/傳輸資源池,其定義了可用於與其他WTRU的側鏈路通信的資源。例如,側鏈路通信可以用於例如車輛到所有事物(V2X)通信之類的應用。這裡描述的範例可應用於WTRU啟動及/或停用各種傳輸/接收資源池的技術,並且該傳輸/接收資源可以用於支援各種通信類型及/或應用。The WTRU may be configured to perform processing for initiating and deactivating a side link resource pool for direct communication with one or more other WTRUs. A WTRU may be configured with one or more sets of receive / transmit resource pools, which define resources that can be used for side-link communication with other WTRUs. For example, side-link communication can be used for applications such as vehicle-to-everything (V2X) communication. The examples described herein can be applied to the WTRU enabling and / or deactivating various transmission / reception resource pools, and the transmission / reception resources can be used to support various communication types and / or applications.

可以在側鏈路通信中啟動以及使用的側鏈路資源池可以改變。WTRU可以動態地以及自主地確定啟動及/或停用側鏈路資源池。例如,WTRU可以基於其將要發送及/或接收的資料的特性來確定啟動適合用於傳輸及/或接收資料的資源池。WTRU還可以回應於所接收指示(其可以是資源池指示(RPI))來確定啟動及/或停用側鏈路資源。可以從網路及/或從另一個WTRU接收該RPI。可以明確地傳訊RPI及/或WTRU可以基於一個或多個標準隱含地確定RPI。例如,可以在下鏈控制資訊(DCI)中明確地表明RPI,WTRU可以在一個或多個下鏈通道(例如,下鏈控制通道)上監視該下鏈控制資訊。可以基於以下中的一者或多者來隱含地表明該RPI:攜帶時槽格式指示符(SFI)的群組公共實體下鏈控制通道(PDCCH)、波束配置的動態改變、及/或動態頻寬部分啟動/停用。The side-link resource pool that can be started in side-link communication and used can be changed. The WTRU may dynamically and autonomously determine to activate and / or deactivate the side link resource pool. For example, the WTRU may determine to initiate a pool of resources suitable for transmitting and / or receiving data based on the characteristics of the data it will send and / or receive. The WTRU may also determine to activate and / or deactivate the side link resources in response to the received indication, which may be a resource pool indication (RPI). This RPI may be received from the network and / or from another WTRU. It may be explicitly signaled that the RPI and / or the WTRU may implicitly determine the RPI based on one or more criteria. For example, the RPI may be clearly indicated in the downlink control information (DCI), and the WTRU may monitor the downlink control information on one or more downlink channels (for example, the downlink control channel). The RPI may be implicitly indicated based on one or more of the following: a group public entity carrying a time slot format indicator (SFI), a downlink control channel (PDCCH), a dynamic change in beam configuration, and / or a dynamic Bandwidth is enabled / disabled.

第1A圖是示出了可以實施所揭露的實施例的範例性通信系統100的圖式。該通信系統100可以是為多個無線使用者提供語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。該通信系統100可以經由共用包括無線頻寬的系統資源而使多個無線使用者能夠存取此類內容。舉例來說,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字DFT擴展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。FIG. 1A is a diagram illustrating an exemplary communication system 100 that can implement the disclosed embodiments. The communication system 100 may be a multiple access system that provides multiple wireless users with content such as voice, data, video, messaging, and broadcasting. The communication system 100 can enable multiple wireless users to access such content by sharing system resources including wireless bandwidth. For example, the communication system 100 may use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA) ), Single carrier FDMA (SC-FDMA), zero tail unique word DFT extended OFDM (ZT UW DTS-s OFDM), unique word OFDM (UW-OFDM), resource block filtering OFDM, and filter bank multi-carrier (FBMC), etc. Wait.

如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任何數量的WTRU、基地台、網路及/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置為在無線環境中操作及/或通信的任何類型的裝置。舉例來說,WTRU 102a、102b、102c、102d(其任一者都可被稱為“站”及/或“STA”)可以被配置為傳輸及/或接收無線信號、並且可以包括使用者設備(UE)、行動站、固定或行動訂戶單元、基於訂用的單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、車輛、無人機、醫療設備以及應用(例如遠端手術)、工業設備以及應用(例如機器人及/或在工業及/或自動處理鏈環境中操作的其他無線裝置)、消費類電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d中的任一者可被可交換地稱為UE。As shown in FIG. 1A, the communication system 100 may include a wireless transmission / reception unit (WTRU) 102a, 102b, 102c, 102d, RAN 104/113, CN 106/115, a public switched telephone network (PSTN) 108, the Internet Circuit 110 and other networks 112, however it should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and / or network elements. Each WTRU 102a, 102b, 102c, 102d may be any type of device configured to operate and / or communicate in a wireless environment. For example, WTRUs 102a, 102b, 102c, 102d (each of which may be referred to as a "station" and / or "STA") may be configured to transmit and / or receive wireless signals and may include user equipment (UE), mobile station, fixed or mobile subscriber unit, subscription-based unit, pager, mobile phone, personal digital assistant (PDA), smart phone, laptop, small laptop, personal computer, wireless Monitors, hotspots or Mi-Fi devices, Internet of Things (IoT) devices, watches or other wearable devices, head-mounted displays (HMD), vehicles, drones, medical devices and applications (such as remote surgery), industrial equipment, and Applications (such as robots and / or other wireless devices operating in an industrial and / or automated processing chain environment), consumer electronics devices, and devices operating on commercial and / or industrial wireless networks. Any of the WTRUs 102a, 102b, 102c, 102d may be interchangeably referred to as a UE.

通信系統100還可以包括基地台114a及/或基地台114b。每一個基地台114a、114b可以是被配置為與WTRU 102a、102b、102c、102d中的至少一個無線地介接以促進其存取一個或多個通信網路(例如CN 106/115、網際網路110、及/或其他網路112)的任何類型的裝置。舉例來說,基地台114a、114b可以是基地收發站(BTS)、節點B、e節點B、本地節點B、本地e節點 B、gNB、NR節點B、站點控制器、存取點(AP)、以及無線路由器等等。雖然每一個基地台114a、114b都被描述為單一元件,然而應該瞭解。基地台114a、114b可以包括任何數量的互連基地台及/或網路元件。The communication system 100 may further include a base station 114a and / or a base station 114b. Each base station 114a, 114b may be configured to wirelessly interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate its access to one or more communication networks (e.g., CN 106/115, Internet) 110, and / or other networks 112). For example, the base stations 114a, 114b may be base transceiver stations (BTS), node B, e-node B, local node B, local e-node B, gNB, NR node B, site controller, access point (AP ), And wireless routers. Although each base station 114a, 114b is described as a single element, it should be understood. The base stations 114a, 114b may include any number of interconnected base stations and / or network elements.

基地台114a可以是RAN 104/113的一部分,並且該RAN 104/113還可以包括其他基地台及/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置為在稱為胞元(未顯示)的一個或多個載波頻率上傳輸及/或接收無線信號。這些頻率可以處於授權頻譜、無授權頻譜或是授權與無授權頻譜的組合中。胞元可以為相對固定或者有可能隨時間變化的特定地理區域提供無線服務覆蓋。胞元可被進一步分為胞元扇區。例如,與基地台114a相關聯的胞元可被分為三個扇區。因此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,一個收發器用於胞元的每一個扇區。在實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術、並且可以為胞元的每一個扇區使用多個收發器。舉例來說,波束成形可以用於在期望的空間方向上傳輸及/或接收信號。The base station 114a may be part of the RAN 104/113, and the RAN 104/113 may also include other base stations and / or network elements (not shown), such as a base station controller (BSC), a radio network controller ( RNC), relay nodes, and so on. The base station 114a and / or the base station 114b may be configured to transmit and / or receive wireless signals on one or more carrier frequencies called cell (not shown). These frequencies can be in licensed spectrum, unlicensed spectrum, or a combination of licensed and unlicensed spectrum. Cells can provide wireless service coverage for specific geographic areas that are relatively fixed or are likely to change over time. Cells can be further divided into cell sectors. For example, the cell associated with the base station 114a may be divided into three sectors. Therefore, in one embodiment, the base station 114a may include three transceivers, that is, one transceiver for each sector of a cell. In an embodiment, the base station 114a may use multiple-input multiple-output (MIMO) technology and may use multiple transceivers for each sector of a cell. For example, beamforming may be used to transmit and / or receive signals in a desired spatial direction.

基地台114a、114b可以經由空中介面116以與WTRU 102a、102b、102c、102d中的一者或多者進行通信,其中該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、釐米波、微米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via an air interface 116, where the air interface may be any suitable wireless communication link such as radio frequency (RF), Microwave, centimeter wave, micro wave, infrared (IR), ultraviolet (UV), visible light, etc.). The air interface 116 may be established using any suitable radio access technology (RAT).

更具體地說,如在此所述,通信系統100可以是多重存取系統、並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基地台114a與WTRU 102a、102b、102c可以實施例如通用行動電信系統(UMTS)地面無線電存取(UTRA)之類的無線電技術,其中該技術可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)之類的通信協定。HSPA可以包括高速下鏈(DL)封包存取(HSDPA)及/或高速UL封包存取(HSUPA)。More specifically, as described herein, the communication system 100 may be a multiple access system and may use one or more channel access schemes, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base stations 114a and WTRUs 102a, 102b, 102c in RAN 104/113 may implement radio technologies such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use Wideband CDMA (WCDMA) ) To build the air interface 115/116/117. WCDMA may include communication protocols such as High-Speed Packet Access (HSPA) and / or Evolved HSPA (HSPA +). HSPA may include high-speed downlink (DL) packet access (HSDPA) and / or high-speed UL packet access (HSUPA).

在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如演進型UMTS地面無線電存取(E-UTRA)之類的無線電技術,其中該技術可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTA Pro(LTE-A Pro)來建立空中介面116。In an embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as evolved UMTS terrestrial radio access (E-UTRA), where the technology may use long-term evolution (LTE) and / or advanced LTE (LTE-A) and / or Advanced LTA Pro (LTE-A Pro) to establish the air interface 116.

在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如NR無線電存取之類的無線電技術,其中該無線電技術可以使用新無線電(NR)來建立空中介面116。In an embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as NR radio access, where the radio technology may use a new radio (NR) to establish the air interface 116.

在實施例中,基地台114a以及WTRU 102a、102b、102c可以實施多種無線電存取技術。舉例來說,基地台114a以及WTRU 102a、102b、102c可以一起實施LTE無線電存取以及NR無線電存取(例如使用雙連接(DC)原理)。因此,WTRU 102a、102b、102c使用的空中介面可以藉由多種類型的無線電存取技術、及/或向/從多種類型的基地台(例如eNB以及gNB)發送的傳輸來表徵。In an embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement multiple radio access technologies. For example, base station 114a and WTRUs 102a, 102b, 102c may implement LTE radio access as well as NR radio access (eg, using the dual connectivity (DC) principle). Therefore, the air interface used by WTRUs 102a, 102b, and 102c can be characterized by multiple types of radio access technologies and / or transmissions to / from multiple types of base stations (such as eNBs and gNBs).

在其他實施例中,基地台114a以及WTRU 102a、102b、102c可以實施例如IEEE 802.11(即無線高保真(WiFi))、IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暫時標準2000(IS-2000)、暫時標準95(IS-95)、暫時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM演進的增強資料速率(EDGE)以及GSM EDGE(GERAN)等等的無線電技術。In other embodiments, the base station 114a and the WTRUs 102a, 102b, and 102c may implement, for example, IEEE 802.11 (ie, wireless high-fidelity (WiFi)), IEEE 802.16 (Global Interoperable Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Interim Standard 856 (IS-856), Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE) And GSM EDGE (GERAN) and other radio technologies.

第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點、並且可以使用任何適當的RAT來促進例如營業場所、住宅、車輛、校園、工業設施、空中走廊(例如供無人機使用)以及道路等等的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一實施例中,基地台114b以及WTRU 102c、102d可使用基於蜂巢的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以具有與網際網路110的直接連接。因此,基地台114b不需要經由CN 106/115來存取網際網路110。The base station 114b in FIG. 1A may be a wireless router, a local Node B, a local eNode B, or an access point, and may use any suitable RAT to facilitate, for example, a business place, a residence, a vehicle, a campus, an industrial facility, an air corridor (Such as for drones) and wireless connections in local areas such as roads. In one embodiment, the base station 114b and the WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In an embodiment, the base station 114b and the WTRUs 102c, 102d may implement a radio technology such as IEEE 802.15 to establish a wireless personal area network (WPAN). In yet another embodiment, the base station 114b and the WTRUs 102c, 102d may use a cellular-based RAT (such as WCDMA, CDMA2000, GSM, LTE, LTE-A, LTE-A Pro, NR, etc.) to establish a picocell or Femtocell. As shown in FIG. 1A, the base station 114 b may have a direct connection to the Internet 110. Therefore, the base station 114b does not need to access the Internet 110 via the CN 106/115.

RAN 104/113可以與CN 106/115進行通信,其中該CN可以是被配置為向一個或多個WTRU 102a、102b、102c、102d提供語音、資料、應用及/或網際網路協定語音(VoIP)服務的任何類型的網路。該資料可以具有不同的服務品質(QoS)需求,例如不同的流通量需求、潛時需求、容錯需求、可靠性需求、資料流通量需求、以及行動性需求等等。CN 106/115可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等、及/或可以執行使用者驗證之類的高階安全功能。雖然在第1A圖中沒有顯示,然而應該瞭解,RAN 104/113及/或CN 106/115可以直接或間接地與其他RAN進行通信,該其他RAN使用了與RAN 104/113相同的RAT、或使用了不同的RAT。例如,除了與使用NR無線電技術的RAN 104/113連接之外,CN 106/115還可以與使用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的另一RAN(未顯示)通信。RAN 104/113 may communicate with CN 106/115, where the CN may be configured to provide voice, data, applications, and / or Internet Protocol Voice (VoIP) to one or more WTRUs 102a, 102b, 102c, 102d ) Serving any type of network. The data can have different quality of service (QoS) requirements, such as different liquidity requirements, latency requirements, fault tolerance requirements, reliability requirements, data circulation requirements, and mobility requirements. CN 106/115 can provide call control, billing services, mobile location-based services, pre-paid calling, internet connection, video distribution, etc., and / or can perform high-level security functions such as user authentication. Although not shown in Figure 1A, it should be understood that RAN 104/113 and / or CN 106/115 can communicate directly or indirectly with other RANs that use the same RAT as RAN 104/113, or Different RATs are used. For example, in addition to connecting to RAN 104/113 using NR radio technology, CN 106/115 can also communicate with another RAN (not shown) using GSM, UMTS, CDMA 2000, WiMAX, E-UTRA or WiFi radio technology .

CN 106/115還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用了公共通信協定(例如TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料報協定(UDP)及/或網際網路協定(IP))的全球性互連電腦網路裝置系統。該其他網路112可以包括由其他服務供應者擁有及/或操作的有線及/或無線通訊網路。例如,該其他網路112可以包括與一個或多個RAN連接的另一個CN,其中該一個或多個RAN可以與RAN 104/113使用相同RAT或不同RAT。CN 106/115 may also act as a gateway for WTRUs 102a, 102b, 102c, 102d to access PSTN 108, Internet 110, and / or other networks 112. PSTN 108 may include a circuit-switched telephone network that provides simple legacy telephone service (POTS). The Internet 110 may include a public communication protocol such as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and / or Internet Protocol (IP) in the TCP / IP Internet Protocol family. Globally interconnected computer network device system. The other networks 112 may include wired and / or wireless communication networks owned and / or operated by other service providers. For example, the other network 112 may include another CN connected to one or more RANs, where the one or more RANs may use the same RAT or different RATs as the RAN 104/113.

通信系統100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器)。例如,第1A圖所示的WTRU 102c可被配置為與可以使用基於蜂巢的無線電技術的基地台114a通信、以及與可以使用IEEE 802無線電技術的基地台114b通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities (eg, WTRUs 102a, 102b, 102c, 102d may include multiple transceivers communicating with different wireless networks on different wireless links) . For example, the WTRU 102c shown in FIG. 1A may be configured to communicate with a base station 114a that may use cellular-based radio technology, and with a base station 114b that may use IEEE 802 radio technology.

第1B圖是示出了範例性WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子組合。FIG. 1B is a system diagram illustrating an exemplary WTRU 102. FIG. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmitting / receiving element 122, a speaker / microphone 124, a keypad 126, a display / touchpad 128, a non-removable memory 130, and a removable Memory 132, power supply 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be understood that, while remaining consistent with embodiments, the WTRU 102 may also include any sub-combination of the aforementioned elements.

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)電路、其他任何類型的積體電路(IC)以及狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理、及/或能使WTRU 102在無線環境中操作的任何其他功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118以及收發器120描述為單獨元件,然而應該瞭解,處理器118以及收發器120也可以集成在一個電子元件或晶片中。The processor 118 may be a general-purpose processor, a special-purpose processor, a conventional processor, a digital signal processor (DSP), multiple microprocessors, one or more microprocessors associated with a DSP core, a controller, and a microcontroller , Special integrated circuit (ASIC), field programmable gate array (FPGA) circuit, any other type of integrated circuit (IC), state machine, etc. The processor 118 may perform signal encoding, data processing, power control, input / output processing, and / or any other function that enables the WTRU 102 to operate in a wireless environment. The processor 118 may be coupled to the transceiver 120, and the transceiver 120 may be coupled to the transmitting / receiving element 122. Although FIG. 1B depicts the processor 118 and the transceiver 120 as separate components, it should be understood that the processor 118 and the transceiver 120 may also be integrated into one electronic component or chip.

傳輸/接收元件122可被配置為經由空中介面116以傳輸信號至基地台(例如基地台114a)、或從基地台(例如基地台114a)接收信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收RF信號的天線。例如,在實施例中,傳輸/接收元件122可以是被配置為傳輸及/或接收IR、UV或可見光信號的放射器/偵測器。在實施例中,傳輸/接收元件122可被配置為傳輸及/或接收RF以及光信號。應該瞭解的是,傳輸/接收元件122可以被配置為傳輸及/或接收無線信號的任何組合。The transmitting / receiving element 122 may be configured to transmit signals to or receive signals from a base station (eg, base station 114a) via the air interface 116. For example, in one embodiment, the transmitting / receiving element 122 may be an antenna configured to transmit and / or receive RF signals. For example, in an embodiment, the transmitting / receiving element 122 may be a radiator / detector configured to transmit and / or receive IR, UV, or visible light signals. In an embodiment, the transmission / reception element 122 may be configured to transmit and / or receive RF and optical signals. It should be understood that the transmission / reception element 122 may be configured to transmit and / or receive any combination of wireless signals.

雖然在第1B圖中將傳輸/接收元件122描述為是單一元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在實施例中,WTRU 102可以包括經由空中介面116以傳輸及接收無線電信號的兩個或多個傳輸/接收元件122(例如多個天線)。Although the transmitting / receiving element 122 is described as a single element in FIG. 1B, the WTRU 102 may include any number of transmitting / receiving elements 122. More specifically, the WTRU 102 may use MIMO technology. Accordingly, in an embodiment, the WTRU 102 may include two or more transmit / receive elements 122 (eg, multiple antennas) via the air interface 116 to transmit and receive radio signals.

收發器120可被配置為對傳輸/接收元件122要傳送的信號進行調變、以及對傳輸/接收元件122接收的信號進行解調。如在此所述,WTRU 102可以具有多模能力。因此,收發器120可以包括使WTRU 102能經由多種RAT(例如NR以及IEEE 802.11)來進行通信的多個收發器。The transceiver 120 may be configured to modulate a signal to be transmitted by the transmission / reception element 122 and to demodulate a signal received by the transmission / reception element 122. As described herein, the WTRU 102 may have multi-mode capabilities. Accordingly, the transceiver 120 may include multiple transceivers that enable the WTRU 102 to communicate via multiple RATs, such as NR and IEEE 802.11.

WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)、並且可以接收來自這些元件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從例如非可移記憶體130及/或可移記憶體132之類的任何適當的記憶體中存取資訊、以及將資料儲存至這些記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶體儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取資訊、以及將資料儲存至這些記憶體,例如,此類記憶體可以位於伺服器或家用電腦(未顯示)。The processor 118 of the WTRU 102 may be coupled to a speaker / microphone 124, a keypad 126, and / or a display / touchpad 128 (such as a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and may Receive user input from these components. The processor 118 may also output user data to the speaker / microphone 124, the keypad 126, and / or the display / touchpad 128. In addition, the processor 118 may access information from and store data in any suitable memory, such as non-removable memory 130 and / or removable memory 132. The non-removable memory 130 may include a random access memory (RAM), a read-only memory (ROM), a hard disk, or any other type of memory storage device. The removable memory 132 may include a subscriber identity module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access and store information from memory that is not physically located on the WTRU 102. For example, such memory may be located on a server or a home computer (not shown) .

處理器118可以接收來自電源134的電力、並且可被配置分發及/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池以及燃料電池等等。The processor 118 may receive power from the power source 134 and may be configured to distribute and / or control power for other elements in the WTRU 102. The power source 134 may be any suitable device that powers the WTRU 102. For example, the power source 134 may include one or more dry battery packs (such as nickel-cadmium (Ni-Cd), nickel-zinc (Ni-Zn), nickel-hydrogen (NiMH), lithium-ion (Li-ion), etc.), solar cells, and Fuel cells and more.

處理器118還可以耦合到GPS晶片組136,該晶片組可被配置為提供與WTRU 102的目前位置相關的位置資訊(例如經度以及緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊、及/或根據從兩個或更多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以用任何適當的定位方法來獲取位置資訊。The processor 118 may also be coupled to a GPS chipset 136, which may be configured to provide location information (eg, longitude and latitude) related to the current location of the WTRU 102. In addition to or instead of the information from the GPS chipset 136, the WTRU 102 may receive location information from base stations (e.g., base stations 114a, 114b) via the air interface 116, and / or based on information from two or more nearby base stations Received signal timing to determine its location. It should be understood that while maintaining compliance with the embodiments, the WTRU 102 may use any suitable positioning method to obtain location information.

處理器118還可以耦合到其他週邊設備138,其中該週邊設備可以包括提供附加特徵、功能及/或有線或無線連接的一個或多個軟體及/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器、虛擬實境及/或增強現實(VR/AR)裝置、以及活動追蹤器等等。週邊設備138可以包括一個或多個感測器,該感測器可以是以下的一個或多個:陀螺儀、加速度計、霍爾效應感測器、磁力計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸摸感測器、磁力計、氣壓計、手勢感測器、生物測定感測器及/或濕度感測器。The processor 118 may also be coupled to other peripheral devices 138, where the peripheral devices may include one or more software and / or hardware modules that provide additional features, functions, and / or wired or wireless connections. For example, peripheral devices 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photos and / or video), a universal serial bus (USB) port, a vibration device, a TV transceiver, a hands-free headset, Bluetooth ® modules, FM radio units, digital music players, media players, video game console modules, Internet browsers, virtual reality and / or augmented reality (VR / AR) devices, and event tracking And so on. The peripheral device 138 may include one or more sensors, and the sensors may be one or more of the following: a gyroscope, an accelerometer, a Hall effect sensor, a magnetometer, an orientation sensor, a proximity sensor Sensor, temperature sensor, time sensor, geographic location sensor, altimeter, light sensor, touch sensor, magnetometer, barometer, gesture sensor, biometric sensor, and / or humidity Sensor.

WTRU 102可以包括全雙工無線電裝置,對於該無線電裝置,一些或所有信號(例如與用於UL(例如針對傳輸)以及下鏈(例如針對接收)的特定子訊框相關聯)的接收或傳輸可以是並行及/或同時的。全雙工無線電裝置可以包括經由硬體(例如扼流圈)或是經由處理器(例如單獨的處理器(未顯示)或是經由處理器118)的信號處理來減小及/或基本消除自干擾的干擾管理單元。在實施例中,WTRU 102可以包括傳送以及接收一些或所有信號(例如與用於UL(例如針對傳輸)或下鏈(例如針對接收)的特定子訊框相關聯)的半雙工無線電裝置。WTRU 102 may include a full-duplex radio device for which some or all signals are received or transmitted (eg, associated with specific sub-frames for UL (eg, for transmission) and downlink (eg, for reception)) It can be parallel and / or simultaneous. A full-duplex radio may include signal processing via hardware (such as a choke) or via a processor (such as a separate processor (not shown) or via processor 118) to reduce and / or substantially eliminate Interference Interference Management Unit. In an embodiment, the WTRU 102 may include a half-duplex radio that transmits and receives some or all signals (eg, associated with specific sub-frames for UL (eg, for transmission) or downlink (eg, for reception).

第1C圖是示出了根據實施例的RAN 104以及CN 106的系統圖。如在此所述,RAN 104可以在空中介面116上使用E-UTRA無線電技術以與WTRU 102a、102b、102c進行通信。該RAN 104還可以與CN 106進行通信。FIG. 1C is a system diagram showing the RAN 104 and the CN 106 according to the embodiment. As described herein, the RAN 104 may use E-UTRA radio technology on the air interface 116 to communicate with the WTRUs 102a, 102b, 102c. The RAN 104 can also communicate with the CN 106.

RAN 104可以包括e節點B 160a、160b、160c,然而應該瞭解,在保持符合實施例的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b、160c都可以包括在空中介面116上與WTRU 102a、102b、102c通信的一個或多個收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用多個天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。The RAN 104 may include eNodeBs 160a, 160b, 160c, however it should be understood that while maintaining compliance with embodiments, the RAN 104 may include any number of eNodeBs. Each eNodeB 160a, 160b, 160c may include one or more transceivers on the air interface 116 to communicate with the WTRUs 102a, 102b, 102c. In one embodiment, eNodeB 160a, 160b, 160c may implement MIMO technology. Thus, for example, eNodeB 160a may use multiple antennas to transmit and / or receive wireless signals to and from WTRU 102a.

每一個e節點B 160a、160b、160c都可以關聯於一個特定胞元(未顯示)、並且可被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程等等。如第1C圖所示,e節點B 160a、160b、160c彼此可以經由X2介面進行通信。Each eNodeB 160a, 160b, 160c can be associated with a specific cell (not shown) and can be configured to handle radio resource management decisions, handover decisions, user scheduling in UL and / or DL, etc. . As shown in FIG. 1C, the eNodeBs 160a, 160b, and 160c can communicate with each other through an X2 interface.

第1C圖所示的CN 106可以包括行動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(或PGW)166。雖然前述的每一個元件都被描述為是CN 106的一部分,然而應該瞭解,這其中的任一元件都可以由CN操作者之外的實體擁有及/或操作。The CN 106 shown in FIG. 1C may include a mobility management entity (MME) 162, a service gateway (SGW) 164, and a packet data network (PDN) gateway (or PGW) 166. Although each of the aforementioned elements is described as being part of the CN 106, it should be understood that any of these elements may be owned and / or operated by entities other than the CN operator.

MME 162可以經由S1介面而被連接到RAN 104中的每一個e節點B 160a、160b、160c、並且可以充當控制節點。例如,MME 162可以負責驗證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、以及在WTRU 102a、102b、102c的初始連結期間選擇特定的服務閘道等等。MME 162還可以提供用於在RAN 104與使用其他無線電技術(例如GSM及/或WCDMA)的其他RAN(未顯示)之間進行切換的控制平面功能。The MME 162 may be connected to each of the eNode Bs 160a, 160b, 160c in the RAN 104 via the S1 interface, and may serve as a control node. For example, the MME 162 may be responsible for authenticating users of the WTRUs 102a, 102b, 102c, performing bearer activation / deactivation, and selecting specific service gateways during the initial connection of the WTRUs 102a, 102b, 102c, and so on. The MME 162 may also provide a control plane function for switching between the RAN 104 and other RANs (not shown) using other radio technologies such as GSM and / or WCDMA.

SGW 164可以經由S1介面而被連接到RAN 104中的每一個e節點B 160a、160b、160c。SGW 164通常可以路由以及轉發使用者資料封包至WTRU 102a、102b、102c/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164可以執行其他功能,例如在eNB間的切換期間錨定使用者平面、在DL資料可供WTRU 102a、102b、102c使用時觸發傳呼、以及管理並儲存WTRU 102a、102b、102c的上下文等等。The SGW 164 may be connected to each eNodeB 160a, 160b, 160c in the RAN 104 via the S1 interface. SGW 164 can generally route and forward user data packets to / from WTRU 102a, 102b, 102c / user data packets from WTRU 102a, 102b, 102c. SGW 164 can perform other functions, such as anchoring the user plane during handover between eNBs, triggering paging when DL data is available to WTRU 102a, 102b, 102c, and managing and storing the context of WTRU 102a, 102b, 102c, etc. .

SGW 164可以連接到PGW 166,該PGW可以為WTRU 102a、102b、102c提供封包交換網路(例如網際網路110)存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信。SGW 164 can be connected to PGW 166, which can provide WTRU 102a, 102b, 102c access to a packet-switched network (such as Internet 110) to facilitate WTRU 102a, 102b, 102c and IP-enabled devices Communication.

CN 106可以促進與其他網路的通信。例如,CN 106可以為WTRU 102a、102b、102c提供電路切換式網路(例如PSTN 108)存取,以促進WTRU 102a、102b、102c與傳統的陸線通信裝置之間的通信。例如,CN 106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通信,並且該IP閘道可以充當CN 106與PSTN 108之間的介面。此外,CN 106可以為WTRU 102a、102b、102c提供針對其他網路112的存取,其中該網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。CN 106 can facilitate communication with other networks. For example, the CN 106 may provide circuit-switched network (such as PSTN 108) access to the WTRUs 102a, 102b, and 102c to facilitate communication between the WTRUs 102a, 102b, and 102c and traditional landline communications devices. For example, the CN 106 may include or communicate with an IP gateway, such as an IP Multimedia Subsystem (IMS) server, and the IP gateway may serve as an interface between the CN 106 and the PSTN 108. In addition, the CN 106 may provide the WTRUs 102a, 102b, 102c with access to other networks 112, where the network 112 may include other wired and / or wireless networks owned and / or operated by other service providers.

雖然在第1A圖至第1D圖中將WTRU描述為無線終端,然而應該想到的是,在某些典型實施例中,此類終端可以使用(例如暫時或永久性)與通信網路的有線通信介面。Although the WTRU is described as a wireless terminal in Figures 1A to 1D, it should be thought that in some typical embodiments, such terminals can use (eg, temporarily or permanently) wired communication with a communication network interface.

在典型實施例中,該其他網路112可以是WLAN。In a typical embodiment, the other network 112 may be a WLAN.

採用基礎架構基本服務集(BSS)模式的WLAN可以具有用於該BSS的存取點(AP)以及與該AP相關聯的一個或多個站(STA)。該AP可以存取或是介接到分散式系統(DS)或是將訊務攜入及/或攜出BSS的另一類型的有線/無線網路。源自BSS外部且至STA的訊務可以經由AP到達並被遞送至STA。源自STA且至BSS外部的目的地的訊務可被發送至AP,以遞送到各自的目的地。在BSS內的STA之間的訊務可以經由AP來發送,例如其中源STA可以向AP發送訊務、並且AP可以將訊務遞送至目的地STA。在BSS內的STA之間的訊務可被認為及/或稱為點到點訊務。該點到點訊務可以在源與目的地STA之間(例如在其間直接)用直接鏈路建立(DLS)來發送。在某些典型實施例中,DLS可以使用802.11e DLS或802.11z隧道化DLS(TDLS)。使用獨立BSS(IBSS)模式的WLAN可不具有AP,並且在該IBSS內或是使用該IBSS的STA(例如所有STA)彼此可以直接通信。在這裡,IBSS通信模式有時可被稱為“特定(ad-hoc)”通信模式。A WLAN adopting the infrastructure basic service set (BSS) mode may have an access point (AP) for the BSS and one or more stations (STA) associated with the AP. The AP can access or interface to a decentralized system (DS) or another type of wired / wireless network that carries traffic in and / or out of the BSS. Traffic originating outside the BSS and to the STA can arrive via the AP and be delivered to the STA. Traffic originating from STAs and to destinations outside the BSS can be sent to APs for delivery to their respective destinations. The traffic between STAs within the BSS can be sent via the AP, for example where the source STA can send traffic to the AP and the AP can deliver the traffic to the destination STA. Traffic between STAs within a BSS may be considered and / or referred to as point-to-point traffic. The point-to-point traffic can be sent between the source and destination STAs (eg, directly between them) using direct link setup (DLS). In some typical embodiments, the DLS may use 802.11e DLS or 802.11z Tunneled DLS (TDLS). The WLAN using the independent BSS (IBSS) mode may not have an AP, and STAs (for example, all STAs) within the IBSS or using the IBSS can directly communicate with each other. Here, the IBSS communication mode may sometimes be referred to as an "ad-hoc" communication mode.

在使用802.11ac基礎設施操作模式或類似的操作模式時,AP可以在固定通道(例如主通道)上傳送信標。該主通道可以具有固定寬度(例如20 MHz的頻寬)或是經由傳訊動態設定的寬度。主通道可以是BSS的操作通道、並且可被STA用來與AP建立連接。在某些典型實施例中,(例如在802.11系統中)可以實施具有衝突避免的載波感測多重存取(CSMA/CA)。對於CSMA/CA,包括AP的STA(例如每一個STA)可以感測主通道。如果特定STA感測到/偵測到及/或確定主通道繁忙,那麼該特定STA可以回退。在指定的BSS中,一個STA(例如只有一個站)可以在任何指定時間進行傳輸。When using the 802.11ac infrastructure operating mode or a similar operating mode, the AP can transmit beacons on a fixed channel, such as the main channel. The main channel can have a fixed width (for example, a bandwidth of 20 MHz) or a width that can be dynamically set through signaling. The main channel can be the operating channel of the BSS and can be used by the STA to establish a connection with the AP. In some typical embodiments (eg, in an 802.11 system) carrier sense multiple access (CSMA / CA) with collision avoidance may be implemented. For CSMA / CA, STAs that include APs (such as each STA) can sense the main channel. If a specific STA senses / detects and / or determines that the main channel is busy, then the specific STA may fall back. In a given BSS, a STA (for example, only one station) can transmit at any given time.

高流通量(HT)STA可以使用40 MHz寬的通道來進行通信(例如經由將20 MHz寬的主通道與20 MHz寬的相鄰或不相鄰通道組合以形成40 MHz寬的通道)。High Throughput (HT) STAs can use 40 MHz wide channels for communication (eg, by combining a 20 MHz wide main channel with 20 MHz wide adjacent or non-adjacent channels to form a 40 MHz wide channel).

甚高流通量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合連續的20 MHz通道來形成。160 MHz通道可以藉由組合8個連續的20 MHz通道或者藉由組合兩個不連續的80 MHz通道(這種組合可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞並經過分段解析器,該分段解析器可以將資料分為兩個流。在每一個流上可以單獨執行反向快速傅立葉轉換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由一傳輸STA來傳送。在一接收STA的接收器上,在此所述的用於80+80配置的操作可以是相反的,並且組合資料可被發送至媒體存取控制(MAC)。Very High Throughput (VHT) STAs can support 20 MHz, 40 MHz, 80 MHz, and / or 160 MHz wide channels. The 40 MHz and / or 80 MHz channels can be formed by combining consecutive 20 MHz channels. A 160 MHz channel can be formed by combining eight consecutive 20 MHz channels or by combining two discrete 80 MHz channels (this combination can be referred to as an 80 + 80 configuration). For the 80 + 80 configuration, after channel encoding, the data can be passed and passed through a segmented parser, which can split the data into two streams. Inverse fast Fourier transform (IFFT) processing and time domain processing can be performed separately on each stream. The stream can be mapped on two 80 MHz channels and the data can be transmitted by a transmitting STA. On a receiver of a receiving STA, the operations described herein for 80 + 80 configuration may be reversed, and the combined data may be sent to a media access control (MAC).

802.11af以及802.11ah支援次1 GHz操作模式。與802.11n以及802.11ac中的通道操作頻寬以及載波相較,在802.11af以及802.11ah中使用的通道操作頻寬以及載波減少。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz以及20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz以及16 MHz頻寬。根據典型實施例,802.11ah可以支援儀錶類型控制/機器類型通信,例如巨集覆蓋區域中的MTC裝置。MTC可以具有某種能力,例如包含了支援(例如只支援)某些及/或有限頻寬的受限能力。MTC裝置可以包括電池,並且該電池的電池壽命高於臨界值(例如用於保持很長的電池壽命)。802.11af and 802.11ah support sub-1 GHz operation modes. Compared with the channel operating bandwidth and carrier in 802.11n and 802.11ac, the channel operating bandwidth and carrier used in 802.11af and 802.11ah are reduced. 802.11af supports 5 MHz, 10 MHz, and 20 MHz bandwidths in the TV White Space (TVWS) spectrum, and 802.11ah supports 1 MHz, 2 MHz, 4 MHz, 8 MHz, and 16 MHz bandwidths using non-TVWS spectrum. According to typical embodiments, 802.11ah may support meter type control / machine type communication, such as MTC devices in a macro coverage area. MTC may have certain capabilities, such as limited capabilities that include support (eg, support only) certain and / or limited bandwidth. The MTC device may include a battery, and the battery life of the battery is above a critical value (for example, to maintain a long battery life).

可以支援多個通道以及通道頻寬的WLAN系統(例如,802.11n、802.11ac、802.11af以及802.11ah)包括可被指定為主通道的通道。該主通道可以具有等於BSS中的所有STA所支援的最大公共操作頻寬的頻寬。主通道的頻寬可以由在支援最小頻寬操作模式的BSS中操作的所有STA中的STA設定及/或限制。在802.11ah的範例中,即使BSS中的AP以及其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式,但對支援(例如只支援)1 MHz模式的STA(例如MTC類型的裝置),主通道可以是1 MHz寬。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如因為STA(例如,1 MHz操作模式的STA)對AP進行傳輸),那麼即使大多數的頻帶保持空間並且可供使用,也可以認為整個可用頻帶繁忙。WLAN systems that can support multiple channels and channel bandwidth (for example, 802.11n, 802.11ac, 802.11af, and 802.11ah) include channels that can be designated as the primary channel. The main channel may have a bandwidth equal to the maximum common operating bandwidth supported by all STAs in the BSS. The bandwidth of the main channel may be set and / or limited by STAs among all STAs operating in a BSS that supports the minimum bandwidth operation mode. In the 802.11ah example, even if the AP and other STAs in the BSS support 2 MHz, 4 MHz, 8 MHz, 16 MHz, and / or other channel bandwidth operation modes, but for STAs that support (for example, only support 1 MHz mode) (Eg MTC type devices), the main channel can be 1 MHz wide. Carrier sensing and / or network allocation vector (NAV) settings can depend on the status of the primary channel. If the main channel is busy (for example, because STAs (eg, STAs in 1 MHz operation mode) transmit APs), then even if most of the frequency bands remain space and available, the entire available frequency band can be considered busy.

