TW201935933A - Personalized advertisement allocation method and apparatus using the same - Google Patents
Personalized advertisement allocation method and apparatus using the same Download PDFInfo
- Publication number
- TW201935933A TW201935933A TW107103602A TW107103602A TW201935933A TW 201935933 A TW201935933 A TW 201935933A TW 107103602 A TW107103602 A TW 107103602A TW 107103602 A TW107103602 A TW 107103602A TW 201935933 A TW201935933 A TW 201935933A
- Authority
- TW
- Taiwan
- Prior art keywords
- advertisement
- user
- interpretation data
- advertisements
- viewing
- Prior art date
Links
Landscapes
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明是有關於一種個人化廣告媒合方法及廣告媒合裝置,且特別是有關於一種隨選視訊及頻道系統中的個人化廣告媒合方法及廣告媒合裝置。The invention relates to a personalized advertisement matching method and an advertisement matching device, and more particularly to a personalized advertisement matching method and an advertisement matching device in an on-demand video and channel system.
傳統的廣告系統,除廣告主指定播出時段外,其餘大致係以人工方式依廣告費用及節目熱門程度決定廣告播出時段。這些加諸於使用者的廣告,並不見得是使用者所想要看到的,因此,對於使用者而言,不僅是種垃圾訊息,也可能會造成視覺上的困擾。In the traditional advertising system, except for the broadcast period specified by the advertiser, the rest is roughly determined by the advertising method and the popularity of the program. These advertisements placed on users are not necessarily what users want to see. Therefore, for users, it is not only a kind of spam, but also may cause visual distress.
有鑑於此,本發明提出一種隨選視訊及頻道系統中的個人化廣告媒合方法及廣告媒合裝置,其可以自動方式並考量廣告曝光數將適當的廣告配置於適當時段給適當的收視觀眾,從而增加收視觀眾對於廣告的收看興趣。藉此,可有助於廣告營收及相關的商品販售等相關服務的開展及營收。In view of this, the present invention proposes a personalized advertisement matching method and an advertisement matching device in an on-demand video and channel system, which can automatically arrange and consider the number of advertisement impressions to configure appropriate advertisements at appropriate time periods to appropriate viewers. To increase viewers ’interest in watching ads. In this way, it can contribute to the development and revenue of related services such as advertising revenue and related product sales.
本發明提供一種隨選視訊及頻道系統中的個人化廣告媒合方法,包括:從一廣告資料庫中的多個待播廣告取出一第一廣告,並相應地取得第一廣告的詮釋資料;該前述詮釋資料經一轉換獲得該一特徵資料;基於前述特徵資料從一使用者資料庫中找出與前述特徵資料相關的一第一使用者及第一使用者的一廣告清單,並新增第一廣告至廣告清單中,其中使用者的特徵資料可經由分析使用者在隨選視訊及頻道系統的觀看行為記錄得到;透過該廣告清單與節目表之關聯分析,可以將該廣告配置至某一節目中播出。亦即,經由本方法可以將某一廣告配置至某一使用者可能觀看的某一節目中,以達到個人化廣告的目的。The invention provides a personalized advertisement matching method in an on-demand video and channel system, which includes: taking out a first advertisement from a plurality of advertisements to be broadcast in an advertisement database, and obtaining interpretation data of the first advertisement accordingly; The foregoing interpretation data is obtained through a conversion to obtain the characteristic data; based on the foregoing characteristic data, a first user and an advertisement list of the first user related to the foregoing characteristic data are found from a user database and added From the first advertisement to the advertisement list, the user's characteristic data can be obtained by analyzing the user's viewing behavior on the video-on-demand and channel system; through the association analysis between the advertisement list and the program schedule, the advertisement can be configured to a certain Aired on a show. That is, through this method, an advertisement can be configured into a certain program that a user may watch to achieve the purpose of personalized advertisement.
本發明提供一種隨選視訊及頻道系統中的廣告媒合裝置,包括儲存電路及處理器。儲存電路儲存多個模組。處理器連接儲存電路並存取前述模組以執行下列步驟:從一廣告資料庫中的多個待播廣告取出一第一廣告,並相應地取得第一廣告的詮釋資料;該前述詮釋資料經一轉換獲得該一特徵資料;基於前述特徵資料從一使用者資料庫中找出與前述特徵資料相關的一第一使用者及第一使用者的一廣告清單,並新增第一廣告至廣告清單中,其中廣告清單包括對應於第一使用者的多個第一待播廣告;分析第一使用者在隨選視訊及頻道系統的觀看行為記錄;以及依據觀看行為記錄將前述第一待播廣告分配予第一使用者觀看。The invention provides an advertisement matching device in an on-demand video and channel system, which includes a storage circuit and a processor. The storage circuit stores multiple modules. The processor is connected to the storage circuit and accesses the foregoing module to perform the following steps: fetching a first advertisement from a plurality of advertisements to be broadcast in an advertisement database, and obtaining the interpretation data of the first advertisement accordingly; A conversion obtains the characteristic data; based on the foregoing characteristic data, a first user and an advertisement list of the first user related to the foregoing characteristic data are found from a user database, and a first advertisement is added to the advertisement In the list, the advertisement list includes a plurality of first pending advertisements corresponding to the first user; analyzing the viewing history of the first user in the on-demand video and channel system; and the foregoing first waiting broadcast according to the viewing behavior record The advertisement is distributed to the first user for viewing.
基於上述,本發明提出的隨選視訊系統及頻道中的個人化廣告媒合方法及其裝置可分析各待播廣告的詮釋資料,並進而將各待播廣告分配予與其詮釋資料相關的使用者觀看。藉此,可讓使用者在使用隨選視訊及頻道系統時觀看到較符合自身喜好的廣告,從而提升廣告的效益。Based on the above, the personalized advertisement matching method and device in the on-demand video system and channel provided by the present invention can analyze the interpretation data of each advertisement to be broadcasted, and then allocate each advertisement to be broadcasted to users related to its interpretation data. Watch. In this way, users can watch ads that better match their own preferences when using video-on-demand and channel systems, thereby improving the effectiveness of ads.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式做詳細說明如下。In order to make the above features and advantages of the present invention more comprehensible, embodiments are described below in detail with reference to the accompanying drawings as follows.
圖1是依據本發明之一實施例繪示的廣告媒合裝置的示意圖。在本實施例中,廣告媒合裝置100包括儲存電路110、收發器電路120及處理器130。廣告媒合裝置100例如可設置於電信服務業者維護的隨選視訊及頻道系統(例如隨選視訊系統(video on-demand,VOD)系統及網際網路電視(Internet Protocol Television,IPTV)系統等)上,並可用於決定多個影音串流終端設備(未繪示)的廣告派送及廣告媒合策略,其中各影音串流終端設備例如是佈建於多個使用者家中或類似場所中的MOD機上盒、IPTV裝置及/或OTT(over-the-top)裝置,但本發明可不限於此。FIG. 1 is a schematic diagram of an advertisement matching device according to an embodiment of the present invention. In this embodiment, the advertisement matching device 100 includes a storage circuit 110, a transceiver circuit 120, and a processor 130. The advertisement matching device 100 may be installed in, for example, an on-demand video and channel system maintained by a telecommunications service provider (for example, a video on-demand (VOD) system and an Internet Protocol Television (IPTV) system, etc.) It can also be used to determine the advertising distribution and advertising matching strategies of multiple video streaming terminal devices (not shown), where each video streaming terminal device is, for example, a MOD deployed in the homes of multiple users or in similar places A set-top box, an IPTV device, and / or an OTT (over-the-top) device, but the present invention may not be limited thereto.
儲存電路110例如是記憶體、硬碟或是其他任何可用於儲存資料的元件,而可用以記錄多個程式碼或模組。處理器120耦接儲存電路110。處理器120例如是一般用途處理器、特殊用途處理器、傳統的處理器、數位訊號處理器、多個微處理器(microprocessor)、一個或多個結合數位訊號處理器核心的微處理器、控制器、微控制器、特殊應用集成電路(Application Specific Integrated Circuit,ASIC)、場可程式閘陣列電路(Field Programmable Gate Array,FPGA)、任何其他種類的積體電路、狀態機、基於進階精簡指令集機器(Advanced RISC Machine,ARM)的處理器以及類似品。The storage circuit 110 is, for example, a memory, a hard disk, or any other component that can be used to store data, and can be used to record multiple codes or modules. The processor 120 is coupled to the storage circuit 110. The processor 120 is, for example, a general-purpose processor, a special-purpose processor, a conventional processor, a digital signal processor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, and a control unit. Controller, microcontroller, Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), any other kind of integrated circuit, state machine, based on advanced reduced instructions Processors of Advanced RISC Machine (ARM) and the like.
圖2是依據本發明之一實施例繪示的隨選視訊及頻道系統中的個人化廣告媒合方法流程圖。本實施例的方法可由圖1的廣告媒合裝置100執行,以下即搭配圖1所示的元件來說明本方法各步驟的細節。FIG. 2 is a flowchart of a personalized advertisement matching method in an on-demand video and channel system according to an embodiment of the present invention. The method in this embodiment may be executed by the advertisement matching device 100 in FIG. 1, and details of each step of the method are described below with reference to the components shown in FIG. 1.