在美國,可供802.11ah使用的可用頻帶是從902 MHz到928 MHz。在韓國,可用頻帶是從917.5 MHz到923.5 MHz。在日本,可用頻帶是從916.5 MHz到927.5 MHz。依照國家碼,可用於802.11ah的總頻寬是從6 MHz到26 MHz。In the United States, the available frequency bands available for 802.11ah are from 902 MHz to 928 MHz. In South Korea, the available frequency band is from 917.5 MHz to 923.5 MHz. In Japan, the available frequency band is from 916.5 MHz to 927.5 MHz. According to the country code, the total bandwidth available for 802.11ah is from 6 MHz to 26 MHz.

第1D圖是示出了根據實施例的RAN 113以及CN 115的系統圖。如在此所述,RAN 113可以在空中介面116上使用NR無線電技術以與WTRU 102a、102b、102c進行通信。RAN 113還可以與CN 115進行通信。FIG. 1D is a system diagram showing the RAN 113 and the CN 115 according to the embodiment. As described herein, the RAN 113 may use NR radio technology on the air interface 116 to communicate with the WTRUs 102a, 102b, 102c. The RAN 113 can also communicate with the CN 115.

RAN 113可以包括gNB 180a、180b、180c,但是應該瞭解,在保持符合實施例的同時,RAN 113可以包括任何數量的gNB。每一個gNB 180a、180b、180c都可以包括一個或多個收發器,以經由中介面116而與WTRU 102a、102b、102c通信。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以使用波束成形處理以向及/或從gNB 180a、180b、180c傳輸及/或接收信號。因此,舉例來說,gNB 180a可以使用多個天線以向WTRU 102a傳輸無線信號、及/或接收來自WTRU 102a的無線信號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a傳送多個分量載波(未顯示)。這些分量載波的子集可以處於無授權頻譜上,而剩餘分量載波則可以處於授權頻譜上。在實施例中,gNB 180a、180b、180c可以實施協作多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a以及gNB 180b(及/或gNB 180c)的協作傳輸。RAN 113 may include gNBs 180a, 180b, 180c, but it should be understood that while maintaining compliance with embodiments, RAN 113 may include any number of gNBs. Each gNB 180a, 180b, 180c may include one or more transceivers to communicate with the WTRU 102a, 102b, 102c via the intermediary 116. In one embodiment, gNB 180a, 180b, 180c may implement MIMO technology. For example, gNB 180a, 180b may use a beamforming process to transmit and / or receive signals to and / or from gNB 180a, 180b, 180c. Thus, for example, gNB 180a may use multiple antennas to transmit and / or receive wireless signals to and from WTRU 102a. In an embodiment, the gNB 180a, 180b, 180c may implement a carrier aggregation technology. For example, gNB 180a may transmit multiple component carriers (not shown) to WTRU 102a. A subset of these component carriers may be on the unlicensed spectrum, while the remaining component carriers may be on the licensed spectrum. In an embodiment, gNB 180a, 180b, 180c may implement a Coordinated Multipoint (CoMP) technology. For example, WTRU 102a may receive cooperative transmissions from gNB 180a and gNB 180b (and / or gNB 180c).

WTRU 102a、102b、102c可以使用與可縮放參數配置(numerology)相關聯的傳輸以與gNB 180a、180b、180c進行通信。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜部分,OFDM符號間距及/或OFDM子載波間距可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如包含了不同數量的OFDM符號及/或持續變化的絕對時間長度)以與gNB 180a、180b、180c進行通信。WTRUs 102a, 102b, 102c may use transmissions associated with scalable parameter configuration to communicate with gNB 180a, 180b, 180c. For example, for different transmissions, different cells, and / or different portions of the wireless transmission spectrum, the OFDM symbol spacing and / or OFDM subcarrier spacing may be different. WTRUs 102a, 102b, and 102c may use sub-frames or transmission time intervals (TTIs) with different or scalable lengths (for example, containing different numbers of OFDM symbols and / or continuously changing absolute time lengths) to communicate with gNB 180a, 180b , 180c for communication.

gNB 180a、180b、180c可被配置為與採用獨立配置及/或非獨立配置的WTRU 102a、102b、102c進行通信。在獨立配置中,WTRU 102a、102b、102c可以在不存取其他RAN(例如e節點B 160a、160b、160c)下與gNB 180a、180b、180c進行通信。在獨立配置中,WTRU 102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立配置中,WTRU 102a、102b、102c可以使用無授權頻帶中的信號以與gNB 180a、180b、180c進行通信。在非獨立配置中,WTRU 102a、102b、102c可以在與另一RAN(例如e節點B 160a、160b、160c)進行通信/連接的同時與gNB 180a、180b、180c進行通信/連接。舉例來說,WTRU 102a、102b、102c可以實施DC原理而基本上同時地與一個或多個gNB 180a、180b、180c以及一個或多個e節點B 160a、160b、160c進行通信。在非獨立配置中,e節點B 160a、160b、160c可以充當WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或流通量,以服務WTRU 102a、102b、102c。The gNBs 180a, 180b, 180c may be configured to communicate with WTRUs 102a, 102b, 102c in a standalone configuration and / or a non-standalone configuration. In a stand-alone configuration, WTRUs 102a, 102b, and 102c can communicate with gNB 180a, 180b, and 180c without access to other RANs (eg, eNodeB 160a, 160b, 160c). In a standalone configuration, WTRUs 102a, 102b, 102c may use one or more of gNB 180a, 180b, 180c as an action anchor. In a standalone configuration, WTRUs 102a, 102b, 102c may use signals in the unlicensed frequency band to communicate with gNB 180a, 180b, 180c. In a non-independent configuration, the WTRUs 102a, 102b, 102c may communicate / connect with the gNB 180a, 180b, 180c while communicating / connecting with another RAN (e.g., eNodeB 160a, 160b, 160c). For example, WTRUs 102a, 102b, 102c may implement the DC principle to communicate with one or more gNBs 180a, 180b, 180c and one or more eNodeBs 160a, 160b, 160c substantially simultaneously. In a non-independent configuration, eNodeB 160a, 160b, 160c can act as an anchor for WTRU 102a, 102b, 102c, and gNB 180a, 180b, 180c can provide additional coverage and / or traffic to serve WTRU 102a, 102b, 102c.

每一個gNB 180a、180b、180c都可以關聯於特定胞元(未顯示)、並且可以被配置為處理無線電資源管理決策、切換決策、UL及/或DL中的使用者排程、支援網路截割、實施雙連接性、實施NR與E-UTRA之間的互通、路由使用者平面資料至使用者平面功能(UPF)184a、184b、以及路由控制平面資訊至存取以及行動性管理功能(AMF)182a、182b等等。如第1D圖所示,gNB 180a、180b、180c彼此可以經由Xn介面通信。Each gNB 180a, 180b, 180c can be associated with a specific cell (not shown) and can be configured to handle radio resource management decisions, handover decisions, user scheduling in UL and / or DL, support network interception Cut, implement dual connectivity, implement interworking between NR and E-UTRA, route user plane data to user plane functions (UPF) 184a, 184b, and route control plane information to access and mobility management functions (AMF ) 182a, 182b, etc. As shown in FIG. 1D, the gNBs 180a, 180b, and 180c can communicate with each other via an Xn interface.

第1D圖所示的CN 115可以包括至少一個AMF 182a、182b、至少一個UPF 184a、184b,至少一個對話管理功能(SMF)183a、183b、並且有可能包括資料網路(DN)185a、185b。雖然每一個前述元件都被描述了CN 115的一部分,但是應該瞭解,這些元件中的任一元件都可以被CN操作者之外的其他實體擁有及/或操作。The CN 115 shown in FIG. 1D may include at least one AMF 182a, 182b, at least one UPF 184a, 184b, at least one session management function (SMF) 183a, 183b, and may include a data network (DN) 185a, 185b. Although each of the aforementioned elements is described as part of the CN 115, it should be understood that any of these elements may be owned and / or operated by entities other than the CN operator.

AMF 182a、182b可以經由N2介面而被連接到RAN 113中的一者或多者gNB 180a、180b、180c、並且可以充當控制節點。例如,AMF 182a、182b可以負責驗證WTRU 102a、102b、102c的使用者、支援網路截割(例如處理具有不同需求的不同PDU對話)、選擇特定的SMF 183a、183b、管理註冊區域、終止NAS傳訊、以及行動性管理等等。AMF 182a、1823b可以使用網路截割,以基於WTRU 102a、102b、102c使用的服務類型來定製為WTRU 102a、102b、102c提供的CN支援。舉例來說,針對不同的使用情況,可以建立不同的網路切片,該使用情況例如為依賴於超可靠低潛時(URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、及/或用於機器類型通信(MTC)存取的服務等等。AMF 162可以提供用於在RAN 113與使用其他無線電技術(例如LTE、LTE-A、LTE-A Pro及/或例如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。The AMF 182a, 182b may be connected to one or more of the RAN 113 gNB 180a, 180b, 180c via the N2 interface, and may serve as a control node. For example, AMF 182a, 182b can be responsible for verifying the users of WTRU 102a, 102b, 102c, supporting network truncation (such as processing different PDU conversations with different requirements), selecting specific SMF 183a, 183b, managing registration areas, terminating NAS Messaging and mobile management. AMF 182a, 1823b can use network truncation to customize the CN support provided to WTRU 102a, 102b, 102c based on the type of service used by WTRU 102a, 102b, 102c. For example, different network slices can be established for different use cases, such as services that rely on ultra-reliable low-latency (URLLC) access, rely on enhanced large-scale mobile broadband (eMBB) storage Access to services, and / or services for machine type communication (MTC) access, etc. AMF 162 may provide for switching between RAN 113 and other RANs (not shown) using other radio technologies (such as LTE, LTE-A, LTE-A Pro, and / or non-3GPP access technologies such as WiFi) Control plane function.

SMF 183a、183b可以經由N11介面而被連接到CN 115中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面而被連接到CN 115中的UPF 184a、184b。SMF 183a、183b可以選擇以及控制UPF 184a、184b、並且可以經由UPF 184a、184b來配置訊務路由。SMF 183a、183b可以執行其他功能,例如管理以及分配UE IP位址,管理PDU對話,控制策略實施以及QoS、以及提供下鏈資料通知等等。PDU對話類型可以是基於IP的、不基於IP的、以及基於乙太網路的等等。The SMF 183a, 183b can be connected to the AMF 182a, 182b in the CN 115 via the N11 interface. SMF 183a, 183b can also be connected to UPF 184a, 184b in CN 115 via N4 interface. SMF 183a, 183b can select and control UPF 184a, 184b, and can configure traffic routing via UPF 184a, 184b. SMF 183a, 183b can perform other functions, such as managing and allocating UE IP addresses, managing PDU conversations, controlling policy implementation and QoS, and providing notification of downlink information, etc. PDU conversation types can be IP-based, non-IP-based, Ethernet-based, and so on.

UPF 184a、184b可以經由N3介面而被連接到RAN 113中的一者或多者gNB 180a、180b、180c,這樣可以為WTRU 102a、102b、102c提供對封包交換網路(例如網際網路110)的存取,以促進WTRU 102a、102b、102c與IP賦能的裝置之間的通信,UPF 184、184b可以執行其他功能,例如路由以及轉發封包、實施使用者平面策略、支援多宿主PDU對話、處理使用者平面QoS、緩衝下鏈封包、以及提供行動性錨定等等。UPF 184a, 184b can be connected to one or more of RAN 113 gNB 180a, 180b, 180c via the N3 interface, which can provide a packet switching network for WTRU 102a, 102b, 102c (such as Internet 110) Access to facilitate communication between WTRUs 102a, 102b, 102c and IP-enabled devices, UPF 184, 184b can perform other functions, such as routing and forwarding packets, implementing user plane policies, supporting multi-homed PDU conversations, Handle user plane QoS, buffer downlink packets, and provide mobile anchoring.

CN 115可以促進與其他網路的通信。例如,CN 115可以包括或者可以與充當CN 115與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)進行通信。此外,CN 115可以為WTRU 102a、102b、102c提供針對其他網路112的存取,該其他網路112可以包括其他服務供應者擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以經由與UPF 184a、184b介接的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面並經由UPF 184a、184b而連接到本地資料網路(DN)185a、185b。CN 115 can facilitate communication with other networks. For example, CN 115 may include or may communicate with an IP gateway (such as an IP Multimedia Subsystem (IMS) server) that acts as an interface between CN 115 and PSTN 108. In addition, CN 115 may provide WTRUs 102a, 102b, 102c with access to other networks 112, which may include other wired and / or wireless networks owned and / or operated by other service providers. In one embodiment, the WTRUs 102a, 102b, and 102c may be connected to the UPF 184a, 184b through the N3 interface and the N6 interface between the UPF 184a, 184b and the DN 185a, 185b, and connected to the UPF 184a, 184b. Local Data Network (DN) 185a, 185b.

鑒於第1A圖至第1D圖以及關於第1A圖至第1D圖的對應描述,在這裡對照以下的一項或多項描述的一個或多個或所有功能可以由一個或多個仿真裝置(未顯示)來執行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185 a-b及/或這裡描述的其他任何裝置(一個或多個)。這些仿真裝置可以是被配置為仿真這裡一個或多個或所有功能的一個或多個裝置。舉例來說,這些仿真裝置可用於測試其他裝置及/或模擬網路及/或WTRU功能。In view of Figures 1A to 1D and the corresponding descriptions of Figures 1A to 1D, one or more or all functions described here with reference to one or more of the following may be performed by one or more simulation devices (not shown) ) To perform: WTRU 102a-d, base stations 114a-b, eNodeB 160a-c, MME 162, SGW 164, PGW 166, gNB 180a-c, AMF 182a-b, UPF 184a-b, SMF 183a-b , DN 185 ab, and / or any other device (s) described herein. These simulation devices may be one or more devices configured to simulate one or more or all of the functions herein. For example, these simulated devices can be used to test other devices and / or simulate network and / or WTRU functions.

仿真裝置可被設計為在實驗室環境及/或操作者網路環境中實施關於其他裝置的一項或多項測試。例如,該一個或多個仿真裝置可以在被完全或部分作為有線及/或無線通訊網路一部分實施及/或部署的同時執行一個或多個或所有功能,以測試通信網路內的其他裝置。該一個或多個仿真裝置可以在被暫時作為有線及/或無線通訊網路的一部分實施/部署的同時執行一個或多個或所有功能。該仿真裝置可以直接耦合到另一裝置以執行測試,及/或可以使用空中無線通訊來執行測試。The simulation device may be designed to perform one or more tests on other devices in a laboratory environment and / or an operator network environment. For example, the one or more emulated devices may perform one or more or all functions while being implemented and / or deployed wholly or partially as part of a wired and / or wireless communication network to test other devices within the communication network. The one or more emulation devices may perform one or more or all functions while being temporarily implemented / deployed as part of a wired and / or wireless communication network. The emulation device may be directly coupled to another device to perform the test, and / or may use air wireless communication to perform the test.

該一個或多個仿真裝置可以在未被作為有線及/或無線通訊網路一部分實施/部署的同時執行包括所有功能的一個或多個功能。例如,該仿真裝置可以在測試實驗室及/或未被部署(例如測試)的有線及/或無線通訊網路的測試場景中使用,以實施一個或多個元件的測試。該一個或多個仿真裝置可以是測試裝置。該仿真裝置可以使用直接的RF耦合及/或經由RF電路(例如,該電路可以包括一個或多個天線)的無線通訊來傳輸及/或接收資料。The one or more emulation devices may perform one or more functions including all functions while not being implemented / deployed as part of a wired and / or wireless communication network. For example, the simulation device may be used in a test laboratory and / or a test scenario of a wired and / or wireless communication network that is not deployed (eg, tested) to perform testing of one or more components. The one or more simulation devices may be a test device. The simulation device may use direct RF coupling and / or wireless communication via an RF circuit (eg, the circuit may include one or more antennas) to transmit and / or receive data.

在此描述了用於啟動以及停用用於WTRU之間的通信的側鏈路資源池的處理,例如結合第1圖描述的那些。WTRU可以被配置有多個側鏈路資源池、並且可以啟動一個或多個資源池以與其他WTRU通信。資源池可按照以下一者或多者而被定義:頻率(例如,子載波、資源塊、頻寬部分、傳輸頻帶等中的一者或多者)、時間(例如,符號、時槽、子訊框、週期性、偏移等中的一者或多者)、碼(例如,循環移位、正交碼等中的一者或多者)、空間(例如,波束、一個或多個預編碼器等)、及/或時間/頻率/碼/空間資源的任何組合。WTRU可以使用由啟動的側鏈路資源池指明的資源(例如,資源塊以及時槽/子訊框)以直接與其他WTRU通信。WTRU可以自主地並動態地確定啟動以及停用資源池。例如,WTRU可以基於其將要發送及/或接收的資料的特性來確定啟動適合於傳輸以及接收該資料的資源池。WTRU還可以基於其從另一個WTRU接收的指示來確定啟動與另一個WTRU正在使用的資源池相容的資源池。WTRU可以基於其從無線電存取網路接收的指示、指令及/或通信來確定啟動特定資源池。Processes for starting and deactivating side-link resource pools for communication between WTRUs, such as those described in connection with FIG. 1, are described herein. A WTRU may be configured with multiple side-link resource pools and may initiate one or more resource pools to communicate with other WTRUs. A resource pool can be defined in terms of one or more of: frequency (for example, one or more of a subcarrier, resource block, bandwidth portion, transmission band, etc.), time (for example, symbol, time slot, sub One or more of frame, periodicity, offset, etc.), code (for example, one or more of cyclic shift, orthogonal code, etc.), space (for example, beam, one or more preambles, etc.) Encoder, etc.), and / or any combination of time / frequency / code / spatial resources. The WTRU may use the resources indicated by the activated side-link resource pool (eg, resource blocks and time slots / subframes) to communicate directly with other WTRUs. The WTRU can autonomously and dynamically determine the activation and deactivation of the resource pool. For example, the WTRU may determine to initiate a resource pool suitable for transmitting and receiving the data based on the characteristics of the data it will send and / or receive. The WTRU may also determine to initiate a resource pool that is compatible with the resource pool being used by another WTRU based on the indication it received from the other WTRU. The WTRU may determine to start a particular resource pool based on the instructions, instructions, and / or communications it receives from the radio access network.

直接的裝置到裝置、或WTRU到WTRU通信可以在車輛操作的環境中進行。車輛對車輛(V2V)以及車輛對所有事物(V2X)設想了這樣的場景,其中:可以與車輛相關聯的WTRU能夠直接與可與其他車輛、基礎設施、人員及/或任何其他可應用的項目相關聯的其他WTRU通信。V2X操作可以在覆蓋範圍內場景(其中,WTRU在無線電存取網路的覆蓋範圍內)期間發生、及/或在覆蓋範圍外場景(其中,WTRU在無線電存取網路的覆蓋範圍外)期間發生。例如,在該覆蓋範圍內場景中,在傳輸及/或接收V2X訊息時,WTRU可以從網路接收説明。在覆蓋範圍外場景中,在無線電存取網路的覆蓋範圍外的WTRU可以在傳輸以及接收V2X訊息時使用預配置的參數。Direct device-to-device, or WTRU-to-WTRU communication can occur in the environment in which the vehicle operates. Vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) scenarios are envisaged in which a WTRU that can be associated with a vehicle can directly interact with other vehicles, infrastructure, people, and / or any other applicable items Associated other WTRU communications. V2X operation may occur during a coverage scenario (where the WTRU is within the coverage of the radio access network) and / or during an out-of-coverage scenario (where the WTRU is outside the coverage of the radio access network) occur. For example, in this coverage scenario, the WTRU may receive instructions from the network when transmitting and / or receiving V2X messages. In out-of-coverage scenarios, WTRUs outside the coverage of the radio access network can use pre-configured parameters when transmitting and receiving V2X messages.