首先,在步驟S210中,處理器120從廣告資料庫中的多個待播廣告取出第一廣告,並相應地取得第一廣告的詮釋資料。在一實施例中,廣告資料庫中的待播廣告例如是由各個廣告主委託隨選視訊及頻道系統的服務業者播放的廣告,或是由政府機關所託播的廣告,但可不限於此。在其他實施例中,各待播廣告的詮釋資料可另存於一廣告詮釋資料庫中,且各詮釋資料例如可由相關人員自行依待播廣告的內容編輯,或是由其他機器學習的演算法自動地從待播廣告的內容分析而得,但可不限於此。此外,各筆詮釋資料的內容亦可用不同的形式呈現。舉例而言,假設某待播廣告的內容係有關於婚姻,則其相應的詮釋資料例如可包括「婚姻」、「愛情」及「情愛」等,經轉換可產生特徵資料如「婚」、「姻」、「婚姻」、「愛」、「情」、「愛情」、「情愛」等,但可不限於此。也就是說,各筆詮釋資料可以是一完整的詞語,也可以是一完整詞語中的部分內容。First, in step S210, the processor 120 retrieves a first advertisement from a plurality of advertisements to be broadcast in an advertisement database, and obtains interpretation data of the first advertisement accordingly. In an embodiment, the advertisements to be broadcast in the advertisement database are, for example, advertisements commissioned by service providers of on-demand video and channel systems commissioned by various advertisers, or advertisements hosted by government agencies, but are not limited thereto. In other embodiments, the interpretation data of each advertisement to be broadcast can be stored in an advertisement interpretation database, and each interpretation data can be edited by relevant personnel according to the content of the advertisement to be broadcast, or automatically by other machine learning algorithms. The location is obtained from the content analysis of the advertisement to be broadcast, but it is not limited thereto. In addition, the content of each interpretation can also be presented in different forms. For example, assuming that the content of an advertisement to be broadcast is about marriage, the corresponding interpretation data may include "marriage", "love", and "love", etc. After conversion, characteristic data such as "marriage", " "Marriage", "Marriage", "Love", "Love", "Love", "Love", etc., but it is not limited to this. In other words, each piece of interpretation data can be a complete word or part of a complete word.
接著,在步驟S220中,處理器120基於第一廣告的詮釋資料,從一使用者資料庫中找出與前述詮釋資料轉換後之特徵資料相關的第一使用者及第一使用者的廣告清單,並新增第一廣告至廣告清單中。前述廣告清單包括對應於第一使用者的多個第一待播廣告,亦即被認為是與第一使用者相關,且之後欲播送予第一使用者觀看的廣告,但可不限於此。Next, in step S220, the processor 120 finds, from a user database, a first user and a list of the first user's advertisements related to the feature data converted from the foregoing interpretation data based on the first advertisement interpretation data. And add the first ad to the list of ads. The foregoing advertisement list includes a plurality of first to-be-advertised advertisements corresponding to the first user, that is, advertisements that are considered to be related to the first user and are intended to be broadcast to the first user later, but are not limited thereto.
在一實施例中,使用者資料庫包括多個使用者及各使用者觀賞隨選視訊及頻道系統的多個喜好。基於此,處理器120可計算第一廣告的特徵資料與各使用者的多個喜好之間的相似度。並且,當一特定使用者的喜好與第一廣告的特徵資料之間的相似度高於預設門檻值時,處理器120可定義此特定使用者為與第一廣告的特徵資料相關的第一使用者,並取得第一使用者的廣告清單。In one embodiment, the user database includes multiple users and each user's preferences for watching on-demand video and channel systems. Based on this, the processor 120 may calculate the similarity between the characteristic data of the first advertisement and the multiple preferences of each user. In addition, when the similarity between the preference of a specific user and the characteristic data of the first advertisement is higher than a preset threshold, the processor 120 may define the specific user as the first related to the characteristic data of the first advertisement. Users, and get a list of ads for first users.
各使用者的喜好可表徵為完整的詞語,例如「愛情」、「婚姻」、「家庭」等,但可不限於此。此外,第一使用者的廣告清單例如可包括已分配予第一使用者的數個待播廣告,而依據前述教示可知,此廣告清單中的待播廣告皆與第一使用者相關,亦即其個別的特徵資料與第一使用者的喜好之間的相似度皆高於預設門檻值。The preferences of each user can be characterized as complete words, such as "love", "marriage", "family", etc., but it is not limited thereto. In addition, the advertisement list of the first user may include, for example, a plurality of advertisements to be broadcasted to the first user, and according to the foregoing teachings, the advertisements in the advertisement list are related to the first user, that is, The similarity between the individual characteristic data and the preferences of the first user is higher than a preset threshold.
在一實施例中,各使用者的喜好可由各使用者過往的觀賞行為學習而得。舉例而言,在一初始階段(即,對於各使用者的喜好一無所知的階段),處理器120可先取得當下的廣告資料庫中的各待播廣告的詮釋資料。接著,處理器120可查詢節目表,並取得各節目的詮釋資料。之後,處理器120可將各節目的特徵資料與各待播廣告的特徵資料進行比對。若某節目的特徵資料與某待播廣告的特徵資料之間的相似度夠高時,處理器120即可將此待播廣告安排在此節目的廣告時段中播放。在將各待播廣告安插於各節目的廣告時段之後,處理器120可觀察某使用者是否確實觀看過某些廣告及節目。若是,則處理器120可將這些廣告及節目的詮釋資料作為此使用者的喜好記錄於前述使用者資料庫中。In one embodiment, the preferences of each user can be learned from the past viewing behavior of each user. For example, in an initial stage (ie, a stage in which the user's preferences are unknown), the processor 120 may first obtain the interpretation data of each pending advertisement in the current advertisement database. Then, the processor 120 may query the program table and obtain interpretation data of each program. After that, the processor 120 may compare the characteristic data of each program with the characteristic data of each advertisement to be broadcast. If the similarity between the characteristic data of a certain program and the characteristic data of an advertisement to be broadcast is high enough, the processor 120 may schedule the advertisement to be broadcasted to be played in the advertisement period of the program. After the advertisements to be broadcast are inserted into the advertisement period of each program, the processor 120 may observe whether a certain user has actually viewed certain advertisements and programs. If so, the processor 120 may record the interpretation data of these advertisements and programs as the user's preference in the aforementioned user database.
應了解的是,由於詮釋資料的形式一般較為片段及瑣碎,因而不易於用來進行比對。基於此,在另一實施例中,處理器120在執行步驟S220時可先將第一廣告的詮釋資料分類為多個廣告特徵,再計算這些廣告特徵與各使用者的多個喜好之間的相似度。It should be understood that, because the form of interpretation data is generally fragmented and trivial, it is not easy to use for comparison. Based on this, in another embodiment, when executing step S220, the processor 120 may first classify the interpretation data of the first advertisement into multiple advertisement features, and then calculate the relationship between these advertisement features and multiple preferences of each user. Similarity.
舉先前的例子而言,假設某待播廣告的內容係有關於婚姻,則其相應的詮釋資料例如可包括「婚」、「姻」、「婚姻」、「愛」、「情」、「愛情」、「情愛」等,如果只在文字層次比對,可能會失之太細,為達到較高一層次的概念層次比對,處理器120,例如可相應地將這些詮釋資料分類為「婚姻」及「愛情」等類別。接著,當一特定使用者的喜好與第一廣告的類別之間的相似度高於預設門檻值時,處理器120可定義此特定使用者為與第一廣告的特徵資料相關的第一使用者,並取得第一使用者的廣告清單,也就是,將類別視為廣告特徵的一部分。藉此,可令前述相似度的計算更為準確及合理,從而提升後續廣告媒合的適切性。Taking the previous example, assuming that the content of an advertisement to be broadcast is about marriage, its corresponding interpretation data may include "marriage", "marriage", "marriage", "love", "love", "love" "," Love ", etc., if they are compared only at the text level, they may be too detailed. In order to achieve a higher level of conceptual comparison, the processor 120 may classify these interpretation data as" marriage "accordingly. "And" love. " Then, when the similarity between the preference of a specific user and the category of the first advertisement is higher than a preset threshold, the processor 120 may define the specific user as the first use related to the characteristic data of the first advertisement. Or get a list of ads for the first user, that is, treating categories as part of the characteristics of the ad. In this way, the foregoing similarity calculation can be made more accurate and reasonable, thereby improving the suitability of subsequent advertising matches.
此外,在前述初始階段時,處理器120亦可先將各待播廣告及各節目的詮釋資料先分別分類為多個廣告特徵及節目特徵,之後再進行相似度的計算,從而讓各待播廣告可分配至與其更為相關的節目時段中播放,其細節在此不再贅述。In addition, during the aforementioned initial stage, the processor 120 may also first classify the interpretation data of each advertisement to be broadcast and each program into a plurality of advertisement features and program features, and then perform similarity calculation to allow each to be broadcast The advertisement can be distributed to the more relevant program period for playing, the details thereof will not be repeated here.
在找出第一使用者及其廣告清單之後,處理器120可接續進行步驟S230以查詢第一使用者在隨選視訊及頻道系統的觀看行為記錄,並在步驟S240中依據觀看行為記錄將前述第一待播廣告分配予第一使用者觀看。觀看行為記錄例如包括第一使用者在隨選視訊及頻道系統觀賞過的多個節目、多個觀賞時段、觀賞週期及觀賞頻率等,但可不限於此。After finding the first user and his advertisement list, the processor 120 may proceed to step S230 to query the first user ’s viewing behavior record in the video-on-demand and channel system, and in step S240, the aforementioned The first pending advertisement is allocated to the first user for viewing. The viewing behavior record includes, for example, multiple programs, multiple viewing periods, viewing cycles, and viewing frequencies that the first user has watched in the on-demand video and channel system, but it is not limited thereto.
在一實施例中,處理器120可依據觀看行為記錄從節目表找出對應於該第一使用者的待播節目,其中待播節目的時段中包括多個廣告時段。前述對應於第一使用者的待播節目例如是第一使用者曾觀看過的節目的續集、曾觀看過的節目之同時段節目及/或某些特定時段的節目,或類似節目等,但可不限於此。之後,處理器120可將第一待播廣告配置於待播節目的廣告時段中。In an embodiment, the processor 120 may find a program to be broadcast corresponding to the first user from the program table according to the viewing behavior record, wherein the period of the program to be broadcast includes a plurality of advertisement periods. The aforementioned programs to be broadcast corresponding to the first user are, for example, sequels of programs that the first user has watched, concurrent programs of programs that have been watched, and / or programs of certain specific periods, or similar programs, but It is not limited to this. After that, the processor 120 may configure the first advertisement to be broadcast in the advertisement period of the program to be broadcast.