V2X通信可能涉及許多不同的通信對。V2X通信服務可以包括例如以下中的一者或多者:車輛到車輛(V2V)通信、車輛到基礎設施(V2I)通信、車輛到網路(V2N)通信、以及車輛到行人(V2P)通信。關於V2V通信,車輛WTRU彼此可以直接通信。在V2I通信中,車輛WTRU可以與路側單元(RSU)及/或網路eNB通信。在V2N通信中,車輛WTRU可以與網路通信,該網路可以是例如LTE演進封包核心網路。在V2P通信中,車輛WTRU可以與可能具有特殊條件(例如,低電池容量)的一個或多個WTRU通信。V2X communication may involve many different communication pairs. V2X communication services may include, for example, one or more of the following: vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, vehicle-to-network (V2N) communication, and vehicle-to-pedestrian (V2P) communication. Regarding V2V communication, vehicle WTRUs can communicate directly with each other. In V2I communication, a vehicle WTRU may communicate with a roadside unit (RSU) and / or a network eNB. In V2N communication, a vehicle WTRU may communicate with a network, which may be, for example, an LTE evolved packet core network. In V2P communication, a vehicle WTRU may communicate with one or more WTRUs that may have special conditions (eg, low battery capacity).

在LTE及/或NR處理中,可以有兩種或更多種操作模式,WTRU可以使用這兩種或更多種操作模式來支援V2X通信。例如,在第一模式中,網路可以向WTRU提供用於V2X側鏈路傳輸的排程指派(例如,可以稱為模式3 V2X通信)。在第二模式中,WTRU可以從所配置/預配置的資源池中選擇(例如,可以自主選擇)用於側鏈路傳輸的資源(例如,可以稱為模式4 V2X通信)。In LTE and / or NR processing, there may be two or more operation modes, and the WTRU may use these two or more operation modes to support V2X communication. For example, in the first mode, the network may provide the WTRU with a scheduling assignment for V2X side link transmission (for example, it may be referred to as mode 3 V2X communication). In the second mode, the WTRU may select (for example, may autonomously select) resources for side-link transmission from the configured / pre-configured resource pool (for example, may be referred to as mode 4 V2X communication).

LTE V2X處理可以定義一個或多個類別的資源池(例如,兩個類別的資源池)。資源池類別可以包括例如V2X接收池及/或V2X傳輸池。例如,可以在監視接收V2X傳輸中使用V2X接收池。WTRU可以使用V2X傳輸池以例如選擇傳輸資源(例如,在模式4中)。在範例中,在網路排程的D2D模式(例如,模式3)中配置的WTRU可以不使用傳輸池。LTE V2X processing can define one or more categories of resource pools (eg, two categories of resource pools). The resource pool category may include, for example, a V2X receiving pool and / or a V2X transmission pool. For example, a V2X receive pool can be used in monitoring receive V2X transmissions. The WTRU may use a V2X transmission pool to, for example, select transmission resources (eg, in mode 4). In an example, a WTRU configured in a network-scheduled D2D mode (eg, mode 3) may not use a transmission pool.

WTRU使用的資源池可以經由傳訊而被配置。可以經由無線電資源控制(RRC)傳訊半靜態地執行傳訊。在模式4中,在從RRC配置的傳輸池中選擇資源之前,WTRU可以使用感測(例如,例如RSRP測量之類的信號測量)。在範例中,V2X資源池配置可以經由系統資訊塊(SIB)及/或專用RRC傳訊而被實施,及/或WTRU可以被配置(例如,預配置)有池配置。The resource pool used by the WTRU may be configured via messaging. Messaging can be performed semi-statically via Radio Resource Control (RRC) messaging. In mode 4, the WTRU may use sensing (eg, signal measurements such as RSRP measurements) before selecting resources from the RRC-configured transmission pool. In an example, the V2X resource pool configuration may be implemented via system information block (SIB) and / or dedicated RRC signaling, and / or the WTRU may be configured (eg, pre-configured) with a pool configuration.

可以使用新無線電(NR)通信系統(例如,5G通信系統)來執行V2X處理。NR系統可以支援許多使用情況,例如,增強型行動寬頻(eMBB)以及超可靠低潛時通信(URLLC)。V2X processing may be performed using a new radio (NR) communication system (for example, a 5G communication system). NR systems can support many use cases, such as enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC).

對於例如V2X WTRU之間的感測器資訊共用、及/或V2X WTRU之間的緊急軌跡對準之類的場景,V2X性能目標可以包括3毫秒(ms)的最大端到端潛時。端到端潛時可以被定義為將給定資訊片從源傳輸到目的地所花費的時間。可以在應用等級測量端到端潛時(例如,從源應用程式傳輸資訊的那一刻到目的地應用程式接收資訊的那一刻)。在實體層中,可以使用傳輸塊(例如,相同傳輸塊)的重傳來增加V2X傳輸的可靠性及/或覆蓋範圍。當執行重傳時,可以使用3ms視窗內的更多時間資源機會。V2X LTE可能不支援超低潛時要求。For scenarios such as sensor information sharing between V2X WTRUs and / or emergency trajectory alignment between V2X WTRUs, V2X performance goals may include a maximum end-to-end latency of 3 milliseconds (ms). End-to-end latency can be defined as the time it takes to transmit a given piece of information from the source to the destination. End-to-end latency can be measured at the application level (for example, from the moment the source application transmits information to the moment the destination application receives the information). In the physical layer, retransmission of transmission blocks (for example, the same transmission block) can be used to increase the reliability and / or coverage of V2X transmission. When performing retransmissions, more time resource opportunities within the 3ms window can be used. V2X LTE may not support ultra-low latency requirements.

可以在各種場景中支援V2X通信。例如,可以支援V2X用於覆蓋範圍內場景(例如,在支援DL以及UL傳輸的eNB/gNB覆蓋範圍內)。在與非V2X訊務共用的頻帶上可以支援V2X。如果在與非V2X訊務共用的頻帶上支援V2X,則分配V2X資源(例如,以滿足潛時要求)可能變得具有挑戰性及/或效率低下。Can support V2X communication in various scenarios. For example, V2X can be used for coverage scenarios (for example, in the eNB / gNB coverage that supports DL and UL transmissions). Supports V2X on frequency bands shared with non-V2X traffic. If V2X is supported on a frequency band shared with non-V2X traffic, allocating V2X resources (eg, to meet latency requirements) may become challenging and / or inefficient.

分頻多工(FDM)可用於支援V2X通信。例如,網路可以為V2X傳輸保留頻率資源塊,而其他頻率塊被保留用於其他傳輸。第2圖示出了範例性分頻多工技術的圖式。頻率資源可以對應於例如不同的實體資源塊(PRB)、不同的頻寬部分(BWP)、不同的載波等。Frequency division multiplexing (FDM) can be used to support V2X communications. For example, the network may reserve frequency resource blocks for V2X transmissions, while other frequency blocks are reserved for other transmissions. Figure 2 shows a diagram of an exemplary frequency division multiplexing technique. The frequency resources may correspond to, for example, different physical resource blocks (PRB), different bandwidth portions (BWP), different carriers, and the like.

當嘗試使用分頻多工來提供V2X通信時,可以考慮頻譜效率。例如,超低潛時V2X通信可以在叢發(例如,V2X WTRU之間的緊急軌跡對準)中被傳輸,並且在每個傳輸機會中可以不使用保留資源(例如,可以不連續使用)。網路可以在模式3中操作,在這種情況下,網路可以知道上鏈(UL)資源是否被分配給非V2X WTRU。如果網路在模式3中操作,則網路可以管理模式3中的WTRU(例如,模式3中的所有WTRU)。例如,在高訊務場景期間,隨著例如可能發生的裝置數量的增加,模式3中的WTRU的管理可能增加複雜性。複雜性的這種增加可以應用於(例如,也可以應用於)覆蓋範圍外的情況中。可以執行技術以減少預配置池中的低潛時的專用資源量。When trying to use frequency division multiplexing to provide V2X communication, spectrum efficiency can be considered. For example, ultra-low-latency V2X communications may be transmitted in bursts (eg, emergency trajectory alignment between V2X WTRUs), and reserved resources may not be used in each transmission opportunity (eg, may be discontinuously used). The network can operate in mode 3, in which case the network can know if the uplink (UL) resource is allocated to a non-V2X WTRU. If the network is operating in mode 3, the network can manage WTRUs in mode 3 (eg, all WTRUs in mode 3). For example, during high-traffic scenarios, the management of WTRUs in Mode 3 may increase complexity as the number of devices that may occur increases, for example. This increase in complexity can be applied (for example, also) to situations outside of coverage. Techniques can be implemented to reduce the amount of low-latency dedicated resources in a pre-configured pool.

分時雙工(TDD)可用於支援V2X通信。在TDD中,可以限制用於V2X通信的資源池組。例如,一組資源池可以被限制到上鏈(UL)時槽(例如,因為V2X傳輸可以使用上鏈資源)。參考第3圖,V2X WTRU可以具有超低潛時訊務,其可以被排程用於在時段n(例如,子訊框n)中的傳輸。但是子訊框n可能專用於下鏈(DL)傳輸,並且WTRU可能無法在用於UL的子訊框n + 4之前傳輸訊務。傳輸訊務的延遲可歸因於半靜態資源配置及/或操作模式。注意,這裡揭露的分時的範例可以在子訊框分配或池方面藉由範例而被呈現,但是同樣可以預期由其他類型的時間單元(例如,符號、時槽、傳輸時間間隔等)進行分時。因此,這裡關於子訊框時間間隔描述的範例可以同樣可應用於例如時槽之類的其他時間單元,並且這些範例不意味著僅限於基於子訊框的時序。Time division duplexing (TDD) can be used to support V2X communications. In TDD, the resource pool group used for V2X communication can be restricted. For example, a set of resource pools can be limited to an uplink (UL) time slot (for example, because V2X transmissions can use uplink resources). Referring to FIG. 3, a V2X WTRU may have ultra-low latency traffic, which may be scheduled for transmission in period n (eg, subframe n). But subframe n may be dedicated to downlink (DL) transmission, and the WTRU may not be able to transmit traffic before subframe n + 4 for UL. Delays in transmitting traffic can be attributed to semi-static resource allocation and / or operating modes. Note that the time-sharing example disclosed here can be presented by way of example in terms of sub-frame allocation or pooling, but it is also expected to be divided by other types of time units (eg, symbols, time slots, transmission time intervals, etc.) Time. Therefore, the examples described herein regarding the sub-frame time interval can be equally applied to other time units such as time slots, and these examples are not meant to be limited to sub-frame based timing.

可以使用包括啟動及/或停用的側鏈路資源池重新配置來支援V2X通信。可以動態地執行資源池重新配置。V2X communication can be supported using side-link resource pool reconfiguration including activation and / or deactivation. Resource pool reconfiguration can be performed dynamically.

WTRU可以被配置有一組或多組側鏈路接收/傳輸資源池(RP)。該資源池定義了可用於在側鏈路通道上接收/傳輸控制資訊及/或資料的資源。一組(例如,每組)側鏈路接收/傳輸資源池可以與以下中的一者或多者相關聯:時槽格式;時域中的模式,其包括具有所配置的時槽格式的時槽;配置週期;分量載波(CC);頻寬部分(BWP);路徑損耗gNB-WTRU或RSU-WTRU;及/或波束配置。The WTRU may be configured with one or more sets of side-link receive / transmit resource pools (RPs). The resource pool defines resources that can be used to receive / transmit control information and / or data on the side link channel. A set (eg, each set) of side-link receive / transmit resource pools can be associated with one or more of the following: time slot format; modes in the time domain that include time slots with the configured time slot format Slot; configuration period; component carrier (CC); bandwidth portion (BWP); path loss gNB-WTRU or RSU-WTRU; and / or beam configuration.

關於用於接收/傳輸資源池的時槽格式,WTRU可以將一組接收資源池與時槽格式(例如,單一時槽格式)相關聯、或者將多組接收資源池關聯到時槽格式(例如,單一時槽格式)。側鏈路時槽格式可以包括指明用於側鏈路傳輸或接收的符號。該側鏈路時槽格式可以包括每個時槽的一個或多個符號。指明用於側鏈路傳輸或接收的符號可以被重新配置(例如,動態地重新配置)。Regarding the slot format for the receive / transmit resource pool, the WTRU may associate a set of receive resource pools with a slot format (for example, a single slot format), or associate multiple sets of receive resource pools with a slot format (for example, , Single slot format). The side link slot format may include a symbol indicating a side link transmission or reception. The side link slot format may include one or more symbols for each slot. Indicate that the symbols used for side-link transmission or reception may be reconfigured (eg, dynamically reconfigured).

對於在包括所配置的時槽格式的時槽的時域中的模式,WTRU可以被配置有接收資源池,其可包括用於子訊框(例如,每個子訊框)的重複的側向鏈時槽配置。WTRU可以被配置有接收池,該接收池具有用於子訊框(例如,每個子訊框)的變化的時槽配置。For modes in the time domain that include the time slot of the configured time slot format, the WTRU may be configured with a receive resource pool, which may include a repeating side chain for sub-frames (eg, each sub-frame) Time slot configuration. The WTRU may be configured with a receiving pool having a changed time slot configuration for sub-frames (eg, each sub-frame).

關於與資源池相關聯的配置週期,可以重複所配置的時域模式。例如,所配置的時域可以在配置週期內重複。Regarding the configuration cycle associated with the resource pool, the configured time domain mode can be repeated. For example, the configured time domain can be repeated during the configuration period.

第4圖中示出了時域中的側鏈路接收/傳輸資源池的範例性配置。WTRU可以被配置有一個或多個接收資源池,其可以具有不同數量的側鏈路接收時槽。例如,WTRU可以被配置有以下中的一者或多者:具有用於側鏈路接收時槽的大量分配的接收資源池;及/或具有用於側鏈路接收時槽的小量分配的接收資源池。FIG. 4 shows an exemplary configuration of a side link receive / transmit resource pool in the time domain. The WTRU may be configured with one or more receiving resource pools, which may have different numbers of side-link receiving time slots. For example, the WTRU may be configured with one or more of the following: a receiving resource pool with a large allocation for a side link reception time slot; and / or a small allocation with a small allocation for a side link reception time slot Receive resource pool.

參見第4圖,資源池1內示出了具有用於側向鏈路接收時槽的大量分配的範例性接收資源池。例如,當接收需要低潛時及/或高流通量的資料時,WTRU可以被配置有用於側向鏈路接收時槽的大量分配的接收資源池。Referring to FIG. 4, an exemplary receiving resource pool having a large number of allocations for a side link receiving time slot is shown in the resource pool 1. For example, when receiving data that requires low latency and / or high throughput, the WTRU may be configured with a heavily allocated receive resource pool for side-link receive time slots.

在第4圖的資源池2中示出了具有用於側鏈路接收時槽的相對較少分配的範例性資源池。例如,當接收與相對低流通量應用相關聯及/或與更常規的資料訊務相關聯的資料時,WTRU可以被配置有具有相對較少數量的接收時槽的接收資源池。An exemplary resource pool with relatively few allocations for time slots for side link reception is shown in resource pool 2 of FIG. 4. For example, when receiving data associated with relatively low-throughput applications and / or with more conventional data traffic, the WTRU may be configured with a receiving resource pool having a relatively small number of receiving time slots.

WTRU可以被配置有一個或多個接收/傳輸資源池。該資源池可以包括側鏈路時槽(一個或多個)(例如,一組側鏈路時槽)及/或側鏈路符號(一個或多個)(例如,一組側鏈路符號)。該側鏈路符號(一個或多個)(例如,側鏈路符號組)可以包括NR可變符號。例如,如第5圖中所示,WTRU可以被配置有包含用於側鏈路傳輸/接收的N個時槽以及用於側鏈路傳輸/接收的M個時槽(其可以包含KM 個符號(例如,僅KM 個符號))的資源池。資源池內的時槽/符號組可以在時間上是連續的、及/或分佈在不同的NR時槽/符號中(例如,非連續的)。範例性配置可以包括第一位元映像以及第二位元映像,該第一位元映像可以表明用於側鏈路傳輸/接收的一組時槽,該第二位元映像可以表明由第一位元映像表明的時槽內的側鏈路符號。The WTRU may be configured with one or more receive / transmit resource pools. The resource pool may include a side link slot (s) (for example, a set of side link slots) and / or a side link symbol (s) (for example, a set of side link symbols) . The side link symbol (s) (eg, a side link symbol group) may include NR variable symbols. For example, as shown in Figure 5, a WTRU may be configured to contain N time slots for side link transmission / reception and M time slots for side link transmission / reception (which may include K M (For example, only K M symbols)). The slots / symbol groups within the resource pool may be continuous in time and / or distributed across different NR slots / symbols (eg, non-contiguous). An exemplary configuration may include a first bit image and a second bit image, the first bit image may indicate a set of time slots for side link transmission / reception, and the second bit image may indicate that the The side-link symbol in the time slot indicated by the bitmap.

WTRU可以確定應該被啟動/停用用於側鏈路接收/傳輸的資源池(一個或多個)。WTRU可以用任何數量的方式進行此確定,包括例如:基於WTRU自主處理;基於來自另一個WTRU的明確及/或隱含傳訊;及/或基於來自網路的明確及/或隱含傳訊。WTRU可以藉由識別或考慮資源池中指定的資源可由WTRU以資源池中指定的方式進行側鏈路通信來啟動側鏈路資源池。The WTRU may determine the resource pool (s) that should be activated / deactivated for side link reception / transmission. The WTRU may make this determination in any number of ways, including, for example: autonomous processing based on the WTRU; based on explicit and / or implicit messaging from another WTRU; and / or based on explicit and / or implicit messaging from the network. The WTRU may start a side-link resource pool by identifying or considering resources specified in the resource pool by the WTRU for side-link communication in a manner specified in the resource pool.

WTRU可以被配置(例如,半靜態地配置)有一組接收/傳輸資源池。WTRU確定應該為即將到來的V2X或增強型V2X(eV2X)傳輸啟動及/或停用哪個側鏈路資源池。WTRU可以基於例如各種系統資訊及/或資料要求或特性以自主地確定要被啟動/停用的側鏈路資源池。WTRU可以基於所接收的指示來確定要被啟動/停用的側鏈路資源池。例如,可以從另一個WTRU或從RAN網路接收資源池指示(RPI)以提供關於要啟動/停用的資源池的動態指示。該動態指示可以是隱含的或明確的。The WTRU may be configured (eg, semi-statically configured) with a set of receive / transmit resource pools. The WTRU determines which side link resource pool should be enabled and / or disabled for the upcoming V2X or enhanced V2X (eV2X) transmission. The WTRU may autonomously determine the side-link resource pool to be activated / deactivated based on, for example, various system information and / or data requirements or characteristics. The WTRU may determine the side link resource pool to be activated / deactivated based on the received indication. For example, a resource pool indication (RPI) may be received from another WTRU or from the RAN network to provide a dynamic indication of the resource pool to be activated / deactivated. The dynamic indication may be implicit or explicit.

WTRU可以從網路(其可以是例如無線電存取網路)接收指明側鏈路資源池重新配置(包括啟動及/或停用)的指示(例如,RPI)。該指示可以是明確的或隱含的。例如,WTRU可以被配置為監視NR下鏈控制資訊(DCI),其可以攜帶側鏈路資源池指示(RPI)。WTRU可以被配置(例如,預配置)具有監視週期及/或用於解碼DCI的無線電網路臨時識別符(RNTI)。WTRU可以接收(例如,可以在廣播的系統資訊中接收)一組DCI監視參數。例如,WTRU可以在剩餘系統資訊(RMSI)或其他系統資訊(OSI)中接收對應的CORESET及/或搜尋空間。例如,當RRC連接被建立時,WTRU可以在無線電資源控制(RRC)傳訊中接收用於RPI的監視配置。The WTRU may receive an indication (eg, RPI) from a network (which may be, for example, a radio access network) indicating a reconfiguration (including activation and / or deactivation) of a side-link resource pool. The indication may be explicit or implicit. For example, the WTRU may be configured to monitor NR downlink control information (DCI), which may carry a side link resource pool indicator (RPI). The WTRU may be configured (eg, pre-configured) with a monitoring period and / or a radio network temporary identifier (RNTI) for decoding DCI. The WTRU may receive (eg, may receive in broadcast system information) a set of DCI monitoring parameters. For example, the WTRU may receive the corresponding CORESET and / or search space in the remaining system information (RMSI) or other system information (OSI). For example, when an RRC connection is established, the WTRU may receive a monitoring configuration for RPI in a radio resource control (RRC) messaging.

WTRU可以經由低成本信號(例如,諸如扎德奧夫-朱(Zadoff-Chu)的預定義序列)接收要使用的側鏈路資源池的指示。The WTRU may receive an indication of the side-link resource pool to be used via a low-cost signal (eg, a predefined sequence such as Zadoff-Chu).

WTRU可以接收MAC控制元素,該MAC控制元素可以向WTRU表明啟動側鏈路資源池。The WTRU may receive a MAC control element, which may indicate to the WTRU the initiating side link resource pool.

在用於側鏈路資源重新配置的範例性處理中,WTRU可以在系統廣播資訊及/或RRC傳訊資訊中接收側鏈路資源池組配置。WTRU可以接收表明從該組中啟動一個或多個資源池的MAC CE。例如,該MAC CE可以表明來自該組的一個或多個資源池為預設側鏈路資源池。In an exemplary process for side link resource reconfiguration, the WTRU may receive the side link resource pool group configuration in the system broadcast information and / or RRC signaling information. The WTRU may receive a MAC CE indicating that one or more resource pools are started from the group. For example, the MAC CE may indicate that one or more resource pools from the group are preset side link resource pools.

WTRU可以基於網路配置(例如,包括監視週期)來監視RPI DCI。該RPI DCI可以與RPI計時器相關聯。該RPI計時器可以包括所配置的長度(例如,長度是監視週期的整數倍)。當該RPI計時器運行時,WTRU可以認為池是活動的。The WTRU may monitor the RPI DCI based on the network configuration (eg, including the monitoring period). The RPI DCI may be associated with an RPI timer. The RPI timer may include a configured length (eg, the length is an integer multiple of the monitoring period). When the RPI timer runs, the WTRU may consider the pool to be active.

取決於任何合適的標準,WTRU可以恢復到側鏈路(例如,預設側鏈路)資源池配置。例如,當以下一個或多個可應用時,WTRU可以恢復到預設的側鏈路資源池:RPI計時器到期;在RPI監測時機,WTRU沒有偵測到另一個RPI DCI;及/或WTRU在一時段(例如,所配置的時段)於動態啟動的資源池中尚未接收到側鏈路訊息。Depending on any suitable criteria, the WTRU may revert to a side link (eg, a preset side link) resource pool configuration. For example, the WTRU may revert to a preset side link resource pool when one or more of the following apply: the RPI timer expires; the WTRU does not detect another RPI DCI at the RPI monitoring timing; and / or the WTRU Side link messages have not been received in a dynamically started resource pool for a period of time (eg, a configured period of time).

WTRU可以基於已經接收的側鏈路資源池指示來重新配置側鏈路資源池,例如,啟動及/或停用該組資源池中的資源池。該重新配置可以允許WTRU在適當時分配時槽。例如,該重新配置可以啟動側鏈路資源池,該資源池指定了例如在低潛時應用的側鏈路操作期間可能有用的更多側鏈路接收時槽。該重新配置可以改變NR下鏈(DL)以及上鏈(UL)時槽及/或側鏈路時槽之間的分配。The WTRU may reconfigure the side link resource pool based on the received side link resource pool indication, for example, starting and / or deactivating a resource pool in the set of resource pools. This reconfiguration may allow the WTRU to allocate time slots when appropriate. For example, the reconfiguration may start a side link resource pool that specifies, for example, more side link reception time slots that may be useful during side link operation of a low-latency application. This reconfiguration can change the allocation between NR downlink (DL) and uplink (UL) time slots and / or side link time slots.

WTRU可以接收DCI,其可以包括改變側鏈路資源池的側鏈路時槽格式的指示,該側鏈路資源池可以是例如活動側鏈路資源池。例如,如第4圖中所示,WTRU可以將側鏈路傳輸時槽重新配置為與為資源池配置的側鏈路接收時槽相同的側鏈路接收時槽。側鏈路時槽的分配可以是一致的。The WTRU may receive a DCI, which may include an indication of changing a side link slot format of a side link resource pool, which may be, for example, an active side link resource pool. For example, as shown in Figure 4, the WTRU may reconfigure the side link transmission time slot to the same side link reception time slot as the side link reception time slot configured for the resource pool. The side-link time slot assignments can be consistent.

用於包括啟動/停用的側鏈路資源池(RP)重新配置的資源池指示(RPI)可以由WTRU隱含地確定、及/或否則可以由網路(例如,RAN)隱含地表明。WTRU可以從網路接收指示,該指示可以由WTRU解釋為資源池指示的隱含指示。例如,WTRU可以基於以下配置參數中的一者或多者來確定可應用的資源池:PDCCH(例如,攜帶時槽格式指示符(SFI)的群組公共PDCCH);波束配置的改變(例如,動態波束配置);頻寬部分啟動/停用(例如,動態頻寬部分啟動/停用)等。關於基於PDCCH信號的隱含指示,例如,WTRU可以被配置為將SFI索引映射到資源池配置。WTRU可以監視SFI以確定DL符號、可變符號及/或UL符號。然後,WTRU可以確定將一組UL符號用於側鏈路傳輸,這可以基於該資源池到SFI映射。The resource pool indication (RPI) for side-link resource pool (RP) reconfiguration including activation / deactivation may be implicitly determined by the WTRU and / or may be implicitly indicated by the network (eg, RAN) . The WTRU may receive an indication from the network, which may be interpreted by the WTRU as an implicit indication of a resource pool indication. For example, the WTRU may determine an applicable resource pool based on one or more of the following configuration parameters: a PDCCH (eg, a group common PDCCH carrying a slot format indicator (SFI)); a change in beam configuration (eg, Dynamic beam configuration); bandwidth portion enable / disable (e.g., dynamic bandwidth portion enable / disable), etc. Regarding the implicit indication based on the PDCCH signal, for example, the WTRU may be configured to map the SFI index to a resource pool configuration. The WTRU may monitor the SFI to determine DL symbols, variable symbols, and / or UL symbols. The WTRU may then determine to use a set of UL symbols for side-link transmissions, which may be based on the resource pool to SFI mapping.

WTRU可以基於以上配置參數中的一者或多者與所配置的側鏈路資源池之間的關聯來確定側鏈路資源池。例如,不同的資源池可以被配置有/關聯於不同的頻寬部分,並且頻寬部分的改變可以是也改變資源池的隱含指示。在範例中,不同的資源池可以被配置有/關聯於不同的波束配置,並且波束配置的改變可以是也改變資源池的隱含指示。The WTRU may determine the side link resource pool based on the association between one or more of the above configuration parameters and the configured side link resource pool. For example, different resource pools may be configured / associated with different bandwidth portions, and a change in the bandwidth portion may be an implicit indication that the resource pool is also changed. In an example, different resource pools may be configured / associated with different beam configurations, and a change in beam configuration may be an implicit indication that the resource pool is also changed.

WTRU可以經由側鏈路通信以從另一個WTRU接收明確資源池指示。可以經由側鏈路資料及/或控制通道明確地傳訊用於側鏈路資源池啟動/停用的資源池指示符。例如,明確資源池指示可以被攜帶在側鏈路控制資訊(SCI)格式(例如,特殊SCI格式)中及/或被廣播(例如,經由側鏈路系統資訊及/或經由單獨的實體通道而被廣播)。可以經由資源池(例如,經由一組活動資源池中的一個活動資源池)傳輸該RPI。例如,WTRU可以被配置為針對該RPI而監視資源池。該RPI可以在資源上被傳輸,該資源可以是例如固定的時間/頻率資源。A WTRU may communicate via a side link to receive an explicit resource pool indication from another WTRU. The resource pool indicator for the activation / deactivation of the side link resource pool can be explicitly signaled via the side link data and / or the control channel. For example, explicit resource pool indications may be carried in a side link control information (SCI) format (eg, a special SCI format) and / or broadcast (eg, via side link system information and / or via a separate physical channel) Being broadcast). This RPI may be transmitted via a resource pool (eg, via one active resource pool in a group of active resource pools). For example, the WTRU may be configured to monitor a resource pool for the RPI. The RPI may be transmitted on a resource, which may be, for example, a fixed time / frequency resource.

WTRU可以確定經由側鏈路通信從另一個WTRU已接收到隱含資源池指示。可以基於一個或多個側鏈路通信而隱含地表明用於側鏈路資源池啟動/停用(例如,重新配置)的資源池指示符。WTRU可以基於側鏈路資料的接收來改變其活動資源池,該側鏈路資料的接收被確定為重新配置啟動以及停用的側鏈路池的隱含指示。例如,可以從另一個WTRU接收該側鏈路資料。可以藉由接收控制訊息及/或資料訊息來觸發活動資源池以及停用的資源池的改變。該控制訊息及/或資料訊息可以由WTRU經由側鏈路發送到另一個WTRU。可以藉由在資源池(例如,專用於這種活動池改變的資源池)中的特定資源(例如,時間及/或頻率)上接收傳輸來觸發資源池的改變。可以藉由接收表明用於傳輸(例如,經由預配置的RP進行傳輸,其可能不是活動的)的側鏈路資料通道的控制訊息來觸發資源池的改變。在接收到該側鏈路資料時,WTRU可以確定該資料隱含地表明啟動一個或多個資源池及/或停用另一個或多個資源池。The WTRU may determine that an implicit resource pool indication has been received from another WTRU via a side link communication. A resource pool indicator for side link resource pool activation / deactivation (eg, reconfiguration) may be implicitly indicated based on one or more side link communications. The WTRU may change its active resource pool based on the reception of the side link data, which is determined to be an implicit indication of the side link pool being reconfigured to start and deactivate. For example, the side link information may be received from another WTRU. Changes to the active resource pool and the disabled resource pool can be triggered by receiving control messages and / or data messages. The control message and / or data message may be sent by the WTRU to another WTRU via a side link. A change in a resource pool may be triggered by receiving a transmission on a specific resource (eg, time and / or frequency) in a resource pool (eg, a resource pool dedicated to such an active pool change). A change in the resource pool may be triggered by receiving a control message indicating a side-link data channel for transmission (eg, transmission via a pre-configured RP, which may not be active). Upon receiving the side link data, the WTRU may determine that the data implicitly indicates that one or more resource pools are activated and / or another one or more resource pools are deactivated.

WTRU可以自主地確定重新配置(例如,啟動及/或停用)側鏈路資源池。在用於自主資源池確定的範例性處理中,WTRU可以被配置有可以與一組封包優先序相關聯的側鏈路資源池資源。該關聯可以基於例如側鏈路傳輸服務類型、可靠性、潛時要求等中的一者或多者。WTRU可以被配置為自主地選擇以及啟動及/或停用用於側鏈路傳輸/或接收的側鏈路資源池資源。該選擇以及啟動/停用及/或重新配置可以基於例如以下中的一者或多者:WTRU的較高層(例如,通信層)可能具有用於傳輸及/或接收的側鏈路封包,具有相關聯的優先序比與目前應用的側鏈路資源池配置(包括目前啟動的資源池)相關聯的優先序高;WTRU的較高層(例如,通信層)可具有SL封包,目前配置的側鏈路資源池配置(包括目前啟動的資源池)可能不支援例如該SL封包所需的傳輸潛時;WTRU可能從另一個WTRU接收具有比目前應用的側鏈路資源池配置(包括目前啟動的資源池)所關聯的優先序高的優先序的封包;測量結果(例如,由WTRU確定);感測結果(例如,由WTRU確定);及/或,目前啟動的資源池不支援用於預期的側鏈路通信的服務品質特性。WTRU可以被配置為確定所啟動的側鏈路池不適合於特定資料及/或與該資料相關聯的要求,並且可以識別適合的一個或多個其他側鏈路資源池。WTRU啟動該合適的側鏈路池(一個或多個)、並且可以將關於側鏈路池的啟動指示傳送到其他WTRU及/或無線電存取網路。The WTRU may autonomously determine to reconfigure (eg, activate and / or deactivate) the side link resource pool. In an exemplary process for autonomous resource pool determination, the WTRU may be configured with side-link resource pool resources that may be associated with a set of packet priorities. The association may be based on, for example, one or more of a side-link transmission service type, reliability, latency requirements, and the like. The WTRU may be configured to autonomously select and activate and / or deactivate side-link resource pool resources for side-link transmission / or reception. The selection and activation / deactivation and / or reconfiguration may be based on, for example, one or more of the following: a higher layer (e.g., communication layer) of the WTRU may have side-link packets for transmission and / or reception, with The associated priority order is higher than the priority order associated with the currently applied side-link resource pool configuration (including the currently activated resource pool); the higher layers (for example, the communication layer) of the WTRU may have SL packets. The link resource pool configuration (including the currently started resource pool) may not support, for example, the transmission latency required for this SL packet; the WTRU may receive from another WTRU a side link resource pool configuration (including the currently started Resource pool) associated high-priority packets; measurement results (eg, determined by the WTRU); sensing results (eg, determined by the WTRU); and / or, the currently started resource pool does not support the intended use Quality of service characteristics of side-link communication. The WTRU may be configured to determine that the initiated side link pool is not suitable for a particular profile and / or the requirements associated with that profile, and may identify one or more other side link resource pools that are suitable. The WTRU initiates the appropriate side link pool (s) and may transmit activation instructions regarding the side link pool to other WTRUs and / or radio access networks.

關於基於資料封包特性或要求(例如,較高優先序或較低潛時)的自主資源池確定,目前啟動的資源池可能不支援資料特性或要求。關於資料封包優先序的範例,可以在任何數量的情況下接收更高優先序的封包。例如,WTRU可以接收具有增強優先序的側鏈路訊息,例如,側鏈路緊急訊息,該訊息可能需要被中繼到其他WTRU。在範例中,WTRU可以接收SCI訊息,其可以表明相對高的優先序,例如,與低潛時封包傳輸相關聯的優先序。基於需要傳遞的資料的優先序(可以藉由所需潛時而被識別),WTRU可以確定所啟動的資源池不適合於該資料,並且可以選擇啟動適合的側鏈路資源池以及哪個可以具有更多的側鏈路資源,例如,在時域中比目前啟動的資源池具有更多的UL符號及/或更靈活的符號。WTRU可以啟動所選擇的資源池(一個或多個)並使用所啟動的資源池(一個或多個)來傳輸資料。如本文所述,WTRU可以將側鏈路資源池的啟動傳遞到其他WTRU及/或RAN。Regarding the determination of autonomous resource pools based on data packet characteristics or requirements (for example, higher priority or lower latency), the currently activated resource pool may not support data characteristics or requirements. Regarding the data packet priority example, higher priority packets can be received in any number of cases. For example, the WTRU may receive side-link messages with enhanced priority, such as side-link emergency messages, which may need to be relayed to other WTRUs. In an example, the WTRU may receive an SCI message, which may indicate a relatively high priority, for example, a priority associated with a low-latency packet transmission. Based on the priority of the data that needs to be transmitted (which can be identified by the required latency), the WTRU can determine that the resource pool started is not suitable for the data, and can choose to start a suitable side-link resource pool and which one can have more Many side-link resources, for example, have more UL symbols and / or more flexible symbols in the time domain than currently activated resource pools. The WTRU may start the selected resource pool (s) and use the started resource pool (s) to transfer data. As described herein, the WTRU may pass the initiation of the side-link resource pool to other WTRUs and / or RANs.

關於基於測量結果的自主資源池確定,WTRU可以被配置為進行測量,並且取決於該測量,可以自主地確定重新配置啟動/停用的資源池。例如,WTRU可以被配置為感測或測量一組資源池上的能量(例如,對於預配置的持續時間)。如果所測量的能量高於臨界值,則WTRU可以啟動一個或多個資源池(例如,一個或多個附加資源池)。作為另一範例,WTRU可以被配置為測量一個或多個資源池(例如,一組資源池)上的通道忙碌比(CBR)。WTRU可以將該CBR與臨界值進行比較。例如,WTRU可以確定CBR是高於還是低於臨界值。如果WTRU確定CBR高於臨界值,則WTRU可以啟動所選擇的資源池(一個或多個)並使用所啟動的資源池(一個或多個)來傳輸資料。Regarding the autonomous resource pool determination based on the measurement results, the WTRU may be configured to perform a measurement, and depending on the measurement, may autonomously determine a resource pool for reconfiguration activation / deactivation. For example, the WTRU may be configured to sense or measure energy on a set of resource pools (eg, for a pre-configured duration). If the measured energy is above a critical value, the WTRU may start one or more resource pools (eg, one or more additional resource pools). As another example, a WTRU may be configured to measure a channel busy ratio (CBR) on one or more resource pools (eg, a set of resource pools). The WTRU can compare this CBR with a threshold. For example, the WTRU may determine whether the CBR is above or below a critical value. If the WTRU determines that the CBR is above a critical value, the WTRU may start the selected resource pool (s) and use the started resource pool (s) to transfer data.

當WTRU被配置為基於感測結果來選擇(例如,自主地重新選擇)啟動/停用及/或重新配置側鏈路資源池資源以進行側鏈路傳輸及/或接收時,可以應用以下中的一者或多者。WTRU可以被配置為啟動一個或多個資源池(例如,一個或多個附加資源池)。WTRU可以確定使用一組資源池(一個或多個)的WTRU的數量(例如,在側鏈路參考信號接收功率(S-RSRP)範圍內)。WTRU可以將使用一組資源池的WTRU的數量與臨界值進行比較。如果使用配置的S-RSPR範圍內的一組資源池的WTRU的數量高於臨界值,則WTRU可以啟動一組適當資源池,該組資源池可以是附加的一組資源池。WTRU可以使用所啟動的側鏈路池(一個或多個)來傳輸側鏈路封包。When the WTRU is configured to select (for example, autonomously reselect) based on the sensing results to enable / disable and / or reconfigure the side link resource pool resources for side link transmission and / or reception, the following can be applied: One or more of them. The WTRU may be configured to start one or more resource pools (eg, one or more additional resource pools). The WTRU may determine the number of WTRUs that use a set of resource pool (s) (eg, within the range of Side-Link Reference Signal Received Power (S-RSRP)). The WTRU may compare the number of WTRUs using a set of resource pools with a critical value. If the number of WTRUs using a set of resource pools within the configured S-RSPR range is above a critical value, the WTRU may start a suitable set of resource pools, which may be an additional set of resource pools. The WTRU may use the activated side link pool (s) to transmit side link packets.