如此一來,當第一使用者依其習慣觀看隨選視訊及頻道系統上的節目時,即可在此節目的廣告時段中看到較符合自身喜好的廣告。藉此,可增加第一使用者觀賞廣告的興趣,從而有助於改善廣告的營收及相關的商品販售情形。In this way, when the first user watches a program on the on-demand video and channel system according to his habit, he can see an advertisement that better matches his own preference during the advertising period of the program. In this way, the first user's interest in watching advertisements can be increased, thereby helping to improve advertising revenue and related product sales.
在一實施例中,由於各第一待播廣告不一定能夠剛好填滿待播節目的廣告時段,使得各廣告時段中可能出現閒置時段,因此處理器120可在閒置時段配置一或多則靜態廣告供第一使用者觀看,以更為完全地利用廣告時段。In an embodiment, since each first to-be-advertised advertisement may not exactly fill the advertisement period of the to-be-showed program, so that idle periods may appear in each advertisement period, the processor 120 may configure one or more static periods during the idle period. Ads are viewed by first users to make fuller use of the advertising time.
在其他實施例中,為了增加第一待播廣告與待播節目的匹配性,以期讓第一使用者可在各待播節目的廣告時段中看到性質相似的廣告,處理器120可先分析待播節目的多個節目詮釋資料,依據待播廣告詮釋資料,找出第一、第二等待播廣告順序,其中第二待播廣告的詮釋資料與待播節目的節目詮釋資料之間的相似度高於預設門檻值。接著,處理器120可將第二廣告配置於待播節目的廣告時段中。In other embodiments, in order to increase the matching between the first to-be-advertised advertisement and the to-be-broadcast program, so as to allow the first user to see advertisements of similar nature in the advertisement period of each to-be-broadcast program, the processor 120 may first analyze Multiple program interpretation data of the program to be broadcast. Based on the interpretation data of the program to be broadcast, find out the order of the first and second advertisements to be broadcast. The interpretation data of the second advertisement to be broadcast is similar to the program interpretation data of the program to be broadcast. Degree is higher than a preset threshold. Then, the processor 120 may configure the second advertisement in the advertisement period of the program to be broadcast.
如此一來,當第一使用者在觀看球賽的節目時,即可在此節目的廣告時段看到相關的廣告,例如運動用品、運動飲料等。或者,當第一使用者在觀看美食的節目時,即可在此節目的廣告時段看到餐廳、旅遊等相關的廣告,但可不限於此。In this way, when the first user is watching a program of a ball game, he can see related advertisements, such as sports goods and sports drinks, during the advertising period of the program. Alternatively, when the first user is watching a food program, he can see related advertisements for restaurants, travel, etc. during the advertising period of the program, but it is not limited to this.
藉此,可進一步增加第一使用者觀看廣告的意願,從而提升廣告的效益。In this way, the willingness of the first user to watch the advertisement can be further increased, thereby improving the effectiveness of the advertisement.
應了解的是,即便所播放的廣告符合第一使用者的喜好,但若同一廣告被過於頻繁地播放,反而可能導致第一使用者的反感。因此,在一實施例中,處理器120可取得該第一使用者在預設時間區間(例如一週、一個月或其他設計者所設定的時間長度)內的平均廣告觀看率,再基於平均廣告觀看率決定第二廣告在廣告時段中的播放次數,其中此播放次數小於待播節目的最多廣告播放次數。It should be understood that even if the advertisement played matches the preferences of the first user, if the same advertisement is played too frequently, it may lead to resentment by the first user. Therefore, in an embodiment, the processor 120 may obtain the average advertisement view rate of the first user within a preset time interval (for example, a week, a month, or a time length set by other designers), and then based on the average advertisement The view rate determines the number of times the second ad is played in the advertising period, where this number of plays is less than the maximum number of ads played for the program to be broadcast.
另外,在第一使用者觀看過第一待播廣告中的某一廣告後,處理器120可依據此廣告的詮釋資料更新第一使用者的喜好。具體而言,當此廣告的詮釋資料中存在某些未對應於第一使用者喜好的詮釋資料時,處理器120可相應地將這些詮釋資料新增為此使用者的喜好並記錄於前述使用者資料庫中;對於之前的喜好,也可以更新其權重,依據時間長短予以適當加權。藉由此種學習行為,可令往後針對第一使用者的廣告媒合策略更為完善。In addition, after the first user views an advertisement in the first advertisement to be played, the processor 120 may update the preferences of the first user according to the interpretation data of the advertisement. Specifically, when there is some interpretation data in the interpretation data of this advertisement that does not correspond to the preferences of the first user, the processor 120 may correspondingly add these interpretation data to the preferences of the user and record them in the aforementioned use. In the database; for previous preferences, you can also update their weights and weight them appropriately according to the length of time. With this kind of learning behavior, the advertising matching strategy for the first user can be improved in the future.