當WTRU被配置為基於(一個或多個)QoS特性以選擇(例如,自主地選擇或重新選擇)用於啟動/停用及/或重新配置用於側鏈路傳輸及/或接收的側鏈路資源池資源時,可以應用以下中的一者或多者。例如,WTRU的較高層可以發起具有QoS特性(例如,V2X QoS索引(VQI)參數)的側鏈路封包的傳輸。目前啟動的資源池(一個或多個)可能支援或不支援該QoS特性。WTRU可以被配置有VQI參數以及資源池之間的映射規則。WTRU可以使用該映射規則來確定目前啟動的資源池(一個或多個)是否支援該QoS特性。WTRU可以使用該映射規則來選擇啟動可以支援用於傳輸側鏈路封包的QoS特性的資源池。WTRU可以啟動所選擇的資源池並使用其來傳輸側鏈路封包。WTRU還可以向一個或多個其他WTRU發送其已啟動特定側鏈路資源池的指示。When the WTRU is configured to select (eg, autonomously select or reselect) based on the QoS characteristic (s) for activation / deactivation and / or reconfiguration of the side chain for side link transmission and / or reception You can apply one or more of the following resource pool resources. For example, the higher layers of the WTRU may initiate the transmission of side-link packets with QoS characteristics (eg, V2X QoS Index (VQI) parameters). The currently activated resource pool (s) may or may not support this QoS feature. The WTRU may be configured with VQI parameters and mapping rules between resource pools. The WTRU may use the mapping rule to determine whether the currently activated resource pool (s) support the QoS feature. The WTRU may use this mapping rule to select a resource pool that can support the QoS characteristics for the transmission side link packet. The WTRU may start the selected resource pool and use it to transmit side link packets. The WTRU may also send an indication to one or more other WTRUs that it has activated a particular side link resource pool.

WTRU可以使用活動側鏈路資源池以在側鏈路通道上發送資源池指示(RPI)。例如,在自主啟動資源池之後,WTRU可以將所啟動的資源池的RPI發送到其他WTRU。在發送表明新資源池的啟動的RPI的同時,WTRU可以在一組所啟動的資源池(一個或多個)上傳輸側鏈路封包。WTRU可以被配置有資源池以將該RPI發送到其他WTRU。WTRU可以發送該RPI,然後切換到所啟動的資源池。WTRU可以在所啟動的資源池上傳輸資料,同時傳輸該RPI。The WTRU may use the active side link resource pool to send a resource pool indication (RPI) on the side link channel. For example, after autonomously starting a resource pool, the WTRU may send the RPI of the started resource pool to other WTRUs. While sending the RPI indicating the start of the new resource pool, the WTRU may transmit side-link packets on a set of started resource pool (s). The WTRU may be configured with a resource pool to send the RPI to other WTRUs. The WTRU may send the RPI and then switch to the initiated resource pool. The WTRU can transmit data on the activated resource pool and transmit the RPI at the same time.

WTRU可以被配置為向網路及/或其他WTRU表明所啟動的資源池組。例如,在自主啟動一個或多個側鏈路資源池之後,WTRU可以在自主啟動及/或停用資源池之後表明該組活動資源池。可以使用側鏈路控制資訊(SCI)訊息來傳輸該指示,該訊息可以包括例如一個或多個RPI。The WTRU may be configured to indicate to the network and / or other WTRUs the resource pool group that was started. For example, after autonomously starting one or more side-link resource pools, the WTRU may indicate the group of active resource pools after autonomously starting and / or deactivating the resource pools. The indication may be transmitted using a side link control information (SCI) message, which may include, for example, one or more RPIs.

WTRU可以被配置(例如,可以由NW配置)以賦能及/或禁用自主側鏈路資源池重新配置。WTRU可以被配置(例如,由NW配置)有WTRU可以用於自主重新配置的可允許的池配置子集。The WTRU may be configured (eg, may be configured by the NW) to enable and / or disable autonomous side link resource pool reconfiguration. The WTRU may be configured (eg, by the NW) with a subset of allowable pool configurations that the WTRU may use for autonomous reconfiguration.

WTRU可以在接收到RPI之後執行處理。例如,在從例如另一個WTRU或從網路接收到RPI時,WTRU可以啟動在RPI中表明的預配置池。啟動側鏈路資源池的過程可以包括WTRU識別或考慮在資源池中指定的資源可用於執行側鏈路通信。停用側鏈路資源可以涉及WTRU識別或考慮在特定資源池中指定的資源不可用於通信。The WTRU may perform processing after receiving the RPI. For example, upon receiving an RPI from, for example, another WTRU or from the network, the WTRU may initiate a pre-configured pool indicated in the RPI. The process of starting a side link resource pool may include the WTRU identifying or considering that resources specified in the resource pool are available for performing side link communication. Deactivating a side link resource may involve the WTRU identifying or considering that resources specified in a particular resource pool are not available for communication.

可以用任何合適的方式接收RPI,例如廣播控制訊息。WTRU可以被配置為基於經由例如廣播控制訊息的RPI的接收來執行用於啟動/停用資源及/或資源池的處理。例如,當WTRU接收針對具有特定類或分類的池(例如,可以與某些延遲特性相關聯的一類資源池)的啟動命令時 - 為了解釋的目的,可以將其指明為A類 - WTRU可以被配置為停用具有較低類(例如,B類、C類等)的一個或多個活動池(例如,所有活動池)。WTRU可以被配置為基於為A類啟動的(一個或多個)資源池變為停用而重新啟動先前活動的資源池(例如,B類、C類等)。在範例中,WTRU可以被配置為避免啟動較低類的資源池,除非及/或直到較高類的資源池已被停用。可以回應於從另一個WTRU及/或從網路裝置接收RPI而執行側鏈路資源池的啟動以及停用。The RPI may be received in any suitable manner, such as a broadcast control message. The WTRU may be configured to perform processing for activating / deactivating resources and / or resource pools based on receipt of RPI via, for example, broadcast control messages. For example, when the WTRU receives a start command for a pool with a specific class or classification (for example, a type of resource pool that can be associated with certain delay characteristics)-it can be designated as a class A for explanation purposes-the WTRU can be Configure to deactivate one or more active pools (for example, all active pools) with lower classes (for example, B, C, etc.). The WTRU may be configured to restart a previously active resource pool (eg, class B, class C, etc.) based on the resource pool (s) started for class A becoming deactivated. In an example, the WTRU may be configured to avoid starting a resource pool of a lower class unless and / or until a resource pool of a higher class has been deactivated. The activation and deactivation of the side link resource pool may be performed in response to receiving an RPI from another WTRU and / or from a network device.

WTRU可以被配置有側鏈路資源池內的一個或多個專用資源。該專用資源可以用於其他資源池的隱含啟動/停用。例如,當WTRU在專用資源上偵測到側鏈路傳輸時,WTRU可以使用這裡描述的處理技術來執行其他資源池的啟動/停用。The WTRU may be configured with one or more dedicated resources in a side-link resource pool. This dedicated resource can be used for implicit activation / deactivation of other resource pools. For example, when a WTRU detects a side-link transmission on a dedicated resource, the WTRU may use the processing techniques described herein to perform activation / deactivation of other resource pools.

WTRU可以將RPI傳輸到其他WTRU(例如,經由側鏈路)。WTRU可以被配置為經由側鏈路來廣播控制訊息以執行資源池選擇、或以其他方式表明RPI。例如,當下列中的一者或多者發生時,WTRU可以廣播控制訊息/RPI:低潛時服務被啟動;從上層接收指示以執行這種控制訊息傳輸;側鏈路承載(例如,具有某些低潛時特性)被建立;及/或從網路及/或從另一個WTRU(例如,在中繼的情況下)接收資料(例如,具有某些低潛時特性)。該廣播控制訊息可以包括以下資訊中的一者或多者:用於啟動/停用的資源池配置(例如,特定池配置)的指示(例如,以索引的形式);及/或用於啟動/停用的一類資源池配置的指示。WTRU可能已經被配置(例如,藉由RRC訊息)有一組池,並且該池(例如,每個池)可以與一個或多個類別相關聯。由WTRU接收的訊息(例如,廣播控制訊息)可以表明啟動及/或停用與特定類別相關聯的池。The WTRU may transmit the RPI to other WTRUs (eg, via a side link). The WTRU may be configured to broadcast control messages via a side link to perform resource pool selection, or otherwise indicate RPI. For example, a WTRU may broadcast a control message / RPI when one or more of the following occurs: a low-latency service is started; an instruction is received from an upper layer to perform such a control message transmission; a side link bearer (for example, Some low-latency characteristics) are established; and / or receive data from the network and / or from another WTRU (eg, in the case of a relay) (eg, have certain low-latency characteristics). The broadcast control message may include one or more of the following information: an indication (for example, in the form of an index) of a resource pool configuration (for example, a specific pool configuration) for activation / deactivation; and / or for activation Indication of a type of resource pool configuration for deactivation / deactivation. The WTRU may already be configured (for example, by RRC messages) to have a set of pools, and the pool (for example, each pool) may be associated with one or more categories. A message (eg, a broadcast control message) received by the WTRU may indicate the activation and / or deactivation of a pool associated with a particular category.

WTRU可以使用資源池(例如,公共資源池)來傳輸RPI。該資源池(例如,公共資源池)可以或可以不經受動態重新配置。The WTRU may use a resource pool (eg, a common resource pool) to transmit RPI. This resource pool (eg, a common resource pool) may or may not be subject to dynamic reconfiguration.

WTRU可以被配置有側鏈路半持續排程(SPS)資源,其可以用於側鏈路傳輸。SPS資源可以對應於週期性地被保留或專用於特定WTRU的一個或多個傳輸資源的群組。例如,SPS分配可以與週期、子訊框偏移、符號偏移、資源塊(或子資源塊)指派、及/或允許WTRU以週期性方式在資源池中進行傳輸及/或接收的其他設定相關聯。WTRU可以被配置為監視資源重新配置(例如,動態資源重新配置)。例如,當接收到該動態資源重新配置時,WTRU可以停止在半持續配置的授權上進行傳輸。WTRU可以被配置有一組授權,其可以取決於動態資源重新配置而被應用在不同的資源池中。例如,WTRU可以被預配置有N個資源池(一個或多個)。各自的SPS授權可以與每個預配置的資源池相關聯。如果網路動態地改變該資源池,則WTRU可以隱含地確定要應用的SPS授權。The WTRU may be configured with side-link semi-persistent scheduling (SPS) resources, which may be used for side-link transmissions. The SPS resource may correspond to a group of one or more transmission resources that are periodically reserved or dedicated to a particular WTRU. For example, SPS allocation may be related to period, sub-frame offset, symbol offset, resource block (or sub-resource block) assignment, and / or other settings that allow the WTRU to transmit and / or receive in the resource pool in a periodic manner. Associated. The WTRU may be configured to monitor resource reconfiguration (eg, dynamic resource reconfiguration). For example, when receiving the dynamic resource reconfiguration, the WTRU may stop transmitting on a semi-persistently configured grant. The WTRU may be configured with a set of authorizations, which may be applied in different resource pools depending on dynamic resource reconfiguration. For example, the WTRU may be pre-configured with N resource pools (one or more). Individual SPS authorizations can be associated with each pre-configured resource pool. If the network dynamically changes the resource pool, the WTRU may implicitly determine the SPS authorization to apply.

WTRU可以請求資源池重新配置(例如,請求網路進行資源池重新配置)。該請求可以用於側鏈路資源池重新配置。WTRU可以被配置有上鏈資源,其可以用於請求資源池重新配置。例如,WTRU可以被配置有PUCCH資源,其可以攜帶上鏈控制資訊(UCI)。該UCI可以請求側鏈路資源池重新配置。WTRU可以表明(例如,在UCI中表明)側鏈路資源池(例如,較佳的側鏈路資源池)。WTRU可以被配置有排程請求(SR)資源,其可以用於請求(例如,隱含地請求)側鏈路資源池重新配置。WTRU可以被配置有一個或多個SR資源,其可以與一個或多個側鏈路資源池配置相關聯(例如,每個SR資源可以與其相關聯)。例如,WTRU可以被配置有一個或多個(例如,兩個)不同的SR資源。SR資源(例如,SR資源中的每一個)可以對應於不同的側鏈路資源池配置(例如,兩個不同的RP配置)。WTRU可以被配置為基於以下中的一者或多者來請求側鏈路資源池重新配置:側鏈路測量、感測、地理位置、側鏈路封包服務類型、側鏈路封包優先序等。The WTRU may request a resource pool reconfiguration (for example, request the network to perform a resource pool reconfiguration). This request can be used for side-link resource pool reconfiguration. The WTRU may be configured with an on-chain resource, which may be used to request a resource pool reconfiguration. For example, the WTRU may be configured with a PUCCH resource, which may carry uplink control information (UCI). The UCI may request reconfiguration of the side link resource pool. The WTRU may indicate (eg, indicated in UCI) a side link resource pool (eg, a better side link resource pool). The WTRU may be configured with a scheduling request (SR) resource, which may be used to request (eg, implicitly request) a side link resource pool reconfiguration. A WTRU may be configured with one or more SR resources, which may be associated with one or more side-link resource pool configurations (eg, each SR resource may be associated with it). For example, a WTRU may be configured with one or more (eg, two) different SR resources. The SR resources (for example, each of the SR resources) may correspond to different side link resource pool configurations (for example, two different RP configurations). The WTRU may be configured to request side-link resource pool reconfiguration based on one or more of the following: side-link measurement, sensing, geographic location, side-link packet service type, side-link packet priority, and so on.

側鏈路通道處理可用於支援各種服務,包括例如超可靠低潛時通信(URLLC)服務。例如,可以為URLLC服務提供一個或多個側鏈路通道結構。WTRU可以被配置有一個或多個實體側鏈路控制通道(PSCCH)及/或實體側鏈路共用通道(PSSCH)結構。該PSCCH及/或PSSCH結構可以攜帶不同類型的側鏈路控制資訊/側鏈路資料。例如,第一PSCCH結構可以排程超可靠低潛時(URLLC)訊務、及/或第二PSCCH結構可以排程其他訊務(例如,非URLLC訊務)。用於URLLC的PSCCH結構可以具有較小的相對持續時間(例如,一個符號持續時間)及/或較大的頻域分配。例如,用於其他訊務的PSCCH(例如,非URLLC訊務)可以跨越時槽(例如,整個時槽)及/或更小的頻域分配。Side link channel processing can be used to support a variety of services, including, for example, ultra-reliable low latency communication (URLLC) services. For example, one or more side link channel structures may be provided for the URLLC service. The WTRU may be configured with one or more physical side link control channel (PSCCH) and / or physical side link shared channel (PSSCH) structures. The PSCCH and / or PSSCH structure can carry different types of side link control information / side link data. For example, the first PSCCH structure may schedule ultra-reliable low-latency (URLLC) traffic, and / or the second PSCCH structure may schedule other traffic (eg, non-URLLC traffic). The PSCCH structure for URLLC may have a small relative duration (eg, one symbol duration) and / or a large frequency domain allocation. For example, PSCCH (eg, non-URLLC traffic) for other traffic may be allocated across time slots (eg, the entire time slot) and / or smaller frequency domains.

URLLC PSCCH以及PSSCH可以在頻域中被多工、並且可以例如在相同的符號位置處。WTRU可以解碼彼此非常接近(例如,在相同的符號處)的PSCCH及/或PSSCH。WTRU可以經由例如PSCCH傳輸來接收PSSCH時序指示,並且該時序指示可以取決於一個或多個側鏈路傳輸參數,例如參數配置BWP及/或WTRU能力。The URLLC PSCCH and PSSCH may be multiplexed in the frequency domain and may, for example, be at the same symbol position. The WTRU may decode PSCCH and / or PSSCH that are very close to each other (eg, at the same symbol). The WTRU may receive a PSSCH timing indication via, for example, a PSCCH transmission, and the timing indication may depend on one or more side link transmission parameters, such as parameter configuration BWP and / or WTRU capabilities.

WTRU可以接收資源池指示(RPI)以重新配置一個或多個可變符號,該可變符號可以是例如用於側鏈路URLLC傳輸的可變符號。該重新配置可以觸發WTRU監視一個或多個SCI(例如,一組SCI)。該SCI可以特定於重新配置的符號上的URLLC傳輸、及/或可以具有較短的監視週期。例如,WTRU可以在每一個符號及/或每兩個符號處監視URLLC訊務的SCI,而對於非URLLC傳輸,該監控可以較不頻繁。The WTRU may receive a resource pool indication (RPI) to reconfigure one or more variable symbols, which may be, for example, variable symbols used for side-link URLLC transmissions. This reconfiguration may trigger the WTRU to monitor one or more SCIs (eg, a set of SCIs). The SCI may be specific to URLLC transmissions on reconfigured symbols, and / or may have a shorter monitoring period. For example, the WTRU may monitor the SCI of URLLC traffic at every symbol and / or every two symbols, while for non-URLLC transmissions, this monitoring may be less frequent.

從網路接收的資源池配置可以包含SCI格式的指示及/或PSSCH格式的指示,其可用於使用該資源池進行傳輸/接收。WTRU可以基於格式來監視SCI及/或解碼PSSCH,該格式可以與資源池相關聯(例如,不同的SCI格式可以預期用於不同的資源池)。WTRU可以被配置(例如,還可以被配置)有用於池的一個或多個SCI及/或一個或多個PSSCH格式。WTRU可以基於可以與接收池(RX池)及/或傳輸池(TX池)相關聯的SCI/PSSCH配置中的一者或多者來監視該接收池(RX池)及/或傳輸池(TX池)。The resource pool configuration received from the network may include an indication in the SCI format and / or an indication in the PSSCH format, which may be used for transmission / reception using the resource pool. The WTRU may monitor the SCI and / or decode the PSSCH based on a format that may be associated with a resource pool (eg, different SCI formats may be expected to be used for different resource pools). The WTRU may be configured (eg, may also be configured) with one or more SCIs and / or one or more PSSCH formats for the pool. The WTRU may monitor the receiving pool (RX pool) and / or transmission pool (TX) based on one or more of the SCI / PSSCH configurations that may be associated with the receiving pool (RX pool) and / or transmission pool (TX pool). Pool).

在URLLC服務上進行操作的WTRU可以先佔側鏈路SPS傳輸。WTRU可以被配置為先佔另一個WTRU的側鏈路SPS授權。例如,WTRU可以被配置為確定其他WTRU使用的SPS授權。例如,WTRU可以被配置為藉由解碼其他WTRU的SCI來確定其他WTRU使用的SPS授權。WTRU可以基於以下中的一者或多者來確定(例如,然後可以確定)SPS資源(例如,目標SPS資源):在目標WTRU的SPS授權的SCI中表明的優先序;目標WTRU的SPS授權的傳輸機會(例如,相對於要傳輸的資料的延遲要求);攜帶目標WTRU的SCI的PSCCH的所測得的參考信號接收功率(RSRP);及/或WTRU的封包的優先序。A WTRU operating on the URLLC service may first occupy the side link SPS transmission. A WTRU may be configured to preempt a side-link SPS grant from another WTRU. For example, the WTRU may be configured to determine SPS authorizations used by other WTRUs. For example, a WTRU may be configured to determine the SPS authorization used by other WTRUs by decoding the SCIs of other WTRUs. The WTRU may determine (eg, then may determine) SPS resources (eg, target SPS resources) based on one or more of the following: the priority indicated in the SCI of the SPS authorization of the target WTRU; the SPS of the target WTRU authorized Transmission opportunities (eg, delay requirements relative to the data to be transmitted); measured reference signal received power (RSRP) of the PSCCH carrying the SCI of the target WTRU; and / or WTRU's packet priority.