為令以上說明更易於理解,以下特舉一具體例子輔以說明。假設目前有三個使用者,分別為小英、小明與小美,其個別在隨選視訊系統上的部分觀看行為記錄如下:
基於各使用者曾觀賞過節目的節目特徵如表1所示,可得出各使用者的喜好。請參照圖3,其例如是依據小美的喜好繪示的直方圖,其例如是依據各節目特徵整合而得的圖表,其中各直方圖的高度可對應於使用者各喜好的喜愛程度。從圖3可看出,小美最偏好觀看以「生態」做為節目特徵的節目,而「美景」次之。Based on the characteristics of the programs that each user has watched, as shown in Table 1, the preferences of each user can be obtained. Please refer to FIG. 3, which is, for example, a histogram drawn according to Xiaomei ’s preferences, and which is, for example, a chart obtained by integrating the features of each program. The height of each histogram may correspond to the user ’s preferences. As can be seen from Figure 3, Xiaomei prefers to watch programs featuring "ecology" as the program feature, and "beauty" is the second.
在一實施例中,圖3的直方圖亦可由節目的詮釋資料整合而得,以下輔以圖4A、圖4B及圖4C進行說明,其中圖4A是小明曾觀賞過的節目的一部分將詮釋資料轉換為特徵資料的直方圖,圖4B是小明曾觀賞過的節目的另一部分將詮釋資料轉換為特徵資料的直方圖,而圖4C是由圖4A及圖4B分類而得的節目特徵直方圖。由圖4A及圖4B可看出,其呈現的將詮釋資料轉換的特徵資料較為片段且不完整(例如「大」、「三」、「大三」、「三元」等),而透過先前實施例教示將詮釋資料分類至節目特徵的操作,可將圖4A及圖4B彚整為圖4C所呈現的態樣。舉例而言,「MLB」、「NBA」、「大三元」、「職棒」、「聯盟」等詮釋資料可皆被分類至「運動」的節目特徵。In an embodiment, the histogram of FIG. 3 may also be obtained by integrating the interpretation data of the program. The following description is supplemented by FIG. 4A, FIG. 4B, and FIG. 4C. Among them, FIG. 4B is a histogram of characteristic data. FIG. 4B is a histogram of converting the interpretation data into characteristic data in another part of the program that Xiaoming has watched, and FIG. 4C is a histogram of the program characteristics obtained by classifying FIG. 4A and FIG. As can be seen from FIG. 4A and FIG. 4B, the characteristic data presented by the interpretation data is fragmented and incomplete (such as "big", "three", "big three", "three yuan", etc.). The embodiment teaches the operation of classifying the interpretation data into the characteristics of the program, and FIG. 4A and FIG. 4B can be reorganized as shown in FIG. 4C. For example, "MLB", "NBA", "big three", "professional baseball", "league" and other interpretation data can all be classified as "sports" program features.
由圖4C可知,小明的喜好即大致包括「運動」、「美食」、「風景」、「人文」、「生態」與「其他」。同樣地,小英及小美的喜好亦可基於上述教示而得知並化為類似的直方圖,其細節在此不再贅述。As can be seen from FIG. 4C, Xiaoming's preferences roughly include "sports", "cuisine", "landscape", "humanities", "ecology" and "others". Similarly, Xiaoying and Xiaomei's preferences can also be learned and transformed into similar histograms based on the above teachings, and details thereof will not be repeated here.
基於此,本發明的廣告媒合裝置100即可依據前述教示來分配廣告予上述使用者觀看。Based on this, the advertisement matching device 100 of the present invention can distribute advertisements to the above users for viewing according to the aforementioned teachings.
在一實施例中,處理器120可採用下式(1)來計算第一廣告將詮釋轉換過的特徵資料與一特定使用者的多個喜好之間的相似度。(1) 其中為由第一廣告的廣告特徵所形成的向量,而為由前述特定使用者的喜好所形成的向量,而為前述相似度。當大於某預設門檻值(其可由操作者依需求而微調)時,處理器120即可判定第一廣告與此特定使用者相關,並可相應地將第一廣告新增至此特定使用者的廣告清單中。In an embodiment, the processor 120 may use the following formula (1) to calculate the similarity between the first advertisement's interpreted and converted feature data and multiple preferences of a particular user. (1) of which Is a vector formed by the advertising characteristics of the first ad, and Is a vector formed by the preferences of the aforementioned specific user, and Is the aforementioned similarity. when When it is greater than a preset threshold (which can be fine-tuned by the operator according to demand), the processor 120 may determine that the first advertisement is related to the specific user, and may add the first advertisement to the advertisement of this specific user accordingly. List.
此外,本發明提到的各種相似度(例如廣告與節目之間的相似度)計算方式亦可參照式(1)的原理進行計算,在此不再贅述。In addition, the calculation methods of various similarities (such as the similarity between advertisements and programs) mentioned in the present invention can also be calculated by referring to the principle of formula (1), which will not be repeated here.
在其他實施例中,處理器120可從觀看行為記錄得知每個使用者在一預設時間區間(例如一週)內的平均收看時間,而若某一廣告必須播放N次,而與廣告相關的某一使用者集合為,則播放給這些使用者的次數可如下式(2)所示計算而得。(2)In other embodiments, the processor 120 may know the average viewing time of each user in a preset time interval (for example, one week) from the viewing behavior record. If an advertisement must be played N times, it is related to the advertisement. A collection of users is , Played to these users It can be calculated by the following formula (2). (2)
在另一實施例中,鑑於現今社群通訊工具相當發達,資訊的傳輸與分享相當便利與快速。所以,使用者可能因為朋友的分享或推荐而觀看某些原先不見得感到興趣的節目,因此,其觀看節目的類型會有所變化,導致觀看喜好也會跟著改變。因應這種變化,再加上將使用者觀看節目的時間長短納入考量,當定期分析使用者節目瀏覽紀錄後,使用者喜好的權重可採用下式(3)及(4)來更新:(3)(4) 其中,是使用者喜好中的第i個關鍵詞的第j個更新,其計算方式係以距離計算當日之時間長短為基準,並以日計算。是指第i個關鍵詞的更新總數,係第i個關鍵詞的權重,係第i個關鍵詞的正規化權重。因此,使用者喜好可以因應使用者觀賞節目的變遷而有所改變。In another embodiment, given that social communication tools are quite developed today, the transmission and sharing of information is quite convenient and fast. Therefore, users may watch some programs that they may not be interested in because of sharing or recommendation by friends. Therefore, the types of programs they watch may change, and their viewing preferences may change accordingly. In response to this change, and taking into account the length of time users watch the program, after regularly analyzing the user's program browsing history, the user's preference weight can be updated using the following formulas (3) and (4): (3) (4) of which It is the j-th update of the i-th keyword in user preferences, and its calculation method is based on the length of time from the day of calculation and is calculated on a daily basis. Is the total number of updates for the ith keyword, Is the weight of the i-th keyword, It is the normalized weight of the i-th keyword. Therefore, user preferences can be changed in response to changes in user watching programs.
在一實施例中,假設現有一廣告欲提供予小英、小明及小美觀看,而此廣告的廣告特徵例如包括「台灣」、「風景」、「人文」、「古蹟」、「天燈」、「蜂炮」、「健行」及「人情味」。基於前述實施例教示的相似度計算方式,可得出此廣告的廣告特徵與小英、小明及小美的喜好之間的相似度分別例如是0.1、0.3及0.6。In an embodiment, it is assumed that an existing advertisement is intended for Xiaoying, Xiaoming and Xiaomei, and the advertisement features of the advertisement include, for example, "Taiwan", "Landscape", "Humanities", "Historic Sites", and "Sky Lantern" , "Bee Cannon", "Hiking" and "Humanistic". Based on the similarity calculation method taught in the foregoing embodiment, it can be concluded that the similarities between the advertising features of this advertisement and the preferences of Xiaoying, Xiaoming, and Xiaomei are, for example, 0.1, 0.3, and 0.6.
在此情況下,處理器120可判定這些相似度皆高於某預設門檻值(例如0.3),因而可將小明及小美皆認定為與前述廣告相關的使用者,並可將前述廣告新增至小明及小美的廣告清單中,以期擇日播放予小明及小美觀賞。In this case, the processor 120 may determine that these similarities are higher than a preset threshold (for example, 0.3), so Xiaoming and Xiaomei can both be identified as users related to the aforementioned advertisement, and the aforementioned advertisement may be updated. Added to Xiaoming and Xiaomei's advertising list, with a view to playing it for Xiaoming and Xiaomei.
在一實施例中,處理器120可基於以上計算出的相似度而調整前述廣告播放予小明及小美觀看的次數。舉例而言,處理器120可在一段時間(例如一週)內讓小英看1次廣告(低於門檻值,但可設定讓使用者觀看的次數如一次),小明看2次廣告,而小美看4次廣告。In one embodiment, the processor 120 may adjust the number of times the aforementioned advertisement is played to Xiaoming and Xiaomei based on the similarity calculated above. For example, the processor 120 can allow Xiaoying to watch the advertisement once (below the threshold, but can be set to allow the user to watch the number of times as one time), Xiaoming sees the advertisement twice, and Beauty watched 4 ads.
在廣告播放後,可再透過分析使用者瀏覽資料,發現小英沒有觀賞,小明有2次觀賞,而小美有3次觀賞(這所指的觀賞指使用者至少觀看廣告一段時間(例如10秒)以上)。藉此,處理器120可再相應地依據廣告特徵來更新各使用者的喜好。以小明為例,處理器120例如可調整圖4C中與此廣告的廣告特徵相關喜好的直方圖高度,但本發明可不限於此。After the advertisement is played, you can analyze the user ’s browsing data and find that Xiaoying has not watched it, Xiaoming has watched it twice, and Xiaomei has watched it three times. Seconds) or more). Thereby, the processor 120 can update the preferences of each user according to the advertisement characteristics accordingly. Taking Xiaoming as an example, the processor 120 may, for example, adjust the height of the histogram of preferences related to the advertisement feature of this advertisement in FIG. 4C, but the present invention may not be limited thereto.