WTRU可以被配置有側鏈路SPS,其可以支援URLLC服務先佔。被配置有SL SPS資源的WTRU可以被配置為監視URLLC WTRU的SCI,其可以用於確定是否已經發生了對WTRU的SPS資源的先佔。這種監視可以應用於某些WTRU及/或某些傳輸。例如,WTRU可以被配置為監視被用於具有低於特定臨界值的優先序的資料傳輸的側鏈路SPS資源。URLLC WTRU的SCI的監視可以應用於資源池中的資源子集(例如,WTRU可以監視SCI以先佔與RP中的資源子集對應的SCI)。被配置有側鏈路SPS資源的WTRU可以監視特殊或特定SCI。該特殊或特定SCI可包括先佔指示。例如,被配置有側鏈路SPS資源的WTRU可以不監視側鏈路授權,而是可以監視具有先佔指示的SCI。可以基於RP(重新)配置來確定攜帶該特殊SCI的PSCCH的資源分配。The WTRU may be configured with a side link SPS, which may support URLLC service preemption. A WTRU configured with SL SPS resources may be configured to monitor the SCI of the URLLC WTRU, which may be used to determine whether a preemption of SPS resources for the WTRU has occurred. This monitoring can be applied to certain WTRUs and / or certain transmissions. For example, the WTRU may be configured to monitor side-link SPS resources used for data transmission with a priority order below a certain threshold. The monitoring of the URLLC WTRU's SCI can be applied to a subset of resources in the resource pool (eg, the WTRU can monitor the SCI to preempt the SCI corresponding to the subset of resources in the RP). WTRUs configured with side-link SPS resources can monitor special or specific SCIs. The special or specific SCI may include a preemptive indication. For example, a WTRU configured with side-link SPS resources may not monitor side-link grants, but may monitor SCIs with preemptive indications. The resource allocation of the PSCCH carrying the special SCI can be determined based on the RP (re) configuration.

WTRU可以執行資源重新選擇。例如,使用模式4提前預訂(forward booking)執行傳輸的WTRU可以執行資源重新選擇。例如,在偵測到另一個WTRU的先佔指示時,WTRU可以執行資源重新選擇。WTRU可以繼續使用重新選擇資源及/或可以執行與先佔傳輸相關聯的符號的空白(blanking)(例如,假設該先佔傳輸使用URLLC格式SCI以及PSSCH)。WTRU可以被配置有SCI傳輸格式及/或PSSCH格式。該SCI傳輸格式以及PSSCH格式可以用於傳輸(例如,在用URLLC傳輸先佔的資源中)。例如,當藉由URLLC的先佔已經發生時,WTRU可以在其預先預訂的資源上利用SCI傳輸格式以及PSSCH格式。The WTRU may perform resource reselection. For example, a WTRU that uses mode 4 forward booking to perform transmission may perform resource reselection. For example, the WTRU may perform resource reselection when a preemption indication is detected by another WTRU. The WTRU may continue to use reselection resources and / or may perform blanking of symbols associated with the preemption transmission (eg, assuming that the preemption transmission uses the URLLC format SCI and PSSCH). The WTRU may be configured with a SCI transmission format and / or a PSSCH format. The SCI transmission format as well as the PSSCH format can be used for transmission (for example, in a resource preempted by URLLC transmission). For example, when pre-emption by URLLC has occurred, the WTRU may utilize the SCI transmission format and the PSSCH format on its pre-reserved resources.

操作URLLC服務的WTRU可以使用其他WTRU的UL資源以用於傳輸。WTRU可以被配置為先佔其他WTRU的UL傳輸,這可以允許WTRU傳輸側鏈路封包。例如,WTRU可以被配置有可以用於先佔的上鏈資源。WTRU可以被配置有一個或多個資源,其可以用於傳輸先佔指示(例如,傳輸到網路)。可以在先佔另一個WTRU的UL傳輸之前傳輸這種先佔指示。在這種情況下,網路可以向被先佔的WTRU發送訊息/信號(例如,“關閉”或“停止傳輸”訊息/信號)(例如,如果該WTRU被授權了那些資源)。WTRU可以在先佔UL資源之後發送先佔指示(例如,使得網路可以圍繞那些UL資源執行速率匹配)。WTRUs operating URLLC services may use UL resources of other WTRUs for transmission. The WTRU may be configured to preempt UL transmissions of other WTRUs, which may allow the WTRU to transmit side link packets. For example, the WTRU may be configured with an uplink resource that can be used for preemption. The WTRU may be configured with one or more resources, which may be used to transmit a preemption indication (eg, to the network). This preemption indication may be transmitted before the UL transmission of another WTRU is preempted. In this case, the network may send a message / signal (eg, "off" or "stop transmission" message / signal) to the preempted WTRU (eg, if the WTRU is authorized for those resources). The WTRU may send a preemption indication after preempting the UL resources (eg, so that the network can perform rate matching around those UL resources).

操作URLLC服務的WTRU可以將其配置/排程的上鏈授權用於側鏈路傳輸。WTRU可以被配置為將其配置/排程的上鏈授權用於側鏈路傳輸,以例如減少潛時,該潛時可能是例如藉由傳輸請求側鏈路資源的緩衝器狀態報告(BSR)而引起。例如,WTRU可以被配置/排程有上鏈授權,該上鏈授權可以跨越一個或多個OFDM符號(例如,如第6圖中所示的x個OFDM符號)。如第6圖所示,WTRU可以被配置為使用前y個符號以向gNB發送先佔指示、並使用剩餘的(x-y)符號以用於側鏈路傳輸。例如,如果WTRU使用該授權來多工側鏈路傳輸與上鏈傳輸,如第7圖所示,該先佔指示可以攜帶速率匹配資訊(例如,用於側鏈路傳輸的上鏈授權內的符號及/或RB的數量/位置),這可以允許網路解碼該多工的上鏈傳輸。The WTRU operating the URLLC service can use its configuration / scheduled uplink authorization for side-link transmission. The WTRU may be configured to use its configured / scheduled uplink authorization for side-link transmissions, for example to reduce latency, which may be, for example, by requesting a buffer status report (BSR) of the side link resources Caused. For example, a WTRU may be configured / scheduled to have an uplink grant that may span one or more OFDM symbols (eg, x OFDM symbols as shown in Figure 6). As shown in Figure 6, the WTRU may be configured to use the first y symbols to send a preemption indication to the gNB and use the remaining (x-y) symbols for side-link transmission. For example, if the WTRU uses the authorization to multiplex the side link transmission and the uplink transmission, as shown in Figure 7, the preemption indication may carry rate matching information (for example, the Symbols and / or the number / location of RBs), this may allow the network to decode the multiplexed uplink transmission.

可以動態地更新優先序。例如,可以動態地更新活動池的優先序。可以更新與該池相關聯的每封包ProSe優先序(PPPP)。The priorities can be updated dynamically. For example, the priority of the active pool can be updated dynamically. The ProSe Priority (PPPP) per packet associated with the pool can be updated.

因此,本文描述了用於重新配置(包括啟動以及停用)側鏈路資源池的處理。WTRU可以動態地以及自主地確定啟動及/或停用側鏈路資源池。例如,WTRU可以基於其將要發送及/或接收的資料的特性來確定啟動適合於傳輸以及接收該資料的資源池。WTRU還可以回應於所接收的指示(其可以是資源池指示(RPI))來確定啟動及/或停用側鏈路資源。可以從網路(可以是RAN)及/或從另一個WTRU接收該RPI。RPI可以明確地被傳訊,及/或WTRU可以基於一個或多個標準隱含地確定指示。例如,可以在下鏈控制資訊(DCI)中明確地表明RPI,WTRU可以在一個或多個下鏈通道(例如,下鏈控制通道)上監視該下鏈控制資訊。可以基於以下中的一者或多者以隱含地表明該指示:攜帶時槽格式指示符(SFI)的群組公共實體下鏈控制通道(PDCCH)、波束配置的動態改變、及/或動態頻寬部分啟動/停用。Therefore, this article describes the process for reconfiguring (including enabling and disabling) the side link resource pool. The WTRU may dynamically and autonomously determine to activate and / or deactivate the side link resource pool. For example, the WTRU may determine to initiate a resource pool suitable for transmitting and receiving the data based on the characteristics of the data it will send and / or receive. The WTRU may also determine to activate and / or deactivate the side link resources in response to the received indication, which may be a resource pool indication (RPI). This RPI may be received from the network (which may be a RAN) and / or from another WTRU. The RPI may be explicitly signaled and / or the WTRU may implicitly determine the indication based on one or more criteria. For example, the RPI may be clearly indicated in the downlink control information (DCI), and the WTRU may monitor the downlink control information on one or more downlink channels (for example, the downlink control channel). The indication may be implicitly indicated based on one or more of the following: a group public entity downlink control channel (PDCCH) carrying a time slot format indicator (SFI), dynamic changes in beam configuration, and / or dynamics Bandwidth is enabled / disabled.

應當理解,雖然已經揭露了說明性實施例,但是潛在實施例的範圍不限於明確闡述的那些。例如,雖然已經參考3GPP及/或NR網路層描述了系統,但是所設想的實施例被延伸至超出使用特定網路層技術的實施。同樣,潛在的實施可延伸至所有類型的服務層架構、系統以及實施例。雖然說明性實施例涉及特定類型的裝置之間的特定類型的通信,但是處理可以由任何合適的裝置執行以及在任何合適的裝置之間執行。儘管可以關於V2X/eV2X通信來描述這裡描述的範例,但是本文描述的技術可以同樣地可應用於其他類型的通信。儘管使用V2X訊息的傳輸/接收作為範例,但是這裡描述的通信技術可以用於傳輸/接收其他類型的資料(該資料並非V2X訊息,或者該資料為除了V2X訊息之外的資料)。本文描述的技術可以獨立地應用及/或與其他資源配置技術組合使用。It should be understood that although illustrative embodiments have been disclosed, the scope of potential embodiments is not limited to those explicitly set forth. For example, although the system has been described with reference to 3GPP and / or NR network layers, the contemplated embodiments are extended beyond implementations using specific network layer technologies. Similarly, potential implementations can be extended to all types of service layer architectures, systems, and embodiments. Although the illustrative embodiments relate to specific types of communication between specific types of devices, processing may be performed by and between any suitable devices. Although the examples described herein can be described with respect to V2X / eV2X communication, the techniques described herein can be equally applied to other types of communication. Although the transmission / reception of V2X messages is used as an example, the communication technology described here can be used to transmit / receive other types of data (the data is not a V2X message, or the data is other than V2X messages). The techniques described herein can be applied independently and / or used in combination with other resource allocation techniques.

應理解的是,執行本文描述的過程的實體可以是邏輯實體,其可以用被儲存在行動裝置、網路節點或電腦系統的記憶體中並在該行動裝置、網路節點或電腦系統的處理器上執行的軟體(即,電腦可執行指令)的形式而被實施。也就是說,該方法(一個或多個)可以用被儲存在行動裝置及/或網路節點(例如,節點或電腦系統)的記憶體中的軟體(即,電腦可執行指令)的形式而被實施,該電腦可執行指令當由節點的處理器執行時執行所討論的過程。還應理解的是,圖中所示的任何傳輸以及接收過程可以由節點的通信電路在節點的處理器及其執行的電腦可執行指令(例如,軟體)的控制下執行。It should be understood that the entity that performs the processes described herein may be a logical entity that may be used in the memory of a mobile device, network node, or computer system and processed in the mobile device, network node, or computer system Is implemented in the form of software (ie, computer executable instructions) running on a computer. That is, the method (s) may be in the form of software (ie, computer executable instructions) stored in the memory of a mobile device and / or network node (eg, a node or computer system) When implemented, the computer-executable instructions, when executed by a node's processor, perform the process in question. It should also be understood that any transmission and reception process shown in the figure may be performed by the node's communication circuit under the control of the node's processor and computer-executable instructions (eg, software) executed by the node.

本文描述的各種技術可以結合硬體或軟體而被實施,或者在適當的情況下以這兩者的組合來實施。因此,本文描述的主題的方法以及裝置或其某些方面或部分可以採用有形媒體(例如,軟碟、CD-ROM、硬碟驅動器或任何其他機器可讀儲存媒體)中包含的程式碼(即,指令)的形式,其中當該程式碼被載入到例如電腦之類的機器中並由其執行時,該機器成為用於實踐本文該主題的裝置。在程式碼被儲存在媒體上的情況下,可能的情況是所討論的程式碼被儲存在共同執行所討論的動作的一個或多個媒體上,也就是說一個或多個媒體一起包含用於執行動作的碼,但是在存在多個單一媒體的情況下,不要求將該碼的任何特定部分儲存在任何特定媒體上。在可程式裝置上執行程式碼的情況下,計算裝置通常包括處理器、該處理器可讀取的儲存媒體(包括揮發性以及非揮發性記憶體及/或記憶元件)、至少一個輸入裝置、以及至少一個輸出裝置。一個或多個程式可以例如經由使用API或可重複使用的控制項等實施或利用結合本文描述的主題描述的過程。這些程式較佳地以高階程序或物件導向的程式設計語言實施,以與電腦系統通信。但是,如果需要,這些程式(一個或多個)可以用組合語言或機器語言實施。在任何情況下,該語言可以是編譯或解釋語言、並與硬體實施結合。The various techniques described herein may be implemented in conjunction with hardware or software, or where appropriate, a combination of the two. As such, the methods and devices of the subject matter described herein, or some aspects or portions thereof, may employ program code (i.e., floppy disks, CD-ROMs, hard drives, or any other machine-readable storage medium) , Instruction) in which the code becomes a device for practicing the subject matter of this document when the code is loaded into and executed by a machine such as a computer. Where the code is stored on a medium, it is possible that the code in question is stored on one or more media that collectively perform the action in question, that is, one or more media together contains A code to perform an action, but in the presence of multiple single media, it is not required to store any particular part of the code on any particular media. Where the program code is executed on a programmable device, the computing device typically includes a processor, a storage medium readable by the processor (including volatile and non-volatile memory and / or memory elements), at least one input device, And at least one output device. One or more programs may implement or utilize processes described in conjunction with the subject matter described herein, for example, through the use of APIs or reusable controls. These programs are preferably implemented in high-level procedures or object-oriented programming languages to communicate with computer systems. However, if desired, these programs (s) can be implemented in combinatorial or machine language. In any case, the language can be a compiled or interpreted language combined with a hardware implementation.

儘管範例性實施例可以提及了在一個或多個獨立計算系統的上下文中利用本文描述的主題的各方面,但是本文描述的主題不限於此,而是可以結合任何計算環境(例如網路或分散式運算環境)來實現。更進一步地,本文描述的主題的各方面可以在多個處理晶片或裝置中、或跨多個處理晶片或裝置而被實施、並且儲存器可以類似地在多個裝置上受到影響。這些裝置可能包括個人電腦、網路服務器、手持裝置、超級電腦或集成到其他系統(如汽車以及飛機)中的電腦。Although exemplary embodiments may mention utilizing aspects of the subject matter described herein in the context of one or more independent computing systems, the subject matter described herein is not limited thereto, but may be incorporated in any computing environment such as a network or Decentralized computing environment). Still further, aspects of the subject matter described herein may be implemented in or across multiple processing wafers or devices, and the storage may similarly be affected on multiple devices. These devices may include personal computers, web servers, handheld devices, supercomputers, or computers integrated into other systems such as cars and airplanes.

在描述本揭露的主題的較佳實施例時,如圖中所示,為了清楚起見,使用了特定術語。然而,所要求保護的主題並不旨在限於如此選擇的特定術語,並且應當理解,每個特定元件包括以類似方式操作以實現類似目的的所有技術等同物。In describing preferred embodiments of the subject matter of the present disclosure, as shown in the figures, certain terminology is used for the sake of clarity. However, the claimed subject matter is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to achieve a similar purpose.

下面的表1提供了本文中可能出現的首字母縮略詞的列表。
表格1
Table 1 below provides a list of acronyms that may appear in this article.
Table 1

雖然在本文中描述了採用特定組合的特徵以及元素,但是本領域中具有通常知識者將會認識到,每一個特徵或元素既可以單獨使用,也可以與其他特徵以及元素進行任何組合。另外,在此所述的方法可以在結合在電腦可讀媒體中的電腦程式、軟體或韌體中實施,以由電腦或處理器執行。電腦可讀媒體的範例包括電子信號(經由有線或無線連接傳輸)以及電腦可讀儲存媒體。電腦可讀儲存媒體的範例包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、磁性媒體(例如,內部硬碟以及可移磁片)、磁光媒體以及光學媒體(例如CD-ROM光碟以及數位多功能光碟(DVD))。與軟體相關聯的處理器可用於實現用於WTRU、UE、終端、基地台、RNC或任何主機電腦的射頻收發器。Although features and elements using specific combinations are described herein, those of ordinary skill in the art will recognize that each feature or element may be used alone or in any combination with other features and elements. In addition, the methods described herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable medium for execution by a computer or processor. Examples of computer-readable media include electronic signals (transmitted over wired or wireless connections) and computer-readable storage media. Examples of computer-readable storage media include, but are not limited to, read-only memory (ROM), random access memory (RAM), scratchpads, cache memory, semiconductor memory devices, magnetic media (for example, internal hard drives And removable magnetic disks), magneto-optical media, and optical media (such as CD-ROM discs and digital versatile discs (DVDs)). The processor associated with the software can be used to implement a radio frequency transceiver for a WTRU, UE, terminal, base station, RNC, or any host computer.

DL‧‧‧下鏈DL‧‧‧Unchain

OFDM‧‧‧正交分頻多工 OFDM‧‧‧ Orthogonal Frequency Division Multiplexing

N2、N3、N4、N6、N11、S1、X2、Xn‧‧‧介面 N2, N3, N4, N6, N11, S1, X2, Xn‧‧‧ interfaces

NR‧‧‧新無線電 NR‧‧‧New Radio

SL‧‧‧側鏈路 SL‧‧‧Side Link

TDD‧‧‧分時雙工 TDD‧‧‧time division duplex

UL‧‧‧上鏈 UL‧‧‧winding

V2X‧‧‧車輛通信 V2X‧‧‧Vehicle communication

WTRU、102、102a、102b、102c、102d‧‧‧無線傳輸/接收單元 WTRU, 102, 102a, 102b, 102c, 102d ‧‧‧ wireless transmission / reception unit

100‧‧‧通信系統 100‧‧‧communication system

104、113‧‧‧無線電存取網路(RAN) 104, 113‧‧‧ Radio Access Network (RAN)

106/115‧‧‧核心網路(CN) 106 / 115‧‧‧ Core Network (CN)

108‧‧‧公共交換電話網路(PSTN) 108‧‧‧ Public Switched Telephone Network (PSTN)

110‧‧‧網際網路 110‧‧‧Internet

112‧‧‧其他網路 112‧‧‧Other networks

114a、114b‧‧‧基地台 114a, 114b‧‧‧ base station

116‧‧‧空中介面 116‧‧‧ air interface

118‧‧‧處理器 118‧‧‧Processor

120‧‧‧收發器 120‧‧‧ Transceiver

122‧‧‧傳輸/接收元件 122‧‧‧Transmit / Receive Element

124‧‧‧揚聲器/麥克風 124‧‧‧Speaker / Microphone

126‧‧‧小鍵盤 126‧‧‧Keyboard

128‧‧‧顯示器/觸控板 128‧‧‧Display / Touchpad

130‧‧‧非可移記憶體 130‧‧‧non-removable memory

132‧‧‧可移記憶體 132‧‧‧ Removable memory

134‧‧‧電源 134‧‧‧Power

136‧‧‧全球定位系統(GPS)晶片組 136‧‧‧Global Positioning System (GPS) Chipset

138‧‧‧週邊設備 138‧‧‧Peripheral equipment

160a、160b、160c‧‧‧e節點B 160a, 160b, 160c‧‧‧e Node B

162‧‧‧行動性管理實體(MME) 162‧‧‧Mobile Management Entity (MME)

164‧‧‧服務閘道(SGW) 164‧‧‧Service Gateway (SGW)

166‧‧‧封包資料網路(PDN)閘道(或PGW) 166‧‧‧ Packet Data Network (PDN) Gateway (or PGW)

180a、180b、180c‧‧‧gNB 180a, 180b, 180c‧‧‧gNB

182a、182b‧‧‧存取以及行動性管理功能(AMF) 182a, 182b‧‧‧ access and mobile management functions (AMF)

183a、183b‧‧‧對話管理功能(SMF) 183a, 183b‧‧‧ Dialogue Management Function (SMF)

184a、184b‧‧‧使用者平面功能(UPF) 184a, 184b ‧‧‧ User Plane Function (UPF)

185a、185b‧‧‧資料網路(DN) 185a, 185b‧‧‧ Data Network (DN)

當結合所附範例性圖式閱讀時,可以更好地理解前述發明內容以及說明性實施例的以下附加描述。應理解,所揭露的系統以及方法的潛在實施例不限於所描繪的那些。圖式中相同的元件符號表示相同的元件。The foregoing summary of the invention and the following additional descriptions of illustrative embodiments may be better understood when read in conjunction with the accompanying exemplary drawings. It should be understood that the potential embodiments of the disclosed systems and methods are not limited to those depicted. The same element symbols in the drawings represent the same elements.

第1A圖是示出其中可以實施一個或多個揭露的實施例的範例性通信系統的系統圖。 FIG. 1A is a system diagram illustrating an exemplary communication system in which one or more disclosed embodiments may be implemented.

第1B圖是示出了根據實施例的可在第1A圖中所示的通信系統內使用的範例性無線傳輸/接收單元(WTRU)的系統圖。 FIG. 1B is a system diagram illustrating an exemplary wireless transmission / reception unit (WTRU) that can be used within the communication system shown in FIG. 1A according to an embodiment.

第1C圖是示出了根據實施例的可在第1A圖中所示的通信系統內使用的範例性無線電存取網路(RAN)以及範例性核心網路(CN)的系統圖。 FIG. 1C is a system diagram showing an exemplary radio access network (RAN) and an exemplary core network (CN) that can be used in the communication system shown in FIG. 1A according to an embodiment.

第1D圖是示出了根據實施例的可在第1A圖中所示的通信系統內使用的另一範例性RAN以及另一範例性CN的系統圖。 FIG. 1D is a system diagram illustrating another exemplary RAN and another exemplary CN that can be used in the communication system illustrated in FIG. 1A according to an embodiment.

第2圖是示出了時域雙工(TDD)模式中的範例性頻率多工的圖。 FIG. 2 is a diagram showing an exemplary frequency multiplexing in a time domain duplex (TDD) mode.

第3圖是示出了由範例性TDD配置添加的範例性延遲的圖。 FIG. 3 is a diagram showing an exemplary delay added by an exemplary TDD configuration.

第4圖是示出了範例性側鏈路時域資源池配置的圖。 FIG. 4 is a diagram showing an exemplary side link time domain resource pool configuration.

第5圖是示出了用於側鏈路的範例性時槽以及符號資源池配置的圖。 FIG. 5 is a diagram showing an exemplary time slot and symbol resource pool configuration for a side link.

第6圖是示出了側鏈路傳輸中的上鏈授權的範例性使用的圖。 Fig. 6 is a diagram showing an exemplary use of uplink authorization in side-link transmission.

第7圖是示出了用於多工側鏈路以及上鏈傳輸的上鏈授權的範例性使用的圖。 FIG. 7 is a diagram illustrating an exemplary use of uplink authorization for multiplex side links and uplink transmission.

Claims (20)

一種用於由一無線傳輸及接收單元(WTRU)實施的側鏈路資源池啟動的方法,該方法包括: 一WTRU利用一啟動的第一側鏈路資源池以用於側鏈路通信,該第一側鏈路資源池是為該WTRU配置的多個側鏈路資源池其中之一; 該WTRU確定啟動一第二側鏈路資源池,該第二側鏈路資源池是為該WTRU配置的該多個側鏈路資源池其中之一; 該WTRU啟動該第二側鏈路資源池;以及 該WTRU將該WTRU已經啟動該第二側鏈路資源池的一指示傳遞給一第二WTRU。A method for starting a side-link resource pool implemented by a wireless transmission and reception unit (WTRU), the method includes: A WTRU uses a started first side link resource pool for side link communication. The first side link resource pool is one of a plurality of side link resource pools configured for the WTRU. The WTRU determines to start a second side link resource pool, and the second side link resource pool is one of the multiple side link resource pools configured for the WTRU; The WTRU initiates the second-side link resource pool; and The WTRU passes an indication to the second WTRU that the WTRU has started the second-side link resource pool. 如申請專利範圍第1項所述的方法,其中該WTRU啟動該第二側鏈路資源池包括該WTRU識別該第二側鏈路資源池的資源可用於該WTRU的側鏈路通信。The method according to item 1 of the scope of patent application, wherein the WTRU starting the second side link resource pool includes that the WTRU identifies resources of the second side link resource pool that can be used for side link communication of the WTRU. 如申請專利範圍第1項所述的方法,其中傳遞該WTRU已啟動該第二側鏈路資源池的一指示包括傳送一資源池指示符(RPI)。The method of claim 1, wherein transmitting an indication that the WTRU has activated the second-side link resource pool includes transmitting a resource pool indicator (RPI). 如申請專利範圍第1項所述的方法,其中傳遞該WTRU已啟動該第二側鏈路資源池的一指示包括在一活動資源池上傳遞一指示。The method of claim 1, wherein transmitting an indication that the WTRU has started the second-side link resource pool includes passing an indication on an active resource pool. 如申請專利範圍第1項所述的方法,其中傳遞該WTRU已啟動該第二側鏈路資源池的一指示包括在一單獨的實體通道上傳遞一指示。The method of claim 1, wherein transmitting an indication that the WTRU has activated the second-side link resource pool includes transmitting an indication on a separate physical channel. 如申請專利範圍第1項所述的方法,其中確定啟動該第二側鏈路資源池包括: 基於與將由該WTRU傳輸的一側鏈路封包相關聯的一優先序,確定該啟動的第一側鏈路資源池不適合用於該側鏈路封包的傳輸;以及 基於與該側鏈路封包相關聯的該優先序,確定該第二側鏈路資源池適合於該側鏈路封包。The method according to item 1 of the scope of patent application, wherein determining to start the second-side link resource pool includes: Determining that the activated first side link resource pool is not suitable for transmission of the side link packet based on a priority order associated with the side link packet to be transmitted by the WTRU; and Based on the priority order associated with the side link packet, it is determined that the second side link resource pool is suitable for the side link packet. 如申請專利範圍第1項所述的方法,其中確定啟動該第二側鏈路資源池包括: 基於與一接收的側鏈路封包相關聯的一優先序,確定該啟動的第一側鏈路資源池不適合用於該側鏈路封包的接收;以及 基於與該側鏈路封包相關聯的該優先序,確定該第二側鏈路資源池適合用於該側鏈路封包。The method according to item 1 of the scope of patent application, wherein determining to start the second-side link resource pool includes: Determining that the activated first side link resource pool is not suitable for receiving the side link packet based on a priority associated with a received side link packet; and Based on the priority associated with the side link packet, it is determined that the second side link resource pool is suitable for the side link packet. 如申請專利範圍第1項所述的方法,其中確定啟動該第二側鏈路資源池包括: 確定與該WTRU要傳輸的一側鏈路封包相關聯的一傳輸潛時不被該啟動的第一側鏈路資源池支援;以及 確定該第二側鏈路資源池支援與要傳輸的該側鏈路封包相關聯的一傳輸潛時。The method according to item 1 of the scope of patent application, wherein determining to start the second-side link resource pool includes: Determining that a transmission latency associated with a side link packet to be transmitted by the WTRU is not supported by the activated first side link resource pool; and It is determined that the second side link resource pool supports a transmission latency associated with the side link packet to be transmitted. 如申請專利範圍第8項所述的方法,其中該第二側鏈路資源池使資源在該時域中比該第一側鏈路資源池更頻繁地可用。The method according to item 8 of the scope of patent application, wherein the second-side link resource pool makes resources more frequently available in the time domain than the first-side link resource pool. 如申請專利範圍第8項所述的方法,更包括: 接收表明與該側鏈路封包相關聯的該傳輸潛時的一側鏈路控制資訊(SCI)訊息。The method described in item 8 of the patent application scope further includes: A side link control information (SCI) message indicating the transmission latency associated with the side link packet is received. 如申請專利範圍第1項所述的方法,更包括: 由該WTRU測量該啟動的第一側鏈路資源池上的一能量, 其中確定啟動該第二側鏈路資源池包括: 確定該測量的能量滿足一臨界值;以及 在確定該測量的能量滿足一臨界值時,確定啟動該第二側鏈路資源池。The method described in item 1 of the patent application scope further includes: The WTRU measures an energy on the activated first side link resource pool, Wherein it is determined to start the second-side link resource pool including: Determining that the measured energy meets a critical value; and When it is determined that the measured energy meets a critical value, it is determined to start the second-side link resource pool. 如申請專利範圍第1項所述的方法,更包括: 由該WTRU測量該啟動的第一側鏈路資源池上的一通道忙碌比(CBR), 其中確定啟動該第二側鏈路資源池包括: 確定該測量的CBR滿足一臨界值;以及 在確定該測量的CBR滿足一臨界值時,確定啟動該第二側鏈路資源池。The method described in item 1 of the patent application scope further includes: The WTRU measures a channel busy ratio (CBR) on the activated first side link resource pool, Wherein it is determined to start the second-side link resource pool including: Determining that the measured CBR satisfies a critical value; and When it is determined that the measured CBR meets a critical value, it is determined to start the second-side link resource pool. 如申請專利範圍第1項所述的方法,更包括: 由該WTRU感測使用一參考信號接收功率(RSRP)內的一組資源池的一WTRU數量, 其中確定啟動該第二側鏈路資源池包括: 確定使用該RSRP內的該一組資源池的該WTRU數量滿足一臨界值;以及 在確定使用該RSRP內的該一組資源池的該WTRU數量滿足一臨界值時,確定啟動側鏈路資源池。The method described in item 1 of the patent application scope further includes: The number of a WTRU using a group of resource pools within a reference signal received power (RSRP) is sensed by the WTRU, Wherein it is determined to start the second-side link resource pool including: Determining that the number of WTRUs using the set of resource pools in the RSRP meets a critical value; and When it is determined that the number of the WTRUs using the group of resource pools in the RSRP meets a critical value, the starting side link resource pool is determined. 如申請專利範圍第1項所述的方法,其中確定啟動該第二側鏈路資源池包括: 確定該啟動的第一側鏈路資源池不支援一語音品質索引(VQI)值;以及 確定該第二側鏈路資源池支援該VQI值。The method according to item 1 of the scope of patent application, wherein determining to start the second-side link resource pool includes: Determining that the activated first-side link resource pool does not support a voice quality index (VQI) value; and It is determined that the second side link resource pool supports the VQI value. 一種用於由一無線傳輸及接收單元(WTRU)實施的側鏈路資源池啟動的方法,該方法包括: 一第一WTRU從一第二WTRU接收啟動一第一側鏈路資源池的一指示,該第一側鏈路資源池是為該第一WTRU配置的多個側鏈路資源池中的一個; 該第一WTRU基於啟動一第一側鏈路資源池的該接收的指示,確定啟動該第一側鏈路資源池;以及 該第一WTRU啟動該第一側鏈路資源池。A method for starting a side-link resource pool implemented by a wireless transmission and reception unit (WTRU), the method includes: A first WTRU receives an instruction to start a first side link resource pool from a second WTRU, the first side link resource pool being one of a plurality of side link resource pools configured for the first WTRU; The first WTRU determines to start the first-side link resource pool based on the received instruction to start a first-side link resource pool; and The first WTRU starts the first side link resource pool. 如申請專利範圍第15項所述的方法,其中接收啟動一第一側鏈路資源池的一指示包括接收一側鏈路控制資訊(SCI)。The method of claim 15, wherein receiving an instruction to start a first-side link resource pool includes receiving one-side link control information (SCI). 如申請專利範圍第15項所述的方法,其中接收啟動一第一側鏈路資源池的一指示包括:偵測使用該第一側鏈路資源池的多個側鏈路傳輸。The method of claim 15, wherein receiving an instruction to start a first side link resource pool includes detecting a plurality of side link transmissions using the first side link resource pool. 如申請專利範圍第15項所述的方法,其中接收啟動一第一側鏈路資源池的一指示包括:接收一資源池指示符(RPI)。The method according to item 15 of the scope of patent application, wherein receiving an instruction to start a first-side link resource pool comprises: receiving a resource pool indicator (RPI). 如申請專利範圍第15項所述的方法,其中接收啟動一第一側鏈路資源池的一指示包括:接收啟動與一識別的分類相關聯的多個側鏈路資源池的一指示。The method of claim 15, wherein receiving an instruction to start a first-side link resource pool includes receiving an instruction to start a plurality of side-link resource pools associated with an identified classification. 如申請專利範圍第19項所述的方法,更包括: 停用具有比該識別的分類小的一分類的多個活動側鏈路資源池。The method described in item 19 of the patent application scope further includes: Deactivate multiple active-side link resource pools with a classification smaller than the identified classification.
TW108104596A 2018-02-13 2019-02-12 Sidelink resource pool activation TW201935981A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862629977P 2018-02-13 2018-02-13
US62/629977 2018-02-13
US201862652016P 2018-04-03 2018-04-03
US62/652016 2018-04-03
US201862735237P 2018-09-24 2018-09-24
US62/735237 2018-09-24

Publications (1)

Publication Number Publication Date
TW201935981A true TW201935981A (en) 2019-09-01

Family

ID=65685952

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108104596A TW201935981A (en) 2018-02-13 2019-02-12 Sidelink resource pool activation

Country Status (2)

Country Link
TW (1) TW201935981A (en)
WO (1) WO2019160788A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210307032A1 (en) * 2018-07-19 2021-09-30 Ntt Docomo, Inc. User device and base station device
WO2020145781A1 (en) * 2019-01-11 2020-07-16 엘지전자 주식회사 Method and apparatus for performing bwp-based sidelink communication in nr v2x
WO2021026746A1 (en) * 2019-08-12 2021-02-18 Oppo广东移动通信有限公司 Session establishment method and apparatus
CN114303433A (en) * 2019-08-20 2022-04-08 高通股份有限公司 Preemption indication and power control for sidelink
US11844085B2 (en) 2019-08-23 2023-12-12 Qualcomm Incorporated Configured grants for sidelink communications
CN112469124B (en) * 2019-09-06 2022-11-25 上海朗帛通信技术有限公司 Method and apparatus in a node used for wireless communication
CN112543512A (en) * 2019-09-23 2021-03-23 大唐移动通信设备有限公司 Direct communication establishing method, user equipment and session management function entity
WO2021087807A1 (en) * 2019-11-06 2021-05-14 Lenovo (Beijing) Limited Method and apparatus for pre-empting a resource
US11570797B2 (en) 2019-11-11 2023-01-31 Asustek Computer Inc. Method and apparatus of handling multiple device-to-device resources in a wireless communication system
CN110996395B (en) * 2019-12-12 2022-10-25 展讯通信(上海)有限公司 Transmission configuration information indication method and device for auxiliary link, storage medium and terminal
CN113225847B (en) * 2020-01-21 2023-10-24 华硕电脑股份有限公司 Method and apparatus for processing device-to-device resource selection in view of discontinuous reception operations
WO2021155594A1 (en) * 2020-02-07 2021-08-12 Oppo广东移动通信有限公司 Resource selection method and apparatus, and terminal device
EP4085709A4 (en) * 2020-03-18 2023-04-12 ZTE Corporation Method and device for power-saving in wireless sidelink communication
WO2021212284A1 (en) * 2020-04-20 2021-10-28 Mediatek Singapore Pte. Ltd. Resource allocation enhancements for sl communication
CN113645680B (en) * 2020-04-27 2023-10-20 华为技术有限公司 Method, device and system for determining side uplink resource
US20230131862A1 (en) * 2020-04-30 2023-04-27 Qualcomm Incorporated Stand-alone sidelink for industrial internet of thing (iiot)
KR20230021647A (en) * 2020-06-08 2023-02-14 엘지전자 주식회사 Method and apparatus for selecting transmission/reception resources in a wireless communication system
US20220070850A1 (en) * 2020-09-03 2022-03-03 Qualcomm Incorporated Signaling an indication of a sidelink transmission
CN114375045A (en) * 2020-10-15 2022-04-19 维沃移动通信有限公司 Resource pool switching method and device, terminal and network side equipment
US11695533B2 (en) * 2020-12-18 2023-07-04 Qualcomm Incorporated Sidelink resource pool activation and deactivation for power savings
US11589338B2 (en) * 2021-01-19 2023-02-21 Qualcomm Incorporated Enhanced sidelink (SL) control signaling with time division duplexing (TDD)
US20220377668A1 (en) * 2021-05-18 2022-11-24 Qualcomm Incorporated Signal monitoring during discontinuous reception
US20230030144A1 (en) * 2021-08-02 2023-02-02 Qualcomm Incorporated Techniques for supplementary sidelink resource configuration in full duplex mode
CN117957902A (en) * 2021-10-28 2024-04-30 瑞典爱立信有限公司 Method and apparatus for carrier aggregation
WO2023106067A1 (en) * 2021-12-10 2023-06-15 ソニーグループ株式会社 Communication method, communication device, and communication system
WO2023151001A1 (en) * 2022-02-11 2023-08-17 Qualcomm Incorporated Reconfigurable surface training for sidelink
US20240114541A1 (en) * 2022-09-23 2024-04-04 Qualcomm Incorporated Support of low latency transmissions in sidelink

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160295624A1 (en) * 2015-04-02 2016-10-06 Samsung Electronics Co., Ltd Methods and apparatus for resource pool design for vehicular communications
KR20180108589A (en) * 2016-01-29 2018-10-04 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Method and terminal for side link data transmission

Also Published As

Publication number Publication date
WO2019160788A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
TW201935981A (en) Sidelink resource pool activation
TWI821607B (en) Methods for efficient resource usage between cooperative vehicles
JP7436719B2 (en) Methods, systems, and devices for transferring data with different degrees of trust
CN112840733B (en) Method for resource reservation in vehicle communication
US11800490B2 (en) Methods and apparatuses for autonomous resource selection in new radio vehicle to everything (NR V2X)
RU2750435C1 (en) Methods for determining candidate of physical downlink control channel (pdcch)
JP2022542381A (en) Simultaneous uplink and sidelink operation
CN112997565A (en) L2 procedure for unicast and/or multicast link establishment and maintenance
WO2020033628A1 (en) Sidelink resource selection and control
KR20210154147A (en) Systems and methods for sidelink communication
TW202123723A (en) New radio (nr) vehicle to everything (v2x) methods for sensing and resource allocation
EP3834530A1 (en) Control information transmission and sensing in wireless systems
CN112753194A (en) CSI feedback in NR-U
WO2022031921A1 (en) Sidelink discovery associated with nr relays
TW201907743A (en) Uplink transmission without an uplink grant
WO2023211998A1 (en) Fbe channel access in sidelink unlicensed
EP4193547A1 (en) Methods and apparatus for dynamic spectrum sharing
CN111937463B (en) Method for efficiently using resources between cooperative vehicles
WO2023055865A1 (en) Methods, architectures, apparatus and systems for quality of service (qos) enforcement at the media access control (mac) layer
WO2024030625A1 (en) Measurement-based carrier selection in multicarrier sidelink
WO2023014545A1 (en) Sidelink collision detection and indication
WO2024015333A1 (en) Methods, architectures, apparatuses and systems for transmission and reception in multipath sidelink relaying