綜上所述,本發明提出的隨選視訊及頻道系統中的個人化廣告媒合方法及其裝置可在使用者依其習慣觀看隨選視訊及頻道系統上的節目時,在此節目的廣告時段中看到較符合自身喜好的廣告。藉此,可增加使用者觀賞廣告的興趣,從而有助於改善廣告的營收及相關的商品販售情形。並且,本發明還可將廣告配置於性質相似節目的廣告時段中播出,從而進一步增加使用者觀看廣告的意願,並提升廣告的效益。此外,本發明另可依據使用者觀看廣告的行為而學習使用者的喜好,從而可令往後針對使用者的廣告媒合策略更為完善。In summary, the personalized advertisement matching method and its device in the on-demand video and channel system provided by the present invention can be used for advertising on this program when users watch programs on the on-demand video and channel system according to their habits. During the time period, I saw more ads that match my preferences. This can increase users ’interest in watching ads, which can help improve advertising revenue and related merchandise sales. In addition, the present invention can also configure advertisements to be broadcasted during advertisement periods of programs of similar nature, thereby further increasing the user's willingness to watch the advertisements and improving the effectiveness of the advertisements. In addition, the present invention can learn the user's preferences according to the behavior of the user watching the advertisement, so that the advertisement matching strategy for the user can be improved in the future.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with the examples, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field can make some modifications and retouching without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the attached patent application.
100‧‧‧廣告媒合裝置100‧‧‧ Advertising Matching Device
110‧‧‧儲存電路110‧‧‧Storage Circuit
120‧‧‧處理器120‧‧‧ processor
S210~S240‧‧‧步驟S210 ~ S240‧‧‧step
圖1是依據本發明之一實施例繪示的廣告媒合裝置的示意圖。 圖2是依據本發明之一實施例繪示的隨選視訊及頻道系統中的個人化廣告媒合方法流程圖。 圖3是依據使用者的喜好繪示的直方圖。 圖4A是使用者曾觀賞過的節目的一部分詮釋資料的直方圖。 圖4B是使用者曾觀賞過的節目的另一部分詮釋資料的直方圖。 圖4C是由圖4A及圖4B分類而得的節目特徵直方圖。FIG. 1 is a schematic diagram of an advertisement matching device according to an embodiment of the present invention. FIG. 2 is a flowchart of a personalized advertisement matching method in an on-demand video and channel system according to an embodiment of the present invention. FIG. 3 is a histogram plotted according to the user's preference. FIG. 4A is a histogram of part of the explanatory data of a program that the user has watched. FIG. 4B is a histogram of the interpretation data of another part of the program that the user has watched. FIG. 4C is a histogram of the program characteristics classified from FIG. 4A and FIG. 4B.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107103602A TWI654877B (en) | 2018-02-01 | 2018-02-01 | Personalized advertisement allocation method and apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107103602A TWI654877B (en) | 2018-02-01 | 2018-02-01 | Personalized advertisement allocation method and apparatus using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI654877B TWI654877B (en) | 2019-03-21 |
TW201935933A true TW201935933A (en) | 2019-09-01 |
Family
ID=66590840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107103602A TWI654877B (en) | 2018-02-01 | 2018-02-01 | Personalized advertisement allocation method and apparatus using the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI654877B (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8688521B2 (en) | 2007-07-20 | 2014-04-01 | Yahoo! Inc. | System and method to facilitate matching of content to advertising information in a network |
US20090216616A1 (en) | 2008-02-26 | 2009-08-27 | Yang Wang | Method and System for Displaying Correlated Advertisements to Internet Users |
TWI610251B (en) | 2016-07-21 | 2018-01-01 | Chunghwa Telecom Co Ltd | Method and system for generating advertisement interpretation data suitable for film and television service |
-
2018
- 2018-02-01 TW TW107103602A patent/TWI654877B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI654877B (en) | 2019-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11301505B2 (en) | Topic and time based media affinity estimation | |
US10154310B2 (en) | System and method for associating individual household members with television programs viewed | |
US10575054B2 (en) | Systems and methods for identifying non-canonical sessions | |
US11188603B2 (en) | Annotation of videos using aggregated user session data | |
KR101947667B1 (en) | Clustering of viewing time for video search | |
US11503355B2 (en) | Event-based content distribution | |
US20150363802A1 (en) | Survey amplification using respondent characteristics | |
US20190295123A1 (en) | Evaluating media content using synthetic control groups | |
US20140047473A1 (en) | Behavioral keyword identification based on thematic channel viewing | |
TWI764019B (en) | Advertising method, client device, server and system | |
TW201935933A (en) | Personalized advertisement allocation method and apparatus using the same | |
JP6139617B2 (en) | Information providing system, information providing server, information providing method, and program for information providing system | |
US20120116879A1 (en) | Automatic information selection based on involvement classification | |
WO2008122072A1 (en) | Adaptive marketing system |